WO2012060341A1 - 電子部品素子収納用パッケージ - Google Patents

電子部品素子収納用パッケージ Download PDF

Info

Publication number
WO2012060341A1
WO2012060341A1 PCT/JP2011/075109 JP2011075109W WO2012060341A1 WO 2012060341 A1 WO2012060341 A1 WO 2012060341A1 JP 2011075109 W JP2011075109 W JP 2011075109W WO 2012060341 A1 WO2012060341 A1 WO 2012060341A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic substrate
electronic component
composition
component element
Prior art date
Application number
PCT/JP2011/075109
Other languages
English (en)
French (fr)
Inventor
雅則 長廣
Original Assignee
株式会社住友金属エレクトロデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住友金属エレクトロデバイス filed Critical 株式会社住友金属エレクトロデバイス
Priority to JP2012541858A priority Critical patent/JP5937012B2/ja
Priority to CN201180050344.8A priority patent/CN103189975B/zh
Priority to EP11837991.6A priority patent/EP2637204B8/en
Publication of WO2012060341A1 publication Critical patent/WO2012060341A1/ja
Priority to US13/874,950 priority patent/US9119297B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Definitions

  • the present invention relates to a multilayer ceramic type electronic component element storage package for mounting and storing an electronic component element such as a semiconductor element, a crystal resonator, or a light emitting element, and more particularly, an electronic component element is packaged.
  • the present invention relates to a small and low-profile electronic component element storage package that can reduce the thickness and thickness of a ceramic substrate to accommodate the reduction in size and thickness of a device in which the device is mounted.
  • a multilayer ceramic type electronic component element housing package is made of about 91 to 94 wt% of alumina (Al 2 O 3 ) powder and sintered with silica (SiO 2 ), magnesia (MgO), calcia (CaO) or the like.
  • SiO 2 silica
  • MgO magnesia
  • CaO calcia
  • Each ceramic green sheet is screen-printed with a conductive paste obtained by kneading refractory metal such as tungsten (W) or molybdenum (Mo) with a solvent to form an electrically conductive state between upper and lower layers.
  • the metalized printed wiring for electrical conduction including the via conductors and through-hole conductors is formed.
  • a plurality of ceramic green sheets on which metallized printed wiring is formed are stacked and laminated by applying temperature and pressure, and this is laminated at a high temperature of about 1550 to 1600 ° C. in a reducing atmosphere with a high melting point.
  • a multilayer ceramic type electronic component element storage package is provided in which metal is simultaneously fired to provide a metallized layer on the surface, inside, or between layers of a ceramic substrate.
  • the original sintering temperature of alumina is 1700 ° C. or higher, and a sintering aid is added to lower the sintering temperature. It is possible to conclude.
  • the ceramic composition of the ceramic substrate is made of 9-9 wt% silica (SiO 2 ), calcia (CaO), magnesia (MgO), etc., except for 91-94 wt% alumina powder. It is composed of a sintering aid, and the bonding strength of the metallized layer made of tungsten or molybdenum formed on the ceramic substrate can be strengthened by the glass component of the sintering aid.
  • the electronic component element storage package made of only alumina described above contains a relatively large amount of sintering aid of 6 to 9 wt% and can lower the firing temperature, but the bending strength of the ceramic substrate itself is as low as about 320 MPa. Therefore, there is a limit to reducing the thickness of the ceramic substrate. Therefore, when the thickness of the ceramic substrate is reduced, the electronic component element storage package cannot withstand the thermal stress at the time of joining the metal lid after mounting the electronic component.
  • Such an electronic component element storage package is made into a small, thin and low-profile package that can be mounted on a device capable of handling lightness, thinness and miniaturization after the electronic component is stored with increasing thickness. I can't do that.
  • At least one of the ceramic base and the lid is a sintered body containing 2.0 to 27.0 wt% of zirconium oxide in alumina. What was formed is disclosed (for example, refer to Patent Document 1). According to this, the container composed of the ceramic base and the lid is hermetically sealed even if an external force is applied to the ceramic base or the lid after the semiconductor element is hermetically sealed inside the container to form a semiconductor device. Can be kept complete.
  • a ceramic base with improved bending strength for a semiconductor device is made of a fired body in which alumina is the main component and zirconia is added to the ceramic base.
  • the material composition of the ceramic base is 70 to 90 wt% alumina,
  • the addition amount is selected in the range of 10 to 30 wt% (see, for example, Patent Document 2). According to this, it is said that the ceramic substrate has higher bending strength and flexibility (toughness) than that of a single alumina, and the ceramic substrate can be made thinner.
  • a package for storing an electronic component element as disclosed in JP-A-6-13481 has a low melting point for sealing by sandwiching a lead terminal between a ceramic base on which the electronic component element is mounted and a lid. It is bonded with glass and is completely different from a package having a laminated structure in which a metallized layer is simultaneously fired in a reducing atmosphere on a ceramic substrate.
  • the ceramic substrate and the lid is made of alumina containing zirconia.
  • An electronic component element storage package as disclosed in Japanese Patent Application Laid-Open No. 7-38014 is obtained by bonding a copper plate corresponding to a metallized layer to a ceramic substrate by a direct bonding method using the melting point of copper. It is completely different from a package having a laminated structure in which a metallized layer is simultaneously fired in a reducing atmosphere on a substrate.
  • At least one of a ceramic substrate and a lid is made of a sintered body of alumina containing zirconia to provide a bending strength. Even if it can be improved, it is impossible to obtain a package that has both the improvement of the bending strength of the ceramic substrate and the securing of the metallized bonding strength of the metallized layer provided on the ceramic substrate.
  • the present invention has been made in view of such circumstances, and can improve the bending strength of a ceramic substrate, and can secure the metalized bonding strength of a metallized layer formed by simultaneous firing on the ceramic substrate.
  • the purpose is to provide. It is another object of the present invention to provide an electronic component element housing package having high visible light reflectivity on the surface of a ceramic substrate in addition to the above effects.
  • an electronic component element storage package comprises a ceramic base for storing an electronic component element, and a metallization for forming an electrically conductive state bonded to the ceramic base.
  • the ceramic composition of the ceramic substrate is made of alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ) as a solid solution.
  • Partially stabilized zirconia (Y 2 O 3 —ZrO 2 ) and a sintering aid are included, and the sintering aid includes silica (SiO 2 ), calcia (CaO), manganese oxide (MnO, MnO 2 , at least one member selected from Mn 2 O 3, Mn 3 O 4), magnesia (MgO), a combination of, partially stabilized zirconia in the ceramic composition Is within the range of 10-30 wt%, the content of the sintering aid in the ceramic composition is within the range of 1.5-4.5 wt%, and the partially stabilized zirconia, fired in the ceramic composition
  • the balance other than the binder is alumina, and the metallized composition of the metallized layer contains a ceramic component composed of tungsten (W), molybdenum (Mo), alumina, and glass.
  • the tungsten content in the metallized composition is in the range of 70 to 94 wt%
  • the molybdenum content in the metallized composition is in the range of 3 to 20 wt%
  • the ceramic component content in the metallized composition is 3 to 20 wt%.
  • the ratio of the tetragonal crystal in the zirconia crystal of the ceramic substrate after co-firing is 60% or more.
  • the electronic component element storage package according to claim 2 is the electronic component element storage package according to claim 1, wherein the bending strength of the ceramic base body after co-firing is 550 MPa or more.
  • the bonding strength between the ceramic substrate and the metallized layer is 25 MPa or more.
  • the electronic component element storage package according to claim 3 is the electronic component element storage package according to claim 1, wherein the glass is made of silica (SiO 2 ), magnesia (MgO), calcia (CaO), It is at least one selected from titanium oxide (TiO 2 ), and the glass content in the ceramic component is in the range of 5 to 10 wt%.
  • the glass is made of silica (SiO 2 ), magnesia (MgO), calcia (CaO), It is at least one selected from titanium oxide (TiO 2 ), and the glass content in the ceramic component is in the range of 5 to 10 wt%.
  • the electronic component element storage package according to claim 4 is the electronic component element storage package according to claim 1, wherein the glass is made of silica (SiO 2 ), magnesia (MgO), calcia (CaO), It is at least one selected from titanium oxide (TiO 2 ), the glass content in the ceramic component is in the range of 5 to 10 wt%, and the molar fraction of yttria in the partially stabilized zirconia is 0.015. It is characterized by being in the range of ⁇ 0.035.
  • the ceramic composition of the ceramic base is 10-30 wt% of partially stabilized zirconia (Y 2 O 3 —ZrO 2 ) in which yttria is dissolved.
  • Sintering aid comprising a combination of at least one selected from silica, (SiO 2 ), calcia (CaO), manganese oxide (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 ) and magnesia (MgO) 1.5 to 4.5 wt% of the agent and alumina (Al 2 O 3 ) in the balance, and the metallized composition of the metallized layer contains 70 to 94 wt% of tungsten (W) and molybdenum (Mo).
  • the ceramic substrate Containing 3 to 20 wt% of a ceramic component comprising 3 to 20 wt% of alumina and glass, and zirconia bonding of the ceramic substrate after co-firing.
  • the bending strength of the ceramic substrate after co-firing can be made 550 MPa or more, and the bonding strength between the ceramic substrate and the metallized layer after co-firing can be made 25 MPa or more. it can.
  • the ceramic substrate (ceramic substrate according to any one of claims 1 to 4) fired by containing a sintering aid in alumina and partially stabilized zirconia in which yttria is dissolved is sintered into alumina.
  • a higher bending strength can be obtained than in the case of a ceramic substrate made of alumina alone fired by containing an agent.
  • a ceramic substrate containing high-stiffness, high-toughness partially stabilized zirconia in which yttria is dissolved is a part of tetragonal zirconia at the time of fracture by keeping the proportion of tetragonal crystals in the zirconia crystal at 60% or more. Can be transformed into monoclinic zirconia, causing volume expansion to absorb fracture energy and increasing material strength.
  • the ceramic substrate can further improve the bending strength of the ceramic substrate by increasing the content of partially stabilized zirconia in which yttria is dissolved, but the content of zirconia, which has a lower thermal conductivity than alumina, is larger. This is not preferable because the thermal conductivity of the ceramic substrate is lowered. Therefore, in the inventions according to claims 1 to 4, the bending strength of 550 MPa or more, which is higher than that of alumina alone, is obtained by setting the content of the partially stabilized zirconia in the ceramic composition within the range of 10 to 30 wt%. While maintaining the above, it is possible to maintain a thermal conductivity equivalent to that of alumina alone.
  • the electronic component element storage package according to any one of claims 1 to 4 contains magnesia as an essential component as a sintering aid in the ceramic composition of the ceramic substrate, and in addition, selected from silica, calcia, and manganese oxide.
  • magnesia as an essential component as a sintering aid in the ceramic composition of the ceramic substrate, and in addition, selected from silica, calcia, and manganese oxide.
  • the content of the sintering aid (a combination of at least one selected from silica, calcia, and manganese oxide and magnesia) for forming the ceramic substrate is excessively increased, the bending strength of the ceramic substrate itself is lowered. If the amount is too small, the bonding strength with the metallized layer is lowered, which is not preferable. For this reason, in the inventions according to claims 1 to 4, by setting the content of the sintering aid in the ceramic composition within the range of 1.5 to 4.5 wt%, the high bending strength of the ceramic substrate itself is obtained. In addition, high bonding strength between the ceramic substrate and the metallized layer can be ensured at the same time.
  • the sintering aid a combination of at least one selected from silica, calcia, and manganese oxide and magnesia
  • the electronic component element storage package according to any one of claims 1 to 4 is a combination of an appropriate amount of tungsten and molybdenum in the metallized composition of the metallized layer so that the ceramic substrate and the metallized material are mixed.
  • the firing temperature range at the time of simultaneous firing in a reducing atmosphere of the layers can be expanded.
  • the sintering start temperature of the metallized layer can be lowered, and the shrinkage timing of the metallized layer can be matched with the shrinkage timing of the ceramic. It is possible to produce a ceramic substrate having a metallized layer that suppresses the occurrence of.
  • the above-mentioned electronic component element storage package has a high reflectivity due to the high refractive index of zirconia itself, without adding a color developing agent such as molybdic acid to be mixed in order to color the ceramic base in black.
  • a white ceramic substrate can also be obtained. Therefore, the ceramic substrate can be used as a light emitting element storage package that can improve the reflectance of light emitted from a light emitting element such as an LED (Light Emitting Diode), and can improve the light emission efficiency.
  • FIG. 1 is an explanatory view of an electronic component element storage package according to an embodiment of the present invention.
  • an electronic component element storage package 10 according to an embodiment of the present invention includes a ceramic base 11 and a metallized layer 12 provided to be joined to the ceramic base 11.
  • an electronic component element 13 such as a semiconductor element, a crystal resonator, or a light emitting element is mounted on a ceramic base 11, and the electronic component element 13 is hermetically sealed with a lid 14. It is used for.
  • This electronic component element storage package 10 was prepared by forming a slurry obtained by adding an organic binder, a plasticizer, a solvent, etc. to a ceramic composition and kneading it into a sheet shape by, for example, a doctor blade method in order to create a ceramic substrate 11.
  • a plurality of ceramic green sheets are used.
  • via conductor printing is used for screen printing using a conductive paste, and for the metallization layer 12 for electrical conduction including via conductors and through-hole conductors for forming an electrical conduction state between the upper and lower layers.
  • the printed wiring is formed.
  • the plurality of ceramic green sheets on which the printed wiring is formed are stacked and laminated with application of temperature and pressure, and then the ceramic green sheet and the printed wiring are simultaneously fired in a reducing atmosphere to thereby surface the ceramic substrate 11.
  • it is formed in a multilayer ceramic type electronic component element storage package 10 provided by bonding a metallized layer 12 inside or between layers.
  • the ceramic composition of the ceramic substrate 11 constituting the electronic component element storage package 10 is composed of alumina, partially stabilized zirconia in which yttria is dissolved, and a sintering aid.
  • the electronic component element storage package 10 contains 10 to 30 wt% of partially stabilized zirconia in which yttria as described above is dissolved in the ceramic composition of the ceramic substrate 11.
  • This partially stabilized zirconia itself has extremely excellent characteristics such as high strength and high toughness.
  • partially stabilized zirconia can improve the bending strength of the ceramic base
  • the electronic component element storage package 10 can be obtained from the conventional alumina alone by setting the content of the partially stabilized zirconia in the ceramic composition of the ceramic substrate 11 within the range of 10 to 30 wt%.
  • the thermal conductivity is comparable to that of a ceramic substrate made only of conventional alumina. Can have a rate (15 W / mK).
  • the content of the partially stabilized zirconia is less than 10 wt%, the effect of improving the strength after firing is insufficient and only an average bending strength of about 400 MPa can be obtained. Further, when the content of the partially stabilized zirconia exceeds 30 wt%, the heat conductivity is 12 W / mK or less, and heat generated from the electronic component element 13 is quickly radiated to the outside via the ceramic substrate 11. Can not be. Even when the electronic component element 13 is hermetically sealed by seam welding or the like using the metal lid 14, the ceramic base 11 has a high bending resistance due to the thermal shock resistance against high heat generated during sealing. It is necessary to have high thermal conductivity as well as strength.
  • the bending strength of the ceramic substrate 11 is not improved significantly even if the content of partially stabilized zirconia exceeds 30 wt%.
  • the partially stabilized zirconia in which yttria is dissolved is preferably produced by a coprecipitation method which is one of the methods for producing powder.
  • a coprecipitation method an alkali is added to a solution containing two or more kinds of metal ions, and an ion concentration product in the solution is brought into a supersaturated state where the solubility product is higher than the solubility product.
  • This is a method in which a powder that can be precipitated at the same time and has high uniformity can be prepared, and may exhibit characteristics that cannot be obtained by simply crushing and mixing a solid sample.
  • the electronic component element storage package 10 is a combination of magnesia and at least one selected from silica, calcia, and manganese oxide as a sintering aid in the ceramic composition of the ceramic substrate 11. Containing 0.5 to 4.5 wt%.
  • a ceramic substrate 11 can be made into a dense fired body by reducing the firing temperature to about 1450 to 1600 ° C. by including partially stabilized zirconia and magnesia in the ceramic composition. Conductivity can be increased. Furthermore, the lowering of the firing temperature can suppress the growth of zirconia crystal particles and increase the bonding strength between the metallized layer 12 and the ceramic substrate 11.
  • the content of magnesia in the ceramic composition is less than 0.05 wt%, it is difficult to lower the firing temperature, and it becomes impossible to suppress the growth of zirconia crystal particles in the ceramic substrate 11. As a result, a dense fired body cannot be obtained. Further, when the content of magnesia in the ceramic composition exceeds 1 wt%, the bending strength of the ceramic substrate 11 is lowered, although no change is observed in the sinterability. Further, by adding a sintering aid containing magnesia as an essential component and containing at least one selected from silica, calcia, and manganese oxide to the ceramic composition, the vitreous material in the ceramic substrate 11 is converted into a metallized layer 12 by capillary action.
  • the adhesion strength between the ceramic substrate 11 and the metallized layer 12 can be improved by the vitreous physical anchor effect.
  • the content of the sintering aid in the ceramic composition is less than 1.5 wt%, the amount of movement from the ceramic substrate 11 to the vitreous metallized layer 12 is insufficient, and the ceramic substrate 11 and the metallized layer The bonding strength with 12 decreases.
  • content of the sintering auxiliary agent in a ceramic composition exceeds 4.5 wt%, the glassy substance in the ceramic base
  • manganese oxide which is a sintering aid a case where manganese oxide having a chemical formula of Mn 2 O 3 is used is exemplified, but this manganese oxide (Mn 2 O 3 ) Instead, use other manganese oxides with different chemical formulas (eg, MnO, MnO 2 , Mn 3 O 4 ) alone or in combination with multiple types of manganese oxides with different chemical formulas as a sintering aid. Is also possible.
  • the ceramic composition of the ceramic substrate 11 is composed of 10 to 30 wt% of partially stabilized zirconia and 1.5 to 4.5 wt% of the sintering aid. Contains alumina. Therefore, the content of alumina in the ceramic composition of the ceramic substrate 11 constituting the electronic component element storage package 10 is 88.5 wt% at the maximum and 65.5 wt% at the minimum. If the content of alumina in the ceramic composition of the ceramic substrate 11 is in this range, even if zirconia, which is a low thermal conductivity material, is added, the thermal conductivity of the alumina substrate according to the prior art (alumina: 91-94 wt. %, Sintering aid: ceramic substrate made of a ceramic composition comprising 6 to 9 wt%), and a decrease in the thermal conductivity of the ceramic substrate 11 can be suppressed.
  • the metallized composition of the metallized layer 12 formed by bonding to the ceramic substrate 11 contains tungsten, molybdenum, and a ceramic component.
  • This metallized composition contains 70 to 94 wt% tungsten, 3 to 20 wt% molybdenum, and 3 to 20 wt% ceramic components.
  • a printed wiring is formed on the ceramic green sheet with a screen printer using a conductive paste containing a binder or a solvent in the metallized composition, and this is reduced in a reducing atmosphere. It is formed by simultaneous firing.
  • Tungsten and molybdenum in this metallized composition are metals called high melting points (melting point of tungsten: 3407 ° C., melting point of molybdenum: 2620 ° C.), and are conductive metals that can be co-fired with ceramics in a reducing atmosphere. Conventionally, it is generally known.
  • the above metallized composition contains an appropriate amount of molybdenum and the fact that the melting point of molybdenum is lower than the melting point of tungsten, only tungsten is used as the conductor metal of the metallized composition (1550 to 1600 ° C.)
  • the co-firing temperature range can be lowered and widened (1450 to 1600 ° C.).
  • the metallized layer 12 can be co-fired with the ceramic substrate 11 containing partially stabilized zirconia so that the firing temperature can be lowered.
  • the metallized composition is composed of a plurality of types of conductive metals so that simultaneous firing in accordance with the content of alumina is possible.
  • the firing temperature of the metallized composition is increased by adding molybdenum, so that simultaneous firing is performed without any trouble. It becomes possible. Furthermore, the above metallized composition is obtained by co-firing the metallized composition and the ceramic green sheet, thereby incorporating the glass component in the ceramic composition around the tungsten particles and the molybdenum particles to strengthen the bonding between the particles.
  • the metallized layer 12 to be formed can be formed.
  • the metallized composition described above is formed by simultaneously firing while sucking up the glass component of the ceramic green sheet by utilizing the wettability of molybdenum with the glass, so that the space between the ceramic substrate 11 and the metallized layer 12 is reduced. It can be joined firmly.
  • the metallized composition contains an appropriate amount of a ceramic component, and is fired while supplying a glass component to the ceramic green sheet, thereby improving the bonding strength between the ceramic substrate 11 and the metallized layer 12 after simultaneous firing.
  • the metallized composition contains a ceramic component, so that the ceramic substrate 11 and the metallized layer that are generated due to a shrinkage difference at the time of simultaneous firing of the printed wiring for via filling the through hole formed in the ceramic green sheet with the conductive paste. 12 can be prevented from peeling off.
  • the firing shrinkage start timing of the metallized layer 12 is brought closer to the ceramic, and the firing shrinkage timing time amount of the ceramic substrate 11 and the metallized layer 12 is matched. Warpage generation of the ceramic substrate 11 provided with the metallized layer 12 can be suppressed.
  • the ceramic component is composed of a combination of at least one glass selected from silica (SiO 2 ), magnesia (MgO), calcia (CaO), and titanium oxide (TiO 2 ) and alumina.
  • the glass content in the ceramic component is preferably in the range of 5 to 10 wt%.
  • the metallized composition can ensure electrical conductivity by making the conductive metal, which is a combination of tungsten and molybdenum having relatively low electrical conductivity, at least 80 wt%.
  • the conductive metal which is a combination of tungsten and molybdenum having relatively low electrical conductivity, at least 80 wt%.
  • the molybdenum content exceeds 20 wt%, the firing temperature is excessively lowered, and simultaneous firing with the ceramic green sheet becomes difficult.
  • the content of tungsten exceeds 94 wt%, the content of at least one of molybdenum and the ceramic component falls below 3 wt%.
  • the molybdenum content is less than 3 wt%, it is difficult to lower the firing temperature, and simultaneous firing with the ceramic green sheet becomes impossible.
  • the content of the ceramic component is less than 3 wt%, the effect of adjusting the firing shrinkage timing at the time of simultaneous firing is reduced, and the ceramic substrate 11 provided with the metallized layer 12 is likely to be warped. Further, when the content of the ceramic component is less than 3 wt%, the amount of the glass component in the metallized layer 12 is insufficient, the anchor effect to the ceramic substrate 11 is reduced, and the bonding strength is reduced. On the other hand, when the content of the ceramic component exceeds 20 wt%, the amount of the glass component increases too much, and conversely, the internal strength of the metallized layer 12 itself decreases or the electrical resistance value as a conductor increases. Or the adhesion strength with the plating film is reduced.
  • the electronic component element storage package 10 described above has a ratio of tetragonal crystals in the zirconia crystals of the ceramic substrate 11 after simultaneous firing of 60% or more.
  • Zirconium oxide (ZrO 2 ) itself constituting the partially stabilized zirconia contained in the ceramic substrate 11 has high heat resistance, low vapor pressure at high temperature, good chemical corrosion resistance, and thermal conductivity compared to alumina. It has characteristics such as a single digit lower and is excellent as a high temperature heat resistant material.
  • zirconium oxide has three transformations of monoclinic, tetragonal, and cubic. Especially, the phase transformation of monoclinic and tetragonal crystals involves a large volume change. It cannot be used as a heat resistant material.
  • zirconium oxide is a stabilized zirconia in which a low-valent oxide yttria (Y 2 O 3 ) or the like is solid-dissolved, and the highest temperature phase, a meteorite-type cubic crystal, exists as a stable phase up to a low temperature. Can be formed.
  • the amount of yttria required for 100% cubic stabilized zirconia is about 6 mol%, but this is small, for example, by adding about 3 mol%, more specifically, partially stabilized zirconia.
  • the electronic component element storage package 10 comprising the ceramic substrate 11 containing the partially stabilized zirconia in which yttria containing 60% or more of the tetragonal crystal in the zirconia crystal is dissolved can have high bending strength and high toughness. It has the outstanding characteristic that can be improved.
  • the ceramic base 11 constituting the electronic component element storage package 10 can be thinned, so that the electronic component element storage package 10 can be made into a package that can cope with an extremely small and low profile.
  • the proportion of tetragonal crystals in the zirconia crystal constituting the ceramic substrate 11 is less than 60%, the bending strength of the electronic component element storage package made of the ceramic substrate 11 containing the ceramic substrate 11 is lowered and the toughness is increased. And the production of a thin ceramic substrate becomes difficult.
  • the electronic component element storage package 10 described above has a bending strength of the ceramic substrate 11 after simultaneous firing of 550 MPa or more.
  • the electronic component element storage package 10 having a bending strength of 550 MPa or more can be obtained by sealing the electronic component element 13 mounted on the ceramic substrate 11 while pressing it with a metal lid 14 by seam welding or the like. 11 can be joined without causing cracks or breakage. This bending strength is measured by the test method of JIS R 1601. Therefore, the ceramic substrate 11 can provide the electronic component element storage package 10 having a thickness smaller than that of the conventional ceramic substrate, and can cope with a reduction in the size and height of the package and the electronic device incorporating the package. .
  • the electronic component element storage package 10 described above has a bonding strength of 25 MPa or more between the ceramic substrate 11 and the metallized layer 12 after simultaneous firing.
  • An electronic component element storage package 10 having a bonding strength between the ceramic substrate 11 and the metallized layer 12 of 25 MPa or more is a wire bond pad 16 for electrically connecting the electronic component element 13 and the bonding wire 15;
  • Each of the metallized layers 12 such as the seal pad 17 for bonding the lid body 14 and the external connection terminal pad 18 for electrically connecting to the outside through solder bonding is formed without causing metallization peeling. Can be joined.
  • the bonding strength was measured by brazing a metal lead terminal bent at a right angle to a metallization layer 12 having a width of 1 mm and pulling the metal lead terminal in the vertical direction, and the metallization layer 12 was peeled off from the surface of the ceramic substrate 11. It is measured by the intensity of the case.
  • the inventor of the present invention has various ceramic ratios of 95: 5, 90:10, 80:20, and 70:30 in the composition ratio of the ceramic substrate made of only alumina and the partially stabilized zirconia in which alumina and yttria are dissolved. Samples made of the ceramic substrates were prepared, and the bending strength of each ceramic substrate was measured. Further, a metallized layer composed of 94 wt% tungsten, 3 wt% molybdenum and 3 wt% ceramic component was formed on the various ceramic substrates, and the bonding strength between the ceramic substrate and the metallized layer was measured. Table 1 shows the results.
  • the sintering aid in the ceramic composition according to the present invention is an indispensable constituent element for the present invention to exhibit a unique effect.
  • the inventor of the present invention sets the composition ratio of the partially stabilized zirconia in which yttria is dissolved in the ceramic composition to 22 wt%, magnesia to 0.5 wt%, and at least selected from silica, calcia, and manganese oxide.
  • Various ceramic bases were prepared in which the total content of one kind of sintering aid was 0.5 to 6 wt% and the balance was alumina, and the bending strength of the ceramic base was measured. Further, a metallized layer composed of 94 wt% tungsten, 3 wt% molybdenum and 3 wt% ceramic component was formed on the various ceramic substrates, and the bonding strength between the ceramic substrate and the metallized layer was measured.
  • Table 2 shows the results.
  • the content of the sintering aid consisting of a combination of at least one selected from silica, calcia, and manganese oxide and magnesia in the ceramic composition is 1.5 to 4.5 wt%. It was confirmed that the example which can secure a bending strength of 550 MPa or more and a bonding strength of the ceramic substrate and the metallized layer of 25 MPa or more.
  • the composition ratio of the partially stabilized zirconia in which yttria was solid-solved was 22 wt% and magnesia was only 0.5 wt%, or the yttria was dissolved in the ceramic composition.
  • the composition ratio of partially stabilized zirconia is 22 wt%, magnesia is 0.5 wt%, and the total content of at least one sintering aid selected from silica, calcia, and manganese oxide is less than 1.5 wt%.
  • the comparative example can secure a bending strength of 550 MPa or more for the ceramic substrate, it can be confirmed that the bonding strength between the ceramic substrate and the metallized layer is less than 10 MPa and the bonding strength of the metallized layer cannot be ensured of 25 MPa or more.
  • the composition ratio of partially stabilized zirconia in which yttria is dissolved is 22 wt%, magnesia is 0.5 wt%, and at least one kind of sintering aid selected from silica, calcia, and manganese oxide is used.
  • the comparative example in which the total content of the agent exceeds 4.5 wt% can confirm that the bonding strength between the ceramic substrate and the metallized layer can be secured at 25 MPa or more, but the bending strength becomes 500 MPa or less and the bending strength of 550 MPa or more cannot be secured. It was.
  • the manganese oxide of the sintering aid contained in the ceramic composition was a chemical formula represented by Mn 2 O 3 .
  • the content of the sintering aid in the ceramic composition and its component composition are also essential components.
  • the ceramic composition 22 wt% of partially stabilized zirconia, 0.5 wt% of magnesia, 1.0 wt% of silica, 0.5 wt% of calcia, and 1.0 wt% of manganese oxide (Mn 2 O 3 ) are used. Then, a sample according to the example in which the balance was alumina was prepared, and the reflectance of blue light having a wavelength of 450 nm, which is expected to be mounted on the electronic component element storage package 10 according to the present embodiment, was measured. The reflectance of was 83%.
  • CM-3700d spectrocolorimeter manufactured by Konica Minolta
  • the measurement conditions were SCI (including regular reflection) and area ⁇ 8 mm.
  • the ceramic composition a sample (comparative example) according to a conventional example in which partially stabilized zirconia is 22 wt%, a sintering aid composed of magnesia, silica, and calcia is 7 wt% and the balance is alumina is prepared.
  • the reflectance of blue light having a wavelength of 450 nm was measured under the same conditions, the reflectance of the sample surface was 75%.
  • substrate which concerns on the Example used for the measurement of a reflectance, and a prior art example was 1 mm. Therefore, the electronic component element storage package 10 according to the present embodiment has a significantly higher reflectivity on the surface of the ceramic substrate 10 than the conventional example, and the electronic component element mounted on the electronic component element storage package 10.
  • the ceramic substrate 10 itself can sufficiently function as a highly reflective material.
  • the electronic component element storage package according to the present invention can cope with a small size and a low profile, a semiconductor element corresponding to the small size and a low profile or an electronic component element such as a crystal resonator is mounted on a cavity portion as a mounting portion. After being hermetically sealed with a lid, it can be used by being incorporated into an electronic device such as a personal computer or a mobile phone that is required to be light and thin.
  • the electronic component element storage package of the present invention can be used for backlights for various lighting devices, televisions, personal computers, and the like that are mounted with electronic component elements such as light emitting elements and are required to be light and thin. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】セラミック基体の曲げ強度と、メタライズ層のメタライズ接合強度を確保できる電子部品素子収納用パッケージを提供する。 【解決手段】セラミック基体11と、メタライズ層12からなる電子部品素子収納用パッケージ10において、セラミック基体11のセラミック組成物がイットリア部分安定化ジルコニアを10~30wt%と、シリカ,カルシア,酸化マンガンから選択される少なくとも1種類と,マグネシアとの組合せからなる焼結助剤を1.5~4.5wt%と、残部にアルミナを含有してなると共に、メタライズ層12のメタライズ組成物がタングステンを70~94wt%と、モリブデンを3~20wt%と、セラミック成分を3~20wt%含有してなり、同時焼成後のセラミック基体11のジルコニア結晶内の正方晶の割合を60%以上としたことを特徴とする電子部品素子収納用パッケージによる。

Description

電子部品素子収納用パッケージ
 本発明は、半導体素子や、水晶振動子や、発光素子等の電子部品素子を搭載して収納するための積層セラミック型の電子部品素子収納用パッケージに関し、より詳細には、電子部品素子をパッケージに収納し、これを搭載させた装置の軽薄短小化に対応させるためのセラミック基体の小型且つ厚みを薄くできる小型低背化対応の電子部品素子収納用パッケージに関する。
 従来から、積層セラミック型の電子部品素子収納用パッケージには、91~94wt%程度のアルミナ(Al)粉末に、シリカ(SiO)、マグネシア(MgO)、カルシア(CaO)等の焼結助剤を6~9wt%加え、これに有機バインダー、可塑剤、溶剤等を加えて混練したスラリーを、ドクターブレード法でシート状に成形した複数枚のセラミックグリーンシートが用いられている。それぞれのセラミックグリーンシートには、タングステン(W)や、モリブデン(Mo)等の高融点金属を溶剤等で混練した導体ペーストを用いてスクリーン印刷で上、下層間の電気的導通状態を形成するためのビア導体や、スルーホール導体を含む電気的導通用のメタライズ印刷配線を形成している。そして、メタライズ印刷配線が形成された複数枚のセラミックグリーンシートは、重ね合わせて温度と圧力をかけて積層し、これを還元雰囲気中の1550~1600℃程度の高温でセラミックグリーンシートと、高融点金属を同時焼成してセラミック基体の表面や、内部や、層間にメタライズ層を設ける積層セラミック型の電子部品素子収納用パッケージを形成している。この電子部品素子収納用パッケージは、本来のアルミナの焼結温度が1700℃以上であるのを、焼結助剤を入れて焼結温度を下げ、タングステンや、モリブデンの焼結にとっても無理なく焼結できるようにしている。そして、この電子部品素子収納用パッケージは、セラミック基体のセラミック組成物が91~94wt%のアルミナ粉末以外が、6~9wt%のシリカ(SiO)、カルシア(CaO)、マグネシア(MgO)等の焼結助剤で構成されており、セラミック基体に形成されるタングステンや、モリブデンからなるメタライズ層を、焼結助剤のガラス成分によって接合強度を強力にすることができるようになっている。
 しかしながら、上記のアルミナのみからなる電子部品素子収納用パッケージは、6~9wt%という比較的多い焼結助剤を含み、焼成温度を低くできるものの、セラミック基体自体の曲げ強度が320MPa程度と低くなって、セラミック基体の厚みを薄くさせることに限界を有している。従って、この電子部品素子収納用パッケージは、セラミック基体の厚みを薄くした場合に、電子部品実装後の金属製蓋体接合時の熱応力に耐えることができなくなっている。そして、このような電子部品素子収納用パッケージは、厚みが厚くなって電子部品を収納させた後、軽薄短小化に対応できる装置に実装させることができる厚みの薄い小型低背化のパッケージにすることができなくなっている。
 従来の電子部品素子収納用パッケージには、セラミック基体の曲げ強度を向上させるためにセラミック基体及び蓋体の少なくとも一方がアルミナに酸化ジルコニウムを2.0乃至27.0wt%含有させた焼結体で形成されたものが開示されている(例えば、特許文献1参照)。これによれば、セラミック基体と蓋体とからなる容器は、容器内部に半導体素子を気密に封止し、半導体装置となした後、セラミック基体あるいは蓋体に外力が加えられても気密封止を完全なものに維持できるとしている。
 また、半導体装置用として曲げ強度を向上させたセラミック基体には、アルミナを主成分としてこれにジルコニアを添加した焼成体で作成し、ここでセラミック基体の材料組成をアルミナ70~90wt%、ジルコニアの添加量を10~30wt%の範囲に選定しているものが開示されている(例えば、特許文献2参照)。これによれば、セラミック基体は、アルミナ単体のものに比べて曲げ強度、撓み性(靭性)を高め、セラミック基体の薄型化が図れるとしている。
特開平6-13481号公報 特開平7-38014号公報
 しかしながら、前述したような従来の電子部品素子収納用パッケージは、次のような問題がある。
 (1)特開平6-13481号公報で開示されるような電子部品素子収納用パッケージは、電子部品素子を搭載したセラミック基体と、蓋体とが間にリード端子を挟み込んで封止用低融点ガラスで接合されるもので、セラミック基体にメタライズ層を還元雰囲気中で同時焼成して設ける積層構造からなるパッケージとは全く異なるものであり、例え、セラミック基体及び蓋体の少なくとも一方をジルコニア入りアルミナの焼結体にして曲げ強度を向上できたとしても、セラミック基体の曲げ強度の向上と、セラミック基体に設けるメタライズ層のメタライズ接合強度の確保の両方を併せ持つパッケージを得ることができなくなっている。
 (2)特開平7-38014号公報で開示されるような電子部品素子収納用パッケージは、セラミック基体にメタライズ層に相当する銅板を銅の融点を利用する直接接合法で接合するもので、セラミック基体にメタライズ層を還元雰囲気中で同時焼成して設ける積層構造からなるパッケージとは全く異なるものであり、例え、セラミック基体及び蓋体の少なくとも一方をジルコニア入りアルミナの焼結体にして曲げ強度を向上できたとしても、セラミック基体の曲げ強度の向上と、セラミック基体に設けるメタライズ層のメタライズ接合強度の確保の両方を併せ持つパッケージを得ることができなくなっている。
 本発明は、かかる事情に鑑みてなされたものであって、セラミック基体の曲げ強度を向上できると共に、セラミック基体に同時焼成して形成するメタライズ層のメタライズ接合強度を確保できる電子部品素子収納用パッケージを提供することを目的とする。
 さらに、上記効果に加えてセラミック基体の表面における可視光線の反射率が高い電子部品素子収納用パッケージを提供することを目的とする。
 上記目的を達成するため請求項1記載の発明である電子部品素子収納用パッケージは、電子部品素子を収納するためのセラミック基体と,セラミック基体に接合されて電気的導通状態を形成するためのメタライズ層と,を還元雰囲気中で同時焼成してなる電子部品素子収納用パッケージにおいて、セラミック基体のセラミック組成物は、アルミナ(Al)と、イットリア(Y)を固溶させた部分安定化ジルコニア(Y-ZrO)と、焼結助剤と、を含有し、焼結助剤は、シリカ(SiO),カルシア(CaO),酸化マンガン(MnO,MnO,Mn,Mn)から選択される少なくとも1種と、マグネシア(MgO)と、の組合せからなり、セラミック組成物における部分安定化ジルコニアの含有量は10~30wt%の範囲内であり、セラミック組成物における焼結助剤の含有量は1.5~4.5wt%の範囲内であり、セラミック組成物における部分安定化ジルコニア, 焼結助剤以外の残部はアルミナであり、メタライズ層のメタライズ組成物は、タングステン(W)と、モリブデン(Mo)と、アルミナと,ガラスと,からなるセラミック成分と、を含有し、メタライズ組成物におけるタングステンの含有量は70~94wt%の範囲内であり、メタライズ組成物におけるモリブデンの含有量は3~20wt%の範囲内であり、メタライズ組成物におけるセラミック成分の含有量は3~20wt%の範囲内であり、同時焼成後のセラミック基体のジルコニア結晶内の正方晶の割合は60%以上であることを特徴とするものである。
 請求項2記載の発明である電子部品素子収納用パッケージは、請求項1記載の電子部品素子収納用パッケージであって、同時焼成後のセラミック基体の曲げ強度は550MPa以上であり、同時焼成後のセラミック基体とメタライズ層の接合強度は25MPa以上であることを特徴とするものである。
 請求項3記載の発明である電子部品素子収納用パッケージは、請求項1記載の電子部品素子収納用パッケージであって、ガラスは、シリカ(SiO)、マグネシア(MgO)、カルシア(CaO)、酸化チタン(TiO)から選択される少なくとも1種類であり、セラミック成分におけるガラスの含有量は、5~10wt%の範囲内であることを特徴とするものである。
 請求項4記載の発明である電子部品素子収納用パッケージは、請求項1記載の電子部品素子収納用パッケージであって、ガラスは、シリカ(SiO)、マグネシア(MgO)、カルシア(CaO)、酸化チタン(TiO)から選択される少なくとも1種類であり、セラミック成分におけるガラスの含有量は、5~10wt%の範囲内であり、部分安定化ジルコニアにおけるイットリアのモル分率は、0.015~0.035の範囲内であることを特徴とするものである。
 上記請求項1乃至請求項4記載の電子部品素子収納用パッケージは、セラミック基体のセラミック組成物がイットリアを固溶させた部分安定化ジルコニア(Y-ZrO)を10~30wt%と、シリカ(SiO),カルシア(CaO),酸化マンガン(MnO,MnO,Mn,Mn)から選択される少なくとも1種類と,マグネシア(MgO)の組み合わせからなる焼結助剤を1.5~4.5wt%と、残部にアルミナ(Al)を含有してなると共に、メタライズ層のメタライズ組成物がタングステン(W)を70~94wt%と、モリブデン(Mo)を3~20wt%と、アルミナと,ガラスと,からなるセラミック成分を3~20wt%含有してなり、同時焼成後のセラミック基体のジルコニア結晶内の正方晶の割合を60%以上にすることで、同時焼成後のセラミック基体の曲げ強度を550MPa以上に、また、同時焼成後のセラミック基体とメタライズ層の接合強度を25MPa以上にすることができる。これにより、アルミナに焼結助剤と、イットリアを固溶させた部分安定化ジルコニアを含有させて焼成したセラミック基体(請求項1乃至請求項4に記載のセラミック基体)が、アルミナに焼結助剤を含有させて焼成したアルミナ単体からなるセラミック基体の場合よりも高い曲げ強度を得ることができる。また、イットリアを固溶させた高強度、高靭性の部分安定化ジルコニアを含有したセラミック基体は、ジルコニア結晶内の正方晶の割合を60%以上に保つことで、破壊時に正方晶ジルコニアの一部が単斜晶ジルコニアに変態し、体積膨張を起こして破壊エネルギーを吸収し、材料強度を高めることができる。一般にセラミック基体は、イットリアを固溶させた部分安定化ジルコニアの含有率を多くすることでセラミック基体の曲げ強度を更に向上させることができるものの、アルミナより低熱伝導率であるジルコニアの含有率が大きくなると、セラミック基体の熱伝導率が低下して好ましくない。このため上記請求項1乃至請求項4記載の発明では、セラミック組成物における部分安定化ジルコニアの含有量を10~30wt%の範囲内とすることで、アルミナ単体の場合より高い550MPa以上の曲げ強度を保ちつつ、アルミナ単体の場合と同等程度の熱伝導率を保つことができる。
 上記請求項1乃至請求項4記載の電子部品素子収納用パッケージは、セラミック基体のセラミック組成物に焼結助剤としてマグネシアを必須の成分として含有し、この他にシリカ、カルシア、酸化マンガンから選択される少なくとも1種類を加えることで、セラミック基体からのガラス質を毛管現象によりメタライズ層へ移動させることができる。そして、セラミック基体からメタライズ層に移動したガラス質は、メタライズ層において物理的なアンカー効果を発揮してセラミック基体との密着強度を向上させることができる。なお、セラミック基体を形成するための焼結助剤(シリカ、カルシア、酸化マンガンから選択される少なくとも1種類とマグネシアとの組合せ)の含有率を多くし過ぎるとセラミック基体自体の曲げ強度を低下させ、少なくし過ぎるとメタライズ層との接合強度を低下させる原因となり好ましくない。このため、請求項1乃至請求項4記載の発明では、セラミック組成物における焼結助剤の含有量を1.5~4.5wt%の範囲内とすることで、セラミック基体自体の高い曲げ強度と、セラミック基体とメタライズ層との高い接合強度を同時に確保することができる。また、上記請求項1乃至請求項4記載の電子部品素子収納用パッケージは、メタライズ層のメタライズ組成物の内のタングステンと、モリブデンを、適量ずつの混合体にすることで、セラミック基体と、メタライズ層の還元雰囲気中での同時焼成時の焼成温度範囲を広げることができる。更に、メタライズ層のメタライズ組成物に、セラミック成分を含有させることで、メタライズ層の焼結開始温度を下げることができ、メタライズ層の収縮タイミングをセラミックの収縮タイミングとマッチさせることができるので、反りの発生を抑制したメタライズ層を備えたセラミック基体を作製することができる。
 なお、上記の電子部品素子収納用パッケージは、セラミック基体を黒色系に発色させるために混入させるモリブデン酸等の発色剤は入れないようにして、ジルコニア自体が持つ高い屈折率によって、反射率の高い白色のセラミック基体を得ることもできる。従って、このセラミック基体は、LED(Light Emitting Diode)等の発光素子からの発光の反射率を向上でき、発光効率を向上できる発光素子収納用パッケージとして用いることができる。
本発明の一実施の形態に係る電子部品素子収納用パッケージの説明図である。
10…電子部品素子収納用パッケージ
11…セラミック基体
12…メタライズ層
13…電子部品素子
14…蓋体
15…ボンディングワイヤ
16…ワイヤボンドパッド
17…シールパッド
18…外部接続端子パッド
 続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
 図1は本発明の一実施の形態に係る電子部品素子収納用パッケージの説明図である。
 図1に示すように、本発明の一実施の形態に係る電子部品素子収納用パッケージ10は、セラミック基体11と、このセラミック基体11に接合して設けられるメタライズ層12からなっている。この電子部品素子収納用パッケージ10は、セラミック基体11に半導体素子や、水晶振動子や、発光素子等の電子部品素子13を実装し、蓋体14で電子部品素子13を気密に封止するのに用いられている。この電子部品素子収納用パッケージ10は、セラミック基体11を作成するために、セラミック組成物に有機バインダー、可塑剤、溶剤等を加えて混練したスラリーを、例えば、ドクターブレード法でシート状に成形した複数枚のセラミックグリーンシートを用いている。そして、それぞれのセラミックグリーンシートには、導体ペーストを用いてスクリーン印刷で上、下層間の電気的導通状態を形成するためのビア導体や、スルーホール導体を含む電気的導通用のメタライズ層12用の印刷配線を形成している。更に、印刷配線が形成された複数枚のセラミックグリーンシートは、重ね合わせて温度と圧力をかけて積層した後、セラミックグリーンシートと、印刷配線を還元雰囲気中で同時焼成してセラミック基体11の表面や、内部や、層間にメタライズ層12を接合して設ける積層セラミック型の電子部品素子収納用パッケージ10に形成している。
 上記の電子部品素子収納用パッケージ10を構成するセラミック基体11のセラミック組成物は、アルミナと、イットリアを固溶させた部分安定化ジルコニアと、焼結助剤からなっている。この電子部品素子収納用パッケージ10は、セラミック基体11のセラミック組成物に上記のようなイットリアを固溶させた部分安定化ジルコニアを10~30wt%含有している。この部分安定化ジルコニア自体は、強度が高く、靭性を高めることができるという極めて優れた特性を有している。そして、部分安定化ジルコニアは、セラミック組成物における含有量を増加させることで、セラミック基体11自体の曲げ強度を向上させることができるものの、一方でアルミナよりも低熱伝導率であるので、過剰に添加するとセラミック基体11自体の熱伝導率を低下させることになる。従って、本実施の形態に係る電子部品素子収納用パッケージ10は、セラミック基体11のセラミック組成物の部分安定化ジルコニアの含有量を10~30wt%の範囲内とすることで、従来のアルミナのみからなるセラミック基体の場合よりも高い曲げ強度(アルミナ単体では、320MPa程度、部分安定化ジルコニア含有アルミナセラミックでは、550MPa以上)を有すると共に、従来のアルミナのみからなるセラミック基体の場合と同等程度の熱伝導率(15W/mK)を有することができる。この部分安定化ジルコニアの含有量が10wt%を下まわる場合には、焼成後の強度向上効果が不足して平均400MPa程度の曲げ強度しか得られなくなる。また、部分安定化ジルコニアの含有量が30wt%を超える場合には、熱伝導率が12W/mK以下となって電子部品素子13からの発熱をセラミック基体11を介して速やかに外部に放熱させることができなくなる。なお、セラミック基体11には、電子部品素子13を金属製の蓋体14を用いてシーム溶接等で気密封止する場合にも、封止時に発生する高熱に対する耐熱衝撃性のために、高い曲げ強度と共に、高い熱伝導率を有することが必要である。
 上記のセラミック基体11の曲げ強度は、部分安定化ジルコニアの含有量を30wt%を超えて含有させたとしても、顕著な向上は得られなくなっている。また、イットリアを固溶させた部分安定化ジルコニアは、粉体の作製方法の一つである共沈法で作製するのがよい。この共沈法とは、2種類以上の金属イオンを含む溶液にアルカリを添加し、溶液中のイオン濃度積が溶解度積よりも高くなる過飽和の状態にすることで、複数種類の難溶性塩が同時に沈殿でき、均一性の高い粉体が調整できる方法であり、固体試料を粉砕して混合するだけでは得られない特性を示すことがある。この共沈法で作製することで、イットリアを固溶させた部分安定化ジルコニアは、極めて均一性の高い粉体とすることができる。
 また、電子部品素子収納用パッケージ10は、セラミック基体11のセラミック組成物に焼結助剤として、シリカ,カルシア,酸化マンガンから選択される少なくとも1種類と, マグネシアとの組合せからなるものを、1.5~4.5wt%含有している。このような、セラミック基体11は、セラミック組成物に部分安定化ジルコニア及びマグネシアを含有させたことで、焼成温度を1450~1600℃程度に低温化させて緻密な焼成体とすることができ、熱伝導率を高めることができる。更に、焼成温度の低温化は、ジルコニア結晶粒子の肥大成長を抑制し、メタライズ層12とセラミック基体11との接合強度を高めることができる。なお、セラミック組成物におけるマグネシアの含有量は、0.05wt%を下まわる場合には、焼成温度の低温化が難しくなり、セラミック基体11中のジルコニア結晶粒子の肥大成長の抑制ができなくなる。この結果、緻密な焼成体が得られなくなる。また、セラミック組成物におけるマグネシアの含有量は、1wt%を超える場合には、焼結性に変化はみられないものの、セラミック基体11の曲げ強度が低下するようになる。また、マグネシアを必須とし、シリカ,カルシア,酸化マンガンから選択される少なくとも1種類を含む焼結助剤をセラミック組成物に含有させることで、セラミック基体11中のガラス質を毛管現象によりメタライズ層12へ移動させることができ、このガラス質の物理的なアンカー効果でセラミック基体11とメタライズ層12との密着強度を向上させることができる。セラミック組成物における焼結助剤の含有量が、1.5wt%を下まわる場合には、セラミック基体11からのガラス質のメタライズ層12への移動量が不足して、セラミック基体11とメタライズ層12との接合強度が低下する。また、セラミック組成物における焼結助剤の含有量が、4.5wt%を超える場合には、セラミック基体11中のガラス質が多くなりすぎて、セラミック基体11の曲げ強度が低下する。
 なお、後段においては、焼結助剤である酸化マンガンの一例として、化学式がMnで示される酸化マンガンを用いた場合を例示しているが、この酸化マンガン(Mn)に代えて、化学式の異なる他の酸化マンガン(例えば、MnO、MnO、Mn)を単独で,あるいは,化学式の異なる複数種類の酸化マンガンを複数種類組み合わせて焼結助剤として利用することも可能である。
 この電子部品素子収納用パッケージ10は、セラミック基体11のセラミック組成物に、部分安定化ジルコニアを10~30wt%と、焼結助剤を1.5~4.5wt%の外には、残部にアルミナを含有している。従って、電子部品素子収納用パッケージ10を構成するセラミック基体11のセラミック組成物におけるアルミナの含有量は、最大で88.5wt%、最小で65.5wt%含むこととなっている。セラミック基体11のセラミック組成物におけるアルミナの含有量がこの範囲にあれば、低熱伝導率材料であるジルコニアの添加があったとしても、熱伝導率を従来技術に係るアルミナ基体(アルミナ:91~94wt%,焼結助剤:6~9wt%からなるセラミック組成物からなるセラミック基体)と同程度に維持でき、セラミック基体11の熱伝導率の低下を抑えることができる。
 上記の電子部品素子収納用パッケージ10は、セラミック基体11に接合して形成するメタライズ層12のメタライズ組成物がタングステンと、モリブデンと、セラミック成分を含有してなっている。このメタライズ組成物には、タングステンが70~94wt%と、モリブデンが3~20wt%と、セラミック成分が3~20wt%含まれている。そして、セラミック基体11にメタライズ層12を設けるには、メタライズ組成物にバインダーや、溶剤を含有させた導体ペーストを用いて、スクリーン印刷機でセラミックグリーンシートに印刷配線を形成し、これを還元雰囲気中で同時焼成して形成している。このメタライズ組成物のタングステンや、モリブデンは、それぞれ、高融点(タングステンの融点:3407℃、モリブデンの融点:2620℃)金属と呼ばれる金属であって、還元雰囲気中でセラミックと同時焼成できる導通金属として、従来から一般的に知られている。
 上記のメタライズ組成物には、モリブデンを適量含有させることで、モリブデンの融点がタングステンの融点より低いことを利用して、メタライズ組成物の導体金属としてタングステンのみを用いた場合(1550~1600℃)に比べて、同時焼成温度範囲を、低温化、且つ、広い範囲(1450~1600℃)にすることができるようにしている。これによって、メタライズ層12は、部分安定化ジルコニアを含有させて焼成温度の低温化を可能としたセラミック基体11との同時焼成が可能であるようにしている。また、このメタライズ組成物は、導体金属を複数種類により構成することで、アルミナの含有量に合わせた同時焼成が可能であるようにしている。すなわち、セラミック組成物に含有されるアルミナの含有量が変化して適切な焼成温度が変化した場合でも、モリブデンが添加されることによるメタライズ組成物の焼成温度の広範化により、支障なく同時焼成することが可能になる。
 更に、上記のメタライズ組成物は、メタライズ組成物と、セラミックグリーンシートを同時焼成することで、タングステン粒子や、モリブデン粒子の周りにセラミック組成物中のガラス成分を取り込んで粒子間の接合を強固にするメタライズ層12を形成できるようにしている。これと共に、上記のメタライズ組成物は、モリブデンのガラスとの濡れ性が優れることを利用して、セラミックグリーンシートのガラス成分を吸い上げながら同時焼成することで、セラミック基体11と、メタライズ層12間を強固に接合できるようにしている。
 また、メタライズ組成物には、セラミック成分を適量含有させることで、セラミックグリーンシートにガラス成分を補給しながら焼成して、同時焼成後のセラミック基体11と、メタライズ層12間の接合強度を向上させることができるようにしている。また、メタライズ組成物には、セラミック成分を含有させることで、セラミックグリーンシートに形成した貫通孔に導体ペーストを充填するビア用印刷配線の同時焼成時の収縮差で発生するセラミック基体11とメタライズ層12の剥離を防止することができるようにしている。更に、メタライズ組成物に、セラミック成分を含有させることで、メタライズ層12の焼成収縮開始タイミングを早めてセラミックに近づけて、セラミック基体11とメタライズ層12の焼成収縮タイミング時間量をマッチングさせることにより、メタライズ層12を設けたセラミック基体11の反り発生を抑制することができるようにしている。なお、セラミック成分は、シリカ(SiO),マグネシア(MgO),カルシア(CaO),酸化チタン(TiO)から選択される少なくとも1種類のガラスと、アルミナとの組合せにより構成されるものであり、このセラミック成分におけるガラスの含有率は5~10wt%の範囲内とすることが望ましい。
 なお、メタライズ組成物は、電気導通性の比較的低いタングステンと、モリブデンを合わせた導体金属を少なくとも80wt%とすることで電気導通性を確保できるようにしている。また、モリブデンの含有量が20wt%を超えると、焼成温度の低温化が進みすぎてセラミックグリーンシートとの同時焼成が難しくなる。更に、タングステンの含有量は、94wt%を超える場合には、モリブデン,セラミック成分の少なくとも一方の含有量が3wt%を下まわることとなる。そして、モリブデンの含有量が3wt%を下まわる場合には、焼成温度の低温化が難しくなり、セラミックグリーンシートとの同時焼成ができなくなる。一方、セラミック成分の含有量が3wt%を下まわる場合には、同時焼成時の焼成収縮タイミングを調整する効果が低下し、メタライズ層12を設けるセラミック基体11に反りが発生しやすくなる。また、セラミック成分の含有量が3wt%を下まわる場合には、メタライズ層12中のガラス成分量が不足して、セラミック基体11へのアンカー効果が低下し、接合強度が低下することとなる。また、セラミック成分の含有量は、20wt%を超える場合には、ガラス成分量が多くなりすぎて、逆に、メタライズ層12自体の内部強度が低下したり、導体としての電気抵抗値が増加したり、めっき被膜との密着強度が低下したりするという問題が発生することとなる。
 上記の電子部品素子収納用パッケージ10は、同時焼成後のセラミック基体11のジルコニア結晶内の正方晶の割合を60%以上有している。このセラミック基体11に含有する部分安定化ジルコニアを構成する酸化ジルコニウム(ZrO)自体は、耐熱性が高く、高温での蒸気圧が低く、化学的耐食性が良く、熱伝導率がアルミナに比べて1桁以上低い等の特性を有しており、高温耐熱材料として非常に優れている。しかしながら、酸化ジルコニウムは、単斜晶、正方晶、立方晶の三変態を有し、特に、単斜晶と正方晶の相変態では大きな体積変化を伴うことから、純粋な酸化ジルコニウムのままでは高温耐熱材料として用いることができない。そこで、酸化ジルコニウムは、これに低原子価酸化物であるイットリア(Y)等を固溶させると、最高温相である螢石型立方晶が低温まで安定相として存在する安定化ジルコニアを形成することができる。100%立方晶の安定化ジルコニアに必要なイットリアの添加量は、6モル%程度であるが、これを少なく、例えば、3モル%程度添加させることで、より具体的には、部分安定化ジルコニアにおけるイットリアのモル分率を0.015~0.035の範囲内とすることで、立方晶と正方晶、立方晶と単斜晶、正方晶と単斜晶の混合相、あるいは、正方晶単相の部分安定化ジルコニアを形成することができる。従って、このジルコニア結晶内の正方晶の割合を60%以上含むイットリアを固溶させた部分安定化ジルコニアを含有するセラミック基体11からなる電子部品素子収納用パッケージ10は、曲げ強度を高くでき、靭性を高めることができるという優れた特性を有する。この結果、電子部品素子収納用パッケージ10を構成するセラミック基体11を薄層化することが可能になるので、電子部品素子収納用パッケージ10を極めて小型低背化に対応できるパッケージにすることができる。なお、セラミック基体11を構成するジルコニア結晶内の正方晶の割合が60%を下まわる場合には、これを含有するセラミック基体11からなる電子部品素子収納用パッケージの曲げ強度が低くなると共に、靭性も低くなり、薄いセラミック基体の作製が困難となる。
 また、上記の電子部品素子収納用パッケージ10は、同時焼成後のセラミック基体11の曲げ強度を550MPa以上有している。曲げ強度が550MPa以上からなる電子部品素子収納用パッケージ10は、セラミック基体11に実装した電子部品素子13を、金属製の蓋体14でシーム溶接等で加圧しながら封止しても、セラミック基体11に亀裂や、破壊を発生させることなく接合することができる。なお、この曲げ強度の測定は、JIS R 1601の試験方法で測定している。従って、このセラミック基体11では、従来のセラミック基体の厚みより薄くした電子部品素子収納用パッケージ10を提供することができ、パッケージや、これを組み込む電子装置の小型低背化に対応させることができる。
 更に、上記の電子部品素子収納用パッケージ10は、同時焼成後のセラミック基体11とメタライズ層12の接合強度を25MPa以上有している。セラミック基体11とメタライズ層12の接合強度が25MPa以上からなる電子部品素子収納用パッケージ10は、電子部品素子13とボンディングワイヤ15を介して電気的に接続状態とするためのワイヤボンドパッド16や、蓋体14を接合させるためのシールパッド17や、外部と半田接合を介して電気的に接続状態とするための外部接続端子パッド18等のメタライズ層12に、メタライズ剥がれを発生させることなくそれぞれを接合させることができる。なお、この接合強度の測定は、幅1mmのメタライズ層12に直角に折り曲げた金属製リード端子をAgCuろう付けし、これを垂直方向に引っ張って、セラミック基体11の表面からメタライズ層12が剥離した場合の強度で測定している。
 本願発明の発明者は、アルミナのみからなるセラミック基体、及び、アルミナと,イットリアを固溶させた部分安定化ジルコニアの組成割合を95:5、90:10、80:20、70:30の各種としたセラミック基体からなる試料を作製して、それぞれのセラミック基体の曲げ強度を測定した。また、前記各種セラミック基体に、タングステン94wt%、モリブデン3wt%、セラミック成分3wt%からなるメタライズ層を形成してセラミック基体とメタライズ層の接合強度を測定した。表1は、その結果を示したものである。表1に示されるように、イットリアを固溶させた部分安定化ジルコニアが10wt%以上あれば、曲げ強度を550MPa以上確保できることが確認できた。しかしながら、セラミック基体とメタライズ層の接合強度は、いずれも10MPa以下であり、接合強度が殆どないことが確認できた。
 すなわち、セラミック基体11を形成するセラミック組成物から焼結助剤を除くと、メタライズ層12の接合強度を全く確保できないことが明らかになった。このため、本願発明に係るセラミック組成物における焼結助剤は、本願発明が独自の効果を奏するための必須の構成要素であるといえる。
Figure JPOXMLDOC01-appb-T000001
 次いで、本願発明の発明者は、セラミック組成物における,イットリアを固溶させた部分安定化ジルコニアの組成割合を22wt%、マグネシアを0.5wt%とし、シリカ、カルシア、酸化マンガンから選択される少なくとも1種類の焼結助剤の合計含有量を0.5~6wt%とし、残部をアルミナとする各種セラミック基体を作製してこれらについて、セラミック基体の曲げ強度を測定した。また、前記各種セラミック基体に、タングステン94wt%、モリブデン3wt%、セラミック成分3wt%からなるメタライズ層を形成してセラミック基体とメタライズ層の接合強度を測定した。表2は、その結果を示したものである。表2に示されるように、セラミック組成物における、シリカ,カルシア,酸化マンガンから選択される少なくとも1種類と,マグネシアとの組合せからなる焼結助剤の含有量が1.5~4.5wt%である実施例が、曲げ強度を550MPa以上確保できると共に、セラミック基体とメタライズ層の接合強度を25MPa以上確保できることが確認できた。また、セラミック組成物における,イットリアを固溶させた部分安定化ジルコニアの組成割合を22wt%と,マグネシアを0.5wt%のみとした比較例、又は、セラミック組成物における,イットリアを固溶させた部分安定化ジルコニアの組成割合を22wt%と,マグネシアを0.5wt%とし,シリカ,カルシア,酸化マンガンから選択される少なくとも1種類の焼結助剤の合計含有量が1.5wt%を下まわる比較例は、セラミック基体の曲げ強度550MPa以上を確保できるものの、セラミック基体とメタライズ層の接合強度が10MPaを下まわり、メタライズ層の接合強度25MPa以上を確保できないことが確認できた。更に、セラミック組成物における,イットリアを固溶させた部分安定化ジルコニアの組成割合を22wt%と、マグネシアを0.5wt%とし,シリカ,カルシア,酸化マンガンから選択される少なくとも1種類の焼結助剤の合計含有量が4.5wt%を超える比較例は、セラミック基体とメタライズ層の接合強度を25MPa以上確保できるものの、曲げ強度が500MPa以下となり、550MPa以上の曲げ強度が確保できないことが確認できた。
 なお、下記表2に示される各実施例の試料において、セラミック組成物に含有される焼結助剤の酸化マンガンは、化学式がMnで示されるものを使用した。
 上述のとおり、本願発明においては、セラミック組成物における焼結助剤の含有量,及び,その成分組成も必須の構成要素であるといえる。
Figure JPOXMLDOC01-appb-T000002
 また、セラミック組成物における、部分安定化ジルコニアを22wt%、マグネシアを0.5wt%、シリカを1.0wt%、カルシアを0.5wt%、酸化マンガン(Mn)を1.0wt%とし、残部をアルミナとした実施例に係る試料を作製し、本実施の形態に係る電子部品素子収納用パッケージ10への搭載が見込まれる波長450nmの青色光の反射率を測定したところ、この試料表面の反射率は83%であった。なお、反射光の測定には、コニカミノルタ社製 分光測色計(CM-3700d)を使用し、測定条件は、SCI(正反射を含む),エリアφ8mmとした。
 他方、セラミック組成物における、部分安定化ジルコニアを22wt%、マグネシアとシリカとカルシアとからなる焼結助剤を7wt%とし、残部をアルミナとした従来例に係る試料(比較例)を作製して、同条件にて波長450nmの青色光の反射率を測定したところ、試料表面の反射率は75%であった。
 なお、反射率の測定のために使用する実施例及び従来例に係るセラミック基体からなる試料の厚みは1mmとした。
 従って、本実施の形態に係る電子部品素子収納用パッケージ10は、従来例と比較してセラミック基体10の表面における反射性が大幅に高く、電子部品素子収納用パッケージ10に搭載される電子部品素子が発光素子である場合には、セラミック基体10自体を高反射材としても十分に機能させることができる。
 本発明の電子部品素子収納用パッケージは、小型低背化に対応できることから、小型低背化に対応させた半導体素子や、水晶振動子等の電子部品素子を搭載部位であるキャビティ部に搭載して蓋体で気密に封止した後、軽薄短小化が要求される電子機器、例えば、パソコン、携帯電話等に組み込んで用いることができる。また、本発明の電子部品素子収納用パッケージは、発光素子等の電子部品素子を搭載して軽薄短小化が要求される各種照明機器や、テレビや、パソコン等のバックライト用として用いることができる。

Claims (4)

  1.  電子部品素子を収納するためのセラミック基体(11)と,前記セラミック基体に接合されて電気的導通状態を形成するためのメタライズ層(12)と,を還元雰囲気中で同時焼成してなる電子部品素子収納用パッケージ(10)において、
     前記セラミック基体(11)のセラミック組成物は、アルミナ(Al)と、イットリア(Y)を固溶させた部分安定化ジルコニア(Y-ZrO)と、焼結助剤と、を含有し、
     前記焼結助剤は、シリカ(SiO),カルシア(CaO),酸化マンガン(MnO,MnO,Mn,Mn)から選択される少なくとも1種と、マグネシア(MgO)と、の組合せからなり、
     前記セラミック組成物における前記部分安定化ジルコニアの含有量は10~30wt%の範囲内であり、
     前記セラミック組成物における前記焼結助剤の含有量は1.5~4.5wt%の範囲内であり、
     前記セラミック組成物における前記部分安定化ジルコニア, 前記焼結助剤以外の残部は前記アルミナであり、
     前記メタライズ層(12)のメタライズ組成物は、タングステン(W)と、モリブデン(Mo)と、アルミナと,ガラスと,からなるセラミック成分と、を含有し、
     前記メタライズ組成物における前記タングステンの含有量は70~94wt%の範囲内であり、
     前記メタライズ組成物における前記モリブデンの含有量は3~20wt%の範囲内であり、
     前記メタライズ組成物における前記セラミック成分の含有量は3~20wt%の範囲内であり、
     同時焼成後の前記セラミック基体(11)のジルコニア結晶内の正方晶の割合は60%以上であることを特徴とする電子部品素子収納用パッケージ(10)。
  2.  同時焼成後の前記セラミック基体(11)の曲げ強度は550MPa以上であり、
     同時焼成後の前記セラミック基体(11)と前記メタライズ層(12)の接合強度は25MPa以上であることを特徴とする請求項1記載の電子部品素子収納用パッケージ(10)。
  3.  前記ガラスは、シリカ(SiO)、マグネシア(MgO)、カルシア(CaO)、酸化チタン(TiO)から選択される少なくとも1種類であり、
     前記セラミック成分における前記ガラスの含有量は、5~10wt%の範囲内であることを特徴とする請求項1記載の電子部品素子収納用パッケージ(10)。
  4.  前記ガラスは、シリカ(SiO)、マグネシア(MgO)、カルシア(CaO)、酸化チタン(TiO)から選択される少なくとも1種類であり、
     前記セラミック成分における前記ガラスの含有量は、5~10wt%の範囲内であり、
     前記部分安定化ジルコニアにおける前記イットリアのモル分率は、0.015~0.035の範囲内であることを特徴とする請求項1記載の電子部品素子収納用パッケージ(10)。
PCT/JP2011/075109 2010-11-01 2011-10-31 電子部品素子収納用パッケージ WO2012060341A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012541858A JP5937012B2 (ja) 2010-11-01 2011-10-31 電子部品素子収納用パッケージ
CN201180050344.8A CN103189975B (zh) 2010-11-01 2011-10-31 电子零部件元件收纳用封装
EP11837991.6A EP2637204B8 (en) 2010-11-01 2011-10-31 An electronic component element housing package
US13/874,950 US9119297B2 (en) 2010-11-01 2013-05-01 Electronic component element housing package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244975 2010-11-01
JP2010-244975 2010-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/874,950 Continuation US9119297B2 (en) 2010-11-01 2013-05-01 Electronic component element housing package

Publications (1)

Publication Number Publication Date
WO2012060341A1 true WO2012060341A1 (ja) 2012-05-10

Family

ID=46024455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075109 WO2012060341A1 (ja) 2010-11-01 2011-10-31 電子部品素子収納用パッケージ

Country Status (5)

Country Link
US (1) US9119297B2 (ja)
EP (1) EP2637204B8 (ja)
JP (1) JP5937012B2 (ja)
CN (1) CN103189975B (ja)
WO (1) WO2012060341A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156831A1 (ja) * 2013-03-26 2014-10-02 京セラ株式会社 発光素子実装用基板および発光素子モジュール
JP2015050312A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 発光素子実装用基板およびこれを用いた発光素子モジュール
JP2015138830A (ja) * 2014-01-21 2015-07-30 Ngkエレクトロデバイス株式会社 電子部品実装用基板
JP2016072321A (ja) * 2014-09-29 2016-05-09 日本特殊陶業株式会社 セラミック基板
JP2018029015A (ja) * 2016-08-18 2018-02-22 株式会社村田製作所 白色led照明装置
JPWO2022118802A1 (ja) * 2020-12-04 2022-06-09
WO2023163066A1 (ja) * 2022-02-28 2023-08-31 京セラ株式会社 セラミック配線基板、電子装置及び電子モジュール

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881861B2 (en) * 2014-05-28 2018-01-30 Ngk Spark Plug Co., Ltd. Wiring substrate
CN104876647A (zh) * 2015-04-15 2015-09-02 孝感市汉达电子元件有限责任公司 一种陶瓷放电管用瓷管的钨金属化工艺
CN105777080A (zh) * 2016-02-23 2016-07-20 潮州三环(集团)股份有限公司 一种高强度陶瓷封装基座材料及其制备方法
CN110313063B (zh) * 2017-02-23 2023-01-10 京瓷株式会社 布线基板、电子装置用封装体以及电子装置
JP7035220B2 (ja) * 2018-12-06 2022-03-14 日本碍子株式会社 セラミックス焼結体及び半導体装置用基板
JP7176002B2 (ja) * 2018-12-06 2022-11-21 日本碍子株式会社 半導体装置用基板
EP3854766A4 (en) * 2018-12-06 2022-05-11 NGK Insulators, Ltd. CERAMIC SINTERED BODY AND SUBSTRATE FOR SEMICONDUCTOR DEVICE
EP3738922A1 (en) * 2019-05-13 2020-11-18 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Hermetic optical component package having organic portion and inorganic portion
JP6927251B2 (ja) * 2019-07-08 2021-08-25 Tdk株式会社 ガラスセラミックス焼結体および配線基板
CN110922172B (zh) * 2019-12-23 2022-01-07 潮州三环(集团)股份有限公司 一种陶瓷封装基座材料组合物及其应用
CN113207244A (zh) * 2020-02-03 2021-08-03 奥特斯奥地利科技与系统技术有限公司 制造部件承载件的方法及部件承载件
CN111393151A (zh) * 2020-03-26 2020-07-10 郑州中瓷科技有限公司 一种掺杂氧化锆的氧化铝陶瓷基板及其制备工艺
US11858850B2 (en) * 2020-07-14 2024-01-02 Leatec Fine Ceramics Co., Ltd. High-strength zirconia-alumina composite ceramic substrate applied to semiconductor device and manufacturing method thereof
CN114394825B (zh) * 2021-12-22 2023-10-31 西北工业大学宁波研究院 一种陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613481B2 (ja) 1985-06-07 1994-02-23 住友化学工業株式会社 トリハロイミダゾール誘導体およびそれを有効成分とする殺虫、殺ダニ剤
JPH0738014B2 (ja) 1987-01-19 1995-04-26 株式会社東芝 遮断器の脱調合成試験装置
WO2010114126A1 (ja) * 2009-04-03 2010-10-07 株式会社住友金属エレクトロデバイス セラミックス焼結体およびそれを用いた半導体装置用基板

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1186728B (it) * 1985-06-04 1987-12-16 Montedison Spa Ossidi misti di allumina e zirconia sotto forma di particelle sferiche ed aventi distribuzione granulometrica ristretta e processo per la loro preparazione
DE3881113T2 (de) * 1987-07-22 1993-12-02 Champion Spark Plug Co Aluminiumoxid-Zirkonoxid-Keramik.
US5032555A (en) * 1988-05-16 1991-07-16 Allied-Signal Inc. Process for making zirconia-alumina
JP2869752B2 (ja) * 1990-10-19 1999-03-10 日本特殊陶業株式会社 セラミック多層配線基板
JP2578283B2 (ja) * 1992-02-27 1997-02-05 川崎製鉄株式会社 窒化アルミニウム基板のメタライズ方法
JP2750237B2 (ja) 1992-06-25 1998-05-13 京セラ株式会社 電子部品収納用パッケージ
JPH06296084A (ja) * 1993-02-12 1994-10-21 Ngk Spark Plug Co Ltd 高熱伝導体及びこれを備えた配線基板とこれらの製造方法
JP2883787B2 (ja) 1993-07-20 1999-04-19 富士電機株式会社 パワー半導体装置用基板
US5675181A (en) * 1995-01-19 1997-10-07 Fuji Electric Co., Ltd. Zirconia-added alumina substrate with direct bonding of copper
US6316116B1 (en) * 1999-04-30 2001-11-13 Kabushiki Kaisha Toshiba Ceramic circuit board and method of manufacturing the same
PL356439A1 (en) * 2001-10-05 2003-04-07 Ngk Spark Plug Co Method of making a ceramic connecting component, ceramic connecting component as such, vacuum change-over switch and vacuum vessel
KR100727280B1 (ko) * 2002-11-22 2007-06-13 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 지르코니아 강화 알루미나 esd 안전성 세라믹 부품 및 이의 제조방법
WO2005042047A1 (ja) * 2003-10-30 2005-05-12 Kyocera Corporation 生体部材及びその製造方法
US7928028B2 (en) * 2004-03-23 2011-04-19 Panasonic Electric Works Co., Ltd. ZrO2-Al2O3 composite ceramic material and production method therefor
US7172984B2 (en) * 2004-06-17 2007-02-06 Heany Industies, Inc. Fuse housing of targeted percentage tetragonal phase zirconia and method of manufacture
IL164054A (en) * 2004-09-13 2010-06-16 Cohen Michael Alumina ceramic products
JP4895653B2 (ja) * 2005-03-29 2012-03-14 京セラ株式会社 電子部品の製造方法
JP2005229135A (ja) * 2005-04-22 2005-08-25 Ngk Spark Plug Co Ltd セラミック製配線基板及びその製造方法
JP5241537B2 (ja) * 2009-01-27 2013-07-17 京セラ株式会社 電子部品搭載用基板および電子装置ならびに電子部品搭載用基板の製造方法
CA2784692C (en) * 2009-12-16 2018-09-18 Ceramtec Gmbh Ceramic composite material consisting of aluminium oxide and zirconium oxide as the main constituents, and a dispersoid phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613481B2 (ja) 1985-06-07 1994-02-23 住友化学工業株式会社 トリハロイミダゾール誘導体およびそれを有効成分とする殺虫、殺ダニ剤
JPH0738014B2 (ja) 1987-01-19 1995-04-26 株式会社東芝 遮断器の脱調合成試験装置
WO2010114126A1 (ja) * 2009-04-03 2010-10-07 株式会社住友金属エレクトロデバイス セラミックス焼結体およびそれを用いた半導体装置用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2637204A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156831A1 (ja) * 2013-03-26 2014-10-02 京セラ株式会社 発光素子実装用基板および発光素子モジュール
EP2980042A4 (en) * 2013-03-26 2016-11-23 Kyocera Corp SUBSTRATE FOR MOUNTING ELECTROLUMINESCENT ELEMENT AND LIGHT EMITTING DEVICE
JP2015050312A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 発光素子実装用基板およびこれを用いた発光素子モジュール
JP2015138830A (ja) * 2014-01-21 2015-07-30 Ngkエレクトロデバイス株式会社 電子部品実装用基板
JP2016072321A (ja) * 2014-09-29 2016-05-09 日本特殊陶業株式会社 セラミック基板
JP2018029015A (ja) * 2016-08-18 2018-02-22 株式会社村田製作所 白色led照明装置
JPWO2022118802A1 (ja) * 2020-12-04 2022-06-09
WO2022118802A1 (ja) * 2020-12-04 2022-06-09 Ngkエレクトロデバイス株式会社 セラミック焼結体及び半導体装置用基板
JP7251001B2 (ja) 2020-12-04 2023-04-03 Ngkエレクトロデバイス株式会社 セラミック焼結体及び半導体装置用基板
WO2023163066A1 (ja) * 2022-02-28 2023-08-31 京セラ株式会社 セラミック配線基板、電子装置及び電子モジュール

Also Published As

Publication number Publication date
EP2637204B8 (en) 2017-05-31
US20130240262A1 (en) 2013-09-19
EP2637204A1 (en) 2013-09-11
US9119297B2 (en) 2015-08-25
EP2637204A4 (en) 2015-06-24
CN103189975A (zh) 2013-07-03
JP5937012B2 (ja) 2016-06-22
EP2637204B1 (en) 2017-04-19
JPWO2012060341A1 (ja) 2014-05-12
CN103189975B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5937012B2 (ja) 電子部品素子収納用パッケージ
JP5094118B2 (ja) 発光素子収納用パッケージおよび発光素子収納用パッケージの製造方法
JP5206770B2 (ja) 発光素子搭載用基板および発光装置
JP5140275B2 (ja) 発光素子搭載用セラミックス基板およびその製造方法
JP2008109079A (ja) 表面実装型発光素子用配線基板および発光装置
JP5073179B2 (ja) 発光素子収納用窒化アルミニウム焼結体
JP2005035864A (ja) 発光素子搭載用基板
JP2009164311A (ja) 発光素子搭載用基板およびその製造方法およびそれを用いた発光装置
WO2014002306A1 (ja) アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ
JP2008117932A (ja) リフレクターとそれを備えた発光素子収納用パッケージと発光装置
JP2003104772A (ja) アルミナ質焼結体及びその製造方法並びに配線基板
JP2005175039A (ja) 発光素子搭載用基板及び発光素子
CN109681846A (zh) 波长转换装置及其制备方法
JP2006066409A (ja) 発光素子用配線基板および発光装置ならびに発光素子用配線基板の製造方法
JP2004119735A (ja) 連結基板及びその製造方法並びにセラミックパッケージ
JP2008131011A (ja) 発光素子収納用パッケージとその製造方法
KR20060031629A (ko) 발광소자 탑재용 기판 및 발광소자
JP2003309226A (ja) セラミックパッケージ及びその製造方法
JP2006066630A (ja) 配線基板および電気装置並びに発光装置
JP2006066631A (ja) 配線基板および電気装置並びに発光装置
TW201824593A (zh) 發光元件搭載用基板及其製造方法、以及搭載有發光元件之封裝體
JP4413223B2 (ja) セラミックパッケージ
JP5958342B2 (ja) 発光素子用基板および発光装置
JP4413224B2 (ja) セラミックパッケージ
JP2011176106A (ja) 発光素子搭載用基板およびこれを用いた発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180050344.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541858

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011837991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011837991

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE