WO2014002306A1 - アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ - Google Patents

アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ Download PDF

Info

Publication number
WO2014002306A1
WO2014002306A1 PCT/JP2012/080740 JP2012080740W WO2014002306A1 WO 2014002306 A1 WO2014002306 A1 WO 2014002306A1 JP 2012080740 W JP2012080740 W JP 2012080740W WO 2014002306 A1 WO2014002306 A1 WO 2014002306A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
alumina
mass
crystal phase
terms
Prior art date
Application number
PCT/JP2012/080740
Other languages
English (en)
French (fr)
Inventor
東 登志文
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2013554722A priority Critical patent/JP5784153B2/ja
Priority to CN201280039604.6A priority patent/CN103732558B/zh
Publication of WO2014002306A1 publication Critical patent/WO2014002306A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an alumina ceramic suitable for an insulating substrate requiring high strength, a ceramic wiring substrate and a ceramic package to which the alumina ceramic is applied.
  • ceramic wiring boards have been widely used as wiring boards used in packages for storing electronic components such as semiconductor elements and crystal resonators in terms of relatively high mechanical strength and excellent airtightness.
  • FIG. 2 shows an example of an exploded perspective view of a ceramic package for mounting electronic components.
  • a ceramic package for mounting an electronic component such as a crystal application product
  • a conductor 102 is formed on the surface of a ceramic substrate 101 made of an alumina sintered body, and the electronic component mounted on the surface of the conductor 102
  • a metal member 105 here, a lid 105
  • hermetically sealing for example, a crystal application product
  • 109 is bonded via a bonding member 107 such as silver solder coated on the metallized layer 103.
  • a bonding member 107 such as silver solder coated on the metallized layer 103.
  • the present applicant has previously proposed low-temperature fired alumina ceramics that can be fired simultaneously with a copper-based conductor as a substrate material applied to this type of ceramic package (for example, Patent Document 2 and Patent Document 2). 3).
  • the width w 0 of the thickness t and the substrate bank portion 101b of the substrate bottom portion 101a is, for example, when the extremely thin as 0.5mm or less, be applied to the substrate materials described above, joining the cover member 105 In doing so, there has been a problem that the substrate bottom 101a and the substrate bank 101b of the ceramic substrate 101 are deformed, which causes cracks in the ceramic substrate 101.
  • an object of the present invention is to provide an alumina ceramic having a high mechanical strength, a high-strength wiring board and a ceramic package to which the ceramic is applied.
  • the alumina-based ceramic of the present invention contains aluminum oxide as a main component, contains manganese in an amount of 2.0 to 5.0% by mass in terms of Mn 2 O 3 and silicon in an amount of 3.0 to 7.5% by mass in terms of SiO 2 ,
  • the ratio of the crystal phase mainly composed of aluminum oxide obtained by X-ray diffraction Rietveld analysis is 99.0 to 99.9% by mass, and the average grain size of the crystal phase is 0.8 to 1. It is 5 ⁇ m and the area ratio of voids per unit area is 3.1% or less.
  • the ceramic wiring board of the present invention is a ceramic wiring board having a metallized layer on the surface of an insulating substrate, wherein the insulating substrate is made of the above-mentioned alumina ceramics.
  • the ceramic package of the present invention is a ceramic package in which a metal member is bonded to the surface of an insulating substrate via a bonding member, and the insulating substrate is made of the above-mentioned alumina ceramics.
  • an alumina ceramic having high mechanical strength can be obtained. Further, by applying such alumina ceramics as a material for the insulating substrate, a high-strength ceramic wiring substrate and a ceramic package can be obtained.
  • the alumina ceramic of the present embodiment contains aluminum oxide as a main component, contains 2.0 to 5.0% by mass of manganese in terms of Mn 2 O 3 and 3.0 to 7.5% by mass of silicon in terms of SiO 2. It is out.
  • the ratio of the crystal phase mainly composed of aluminum oxide, which is obtained by the X-ray diffraction Rietveld analysis, is 99.0 to 99.9% by mass.
  • this alumina ceramic has an average particle size of a crystal phase mainly composed of aluminum oxide (hereinafter referred to as alumina crystal phase) of 0.8 to 1.5 ⁇ m, and a void area ratio per unit area. Is 3.1% or less.
  • the proportion of the alumina crystal phase as the main crystal phase is as high as 99% by mass or more, Since the average grain size of the crystal phase is small and the area ratio of voids is small, the material is excellent in mechanical properties, and an alumina ceramic having a three-point bending strength of 680 MPa or more can be realized.
  • a crystal phase derived from a composite oxide such as MnAl 2 O 4 is formed at the grain boundary of the alumina crystal phase of the alumina ceramic which is a porcelain.
  • the ratio of the identifiable crystal phase present at the grain boundary of the alumina crystal phase is 1% by mass or less, and the alumina crystal phase is amorphous derived from manganese oxide or silicon oxide.
  • the proportion of the alumina crystal phase obtained by Rietveld analysis of X-ray diffraction is higher than 99.9% by mass, the amount of sintering aid such as manganese oxide or silicon oxide is considerably small.
  • the adhesive strength between the crystal phases decreases, and in this case also, the mechanical strength tends to decrease.
  • the content of manganese contained in the alumina ceramic is less than 2.0% by mass in terms of Mn 2 O 3 conversion, or the content of silicon in terms of SiO 2 is less than 3.0% by mass Since the amount of the component serving as the sintering aid is reduced, there are many portions where the sintering aid does not reach the grain boundary of the alumina crystal phase, and the alumina crystal phase itself is likely to grow. Even in this case, the mechanical strength is lowered.
  • the mechanical strength tends to decrease because the ratio of the alumina crystal phase, which is a high-strength material, in the ceramic material is reduced.
  • the mechanical strength of the alumina ceramic decreases.
  • the mechanical strength decreases because the alumina crystal phase is atomized and the specific surface area is increased, and therefore the alumina crystal phase is increased by the grain boundary of the alumina crystal phase. This is probably because there are parts where auxiliary agents such as manganese oxide and silicon oxide do not reach.
  • the mechanical strength decreases when the average grain size of the alumina crystal phase is larger than 1.5 ⁇ m.
  • the mechanical strength of ceramics tends to decrease as the size of the fracture source increases. This is considered to be because the size of the fracture source that is generated when a load is applied increases as the average particle size increases.
  • the proportion of the crystal phase contained in the alumina ceramic is determined by performing X-ray diffraction on a powdered sample obtained by pulverizing the alumina ceramic, and Rietveld analysis on the obtained X-ray diffraction pattern. To determine the mass ratio of each crystal phase.
  • the content of each component contained in the alumina ceramic is determined by atomic absorption analysis and ICP (Inductively Coupled Plasma) analysis.
  • ICP Inductively Coupled Plasma
  • the obtained alumina ceramics are dissolved in an acidic solution, and the elements contained in the alumina ceramics are qualitatively analyzed by atomic absorption analysis, and then the standard solution is prepared by diluting the standard solution for each specified element. As described above, it is quantified by ICP emission spectroscopic analysis. The amount of oxygen is obtained based on the valence of each element shown in the periodic table.
  • the average grain size of the alumina crystal phase is obtained by taking a photograph of 1000 to 5000 times using a scanning electron microscope on a polished surface obtained by polishing a cross section of an alumina ceramic sample, and then obtaining the photograph by the intercept method. .
  • the void area ratio After the surface of the alumina ceramics is mirror-polished, the total area of voids (open pores) recognized within the predetermined area as the observation range is obtained by using an image analysis apparatus, and the predetermined void area is determined. Obtained as a percentage of the area.
  • the alumina ceramic of the present embodiment has a mechanical structure because it has a crystal structure that suppresses generation of a crystal phase other than the alumina crystal phase even if it contains a considerable amount of additive components such as manganese and silicon.
  • the composition formulas of manganese and silicon are Mn 2 O 3 and SiO 2 , respectively, it is expressed by Mn 2 O 3 / (Mn 2 O 3 + SiO 2 )
  • the mass ratio is 30 to 50%, and magnesium and molybdenum are further included.
  • the magnesium content is 0.3 to 0.7% by mass in terms of MgO, and the molybdenum content is 0.3 to 0 in terms of MoO.
  • the void ratio is 3.0% or less and the mechanical strength (3-point bending strength) of the alumina ceramic is 700 MPa or less. It can be.
  • alumina ceramics of this configuration are adjusted to the composition of magnesium and molybdenum in addition to manganese and silicon, there is no color unevenness (including porcelain spots) and the appearance and design are beautiful ceramics. Can be.
  • the metallized layer is formed on the surface of the alumina ceramic having this structure as an insulating substrate as described later, the metallized strength can be increased.
  • the ratio of the crystal phase mainly composed of aluminum oxide contained in the alumina ceramic is preferably 99.2 to 99.9% by mass.
  • the alumina ceramic of the present embodiment is excellent in mechanical properties, and thus is suitable as an insulating substrate for various ceramic wiring boards and ceramic packages.
  • the metallized strength can be 43 N (kg ⁇ m / s 2 ) or more, particularly 51 N (kg ⁇ m / s 2 ) or more. This is because the amorphous phase of oxide containing manganese and silicon surrounding the alumina crystal phase has good wettability to the metallized layer (metal powder sintered body) side formed on the surface of the alumina ceramics. This is to penetrate.
  • FIG. 1 is an exploded perspective view showing an embodiment of the ceramic package of the present invention.
  • the ceramic package of the present embodiment has a metallized layer 3 arranged circumferentially on the surface of an insulating substrate 1 made of ceramic. On the upper surface of the metallized layer 3 arranged circumferentially, A joining member 7 for joining the metal member 5 such as a lid or a metal frame to the metallized layer 3 is provided.
  • the insulating substrate 1 includes a plate-like substrate bottom portion 1a and a substrate bank portion 1b provided at the peripheral edge of the substrate bottom portion 1a, and the electronic component 9 is mounted on the surface of the substrate bottom portion 1a.
  • a conductor 11 is formed.
  • This ceramic package is obtained by applying the high-strength alumina ceramic of the present embodiment to the substrate bottom 1a and the substrate bank 1b, which are insulating substrates.
  • the substrate bottom 1a even by reducing the width w 0 of the thickness t and the substrate bank portion 1b of the can suppress the deformation of the substrate bottom 1a and the substrate bank portion 1b which occurs when bonding the metal member 5 is the lid, the occurrence of cracks Can be prevented.
  • a thin ceramic package in which the average thickness of the substrate bottom 1a is 0.05 to 0.3 mm, particularly 0.05 to 0.2 mm, and the average thickness of the substrate bank 1b is 0.15 mm or less. It is suitable for.
  • the material for forming the metallized layer 3 may be a metal material having a melting point higher than that of the material used for the bonding member 7. Molybdenum, tungsten, or an alloy thereof is used in view of enabling simultaneous firing with the ceramic substrate 1.
  • the main component is good. In this case, copper or silver may be combined with molybdenum or tungsten according to the composition of the insulating substrate 1 and the sintering temperature.
  • the ceramic component included in the metallized layer 3 is a ceramic material having a high melting point that does not melt in the temperature range where the metal material of the metallized layer 3 is sintered and remains in the metallized layer 3 after sintering.
  • a ceramic material having a high melting point that does not melt in the temperature range where the metal material of the metallized layer 3 is sintered and remains in the metallized layer 3 after sintering.
  • oxides of alumina, zirconia, magnesia, and rare earth elements are suitable, but the main component of the insulating substrate 1 is that the strength of the metallized layer 3 mainly composed of molybdenum, tungsten, or the like can be increased.
  • Aluminum oxide (alumina) is preferred. It is desirable that the conductor 11 has the same composition.
  • the bonding member 7 is preferably a material which melts at a relatively low temperature (here, 900 ° C. or less) when heated and has a low viscosity and easily diffuses into the metallized layer 3.
  • a relatively low temperature here, 900 ° C. or less
  • silver brazing Al—Cu And materials containing a low melting point metal such as wood metal.
  • a metal material such as Kovar, 4-2 alloy, Alsic (ALSiC) and the like, a composite of ceramics with a metal material, or a ceramic material can be applied.
  • alumina powder aluminum oxide powder
  • manganese oxide powder Mn 2 O 3 powder
  • silicon oxide powder SiO 2 powder
  • a plate-shaped raw molded body is formed by a known molding method such as a press method, a doctor blade method, a rolling method, or an injection method.
  • the ratio of Mn 2 O 3 powder and SiO 2 powder is 30 to 50% in terms of Mn 2 O 3 / (Mn 2 O 3 + SiO 2 ) ratio (mass ratio)
  • the average particle size of the alumina powder, Mn 2 O 3 powder and SiO 2 powder used here is preferably in the range of 0.3 to 1.0 ⁇ m, whereby the alumina crystal phase in the alumina ceramics after firing is good.
  • the average particle size of the glass can be 0.8 to 1.5 ⁇ m, and precipitation of crystal phases other than the alumina crystal phase can be suppressed at the grain boundaries of the alumina crystal phase.
  • a conductor pattern is formed on the surface of the green molded body as necessary, and then fired at a temperature of 1300 to 1600 ° C. in a reducing atmosphere, for example.
  • a green sheet is produced as a raw molded body that becomes the substrate bottom 1a, and then a conductor pattern is formed on the surface thereof.
  • the green molded body to be the substrate bank portion 1b is prepared by subjecting a green sheet to hole processing and then partially forming a conductor pattern on the surface around the hole of the green sheet. At this time, a sheet that has only been subjected to drilling is prepared as necessary.
  • the green sheet with the conductor pattern formed on the surface around the hole is laminated on the surface on which the conductor pattern of the green sheet, which will be the substrate bottom 1a, is formed and adhered to form a ceramic package for the shape shown in FIG. Form the body.
  • the paste for the conductor pattern it is possible to use metal materials having various compositions in accordance with the sintering temperature of the ceramic powder.
  • a ceramic powder containing 80% by mass or more of alumina powder in a raw molded body it is preferable to use a metal material having a high melting point such as molybdenum or tungsten.
  • a nickel plating film is formed on the surface of the metallized layer 3 of the obtained ceramic package, and a metal such as a lid or a metal frame is formed on the surface of the metallized layer 3 on which the nickel plating film is formed via a bonding member 7.
  • the member 5 is joined.
  • the ceramic package having the metal member 5 manufactured in this way has high mechanical strength of the insulating substrate 1 and high bonding strength between the metallized layer 3 and the metal member 5 through the bonding member 7, and appearance. There is no defect, and when the lid is bonded to the insulating substrate 1, it can be made highly airtight.
  • alumina powder, Mn 2 O 3 powder, SiO 2 powder, MgO powder, and MoO 3 powder having an average particle diameter of 0.5 ⁇ m were prepared as raw material powders for producing alumina ceramics.
  • an acrylic binder is used as a molding organic resin (binder), and toluene is used as a solvent to prepare a slurry. Thereafter, a doctor blade method is used. A green sheet having a predetermined thickness was prepared.
  • the obtained green sheets were laminated to a predetermined thickness, and a conductor pattern mainly composed of the metal shown in Table 1 was printed as necessary, and fired at the temperature shown in Table 1.
  • a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C. was used.
  • the ratio of each crystal phase was obtained by grinding the obtained alumina ceramics, identifying the main crystal phase by X-ray diffraction, and conducting Rietveld analysis.
  • the average grain size of the alumina crystal phase is determined by taking an approximately 3000-fold photograph using a scanning electron microscope on the polished surface obtained by polishing the cross section of the sample of the alumina ceramics, and then using this photograph by the intercept method. Asked.
  • the surface of the alumina ceramics is mirror-polished with an abrasive, and the total area of voids (open pores) recognized within a predetermined area is obtained using an image analyzer (LUZEX-FS manufactured by Nireco). It was determined as a ratio to a predetermined area. At this time, the microscope magnification was about 100 times, and the measurement area was 9.0 ⁇ 10 4 ⁇ m 2 .
  • the mechanical strength was obtained by preparing a beam-like sample having a thickness of 3 mm, a width of 4 mm, and a length of 40 mm, measuring it as a three-point bending strength at room temperature based on JIS R1601, and calculating an average value of 35 pieces.
  • a conductor pattern is formed on a green sheet so as to have a size of 2 mm ⁇ 20 mm after firing, fired by the same method as described above, and then Ni-plated, to which a eutectic Ag—Cu brazing material is applied.
  • the lead pin made of Fe—Ni—Co was bonded to the metal and the load when it was pulled up and peeled off at a speed of 20 mm / min was evaluated as the metallization strength.
  • composition of the prepared sample was determined by atomic absorption analysis and ICP analysis.
  • the obtained alumina ceramics are dissolved in an acidic solution, and the elements contained in the alumina ceramics are qualitatively analyzed by atomic absorption analysis, and then the standard solution is prepared by diluting the standard solution for each specified element.
  • the amount of oxygen was determined based on the valence of each element shown in the periodic table. All the compositions of the samples corresponded to the preparation compositions shown in Table 1.
  • aluminum oxide is the main component
  • manganese is 2.0 to 5.0 mass% in terms of Mn 2 O 3
  • silicon is 3.0 to 7.5 mass% in terms of SiO 2.
  • the ratio of the crystal phase mainly composed of aluminum oxide determined by Rietveld analysis of X-ray diffraction is 99.0 to 99.9% by mass
  • the average grain size of the alumina crystal phase is 0.8 to 1
  • Sample No. 5 having a void area ratio of 3.1% or less per unit area. 1 to 4, 6 to 8, 10 to 17, 18 and 19 all had a three-point bending strength of 680 MPa or more.
  • the mass ratio represented by Mn 2 O 3 / (Mn 2 O 3 + SiO 2 ) is 30 to 50%
  • Magnesium and molybdenum magnesium is 0.3 to 0.7% by mass in terms of MgO
  • molybdenum is 0.3 to 0.7% by mass in terms of MoO
  • the void fraction is 3.0% or less
  • these samples all had a metallization strength of 51 N or more, and had a good appearance without color unevenness or plating adhesion on the surface of the sample.

Abstract

【課題】 機械的強度の高いアルミナ質セラミックスとそれを適用した配線基板ならびにセラミックパッケージを提供する。 【解決手段】 酸化アルミニウムを主成分とし、マンガンをMn換算で2.0~5.0質量%およびケイ素をSiO換算で3.0~7.5質量%含み、X線回折のリートベルト解析により求められる酸化アルミニウムを主成分とする結晶相の割合が99.0~99.9質量%であるとともに、結晶相の平均粒径が0.8~1.5μmでありかつ単位面積当たりのボイドの面積割合が3.1%以下である。

Description

アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ
 本発明は、高強度の要求される絶縁基板に適したアルミナ質セラミックスと、そのアルミナ質セラミックスを適用したセラミック配線基板ならびにセラミックパッケージに関する。
 従来より、半導体素子や水晶振動子等の電子部品を収納するパッケージに使用される配線基板として、機械的強度が比較的高くかつ気密性に優れるという点からセラミック配線基板が多用されている。
 図2に、電子部品を搭載するためのセラミックパッケージの分解斜視図の一例を示す。水晶応用製品等の電子部品を搭載するためのセラミックパッケージは、例えば、アルミナ質焼結体からなるセラミック基板101の表面に導体102が形成されており、その導体102の表面に実装される電子部品(例えば、水晶応用製品)109を気密封止するための金属部材105(ここでは、蓋体105)がメタライズ層103に塗られた銀ロウなどの接合部材107を介して接合される構成となっている(例えば、特許文献1を参照)。
 本出願人は、以前、この種のセラミックパッケージに適用される基板材料として、銅系導体との同時焼成を可能とする低温焼成タイプのアルミナ質セラミックスを提案した(例えば、特許文献2、特許文献3を参照)。
 近年、携帯電話やICカード等のモバイル電子機器が普及しているが、これらの電子機器は、ますます小型化、薄型化および高性能化が要求されてきており、そのため、これらの電子機器に組み込まれる電子部品109やこれを収納するためのセラミックパッケージについても一層の小型化や薄型化が求められている。
 セラミックパッケージの小型化および薄型化を行う場合、セラミックパッケージの底面に位置するセラミック基板101を構成する基板底部101aの厚みt、および蓋体105を接合する部分となる基板堤部101bの幅wを狭くする必要がある。
 ところが、基板底部101aの厚みtおよび基板堤部101bの幅wが、例えば、0.5mm以下と極めて薄くなるような場合には、上記した基板材料を適用しても、蓋体105を接合する際にセラミック基板101の基板底部101aや基板堤部101bが変形し、これによってセラミック基板101にクラックが発生するという問題があった。
特開2001-196485号公報 特開2003-101238号公報 特開2006-100364号公報
 従って、本発明は、機械的強度の高いアルミナ質セラミックスとそれを適用した高強度の配線基板ならびにセラミックパッケージを提供することを目的とする。
 本発明のアルミナ質セラミックスは、酸化アルミニウムを主成分とし、マンガンをMn換算で2.0~5.0質量%およびケイ素をSiO換算で3.0~7.5質量%含み、X線回折のリートベルト解析により求められる前記酸化アルミニウムを主成分とする結晶相の割合が99.0~99.9質量%であるとともに、前記結晶相の平均粒径が0.8~1.5μmであり、かつ単位面積当たりのボイドの面積割合が3.1%以下である
ことを特徴とする。
 本発明のセラミック配線基板は、絶縁基板の表面にメタライズ層を有してなるセラミック配線基板であって、前記絶縁基板が上記のアルミナ質セラミックスにより構成されていることを特徴とする。
 本発明のセラミックパッケージは、絶縁基板の表面に接合部材を介して金属部材が接合されてなるセラミックパッケージであって、前記絶縁基板が上記のアルミナ質セラミックスにより構成されていることを特徴とする。
 本発明によれば、機械的強度の高いアルミナ質セラミックスを得ることができる。また、このようなアルミナ質セラミックスを絶縁基板の材料として適用することにより、高強度のセラミック配線基板ならびにセラミックパッケージを得ることができる。
本発明のセラミックパッケージの一実施形態を示す分解斜視図である。 従来のセラミックパッケージの一実施形態を示す分解斜視図である。
 以下、この発明の実施の形態を説明する。本実施形態のアルミナ質セラミックスは、酸化アルミニウムを主成分とし、マンガンをMn換算で2.0~5.0質量%およびケイ素をSiO換算で3.0~7.5質量%含んでいる。
 また、このアルミナ質セラミックスは、X線回折のリートベルト解析により求められる酸化アルミニウムを主成分とする結晶相の割合が99.0~99.9質量%である。
 さらに、このアルミナ質セラミックスは、酸化アルミニウムを主成分とする結晶相(以下、アルミナ結晶相という。)の平均粒径が0.8~1.5μmであり、かつ単位面積当たりのボイドの面積割合が3.1%以下である。
 本実施形態のアルミナ質セラミックスによれば、主成分である酸化アルミニウムの他にマンガンやケイ素を相当量含有するものの、主結晶相であるアルミナ結晶相の割合が99質量%以上と高く、また、その結晶相の平均粒径が小さくかつボイドの面積割合も少ないために機械的特性に優れた材料となり、3点曲げ強度が680MPa以上のアルミナ質セラミックスを実現することができる。
 通常、酸化アルミニウムに酸化マンガンなどの助剤成分を含有させると、磁器であるアルミナ質セラミックスのアルミナ結晶相の粒界に、例えば、MnAl等の複合酸化物に由来する結晶相が形成されやすいが、本実施形態のアルミナ質セラミックスでは、アルミナ結晶相の粒界に存在する同定可能な結晶相の割合を1質量%以下とし、アルミナ結晶相が酸化マンガンや酸化ケイ素に由来する非晶質相を介して焼結した状態としたことにより、アルミナ結晶相に隣接して結晶構造の異なる他の結晶相が存在する場合に比べて、結晶相間での転移の進展が抑えられ、これにより焼結体であるアルミナ質セラミックスの高強度化を図ることができる。ここで、アルミナ結晶相は粒子状を成す結晶粒子の形態で磁器中に存在している。
 これに対し、X線回折のリートベルト解析により求められるアルミナ結晶相の割合が99.0質量%よりも低い場合には、アルミナ質セラミックス中にアルミナ結晶相以外の結晶相が多く存在することになるため、これによりアルミナ質セラミックスの機械的強度が低くなる。
 X線回折のリートベルト解析により求められるアルミナ結晶相の割合が99.9質量%よりも高い場合には、酸化マンガンや酸化ケイ素などの焼結助剤量がかなり少ない状態になることから、アルミナ結晶相同士の接着力が低下し、この場合も機械的強度は低下する傾向にある。
 アルミナ質セラミックス中に含まれるマンガンの含有量がMn換算した割合で2.0質量%より少ないか、またはSiO換算したケイ素の含有量が3.0質量%よりも少ない場合には、焼結助剤となる成分量が少なくなることから、アルミナ結晶相の粒界に焼結助剤が行き渡らない部分が多くなり、また、アルミナ結晶相自体も粒成長しやすくなることから、この場合も機械的強度は低下してしまう。
 アルミナ質セラミックス中に含まれるマンガンの含有量がMn換算で5.0質量%より多いか、またはSiO換算したケイ素の含有量が7.5質量%よりも多い場合には、アルミナ質セラミックス中に高強度材料であるアルミナ結晶相の割合が少なくなるために、この場合も機械的強度は低下する傾向にある。
 また、アルミナ結晶相の平均粒径が0.8~1.5μmの範囲から外れる場合もアルミナ質セラミックスの機械的強度は低下する。ここで、アルミナ結晶相の平均粒径が0.8μmよりも小さい場合に機械的強度が低下するのは、アルミナ結晶相が微粒化し、比表面積が大きくなるために、アルミナ結晶相の粒界によっては酸化マンガンや酸化ケイ素などの助剤が行き渡らない部分が存在するからと考えられる。
 アルミナ結晶相の平均粒径が1.5μmよりも大きくなったときに機械的強度が低下するのは、セラミックスの機械的強度は破壊源のサイズが大きくなると低下する傾向にあるが、アルミナ結晶相の平均粒径が大きくなると荷重を受けたときに発生する破壊源のサイズが大きくなるためであると考えられる。
 また、このアルミナ質セラミックスの単位面積当たりのボイドの面積割合が3.1%よりも大きくなった場合も破壊源のサイズが大きくなるために機械的強度は低下してしまう。
 ここで、アルミナ質セラミックス中に含まれる結晶相の割合は、アルミナ質セラミックスを粉砕して得られた粉末状の試料のX線回折を行い、得られたX線回折パターンに対してリートベルト解析を行って各結晶相の質量比を求める。
 アルミナ質セラミックスに含まれる各成分の含有量は原子吸光分析およびICP(Inductively Coupled Plasma)分析により求める。この場合、得られたアルミナ質セラミックスを酸性溶液に溶解させて、原子吸光分析によりアルミナ質セラミックスに含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化する。なお、周期表に示された各元素の価数に基づき酸素量を求める。
 アルミナ結晶相の平均粒径は、アルミナ質セラミックスの試料の断面を研磨した研磨面について、走査型電子顕微鏡を用いて1000~5000倍の写真を撮り、次いで、この写真を用いてインターセプト法により求める。
 ボイドの面積割合は、アルミナ質セラミックスの表面を鏡面研磨した後、画像解析装置を用いて観察範囲とする所定の面積内に認められるボイド(開気孔)の総面積を求め、観察範囲である所定の面積に対する割合として求める。
 機械的強度はJIS-R1601に基づく方法によって求める。
 上述したように、本実施形態のアルミナ質セラミックスは、マンガンやケイ素などの添加成分を相当量含んでいてもアルミナ結晶相以外の結晶相の生成を抑制した結晶組織としていることから機械的特性に優れた材料となるが、このアルミナ質セラミックスにおいて、マンガンおよびケイ素の組成式をそれぞれMnおよびSiOとしたときに、Mn/(Mn+SiO)で表される質量比率を30~50%とし、さらに、マグネシウムおよびモリブデンを含ませて、マグネシウムの含有量をMgO換算で0.3~0.7質量%、モリブデンの含有量をMoO換算で0.3~0.7質量%とし、ボイド率を3.0%以下としたときには、アルミナ質セラミックスの機械的強度(3点曲げ強度)を700MPa以上にすることができる。
 また、この構成のアルミナ質セラミックスは、マンガンおよびケイ素に加えて、マグネシウムおよびモリブデンの組成まで調整されたものであるため、色むら(磁器シミも含む)が無く、外観、意匠的に美麗なセラミックスにすることができる。
 また、この構成のアルミナ質セラミックスを後述するような絶縁基板として、その表面にメタライズ層を形成したときには、メタライズ強度を高めることが可能となる。
 さらに、このアルミナ質セラミックスにおいて、Mn/(Mn+SiO)で表される質量比率を30~40%としたときには、3点曲げ強度を710MPa以上にまで高めることができる。この場合、アルミナ質セラミックス中に含まれる酸化アルミニウムを主成分とする結晶相の割合は99.2~99.9質量%であることが望ましい。
 上述のように、本実施形態のアルミナ質セラミックスは機械的特性に優れていることから各種のセラミック配線基板やセラミックパッケージ等の絶縁基板として好適なものとなる。
 この場合、アルミナ質セラミックスからなる絶縁基板の表面にメタライズ層を形成するとメタライズ強度を43N(kg・m/s)以上、特に、51N(kg・m/s)以上にすることができる。これはアルミナ結晶相の周囲を取り巻いているマンガンおよびケイ素を含む酸化物の非晶質相が、アルミナ質セラミックスの表面に形成されたメタライズ層(金属粉末の焼結体)側へも濡れ性良く浸透するためである。
 図1は、本発明のセラミックパッケージの一実施形態を示す分解斜視図である。
 本実施形態のセラミックパッケージは、セラミックス製の絶縁基板1の表面に周状に配置されたメタライズ層3を有してなるものであり、その周状に配置されたメタライズ層3の上面には、蓋体や金属枠等の金属部材5をメタライズ層3と接合するための接合部材7が設けられている。
 絶縁基板1は、板状の基板底部1aと、その基板底部1aの周縁部に設けられた基板堤部1bとから構成されており、基板底部1aの表面には電子部品9を実装するための導体11が形成されている。
 このセラミックパッケージは、絶縁基板である基板底部1aおよび基板堤部1bに本実施形態の高強度のアルミナ質セラミックスを適用させたものであるが、セラミックパッケージのサイズを小さくするために、基板底部1aの厚みtおよび基板堤部1bの幅wを薄くしても、蓋体である金属部材5を接合する際に発生する基板底部1aや基板堤部1bの変形を抑制でき、クラックの発生を防止することができる。また、このようなセラミックパッケージによれば、温度サイクル試験などの信頼性試験を行っても絶縁基板1とメタライズ層3との界面に生じる歪みを小さくすることが可能となり、高信頼性のセラミックパッケージを得ることができる。この場合、基板底部1aの平均厚みは0.05~0.3mm、特に、0.05~0.2mm、また、基板堤部1bの平均厚みは0.15mm以下であるような薄型のセラミックパッケージに好適である。
 メタライズ層3を形成する材料は、接合部材7に用いる材料よりも融点の高い金属材料であれば良く、セラミック基板1との同時焼成を可能にするという点で、モリブデンやタングステンあるいはこれらの合金を主成分とするものが良い。この場合、絶縁基板1の組成および焼結温度に合わせてモリブデンやタングステンに銅や銀などを複合させてもよい。
 また、メタライズ層3に含ませるセラミック成分としては、メタライズ層3の金属材料が焼結する温度領域においても溶融することなく、焼結後にもメタライズ層3の内部に残るような融点の高いセラミック材料が望ましい。この場合、例えば、アルミナ、ジルコニア、マグネシアおよび希土類元素の酸化物等が好適であるが、モリブデンやタングステンなどを主成分とするメタライズ層3の強度を高められるという点で、絶縁基板1の主成分である酸化アルミニウム(アルミナ)が好ましい。なお、導体11も同様の組成とすることが望ましい。
 接合部材7としては、加熱したときに比較的低い温度(ここでは、900℃以下)で溶融し、低粘度となり、メタライズ層3中に拡散しやすい材料が好ましく、例えば、銀ロウ(Ag-Cu)やウッドメタル等の低融点金属を含む材料が好適である。
 金属部材5としては、コバール、4-2アロイ、アルシック(ALSiC)などの金属材料および金属材料にセラミックスを複合化したもの、あるいはセラミック材料を適用することができる。
 次に、本実施形態のアルミナ質セラミックスおよびこれを適用したセラミック配線基板ならびにセラミックパッケージを製造する方法を説明する。
 まず、酸化アルミニウム粉末(以下、アルミナ粉末という。)、酸化マンガン粉末(Mn粉末)および酸化ケイ素粉末(SiO粉末)を所定量混合したセラミック粉末に対して有機バインダを添加した後、これをプレス法、ドクターブレード法、圧延法、射出法等の周知の成形方法によって、例えば、板状の生の成形体を形成する。この場合、Mn粉末およびSiO粉末の割合を、Mn/(Mn+SiO)比(質量比率)で30~50%とすると、得られるアルミナ質セラミックスに含まれるアルミナ結晶相以外の結晶相の割合をさらに低減させることができる。
 ここで用いるアルミナ粉末、Mn粉末およびSiO粉末の平均粒径はいずれも0.3~1.0μmの範囲にあるものが良く、これにより焼成後のアルミナ質セラミックス中のアルミナ結晶相の平均粒径を0.8~1.5μmとすることができるとともに、アルミナ結晶相の粒界にアルミナ結晶相以外の結晶相の析出を抑えることが可能となる。
 次に、この生の成形体の表面に必要に応じて導体パターンを形成した後、例えば、還元雰囲気中、1300~1600℃の温度にて焼成する。
 図1に示す構成のセラミックパッケージを製造する場合、まず、基板底部1aとなる生の成形体としてグリーンシートを作製し、次いで、その表面に導体パターンを形成する。
 基板堤部1bとなる生の成形体は、グリーンシートに穴加工を施し、次いで、そのグリーンシートの穴の周囲の表面に部分的に導体パターンを形成したものを作製する。このとき、必要に応じて穴加工を施しただけのシートも準備しておく。
 次に、基板底部1aとなるグリーンシートの導体パターンを形成した側に、穴の周囲の表面に導体パターンを形成したグリーンシートを積層し、密着させて、図1に示す形状のセラミックパッケージ用成形体を形成する。
 導体パターン用のペーストとしては、セラミック粉末の焼結温度に合わせて種々の組成の金属材料を用いることが可能であるが、生の成形体に、例えば、アルミナ粉末を80質量%以上含むセラミック粉末を用いる場合には、モリブデンやタングステン等の高融点の金属材料を用いるのが良い。
 また、得られたセラミックパッケージのメタライズ層3の表面にニッケルのめっき膜を形成し、ニッケルのめっき膜を形成したメタライズ層3の表面に接合部材7を介して、蓋体や金属枠などの金属部材5を接合する。
 このようにして作製された金属部材5を有するセラミックパッケージは、絶縁基板1の機械的強度が高く、また、メタライス層3と接合部材7を介しての金属部材5との接合強度が高く、外観不良も無く、さらに、絶縁基板1に蓋体を接合したときには気密性の高いものとすることができる。
次に、本発明の効果を確認するために行った実験例について説明する。
 まず、アルミナ質セラミックスを作製するための原料粉末として、いずれも平均粒径が0.5μmのアルミナ粉末、Mn粉末、SiO粉末、MgO粉末およびMoO粉末を準備した。
 次に、これらの原料粉末を表1に示す割合で混合した後、成形用有機樹脂(バインダ)としてアクリル系バインダを用い、トルエンを溶媒として混合してスラリーを調整し、しかる後に、ドクターブレード法にて所定厚みのグリーンシートを作製した。
 得られたグリーンシートを所定厚みに積層し、必要に応じて表1に示す金属を主成分とする導体パターンを印刷して、表1に示す温度にて焼成を行った。焼成雰囲気は、露点を+25℃とした窒素-水素の混合雰囲気を用いた。
 次に、得られたアルミナ質セラミックスについて以下の評価を行った。
 各結晶相の割合は、得られたアルミナ質セラミックスを粉砕し、X線回折により主結晶相を同定し、リートベルト解析より求めた。
 アルミナ結晶相の平均粒径は、アルミナ質セラミックスの試料の断面を断面研磨した研磨面について、走査型電子顕微鏡を用いて約3000倍の写真を撮り、次に、この写真を用いてインターセプト法により求めた。
 ボイドの面積割合は、アルミナ質セラミックスの表面を研磨剤により鏡面研磨した後、画像解析装置(ニレコ製 LUZEX-FS)を用いて所定の面積内に認められるボイド(開気孔)の総面積を求め、所定の面積に対する割合として求めた。このとき顕微鏡倍率は約100倍、測定面積を9.0×10μmとして10箇所測定し、算出した。
 機械的強度は、厚み3mm、幅4mm、長さ40mmの梁状試料を作製し、JIS R1601に基づいて、室温にて3点曲げ強度として測定し、35本の平均値から求めた。
 メタライズ強度は、グリーンシート上に、焼成後に2mm×20mmのサイズになるように導体パターンを形成し、上記と同様の方法で焼成した後、Niめっきを施し、これに共晶Ag-Cuロウ材を用いてFe-Ni-Coのリードピンを接着し、20mm/minの速度で垂直に引っ張り上げて剥離した時の荷重をメタライズ強度として評価した。
 また、アルミナ質セラミックスの表面に形成したメタライズ層に無電解のニッケル(Ni)および金(Au)のめっき膜を形成した後、実体顕微鏡を用いて約40倍にてその外観を観察し、アルミナ質セラミックスの表面の色むら(添加成分の発色によるシミ)の有無を評価した。また、めっき付着の有無についても評価し、色むらやめっき付着の見られる試料を不良(×)として判定した。なお、表1において、○の判定は外観不良の無いものである。
 また、作製した試料の組成を原子吸光分析およびICP分析により求めた。この場合、得られたアルミナ質セラミックスを酸性溶液に溶解させて、原子吸光分析によりアルミナ質セラミックスに含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。周期表に示された各元素の価数に基づき酸素量を求めた。試料の組成はいずれも表1に示した調合組成に一致するものであった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、酸化アルミニウムを主成分とし、マンガンをMn換算で2.0~5.0質量%およびケイ素をSiO換算で3.0~7.5質量%含み、X線回折のリートベルト解析により求められる酸化アルミニウムを主成分とする結晶相の割合が99.0~99.9質量%であるとともに、アルミナ結晶相の平均粒径が0.8~1.5μmであり、かつ単位面積当たりのボイドの面積割合が3.1%以下である試料No.1~4、6~8、10~17、18および19は、3点曲げ強度がいずれも680MPa以上であった。
 また、マンガンおよびケイ素の組成式をそれぞれMnおよびSiOとしたときに、Mn/(Mn+SiO)で表される質量比率が30~50%であり、さらに、マグネシウムおよびモリブデンを含み、マグネシウムがMgO換算で0.3~0.7質量%、モリブデンがMoO換算で0.3~0.7質量%であるとともに、ボイド率が3.0%以下である試料No.1、3、4、7、8、11、12、15、16、19および20では、3点曲げ強度がいずれも705MPa以上であった。また、これらの試料はいずれもメタライズ強度が51N以上であり、試料の表面に色むらやメッキ付着も無く良好な外観を保っていた。
 この中で特に、アルミナ結晶相の割合が99.2~99.9質量%であり、Mn/(Mn+SiO)で表される質量比率を30~40%とした試料No.1、3、4、7、11、12、15、16、19および20では、3点曲げ強度がいずれも710MPa以上であった。
 これに対して、試料No.5、9、18、21~24では、3点曲げ強度がいずれも680MPaよりも低かった。
1、101・・・・・・・・・・絶縁基板
1a、101a・・・・・・・・基板底部
1b、101b・・・・・・・・基板堤部
3、103・・・・・・・・・・メタライズ層
5、105・・・・・・・・・・金属部材(蓋体)
7、107・・・・・・・・・・接合部材
9、109・・・・・・・・・・電子部品
11、102・・・・・・・・・導体

Claims (5)

  1.  酸化アルミニウムを主成分とし、マンガンをMn換算で2.0~5.0質量%およびケイ素をSiO換算で3.0~7.5質量%含み、
    X線回折のリートベルト解析により求められる前記酸化アルミニウムを主成分とする結晶相の割合が99.0~99.9質量%であるとともに、
    前記結晶相の平均粒径が0.8~1.5μmであり、
    かつ単位面積当たりのボイドの面積割合が3.1%以下である
    ことを特徴とするアルミナ質セラミックス。
  2.  前記マンガンおよび前記ケイ素の組成式をそれぞれMnおよびSiOとしたときに、Mn/(Mn+SiO)で表される質量比率が30~50%であり、
    さらに、マグネシウムおよびモリブデンを含み、
    前記マグネシウムがMgO換算で0.3~0.7質量%、
    前記モリブデンがMoO換算で0.3~0.7質量%であるとともに、
    前記ボイドの面積割合が3.0%以下である
    ことを特徴とする請求項1に記載のアルミナ質セラミックス。
  3.  前記酸化アルミニウムを主成分とする結晶相の割合が99.2~99.9質量%であるとともに、Mn/(Mn+SiO)で表される前記質量比率が30~40%であることを特徴とする請求項2に記載のアルミナ質セラミックス。
  4.  絶縁基板の表面にメタライズ層を有してなるセラミック配線基板であって、前記絶縁基板が請求項1乃至3のうちいずれかに記載のアルミナ質セラミックスにより構成されていることを特徴とするセラミック配線基板。
  5.  絶縁基板の表面に接合部材を介して金属部材が接合されてなるセラミックパッケージであって、前記絶縁基板が請求項1乃至3のうちいずれかに記載のアルミナ質セラミックスにより構成されていることを特徴とするセラミックパッケージ。
PCT/JP2012/080740 2012-06-25 2012-11-28 アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ WO2014002306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013554722A JP5784153B2 (ja) 2012-06-25 2012-11-28 アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ
CN201280039604.6A CN103732558B (zh) 2012-06-25 2012-11-28 氧化铝质陶瓷及使用其的陶瓷配线基板和陶瓷封装件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-142109 2012-06-25
JP2012142109 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002306A1 true WO2014002306A1 (ja) 2014-01-03

Family

ID=49782521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080740 WO2014002306A1 (ja) 2012-06-25 2012-11-28 アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ

Country Status (3)

Country Link
JP (1) JP5784153B2 (ja)
CN (1) CN103732558B (ja)
WO (1) WO2014002306A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085141A (ja) * 2014-10-27 2016-05-19 京セラ株式会社 センサ基板、センサ装置およびセンサ基板の製造方法
JP2016204247A (ja) * 2015-04-16 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. セラミックパッケージのための絶縁体組成物及びその製造方法
JP2017218368A (ja) * 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
CN110903076A (zh) * 2019-12-03 2020-03-24 浙江科奥陶业有限公司 一种通氢钼棒加热炉用刚玉耐火制品及其应用方法
WO2021070373A1 (ja) * 2019-10-11 2021-04-15 日本碍子株式会社 パッケージ
WO2022176716A1 (ja) * 2021-02-18 2022-08-25 デンカ株式会社 セラミック板、及びセラミック板の製造方法
WO2023243542A1 (ja) * 2022-06-13 2023-12-21 Ngkエレクトロデバイス株式会社 焼結体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185270B (zh) * 2021-05-12 2023-01-10 四川锐宏电子科技有限公司 一种陶瓷基印制电路板及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163425A (ja) * 2001-11-29 2003-06-06 Kyocera Corp 配線基板
JP2004119735A (ja) * 2002-09-26 2004-04-15 Kyocera Corp 連結基板及びその製造方法並びにセラミックパッケージ
JP2005050875A (ja) * 2003-07-29 2005-02-24 Kyocera Corp セラミックパッケージ
JP2005101300A (ja) * 2003-09-25 2005-04-14 Kyocera Corp セラミックパッケージ及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164992A (ja) * 1998-11-26 2000-06-16 Kyocera Corp 配線基板およびその製造方法
CN101538170B (zh) * 2009-03-04 2012-11-14 安徽华东光电技术研究所 一种用于陶瓷金属化的组合物及其使用方法
CN102086118B (zh) * 2010-12-10 2013-03-06 天津市中环电陶有限公司 一种易于Mo-Mn金属化的氧化铝陶瓷及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163425A (ja) * 2001-11-29 2003-06-06 Kyocera Corp 配線基板
JP2004119735A (ja) * 2002-09-26 2004-04-15 Kyocera Corp 連結基板及びその製造方法並びにセラミックパッケージ
JP2005050875A (ja) * 2003-07-29 2005-02-24 Kyocera Corp セラミックパッケージ
JP2005101300A (ja) * 2003-09-25 2005-04-14 Kyocera Corp セラミックパッケージ及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085141A (ja) * 2014-10-27 2016-05-19 京セラ株式会社 センサ基板、センサ装置およびセンサ基板の製造方法
JP2016204247A (ja) * 2015-04-16 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. セラミックパッケージのための絶縁体組成物及びその製造方法
JP2017218368A (ja) * 2016-06-07 2017-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 絶縁体組成物及びこれを用いた電子部品の製造方法
WO2021070373A1 (ja) * 2019-10-11 2021-04-15 日本碍子株式会社 パッケージ
JPWO2021070373A1 (ja) * 2019-10-11 2021-10-28 日本碍子株式会社 パッケージ
JP7008169B2 (ja) 2019-10-11 2022-01-25 日本碍子株式会社 パッケージ
CN110903076A (zh) * 2019-12-03 2020-03-24 浙江科奥陶业有限公司 一种通氢钼棒加热炉用刚玉耐火制品及其应用方法
CN110903076B (zh) * 2019-12-03 2020-12-25 浙江科奥陶业有限公司 一种通氢钼棒加热炉用刚玉耐火制品及其应用方法
WO2022176716A1 (ja) * 2021-02-18 2022-08-25 デンカ株式会社 セラミック板、及びセラミック板の製造方法
JP7165842B1 (ja) * 2021-02-18 2022-11-04 デンカ株式会社 セラミック板、及びセラミック板の製造方法
WO2023243542A1 (ja) * 2022-06-13 2023-12-21 Ngkエレクトロデバイス株式会社 焼結体

Also Published As

Publication number Publication date
JPWO2014002306A1 (ja) 2016-05-30
JP5784153B2 (ja) 2015-09-24
CN103732558A (zh) 2014-04-16
CN103732558B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5784153B2 (ja) アルミナ質セラミックスおよびそれを用いたセラミック配線基板ならびにセラミックパッケージ
JP5263226B2 (ja) 多層セラミック基板およびその製造方法
JP5575231B2 (ja) ムライト質焼結体およびこれを用いた配線基板、並びにプローブカード
JP4012861B2 (ja) セラミックパッケージ
JP3517062B2 (ja) 銅メタライズ組成物及びそれを用いたガラスセラミック配線基板
JP6077353B2 (ja) アルミナ質セラミックス、およびそれを用いた配線基板
WO2003101166A1 (fr) Pastille frittee a base de nitrure d'aluminium comportant une couche metallisee et procede de preparation associe
CN107162640B (zh) 一种氧化锰-二氧化钛系活化剂金属化层及其制备工艺
JPH0323512B2 (ja)
JP5840993B2 (ja) アルミナ質セラミックス、およびそれを用いた配線基板
JP4220869B2 (ja) セラミックパッケージの製造方法
JP3411140B2 (ja) メタライズ組成物およびそれを用いた配線基板の製造方法
JP2010177335A (ja) 多層配線基板およびその製造方法
JP4413223B2 (ja) セラミックパッケージ
JPH118447A (ja) 配線基板
JP3420424B2 (ja) 配線基板
WO2016175206A1 (ja) 回路基板およびこれを備える電子装置
JP2013131703A (ja) セラミックパッケージ
JP3411143B2 (ja) メタライズ組成物及びそれを用いた配線基板
JP2013131702A (ja) セラミックパッケージ
JP3928645B2 (ja) 絶縁ペースト及び絶縁ペーストを用いた絶縁層の形成方法
JP2004228533A (ja) セラミックパッケージ
JP2012156380A (ja) 多層配線基板
JP5558160B2 (ja) プローブカード用セラミック配線基板およびこれを用いたプローブカード
CN113678244A (zh) 氮化硅电路基板及电子部件模块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280039604.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013554722

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879940

Country of ref document: EP

Kind code of ref document: A1