WO2012056813A1 - 干渉計およびフーリエ変換分光分析装置 - Google Patents

干渉計およびフーリエ変換分光分析装置 Download PDF

Info

Publication number
WO2012056813A1
WO2012056813A1 PCT/JP2011/070208 JP2011070208W WO2012056813A1 WO 2012056813 A1 WO2012056813 A1 WO 2012056813A1 JP 2011070208 W JP2011070208 W JP 2011070208W WO 2012056813 A1 WO2012056813 A1 WO 2012056813A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
measurement
optical system
fixed mirror
Prior art date
Application number
PCT/JP2011/070208
Other languages
English (en)
French (fr)
Inventor
祐亮 平尾
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to EP11835954.6A priority Critical patent/EP2634551B1/en
Priority to PL11835954T priority patent/PL2634551T3/pl
Priority to CN201180052338.6A priority patent/CN103201603B/zh
Priority to US13/881,562 priority patent/US9109869B2/en
Priority to DK11835954.6T priority patent/DK2634551T3/da
Priority to JP2012540730A priority patent/JP5655859B2/ja
Priority to ES11835954T priority patent/ES2879554T3/es
Publication of WO2012056813A1 publication Critical patent/WO2012056813A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Definitions

  • the present invention relates to a Michelson type interferometer and a Fourier transform spectroscopic analyzer equipped with the interferometer.
  • the infrared light emitted from the light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter, and the fixed mirror and the moving mirror respectively.
  • a configuration is adopted in which the light reflected and returned is combined into one optical path by the beam splitter.
  • the moving mirror is moved back and forth (in the direction of the optical axis of the incident light)
  • the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror.
  • Measurement interference light (interferogram). By sampling this interferogram and performing AD conversion and Fourier transform, the spectral distribution of the incident light can be obtained, and the intensity of the measurement interference light for each wave number (1 / wavelength) can be obtained from this spectral distribution. it can.
  • the above interferogram is expressed as a function of the phase difference between the moving mirror and the fixed mirror, that is, the optical path difference between the reflected light from the moving mirror and the reflected light from the fixed mirror.
  • a reference light source such as a He—Ne laser separately from a light source that emits infrared light.
  • the reference light emitted from the reference light source is separated by a beam splitter and guided to a moving mirror and a fixed mirror, and each light reflected by the moving mirror and the fixed mirror is synthesized by a beam splitter to be used as reference interference light.
  • the light is guided to a reference light detector for position detection. Since the intensity of the reference interference light changes according to the position of the movable mirror, the position of the movable mirror can be obtained by detecting the intensity change of the reference interference light with the reference light detector.
  • the above-mentioned beam splitter separates incident light into two light beams with a predetermined branching ratio (for example, 50:50), so that the reference light separated by the beam splitter and incident on the fixed mirror is reflected by the fixed mirror.
  • a predetermined branching ratio for example, 50:50
  • the remaining light passes through the beam splitter and becomes return light returning to the reference light source side.
  • harmonic resonance occurs and the oscillation of the laser becomes unstable, and the output waveform from the reference light detector changes due to the mode hop phenomenon, and as a result, the position of the moving mirror can be obtained. become unable.
  • Patent Document 1 a lens that expands the spread angle of the incident light beam is disposed on the light exit side of the reference light source.
  • the amount of light returning to the reference light source is reduced by the magnifying lens, thereby reducing the influence of harmonic resonance and improving the accuracy of position detection of the movable mirror.
  • JP-A-2-253103 see page 3, upper right column, lines 14 to 17; page 5, lower left column, lines 14 to 20.
  • Patent Document 1 a He—Ne laser is used as a reference light source.
  • the He—Ne laser is large and difficult to miniaturize in order to maintain wavelength stability. That is, as in Patent Document 1, in the configuration using the He—Ne laser as the reference light source, the apparatus itself is increased in size.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reference light source without using a He-Ne laser as a reference light source and without using a magnifying lens.
  • An interferometer capable of removing the return light and thereby stably detecting the position of the movable mirror based on the detection result of the reference light detector, and a Fourier transform spectroscopic analyzer including the interferometer, Is to provide.
  • the interferometer of the present invention separates measurement light with a beam splitter and guides it to a movable mirror and a fixed mirror, and combines each light reflected by the movable mirror and the fixed mirror with the beam splitter.
  • a measurement optical system that guides the measurement interference light obtained in this way to a measurement light detector, and the reference light from a reference light source is separated by the beam splitter and guided to the movable mirror and the fixed mirror, and the movable mirror and the fixed mirror
  • a reference optical system that guides the reference interference light obtained by combining the lights reflected by the beam splitter to the reference light detector.
  • An interferometer that measures the measurement interference light while detecting the position of the movable mirror based on the reference light source, wherein the reference light source transmits a laser beam emitted from a semiconductor laser or the semiconductor racer through a waveguide or a fiber.
  • the reference optical system has a collimating optical system for reference light that converts laser light emitted from the reference light source into collimated light, and the collimated light includes the fixed mirror It is characterized in that it is incident obliquely with respect to.
  • the reference light source is composed of a semiconductor laser or a laser light source that is smaller than the He—Ne laser, and even when a collimating optical system is used, a small collimating optical system can be used. The total can be realized.
  • the collimated light is incident on the fixed mirror at an angle, even if the reference light reflected by the fixed mirror returns to the reference light source side through the beam splitter, the return light is incident on the reference light source. Incident light can be avoided. Therefore, without using a magnifying lens as in the past, it is possible to avoid unstable laser oscillation with the reference light source while using the collimated light, and to move based on the detection result of the reference light detector. Can be stably detected.
  • (A) is explanatory drawing which shows typically the angle which the said optical axis makes when the optical axis of reference light and the optical axis of measurement light cross
  • (b) is the optical axis of reference light
  • FIG. 1 is an explanatory diagram schematically showing a schematic configuration of the Fourier transform spectroscopic analyzer of the present embodiment.
  • This apparatus includes an interferometer 1, a calculation unit 2, and an output unit 3.
  • the interferometer 1 is a two-optical path branching Michelson interferometer, and details thereof will be described later.
  • the computing unit 2 performs sampling, A / D conversion, and Fourier transform of the signal output from the interferometer 1, and indicates the spectrum of the wavelength included in the measurement light, that is, the light intensity for each wave number (1 / wavelength). Generate a spectrum.
  • the output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2.
  • details of the interferometer 1 will be described.
  • the interferometer 1 includes a measurement optical system 10, a reference optical system 20, and a correction unit 30. Hereinafter, it demonstrates in order.
  • the measurement optical system 10 includes a measurement light source 11, a measurement light collimating optical system 12, a folding mirror M, a BS (beam splitter) 13, a compensation plate 14, a fixed mirror 15, a moving mirror 16, a collecting mirror.
  • An optical optical system 17, a measurement light detector 18, and a drive mechanism 19 are provided. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 13 may be reversed.
  • the measurement light source 11 is configured by a fiber coupling optical system including, for example, a light source 11a that emits near infrared light or infrared light including a plurality of wavelengths as measurement light, and an optical fiber 11b that is coupled to the light source 11a.
  • the measurement light source 11 may be composed of only the light source 11a.
  • the measurement light collimating optical system 12 is an optical system that converts the measurement light emitted from the measurement light source 11 into collimated light and guides it to the BS 13, and is composed of, for example, a collimator lens.
  • collimated light is a concept that includes substantially parallel light (some convergent light or divergent light) in addition to perfect parallel light.
  • collimation here refers to guiding light from a light source to a sensor via a BS and a fixed mirror or moving mirror by a collimating optical system, and is not limited to collimation at infinity.
  • the folding mirror M is provided to bend the optical path between the collimating optical system 12 for measuring light and the BS 13 so as to make the interferometer 1 compact.
  • a stop A1 for restricting the beam diameter of the measurement light is disposed.
  • the BS 13 separates incident light, that is, light emitted from the measurement light source 11 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is combined and emitted as measurement interference light, and is composed of, for example, a half mirror with a branching ratio of 50:50.
  • the compensation plate 14 is a substrate for correcting an optical path length corresponding to the thickness of the BS 13 and an optical path shift due to refraction when light passes through the BS 13. Depending on how the interferometer 1 is assembled, the compensation plate 14 may be unnecessary.
  • the condensing optical system 17 is an optical system that condenses the light synthesized and emitted by the BS 13 and guides it to the measurement light detector 18, and is composed of, for example, a focus lens.
  • the measurement light detector 18 receives measurement interference light incident from the BS 13 via the condensing optical system 17 and detects an interferogram (interference pattern).
  • the drive mechanism 19 moves the movable mirror 16 to the optical axis so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes. It is a moving mechanism that translates (translates) in the direction, and is composed of, for example, an electromagnetic drive mechanism using a VCM (voice coil motor).
  • the drive mechanism 19 may be a parallel leaf spring type drive mechanism.
  • the measurement light emitted from the measurement light source 11 is converted into collimated light by the measurement light collimating optical system 12, then reflected by the folding mirror M and incident on the BS 13. It is separated into two light beams by reflection. One separated light beam is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15. Each light beam returns to the original optical path and is superimposed by the BS 13, and after passing through the compensation plate 14 as measurement interference light.
  • the sample (not shown) is irradiated. At this time, the sample is irradiated with light while continuously moving the movable mirror 16 by the drive mechanism 19, but the difference in optical path length from the BS 13 to each mirror (movable mirror 16, fixed mirror 15) is an integral multiple of the wavelength.
  • the intensity of the superimposed light becomes the maximum.
  • the intensity of the superimposed light changes.
  • the light transmitted through the sample is condensed by the condensing optical system 17 and enters the measurement light detector 18 where it is detected as an interferogram. That is, in FIG. 1, the measurement light travels along an optical path indicated by a one-dot chain line.
  • the computing unit 2 samples a detection signal (interferogram) from the measurement light detector 18 and performs A / D conversion and Fourier transform to generate a spectrum indicating the light intensity for each wave number.
  • the above spectrum is output (for example, displayed) by the output unit 3, and based on this spectrum, the characteristics (material, structure, component amount, etc.) of the sample can be analyzed.
  • the reference optical system 20 shares a part of the configuration with the measurement optical system 10 described above.
  • the reference optical system 20 shares a part of the configuration with the measurement optical system 10 described above.
  • the compensation plate 14 the fixed mirror 15, and the movable mirror 16, the reference light source 21,
  • a reference light collimating optical system 22, an optical path combining mirror 23, an optical path separation mirror 24, and a reference light detector 25 are provided.
  • the reference light source 21 is a light source for detecting the position of the movable mirror 16 and generating a sampling timing signal in the calculation unit 2, and includes a light source 21a made of a semiconductor laser and an optical fiber 21b coupled to the light source 21a. And a fiber coupling optical system. That is, the reference light source 21 is composed of a laser light source that emits laser light emitted from a semiconductor racer through a fiber or a waveguide.
  • the semiconductor laser emits, for example, red light, but may emit laser light having a wavelength shorter than the shortest wavelength of measurement light (near infrared light, infrared light).
  • the reference light source 21 may be comprised only with the light source 21a which consists of semiconductor lasers.
  • the reference light collimating optical system 22 is an optical system that converts the reference light (laser light) emitted from the reference light source 21 into collimated light and guides it to the BS 13, and is composed of, for example, a collimating lens.
  • a diaphragm A2 is disposed on the light exit side of the reference light collimating optical system 22, and the beam diameter of the collimated light is regulated.
  • the reference light collimating optical system 22 is provided with the function of the aperture A2 by painting the surface of the lens constituting the reference light collimating optical system 22 in black except for the portion that emits the collimated light. It may be.
  • the optical path combining mirror 23 is a beam combiner that combines the optical paths of the light by transmitting the light from the measurement light source 11 and reflecting the light from the reference light source 21.
  • the optical path combining mirror 23 is arranged so that the reference light is incident on the fixed mirror 15 at an angle. For this reason, the optical path of the measurement light and the optical path of the reference light are not completely coaxial. The details of the point at which the reference light is incident on the fixed mirror 15 at an angle will be described later.
  • the optical path separation mirror 24 transmits the light emitted from the measurement light source 11 and incident through the BS 13, and reflects the light emitted from the reference light source 21 and incident through the BS 13. Is a beam splitter.
  • the reference light detector 25 is a detector that detects light (reference interference light) emitted from the reference light source 21 and incident on the optical path separation mirror 24 via the BS 13 and reflected there. For example, the response speed is higher than that of the CCD. Is composed of a fast quadrant sensor. A diaphragm A3 is arranged in the optical path between the optical path separation mirror 24 and the reference light detector 25, and the diameter of the reference interference light incident on the reference light detector 25 is regulated by the diaphragm A3. .
  • the correction unit 30 Based on the detection result of the reference interference light by the reference light detector 25, the correction unit 30 detects an error in tilt between the reflected light from the movable mirror 16 and the reflected light from the fixed mirror 15 (tilt error, 2 Tilt error correction (tilt correction) is performed by detecting the tilt between the optical paths) and tilting the movable mirror 16 or the fixed mirror 15. If the translation of the movable mirror 19 is lost when the movable mirror 16 is driven by the drive mechanism 19, the interference intensity (contrast) of the measurement interference light decreases due to the tilt error. Therefore, by tilting the movable mirror 16 or the fixed mirror 15 by the correction unit 30 and correcting the tilt error, it is possible to avoid a decrease in the interference intensity of the measurement interference light.
  • the optical axes on the measurement light side and the reference light side are not perfectly coaxial due to the above arrangement of the optical path combining mirror 23, but (1) a measurement light source because the optical axes are close to the same axis. 11, BS13, movable mirror 16, BS13, and measurement light detector 18 in the order of light, and tilt light error between the measurement light source 11, BS13, fixed mirror 15, BS13, and measurement light detector 18 in the order of light (Also referred to as a first tilt error) is (2) light traveling in the order of reference light source 21, BS13, movable mirror 16, BS13, reference light detector 25, and reference light source 21, BS13, fixed mirror 15, BS13, reference It is almost close to a tilt error (also referred to as a second tilt error) between the light traveling in the order of the photodetector 25. Therefore, the correction unit 30 can correct the first tilt error by detecting and correcting the second tilt error based on the light reception signal of the reference interference light from the reference light detector
  • the correction unit 30 includes a signal processing unit 31, an optical path correction mechanism 32, and a control unit 33.
  • the control unit 33 is configured by a CPU, for example, and controls the optical path correction mechanism 32 based on the detection result of the signal processing unit 31.
  • the signal processing unit 31 detects a tilt error based on the intensity of the reference interference light detected by the reference light detector 25.
  • the four light receiving regions (elements of the four-divided sensor) of the reference light detector 25 are set to E1 to E4 counterclockwise, and the light spot of the reference interference light is at the center of the entire light receiving region. Assume that D is located.
  • the sum of the light intensities detected in the light receiving areas E1 and E2 is A1
  • the sum of the light intensities detected in the light receiving areas E3 and E4 is A2
  • the change in the intensity A1 and A2 over time is shown. Assuming that the signals shown in FIG.
  • a tilt error is generated by an angle corresponding to the phase difference ⁇ in the direction in which the light receiving areas E1 and E2 and the light receiving areas E3 and E4 are arranged (vertical direction in FIG. 2).
  • shaft of FIG. 3 is shown by the relative value. Note that when the frequency of the phase signal is slow (low), it is possible to detect the inclination of the light between the two optical paths not from the phase comparison but from the intensity ratio.
  • the signal processing unit 31 detects the position of the movable mirror 16 based on the intensity of the reference interference light detected by the reference light detector 25 and generates a pulse signal indicating the sampling timing. It is functioning as well.
  • the intensity of the reference interference light generally changes between light and dark according to the position (optical path difference) of the movable mirror 16, so the signal processing unit 31 is based on the intensity change.
  • the calculation unit 2 samples the detection signal (interferogram) from the measurement light detector 18 in synchronization with the sampling timing of the pulse signal and converts it into digital data.
  • the optical path correction mechanism 32 corrects the optical path of light reflected by the movable mirror 16 or the fixed mirror 15 by tilting the movable mirror 16 or the fixed mirror 15 based on the tilt error detected by the signal processing unit 31.
  • the optical path correction mechanism 32 includes a plurality (at least three) of which the tip is connected to the back surface (surface opposite to the reflecting surface) of the fixed mirror 15 and expands and contracts in the optical axis direction. ) And a drive unit 32b that applies a voltage to the piezoelectric elements 32a to expand and contract the piezoelectric elements 32a.
  • each piezoelectric element 32a Based on the detection result of the signal processing unit 31, the voltage applied to each piezoelectric element 32a is controlled, and each piezoelectric element 32a is expanded and contracted in the optical axis direction, whereby the inclination of the fixed mirror 15 (reflection on the fixed mirror 15). The optical path of the light can be changed, and thereby the tilt error can be corrected.
  • the light emitted from the reference light source 21 is converted into collimated light by the reference light collimating optical system 22, then reflected by the optical path combining mirror 23 and incident on the BS 13, where it is separated into two light beams.
  • the One light beam separated by the BS 13 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15.
  • Each light beam returns to the original optical path and is overlapped by the BS 13, and passes through the compensation plate 14 and passes through the optical path.
  • the light enters the separation mirror 24, is reflected there, and enters the reference light detector 25. That is, in FIG. 1, the reference light travels along the optical path indicated by the solid line.
  • the signal processing unit 31 of the correction unit 30 detects a tilt error based on the intensity of the reference interference light detected by the reference light detector 25, and corrects the optical path under the control of the control unit 33.
  • the mechanism 32 adjusts the attitude of the fixed mirror 15 (angle with respect to the BS 13) and corrects the optical path of the reflected light from the fixed mirror 15. By performing feedback control that repeatedly detects the tilt error and corrects the optical path of the reflected light (tilt correction), the tilt error can be made as close to zero as possible.
  • FIG. 4 is an explanatory view schematically showing another configuration of the Fourier transform spectroscopic analyzer.
  • the optical path correction mechanism 32 of the correction unit 30 may correct the optical path of the light reflected by the movable mirror 16 based on the tilt error detected by the signal processing unit 31.
  • the tip of each piezoelectric element 32a is connected to the back surface of the movable mirror 16, and each piezoelectric element 32a is expanded and contracted by the drive unit 32b, whereby the inclination of the movable mirror 16 is changed and reflected by the movable mirror 16.
  • the optical path of light can be corrected.
  • the drive mechanism 19 of the movable mirror 16 may be connected to the back surface of the drive unit 32b (the side opposite to each piezoelectric element 32a).
  • Tables 1 to 4 show the values of the parameters in the interferometer 1 of the present embodiment.
  • the interferometer 1 of the present embodiment will be further described with reference to Tables 1 to 4.
  • the term collimated light refers to the collimated light of the reference light.
  • the interferometer 1 of the present embodiment uses a light source made of a semiconductor laser instead of using a conventional He—Ne laser as the reference light source 21.
  • the semiconductor laser is smaller than the He—Ne laser, and even when a collimating optical system is used, a small collimating optical system can be used. Therefore, a small interferometer 1 can be realized. From Table 3, this is because the distance between the movable mirror 16 and the measurement light detector 18 is about 5 cm (sum of items (4), (7), (8), and (9) in Table 3). Easy to understand.
  • the incident angle of the collimated light with respect to the fixed mirror 15 is 2.5 degrees, and the collimated light is incident on the fixed mirror 15 at an angle.
  • the incident angle of 2.5 degrees is 0.1 degrees (6 minutes) which is the maximum value (angle detection range) of the inclination angle of the fixed mirror 15 by the correction unit 30, and the necessary oblique incident angle is 2.0. It is set in consideration of the degree and a margin (extra inclination amount) of 0.5 degree due to an assembly error of the member.
  • the optical path of the reflected light from the fixed mirror 15 is slightly shifted from the optical path of the incident light to the fixed mirror 15. Even if the emitted light returns to the reference light source 21 side via the BS 13, it is possible to avoid the return light from entering the reference light source 21 (see the broken line in FIG. 1 and FIG. 4). Therefore, even if a conventional magnifying lens is not disposed on the light emitting side of the reference light source 21, it is possible to avoid unstable oscillation of the laser due to harmonic resonance while using collimated light. As a result, the position detection of the movable mirror 16 based on the detection result of the reference light detector 25 can be stably performed. Therefore, measurement interference light can be stably measured by the measurement light detector 18, and spectroscopic analysis can be stably performed.
  • the return light at the position on the light emission side (opposite to the reference light source 21) of the reference light collimating optical system 22 is reduced. Since the shift amount in the direction perpendicular to the optical axis is 2 mm (see item (2) in Table 4), the light emitted from the reference light source 21 does not intersect with the return light, and the return light is incident on the reference light source 21. You can see that they are not.
  • the collimated light is obliquely incident on the fixed mirror 15 by adjusting the arrangement position (angle) of the optical path synthesis combiner 23.
  • the arrangement of the reference light source 21 and the reference light collimating optical system 22 is arranged.
  • the collimated light may be obliquely incident on the fixed mirror 15 by adjusting the position. That is, the collimated light is moved to the fixed mirror 15 by shifting the positions of the reference light source 21 and the reference light collimating optical system 22 from the position where the reference light is incident on the optical path combining combiner 23 so as to be coaxial with the measurement optical system 10. It may be incident obliquely.
  • the incident angle (2.5 degrees) of the collimated light with respect to the fixed mirror 15 is the tilt angle of the fixed mirror 15 that can be tilted by the correction unit 30 during tilt correction. Is larger than the maximum value (scanning angle range 0.1 degree).
  • the collimated light may be incident. In some cases, the angle becomes zero. In this case, it is impossible to avoid the return light from entering the reference light source 21.
  • the angle formed by the optical axis of the reference light and the optical axis of the measurement light is, for example, 2.5 degrees.
  • the inclination angle of the movable mirror 16 that can be inclined by the correction unit 30 is larger than the maximum value (0.1 degree).
  • the optical axis of the reference light refers to the optical path along which the central ray of the reference light beam travels
  • the optical axis of the measurement light refers to the optical path along which the central light beam of the measurement light travels.
  • FIG. 5A shows the angle ⁇ formed by the two optical axes when the optical axis of the reference light and the optical axis of the measurement light intersect in the optical path between the BS 13 and the optical path combining mirror 23.
  • FIG. 5A corresponds to the configuration of FIG. 4 when the movable mirror 16 is tilted by the correction unit 30, and corresponds to the configuration of FIG. 1 when the fixed mirror 15 is tilted by the correction unit 30.
  • the position where the optical axis of the reference light and the optical axis of the measurement light intersect may be the position of the diaphragm A1 or any other position.
  • the optical axis of the reference light and the optical axis of the measurement light may be in a positional relationship that intersects in the same plane, or may be in a twisted positional relationship.
  • the angle formed between the optical axis of the reference light and the optical axis of the measurement light is considered to be an angle formed in the first direction and an angle formed in the second direction perpendicular to the first direction. May be.
  • the distance from the intersection of both optical axes to the extreme position of the movable mirror 16 when the movable mirror 16 is farthest from the BS 13 (also referred to as the extreme position) is a (mm), and the measurement at the above position is performed.
  • the angle ⁇ is represented by tan ⁇ 1 (b / a).
  • the angle corresponding to the ratio b / a that is, tan ⁇ 1 (b / a) is larger than the maximum value of the tilt angle of the movable mirror 16 that can be tilted by the correction unit 30. It is desirable. Satisfying such a condition can also achieve an effect that the collimated light can be obliquely incident on the fixed mirror 15 and the movable mirror 16 and the return light can be prevented from entering the reference light source 21.
  • the angle (2.5 degrees) corresponding to the ratio b / a is larger than the maximum value (0.1 degrees) of the tilt angle of the movable mirror 16 and satisfies the above condition.
  • FIG. 5B shows the angle ⁇ ′ formed by the two optical axes when the optical axis of the reference light and the optical axis of the measurement light do not intersect in the optical path between the BS 13 and the optical path combining mirror 23. Is schematically shown. When the two optical axes do not intersect, the following conditions may be satisfied. That is, the distance from the reference light collimating optical system 22 to the extreme position of the movable mirror 16 when the movable mirror 16 is at the most distant position (the extreme position) from the BS 13 is defined as a ′ (mm).
  • an angle corresponding to the ratio b ′ / a ′, that is, tan ⁇ 1 (b ′ / a ′) is As long as it is larger than the maximum value of the tilt angle of the movable mirror 16 that can be tilted by the correction unit 30. Even in this case, oblique incidence of collimated light to the fixed mirror 15 and the movable mirror 16 can be realized, and an effect of avoiding the incidence of return light to the reference light source 21 can be obtained.
  • the angle formed by the optical axis of the reference light and the optical axis of the measurement light may be expressed by tan ⁇ 1 (b / a) or may be expressed by tan ⁇ 1 (b ′ / a ′).
  • the angle formed by the two optical axes may be set in consideration of component assembly errors (0.5 degrees), and can be set within a range of 0.5 to 2.5 degrees, for example.
  • the angle formed may be larger than the maximum value of the tilt angle of the fixed mirror 15 that can be tilted by the correction unit 30.
  • the angle formed by the optical axis of the reference light and the optical axis of the measurement light is, for example, 2.5 degrees, and the maximum tilt angle of the fixed mirror 15 is 0.1 degrees. Satisfy the conditions.
  • the fixed mirror 15 is specified for tilt correction even if collimated light is incident on the fixed mirror 15 at an angle. (In the direction in which the beam center of the measurement light and the beam center of the reference light are aligned at the position of the fixed mirror 15), the incident angle of the collimated light may become zero depending on the tilt angle. In this case, it is impossible to avoid the return light from entering the reference light source 21, and the reference light detector 25 cannot detect the signal due to chaotic behavior.
  • the collimated light can be obliquely incident on the fixed mirror 15 and returned to the reference light source 21. Incident light can be avoided.
  • the collimated light is incident on the movable mirror 16 at an angle by being incident on the fixed mirror 15 at an angle.
  • the incident angle of the collimated light with respect to the fixed mirror 15 is such that the collimated light is inclined and enters the movable mirror 16 in the light beam of the measurement light incident on the movable mirror 16 at the position farthest from the BS 13 (the final position). It is desirable that the angle be equal to or less than the maximum value of the tilt angle when That is, the upper limit of the incident angle of the collimated light with respect to the fixed mirror 15 is equal to the maximum value of the angle at which the collimated light can be tilted in the light beam of the measuring light incident on the movable mirror 16 at the extreme position.
  • the optical path is the same as the optical path of the measurement light. Collimated light can be propagated. Therefore, the reference light detector 25 can reliably detect the change in the position of the movable mirror 16 when measuring the measurement interference light.
  • the beam diameter of the measurement light is smaller than 1 mm, the laser beam spreads due to diffraction, making it difficult to configure the optical system. Further, when the beam diameter of the measurement light is larger than 10 mm, it is necessary to manufacture the movable mirror 16 having a reflecting surface having an effective diameter larger than 10 mm. If the reflecting surface is large, it is difficult to maintain the surface accuracy with high accuracy, and thus it is difficult to manufacture the movable mirror 16. Considering the above, it is desirable that the beam diameter of the measurement light be 1 mm or more and 10 mm or less.
  • the distance from the measurement light collimating optical system 12 to the extreme position of the movable mirror 16 when the movable mirror 16 is farthest from the BS 13 (the extreme position) is f (mm).
  • the light beam diameter (diameter) of the light collimated by the collimating optical system 12 is defined as e (mm).
  • the angle corresponding to the ratio e / f that is, tan ⁇ 1 (e / f) is 6.87 degrees
  • the incident angle (2.5 degrees) of the collimated light (reference light) with respect to the fixed mirror 15 is It can be said that the angle is smaller than the angle corresponding to the ratio e / f.
  • the reflection surface (for example, the reflection surface of the fixed mirror 15) is within the region of the beam diameter of the measurement light.
  • the reference light flux enters. That is, the measurement light and the reference light are reflected within the same region of the reflection surface. Thereby, the information of measurement light can be measured with reference light.
  • the beam diameter of the reference light converted into collimated light by the reference light collimating optical system 22 is 2 mm (see item (1) in Table 2), and is converted into collimated light by the measuring light collimating optical system 12.
  • the measurement light beam diameter is smaller than 5 mm (see item (1) in Table 1).
  • the correction unit 30 cannot detect the tilt error based on the reference interference light detection result in the reference light detector 25.
  • the correction unit 30 can reliably detect the tilt error based on the detection result of the reference interference light by the reference light detector 25.
  • the movable mirror 16 since the reference light is incident on the fixed mirror 15 and the movable mirror 16 at an angle, the movable mirror 16 has the maximum interference intensity of the reference light as compared with the configuration in which the reference light is incident perpendicularly thereto. Is out of position. That is, the interference intensity of the reference light becomes maximum when the moving mirror is located at a position different from the position where the optical path difference is an integral multiple of the wavelength of the reference light. This is the same as the wavelength of the reference light (laser oscillation wavelength) apparently fluctuating.
  • the pulse (sampling timing) of the signal generated by the signal processing unit 31 based on the detection result of the reference light detector 25 is also a regular pulse (timing at which the optical path difference is an integral multiple of the wavelength of the reference light). Shift.
  • the sampling timing when light having a specific wavelength ⁇ 0 (bright line spectrum) is used as measurement light, if the sampling timing deviates from the normal timing, it is obtained when the interferogram of the measurement interference light is Fourier-transformed by the calculation unit 2.
  • the transmittance peak (intensity peak) of the specific wavelength ⁇ 0 (wave number 1 / ⁇ 0 ) appears to be shifted to the wavelength ⁇ 1 (wave number 1 / ⁇ 1 ). Therefore, the deviation of the sampling timing can be easily grasped by seeing the deviation of the wavelength ⁇ 1 from the specific wavelength ⁇ 0 .
  • the calculation unit 2 corrects the sampling timing based on the deviation of the wavelength ⁇ 1 from the specific wavelength ⁇ 0 . Therefore, even if the reference light is obliquely incident on the fixed mirror 15, it is possible to suppress the above-described apparent fluctuation of the laser oscillation wavelength, and the Fourier of the interferogram sampled at an appropriate timing. By the conversion, the spectroscopic analysis can be performed with high accuracy.
  • a light transmission surface for example, a light transmission surface of the BS 13
  • AR coating an antireflection coating
  • the antireflection coating due to the design of the antireflection coating, it is difficult to provide antireflection characteristics in a wide band. Further, if the wavelength band for preventing reflection is widened, the reflectance increases in that wavelength band. Therefore, when the measurement light is near-infrared light or infrared light, the reference light is made red light (red semiconductor laser light), and the wavelength band of the reference light and measurement light is made close to make it easy to design the antireflection coating. Can be.
  • the BS 13 having a predetermined branching ratio (for example, 50:50) in a wide wavelength range.
  • the BS 13 having a predetermined branching ratio (for example, 50:50) has a predetermined branching ratio. It becomes easy to design a beam splitter with a branching ratio of.
  • the coupling to the fiber is determined depending on the NA of the fiber end and the core diameter, but the most efficient coupling is in the case of the butt coupling with a coupling ratio of 1: 1. Therefore, in the case of a model approximated by a thin lens, the conditions for preventing light from returning to the exit aperture of the laser light source are the fiber core radius size d (mm) and the distance L (mm) from the collimating lens principal point position to the reflecting surface. It depends on. That is, the influence of the return light to the laser light source can be eliminated by causing the collimated light to enter the fixed mirror obliquely at an incident angle equal to or greater than the angle ⁇ (rad) of d / L.
  • the reference light source 21 is a laser including a narrow-band element, a long coherence distance, and a small wavelength variation with respect to a temperature change.
  • the temperature of the reference light source 21 it is possible to stabilize the wavelength variation to be considerably small, and it is possible to realize a small and stable coherent light source. As a result, a stable measurement result can be obtained in the rule using the interferometer 1 of the present embodiment.
  • an element having a function of partially transmitting the light emitted from the reference light source 21, narrowing the spectral line width and reflecting a part thereof, specifically, VHG ( A diffraction grating such as volume holography or FBG (fiber grating) is desirable.
  • VHG A diffraction grating such as volume holography or FBG (fiber grating)
  • part of the emission wavelength of coherent light becomes reflected diffracted light, which is guided to the active layer of the semiconductor laser, thereby causing stimulated emission and locking the emission wavelength to the wavelength of the reflected diffracted light.
  • the wavelength of the reflected diffracted light is limited by the width determined by the diffraction grating, the spectral line of the emission wavelength of the semiconductor laser is fixed to a specific mode and narrowed.
  • the interferometer 1 includes the measurement light source 11 and obtains the measurement interference light using the measurement light emitted from the measurement light source 11 has been described.
  • the interferometer 1 of the present embodiment is described. May not necessarily include the measurement light source 11. That is, the measurement light for obtaining the measurement interference light may be light emitted from a light source built in the interferometer, or may be light incident from the outside of the interferometer.
  • the interferometer of this embodiment can be applied.
  • the interferometer of the present embodiment separates the measurement light with the beam splitter and guides it to the movable mirror and the fixed mirror, and multiplexes each light reflected by the movable mirror and the fixed mirror with the beam splitter,
  • a measurement optical system that guides the measurement interference light obtained by combining to the measurement light detector, and the reference light from a reference light source is separated by the beam splitter and guided to the movable mirror and the fixed mirror, and the movable mirror and A reference optical system that multiplexes each light reflected by the fixed mirror with the beam splitter and guides the reference interference light obtained by the multiplexing to a reference light detector, in the reference light detector
  • An interferometer that measures the measurement interference light while detecting the position of the movable mirror based on a detection result, wherein the reference light source is a semiconductor laser or a laser beam emitted from the semiconductor racer as a waveguide or Through fiber
  • the reference optical system has a reference light collimating optical system that converts laser light emitted from the reference light source
  • the reference light source including the semiconductor laser and the laser light source is smaller than the He—Ne laser generally used as the reference light source, and even when the collimating optical system is used, the small collimator is used. Since an optical system can be used, a small interferometer can be realized.
  • the optical path of the reflected light at the fixed mirror is slightly shifted from the optical path of the incident light on the fixed mirror. Therefore, even if the reference light reflected by the fixed mirror returns to the reference light source side via the beam splitter, the return light can be prevented from entering the reference light source (particularly the light emission portion). . Therefore, even if a magnifying lens is not disposed on the light emitting side of the reference light source (using collimated light), it is possible to avoid the oscillation of the laser from becoming unstable due to harmonic resonance. The position detection of the movable mirror based on the detection result can be stably performed.
  • the interferometer of the present embodiment detects an error in relative inclination between the reflected light from the movable mirror and the reflected light from the fixed mirror based on the detection result of the reference light detector, and A correction unit that corrects the error by tilting the movable mirror or the fixed mirror is further provided, and an incident angle of the collimated light with respect to the fixed mirror is an inclination of the movable mirror or the fixed mirror that can be tilted by the correction unit. It is desirable to be larger than the maximum value of the corner.
  • the correction unit corrects an error in relative inclination between the reflected light from the movable mirror and the reflected light from the fixed mirror by tilting the movable mirror, and the reference
  • the angle formed between the optical axis of the light and the optical axis of the measurement light is preferably larger than the maximum value of the tilt angle of the movable mirror that can be tilted by the correction unit.
  • the correction unit corrects an error in relative inclination between the reflected light from the movable mirror and the reflected light from the fixed mirror by tilting the fixed mirror, and the reference
  • the angle formed between the optical axis of the light and the optical axis of the measurement light is preferably larger than the maximum value of the tilt angle of the fixed mirror that can be tilted by the correction unit.
  • the incident angle of the collimated light with respect to the fixed mirror is such that the collimated light is tilted in the light beam of the measurement light incident on the movable mirror that is the farthest from the beam splitter. It is desirable that the angle be equal to or less than the maximum value of the tilt angle when entering the movable mirror.
  • the collimated light can be propagated in an optical path equivalent to the optical path of the measuring light, and the position of the movable mirror when measuring the measuring interference light Can be reliably detected by the reference light detector.
  • the measurement optical system has a collimation optical system for measurement light that converts the measurement light into collimated light, and the movable mirror is located at a position farthest from the beam splitter.
  • the distance from the measurement light collimating optical system to the position of the movable mirror is f
  • the light beam diameter of the light collimated by the measurement light collimating optical system is e
  • the incident angle of the collimated light of the optical system is desirably smaller than an angle corresponding to the ratio e / f.
  • the reference light beam enters the region of the light beam diameter of the measurement light on the reflection surface (for example, the reflection surface of the fixed mirror), and the measurement light and the reference light are within the same region of the reflection surface. Since it is reflected, the information of the measurement light can be measured by the reference light.
  • the correction unit calculates an error in relative inclination between the reflected light from the movable mirror and the reflected light from the fixed mirror based on the detection result from the reference light detector.
  • a signal processing unit to detect, an optical path correction mechanism for correcting an optical path of light reflected by the moving mirror or the fixed mirror by tilting the moving mirror or the fixed mirror, and detected by the signal processing unit And a control unit that controls the optical path correction mechanism based on the tilt error.
  • the control unit controls the optical path correction mechanism, and the optical path correction mechanism corrects the optical path of the reflected light from the movable mirror or fixed mirror, thereby ensuring tilt correction. It can be carried out.
  • the reference light detector is configured by a split sensor
  • the correction unit is configured to output the measurement light at the movable mirror based on the output from each element of the split sensor. It is desirable to detect an error in the relative inclination between the reflected light and the reflected light from the fixed mirror.
  • the correction unit can detect the tilt direction and the tilt amount of the other light with respect to one light based on the output (for example, phase difference) from each element of the split sensor, and perform tilt correction based on the detection result. It can be done reliably.
  • the measurement optical system includes a measurement light collimating optical system that converts the measurement light into collimated light, and the reference converted into collimated light by the reference light collimating optical system.
  • the light beam diameter is preferably smaller than the light beam diameter of the measurement light converted into collimated light by the measurement light collimating optical system.
  • the sensitivity to the relative tilt error (tilt error) between the reflected light from the fixed mirror and the reflected light from the movable mirror in the reference optical system is made slower than the sensitivity to the tilt error in the measurement optical system. Therefore, an increase in the number of interference fringes due to a tilt error in the reference light detector can be suppressed.
  • the correction unit can reliably detect the tilt error based on the detection result of the reference light detector of the reference optical system.
  • the Fourier transform spectroscopic analyzer of the present embodiment samples the interferogram obtained by receiving the measurement interference light with the interferometer of the present embodiment described above and the measurement light detector of the interferometer, and performs Fourier transform. It is desirable to include a calculation unit that converts and generates a spectrum of the wavelength included in the measurement light.
  • FTIR Fourier transform spectroscopic analyzer
  • the interferometer In the Fourier transform spectroscopic analysis apparatus according to the present embodiment, the interferometer generates a signal indicating timing when the interferogram is sampled based on a detection result of the reference optical detector of the reference optical system.
  • a signal generation unit; and the calculation unit samples an interferogram of measurement interference light when light of a specific wavelength is used as the measurement light at a timing based on a signal from the signal generation unit. It is desirable to correct the sampling timing based on the deviation of the wavelength obtained by Fourier transform from the specific wavelength.
  • the interferometer of this embodiment since the reference light is incident on the fixed mirror (and the moving mirror) at an angle, when the moving mirror is located at a position shifted from a position where the optical path difference is an integral multiple of the wavelength of the reference light In addition, the interference intensity of the reference light is maximized. This is the same as the wavelength of the reference light apparently fluctuating. As a result, the sampling timing of the signal generated based on the detection result of the reference light detector also deviates from the normal timing.
  • this sampling timing shift can be obtained by using a specific wavelength light (bright line spectrum) as the measurement light and looking at the shift from the specific wavelength of the wavelength obtained when the interferogram of the measurement interference light is Fourier transformed. It can be easily grasped. Therefore, by correcting the sampling timing based on the deviation of the wavelength after the Fourier transform from the specific wavelength, even if the reference light is obliquely incident on the fixed mirror, the apparent laser oscillation wavelength Spectral analysis can be accurately performed while suppressing the above fluctuation.
  • the measurement light is near infrared light or infrared light
  • the reference light is red light
  • the wavelength bands of the measurement light and the reference light are close, even when an anti-reflection coating is applied to the light transmission surface of the beam splitter to increase the light utilization efficiency, the wavelength band for preventing reflection can be narrowed, and the anti-reflection coating Can be easily designed.
  • the present invention can be used for a Michelson interferometer and a Fourier transform spectroscopic apparatus for performing spectroscopic analysis using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 参照光検出器(25)での検出結果に基づいて移動鏡(16)の位置を検知しながら、測定干渉光を計測する干渉計(1)において、参照光源(21)は、半導体レーザからなる光源(21a)を含んで構成される。参照光学系(20)は、参照光源(21)から出射されるレーザ光をコリメート光に変換する参照光用コリメート光学系(22)を有しており、上記コリメート光は、固定鏡(15)に対して斜めに入射する。

Description

干渉計およびフーリエ変換分光分析装置
 本発明は、マイケルソン型の干渉計と、その干渉計を備えたフーリエ変換分光分析装置とに関するものである。
 FTIR(Fourier Transform Infrared Spectroscopy )に利用されるマイケルソン2光束干渉計では、光源から発した赤外光をビームスプリッタで固定鏡および移動鏡の2方向に分割し、その固定鏡および移動鏡でそれぞれ反射して戻ってきた光を上記ビームスプリッタで1つの光路に合成するという構成が採用されている。移動鏡を前後に(入射光の光軸方向に)移動させると、分割された2光束の光路差が変化するため、合成された光はその移動鏡の移動量に応じて光の強度が変化する測定干渉光(インターフェログラム)となる。このインターフェログラムをサンプリングし、AD変換およびフーリエ変換することにより、入射光のスペクトル分布を求めることができ、このスペクトル分布から、波数(1/波長)ごとの測定干渉光の強度を求めることができる。
 上記のインターフェログラムは、移動鏡と固定鏡との位相差、すなわち、移動鏡での反射光と固定鏡での反射光との光路差の関数で示されることから、測定干渉光の強度を求めるにあたっては、移動鏡の位置を常に監視する必要がある。そこで、通常は、赤外光を出射する光源とは別に、He-Neレーザなどの参照光源を用いて移動鏡の位置を監視している。具体的には、参照光源から出射される参照光をビームスプリッタで分離して移動鏡および固定鏡に導き、移動鏡および固定鏡で反射される各光をビームスプリッタで合成し、参照干渉光として位置検出用の参照光検出器に導く。参照干渉光の強度は、移動鏡の位置に応じて変化するので、参照光検出器にて参照干渉光の強度変化を検出することにより、移動鏡の位置を求めることが可能となる。
 ところで、上記のビームスプリッタは、所定の分岐比(例えば50:50)で入射光を2光束に分離するものであるため、ビームスプリッタで分離されて固定鏡に入射した参照光が固定鏡で反射された後、再度ビームスプリッタに入射したときに、入射光の一部は参照光検出器の方向に反射されるものの、残りの光はビームスプリッタを透過し、参照光源側に戻る戻り光となる。戻り光が参照光源に入射すると、ハーモニック共振を起こしてレーザの発振が不安定となり、モードホップ現象によって参照光検出器からの出力波形が変化し、結果的に、移動鏡の位置を求めることができなくなる。
 この点に関して、例えば特許文献1では、参照光源の光出射側に、入射光束の広がり角を拡大するレンズを配置している。この構成では、参照光源に戻る光の量が拡大レンズによって減らされ、これによって、ハーモニック共振の影響を低減し、移動鏡の位置検知の精度の向上を図っているものと思われる。
特開平2-253103号公報(第3頁右上欄第14行~第17行、第5頁左下欄第14行~第20行参照)
 ところが、特許文献1では、参照光源としてHe-Neレーザを用いている。He-Neレーザは大型であり、波長の安定性を維持するために小型化することが困難である。つまり、特許文献1のように、参照光源としてHe-Neレーザを用いる構成では、装置自体が大型化する。
 しかも、戻り光の量を減らすべく、参照光源の光出射側に拡大レンズを配置する必要があるため、拡大レンズを用いない構成に比べて部品点数が増大する。温度や衝撃振動に対する感度は各部品ごとに異なるため、部品点数の増大は、光学系全体での誤差を生じやすい。したがって、拡大レンズを用いることなく(すなわちコリメート光を利用しながら)、参照光源に戻り光が入射するのを回避する構成が望まれる。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、参照光源としてHe-Neレーザを用いない小型の構成で、かつ、拡大レンズを用いることなく、参照光源への戻り光を除去することができ、これによって参照光検出器での検出結果に基づく移動鏡の位置検知を安定して行うことができる干渉計と、その干渉計を備えたフーリエ変換分光分析装置とを提供することにある。
 本発明の干渉計は、測定光をビームスプリッタで分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた測定干渉光を測定光検出器に導く測定光学系と、参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた参照干渉光を参照光検出器に導く参照光学系とを備え、前記参照光検出器での検出結果に基づいて前記移動鏡の位置を検知しながら、前記測定干渉光を計測する干渉計であって、前記参照光源は、半導体レーザ、または前記半導体レーサから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、前記参照光学系は、前記参照光源から出射されるレーザ光をコリメート光に変換する参照光用コリメート光学系を有しており、前記コリメート光は、前記固定鏡に対して斜めに入射することを特徴としている。
 本発明によれば、参照光源は、He-Neレーザに比べて小型の半導体レーザやレーザ光源からなり、コリメート光学系を用いる場合でも、小型のコリメート光学系を用いることができるので、小型の干渉計を実現することができる。
 また、上記のコリメート光は固定鏡に対して斜めに入射するので、固定鏡で反射された参照光がビームスプリッタを介して参照光源側に戻ってきたとしても、その戻り光が、参照光源に入射するのを回避することができる。したがって、従来のように拡大レンズを用いることなく、コリメート光を利用したまま、参照光源でのレーザの発振が不安定になるのを回避して、参照光検出器での検出結果に基づく移動鏡の位置検知を安定して行うことができる。
本発明の実施の一形態のフーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。 上記フーリエ変換分光分析装置に適用される干渉計の参照光検出器の概略の構成を示す平面図である。 上記参照光検出器での検出結果に基づいて出力される位相信号を示す説明図である。 上記フーリエ変換分光分析装置の他の構成を模式的に示す説明図である。 (a)は、参照光の光軸と測定光の光軸とが交差する場合の、上記両光軸のなす角度を模式的に示す説明図であり、(b)は、参照光の光軸と測定光の光軸とが交差しない場合の、上記両光軸のなす角度を模式的に示す説明図である。 測定光として特定波長の光を用いたときの測定干渉光をフーリエ変換した後のスペクトルを示す説明図である。
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
 〔装置の構成〕
 図1は、本実施形態のフーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。この装置は、干渉計1と、演算部2と、出力部3とを有して構成されている。干渉計1は、2光路分岐型のマイケルソン干渉計で構成されているが、その詳細については後述する。演算部2は、干渉計1から出力される信号のサンプリング、A/D変換およびフーリエ変換を行い、測定光に含まれる波長のスペクトル、すなわち、波数(1/波長)ごとの光の強度を示すスペクトルを生成する。出力部3は、演算部2にて生成されたスペクトルを出力(例えば表示)する。以下、干渉計1の詳細について説明する。
 干渉計1は、測定光学系10と、参照光学系20と、補正部30とを有している。以下、順に説明する。
 測定光学系10は、測定用光源11と、測定光用コリメート光学系12と、折り返しミラーMと、BS(ビームスプリッタ)13と、補償板14と、固定鏡15と、移動鏡16と、集光光学系17と、測定光検出器18と、駆動機構19とを備えている。なお、BS13に対する固定鏡15と移動鏡16との位置関係は、逆であってもよい。
 測定用光源11は、例えば複数波長を含む近赤外光または赤外光を測定光として出射す光源11aと、光源11aに結合される光ファイバ11bとからなるファイバ結合光学系で構成されている。なお、測定用光源11は、光源11aのみで構成されてもよい。測定光用コリメート光学系12は、測定用光源11から出射される測定光をコリメート光に変換してBS13に導く光学系であり、例えばコリメータレンズで構成されている。
 ここで、コリメート光とは、完全な平行光のほか、略平行光(若干の収束光や発散光)も含む概念である。つまり、ここでのコリメートとは、光源からの光をコリメート光学系によってBSおよび固定鏡または移動鏡を経てセンサへ導くことを指し、無限遠方へのコリメートに限るものではない。平面波として取り扱いやすくするため、例えば1m以上遠方にコリメートすることが望ましい。
 折り返しミラーMは、干渉計1をコンパクトに構成すべく、測定光用コリメート光学系12とBS13との間の光路を折り曲げるために設けられている。折り返しミラーMとBS13との間の光路中(特に後述する光路合成ミラー23とBS13との間の光路中)には、測定光の光束径を規制するための絞りA1が配置されている。
 BS13は、入射光、すなわち、測定用光源11から出射された光を2つの光に分離して、それぞれを固定鏡15および移動鏡16に導くとともに、固定鏡15および移動鏡16にて反射された各光を合波し、測定干渉光として出射するものであり、例えば分岐比50:50のハーフミラーで構成されている。
 補償板14は、BS13の厚み分の光路長、および光がBS13を透過する際の屈折による光路シフトを補正するための基板である。なお、干渉計1の組み方次第では、補償板14を不要とすることもできる。
 集光光学系17は、BS13にて合成されて出射された光を集光して測定光検出器18に導く光学系であり、例えばフォーカスレンズで構成されている。測定光検出器18は、BS13から集光光学系17を介して入射する測定干渉光を受光してインターフェログラム(干渉パターン)を検出する。
 駆動機構19は、固定鏡15にて反射される光の光路と、移動鏡16にて反射される光の光路との差(光路長の差)が変化するように、移動鏡16を光軸方向に平行移動(並進)させる移動機構であり、例えばVCM(ボイスコイルモータ)を用いた電磁式の駆動機構で構成されている。なお、駆動機構19は、平行板ばね式の駆動機構で構成されてもよい。
 上記の構成において、測定用光源11から出射された測定光は、測定光用コリメート光学系12によってコリメート光に変換された後、折り返しミラーMで反射されてBS13に入射し、BS13での透過および反射によって2光束に分離される。分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、測定干渉光として補償板14を透過した後、試料(図示せず)に照射される。このとき、駆動機構19によって移動鏡16を連続的に移動させながら試料に光が照射されるが、BS13から各ミラー(移動鏡16、固定鏡15)までの光路長の差が波長の整数倍のときは、重ね合わされた光の強度は最大となる。一方、移動鏡16の移動によって2つの光路長に差が生じている場合には、重ね合わされた光の強度に変化が生じる。試料を透過した光は、集光光学系17にて集光されて測定光検出器18に入射し、そこでインターフェログラムとして検出される。すなわち、図1では、測定光は、一点鎖線で示す光路を進行する。
 演算部2では、測定光検出器18からの検出信号(インターフェログラム)をサンプリングし、A/D変換およびフーリエ変換することにより、波数ごとの光の強度を示すスペクトルが生成される。上記のスペクトルは、出力部3にて出力(例えば表示)され、このスペクトルに基づき、試料の特性(材料、構造、成分量など)を分析することが可能となる。
 次に、参照光学系20および補正部30について説明する。参照光学系20は、上記した測定光学系10と構成を一部共有しており、上述したBS13と、補償板14と、固定鏡15と、移動鏡16とに加えて、参照光源21と、参照光用コリメート光学系22と、光路合成ミラー23と、光路分離ミラー24と、参照光検出器25とを有している。
 参照光源21は、移動鏡16の位置を検出したり、演算部2にてサンプリングのタイミング信号を生成するための光源であり、半導体レーザからなる光源21aと、光源21aに結合される光ファイバ21bとからなるファイバ結合光学系で構成されている。すなわち、参照光源21は、半導体レーサから出射されるレーザ光をファイバまたは導波路を介して射出するレーザ光源で構成されている。上記の半導体レーザは、例えば赤色光を発光するが、測定光(近赤外光、赤外光)の最短波長よりも短い波長のレーザ光を発光すればよい。なお、参照光源21は、半導体レーザからなる光源21aのみで構成されてもよい。
 参照光用コリメート光学系22は、参照光源21から出射される参照光(レーザ光)をコリメート光に変換してBS13に導く光学系であり、例えばコリメートレンズで構成されている。参照光用コリメート光学系22の光出射側には、絞りA2が配置されており、コリメート光の光束径が規制される。なお、参照光用コリメート光学系22を構成するレンズの光射出側の面において、コリメート光を出射する部分以外を黒く塗ることによって、参照光用コリメート光学系22に絞りA2の機能を持たせるようにしてもよい。
 光路合成ミラー23は、測定用光源11からの光を透過させ、参照光源21からの光を反射させることにより、これらの光の光路を合成するビームコンバイナである。本実施形態では、参照光が固定鏡15に対して斜めに入射するように光路合成ミラー23が配置されている。このため、測定光の光路と参照光の光路とは完全な同軸とはならない。なお、参照光が固定鏡15に斜めに入射する点の詳細については後述する。光路分離ミラー24は、測定用光源11から出射されてBS13を介して入射する光を透過させ、参照光源21から出射されてBS13を介して入射する光を反射させることにより、これらの光の光路を分離するビームスプリッタである。
 参照光検出器25は、参照光源21から出射されてBS13を介して光路分離ミラー24に入射し、そこで反射された光(参照干渉光)を検出する検出器であり、例えばCCDよりも応答速度が速い4分割センサで構成されている。光路分離ミラー24と参照光検出器25との間の光路中には、絞りA3が配置されており、この絞りA3によって、参照光検出器25に入射する参照干渉光の光束径が規制される。
 次に、補正部30について説明する。補正部30は、参照光検出器25での参照干渉光の検出結果に基づいて、移動鏡16での反射光と固定鏡15での反射光との相対的な傾きの誤差(チルト誤差、2光路間の傾き)を検知するとともに、移動鏡16または固定鏡15を傾けることによってチルト誤差の補正(チルト補正)を行うものである。駆動機構19による移動鏡16の駆動時に、移動鏡19の並進性が崩れると、上記チルト誤差によって測定干渉光の干渉強度(コントラスト)が低下する。したがって、補正部30によって移動鏡16または固定鏡15を傾けて、上記のチルト誤差を補正することにより、測定干渉光の干渉強度が低下するのを回避することができる。
 ここで、本実施形態では、光路合成ミラー23の上記配置により、測定光側および参照光側の光軸が完全な同軸とはならないが、同軸に近い配置であるので、(1)測定用光源11、BS13、移動鏡16、BS13、測定光検出器18の順に進行する光と、測定用光源11、BS13、固定鏡15、BS13、測定光検出器18の順に進行する光とのチルト誤差(第1のチルト誤差とも称する)は、(2)参照光源21、BS13、移動鏡16、BS13、参照光検出器25の順に進行する光と、参照光源21、BS13、固定鏡15、BS13、参照光検出器25の順に進行する光との間のチルト誤差(第2のチルト誤差とも称する)にほとんど近い。したがって、補正部30は、参照光検出器25からの参照干渉光の受光信号に基づいて、第2のチルト誤差を検知して補正することにより、第1のチルト誤差を補正することができる。
 このような補正部30は、具体的には、信号処理部31と、光路補正機構32と、制御部33とを有して構成されている。制御部33は、例えばCPUで構成され、信号処理部31での検出結果に基づいて光路補正機構32を制御する。
 信号処理部31は、参照光検出器25にて検出された参照干渉光の強度に基づいて、チルト誤差を検出する。例えば、図2に示すように、参照光検出器25の4つの受光領域(4分割センサの各素子)を反時計回りにE1~E4とし、全体の受光領域の中心に参照干渉光の光スポットDが位置しているものとする。受光領域E1・E2で検出された光の強度の和をA1とし、受光領域E3・E4で検出された光の強度の和をA2としたときに、時間経過に対する強度A1・A2の変化を示す位相信号として、図3に示す信号が得られたとすると、これらの信号に基づいてチルト誤差(特に、一方の光に対する他方の光の相対的な傾き方向および傾き量)を検出することができる。この例では、受光領域E1・E2と受光領域E3・E4とが並ぶ方向(図2では上下方向)に位相差Δに対応する角度だけチルト誤差が生じていることになる。なお、図3の縦軸の強度は相対値で示している。なお、位相信号の周波数が遅い(低い)場合、位相比較ではなく強度比から2光路間での光の傾きを検知することもできる。
 また、信号処理部31は、参照光検出器25にて検出された参照干渉光の強度に基づいて、移動鏡16の位置を検出するとともに、サンプリングのタイミングを示すパルス信号を生成する信号生成部としても機能している。参照光検出器25では、移動鏡16の位置(光路差)に応じて参照干渉光の強度が全体的に明と暗との間で変化するので、信号処理部31は、その強度変化に基づいて移動鏡16の位置を検出することができる。演算部2は、上記パルス信号のサンプリングタイミングに同期して、測定光検出器18からの検出信号(インターフェログラム)をサンプリングし、デジタルデータに変換することになる。
 光路補正機構32は、信号処理部31にて検出されたチルト誤差に基づいて、移動鏡16または固定鏡15を傾けることにより、移動鏡16または固定鏡15で反射される光の光路を補正するものである。本実施形態では、光路補正機構32は、図1に示すように、先端が固定鏡15の背面(反射面とは反対側の面)と連結されて光軸方向に伸縮する複数(少なくとも3つ)の圧電素子32aと、これらの圧電素子32aに電圧を印加して圧電素子32aを伸縮させる駆動部32bとを有して構成されている。信号処理部31での検出結果に基づいて、各圧電素子32aに印加する電圧を制御し、各圧電素子32aを光軸方向に伸縮させることにより、固定鏡15の傾き(固定鏡15での反射光の光路)を変化させることができ、これによってチルト誤差を補正することができる。
 上記の構成において、参照光源21から出射された光は、参照光用コリメート光学系22でコリメート光に変換された後、光路合成ミラー23で反射されてBS13に入射し、そこで2光束に分離される。BS13にて分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、補償板14を透過して光路分離ミラー24に入射し、そこで反射されて参照光検出器25に入射する。すなわち、図1では、参照光は、実線で示す光路を進行する。
 補正部30の信号処理部31は、上述のように、参照光検出器25にて検出された参照干渉光の強度に基づいてチルト誤差を検出し、制御部33の制御のもとで光路補正機構32が固定鏡15の姿勢(BS13に対する角度)を調整し、固定鏡15での反射光の光路を補正することになる。チルト誤差の検出と、反射光の光路の補正(チルト補正)とを繰り返すフィードバック制御を行うことにより、最終的には、チルト誤差を限りなくゼロに近づけることができる。
 ところで、図4は、フーリエ変換分光分析装置の他の構成を模式的に示す説明図である。同図に示すように、補正部30の光路補正機構32は、信号処理部31にて検出されたチルト誤差に基づいて、移動鏡16で反射される光の光路を補正するようにしてもよい。この場合、各圧電素子32aの先端を移動鏡16の背面に連結し、各圧電素子32aを駆動部32bによって伸縮させることにより、移動鏡16の傾きを変化させて、移動鏡16で反射される光の光路を補正することができる。このとき、移動鏡16の駆動機構19は、駆動部32bの背面(各圧電素子32aとは反対側)と連結されればよい。
 〔各パラメータについて〕
 表1~表4は、本実施形態の干渉計1における各パラメータの値を示している。以下、表1~表4を参照しながら、本実施形態の干渉計1についてさらに説明する。なお、以下では、特に断らない限り、コリメート光と記載すれば、参照光のコリメート光を指すものとする。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 まず、本実施形態の干渉計1では、上述したように、参照光源21として従来のHe-Neレーザを用いる代わりに、半導体レーザからなる光源を用いている。半導体レーザは、He-Neレーザに比べて小型であり、コリメート光学系を用いる場合でも、小型のコリメート光学系を用いることができる。したがって、小型の干渉計1を実現することができる。このことは、表3より、移動鏡16-測定光検出器18間の距離が、約5cm程度(表3の項目(4)(7)(8)(9)の和)であることからも容易に理解できる。
 また、本実施形態では、表4に示すように、コリメート光の固定鏡15に対する入射角は2.5度となっており、コリメート光は、固定鏡15に対して斜めに入射している。なお、上記の入射角2.5度は、補正部30による固定鏡15の傾き角の最大値(角度検出範囲)である0.1度(6分)と、必要な斜め入射角2.0度と、部材の組み付け誤差等によるマージン(余分傾き量)0.5度とを考慮して設定されている。
 このように、コリメート光が固定鏡15に対して斜めに入射することにより、固定鏡15での反射光の光路は、固定鏡15への入射光の光路と若干ずれるので、固定鏡15で反射された光がBS13を介して参照光源21側に戻ってきたとしても、その戻り光が、参照光源21に入射するのを回避することができる(図1、図4の破線の光路参照)。したがって、参照光源21の光出射側に従来のような拡大レンズを配置しなくても、コリメート光を利用しながら、ハーモニック共振によってレーザの発振が不安定になるのを回避することができる。その結果、参照光検出器25での検出結果に基づく移動鏡16の位置検知を安定して行うことができる。したがって、測定光検出部18での測定干渉光の計測を安定して行うことができ、分光分析を安定して行うことができる。
 実際、参照光の光束径2mm(表2の項目(1)参照)に対して、参照光用コリメート光学系22の光射出側(参照光源21とは反対側)の位置での、戻り光の光軸に垂直な方向のシフト量が2mm(表4の項目(2)参照)であることから、参照光源21からの出射光と戻り光とは交差せず、戻り光が参照光源21に入射していないことがわかる。
 なお、本実施形態では、光路合成コンバイナ23の配置位置(角度)を調節することによって、コリメート光を固定鏡15に斜め入射させているが、参照光源21および参照光用コリメート光学系22の配置位置を調節することによって、コリメート光を固定鏡15に斜め入射させてもよい。すなわち、参照光源21および参照光用コリメート光学系22の位置を、参照光が測定光学系10と同軸となるように光路合成コンバイナ23に入射する位置からずらすことによって、コリメート光を固定鏡15に斜め入射させてもよい。
 また、本実施形態では、表4に示すように、固定鏡15に対するコリメート光の入射角(2.5度)は、チルト補正の際に補正部30によって傾けることができる固定鏡15の傾き角の最大値(走査角度範囲0.1度)よりも大きい。
 上記の条件を満足しない場合は、コリメート光が固定鏡15に対して斜めに入射していても、チルト補正のために固定鏡15を傾けたときに、その傾き角によっては、コリメート光の入射角がゼロになってしまう場合があり、この場合は、参照光源21への戻り光の入射を回避することができない。
 したがって、上記の条件を満足することにより、チルト補正のために固定鏡15を傾ける構成であっても、コリメート光を固定鏡15に対して常に斜めに入射させて、参照光源21への戻り光の入射を回避することができる。
 また、光路中(例えばBS13と光路合成ミラー23との間の光路中)において、参照光の光軸と測定光の光軸とのなす角度は例えば2.5度であり、この角度は、図4の構成において、補正部30によって傾けることができる移動鏡16の傾き角の最大値(0.1度)よりも大きい。なお、参照光の光軸とは、参照光の光束の中心光線が進行する光路を指し、測定光の光軸とは、測定光の光束の中心光線が進行する光路を指す。
 移動鏡16を傾けることによってチルト補正を行う構成において、上記の条件を満足しない場合は、コリメート光が固定鏡15および移動鏡16に対して斜めに入射していても、チルト補正のために移動鏡16を特定の方向(移動鏡16の後述する最果ての位置で測定光のビーム中心と参照光のビーム中心とが並ぶ方向)に傾けたときに、その傾き角によっては、コリメート光の入射角がゼロになってしまう場合があり、この場合は、参照光源21への戻り光の入射を回避することができない。つまり、戻り光が参照光源21に入射し、カオス的な振る舞いによって参照光検出器25にて信号を検出することができなくなる。
 しかし、上記の条件を満足することにより、チルト補正のために移動鏡16を特定の方向に傾けても、コリメート光の固定鏡15および移動鏡16に対する斜め入射を実現することができ、参照光源21への戻り光の入射を回避することができる。
 また、図5(a)は、BS13と光路合成ミラー23との間の光路中で、参照光の光軸と測定光の光軸とが交差する場合の、上記両光軸のなす角度θを模式的に示している。この図5(a)は、補正部30によって移動鏡16を傾ける場合は図4の構成に対応しており、補正部30によって固定鏡15を傾ける場合は図1の構成に対応している。なお、参照光の光軸と測定光の光軸とが交差する位置は、絞りA1の位置であってもよいし、それ以外の位置であってもよい。また、参照光の光軸と測定光の光軸とは、同一平面内で交差する位置関係にあってもよいし、ねじれた位置関係にあってもよい。後者の場合、参照光の光軸と測定光の光軸とのなす角度としては、第1の方向でのなす角度と、第1の方向に垂直な第2の方向でのなす角度とを考えてもよい。
 BS13から移動鏡16が最も離れた位置(最果ての位置とも称する)にあるときの、上記両光軸の交点から移動鏡16の最果ての位置までの距離をa(mm)とし、上記位置における測定光の光束中心と参照光の光束中心との距離をb(mm)とすると、角度θ=tan-1(b/a)で表わされる。図4の構成では、a=20mm、b=0.87mmであり、それゆえ、角度θ=tan-1(b/a)=2.5度となる。
 上記両光軸が交差する場合、比b/aに対応する角度、すなわち、tan-1(b/a)は、補正部30によって傾けることができる移動鏡16の傾き角の最大値よりも大きいことが望ましい。このような条件を満足することによっても、コリメート光の固定鏡15および移動鏡16に対する斜め入射を実現して、参照光源21への戻り光の入射を回避できる効果を得ることができる。上記の例では、比b/aに対応する角度(2.5度)は、移動鏡16の傾き角の最大値(0.1度)よりも大きくなっており、上記の条件を満足する。
 また、図5(b)は、BS13と光路合成ミラー23との間の光路中で、参照光の光軸と測定光の光軸とが交差しない場合の、上記両光軸のなす角度θ’を模式的に示している。上記両光軸が交差しない場合は、以下の条件を満足してもよい。すなわち、BS13から移動鏡16が最も離れた位置(最果ての位置)にあるときの、参照光用コリメート光学系22から移動鏡16の最果ての位置までの距離をa’(mm)とし、上記位置における測定光の光束中心と参照光の光束中心との距離をb’(mm)としたときに、比b’/a’に対応する角度、すなわち、tan-1(b’/a’)が、補正部30によって傾けることができる移動鏡16の傾き角の最大値よりも大きければよい。この場合でも、コリメート光の固定鏡15および移動鏡16に対する斜め入射を実現して、参照光源21への戻り光の入射を回避できる効果を得ることができる。
 すなわち、参照光の光軸と測定光の光軸とのなす角度は、tan-1(b/a)で表わされる場合もあるし、tan-1(b’/a’)で表わされる場合もあるが、いずれの場合でも、上記両光軸のなす角度が、補正部30によって傾けることができる移動鏡16の傾き角の最大値よりも大きければ、参照光源21への戻り光の入射を回避することができる。なお、上記両光軸がなす角度は、部品の組み付け誤差(0.5度)を考慮して設定されていればよく、例えば0.5~2.5度の範囲内で設定可能である。
 また、補正部30が固定鏡15を傾けることによってチルト補正を行う図1の構成では、BS13と光路合成ミラー23との間の光路中における、参照光の光軸と測定光の光軸とのなす角度が、補正部30によって傾けることができる固定鏡15の傾き角の最大値よりも大きければよい。図1の構成では、参照光の光軸と測定光の光軸とのなす角度は例えば2.5度であり、固定鏡15の傾き角の最大値は0.1度であるため、上記の条件を満足する。
 固定鏡15を傾けることによってチルト補正を行う構成において、上記の条件を満足しない場合は、コリメート光が固定鏡15に対して斜めに入射していても、チルト補正のために固定鏡15を特定の方向(固定鏡15の位置で測定光のビーム中心と参照光のビーム中心とが並ぶ方向)に傾けたときに、その傾き角によっては、コリメート光の入射角がゼロになってしまう場合があり、この場合は、参照光源21への戻り光の入射を回避することができず、カオス的な振る舞いによって参照光検出器25にて信号を検出することができなくなる。
 しかし、上記の条件を満足することにより、チルト補正のために固定鏡15を特定の方向に傾けても、コリメート光の固定鏡15に対する斜め入射を実現することができ、参照光源21への戻り光の入射を回避することができる。
 また、コリメート光は、固定鏡15に対して斜めに入射することにより、移動鏡16に対しても斜めに入射する。このとき、固定鏡15に対するコリメート光の入射角は、BS13から最も離れた位置(最果ての位置)にある移動鏡16に入射する測定光の光束内で、コリメート光が傾いて移動鏡16に入射するときの傾き角の最大値以下の角度であることが望ましい。つまり、固定鏡15に対するコリメート光の入射角の上限は、最果ての位置にある移動鏡16に入射する測定光の光束内でコリメート光が傾くことができる角度の最大値に等しい。
 上記の条件を満足する場合、コリメート光(参照光)が固定鏡15に対して斜めに入射し、かつ、移動鏡16に対して斜めに入射するときでも、測定光の光路と同等の光路でコリメート光を伝搬させることができる。したがって、測定干渉光の計測時の移動鏡16の位置の変動を、参照光検出器25で確実に検知することができる。
 なお、測定光の光束径が1mmよりも小さいと、回折によってレーザ光が広がってしまい、光学系を構成するのが困難となる。また、測定光の光束径が10mmよりも大きいと、10mmよりも大きな有効径の反射面を持つ移動鏡16を作製することが必要となる。反射面が大きいと面精度を高精度に保つことが困難となるため、移動鏡16の作製が困難となる。以上のことを考慮すると、測定光の光束径は1mm以上10mm以下とすることが望ましい。
 また、BS13から移動鏡16が最も離れた位置(最果ての位置)にあるときの、測定光用コリメート光学系12から移動鏡16の最果ての位置までの距離をf(mm)とし、測定光用コリメート光学系12にてコリメートされた光の光束径(直径)をe(mm)とする。fは、参照光用コリメート光学系22から移動鏡16の最果ての位置までの距離と等しく、41.5mm(表3の項目(1)(2)(4)の和+表1の項目(5)の変位量の半分)であり、e=5mm(表1の項目(1)参照)である。したがって、比e/fに対応する角度、すなわち、tan-1(e/f)は、6.87度であり、固定鏡15に対するコリメート光(参照光)の入射角(2.5度)は、比e/fに対応する角度よりも小さいと言える。
 このように、固定鏡15に対するコリメート光の入射角が、比e/fに対応する角度よりも小さい場合、反射面(例えば固定鏡15の反射面)において、測定光の光束径の領域内に、参照光の光束が入る。つまり、測定光と参照光とは、反射面の同じ領域内で反射される。これにより、測定光の情報を参照光によって測定することができる。
 また、参照光用コリメート光学系22によってコリメート光に変換された参照光の光束径は、2mmであり(表2の項目(1)参照)、測定光用コリメート光学系12によってコリメート光に変換された測定光の光束径5mm(表1の項目(1)参照)よりも小さい。
 参照光の光束径が大きいと、チルト誤差に対する参照光検出器25の感度が高くなり、チルト誤差が少し生じただけでも、参照光検出器25で検知される、上記チルト誤差によって生じる干渉縞の本数が増大する。この結果、参照光検出器25での参照干渉光の検出結果に基づいて、補正部30がチルト誤差を検出することができなくなる。
 しかし、参照光の光束径を測定光の光束径よりも小さくすることにより、チルト誤差に対する感度を、測定光学系10側よりも参照光学系20側で鈍くすることができ、参照光学系20側での、チルト誤差によって生じる干渉縞の本数の増大を抑えることができる。これにより、外部振動や衝撃によってチルト誤差が大きい場合でも、補正部30は、参照光検出器25での参照干渉光の検出結果に基づいて、チルト誤差を確実に検知することが可能となる。
 〔サンプリングタイミングの補正について〕
 本実施形態では、参照光が固定鏡15および移動鏡16に対して斜めに入射するため、参照光がそれらに垂直に入射する構成に比べて、参照光の干渉強度が最大となる移動鏡16の位置がずれる。つまり、光路差が参照光の波長の整数倍となる位置とは異なる位置に移動鏡があるときに、参照光の干渉強度が最大となる。これは、参照光の波長(レーザ発振波長)が見かけ上変動しているのと同じである。この結果、参照光検出器25での検出結果に基づいて信号処理部31が生成する信号のパルス(サンプリングタイミング)も、正規のパルス(光路差が参照光の波長の整数倍となるタイミング)からずれる。
 ここで、測定光として特定波長λの光(輝線スペクトル)を用いた場合、サンプリングタイミングが正規のタイミングからずれると、測定干渉光のインターフェログラムを演算部2でフーリエ変換したときに得られるスペクトルでは、図6で示すように、特定波長λ(波数1/λ)の透過率ピーク(強度ピーク)は、波長λ(波数1/λ)にシフトして現れることになる。したがって、波長λの特定波長λからのずれを見ることで、サンプリングタイミングのずれを容易に把握することができる。
 そこで、本実施形態では、演算部2が、波長λの特定波長λからのずれに基づいてサンプリングタイミングを補正するようにしている。これにより、参照光が固定鏡15に対して斜めに入射する構成であっても、上記したレーザ発振波長の見かけ上の変動を抑えることができ、適切なタイミングでサンプリングされたインターフェログラムのフーリエ変換により、分光分析を精度よく行うことができる。
 〔測定光および参照光の波長帯域について〕
 多くの材料は、指紋領域と呼ばれる近赤外光および赤外光に吸収帯を持つことが多く、そのため、分光分析は、近赤外光および赤外光を用いて行うことが多い。このような分光分析では、測定光学系10および参照光学系20における光透過面(例えばBS13の光透過面)に反射防止コート(ARコート)を施して光の利用効率を高めることが多い。
 このとき、反射防止コートの設計上、広い帯域で反射防止特性を持たせることは困難である。また、反射を防止する波長帯域を広くとると、その波長帯域で反射率が上がってしまう。したがって、測定光が近赤外光や赤外光である場合、参照光を赤色光(赤色半導体レーザ光)として、参照光と測定光の波長帯域を近づけることにより、反射防止コートの設計を容易にすることができる。
 また、広い波長範囲で所定の分岐比(例えば50:50)のBS13を構成することは光学設計上困難であるが、上記のように測定光と参照光との波長帯域を近づけることにより、所定の分岐比のビームスプリッタを設計することが容易となる。
 〔補足〕
 ファイバへのカップリングは、ファイバ端のNAやコア径に依存して決まるが、最も効率よくカップリングするのは、1:1の結合倍率となるバットカップリングの場合である。したがって、薄肉レンズで近似したモデルの場合、レーザ光源の射出開口に光が戻らないための条件は、ファイバコア半径サイズd(mm)とコリメートレンズ主点位置から反射面までの距離L(mm)とによって決まる。すなわち、d/Lの角度Φ(rad)以上の入射角でコリメート光を固定鏡に斜め入射させることで、レーザ光源への戻り光の影響をなくすことができる。例えば、レンズ主点位置から反射面までの距離をL=30(mm)とし、レーザ光源の射出開口の半径サイズをd=0.012(mm)としたとき、戻り光の影響をなくすことができるコリメート光の必要傾き角度(固定鏡への入射角)Φは、Φ=0.004(rad)=1.37(arcmin)となる。
 本実施形態で参照光源21は、狭帯域化素子を含み、可干渉距離が長く、温度変化に対して波長変動の小さいレーザであることが望ましい。この場合、参照光源21を温度コントロールすることにより、波長変動をかなり小さく抑えて安定させることができ、小型で安定したコヒーレント光源を実現することができる。その結果、本実施形態の干渉計1を用いた計則において、安定した測定結果を得ることができる。
 ここで、上記の狭帯域化素子としては、参照光源21が出射した光を一部透過し、スペクトル線幅を狭帯域化して一部を反射する機能を有するもの、具体的には、VHG(ボリュームホログラフィー)やFBG(ファイバーグレーティング)などの回折格子が望ましい。このような回折格子においては、コヒーレント光の発光波長の一部が反射回折光となり、半導体レーザの活性層に導かれることで、誘導放出を引き起こし、発光波長を反射回折光の波長にロックすることができる。反射回折光の波長は、回折格子で決まる幅に制限を受けるため、半導体レーザの発光波長のスペクトル線は、特定のモードに固定され、狭帯域化される。
 なお、本実施形態では、干渉計1が測定用光源11を内蔵し、測定用光源11から出射される測定光を用いて測定干渉光を得る構成について説明したが、本実施形態の干渉計1は、必ずしも測定用光源11を内蔵していなくてもよい。つまり、測定干渉光を得るための測定光は、干渉計が内蔵している光源から出射される光であってもよいし、干渉計の外部から入射してくる光であってもよい。
 したがって、例えば、(1)干渉計の外部で試料に光を当てて、試料を介して得られる光を干渉計に入射させて分光分析を行う場合、(2)干渉計の外部から導入した光を用いて干渉計にて干渉光を生成し、その干渉光を試料に当てて分光分析を行う場合、(3)干渉計の外部から入射する光そのものを分析の対象とする場合、のいずれについても、本実施形態の干渉計を適用することが可能である。
 以上、本実施形態の干渉計は、測定光をビームスプリッタで分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた測定干渉光を測定光検出器に導く測定光学系と、参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた参照干渉光を参照光検出器に導く参照光学系とを備え、前記参照光検出器での検出結果に基づいて前記移動鏡の位置を検知しながら、前記測定干渉光を計測する干渉計であって、前記参照光源は、半導体レーザ、または前記半導体レーサから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、前記参照光学系は、前記参照光源から出射されるレーザ光をコリメート光に変換する参照光用コリメート光学系を有しており、前記コリメート光は、前記固定鏡に対して斜めに入射する構成である。
 上記の構成によれば、半導体レーザやレーザ光源からなる参照光源は、参照光源として一般的に用いられているHe-Neレーザに比べて小型であり、コリメート光学系を用いる場合でも、小型のコリメート光学系を用いることができるので、小型の干渉計を実現することができる。
 また、コリメート光は、固定鏡に対して斜めに入射するので、固定鏡での反射光の光路は、固定鏡への入射光の光路と若干ずれる。これにより、固定鏡で反射された参照光がビームスプリッタを介して参照光源側に戻ってきたとしても、その戻り光が、参照光源(特に光射出部分)に入射するのを回避することができる。したがって、参照光源の光出射側に拡大レンズを配置しなくても(コリメート光を利用しながら)、ハーモニック共振によってレーザの発振が不安定になるのを回避することができ、参照光検出器での検出結果に基づく移動鏡の位置検知を安定して行うことができる。
 本実施形態の干渉計は、前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知するとともに、前記移動鏡または前記固定鏡を傾けることによって前記誤差を補正する補正部をさらに備え、前記固定鏡に対する前記コリメート光の入射角は、前記補正部によって傾けることができる前記移動鏡または前記固定鏡の傾き角の最大値よりも大きいことが望ましい。
 この構成では、2光路間での傾き誤差の補正(チルト補正)のために、補正部によって移動鏡または固定鏡を傾けても、コリメート光の固定鏡に対する入射角がゼロ(垂直入射)となることがない。したがって、補正部によってチルト補正を行う構成であっても、コリメート光を固定鏡に対して常に斜めに入射させて、参照光源への戻り光の入射を回避することができる。
 本実施形態の干渉計において、前記補正部は、前記移動鏡を傾けることによって、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を補正し、前記参照光の光軸と前記測定光の光軸とのなす角度は、前記補正部によって傾けることができる前記移動鏡の傾き角の最大値よりも大きいことが望ましい。
 補正部によって移動鏡を傾けることによってチルト補正を行う構成において、上記の条件を満足していれば、移動鏡を特定の方向に傾けても、戻り光が参照光源に入射するのを回避することができる。
 本実施形態の干渉計において、前記補正部は、前記固定鏡を傾けることによって、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を補正し、前記参照光の光軸と前記測定光の光軸とのなす角度は、前記補正部によって傾けることができる前記固定鏡の傾き角の最大値よりも大きいことが望ましい。
 補正部によって固定鏡を傾けることによってチルト補正を行う構成において、上記の条件を満足していれば、固定鏡を特定の方向に傾けても、戻り光が参照光源に入射するのを回避することができる。
 本実施形態の干渉計において、前記固定鏡に対する前記コリメート光の入射角は、前記ビームスプリッタから最も離れた位置にある前記移動鏡に入射する前記測定光の光束内で、前記コリメート光が傾いて前記移動鏡に入射するときの傾き角の最大値以下の角度であることが望ましい。
 この場合、コリメート光が固定鏡に対して斜めに入射する構成であっても、測定光の光路と同等の光路でコリメート光を伝搬させることができ、測定干渉光の計測時の移動鏡の位置の変動を、参照光検出器で確実に検知することができる。
 本実施形態の干渉計において、前記測定光学系は、前記測定光をコリメート光に変換する測定光用コリメート光学系を有しており、前記ビームスプリッタから前記移動鏡が最も離れた位置にあるときの、前記測定光用コリメート光学系から前記移動鏡の前記位置までの距離をfとし、前記測定光用コリメート光学系にてコリメートされた光の光束径をeとすると、前記固定鏡に対する前記参照光学系のコリメート光の入射角は、比e/fに対応する角度よりも小さいことが望ましい。
 上記の条件を満足する場合、反射面(例えば固定鏡の反射面)において、測定光の光束径の領域内に参照光の光束が入り、測定光と参照光とが反射面の同じ領域内で反射されるので、測定光の情報を参照光によって測定することができる。
 本実施形態の干渉計において、前記補正部は、前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知する信号処理部と、前記移動鏡または前記固定鏡を傾けることにより、前記移動鏡または前記固定鏡で反射される光の光路を補正する光路補正機構と、前記信号処理部にて検出された前記傾きの誤差に基づいて、前記光路補正機構を制御する制御部とを含んでいてもよい。
 信号処理部にて検出されたチルト誤差に基づいて、制御部が光路補正機構を制御し、光路補正機構が移動鏡または固定鏡での反射光の光路を補正することにより、チルト補正を確実に行うことができる。
 本実施形態の干渉計において、前記参照光検出器は、分割センサで構成されており、前記補正部は、前記分割センサの各素子からの出力に基づいて、前記測定光の前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知することが望ましい。
 補正部は分割センサの各素子からの出力(例えば位相差)に基づいて、一方の光に対する他方の光の傾き方向および傾き量を検知することができ、その検知結果に基づいて、チルト補正を確実に行うことができる。
 本実施形態の干渉計において、前記測定光学系は、前記測定光をコリメート光に変換する測定光用コリメート光学系を有しており、前記参照光用コリメート光学系によってコリメート光に変換された参照光の光束径は、前記測定光用コリメート光学系によってコリメート光に変換された測定光の光束径よりも小さいことが望ましい。
 この構成では、参照光学系における、固定鏡での反射光と移動鏡での反射光との相対的な傾きの誤差(チルト誤差)に対する感度を、測定光学系におけるチルト誤差に対する感度よりも鈍くすることができ、参照光検出器での、チルト誤差による干渉縞の本数の増大を抑えることができる。これにより、外部振動や衝撃によってチルト誤差が大きい場合でも、補正部は、参照光学系の参照光検出器での検出結果に基づいて、チルト誤差を確実に検知することができる。
 本実施形態のフーリエ変換分光分析装置は、上述した本実施形態の干渉計と、前記干渉計の前記測定光検出器で前記測定干渉光を受光することによって得られるインターフェログラムをサンプリングしてフーリエ変換し、前記測定光に含まれる波長のスペクトルを生成する演算部とを備えていることが望ましい。
 上述したように、本実施形態の干渉計によれば、戻り光によってレーザの発振が不安定になるのを回避して、移動鏡の位置検知を安定して行うことができる。したがって、このような干渉計の測定光検出器で得られるインターフェログラムを演算部でサンプリングしてフーリエ変換するフーリエ変換分光分析装置(FTIR)では、移動鏡の位置検知に基づく分光分析を安定して行うことができる。
 本実施形態のフーリエ変換分光分析装置において、前記干渉計は、前記参照光学系の前記参照光検出器での検出結果に基づいて、前記インターフェログラムをサンプリングする際のタイミングを示す信号を生成する信号生成部をさらに備えており、前記演算部は、前記測定光として特定波長の光を用いたときの測定干渉光のインターフェログラムを、前記信号生成部からの信号に基づくタイミングでサンプリングしてフーリエ変換したときに得られる波長の、前記特定波長からのずれに基づいて、前記サンプリングのタイミングを補正することが望ましい。
 本実施形態の干渉計では、参照光が固定鏡(および移動鏡)に対して斜めに入射するため、光路差が参照光の波長の整数倍となる位置からずれた位置に移動鏡があるときに、参照光の干渉強度が最大となる。これは、参照光の波長が見かけ上変動しているのと同じである。この結果、参照光検出器での検出結果に基づいて生成される信号のサンプリングタイミングも、正規のタイミングからずれる。
 しかし、このサンプリングタイミングのずれは、測定光として特定波長の光(輝線スペクトル)を用い、測定干渉光のインターフェログラムをフーリエ変換したときに得られる波長の特定波長からのずれを見ることで、容易に把握することができる。したがって、このようなフーリエ変換後の波長の特定波長からのずれに基づいてサンプリングタイミングを補正することにより、参照光が固定鏡に対して斜めに入射する構成であっても、レーザ発振波長の見かけ上の変動を抑えて、分光分析を精度よく行うことができる。
 本実施形態のフーリエ変換分光分析装置において、前記測定光は、近赤外光または赤外光であり、前記参照光は、赤色光であることが望ましい。
 測定光と参照光との波長帯域が近いので、ビームスプリッタの光透過面に反射防止コートを施して光利用効率を高める場合でも、反射を防止する波長帯域を狭くすることができ、反射防止コートの設計を容易にすることができる。
 本発明は、マイケルソン型の干渉計、およびそれを用いて分光分析を行うフーリエ変換分光分析装置に利用可能である。
   1   干渉計
   2   演算部
  10   測定光学系
  11   測定用光源
  12   測定光用コリメート光学系
  13   BS(ビームスプリッタ)
  15   固定鏡
  16   移動鏡
  18   測定光検出器
  20   参照光学系
  21   参照光源
  22   参照光用コリメート光学系
  25   参照光検出器
  30   補正部
  31   信号処理部(補正部、信号生成部)
  32   光路補正装置(補正部)
  33   制御部(補正部)

Claims (12)

  1.  測定光をビームスプリッタで分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた測定干渉光を測定光検出器に導く測定光学系と、
     参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合波し、合波して得られた参照干渉光を参照光検出器に導く参照光学系とを備え、前記参照光検出器での検出結果に基づいて前記移動鏡の位置を検知しながら、前記測定干渉光を計測する干渉計であって、
     前記参照光源は、半導体レーザ、または前記半導体レーサから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、
     前記参照光学系は、前記参照光源から出射されるレーザ光をコリメート光に変換する参照光用コリメート光学系を有しており、
     前記コリメート光は、前記固定鏡に対して斜めに入射することを特徴とする干渉計。
  2.  前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知するとともに、前記移動鏡または前記固定鏡を傾けることによって前記誤差を補正する補正部をさらに備え、
     前記固定鏡に対する前記コリメート光の入射角は、前記補正部によって傾けることができる前記移動鏡または前記固定鏡の傾き角の最大値よりも大きいことを特徴とする請求項1に記載の干渉計。
  3.  前記補正部は、前記移動鏡を傾けることによって、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を補正し、
     前記参照光の光軸と前記測定光の光軸とのなす角度は、前記補正部によって傾けることができる前記移動鏡の傾き角の最大値よりも大きいことを特徴とする請求項2に記載の干渉計。
  4.  前記補正部は、前記固定鏡を傾けることによって、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を補正し、
     前記参照光の光軸と前記測定光の光軸とのなす角度は、前記補正部によって傾けることができる前記固定鏡の傾き角の最大値よりも大きいことを特徴とする請求項2に記載の干渉計。
  5.  前記固定鏡に対する前記コリメート光の入射角は、前記ビームスプリッタから最も離れた位置にある前記移動鏡に入射する前記測定光の光束内で、前記コリメート光が傾いて前記移動鏡に入射するときの傾き角の最大値以下の角度であることを特徴とする請求項1に記載の干渉計。
  6.  前記測定光学系は、前記測定光をコリメート光に変換する測定光用コリメート光学系を有しており、
     前記ビームスプリッタから前記移動鏡が最も離れた位置にあるときの、前記測定光用コリメート光学系から前記移動鏡の前記位置までの距離をfとし、前記測定光用コリメート光学系にてコリメートされた光の光束径をeとすると、
     前記固定鏡に対する前記参照光学系のコリメート光の入射角は、比e/fに対応する角度よりも小さいことを特徴とする請求項1に記載の干渉計。
  7.  前記補正部は、
     前記参照光検出器での検出結果に基づいて、前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知する信号処理部と、
     前記移動鏡または前記固定鏡を傾けることにより、前記移動鏡または前記固定鏡で反射される光の光路を補正する光路補正機構と、
     前記信号処理部にて検出された前記傾きの誤差に基づいて、前記光路補正機構を制御する制御部とを含んでいることを特徴とする請求項2に記載の干渉計。
  8.  前記参照光検出器は、分割センサで構成されており、
     前記補正部は、前記分割センサの各素子からの出力に基づいて、前記測定光の前記移動鏡での反射光と前記固定鏡での反射光との相対的な傾きの誤差を検知することを特徴とする請求項2に記載の干渉計。
  9.  前記測定光学系は、前記測定光をコリメート光に変換する測定光用コリメート光学系を有しており、
     前記参照光用コリメート光学系によってコリメート光に変換された参照光の光束径は、前記測定光用コリメート光学系によってコリメート光に変換された測定光の光束径よりも小さいことを特徴とする請求項2に記載の干渉計。
  10.  請求項1に記載の干渉計と、
     前記干渉計の前記測定光検出器で前記測定干渉光を受光することによって得られるインターフェログラムをサンプリングしてフーリエ変換し、前記測定光に含まれる波長のスペクトルを生成する演算部とを備えていることを特徴とするフーリエ変換分光分析装置。
  11.  前記干渉計は、前記参照光学系の前記参照光検出器での検出結果に基づいて、前記インターフェログラムをサンプリングする際のタイミングを示す信号を生成する信号生成部をさらに備えており、
     前記演算部は、前記測定光として特定波長の光を用いたときの測定干渉光のインターフェログラムを、前記信号生成部からの信号に基づくタイミングでサンプリングしてフーリエ変換したときに得られる波長の、前記特定波長からのずれに基づいて、前記サンプリングのタイミングを補正することを特徴とする請求項10に記載のフーリエ変換分光分析装置。
  12.  前記測定光は、近赤外光または赤外光であり、
     前記参照光は、赤色光であることを特徴とする請求項10に記載のフーリエ変換分光分析装置。
PCT/JP2011/070208 2010-10-28 2011-09-06 干渉計およびフーリエ変換分光分析装置 WO2012056813A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11835954.6A EP2634551B1 (en) 2010-10-28 2011-09-06 Interferometer and fourier-transform spectroscopic analyzer
PL11835954T PL2634551T3 (pl) 2010-10-28 2011-09-06 Interferometr i analizator spektroskopowy z transformacją fouriera
CN201180052338.6A CN103201603B (zh) 2010-10-28 2011-09-06 干涉仪以及傅立叶变换分光分析装置
US13/881,562 US9109869B2 (en) 2010-10-28 2011-09-06 Interferometer and fourier-transform spectroscopic analyzer
DK11835954.6T DK2634551T3 (da) 2010-10-28 2011-09-06 Interferometer og apparat til fourier-transformations spektroskopisk analyse
JP2012540730A JP5655859B2 (ja) 2010-10-28 2011-09-06 干渉計およびフーリエ変換分光分析装置
ES11835954T ES2879554T3 (es) 2010-10-28 2011-09-06 Interferómetro y analizador espectroscópico de transformada de Fourier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-242411 2010-10-28
JP2010242411 2010-10-28

Publications (1)

Publication Number Publication Date
WO2012056813A1 true WO2012056813A1 (ja) 2012-05-03

Family

ID=45993543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070208 WO2012056813A1 (ja) 2010-10-28 2011-09-06 干渉計およびフーリエ変換分光分析装置

Country Status (9)

Country Link
US (1) US9109869B2 (ja)
EP (1) EP2634551B1 (ja)
JP (1) JP5655859B2 (ja)
CN (1) CN103201603B (ja)
DK (1) DK2634551T3 (ja)
ES (1) ES2879554T3 (ja)
PL (1) PL2634551T3 (ja)
PT (1) PT2634551T (ja)
WO (1) WO2012056813A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137328A (ja) * 2013-01-18 2014-07-28 Konica Minolta Inc フーリエ変換型分光計およびフーリエ変換型分光計の波長校正方法
WO2017135356A1 (ja) * 2016-02-04 2017-08-10 日本分光株式会社 フーリエ変換型分光装置を用いたスペクトル測定方法
KR20200128580A (ko) * 2018-04-26 2020-11-13 브루커 옵틱 게엠베하 능동적 재조정 기능을 갖는 역간섭계
US11768154B2 (en) 2021-02-17 2023-09-26 Shimadzu Corporation Fourier transform infrared spectrophotometer

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835327B2 (ja) * 2011-07-13 2015-12-24 コニカミノルタ株式会社 干渉計およびそれを備えた分光器
WO2015171566A1 (en) * 2014-05-06 2015-11-12 Oregon Health & Science University Aqueous cell differentiation in anterior uveitis using optical coherence tomography
KR102215750B1 (ko) 2014-07-15 2021-02-17 삼성디스플레이 주식회사 레이저 어닐 장치 및 이를 이용한 레이저 어닐 방법
KR102288353B1 (ko) 2015-02-27 2021-08-11 삼성디스플레이 주식회사 레이저 광학계 및 이를 포함하는 레이저 어닐링 장치
EP3270142B1 (en) * 2015-03-13 2019-06-26 Shimadzu Corporation Fourier transform spectrophotometer
WO2017011752A1 (en) * 2015-07-15 2017-01-19 Massachusetts Institute Of Technology Systems, apparatus, and methods for spectral imaging
JP6441759B2 (ja) * 2015-07-24 2018-12-19 株式会社堀場製作所 分光分析器に用いられる光検出器の出力補正方法
JP6833426B2 (ja) * 2016-09-23 2021-02-24 大塚電子株式会社 分光測定装置
CN107228632B (zh) * 2017-05-18 2019-12-10 广东工业大学 一种基于加窗傅里叶变换的位移场层析测量装置及方法
CN112074724B (zh) * 2018-05-02 2023-10-27 仪景通株式会社 数据取得装置
CN110595615B (zh) * 2018-06-12 2020-12-25 中国科学院西安光学精密机械研究所 基于压电陶瓷驱动型多光程傅里叶变换高光谱成像装置
CN112567196B (zh) * 2018-09-03 2023-07-11 株式会社岛津制作所 干涉仪移动镜位置测定装置和傅里叶变换红外分光光谱仪
JP7215060B2 (ja) * 2018-10-12 2023-01-31 ウシオ電機株式会社 分光分析用光源、分光分析装置及び分光分析方法
JP7275581B2 (ja) * 2019-01-08 2023-05-18 株式会社島津製作所 フーリエ変換赤外分光装置
CN111239762A (zh) * 2020-02-11 2020-06-05 天津大学 一种光学频率梳的工件快速成像方法
CN111609997B (zh) * 2020-05-07 2022-04-19 中国科学院光电技术研究所 一种适用于透射式光学元件光程均匀性测量的检测装置
US11474029B2 (en) * 2020-08-03 2022-10-18 Shimadzu Corporation Spectrophotometer
US20240053136A1 (en) * 2020-12-18 2024-02-15 Rapid Phenotyping Pty Limited Method of Processing Interferometry Signal, and Associated Interferometer
WO2023024018A1 (zh) * 2021-08-26 2023-03-02 江苏旭海光电科技有限公司 一种分段扫描傅里叶变换光谱仪
CN114397092B (zh) * 2022-01-14 2024-01-30 深圳迈塔兰斯科技有限公司 一种测量超表面相位的方法及系统
CN114354141B (zh) * 2022-01-14 2024-05-07 深圳迈塔兰斯科技有限公司 一种基于频域测量超表面相位的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413426A (en) * 1987-02-17 1989-01-18 Shimadzu Corp Monochromatic light source dual luminous flux interferometer
JPH0225310A (ja) 1988-07-14 1990-01-26 Kobe Steel Ltd アルミニウム合金製金型及びその製造方法
JPH02253103A (ja) * 1989-03-27 1990-10-11 Shimadzu Corp 二光束干渉計
JPH03161986A (ja) * 1989-11-21 1991-07-11 Toshiba Corp 半導体レーザモジュール
JP2010050137A (ja) * 2008-08-19 2010-03-04 Nec Corp 光モジュール、それを用いた光通信装置及び反射光路設定方法
WO2011074452A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 干渉計及び該干渉計を用いたフーリエ分光分析器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58727A (ja) * 1981-06-24 1983-01-05 Agency Of Ind Science & Technol フ−リエ変換分光装置
US4711573A (en) * 1983-03-07 1987-12-08 Beckman Instruments, Inc. Dynamic mirror alignment control
JP2784468B2 (ja) * 1988-07-15 1998-08-06 株式会社アドバンテスト 光干渉信号抽出装置
JPH02238334A (ja) * 1989-03-13 1990-09-20 Sumitomo Electric Ind Ltd スケールフアクタを安定化した干渉光学測定装置
GB2231713B (en) 1989-03-30 1994-03-23 Toshiba Kk Semiconductor laser apparatus
JPH063401B2 (ja) * 1989-12-29 1994-01-12 株式会社島津製作所 干渉分光光度計
JPH05231939A (ja) * 1992-02-21 1993-09-07 Hitachi Ltd ステップスキャンフーリエ変換赤外分光装置
JPH063192A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ分光装置における短波長領域測定のためのサンプリング用光路差の決定方法
JPH0875434A (ja) * 1994-09-05 1996-03-22 Tokyo Seimitsu Co Ltd 表面形状測定装置
DE19704598C1 (de) * 1997-02-07 1998-06-18 Bruker Analytische Messtechnik Verfahren zur Gewinnung eines optischen FT-Spektrums
US6473185B2 (en) * 2001-03-07 2002-10-29 Plx, Inc. Alignment free interferometer and alignment free method of profiling object surfaces
US7349072B2 (en) * 2003-10-09 2008-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7292347B2 (en) * 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
US7889348B2 (en) * 2005-10-14 2011-02-15 The General Hospital Corporation Arrangements and methods for facilitating photoluminescence imaging
JP5305732B2 (ja) * 2008-05-13 2013-10-02 キヤノン株式会社 干渉計
JP5330749B2 (ja) * 2008-07-01 2013-10-30 株式会社トプコン 測定装置
JP2011040547A (ja) * 2009-08-10 2011-02-24 Canon Inc 計測装置、露光装置及びデバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413426A (en) * 1987-02-17 1989-01-18 Shimadzu Corp Monochromatic light source dual luminous flux interferometer
JPH0225310A (ja) 1988-07-14 1990-01-26 Kobe Steel Ltd アルミニウム合金製金型及びその製造方法
JPH02253103A (ja) * 1989-03-27 1990-10-11 Shimadzu Corp 二光束干渉計
JPH03161986A (ja) * 1989-11-21 1991-07-11 Toshiba Corp 半導体レーザモジュール
JP2010050137A (ja) * 2008-08-19 2010-03-04 Nec Corp 光モジュール、それを用いた光通信装置及び反射光路設定方法
WO2011074452A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 干渉計及び該干渉計を用いたフーリエ分光分析器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2634551A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014137328A (ja) * 2013-01-18 2014-07-28 Konica Minolta Inc フーリエ変換型分光計およびフーリエ変換型分光計の波長校正方法
WO2017135356A1 (ja) * 2016-02-04 2017-08-10 日本分光株式会社 フーリエ変換型分光装置を用いたスペクトル測定方法
JPWO2017135356A1 (ja) * 2016-02-04 2018-05-31 日本分光株式会社 フーリエ変換型分光装置を用いたスペクトル測定方法
US10317283B2 (en) 2016-02-04 2019-06-11 Jasco Corporation Spectrum measurement method using fourier transform type spectroscopic device
KR20200128580A (ko) * 2018-04-26 2020-11-13 브루커 옵틱 게엠베하 능동적 재조정 기능을 갖는 역간섭계
JP2021512332A (ja) * 2018-04-26 2021-05-13 ブルーカー オプティク ゲーエムベーハ− 能動的な再調節が行われるレトロ型干渉計
KR102312240B1 (ko) 2018-04-26 2021-10-12 브루커 옵틱 게엠베하 능동적 재조정 기능을 갖는 역간섭계
US11326950B2 (en) 2018-04-26 2022-05-10 Bruker Optics Gmbh & Co. Kg Retro-interferometer having active readjustment
US11768154B2 (en) 2021-02-17 2023-09-26 Shimadzu Corporation Fourier transform infrared spectrophotometer

Also Published As

Publication number Publication date
EP2634551A1 (en) 2013-09-04
CN103201603B (zh) 2015-05-20
US9109869B2 (en) 2015-08-18
ES2879554T3 (es) 2021-11-22
EP2634551B1 (en) 2021-05-19
JPWO2012056813A1 (ja) 2014-03-20
EP2634551A4 (en) 2018-04-04
US20130222790A1 (en) 2013-08-29
DK2634551T3 (da) 2021-07-12
JP5655859B2 (ja) 2015-01-21
PL2634551T3 (pl) 2021-11-02
CN103201603A (zh) 2013-07-10
PT2634551T (pt) 2021-07-15

Similar Documents

Publication Publication Date Title
JP5655859B2 (ja) 干渉計およびフーリエ変換分光分析装置
JP5835327B2 (ja) 干渉計およびそれを備えた分光器
US11162789B2 (en) Estimation of spatial profile of environment
JP5954979B2 (ja) 多波長干渉計を有する計測装置
US20070024860A1 (en) Dual laser high precision interferometer
JP2004037840A (ja) 分散補償器及び分散補償システム
JP5714773B2 (ja) 分光装置
WO2012073681A1 (ja) レーザ光源、干渉計および分光器
JPH11183249A (ja) 分光器
WO2011148726A1 (ja) 干渉計およびフーリエ変換分光分析装置
JP2022521709A (ja) 外部共振器レーザ装置、対応するシステム及び方法
JP4984537B2 (ja) 外部共振器型波長可変光源
JP2008186923A (ja) 外部共振器型レーザ光源装置
EP2564154B1 (en) Spectrometric instrument
JP2012242280A (ja) 検知システム、マイケルソン干渉計、および、フーリエ変換分光分析装置
JP2012132881A (ja) 干渉計およびそれを備えたフーリエ変換分光器
NZ602603B2 (en) Spectrometric instrument
JP2004173054A (ja) 分散補償器及び分散補償システム
JP2010286630A (ja) 波長分散光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540730

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011835954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE