WO2011074452A1 - 干渉計及び該干渉計を用いたフーリエ分光分析器 - Google Patents
干渉計及び該干渉計を用いたフーリエ分光分析器 Download PDFInfo
- Publication number
- WO2011074452A1 WO2011074452A1 PCT/JP2010/071983 JP2010071983W WO2011074452A1 WO 2011074452 A1 WO2011074452 A1 WO 2011074452A1 JP 2010071983 W JP2010071983 W JP 2010071983W WO 2011074452 A1 WO2011074452 A1 WO 2011074452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- reflected
- unit
- interferometer
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 75
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 230000001427 coherent effect Effects 0.000 claims description 37
- 239000013307 optical fiber Substances 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 11
- 238000004611 spectroscopical analysis Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009615 fourier-transform spectroscopy Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
- G01J3/453—Interferometric spectrometry by correlation of the amplitudes
- G01J3/4535—Devices with moving mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/027—Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
Definitions
- the present invention relates to a Fourier spectroscopic analyzer that performs Fourier transform spectroscopic analysis.
- An analysis technique called Fourier transform spectroscopy is known (for example, see Patent Document 1).
- a Michelson interferometer is known as an optical system for Fourier transform spectroscopic analysis.
- the two split lights are reflected by mirrors installed in each optical path and synthesized by the beam splitter. ing.
- a light source with a wide emission spectrum including infrared light is used, one of the light branched in the interferometer is reflected by a moving mirror (moving mirror), and the other branched light is fixed.
- the intensity profile of the light from the light source obtained by receiving the combined light (interference light) by reflecting the light with the reflected mirror (fixed mirror), creating an optical path difference between the two light paths of the branched light Gram) is Fourier transformed to obtain the included frequency spectrum.
- the spectrum absorbed by the sample to be analyzed is known by spectroscopically analyzing the transmitted light from the sample to be analyzed using Fourier transform spectroscopy.
- the Fourier spectroscopic analyzer is configured such that the optical path difference between the two optical paths is long in order to achieve high wavelength resolution. Further, the optical path difference is measured using laser light in order to obtain high accuracy. Specifically, using a helium-neon laser with a long coherence distance, interference having an optical path through which laser light passes on a different optical path from an infrared interferometer having an optical path through which infrared light (measurement beam) passes. A meter is incorporated, and the optical path difference is detected from the interval of interference fringes observed in accordance with the movement of the movable mirror (see, for example, Patent Document 2).
- the optical path through which the laser light passes and the optical path through which the infrared light passes are spatially different positions, so the length between the two optical paths is completely There is a problem that the measurement error of the optical path difference occurs due to the mismatch.
- the helium neon laser is a gas laser, it is difficult to reduce the size of the laser.
- a semiconductor laser it is conceivable to use a semiconductor laser as a substitute for a helium neon laser.
- the semiconductor laser has a large wavelength fluctuation with respect to a temperature change, and the wavelength fluctuates discontinuously like a mode hop. It is difficult to measure the optical path difference with accuracy.
- the present invention eliminates the difference between the optical path through which laser light passes and the optical path through which infrared light passes, and uses a small and high-precision interferometer capable of detecting the optical path difference with high accuracy, and the interferometer.
- a Fourier transform spectroscopic analyzer is provided.
- a combining unit that combines the second transmitted light reflected by the unit;
- a first light receiver that receives interference light of the first transmitted light and the first reflected light combined by the combining unit;
- a second light receiver that receives interference light of the second transmitted light and the second reflected light synthesized by the synthesis unit;
- An interferometer characterized by comprising:
- the second light source is a semiconductor laser
- a narrowband element that partially transmits coherent light from the second light source, narrows a spectral line width, reflects a part of the coherent light, and guides the light to the second light source;
- the interferometer according to item 1.
- the light from the first light source is light having a wavelength longer than the visible range, 3.
- the interferometer according to item 2, wherein the coherent light from the second light source is visible light having a wavelength shorter than that of the light from the first light source.
- the optical axis of the light from the first light source and the optical axis of the coherent light are an optical path from the branching unit to the first reflecting unit or the second reflecting unit that is not moved by the actuator, and from the branching unit to the actuator 2.
- An optical fiber provided with a joint upstream of at least one of the first light source and the second light source; 2.
- the interferometer according to 1 above Furthermore, a control unit is provided, The controller is Detecting the movement of the reflection mirror based on the output of the second light receiver; A Fourier spectroscopic analyzer, wherein Fourier analysis is performed based on the detection result and the output of the first light receiver.
- a monitor unit that photoelectrically converts and monitors coherent light from the second light source downstream from the branch unit;
- a control unit that controls electric power for driving the second light source, The Fourier spectroscopic analyzer according to item 7, wherein the control unit controls electric power for driving the second light source so that an output value of the monitor unit becomes constant.
- FIG. 3 is a schematic diagram of a spectrum of light incident on a light receiving sensor 14;
- FIG. A schematic diagram of the output value of the light receiving sensor with the measurement time on the horizontal axis and the light intensity on the vertical axis is shown.
- FIG. 5 is a layout diagram showing a layout of a light receiving sensor m that performs photoelectric conversion by monitoring the light intensity of coherent light from a second light source 4.
- 1 is a schematic diagram of a Fourier spectroscopic analyzer A employing a beam splitter 7 and a fixed mirror 9 that are integrated in a prism shape.
- FIG. It is a schematic diagram of an optical fiber light source.
- FIG. 1 shows a schematic diagram of a Fourier spectroscopic analyzer A according to the present embodiment.
- the Fourier spectroscopic analyzer has an interferometer L, a control unit 21 and a display 22.
- the interferometer L includes a first light source 1, a collimating lens 2, a beam splitter 3, a second light source 4, a narrow band element 5, a collimating lens 6, a beam splitter 7, a movable mirror 8, a fixed mirror 9, a beam splitter 10, and a lens. 11, a light receiving sensor 12, a lens 13, and a light receiving sensor 14.
- the first light source 1 is a light source that emits light having wavelengths in the visible range and infrared light, and a general light source such as an incandescent lamp, a fluorescent lamp, or a white LED can be used. .
- a general light source such as an incandescent lamp, a fluorescent lamp, or a white LED
- the light emitting surface is small, and it may be limited by an opening or the like.
- the collimating lens 2 is a lens that collimates the light emitted from the first light source 1.
- the second light source 4 is a light source that emits coherent light, and in the present embodiment, a semiconductor laser is employed for miniaturization.
- the semiconductor laser desirably has a single longitudinal mode. When the mode is not a single mode, it is desirable to dispose a wavelength filter that removes a mode other than the required vertical mode with the highest light intensity from the output end of the second light source 4.
- the band narrowing element 5 has a function of partially transmitting coherent light emitted from the second light source 4 and narrowing the spectral line width to reflect a part thereof.
- a diffraction grating such as VHG (volume holography) or fiber grating is desirable.
- VHG volume holography
- fiber grating part of the emission wavelength of the coherent light becomes reflected diffracted light, which is guided to the active layer of the semiconductor laser, thereby causing stimulated emission and locking the emission wavelength to the wavelength of the reflected diffracted light. Since the wavelength of the reflected diffracted light is limited by the width determined by the diffraction grating, the spectral line of the emission wavelength of the semiconductor laser can be fixed to a specific mode and narrowed.
- the collimating lens 6 has a function of collimating the coherent light emitted from the band narrowing element 5.
- the beam splitter 3 has a function of transmitting the collimated light from the first light source 1, reflecting the coherent light from the second light source 4, and overlapping the optical paths.
- the arrangement of the first light source 1 and the second light source 4 with respect to the beam splitter 3 may be interchanged.
- the beam splitter 7 branches the light from the first light source 1 from the beam splitter 3 into the first transmitted light T1 and the first reflected light R1, and the coherent light from the second light source 4 to the second transmitted light T2 and the first transmitted light T2. It functions as a branching part that branches into the two reflected light R2.
- the movable mirror 8 (first reflecting portion) is arranged perpendicular to the optical axes of the first reflected light R1 and the second reflected light R2, and reflects each light vertically.
- the movable mirror 8 is configured to be movable in the optical axis direction of the first reflected light R1 and the second reflected light R2 by the actuator 20 and the control unit 21 that controls the actuator 20.
- the fixed mirror 9 (second reflecting portion) is arranged perpendicular to the optical axes of the first transmitted light T1 and the second transmitted light T2, and reflects each light vertically.
- the beam splitter 7 overlaps the optical paths of the light reflected by the movable mirror 8 and the fixed mirror 9. Specifically, the optical paths are overlapped so that the first transmitted light T1 and the first reflected light R1 interfere with each other, and the optical paths are overlapped so that the second transmitted light T2 and the second reflected light R2 interfere with each other.
- the movable mirror 8 and the fixed mirror 9 are displaced in position and angle. If there is, the influence on the interference characteristics is reduced.
- the beam splitter 10 has wavelength selectivity for selecting the wavelength of light from the first light source and the wavelength of coherent light from the second light source 4. Specifically, one of the light from the first light source and the coherent light from the second light source 4 is reflected and the other is transmitted.
- the beam splitter 10 combines the first transmitted light T 1 reflected by the movable mirror 8 and the first reflected light R 1 reflected by the fixed mirror 9, and reflects the second reflected light R 2 reflected by the movable mirror 8 and the fixed mirror 9. It functions as a combining unit that combines the second transmitted light T2.
- the beam splitter 10 is a dielectric multilayer mirror, for example. In FIG. 1, the light from the first light source is reflected and the coherent light from the second light source 4 is transmitted. However, the above-described relationship between reflection and transmission may be reversed.
- the wavefronts of the second transmitted light T2 and the second reflected light R2 reflected by the beam splitter 10 are also aligned. Is in a synthesized state.
- the lens 11 has a function of condensing the second transmitted light T2 and the second reflected light R2 reflected by the beam splitter 10 on the light receiving sensor 12.
- the light receiving sensor 12 is a photodiode, for example, and has a function of converting received light into an electric signal.
- the lens 13 has a function of condensing the first transmitted light T1 and the first reflected light R1 synthesized so that the wave fronts are aligned in the beam splitter 7 on the light receiving sensor 14.
- the light receiving sensor 14 is a photodiode, for example, and has a function of converting received light into an electric signal.
- the beam splitter 7 is desirably a half mirror having substantially the same transmittance and reflectance with respect to both the light from the first light source 1 and the coherent light. It is desirable that the beam splitter 10 transmits almost all the light from the first light source 1 and substantially totally reflects the coherent light.
- the wavelength of the light from the first light source extends from the white range to the infrared, so the wavelength of the coherent light of the second light source 4 is shorter than the wavelength of the light from the first light source 1.
- a laser light source when used for the second light source 4, it is desirable to reduce the return light because the return light enters the laser resonator, which causes stimulated emission and makes the oscillation characteristics unstable.
- a polarizing plate and a quarter-wave plate in which the 45-degree axis of the polarizing plate is inclined are arranged behind the collimating lens 6.
- the laser beam emitted from the polarizing plate is linearly polarized light and is circularly polarized by the quarter wave plate, and the return light is converted by the quarter wave plate to linearly polarized light having a polarization direction perpendicular to the axis of the polarizing plate. Therefore, it is cut by the polarizing plate and does not return to the second light source 4.
- the normal direction of the movable mirror 8 and the fixed mirror 9 may be installed so as to be inclined with respect to the direction of the incident coherent light.
- the reflectance at which the movable mirror 8 reflects the first reflected light R1 and the reflectance at which the fixed mirror 9 reflects the first transmitted light T1 are substantially the same.
- the reflectance at which the movable mirror 8 reflects the second reflected light R2 and the reflectance at which the fixed mirror 9 reflects the second transmitted light T2 are substantially the same.
- Actuator 20 moves the movable mirror 8 along the direction in which light enters.
- the control unit 21 acquires the outputs of the light receiving sensors 12 and 13, controls the actuator 20, performs calculations for Fourier spectroscopy, and displays the calculation results on the display 22.
- the Fourier spectroscopic analyzer A measures the spectrum of light incident on the light receiving sensor 14. In the layout shown in FIG. 1, since the light from the first light source 1 is received by the light receiving sensor 14, the spectrum of the light from the first light source 1 can be measured. If the sample to be analyzed is placed at the position indicated by S in FIG. 1, the spectrum of the light transmitted through the sample to be analyzed can be measured.
- the light from the first light source 1 branched by the beam splitter 7 becomes the first transmitted light T1 and the first reflected light R1, and is combined by the beam splitter 7 so that the wave fronts are aligned, and the interference. Light is incident.
- the phase difference between the first transmitted light T1 and the first reflected light R1 changes. Accordingly, the first reflected light R1 reflected from the movable mirror 8 and the first transmitted light T1 reflected from the fixed mirror are combined by the beam splitter 7 and then travel toward the beam splitter 10 or toward the first light source 1 side.
- the way to go is controlled.
- the calculation unit such as a CPU provided in the control unit 21 performs Fourier transform on the light intensity of the interference light from the first light source 1 incident on the light receiving sensor 14 by moving the movable mirror 8 at a predetermined speed.
- the spectrum of light incident on the light receiving sensor 14 can be calculated.
- FIG. 2 is a schematic diagram of a spectrum of light incident on the light receiving sensor 14. The calculation result of the light intensity with respect to the frequency is displayed on the display 22. The frequency of light absorbed by the sample to be analyzed is observed.
- the first transmitted light T1 is transmitted through the beam splitter 7, reflected by the fixed mirror 9, and returned to the beam splitter 7 (also referred to as optical path length 1), and the first reflected light R1 is converted into the beam splitter. It is important to derive the optical path difference by measuring the optical path length (also referred to as optical path length 2) reflected by the movable mirror 8 and reflected by the movable mirror 8 and returning to the beam splitter 7.
- the measurement of the optical path difference between the optical path length 1 and the optical path length 2 in the light from the first light source 1 is substituted by measuring the optical path difference between the optical path length 1 and the optical path length 2 in the coherent light. .
- FIG. 3 shows a schematic diagram of the output value of the light receiving sensor 12 with the measurement time on the horizontal axis and the light intensity on the vertical axis. It is assumed that the movable mirror 8 is moved at a constant speed.
- the intensity of the output of the light receiving sensor 12 is a sine waveform, and the ratio of the sine wave peak to valley is the same for the optical path length 1 and the optical path length 2. It becomes the largest when The position of the movable mirror 8 corresponding to the time when the opening of the mountain envelope 31 and the valley envelope 32 becomes the largest, the time t1 in the figure is the position where the optical path length 1 and the optical path length 2 are the same. is there.
- control unit 21 moves the movable mirror 8 within a predetermined range, and during that time, receives the light intensity received by the light receiving sensor, that is, the signal intensity of the output of the light receiving sensor, and moves the movable mirror 8.
- a memory such as a RAM (not shown).
- control unit 21 calculates the optical path difference from the obtained time and signal intensity data using a known method. Then, the Fourier spectroscopic analysis can be performed with high accuracy by performing the Fourier spectroscopic analysis.
- the coherent light coherence distance is long because interference characteristics are easily exhibited even if the optical path length between the optical path length 1 and the optical path length 2 is large.
- the wavelength of coherent light is ⁇ and the wavelength width is ⁇
- the coherence distance is roughly expressed by ⁇ 2 / ⁇ . Therefore, a light source with a small ⁇ is desirable.
- the coherence distance is several hundred ⁇ m, so-called stabilized semiconductor laser, or in the case of a He—Ne laser, the coherence distance is several hundred mm, so-called stabilized He—Ne laser.
- the coherence distance is several tens of meters.
- FIG. 4 is an arrangement diagram showing the arrangement of the light receiving sensor m that performs photoelectric conversion by monitoring the light intensity of the coherent light of the second light source 4.
- the configuration of the beam splitter 3 is set so that the beam splitter 3 reflects a part of the coherent light from the second light source 4.
- the film configuration of the dielectric multilayer film is designed and manufactured so as to reflect a part of the coherent light from the second light source 4. This is not the case when the wavelength variation is large as the drive current varies.
- FIG. 5 is a schematic diagram of a Fourier spectroscopic analyzer A that employs a beam splitter 7 and a fixed mirror 9 integrated in a prism shape.
- FIG. 6 employs an optical fiber light source as the first light source 1.
- FIG. 6 is a schematic diagram of an optical fiber light source.
- the optical fiber light source includes a first light source 1, a lens L2, an optical fiber F and a joint J arranged upstream thereof.
- the optical fiber F includes an optical fiber F1 including a connector C1 and an optical fiber F2 including a connector C2.
- the joined connectors C1 and C2 form a joint J.
- any light source can be employed.
- an arbitrary light source is adopted as the first light source 1, it is possible to provide a Fourier transform spectroscopic analyzer in a light source having an arbitrarily required spectrum.
- the first light source, the second light source that is a laser light source, the light from the first light source, and the light from the second light source are incident and light from the first light source. Branching into the first transmitted light and the first reflected light, the branching part for branching the light from the second light source into the second transmitted light and the second reflected light, and the first reflected light and the second reflected light.
- the first reflected light reflected by the first reflected light and the first transmitted light reflected by the second reflecting portion are combined, and the second reflected light reflected by the first reflecting portion and the second transmitted light reflected by the second reflecting portion are combined.
- a first light receiver that receives the interference light of the first transmitted light and the first reflected light synthesized by the synthesis unit, and the synthesis unit Since it has the 2nd light receiver which receives the interference light of 2 transmitted light and the 2nd reflected light, it is small and highly accurate interference which enabled it to detect an optical path difference with high precision, and to eliminate a detection error Can provide a total.
- coherent light from the second light source 4 that is a laser light source is incident on the band narrowing element, and reflected light from the band narrowing element is returned to the second light source 4 to oscillate the second light source.
- the position of the movable mirror 8 can be measured with high accuracy. Therefore, the optical path length 1 and the optical path length 2 are made to coincide with each other with high accuracy, so that the optical path difference between the two optical paths is eliminated, and a small and highly accurate interferometer can be provided.
- the light from the first light source 1 is light having a wavelength longer than the visible range, and the coherent light from the second light source is shorter than the wavelength of the light from the first light source. Since it is a visible light having a wavelength, it is an interferometer using, for example, a broadband light composed of white light and infrared light, and a beam splitter 10 having wavelength selectivity is used. The interferometer in which the coherent light and the light from the first light source 1 are almost completely separated can be provided.
- the branching portion and the fixed mirror are configured in an integral prism shape, an interferometer that matches the optical path length 1 and the optical path length 2 with high accuracy can be provided.
- the optical axis of the light from the first light source 1 and the optical axis of the coherent light are overlapped in the optical path from the branching part to the fixed mirror and the optical path from the branching part to the movable mirror. Yes. Accordingly, when the movable mirror 8 or the fixed mirror 9 has a positional deviation or an angular deviation, the influence on the interference characteristics is reduced, and an interferometer in which the optical path length 1 and the optical path length 2 are matched with high accuracy can be provided. .
- the upstream of at least one of the first light source 1 and the second light source includes the optical fiber provided with the joint and the collimating unit for collimating the light emitted from the optical fiber.
- the first light source is replaced with a light source having an arbitrary spectrum
- an interferometer having an arbitrary required spectrum can be provided.
- the apparatus includes the above-described interferometer, further includes a control unit, and the control unit detects the movement of the reflection mirror based on the output of the second light receiver, and outputs the first light receiver. Since Fourier analysis is performed based on the above, a small and highly accurate Fourier spectroscopic analyzer can be provided.
- the monitor unit that photoelectrically converts and monitors the coherent light from the second light source 4 and the second light source 4 are driven downstream from the branching unit.
- a control unit for controlling the power, and the control unit controls the power for driving the second light source 4 so that the output value of the monitor unit is constant, so that even the waveform of the interference fringes is accurately measured.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本発明は、干渉計における光路差を高精度に検出することを可能とし、小型かつ高精度なフーリエ変換分光分析器を提供する。 狭帯域化素子を設けて反射光を第2光源4へ戻し、第2光源の発振波長をロックすることで、可動ミラー8の位置の計測を高精度に行い、光路長1と光路長2とを高精度に一致させる。
Description
本発明は、フーリエ変換分光分析を行うフーリエ分光分析器に関する。
フーリエ変換分光分析という分析手法が知られている(例えば、特許文献1参照)。フーリエ変換分光分析にかかる光学系として、マイケルソン干渉計が知られている。
フーリエ変換分光分析の干渉計においては、光源からの光をビームスプリッタで2光路に分岐した後、分岐された二つの光を、各光路に設置したミラーを用いて反射し、ビームスプリッタで合成している。
かかる干渉計において、赤外光を含む発光スペクトル幅の広い光源を採用し、干渉計において分岐された一方の光を移動する反射鏡(移動ミラー)で反射させ、分岐された他方の光を固定した反射鏡(固定ミラー)で反射させることで、分岐された二つの光の光路間に光路差をつけ、合成光(干渉光)を受光して得た光源からの光の強度プロファイル(インターフェログラム)をフーリエ変換し、含まれる周波数スペクトルを得る。
被分析試料からの透過光をかかるフーリエ変換分光分析を用いて分光分析することによって被分析試料によって吸収されたスペクトルを知る。
最近では、小型で平行度を保ったまま可動する小型のMEMSミラーが開発され、これを移動ミラーとして採用することによりフーリエ分光分析器そのものも小型化してきている。
フーリエ分光分析器においては、高い波長分解能を実現するため、2光路の光路差が長くなるように構成されている。また、高い確度を得るためレーザ光を用いて、光路差を計測している。具体的には、可干渉距離の長いヘリウムネオンレーザを用いて、赤外光(測定用光束)が通る光路を持つ赤外光干渉計とは異なる光路上に、レーザ光が通る光路を持つ干渉計を組み込み、移動鏡の移動に合わせて観測される干渉縞の間隔から光路差を検出している(例えば、特許文献2参照)。
しかし、上述の干渉計の光路差を検出する光学系においては、レーザ光の通る光路と赤外光の通る光路は空間的に異なる位置をとるため、2つ光路間の長さが完全には一致せず、光路差の測定誤差が生じるという問題があった。
また、ヘリウムネオンレーザはガスレーザであるため、これを小型化するのは困難である。小型化のために、ヘリウムネオンレーザの代用として半導体レーザを用いることが考えられるが、半導体レーザは温度変化に対して波長変動が大きく、モードホップのように不連続に波長が変動するので、高い精度で光路差を計測することが困難である。
本発明は、レーザ光の通る光路と赤外光の通る光路の違いを無くし、光路差を高精度に検出することが可能とされた小型かつ高精度な干渉計、及び該干渉計を用いたフーリエ変換分光分析器を提供する。
前述の目的は、下記に記載する発明により達成される。
1.第1光源と、
レーザ光源である第2光源と、
前記第1光源からの光と、前記第2光源からの光とが入射され、前記第1光源からの光を第1透過光と第1反射光とに分岐し、前記第2光源からの光を第2透過光と第2反射光とに分岐する分岐部と、
前記第1反射光と前記第2反射光とを反射する第1反射部と、
前記第1透過光と前記第2透過光とを反射する第2反射部と、
前記第1反射部または前記第2反射部の少なくとも一方を移動させるアクチュエータと、
前記第1反射部で反射した前記第1反射光と前記第2反射部で反射した前記第1透過光とを合成し、前記第1反射部で反射した前記第2反射光と前記第2反射部で反射した前記第2透過光とを合成する合成部と、
前記合成部によって合成された前記第1透過光と前記第1反射光の干渉光を受光する第1受光器と、
前記合成部によって合成された前記第2透過光と前記第2反射光の干渉光を受光する第2受光器と、
を有することを特徴とする干渉計。
レーザ光源である第2光源と、
前記第1光源からの光と、前記第2光源からの光とが入射され、前記第1光源からの光を第1透過光と第1反射光とに分岐し、前記第2光源からの光を第2透過光と第2反射光とに分岐する分岐部と、
前記第1反射光と前記第2反射光とを反射する第1反射部と、
前記第1透過光と前記第2透過光とを反射する第2反射部と、
前記第1反射部または前記第2反射部の少なくとも一方を移動させるアクチュエータと、
前記第1反射部で反射した前記第1反射光と前記第2反射部で反射した前記第1透過光とを合成し、前記第1反射部で反射した前記第2反射光と前記第2反射部で反射した前記第2透過光とを合成する合成部と、
前記合成部によって合成された前記第1透過光と前記第1反射光の干渉光を受光する第1受光器と、
前記合成部によって合成された前記第2透過光と前記第2反射光の干渉光を受光する第2受光器と、
を有することを特徴とする干渉計。
2.前記第2光源は、半導体レーザであって、
前記第2光源からのコヒーレント光を一部透過し、スペクトル線幅を狭帯域化して前記コヒーレント光の一部を反射し第2光源へ光を導く狭帯域化素子を有することを特徴とする前記1項に記載の干渉計。
前記第2光源からのコヒーレント光を一部透過し、スペクトル線幅を狭帯域化して前記コヒーレント光の一部を反射し第2光源へ光を導く狭帯域化素子を有することを特徴とする前記1項に記載の干渉計。
3.前記第1光源からの光は可視域以上の長さの波長を有する光であって、
前記第2光源からのコヒーレント光は、前記第1光源からの光の波長より短い波長を有する可視域の光であることを特徴とする前記2項に記載の干渉計。
前記第2光源からのコヒーレント光は、前記第1光源からの光の波長より短い波長を有する可視域の光であることを特徴とする前記2項に記載の干渉計。
4.前記第1反射部または前記第2反射部のうち、前記アクチュエータで移動されない方の反射部と、前記分岐部とは、一体のプリズム状に構成されていることを特徴とする前記1項に記載の干渉計。
5.第1光源からの光の光軸と、コヒーレント光の光軸とは、前記分岐部から前記アクチュエータで移動されない前記第1反射部または前記第2反射部までの光路、及び前記分岐部から前記アクチュエータで移動される前記第1反射部または前記第2反射部までの光路、において重ねられていることを特徴とする前記1項に記載の干渉計。
6.前記第1光源、または前記第2光源の少なくとも一方の上流には、ジョイントを備えた光ファイバと、
前記光ファイバからの出射光をコリメートするコリメート部とが備えられていることを特徴とする前記1項に記載の干渉計。
前記光ファイバからの出射光をコリメートするコリメート部とが備えられていることを特徴とする前記1項に記載の干渉計。
7.前記1項に記載の干渉計を有し、
さらに、制御部を備え、
前記制御部は、
前記第2受光器の出力を基に反射ミラーの移動を検出し、
前記検出結果と、前記第1受光器の出力を基に、フーリエ分析を行うことを特徴とするフーリエ分光分析器。
さらに、制御部を備え、
前記制御部は、
前記第2受光器の出力を基に反射ミラーの移動を検出し、
前記検出結果と、前記第1受光器の出力を基に、フーリエ分析を行うことを特徴とするフーリエ分光分析器。
8.前記第2光源を上流とするとき、前記分岐部より下流に前記第2光源からのコヒーレント光を光電変換してモニタするモニタ部と、
前記第2光源を駆動する電力を制御する制御部と、を有し、
前記制御部は、前記モニタ部の出力値が一定になるように、前記第2光源を駆動する電力を制御することを特徴とする前記7項に記載のフーリエ分光分析器。
前記第2光源を駆動する電力を制御する制御部と、を有し、
前記制御部は、前記モニタ部の出力値が一定になるように、前記第2光源を駆動する電力を制御することを特徴とする前記7項に記載のフーリエ分光分析器。
光路差を高精度に検出して検出誤差を無くすことが可能とされた小型かつ高精度な干渉計、及び該干渉計を用いたフーリエ変換分光分析器を提供できる。
以下に本発明の実施形態を図面により説明するが、本発明は以下に説明する実施形態に限られるものではない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
図1に本実施形態にかかるフーリエ分光分析器Aの概要図を示す。
フーリエ分光分析器は、干渉計L、制御部21、ディスプレイ22を有する。干渉計Lは、第1光源1、コリメートレンズ2、ビームスプリッタ3、第2光源4、狭帯域化素子5、コリメートレンズ6、ビームスプリッタ7、可動ミラー8、固定ミラー9、ビームスプリッタ10、レンズ11、受光センサ12、レンズ13、受光センサ14とからなる。
干渉計Lにおいて、第1光源1は、可視域の光と赤外光の波長を有する光を射出する光源であり、白熱灯、蛍光灯、白色LEDなどの一般的な光源を用いることができる。ただし、発光面は小さいことが望ましく、開口等で制限してもよい。
コリメートレンズ2は、第1光源1からの出射光を平行化するレンズである。
第2光源4は、コヒーレント光を出射する光源であり、本実施形態では、小型化の上で半導体レーザを採用している。半導体レーザは縦モードがシングルであることが望ましい。シングルモードでない場合は必要な最も光強度の大きい縦モード以外のモードを除去する波長フィルタを第2光源4の出射端からの先に配置することが望ましい。
狭帯域化素子5は、第2光源4が出射したコヒーレント光を一部透過し、スペクトル線幅を狭帯域化して一部を反射する機能を有する。具体的には、VHG(ボリュームホログラフィー)やファイバーグレーティングなどの回折格子が望ましい。かかる回折格子においては、コヒーレント光の発光波長の一部が反射回折光となり、半導体レーザの活性層に導くことで、誘導放出を引き起こし、発光波長を反射回折光の波長にロックすることができる。反射回折光の波長は、回折格子で決まる幅に制限を受けるため、半導体レーザの発光波長のスペクトル線は特定のモードに固定され狭帯域化できる。
コリメートレンズ6は、狭帯域化素子5を出射したコヒーレント光を平行化する機能を有する。
ビームスプリッタ3は、平行化された第1光源1からの光を透過し、第2光源4からのコヒーレント光を反射し、光路を重ねる機能を有する。ビームスプリッタ3に対する第1光源1と第2光源4の配置を入れ替えてもよい。
ビームスプリッタ7は、ビームスプリッタ3からの第1光源1からの光を第1透過光T1と第1反射光R1とに分岐し、第2光源4からのコヒーレント光を第2透過光T2と第2反射光R2とに分岐する分岐部として機能する。
可動ミラー8(第1反射部)は、第1反射光R1と第2反射光R2の光軸に垂直に配置され、各々の光を垂直に反射する。また、可動ミラー8は、アクチュエータ20と、アクチュエータ20を制御する制御部21によって、第1反射光R1と第2反射光R2の光軸方向に可動するように構成されている。
固定ミラー9(第2反射部)は、第1透過光T1と第2透過光T2の光軸に垂直に配置され、各々の光を垂直に反射する。
ビームスプリッタ7は、可動ミラー8、固定ミラー9で各々反射した光の光路を重ねる。具体的には、第1透過光T1と第1反射光R1とを干渉させるように光路を重ね、かつ、第2透過光T2と第2反射光R2とを干渉させるように光路を重ねる。
さらに、第1透過光T1と第2透過光T2との光路を重ね、第1反射光R1と第2反射光R2との光路を重ねると、可動ミラー8や固定ミラー9に位置ずれや角度ずれがあった場合に、干渉特性に与える影響が減じられる。
ビームスプリッタ10は、第1光源からの光の波長と、第2光源4からのコヒーレント光の波長とを選択する波長選択性を有している。具体的には、第1光源からの光と、第2光源4からのコヒーレント光のうちの一方を反射し、他方を透過する。
ビームスプリッタ10は、可動ミラー8で反射した第1透過光T1と固定ミラー9で反射した第1反射光R1とを合成し、可動ミラー8で反射した第2反射光R2と固定ミラー9で反射した第2透過光T2とを合成する合成部として機能する。ビームスプリッタ10は、例えば誘電体多層膜ミラーである。図1では、第1光源からの光を反射し、第2光源4からのコヒーレント光を透過するものとしたが、上述の反射と透過の関係はこの反対でもよい。
第2透過光T2と第2反射光R2は、ビームスプリッタ7において波面が揃うように合成されているので、ビームスプリッタ10を反射した第2透過光T2と第2反射光R2も波面が揃うように合成された状態にある。
レンズ11は、ビームスプリッタ10を反射した第2透過光T2と第2反射光R2を受光センサ12に集光する機能を有する。
受光センサ12は、例えばフォトダイオードであり、受光した光を電気信号に変換する機能を有する。
レンズ13は、ビームスプリッタ7において波面が揃うように合成された第1透過光T1と第1反射光R1とを、受光センサ14に集光する機能を有する。
受光センサ14は、例えばフォトダイオードであり、受光した光を電気信号に変換する機能を有する。
なお、ビームスプリッタ7は、第1光源1からの光とコヒーレント光の両方に対して、透過率と反射率がほぼ同じになるハーフミラーであることが望ましい。ビームスプリッタ10は、第1光源1からの光をほぼ全透過し、コヒーレント光をほぼ全反射することが望ましい。
このように、光源によって、反射率を異ならせることを可能にするには、光源の発する光の波長を異ならせることで実現できる。本実施形態においては、第1光源からの光の波長は白色域から赤外に亘るので、第2光源4のコヒーレント光の波長を、第1光源1からの光の波長より短くしている。
また、第2光源4にレーザ光源を用いる場合には、戻り光がレーザの共振器中に入ると、誘導放出を引き起こし、発振特性を不安定にするので、戻り光を少なくすることが望ましい。具体的には、例えば、コリメートレンズ6の後ろに、偏光板と、該偏光板の軸の45度軸を傾けた4分の1波長板を配置する。偏光板を出射したレーザ光は直線偏光であり、4分の1波長板によって円偏光にされ、戻り光は4分の1波長板によって偏光板の軸に垂直な偏光方向を有する直線偏光に変換されるので、偏光板によってカットされ、第2光源4には戻らない。この他の方法として、戻り光を減じるには、可動ミラー8や固定ミラー9の法線方向を、入射するコヒーレント光の方向に対して傾くように設置すればよい。
また、可動ミラー8が第1反射光R1を反射する反射率と、固定ミラー9が第1透過光T1を反射する反射率とはほぼ同じであることが望ましい。
同じく、可動ミラー8が第2反射光R2を反射する反射率と、固定ミラー9が第2透過光T2を反射する反射率とは、ほぼ同じであることが望ましい。
アクチュエータ20は、可動ミラー8を光の入射する方向に沿って移動させる。制御部21は、受光センサ12,13の出力を取得し、アクチュエータ20を制御し、フーリエ分光のための演算を行い、演算結果をディスプレイ22に表示する。
次に、本実施形態にかかるフーリエ分光分析器Aの動作を説明する。フーリエ分光分析器Aは、受光センサ14に入射する光のスペクトルを計測する。図1に示した配置図では、第1光源1の光を受光センサ14で受光するため、第1光源1からの光のスペクトルを計測できる。図1のSで示した場所に、被分析試料を配置すれば、被分析試料を透過した光のスペクトルを計測できる。
受光センサ14には、ビームスプリッタ7で分岐された第1光源1からの光が、第1透過光T1と第1反射光R1となって、ビームスプリッタ7で波面が揃うように合成され、干渉光が入射される。
可動ミラー8の移動に従って、第1透過光T1と第1反射光R1との位相差が変化する。従って、可動ミラー8を反射した第1反射光R1と固定ミラーを反射した第1透過光T1がビームスプリッタ7で合成された後に、ビームスプリッタ10方向へ向かうか、または、第1光源1側へ向かうかが、制御されることとなる。例えば、可動ミラー8を所定の速度で移動させ、受光センサ14に入射する第1光源1からの光の干渉光の光強度を制御部21に備えられたCPU等の計算部がフーリエ変換することで、受光センサ14に入射する光のスペクトルを算出できる。
図2は、受光センサ14に入射する光のスペクトルの模式図である。ディスプレイ22上に、周波数に対する光強度の算出結果が表示される。被分析試料によって吸収される光の周波数が観測される。
フーリエ分光分析においては、第1透過光T1がビームスプリッタ7を透過して固定ミラー9で反射してビームスプリッタ7に戻る光路長(光路長1とも称す)と、第1反射光R1がビームスプリッタ7で反射して可動ミラー8で反射してビームスプリッタ7に戻る光路長(光路長2とも称す)とを計測し、光路差を導出することが重要である。本実施形態においては、第1光源1からの光における光路長1と光路長2との光路差の計測を、コヒーレント光における光路長1と光路長2との光路差を計測することによって代用する。
図3に、横軸に測定時間、縦軸に光強度をとった受光センサ12の出力値の概要図を示す。可動ミラー8は等速で移動させているものとする。
可動ミラー8が等速運動している場合、受光センサ12の出力の強度は、サイン波形になり、サイン波の山と谷の比(ビジビリティー)は、光路長1と光路長2が同じになった時に最も大きくなる。山の包絡線31と谷の包絡線32の開きが最も大きくなった時刻、同図におけるt1の時刻に対応する可動ミラー8の位置が、光路長1と光路長2が同じになった位置である。
より具体的には、制御部21は、可動ミラー8を所定の範囲内で移動させ、その間、受光センサが受光する光強度、すなわち受光センサの出力の信号強度を受信し、可動ミラー8を移動させた時間と対応させて、図示しないRAM等のメモリに記憶させる。
その後、制御部21は、得られた時間と信号強度のデータから、公知の手法を用いて光路差を算出する。そして、フーリエ分光分析を実施することで、精度よくフーリエ分光分析を実施することができる。
なお、コヒーレント光の可干渉距離が長いと、光路長1と光路長2との光路差が大きくても、干渉特性を発揮させやすいので望ましい。コヒーレント光の波長をλとし、波長幅をΔλすると、可干渉距離は、大まかにλ2/Δλで表される。従って、Δλが小さい光源が望ましい。具体的には、赤色半導体レーザの場合、可干渉距離は数百μm、いわゆる安定化半導体レーザや、He-Neレーザの場合、可干渉距離は数百mm、いわゆる安定化He-Neレーザの場合、可干渉距離は数十m、となる。
また、第2光源4からのコヒーレント光の光強度をモニタし、一定の値に保つように、第2光源4にフィードバックすることが望ましい。受光センサmは、コヒーレント光を分岐部であるビームスプリッタ3より上流に配置することが望ましい。受光センサmの出力は制御部21に送り、制御部21は、受光センサmの出力が一定になるように、第2光源4を駆動する電力にフィードバックを実施する。図4は、第2光源4のコヒーレント光の光強度もモニタして光電変換する受光センサmの配置を示す配置図である。この場合、ビームスプリッタ3が、第2光源4からのコヒーレント光の一部を反射するように、ビームスプリッタ3の構成を設定する。例えば、ビームスプリッタ3が誘電体多層膜方式の場合には誘電体多層膜の膜構成を第2光源4からのコヒーレント光の一部を反射するように設計し作製する。駆動電流の変動に伴って波長変動が大きい場合はこの限りではない。
なお、ビームスプリッタ7と固定ミラー9とは、図5に示すように、一体のプリズム状に構成されていることが好ましい。図5は、プリズム状に一体となったビームスプリッタ7と固定ミラー9を採用したフーリエ分光分析器Aの概要図である。
一体のプリズム状に構成することで、ビームスプリッタ7と固定ミラー9との間に空気層が無くなり、空気ゆらぎが干渉計の特性与える影響を排除でき、また、固定ミラー9に外部からの摂動による位置ぶれによる光路長変化を小さくできることで、干渉計の特性を安定化することができ、安定したフーリエ変換分光分析器を提供できる。
第1光源1または第2光源4については、光ファイバ光源を採用してもよい。図6は第1光源1に光ファイバ光源を採用したものである。図6は、光ファイバ光源の概要図である。光ファイバ光源は、第1光源1、レンズL2、これらの上流に配置された光ファイバF、ジョイントJとからなる。光ファイバFは、コネクタC1を備える光ファイバF1とコネクタC2を備える光ファイバF2からなる。結合されたコネクタC1,C2がジョイントJを形成する。
このように、第1光源1または第2光源4について、ジョイントJから光源側を取り替え可能とすることにより、任意の光源を採用することができる。第1光源1に任意の光源を採用した場合には、任意に必要なスペクトルを持つ光源におけるフーリエ変換分光分析器を提供することができる。
以上のように、本発明によれば、第1光源と、レーザ光源である第2光源と、第1光源からの光と、第2光源からの光とが入射され、第1光源からの光を第1透過光と第1反射光とに分岐し、第2光源からの光を第2透過光と第2反射光とに分岐する分岐部と、第1反射光と第2反射光とを反射する第1反射部と、第1透過光と第2透過光とを反射する第2反射部と、少なくとも第1反射部または第2反射部の何れかを移動させるアクチュエータと、第1反射部で反射した第1反射光と第2反射部で反射した第1透過光とを合成し、第1反射部で反射した第2反射光と第2反射部で反射した第2透過光とを合成する合成部と、合成部によって合成された第1透過光と第1反射光の干渉光を受光する第1受光器と、合成部によって合成された第2透過光と第2反射光の干渉光を受光する第2受光器と、を有することから、光路差を高精度に検出して検出誤差を無くすことが可能とされた小型かつ高精度な干渉計を提供できる。
また、本発明によれば、レーザ光源である第2光源4からのコヒーレント光を狭帯域化素子に入射させ、狭帯域化素子からの反射光を第2光源4へ戻し、第2光源の発振波長をロックすることで、可動ミラー8の位置の計測を高精度に行うことができる。従って、光路長1と光路長2とを高精度に一致させて2つの光路間の光路差を無くし、小型かつ高精度な干渉計を提供できる。
また、本発明によれば、第1光源1からの光は可視域以上の長さの波長を有する光であって、第2光源からのコヒーレント光は、第1光源からの光の波長より短い波長を有する可視域の光であることから、例えば白色光と赤外光からなる広帯域の光を用いた干渉計であって、波長選択性を有するビームスプリッタ10を用いて、第2光源4からのコヒーレント光と第1光源1からの光とをほぼ完全に分離した干渉計を提供できる。
また、本発明によれば、分岐部と固定ミラーとは、一体のプリズム状に構成されているので、光路長1と光路長2とを高精度に一致させる干渉計を提供できる。
また、本発明によれば、第1光源1からの光の光軸と、コヒーレント光の光軸とは、分岐部から固定ミラーまでの光路、及び分岐部から可動ミラーまでの光路において重ねられている。従って、可動ミラー8や固定ミラー9に位置ずれや角度ずれがあった場合に、干渉特性に与える影響が減じられ、光路長1と光路長2とを高精度に一致させた干渉計を提供できる。
また、本発明によれば、第1光源1または第2光源の少なくとも一方の上流には、ジョイントを備えた光ファイバと、光ファイバからの出射光をコリメートするコリメート部とが備えられているので、例えば第1光源を任意のスペクトルを持つ光源と取り替えた場合には、任意に必要なスペクトルを持つ干渉計を提供できる。
また、本発明によれば、上記の干渉計を有し、さらに、制御部を備え、制御部は、第2受光器の出力を基に反射ミラーの移動を検出し、第1受光器の出力を基に、フーリエ分析を行うので、小型かつ高精度なフーリエ分光分析器を提供できる。
また、本発明によれば、第2光源4を上流とするとき、分岐部より下流において、第2光源4からのコヒーレント光を光電変換してモニタするモニタ部と、第2光源4を駆動する電力を制御する制御部とを有し、制御部は、モニタ部の出力値が一定になるように、第2光源4を駆動する電力を制御することから、干渉縞の波形までも精度よく測定することが可能となり、コントラスト内部を内挿することによってさらに高い分解能での光路差を高精細に計測でき、より高精度なフーリエ分光分析器を提供することができる。
2,6 コリメートレンズ
3,7,10 ビームスプリッタ
4 第2光源
5 狭帯域化素子
8 可動ミラー
9 固定ミラー
11,13 レンズ
12,14 受光センサ
21 制御部
3,7,10 ビームスプリッタ
4 第2光源
5 狭帯域化素子
8 可動ミラー
9 固定ミラー
11,13 レンズ
12,14 受光センサ
21 制御部
Claims (8)
- 第1光源と、
レーザ光源である第2光源と、
前記第1光源からの光と、前記第2光源からの光とが入射され、前記第1光源からの光を第1透過光と第1反射光とに分岐し、前記第2光源からの光を第2透過光と第2反射光とに分岐する分岐部と、
前記第1反射光と前記第2反射光とを反射する第1反射部と、
前記第1透過光と前記第2透過光とを反射する第2反射部と、
前記第1反射部または前記第2反射部の少なくとも一方を移動させるアクチュエータと、
前記第1反射部で反射した前記第1反射光と前記第2反射部で反射した前記第1透過光とを合成し、前記第1反射部で反射した前記第2反射光と前記第2反射部で反射した前記第2透過光とを合成する合成部と、
前記合成部によって合成された前記第1透過光と前記第1反射光の干渉光を受光する第1受光器と、
前記合成部によって合成された前記第2透過光と前記第2反射光の干渉光を受光する第2受光器と、
を有することを特徴とする干渉計。 - 前記第2光源は、半導体レーザであって、
前記第2光源からのコヒーレント光を一部透過し、スペクトル線幅を狭帯域化して前記コヒーレント光の一部を反射し第2光源へ光を導く狭帯域化素子を有することを特徴とする請求項1に記載の干渉計。 - 前記第1光源からの光は可視域以上の長さの波長を有する光であって、
前記第2光源からのコヒーレント光は、前記第1光源からの光の波長より短い波長を有する可視域の光であることを特徴とする請求項2に記載の干渉計。 - 前記第1反射部または前記第2反射部のうち、前記アクチュエータで移動されない方の反射部と、前記分岐部とは、一体のプリズム状に構成されていることを特徴とする請求項1に記載の干渉計。
- 第1光源からの光の光軸と、コヒーレント光の光軸とは、前記分岐部から前記アクチュエータで移動されない前記第1反射部または前記第2反射部までの光路、及び前記分岐部から前記アクチュエータで移動される前記第1反射部または前記第2反射部までの光路、において重ねられていることを特徴とする請求項1に記載の干渉計。
- 前記第1光源、または前記第2光源の少なくとも一方の上流には、ジョイントを備えた光ファイバと、
前記光ファイバからの出射光をコリメートするコリメート部とが備えられていることを特徴とする請求項1に記載の干渉計。 - 請求項1に記載の干渉計を有し、
さらに、制御部を備え、
前記制御部は、
前記第2受光器の出力を基に反射ミラーの移動を検出し、
前記検出結果と、前記第1受光器の出力を基に、フーリエ分析を行うことを特徴とするフーリエ分光分析器。 - 前記第2光源を上流とするとき、前記分岐部より下流に前記第2光源からのコヒーレント光を光電変換してモニタするモニタ部と、
前記第2光源を駆動する電力を制御する制御部と、を有し、
前記制御部は、前記モニタ部の出力値が一定になるように、前記第2光源を駆動する電力を制御することを特徴とする請求項7に記載のフーリエ分光分析器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/515,250 US9025156B2 (en) | 2009-12-14 | 2010-12-08 | Interferometer and fourier spectrometer using same |
EP10837481.0A EP2515092A4 (en) | 2009-12-14 | 2010-12-08 | INTERFEROMETER AND FOURIER SPECTROMETER USING SUCH INTERFEROMETER |
JP2011546070A JPWO2011074452A1 (ja) | 2009-12-14 | 2010-12-08 | 干渉計及び該干渉計を用いたフーリエ分光分析器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009282586 | 2009-12-14 | ||
JP2009-282586 | 2009-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074452A1 true WO2011074452A1 (ja) | 2011-06-23 |
Family
ID=44167209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071983 WO2011074452A1 (ja) | 2009-12-14 | 2010-12-08 | 干渉計及び該干渉計を用いたフーリエ分光分析器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9025156B2 (ja) |
EP (1) | EP2515092A4 (ja) |
JP (1) | JPWO2011074452A1 (ja) |
WO (1) | WO2011074452A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012056813A1 (ja) * | 2010-10-28 | 2012-05-03 | コニカミノルタホールディングス株式会社 | 干渉計およびフーリエ変換分光分析装置 |
WO2012124294A1 (ja) * | 2011-03-17 | 2012-09-20 | コニカミノルタセンシング株式会社 | フーリエ変換型分光計およびフーリエ変換型分光方法 |
JP2016027407A (ja) * | 2011-09-30 | 2016-02-18 | ウシオ電機株式会社 | デジタルホログラフィ方法及びデジタルホログラフィ装置 |
JP7573673B2 (ja) | 2019-01-11 | 2024-10-25 | エムピー ハイ テク ソリューションズ プロプライエタリー リミテッド | オンボード放射線感知装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5835327B2 (ja) * | 2011-07-13 | 2015-12-24 | コニカミノルタ株式会社 | 干渉計およびそれを備えた分光器 |
CN106066205B (zh) * | 2016-05-25 | 2018-09-21 | 北京雪迪龙科技股份有限公司 | 微动机构、动镜干涉仪和采用动镜干涉仪的红外光谱仪 |
CN106152951A (zh) * | 2016-07-05 | 2016-11-23 | 中国工程物理研究院激光聚变研究中心 | 一种测量非透明薄膜厚度分布的双面干涉装置和方法 |
US10900842B2 (en) | 2019-01-11 | 2021-01-26 | MP High Tech Solutions Pty Ltd | On-board radiation sensing apparatus |
JP6688917B1 (ja) * | 2019-01-30 | 2020-04-28 | 浜松ホトニクス株式会社 | 光モジュール、信号処理システム及び信号処理方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63203917A (ja) * | 1987-02-19 | 1988-08-23 | Shimadzu Corp | 磁気浮上型直進ベアリング |
JPH0227225A (ja) * | 1988-07-15 | 1990-01-30 | Advantest Corp | 光干渉信号抽出装置 |
JPH02238334A (ja) * | 1989-03-13 | 1990-09-20 | Sumitomo Electric Ind Ltd | スケールフアクタを安定化した干渉光学測定装置 |
JPH05231939A (ja) * | 1992-02-21 | 1993-09-07 | Hitachi Ltd | ステップスキャンフーリエ変換赤外分光装置 |
JPH07243943A (ja) | 1994-03-02 | 1995-09-19 | Nippon Telegr & Teleph Corp <Ntt> | 導波路分散測定方法および装置 |
JPH0875434A (ja) * | 1994-09-05 | 1996-03-22 | Tokyo Seimitsu Co Ltd | 表面形状測定装置 |
JPH0926358A (ja) | 1995-07-13 | 1997-01-28 | Jasco Corp | インターフェログラム積算装置 |
JP2004220008A (ja) * | 2002-12-26 | 2004-08-05 | Kyocera Corp | 体積型位相格子とその製造方法及びそれを用いた光モジュール及び半導体レーザモジュール |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3542161A1 (de) * | 1985-11-28 | 1987-06-04 | Kayser Threde Gmbh | Verfahren und vorrichtung zur reduktion der datenrate bei der fourierspektroskopie |
EP0436752B1 (en) * | 1990-01-08 | 1994-08-31 | Advantest Corporation | Optical interference signal extractor |
JP2895693B2 (ja) * | 1992-12-04 | 1999-05-24 | シャープ株式会社 | レーザ測距装置 |
DE19940981C1 (de) * | 1999-08-28 | 2001-07-12 | Bruker Optik Gmbh | Fourier-Transform-Infrarot-Spektrometer und Interferometer |
US7317739B2 (en) * | 2002-03-15 | 2008-01-08 | Princeton University | Mode-locked laser using a mode-locking wavelength selective reflector |
JP5203951B2 (ja) * | 2005-10-14 | 2013-06-05 | ザ ジェネラル ホスピタル コーポレイション | スペクトル及び周波数符号化蛍光画像形成 |
JP5125544B2 (ja) * | 2008-01-24 | 2013-01-23 | 日本電気株式会社 | ガス測定装置およびガス測定方法 |
US8004688B2 (en) * | 2008-11-26 | 2011-08-23 | Zygo Corporation | Scan error correction in low coherence scanning interferometry |
-
2010
- 2010-12-08 JP JP2011546070A patent/JPWO2011074452A1/ja active Pending
- 2010-12-08 EP EP10837481.0A patent/EP2515092A4/en not_active Withdrawn
- 2010-12-08 US US13/515,250 patent/US9025156B2/en active Active
- 2010-12-08 WO PCT/JP2010/071983 patent/WO2011074452A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63203917A (ja) * | 1987-02-19 | 1988-08-23 | Shimadzu Corp | 磁気浮上型直進ベアリング |
JPH0227225A (ja) * | 1988-07-15 | 1990-01-30 | Advantest Corp | 光干渉信号抽出装置 |
JPH02238334A (ja) * | 1989-03-13 | 1990-09-20 | Sumitomo Electric Ind Ltd | スケールフアクタを安定化した干渉光学測定装置 |
JPH05231939A (ja) * | 1992-02-21 | 1993-09-07 | Hitachi Ltd | ステップスキャンフーリエ変換赤外分光装置 |
JPH07243943A (ja) | 1994-03-02 | 1995-09-19 | Nippon Telegr & Teleph Corp <Ntt> | 導波路分散測定方法および装置 |
JPH0875434A (ja) * | 1994-09-05 | 1996-03-22 | Tokyo Seimitsu Co Ltd | 表面形状測定装置 |
JPH0926358A (ja) | 1995-07-13 | 1997-01-28 | Jasco Corp | インターフェログラム積算装置 |
JP2004220008A (ja) * | 2002-12-26 | 2004-08-05 | Kyocera Corp | 体積型位相格子とその製造方法及びそれを用いた光モジュール及び半導体レーザモジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2515092A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012056813A1 (ja) * | 2010-10-28 | 2012-05-03 | コニカミノルタホールディングス株式会社 | 干渉計およびフーリエ変換分光分析装置 |
JP5655859B2 (ja) * | 2010-10-28 | 2015-01-21 | コニカミノルタ株式会社 | 干渉計およびフーリエ変換分光分析装置 |
US9109869B2 (en) | 2010-10-28 | 2015-08-18 | Konica Minolta, Inc. | Interferometer and fourier-transform spectroscopic analyzer |
WO2012124294A1 (ja) * | 2011-03-17 | 2012-09-20 | コニカミノルタセンシング株式会社 | フーリエ変換型分光計およびフーリエ変換型分光方法 |
JP5737386B2 (ja) * | 2011-03-17 | 2015-06-17 | コニカミノルタ株式会社 | フーリエ変換型分光計およびフーリエ変換型分光方法 |
JP2016027407A (ja) * | 2011-09-30 | 2016-02-18 | ウシオ電機株式会社 | デジタルホログラフィ方法及びデジタルホログラフィ装置 |
JP7573673B2 (ja) | 2019-01-11 | 2024-10-25 | エムピー ハイ テク ソリューションズ プロプライエタリー リミテッド | オンボード放射線感知装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2515092A4 (en) | 2015-09-09 |
US9025156B2 (en) | 2015-05-05 |
JPWO2011074452A1 (ja) | 2013-04-25 |
US20120287439A1 (en) | 2012-11-15 |
EP2515092A1 (en) | 2012-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011074452A1 (ja) | 干渉計及び該干渉計を用いたフーリエ分光分析器 | |
JP5226078B2 (ja) | 干渉計装置及びその作動方法 | |
CN101023567B (zh) | 来自模式选择调谐器的光学反馈 | |
US8363226B2 (en) | Optical interference measuring apparatus | |
US8711367B2 (en) | Position-measuring device | |
US20150109622A1 (en) | Optical coherence tomography apparatus and optical coherence tomography method | |
JP5835327B2 (ja) | 干渉計およびそれを備えた分光器 | |
JP2005521893A (ja) | 干渉計基準としての垂直共振器型面発光レーザ(vcsel) | |
JP2011179934A (ja) | 光波干渉計測装置 | |
US8559015B2 (en) | Measuring apparatus | |
JP2010261890A (ja) | 光波干渉計測装置 | |
US7551290B2 (en) | Absolute position measurement apparatus | |
JP2013083581A (ja) | 計測装置 | |
WO2012073681A1 (ja) | レーザ光源、干渉計および分光器 | |
US20020171843A1 (en) | Phase-based wavelength measurement apparatus | |
JP2022536062A (ja) | 分光偏光測定装置および光路差自動調整装置 | |
JPH11183116A (ja) | 光波干渉測定方法および装置 | |
JP2010261776A (ja) | 光波干渉計測装置 | |
JPH02110319A (ja) | マルチモード半導体レーザを使用する干渉計測装置 | |
US20050195401A1 (en) | Wavelength meter | |
WO1998038475A1 (en) | Apparatus for precise length measurement calibration | |
US6816264B1 (en) | Systems and methods for amplified optical metrology | |
WO2011148726A1 (ja) | 干渉計およびフーリエ変換分光分析装置 | |
JP7329241B2 (ja) | ファブリペロー・エタロン、これを用いた波長変化量検出器、及び波長計 | |
JP7452227B2 (ja) | 測定装置、及び測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837481 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546070 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13515250 Country of ref document: US Ref document number: 2010837481 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |