WO2014156831A1 - 発光素子実装用基板および発光素子モジュール - Google Patents

発光素子実装用基板および発光素子モジュール Download PDF

Info

Publication number
WO2014156831A1
WO2014156831A1 PCT/JP2014/057329 JP2014057329W WO2014156831A1 WO 2014156831 A1 WO2014156831 A1 WO 2014156831A1 JP 2014057329 W JP2014057329 W JP 2014057329W WO 2014156831 A1 WO2014156831 A1 WO 2014156831A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
zirconia
light
crystal
Prior art date
Application number
PCT/JP2014/057329
Other languages
English (en)
French (fr)
Inventor
諭史 豊田
竹之下 英博
憲一 古舘
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/778,990 priority Critical patent/US20160043283A1/en
Priority to EP14775875.9A priority patent/EP2980042B1/en
Priority to CN201480018221.XA priority patent/CN105073682A/zh
Priority to JP2015508367A priority patent/JP6034484B2/ja
Publication of WO2014156831A1 publication Critical patent/WO2014156831A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a light emitting element mounting substrate and a light emitting element module.
  • LEDs Light-emitting elements that have the advantages of high brightness, long life, and low power consumption, such as light sources for general lighting and light-emitting display boards, as well as liquid crystal backlights for mobile phones, personal computers and televisions ) Is widely used.
  • Patent Document 1 proposes a reflector made of a ceramic obtained by firing a mixture of alumina and zirconia as a light-emitting element mounting base made of such a ceramic material.
  • the present invention has been devised to satisfy the above requirements, and an object thereof is to provide a light emitting element mounting substrate having a high reflectance in the visible light region and a light emitting element module having high reliability and high luminance. To do.
  • the substrate for mounting a light emitting element of the present invention is a tetragonal zirconia crystal which is made of an alumina sintered body containing an alumina crystal and a zirconia crystal and a grain boundary phase, and is measured by an X-ray diffractometer using Cu K ⁇ rays.
  • the light-emitting element module of the present invention is characterized in that the light-emitting element is mounted on the light-emitting element mounting substrate having the above-described configuration.
  • the substrate for mounting a light-emitting element of the present invention is excellent in mechanical characteristics while having insulation, and has a high reflectance in the visible light region.
  • the light emitting element module of the present invention has high luminance in addition to high reliability.
  • FIG. 1 is a cross-sectional view illustrating an example of a configuration of a light emitting element module in which a light emitting element is mounted on a light emitting element mounting substrate of the present embodiment.
  • an electrode 3 (3a, 3b) and an electrode pad 4 (4a, 4b) are formed on a surface 1a of a light emitting element mounting substrate 1 as a base, and on the electrode pad 4a.
  • the light emitting element 2 is mounted on the light emitting element 2, and the light emitting element 2 and the electrode pad 4 b are electrically connected by the bonding wire 5.
  • the light emitting element 2, the electrode 3, the electrode pad 4, and the bonding wire 5 are covered with a sealing member 6 made of resin or the like.
  • the sealing member 6 has both the protection of the light emitting element 2 and the function of the lens.
  • the light emitting element module 10 of the present embodiment is not limited to the example shown in FIG. 1 as long as the light emitting element 2 is mounted on the light emitting element mounting substrate 1 of the present embodiment.
  • the surface 1 a of the light emitting element mounting substrate 1 is a mounting surface of the light emitting element 2.
  • XRD X-ray diffractometer
  • the light-emitting element mounting substrate 1 of the present embodiment satisfies the above-described configuration, so that it has excellent mechanical properties while having insulation, and has a high reflectance in the visible light region.
  • the reason why the reflectance can be increased is not clear, but depending on the intensity ratio of the tetragonal zirconia crystal and the monoclinic zirconia crystal, that is, the difference in the abundance ratio, the tetragonal zirconia crystal and the monoclinic zirconia crystal are different.
  • the difference in refractive index and the difference in refractive index between the zirconia crystal and the alumina crystal occur, and it is presumed that the amount of specularly reflected light increases due to the difference in refractive index.
  • the intensity ratio I t / I m is preferable that a 15 or less (not including 0). Thereby, the light emitting element mounting substrate 1 having a higher reflectance is obtained.
  • the alumina sintered body in the light emitting element mounting substrate 1 of this embodiment is a case where the highest peak is an alumina crystal in the chart showing the result of measurement by XRD using Cu K ⁇ rays.
  • the identification of the highest peak may be collated with JCPDS card data.
  • the alumina sintered body is, for example, a cross section where the crystals constituting the light emitting element mounting substrate 1 can be confirmed, and the area occupancy of alumina crystals when confirmed using, for example, a scanning electron microscope (SEM). It is over 50%.
  • the content obtained by converting the Al amount measured by using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (ICP) or a fluorescent X-ray analyzer (XRF) into Al 2 O 3 constitutes the sintered body. It exceeds 50% by mass of 100% by mass of all components.
  • ICP Inductively Coupled Plasma
  • XRF fluorescent X-ray analyzer
  • the light emitting element mounting substrate 1 of this embodiment is as high reflectance in the visible light region, specifically, the intensity ratio I t / I m is 35 or less (not including 0) As a result, the reflectance at 500 nm is 93% or more.
  • a spectrocolorimeter (Minolta CM-3700A) can be used under the conditions of a reference light source D65, a wavelength range of 360 to 740 nm, a visual field of 10 °, and an illumination diameter of 3 ⁇ 5 mm.
  • the content of zirconia in which Zr is converted to ZrO 2 out of 100 mass% of all components constituting the alumina sintered body is 5 mass% or more and 35 mass% or less. It is preferable that When the content of zirconia is 5% by mass or more and 35% by mass or less, the reflectance can be further increased and the mechanical properties can be improved. Specifically, the reflectance at 500 nm can be 94% or more, and the three-point bending strength can be 400 MPa or more.
  • the content of zirconia is determined by first crushing a part of the alumina sintered body, which is the light-emitting element mounting substrate 1, and dissolving and diluting the obtained powder in a solution such as hydrochloric acid. measured using, from content of the resulting Zr may be calculated in terms of ZrO 2.
  • the three-point bending strength may be measured according to JIS R 1601-2008 (ISO 17565: 2003 (MOD)).
  • the zirconia crystal is a lamellar structure zirconia crystal.
  • the lamella texture zirconia crystal will be described with reference to the transmission electron microscope (TEM) photograph of FIG.
  • the lamella texture zirconia crystal is one in which layers having different color tones appear to overlap as shown in FIG. Each of these layers has a cubic, tetragonal, or monoclinic crystal structure, and the adjacent layers have different crystal structures. .
  • the area occupancy of the lamella texture zirconia crystal is high.
  • the alumina crystal shown in FIG. 2 shows only a part of the crystal, the magnification is such that the entire crystal can be confirmed. Needless to say, the area occupancy of the alumina crystal exceeds 50% if lower.
  • the light-emitting element mounting substrate 1 of this embodiment has an alumina crystal and a zirconia crystal (lamellar structure zirconia crystal in FIG. 2) and a grain boundary phase.
  • the light-emitting element mounting substrate 1 When at least a part of the zirconia crystal is a lamella texture zirconia crystal, the light-emitting element mounting substrate 1 has a higher reflectance in the visible light region. This is presumably because the lamella textured zirconia crystal has a refractive index difference in the lamellar textured zirconia crystal due to the overlapping of layers having different crystal structures.
  • the lamellar texture zirconia crystal is due to the stress caused by the difference in thermal expansion between the alumina crystal and the zirconia crystal acting as tensile stress or compressive stress on the zirconia crystal existing between the alumina crystals during firing. Inferred.
  • the ratio of the number of lamella texture zirconia crystals to the number of zirconia crystals is preferably 50% or more.
  • the ratio of the number of lamella texture zirconia crystals in the number of zirconia crystals is 50% or more, the reflectance can be further improved.
  • a method for confirming lamella texture zirconia crystals will be described.
  • a part of the light emitting element mounting substrate 1 is etched using a processing apparatus such as an ion thinning apparatus to obtain a measurement surface.
  • a processing apparatus such as an ion thinning apparatus to obtain a measurement surface.
  • the alumina crystal is observed white and the zirconia crystal is observed black.
  • the presence or absence of lamella texture zirconia crystals can be confirmed by checking whether or not the layers with different color tones appear to overlap each other in the crystals observed in black. If it is difficult to specify whether the crystal is a zirconia crystal, it can be confirmed by detecting whether Zr and O are detected by using an attached EDS.
  • the number of zirconia crystals in the specific field of view described above is X
  • Y the ratio in one specific field of view is calculated by the formula of Y / X ⁇ 100
  • the ratio in each specific field of view is determined at the remaining four positions (total of five positions), and the average value of these ratios is calculated.
  • the light-emitting element mounting substrate 1 of the present embodiment preferably includes glass containing at least silicon oxide and magnesium oxide in the grain boundary phase, and the glass content is 1 mass% or more and 6 mass% or less. It is.
  • the reflectance can be further improved while suppressing a decrease in thermal conductivity.
  • the reason why the reflectance can be improved is that glass having a refractive index different from that of either the alumina crystal or the zirconia crystal is present in the grain boundary phase.
  • the grain boundary phase in the present embodiment is a region other than the alumina crystal and the zirconia crystal, and the glass contains calcium oxide, boron oxide, zinc oxide, bismuth oxide, etc. in addition to silicon oxide and magnesium oxide. It may be a thing.
  • content of glass is an occupation rate when all the components which comprise the alumina sintered compact which is the light emitting element mounting substrate 1 are 100 mass%.
  • the presence of glass is obtained by cutting the light emitting element mounting substrate 1 and then mirror-processing the cross section, and observing a plurality of grain boundary phases at a magnification of 1 to 150,000 times with a TEM (transmission electron microscope). Can be confirmed. Or you may confirm by the presence or absence of a so-called broad halo pattern in the measurement by XRF. Furthermore, even if elements other than Al and Zr have been confirmed by qualitative analysis using EDS, XRF, ICP, etc. attached to SEM, there is glass even when no crystals other than alumina crystals and zirconia crystals are confirmed by XRD. Can be regarded as doing.
  • the glass content is determined based on quantitative values of elements detected by qualitative analysis, for example, Si, Mg, Ca, B, Zn, Bi, respectively, SiO 2 , MgO, CaO, B 2 O 3 , ZnO, Bi 2 O. The sum of the values converted to 3 .
  • silicon oxide is 50% by mass or more and 70% by mass or less
  • magnesium oxide is 30% by mass or more and less than 50% by mass
  • the total is preferably less than 10% by mass.
  • the relative density of the alumina sintered body that is the light emitting element mounting substrate 1 of the present embodiment is 86% or more and 92% or less.
  • the reflectance can be improved by the presence of pores on the surface of the light emitting element mounting substrate 1 while suppressing the deterioration of the mechanical characteristics.
  • the relative density was measured by calculating the apparent density of the light emitting element mounting substrate made of an alumina sintered body in accordance with JIS R 1634-1998, and constituting the light emitting element mounting substrate 1 with this apparent density. What is necessary is just to divide
  • MgAl 2 O 4 crystals exist in the grain boundary phase of the light emitting element mounting substrate 1 of the present embodiment.
  • MgAl 2 O 4 crystals are present in the grain boundary phase, the growth of alumina crystals that occupy more than 50% of the area occupancy is suppressed, and a finer and more homogeneous crystal structure can be formed. Therefore, the mechanical characteristics can be further improved.
  • Al 0.52 Zr 0.48 O 1.74 exists in the grain boundary phase of the light emitting element mounting substrate 1 of the present embodiment.
  • Al 0.52 Zr 0.48 O 1.74 is present in the grain boundary phase, the grain growth of alumina crystals that occupy more than 50% in terms of area occupancy is suppressed, and a finer and more homogeneous crystal structure can be obtained. Since it can be formed, the mechanical properties can be further improved.
  • the light emitting element module 10 of the present embodiment has the insulating and mechanical characteristics of the light emitting element mounting substrate 1 of the present embodiment because the main crystal is alumina and is made of an alumina sintered body containing zirconia. It has high reliability because of its excellent resistance. Moreover, since it has a high reflectance, the reflectance of the light emitted from the light emitting element is high, so that the light emitting element module 10 having high luminance in addition to high reliability is obtained.
  • alumina (Al 2 O 3 ) powder and magnesium hydroxide (Mg (OH) 2 ) powder, silicon oxide (SiO 2 ) powder and calcium carbonate (CaCO 3 ) powder which are sintering aids are stabilized.
  • a zirconia (ZrO 2 ) powder is prepared.
  • the unstabilized zirconia powder means yttrium oxide (Y 2 O 3 ), dysprosium oxide (Dy 2 O 3 ), cerium oxide (CeO 2 ), calcium oxide (CaO), magnesium oxide (MgO).
  • Y 2 O 3 yttrium oxide
  • Dy 2 O 3 dysprosium oxide
  • CeO 2 cerium oxide
  • CaO calcium oxide
  • zirconia powder that is not stabilized by a stabilizer such as
  • the average particle size of the alumina powder may be less than 1 ⁇ m, and the average particle size of the magnesium hydroxide powder may be less than 1.5 ⁇ m.
  • both alumina powder and zirconia powder may be used with a powder of less than 1 ⁇ m.
  • the tetragonal zirconia is present due to the transformation or the sintering aid although the unstabilized zirconia powder is used. This is considered to be due to the solid solution of Ca in the calcium carbonate powder and Mg in the magnesium hydroxide powder.
  • the sintering aid is 1 to 6% by mass
  • the zirconia powder is 5 to 35% by mass
  • the balance is the alumina powder. It is preferable to weigh as described above.
  • a binder such as PVA (polyvinyl alcohol)
  • a solvent 100% by weight of a solvent
  • a dispersant 0.1 to 0.5% by weight of a dispersant
  • a sheet is formed using this slurry by a doctor blade method, or a sheet is formed by a roll compaction method using granules obtained by spray granulating this slurry using a spray granulator (spray dryer).
  • a molded product having a predetermined product shape or a product approximate shape is obtained by die pressing or laser processing.
  • the molded body is formed with a slit so that a large number can be obtained.
  • the obtained molded body is predetermined at a maximum temperature of 1400 ° C. or higher and 1600 ° C. or lower using a firing furnace (for example, a roller type tunnel furnace, a batch type atmospheric furnace, and a pusher type tunnel furnace) in an air (oxidation) atmosphere.
  • a firing furnace for example, a roller type tunnel furnace, a batch type atmospheric furnace, and a pusher type tunnel furnace
  • the substrate 1 for mounting the light emitting element of the present embodiment can be obtained by baking for a period of time.
  • slits may be formed after firing.
  • the crystallization temperature may be increased to 400 ° C./h or higher up to the maximum temperature.
  • the rate of temperature increase up to the maximum temperature may be set to 500 ° C./h or more.
  • the maximum temperature during firing may be 1400 ° C or more and 1500 ° C or less.
  • the reflectance of the light emitting element mounting substrate 1 can be improved by performing heat treatment at a temperature of 500 ° C. or higher after firing. Can be improved reflectivity before and after the heat treatment, the intensity ratio I t / I m and the peak intensity I m tetragonal zirconia peak intensity I t and monoclinic zirconia in the substrate for mounting light emitting elements is small Therefore, it is considered that monoclinic zirconia is increased by heat treatment.
  • the heat treatment temperature exceeds 1100 ° C., the transformation from monoclinic to tetragonal crystal occurs, and the heat treatment is accompanied by a considerable decrease in mechanical properties, so the upper limit of the temperature during this heat treatment is The temperature is preferably less than 1100 ° C.
  • the zirconia content is small, for example, even if it is 5 to 10% by mass, the reflectance is about the same as when the content is nearly 30% by mass. Therefore, in order to reduce the material cost while exhibiting the effects peculiar to the present application, it is preferable that the content of zirconia is 5 to 10% by mass and heat treatment is performed.
  • the cooling rate from the highest temperature during firing to room temperature may be set to 250 ° C./hour or more and 400 ° C./hour or less.
  • electrodes 3 (3a, 3b) are formed on the surface 1a by thick film printing.
  • electrode pads 4 (4a, 4b) are formed on the electrodes 3 by plating or the like.
  • the light emitting element 2 made of a semiconductor is mounted on the electrode pad 4a.
  • the light emitting element 2 and the electrode pad 4b are electrically connected with the bonding wire 5 by the joining using a conductive adhesive, or the joining by a solder bump.
  • the electrode 3 and the electrode pad 4 are protected with overcoat glass, and finally covered with a sealing member 6 made of resin or the like, whereby the light emitting element module 10 of the present embodiment can be obtained.
  • the unstabilized zirconia powder was weighed so that the content in 100% by mass of all the components constituting each sample was a value shown in Table 1. Further, regarding the magnesium hydroxide powder, silicon oxide powder and calcium carbonate powder, the content of 100% by mass of all components constituting each sample is 1.3% by mass in terms of MgO, 1.9% by mass in terms of SiO 2 , CaO It was weighed so as to be 0.3% by mass in terms of conversion. And it weighed so that an alumina powder might become the remainder, and it was set as the primary raw material.
  • the preparation method was the same as (1) except that zirconia powder previously stabilized with 3 mol% Y 2 O 3 was used as the zirconia powder. Granules were obtained.
  • the zirconia powder in (3) is sample No. Weighed out so that the content of zirconia was 20% by mass out of 100% by mass of all the components constituting 14.
  • each of the granules obtained was pressed using a mold capable of obtaining a plate shape and a rod shape to obtain a plate and a rod shaped molded body.
  • the plate-shaped molded body is for measuring peak intensity and reflectance
  • the rod-shaped molded body is for measuring three-point bending strength.
  • the obtained molded body was placed in a firing furnace in an air (oxidation) atmosphere and fired at a maximum temperature of 1500 ° C. After firing, grinding is performed to form a plate with a side of 10 mm and a thickness of 1.0 mm, and a rod shape with dimensions conforming to JIS R 1601-2008 (ISO 17565: 2003 (MOD)). Got with the body.
  • CM-3700A manufactured by Minolta
  • CM-3700A manufactured by Minolta
  • a reference light source D65 a wavelength range of 360 to 740 nm
  • a visual field of 10 ° a visual field of 10 °
  • an illumination diameter 3 ⁇ 5 mm.
  • measurement was performed in accordance with JIS R 1601-2008 (ISO 17565: 2003 (MOD)). Then, the value of the intensity ratio I t / I m, the reflectance in the visible light wavelength 500 nm, the value of the three-point bending strength shown in Table 1.
  • the sample intensity ratio I t / I m is less than 35 (not including 0)
  • No. Nos. 2 to 12 have a reflectivity at 500 nm of 93.0% or more, and were confirmed to have high reflectivity.
  • Nos. 4 to 10 have a reflectivity at 500 nm of 94.0% or more and a three-point bending strength of 400 MPa or more, and it was found that a light-emitting element mounting substrate with high reflectivity and high strength can be obtained.
  • sample no. A plate-like body and a rod-like body were obtained by the same production method as in No. 5. And it heat-processed at the temperature shown in Table 2, and measured the intensity ratio It / Im by XRD, a reflectance, and a three-point bending strength similarly to Example 1.
  • FIG. The results are shown in Table 2.
  • the reflectance can be improved by performing a heat treatment at a temperature of 500 ° C. or higher.
  • heat treatment is performed at a temperature of 1100 ° C., it is not certain that the transformation from monoclinic to tetragonal crystal has started, but the numerical value of the strength ratio It / Im is larger than that at 1000 ° C. Since the reflectance was not improved and the rate of decrease in the three-point bending strength was increased, it was found that the heat treatment temperature was preferably 500 ° C. or higher and 1000 ° C. or lower.
  • samples with different heating rates up to the maximum temperature during firing were prepared, the presence or absence of lamellar textured zirconia crystals, calculation of the ratio of the number of lamellar textured zirconia crystals to the number of zirconia crystals, and measurement of reflectance I did it.
  • the sample of the plate-shaped object was produced with the production method similar to sample No. 2 of Example 1 except having changed the temperature increase rate to the maximum temperature at the time of baking. Further, the reflectance was measured by the same method as in Example 1.
  • the surface etched using an ion thinning device is used as the measurement surface, and TEM (JEOL JEM-2010F) is used and the magnification is 50,000 times under the condition of an acceleration voltage of 200 kV. Observed and performed.
  • the number of zirconia crystals in a specific field of view (14 ⁇ m ⁇ 12 ⁇ m) observed by TEM is X
  • the number of (lamellar structure zirconia crystals) is Y
  • the ratio in one specific visual field is obtained by the calculation formula of Y / X ⁇ 100
  • the ratio in each specific visual field is obtained in the remaining four places (total of five places).
  • the average value of the ratio was calculated as the ratio of the number of lamella texture zirconia crystals in the number of zirconia crystals. The results are shown in Table 3.
  • the lamellar structure zirconia crystals exist and the reflectance can be increased by setting the temperature rising rate to the maximum temperature during firing to 400 ° C./h or more. Further, it was found that the reflectance can be further increased when the ratio of the number of lamella texture zirconia crystals in the number of zirconia crystals is 50% or more.
  • sample No. 2 of Example 2 except having made sintering auxiliary agent content shown in Table 4.
  • a sample was manufactured by the same manufacturing method as in 19.
  • the reflectance was measured by the same method as in Example 1.
  • the thermal conductivity was measured according to JIS R 1611-1997.
  • glass containing at least magnesium oxide and silicon oxide is present in the grain boundary phase, and the glass content is 1% by mass or more and 6% by mass or less, thereby suppressing a decrease in thermal conductivity. It was found that the reflectance can be improved.
  • Sample No. No. 39 is Sample No. 19 is the same sample as sample No.
  • the sample was prepared by shortening the holding time at the maximum temperature as the temperature increased.
  • the reflectance and the three-point bending strength were measured by the same method as in Example 1.
  • the relative density was calculated for each sample. The results are shown in Table 5.
  • the relative density is preferably 86% or more and 92% or less in order to improve the reflectance by the presence of pores on the surface of the light emitting element mounting substrate while suppressing the deterioration of the mechanical characteristics. It was.
  • Example 2 Except that alumina powder having an average particle diameter of 0.8 ⁇ m and magnesium hydroxide powder having an average particle diameter of 1 ⁇ m were used as the primary material, the same production method as Sample No. 6 in Example 1 was used. Plates and rods were obtained. Then, in the same manner as in Example 1, measurement by XRD, reflectance, and three-point bending strength were performed.
  • Example 2 the same as sample No. 6 in Example 1 except that alumina powder having an average particle diameter of 0.8 ⁇ m and unstabilized zirconia powder having an average particle diameter of 0.8 ⁇ m were used as the primary material.
  • a plate-like body and a rod-like body were obtained by the production method. Then, in the same manner as in Example 1, measurement by XRD, reflectance, and three-point bending strength were performed.
  • the light emitting element mounting substrate of the present invention is excellent in insulation and mechanical properties, and the light emitting element module in which the light emitting element is mounted on the light emitting element mounting substrate of the present invention is It was found that an excellent light emitting device module having high luminance in addition to high reliability was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 【課題】 高い反射率を有する発光素子実装用基板および信頼性が高く高輝度の発光素子モジュールを提供する。 【解決手段】 アルミナ結晶およびジルコニア結晶と、粒界相とを含むアルミナ質焼結体からなり、CuのKα線を用いたX線回折装置により測定される正方晶ジルコニア結晶のピーク強度I(2θ=30°~30.5°)と単斜晶ジルコニア結晶のピーク強度I(2θ=28°~28.5°)との強度比I/Iが35(0を含まず)以下の発光素子実装用基板である。また、この発光素子実装用基板に発光素子が搭載されている発光素子モジュールである。 

Description

発光素子実装用基板および発光素子モジュール
 本発明は、発光素子実装用基板および発光素子モジュールに関する。
 一般照明や電光表示板の光源、さらには、携帯電話機、パソコンおよびテレビなどの液晶のバックライトに、輝度が高く、寿命が長く、消費電力の少ないなどのメリットを有している発光素子(LED)が広く利用されている。
 そして、このような発光素子が搭載される発光素子実装用基体は、表面に電極が形成されるものであることから、絶縁性を有しつつ機械的特性に優れたセラミック材料が用いられている。例えば、特許文献1には、このようなセラミック材料からなる発光素子実装用基体として、アルミナとジルコニアとの混合物を焼成したセラミックスからなる反射板が提案されている。
特開2011-222674号公報
 この特許文献1において、500nmにおける反射率が最もよい試料No.5で91.6%であることが記載されているが、今般においては、さらに高い反射率を有していることが求められている。
 本発明は、上記要求を満たすべく案出されたものであり、可視光領域において高い反射率を有する発光素子実装用基板および高い信頼性と高い輝度を有する発光素子モジュールを提供することを目的とする。
 本発明の発光素子実装用基板は、アルミナ結晶およびジルコニア結晶と、粒界相とを含むアルミナ質焼結体からなり、CuのKα線を用いたX線回折装置により測定される正方晶ジルコニア結晶のピーク強度I(2θ=30°~30.5°)と単斜晶ジルコニア結晶のピーク強度I(2θ=28°~28.5°)との強度比I/Iが35(0を含まず)以下であることを特徴とするものである。
 また、本発明の発光素子モジュールは、上記構成の発光素子実装基板に発光素子が搭載されていることを特徴とするものである。
 本発明の発光素子実装用基板は、絶縁性を有しつつ機械的特性に優れているとともに、可視光領域において高い反射率を有している。
 また、本発明の発光素子モジュールは、高い信頼性に加えて高い輝度を有している。
本実施形態の発光素子実装用基板上に発光素子を搭載してなる発光素子モジュールの構成の一例を示す断面図である。 本実施形態の発光素子実装用基板に含まれるラメラ組織ジルコニア結晶を示す透過型電子顕微鏡(TEM)写真である。
 以下、本実施形態の発光素子実装用基板およびこの発光素子実装用基板に発光素子を搭載してなる発光素子モジュールの一例について説明する。図1は、本実施形態の発光素子実装用基板上に発光素子を搭載してなる発光素子モジュールの構成の一例を示す断面図である。
 図1に示す発光素子モジュール10は、基体である発光素子実装用基板1の表面1a上に、電極3(3a,3b)、さらに電極パッド4(4a,4b)が形成され、電極パッド4a上に発光素子2が搭載され、発光素子2と電極パッド4bとが、ボンディングワイヤ5により電気的に接続されている。そして、発光素子2、電極3、電極パッド4およびボンディングワイヤ5は、樹脂等からなる封止部材6によって覆われている。ここで、この封止部材6は、発光素子2の保護とレンズの機能を併せ持つものである。
 なお、本実施形態の発光素子モジュール10は、本実施形態の発光素子実装用基板1に発光素子2が搭載されていることを満たしていればよく、図1に示す例に限られるものではない。また、本実施形態において、発光素子実装用基板1の表面1aとは、発光素子2の搭載面のことである。
 そして、本実施形態の発光素子実装用基板1は、アルミナ(Al)結晶およびジルコニア(ZrO)結晶と、粒界相とを含むアルミナ質焼結体からなり、CuのKα線を用いたX線回折装置(XRD)により測定される正方晶ジルコニア結晶のピーク強度I(2θ=30°~30.5°)と単斜晶ジルコニア結晶のピーク強度I(2θ=28°~28.5°)との強度比I/Iが35(0を含まず)以下である。
 本実施形態の発光素子実装用基板1は、上記構成を満たしていることにより、絶縁性を有しつつ機械的特性に優れているとともに、可視光領域において高い反射率を有する。なお、反射率を高めることができる理由については明らかではないが、正方晶ジルコニア結晶と単斜晶ジルコニア結晶の強度比、すなわち存在比率の違いによって、正方晶ジルコニア結晶と単斜晶ジルコニア結晶との屈折率差およびこれらのジルコニア結晶とアルミナ結晶との屈折率差が生じ、これらの屈折率差によって正反射する光量が増えたためであると推察される。なお、強度比I/Iは15以下(0を含まず)であることが好適である。これにより、さらに高い反射率を有する発光素子実装用基板1となる。
 そして、本実施形態の発光素子実装用基板1におけるアルミナ質焼結体とは、CuのKα線を用いたXRDによる測定における結果を示すチャートにおいて、最も高いピークがアルミナ結晶である場合である。この最も高いピークの同定については、JCPDSカードデータと照合すればよい。また、アルミナ質焼結体とは、発光素子実装用基板1を構成する結晶が確認できる断面等において、例えば、走査型電子顕微鏡(SEM)を用いて確認した際のアルミナ結晶の面積占有率が50%を超えるものである。さらには、ICP(Inductively Coupled Plasma)発光分光分析装置(ICP)や蛍光X線分析装置(XRF)を用いて測定したAl量をAlに換算した含有量が、焼結体を構成する全成分100質量%のうち50質量%を超えるものである。
 そして、発光素子実装用基板1を構成する結晶が確認できる断面等を、SEMを用いて確認すれば、結晶と粒界相との識別ができる。また、SEMに付設のエネルギー分散型X線分光器(EDS)を用いて確認すれば、結晶がアルミナ結晶であるかジルコニア結晶であるか等の特定を行なうことができる。ここで、アルミナ結晶であれば、AlとOとが確認され、ジルコニア結晶であれば、ZrとOとが確認される。
 また、正方晶ジルコニア結晶および単斜晶ジルコニア結晶との強度比I/Iについては、CuのKα線を用いたXRDによる測定における2θ=30°~30.5°に存在する正方晶ジルコニア結晶のピーク強度Iおよび2θ=28°~28.5°間に存在する単斜晶ジルコニア結晶のピーク強度Iの値を用いて求めれば良い。
 そして、本実施形態の発光素子実装用基板1は、可視光領域における反射率の高いものであるが、具体的には、強度比I/Iが35以下(0を含まず)であることにより、500nmにおける反射率が93%以上となる。測定方法としては、分光測色計(ミノルタ製 CM-3700A)を用いて、基準光源D65、波長範囲360~740nm、視野10°、照明径3×5mmの条件で測定することができる。
 また、本実施形態の発光素子実装用基板1は、アルミナ質焼結体を構成する全成分100質量%のうち、ZrをZrO換算したジルコニアの含有量が、5質量%以上35質量%以下であることが好適である。ジルコニアの含有量が5質量%以上35質量%以下であるときには、反射率をさらに高めることができるとともに、機械的特性の向上を図ることができる。具体的には、500nmにおける反射率を94%以上とすることができ、3点曲げ強度を400MPa以上とすることができる。
 ここで、ジルコニアの含有量は、まず、発光素子実装用基板1であるアルミナ質焼結体の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解して希釈した後、ICPを用いて測定し、得られたZrの含有量からZrOに換算して求めれば良い。また、3点曲げ強度については、JIS R 1601-2008(ISO 17565:2003(MOD))に準拠して測定すればよい。
 また、本実施形態の発光素子実装基板1において、ジルコニア結晶の少なくとも一部が、ラメラ組織ジルコニア結晶であることが好適である。ラメラ組織ジルコニア結晶について、図2の透過型電子顕微鏡(TEM)写真を用いて説明する。
 ラメラ組織ジルコニア結晶とは、図2に示すように、色調の異なる層が重なり合って見えるものである。これらの層は、それぞれが、立方晶、正方晶または単斜晶のいずれかの結晶構造からなり、隣り合う層が異なる結晶構造となっているために、色調が異なって見えるものと推察される。
 なお、図2においては、ラメラ組織ジルコニア結晶の面積占有率が高いが、図2に示すアルミナ結晶は、結晶の一部のみが示されたものであるため、結晶の全体が確認できる程度に倍率を低くすれば、アルミナ結晶の面積占有率が50%を超えるものであることはいうまでもない。また、図2に示すように、本実施形態の発光素子実装用基板1は、アルミナ結晶およびジルコニア結晶(図2においては、ラメラ組織ジルコニア結晶)と、粒界相とを有している。
 そして、ジルコニア結晶の少なくとも一部が、ラメラ組織ジルコニア結晶であるときには、可視光領域においてさらに高い反射率を有する発光素子実装基板1となる。これは、ラメラ組織ジルコニア結晶が、異なる結晶構造の層が重なり合っていることにより、ラメラ組織ジルコニア結晶内においても屈折率差を有しているためと推察される。
 なお、ラメラ組織ジルコニア結晶となるのは、焼成時において、アルミナ結晶とジルコニア結晶の熱膨張差により生じる応力が、アルミナ結晶間に存在するジルコニア結晶に引っ張り応力や圧縮応力として作用することによるものと推察される。
 また、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合が50%以上であることが好適である。ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合が50%以上であるときには、さらに反射率を向上させることができる。
 ここで、ラメラ組織ジルコニア結晶の確認方法ついて説明する。まず、発光素子実装用基板1の一部をイオンシンニング装置などの加工装置を用いてエッチングし、測定面とする。次に、TEMを用いて、加速電圧200kVの条件で測定面の特定視野を1万倍から10万倍の倍率で観察することにより、アルミナ結晶は白く、ジルコニア結晶は黒く観察されることから、黒く観察される結晶のうち、色調の異なる層が重なりあって見えるか否かにより、ラメラ組織ジルコニア結晶の有無を確認することができる。なお、ジルコニア結晶であるか否かの特定が困難な場合には、付設のEDSを用いて、ZrおよびOの検出の有無で確認すればよい。
 次に、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合の算出方法については、上述した特定視野におけるジルコニア結晶の数をX、色調の異なる層が重なりあって見えるジルコニア結晶(ラメラ組織ジルコニア結晶)の数をYとし、Y/X×100の計算式により1つの特定視野における割合を求め、残り4カ所(計5カ所)でそれぞれの特定視野における割合を求め、これらの割合の平均値を本実施形態におけるジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合とする。
 また、本実施形態の発光素子実装用基板1は、粒界相に、少なくとも酸化珪素と酸化マグネシウムとを含むガラス存在し、ガラスの含有量が1質量%以上6質量%以下であることが好適である。上記構成を満たしているときには、熱伝導率の低下を抑制しつつ、反射率をさらに向上させることができる。ここで、反射率を向上させることができるのは、粒界相に、アルミナ結晶およびジルコニア結晶のいずれとも屈折率の異なるガラスを存在させていることによる。なお、本実施形態における粒界相とは、アルミナ結晶およびジルコニア結晶以外の領域のことであり、ガラスは、酸化珪素および酸化マグネシウム以外に、酸化カルシウム、酸化硼素、酸化亜鉛、酸化ビスマス等を含むものであってもよい。なお、ここでガラスの含有量とは、発光素子実装用基板1であるアルミナ質焼結体を構成する全成分を100質量%としたときの占有率のことである。
 そして、ガラスの存在は、発光素子実装用基板1を切断後、断面を鏡面加工し、TEM(透過型電子顕微鏡)により、1~15万倍の倍率で複数の粒界相について観察することによって確認することができる。または、XRFによる測定においてブロードな所謂ハローパターンの有無で確認してもよい。さらには、SEMに付設のEDS、XRF、ICP等による定性分析でAlおよびZr以外の元素が確認されていながら、XRDによる測定において、アルミナ結晶およびジルコニア結晶以外の結晶が確認されない場合もガラスが存在しているとみなすことができる。
 なお、XRDによる測定において、アルミナ、ジルコニア以外の結晶が確認されない、若しくは2θ=34°~36°に存在するアルミナのピーク強度の1/20以下の強度のピークしか確認されない場合、本実施形態におけるガラスの含有量は、定性分析で検出された元素、例えば、Si,Mg,Ca,B,Zn,Biの定量値を、それぞれSiO,MgO,CaO,B,ZnO,Biに換算した値の合計とする。
 なお、ガラスの構成としては、ガラスを構成する成分100質量%のうち、酸化珪素が50質量%以上70質量%以下、酸化マグネシウムが30質量%以上50質量%未満、前述した他の酸化物の合計が10質量%未満であることが好適である。
 また、本実施形態の発光素子実装用基板1であるアルミナ質焼結体の相対密度が86%以上92%以下であることが好適である。相対密度が86%以上92%以下であるときには、機械的特性の低下を抑制しつつ、発光素子実装用基板1の表面の気孔の存在によって反射率を向上させることができる。
 なお、相対密度の測定方法は、JIS R 1634-1998に準拠してアルミナ質焼結体からなる発光素子実装用基板の見掛密度を求め、この見掛密度を発光素子実装用基板1を構成するアルミナ質焼結体の理論密度で除すことで求めればよい。
 また、本実施形態の発光素子実装用基板1の粒界相に、MgAlの結晶が存在することが好適である。粒界相に、MgAlの結晶が存在するときには、面積占有率で50%を超えて占有するアルミナ結晶の粒成長が抑制され、より微細で均質な結晶組織を形成することが可能となるため、さらに機械的特性を向上させることができる。
 また、本実施形態の発光素子実装用基板1の粒界相に、Al0.52Zr0.481.74が存在することが好適である。粒界相に、Al0.52Zr0.481.74が存在するときには、面積占有率で50%を超えて占有するアルミナ結晶の粒成長が抑制され、より微細で均質な結晶組織を形成することが可能となるため、さらに機械的特性を向上させることができる。なお、Al0.52Zr0.481.74については、CuのKα線を用いたXRDによる測定において、2θ=35.1°~35.2°の間にメインピークを有するものであり、上記範囲におけるピークの有無により、Al0.52Zr0.481.74の存在を確認することができる。
 そして、本実施形態の発光素子モジュール10は、本実施形態の発光素子実装用基板1が、主結晶がアルミナであり、ジルコニアを含むアルミナ質焼結体からなることから、絶縁性および機械的特性に優れているため高い信頼性を有している。また、高い反射率を有していることから、発光素子から発光された光の反射率が高いため、高い信頼性に加えて高い輝度を有する発光素子モジュール10となる。
 次に、本実施形態の発光素子実装用基板1の製造方法の一例について説明する。
 まず、アルミナ(Al)粉末と、焼結助剤である水酸化マグネシウム(Mg(OH))粉末、酸化珪素(SiO)粉末および炭酸カルシウム(CaCO)粉末と、安定化されていないジルコニア(ZrO)粉末とを準備する。ここで、安定化されていないジルコニア粉末とは、酸化イットリウム(Y)、酸化ディスプロシウム(Dy)、酸化セリウム(CeO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)等の安定化剤によって安定化されていないジルコニア粉末のことをいう。
 なお、焼結助剤と安定化剤とで重複する成分があるが、出発原料として安定化されていないジルコニア粉末を用いていればよく、焼結の過程において焼結助剤により部分的にジルコニアが安定化する分には構わない。また、MgAlを粒界相に存在させるには、アルミナ粉末の平均粒径を1μm未満とし、水酸化マグネシウム粉末の平均粒径を1.5μm未満とすればよい。さらに、Al0.52Zr0.481.74を粒界相に存在させるには、アルミナ粉末およびジルコニア粉末ともに1μm未満の粉末を用いればよい。
 なお、本実施形態の発光素子実装用基板1において、安定化されていないジルコニア粉末を用いたにも関わらず、正方晶ジルコニアが存在しているのは、変態によるもの、または、焼結助剤である炭酸カルシウム粉末におけるCaおよび水酸化マグネシウム粉末におけるMgが固溶することによるものと考えられる。
 次に、これらの粉末を所定量秤量して1次原料粉末とする。具体的には、焼結助剤とアルミナ粉末とジルコニア粉末との合計100質量%のうち、焼結助剤が1~6質量%、ジルコニア粉末が5~35質量%、残部がアルミナ粉末となるように秤量することが好適である。
 次に、この秤量した1次原料粉末100質量%に対し、1~1.5質量%のPVA(ポリビニールアルコール)などのバインダと、100質量%の溶媒と、0.1~0.5質量%の分散剤とを攪拌機内に入れて混合・攪拌してスラリーを得る。
 その後、このスラリーを用いてドクターブレード法でシートを形成するか、このスラリーを噴霧造粒装置(スプレードライヤー)により噴霧造粒して得られた顆粒を用いてロールコンパクション法でシートを形成する。次に、金型プレスまたはレーザー加工によって、所定の製品形状または製品近似形状の成形体を得る。このとき成形体は、発光素子実装用基板1の量産性を考慮すれば、多数個取りが可能となるように、スリットを形成した成形体とすることが好ましい。
 そして、得られた成形体を、大気(酸化)雰囲気の焼成炉(例えば、ローラー式トンネル炉、バッチ式雰囲気炉およびプッシャー式トンネル炉)を用いて、1400℃以上1600℃以下の最高温度で所定時間保持して焼成することによって、本実施形態の発光素子実装用基板1を得ることができる。また、発光素子実装用基板1を多数個取りする方法としては、焼成後にスリットを形成してもよいことはいうまでもない。
 また、ジルコニア結晶の少なくとも一部を、ラメラ組織ジルコニア結晶とするためには、最高温度までの昇温速度を400℃/h以上として焼成すれば良い。さらに、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合を50%以上とするには、最高温度までの昇温速度を500℃/h以上とすればよい。さらに、相対密度を86%以上92%以下とするには、焼成時における最高温度を1400℃以上1500℃以下とすればよい。
 また、焼成後に500℃以上の温度で熱処理を施すことによって、発光素子実装用基板1の反射率を向上させることができる。反射率を向上させることができるのは、熱処理前後において、発光素子実装用基板における正方晶ジルコニアのピーク強度Iと単斜晶ジルコニアのピーク強度Iとの強度比I/Iが小さくなっていることから、熱処理によって単斜晶ジルコニアが増えていることによると考えられる。また、熱処理温度が1100℃を超えると単斜晶から正方晶への変態が起こるとともに、熱処理によっては少なからず機械的特性の低下を伴うものであることから、この熱処理の際の温度の上限は、1100℃未満とすることが好適である。
 なお、上述した熱処理によって反射率を向上させることができることから、ジルコニアの含有量を少なく、例えば5~10質量%であっても、30質量%近く含有させたときと同じ程度の反射率とすることができるため、本願特有の効果を発揮しつつ、材料コストの低減を図るには、ジルコニアの含有量を5~10質量%とし、熱処理を施すことが好適である。
 また、粒界相にガラスを存在させるには、焼成時における最高温度から室温までの降温速度を250℃/時間以上400℃/時間以下とすればよい。
 次に、本実施形態の発光素子モジュール10の製造方法の一例を図1に基づいて説明する。本実施形態の発光素子実装用基板1を基体とし、表面1aに厚膜印刷法により電極3(3a,3b)を形成する。次に、電極3上に電極パッド4(4a,4b)をメッキ等により形成する。次に、電極パッド4a上に半導体からなる発光素子2を搭載する。そして、導電性接着剤を用いた接合、または半田バンプによる接合によって、ボンディングワイヤ5で発光素子2と電極パッド4bとを電気的に接続する。次に、電極3および電極パッド4をオーバーコートガラスにより保護し、最後に、樹脂等からなる封止部材6で被覆することにより、本実施形態の発光素子モジュール10を得ることができる。
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 正方晶ジルコニア結晶と単斜晶ジルコニア結晶とのピーク強度比I/Iの異なる発光素子実装用基板を作製し、反射率および3点曲げ強度の測定を行なった。
(1)試料No.1~12用の顆粒の作製
まず、平均粒径が1.0μmのアルミナ粉末と、平均粒径が1.0μmの水酸化マグネシウム粉末、平均粒径が1.0μmの酸化珪素粉末および平均粒径が1.0μmの炭酸カルシウム粉末からなる焼結助剤と、平均粒径が2.0μmの安定化されていないジルコニア粉末とを準備した。
 次に、安定化されていないジルコニア粉末については、各試料を構成する全成分100質量%のうちの含有量が表1に示す値となるように秤量した。また、水酸化マグネシウム粉末、酸化珪素粉末および炭酸カルシウム粉末については、各試料を構成する全成分100質量%のうちの含有量が、MgO換算で1.3質量%、SiO換算で1.9質量%、CaO換算で0.3質量%となるように秤量した。そして、アルミナ粉末が残部となるように秤量し、1次原料とした。
 次に、秤量した1次原料粉末100質量%に対し、1.0質量%のPVAと、100質量%の溶媒と、0.2質量%の分散剤とを攪拌機内に入れて混合・攪拌してスラリーを得た。その後、得られたスラリーを噴霧造粒装置(スプレードライヤー)により噴霧造粒して顆粒を得た。
(2)試料No.13用の顆粒の作製
 (1)と比較して、ジルコニア粉末を添加しないこと以外は、(1)と同様の作製方法により顆粒を得た。
(3)試料No.14用の顆粒の作製
 (1)と比較して、ジルコニア粉末として、予め3モル%のYで安定化されたジルコニア粉末を用いたこと以外は、(1)と同様の作製方法により顆粒を得た。なお、(3)におけるジルコニア粉末は、試料No.14を構成する全成分100質量%のうちジルコニアの含有量が20質量%となるように秤量した。
 次に、それぞれ得られた顆粒を用い、板状および棒状が得られる金型を用いてプレスし、板状および棒状の成形体を得た。ここで、板状の成形体は、ピーク強度および反射率測定用であり、棒状の成形体は、3点曲げ強度測定用である。次に、得られた成形体を大気(酸化)雰囲気の焼成炉に入れて1500℃の最高温度で焼成した。その後、焼成後研削加工を施すことにより、1辺が10mmの正方形であり、厚みが1.0mmの板状体と、JIS R 1601-2008(ISO 17565:2003(MOD))に準拠した寸法の棒状体とを得た。
 そして、各試料について、CuのKα線を用いたXRD(PANalytical社製:X’PertPRO)にて測定を行ない、2θ=30°~30.5°の間の正方晶ジルコニア結晶のピーク強度I、2θ=28°~28.5°間の単斜晶ジルコニア結晶のピーク強度Iの値を用いて強度比I/Iを算出した。
 また、各試料について、分光測色計(ミノルタ製 CM-3700A)を用いて、基準光源D65、波長範囲360~740nm、視野10°、照明径3×5mmの条件で測定した。次に、JIS R 1601-2008(ISO 17565:2003(MOD))に準拠して測定を行なった。そして、強度比I/Iの値、可視光波長500nmにおける反射率、3点曲げ強度の値を表1に示した。
 なお、各試料の一部を粉砕し、得られた粉体を塩酸などの溶液に溶解して希釈した後、ICP発光分光分析装置(島津製作所製:ICPS-8100)を用いて測定し、得られたZrの含有量から酸化物(ZrO)に換算した。また、焼結助剤およびアルミナに関して、添加量通りの含有量となっていることを確認した。また、各試料における相対密度は90%であった。
Figure JPOXMLDOC01-appb-T000001
 表1から、ジルコニア粉末を添加していない試料No.13は、500nmにおける反射率が89.5%と低かった。また、安定化されたジルコニア粉末を添加した試料No.14は、正方晶ジルコニア結晶の比率が高く、強度比I/Iの値が40.0であり、500nmにおける反射率は、試料No.13よりは高いものの92.0%であった。また、試料No.1は、強度比I/Iの値が36.0であり、500nmにおける反射率が93.0%であった。
 これに対し、強度比I/Iが35(0を含まず)以下である試料No.2~12は、500nmにおける反射率が93.0%以上であり、高い反射率を有することが確認された。
 さらに、ジルコニアの含有量が5質量%以上35質量%以下である試料No.4~10は、500nmにおける反射率が94.0%以上であり、3点曲げ強度が400MPa以上であり、高反射率および高強度の発光素子実装用基板とできることがわかった。
 次に、実施例1の試料No.5と同様の作製方法により、板状体および棒状体を得た。そして、表2に示す温度で熱処理を施し、実施例1と同様に、XRDによる強度比It/Im、反射率および3点曲げ強度の測定を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、500℃以上の温度で熱処理を行なうことにより、反射率の向上を図れることがわかった。また、1100℃の温度で熱処理したときには、単斜晶から正方晶への変態が起こり始めているためか定かではないが、1000℃のときよりも強度比It/Imの数値が大きくなっており、反射率の向上が見られず、3点曲げ強度の低下率も大きくなっていることから、熱処理温度は、500℃以上1000℃以下であることが好適とわかった。
 次に、焼成時の最高温度までの昇温速度を異ならせた試料を作製し、ラメラ組織ジルコニア結晶の有無、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合の算出、反射率の測定を行なった。なお、焼成時の最高温度までの昇温速度を異ならせたこと以外は、実施例1の試料No.2と同様の作製方法により板状体の試料を作製した。また、反射率については、実施例1と同様の方法により測定した。
 そして、ラメラ組織ジルコニア結晶の有無については、イオンシンニング装置を用いてエッチングした面を測定面とし、TEM(JEOL社製 JEM-2010F)を用いて、加速電圧200kVの条件で5万倍の倍率で観察して行なった。また、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合の算出については、TEMで観察した特定視野(14μm×12μm)におけるジルコニア結晶の数をX、色調の異なる層が重なりあって見えるジルコニア結晶(ラメラ組織ジルコニア結晶)の数をYとし、Y/X×100の計算式により1つの特定視野における割合を求め、残り4カ所(計5カ所)でそれぞれの特定視野における割合を求め、これらの割合の平均値をジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合として算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、焼成時の最高温度までの昇温速度を400℃/h以上とすることにより、ラメラ組織ジルコニア結晶が存在することとなり、反射率を高められることがわかった。また、ジルコニア結晶の数におけるラメラ組織ジルコニア結晶の数の割合が50%以上であることにより、さらに反射率を高められることがわかった。
 次に、焼結助剤量を異ならせた試料を作製し、反射率および熱伝導率の測定を行なった。なお、焼結助剤を表4に示す含有量としたこと以外は、実施例2の試料No.19と同様の作製方法により、試料を作製した。そして、実施例1と同様の方法により反射率の測定を行なった。また、熱伝導率については、JIS R 1611-1997に準拠して行なった。
 また、XRDによる測定において、アルミナおよびジルコニア以外には、2θ=34°~36°に存在するアルミナのピーク強度の1/20以下の強度のピークしか確認されなかったため、XRFを用いた定性分析によって確認されたSi,Mg,Caについて、ICPを用いて定量分析を行ない、それぞれSiO,MgO,CaOに換算した。なお、試料No.33と試料No.19は同じ試料である。
Figure JPOXMLDOC01-appb-T000004
 表4から、粒界相に、少なくとも酸化マグネシウムと酸化珪素とを含むガラスが存在し、ガラスの含有量が1質量%以上6質量%以下であることにより、熱伝導率の低下を抑制しつつ、反射率の向上が図れることがわかった。
 次に、焼成時における最高温度の保持時間を異ならせた試料を作製し、反射率および3点曲げ強度の測定を行なった。なお、試料No.39は試料No.19と同じ試料であり、試料No.が大きくなる程、最高温度の保持時間を短くして試料を作製した。そして、実施例1と同様の方法により、反射率および3点曲げ強度の測定を行なった。また、各試料につき、相対密度を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から、機械的特性の低下を抑制しつつ、発光素子実装用基板の表面の気孔の存在によって反射率を向上させるには、相対密度が86%以上92%以下であることが好適とわかった。
 次に、1次原料として、平均粒径が0.8μmのアルミナ粉末および平均粒径が1μmの水酸化マグネシウム粉末を用いたこと以外は、実施例1の試料No.6と同様の作製方法により、板状体および棒状体を得た。そして、実施例1と同様に、XRDによる測定、反射率および3点曲げ強度の測定を行なった。
 その結果、本実施例において作製した試料には、MgAlの存在が確認され、試料No.6と比較して、強度比I/Iおよび反射率は同じであったものの、3点曲げ強度が5%向上していた。この結果、MgAlが存在していることにより、機械的特性の向上が図れることがわかった。
 次に、1次原料として、平均粒径が0.8μmのアルミナ粉末および平均粒径が0.8μmの安定化されていないジルコニア粉末を用いたこと以外は、実施例1の試料No.6と同様の作製方法により、板状体および棒状体を得た。そして、実施例1と同様に、XRDによる測定、反射率および3点曲げ強度の測定を行なった。
 その結果、本実施例において作製した試料には、Al0.52Zr0.481.74の存在が確認され、試料No.6と比較して、強度比I/Iおよび反射率は同じであったものの、3点曲げ強度が5%向上していた。この結果、Al0.52Zr0.481.74が存在していることにより、機械的特性の向上が図れることがわかった。
 以上の実施例の結果より、本発明の発光素子実装用基板は、絶縁性および機械的特性に優れており、本発明の発光素子実装用基板に発光素子が搭載されてなる発光素子モジュールは、高い信頼性に加えて高い輝度を有する優れた発光素子モジュールとなることがわかった。
 1 :発光素子実装用基板
 1a:表面
 2 :発光素子
 3 :電極
 4 :電極パッド
 5 :ボンディングワイヤ
 6 :封止部材
 10 :発光素子モジュール

Claims (8)

  1.  アルミナ結晶およびジルコニア結晶と、粒界相とを含むアルミナ質焼結体からなり、CuのKα線を用いたX線回折装置により測定される正方晶ジルコニア結晶のピーク強度I(2θ=30°~30.5°)と単斜晶ジルコニア結晶のピーク強度I(2θ=28°~28.5°)との強度比I/Iが35(0を含まず)以下であることを特徴とする発光素子実装用基板。
  2.  前記アルミナ質焼結体を構成する全成分100質量%のうち、ZrをZrO換算した含有量が、5質量%以上35質量%以下であることを特徴とする請求項1に記載の発光素子実装用基板。
  3.  前記ジルコニア結晶の少なくとも一部が、ラメラ組織ジルコニア結晶であることを特徴とする請求項1または請求項2に記載の発光素子実装用基板。
  4.  前記粒界相に、少なくとも酸化マグネシウムと酸化珪素とを含むガラスが存在し、該ガラスの含有量が1質量%以上6質量%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の発光素子実装用基板。
  5.  前記アルミナ質焼結体の相対密度が86%以上92%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の発光素子実装用基板。
  6.  前記粒界相に、MgAlで表される結晶が存在することを特徴とする請求項1乃至請求項5のいずれかに記載の発光素子実装用基板。
  7.  前記粒界相に、Al0.52Zr0.481.74で表される結晶が存在することを特徴とする請求項1乃至請求項6のいずれかに記載の発光素子実装用基板。
  8.  請求項1乃至請求項7のいずれかに記載の発光素子実装用基板に発光素子が搭載されてなることを特徴とする発光素子モジュール。
PCT/JP2014/057329 2013-03-26 2014-03-18 発光素子実装用基板および発光素子モジュール WO2014156831A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/778,990 US20160043283A1 (en) 2013-03-26 2014-03-18 Light-emitting element mounting substrate and light-emitting element module
EP14775875.9A EP2980042B1 (en) 2013-03-26 2014-03-18 Substrate for mounting light-emitting element, and light-emitting element module
CN201480018221.XA CN105073682A (zh) 2013-03-26 2014-03-18 发光元件安装用基板和发光元件模组
JP2015508367A JP6034484B2 (ja) 2013-03-26 2014-03-18 発光素子実装用基板および発光素子モジュール

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013064297 2013-03-26
JP2013-064297 2013-03-26
JP2013-144705 2013-07-10
JP2013144705 2013-07-10

Publications (1)

Publication Number Publication Date
WO2014156831A1 true WO2014156831A1 (ja) 2014-10-02

Family

ID=51623811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057329 WO2014156831A1 (ja) 2013-03-26 2014-03-18 発光素子実装用基板および発光素子モジュール

Country Status (5)

Country Link
US (1) US20160043283A1 (ja)
EP (1) EP2980042B1 (ja)
JP (1) JP6034484B2 (ja)
CN (1) CN105073682A (ja)
WO (1) WO2014156831A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050312A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 発光素子実装用基板およびこれを用いた発光素子モジュール
JP2017079328A (ja) * 2015-09-28 2017-04-27 京セラ株式会社 発光素子実装用基板、発光素子実装用回路基板、発光素子モジュールおよび発光素子実装用基板の製造方法
JPWO2016098767A1 (ja) * 2014-12-16 2017-09-28 日本碍子株式会社 セラミック素地及びその製造方法
JP2020158320A (ja) * 2019-03-25 2020-10-01 京セラ株式会社 耐熱部材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496021B2 (ja) * 2015-06-26 2019-04-03 京セラ株式会社 セラミック基板およびこれを用いた実装用基板ならびに電子装置
WO2019003775A1 (ja) * 2017-06-29 2019-01-03 京セラ株式会社 回路基板およびこれを備える発光装置
CN110330317B (zh) * 2019-07-23 2020-09-22 南充三环电子有限公司 一种氧化锆复合氧化铝陶瓷烧结体、其制备方法及应用
CN116120046B (zh) * 2023-02-17 2024-02-02 江苏博睿光电股份有限公司 一种高反射率氧化铝陶瓷基板、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116017A (ja) * 1992-09-30 1994-04-26 Ngk Insulators Ltd 高靱性アルミナ−ジルコニア焼結体
JP2009046326A (ja) * 2007-08-14 2009-03-05 Sumitomo Metal Electronics Devices Inc セラミックス焼結体およびそれを用いた反射体およびそれを用いた発光素子搭載用パッケージおよびそれを用いた発光装置
JP2011222674A (ja) 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd 反射板の製造方法
JP2011241131A (ja) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc セラミック焼結体および光反射体および発光素子収納用パッケージ
WO2012015015A1 (ja) * 2010-07-29 2012-02-02 旭硝子株式会社 ガラスセラミックス組成物、発光素子用基板、および発光装置
WO2012060341A1 (ja) * 2010-11-01 2012-05-10 株式会社住友金属エレクトロデバイス 電子部品素子収納用パッケージ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887384A (en) * 1974-02-27 1975-06-03 United Aircraft Corp Tough refractory oxide eutectic article
DE3688153T2 (de) * 1985-07-03 1993-10-21 Nissan Chemical Ind Ltd Schuppenartige feine Kristalle des Zirkoniumoxydtyps und Verfahren zu deren Herstellung.
EP2415728B1 (en) * 2009-04-03 2017-05-10 Sumitomo Metal (SMI) Electronics Devices. Inc. Sintered ceramic and substrate comprising same for semiconductor device
WO2012162250A2 (en) * 2011-05-20 2012-11-29 University Of Central Florida Research Foundation, Inc. Surface modified materials for tailoring responses to electromagnetic fields
JP2013032265A (ja) * 2011-07-01 2013-02-14 Maruwa Co Ltd 半導体装置用アルミナジルコニア焼結基板及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116017A (ja) * 1992-09-30 1994-04-26 Ngk Insulators Ltd 高靱性アルミナ−ジルコニア焼結体
JP2009046326A (ja) * 2007-08-14 2009-03-05 Sumitomo Metal Electronics Devices Inc セラミックス焼結体およびそれを用いた反射体およびそれを用いた発光素子搭載用パッケージおよびそれを用いた発光装置
JP2011222674A (ja) 2010-04-07 2011-11-04 Kyoritsu Elex Co Ltd 反射板の製造方法
JP2011241131A (ja) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc セラミック焼結体および光反射体および発光素子収納用パッケージ
WO2012015015A1 (ja) * 2010-07-29 2012-02-02 旭硝子株式会社 ガラスセラミックス組成物、発光素子用基板、および発光装置
WO2012060341A1 (ja) * 2010-11-01 2012-05-10 株式会社住友金属エレクトロデバイス 電子部品素子収納用パッケージ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050312A (ja) * 2013-08-31 2015-03-16 京セラ株式会社 発光素子実装用基板およびこれを用いた発光素子モジュール
JPWO2016098767A1 (ja) * 2014-12-16 2017-09-28 日本碍子株式会社 セラミック素地及びその製造方法
JP2017079328A (ja) * 2015-09-28 2017-04-27 京セラ株式会社 発光素子実装用基板、発光素子実装用回路基板、発光素子モジュールおよび発光素子実装用基板の製造方法
JP2020158320A (ja) * 2019-03-25 2020-10-01 京セラ株式会社 耐熱部材
JP7156987B2 (ja) 2019-03-25 2022-10-19 京セラ株式会社 耐熱部材

Also Published As

Publication number Publication date
CN105073682A (zh) 2015-11-18
EP2980042A1 (en) 2016-02-03
JP6034484B2 (ja) 2016-11-30
EP2980042A4 (en) 2016-11-23
US20160043283A1 (en) 2016-02-11
JPWO2014156831A1 (ja) 2017-02-16
EP2980042B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6034484B2 (ja) 発光素子実装用基板および発光素子モジュール
KR101109988B1 (ko) 형광체 및 그의 제조방법, 및 그것을 사용한 발광장치
EP2596080B1 (en) Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material
US10873009B2 (en) Barrier layer functioned novel-structure ceramic converter materials and light emitting devices
JP5928468B2 (ja) ガラスセラミックス体、発光素子搭載用基板、および発光装置
JP5836862B2 (ja) 電子部品実装用基板および電子装置
TWI551566B (zh) A glass-ceramic body, a substrate for mounting a light-emitting element, and a light-emitting device
WO2011096126A1 (ja) 発光素子搭載用基板および発光装置
CN102333842B (zh) 长余辉荧光体陶瓷及其制造方法
WO2016208766A1 (ja) セラミック基板およびこれを用いた実装用基板ならびに電子装置
JP6122367B2 (ja) 発光素子実装用基板およびこれを用いた発光素子モジュール
JP6684192B2 (ja) 発光素子実装用基板、発光素子実装用回路基板、発光素子モジュールおよび発光素子実装用基板の製造方法
JP6987981B2 (ja) セラミック基板およびこれを用いた実装用基板ならびに電子装置
JP2012140289A (ja) 被覆アルミナフィラー、ガラスセラミックス組成物、発光素子用基板、および発光装置
JP6150159B2 (ja) 発光ダイオードパッケージ用ガラスセラミック、それを用いたセラミック基板、および発光ダイオードパッケージ
JP2013228603A (ja) 反射材およびこの反射材上に発光素子を搭載してなる発光素子モジュール
TWI771599B (zh) 光波長轉換構件及發光裝置
JP2014075452A (ja) ガラスセラミックス体、発光素子搭載用基板、および発光装置
JP2006016215A (ja) 誘電体セラミック及び積層セラミック基板
JP5829582B2 (ja) 反射材およびこの反射材上に発光素子を搭載してなる発光素子モジュール
JP2014105272A (ja) 赤色蛍光板およびこれを用いた発光装置
JP2009051706A (ja) 誘電体磁器組成物、誘電体磁器組成物の製造方法及び積層セラミック部品
JP2015143173A (ja) 発光素子搭載用セラミック基体および発光装置
JP2015106633A (ja) 発光素子実装用基板およびこれを用いた発光素子モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018221.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014775875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14778990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE