WO2011148726A1 - 干渉計およびフーリエ変換分光分析装置 - Google Patents

干渉計およびフーリエ変換分光分析装置 Download PDF

Info

Publication number
WO2011148726A1
WO2011148726A1 PCT/JP2011/058984 JP2011058984W WO2011148726A1 WO 2011148726 A1 WO2011148726 A1 WO 2011148726A1 JP 2011058984 W JP2011058984 W JP 2011058984W WO 2011148726 A1 WO2011148726 A1 WO 2011148726A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
light source
mirror
measurement
Prior art date
Application number
PCT/JP2011/058984
Other languages
English (en)
French (fr)
Inventor
祐亮 平尾
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012517196A priority Critical patent/JPWO2011148726A1/ja
Publication of WO2011148726A1 publication Critical patent/WO2011148726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Definitions

  • the present invention relates to a Michelson type interferometer and a Fourier transform spectroscopic analyzer equipped with the interferometer.
  • the infrared light emitted from the light source is divided into two directions, a fixed mirror and a moving mirror, by a beam splitter, and the fixed mirror and the moving mirror respectively.
  • a configuration is adopted in which the light reflected and returned is combined into one optical path by the beam splitter.
  • the moving mirror is moved back and forth (in the direction of the optical axis of the incident light)
  • the optical path difference between the two divided beams changes, so the intensity of the combined light changes according to the amount of movement of the moving mirror.
  • Interference light Interference light (interferogram). By sampling this interferogram and performing AD conversion and Fourier transform, the spectral distribution of the incident light can be obtained, and the intensity of the interference light for each wave number (1 / wavelength) can be obtained from this spectral distribution. .
  • the spectral accuracy (resolution) of FTIR depends on the amount of movement of the moving mirror. The larger the amount of movement, the higher the resolution. However, the larger the amount of movement of the moving mirror, the higher the translation of the moving mirror. Thus, a relative inclination is generated between the reflected light from the movable mirror and the reflected light from the fixed mirror (each reflected light is inclined from the optical axis), and the contrast of the interference light is lowered. For this reason, it is necessary to correct the inclination.
  • Patent Document 1 by adjusting the tilt angle of one reflection surface based on the output from the sensor that detects the interference light, the relative inclination of each light reflected by the two reflection surfaces is obtained. It is corrected.
  • the interferogram is expressed as a function of the phase difference between the moving mirror and the fixed mirror, that is, the optical path difference between the reflected light from the moving mirror and the reflected light from the fixed mirror.
  • a reference light source such as a He-Ne laser having high coherence (coherency) separately from a light source that emits infrared light.
  • the reference light emitted from the reference light source is separated by a beam splitter and guided to a moving mirror and a fixed mirror, and each light reflected by the moving mirror and the fixed mirror is synthesized by a beam splitter to be used as reference interference light.
  • a highly coherent reference light source is used, each reflected light from the movable mirror and the fixed mirror interferes even if the displacement amount of the movable mirror is large. Therefore, even when the displacement amount of the movable mirror is large, the position of the movable mirror can be obtained based on the intensity of the reference interference light.
  • Patent Document 1 does not mention the position detection of the movable mirror, but the He—Ne laser is used as a light source for detecting the inclination of light between the two optical paths.
  • the laser also as a light source (reference light source) for detecting the position of the moving mirror, the detection of the inclination of light between the two optical paths and the position detection of the moving mirror are performed by one sensor (reference detector). It is thought that you can.
  • the He—Ne laser is large and difficult to downsize in order to maintain wavelength stability. For this reason, in the configuration using the He—Ne laser as the reference light source, the apparatus itself becomes large.
  • the apparatus can be miniaturized if, for example, a semiconductor laser is used as the reference light source.
  • a semiconductor laser is used as the reference light source.
  • the semiconductor laser light is not collimated, when a semiconductor laser is used as the reference light source, a collimating optical system is also required at the same time.
  • the contrast of the interference light of the measurement light is lowered due to the influence of oblique incidence, and the interferogram may not be detected with high accuracy.
  • the collimating optical system for example, the peripheral part of the light emitting surface of the reference light source with respect to the light emitted from the central part of the light emitting surface of the reference light source and incident on the movable mirror via the collimating optical system
  • the degree of oblique incidence of light that is emitted from the light and incident on the movable mirror via the collimating optical system increases, the optical path difference between the two lights emitted from the same reference light source increases, resulting in interference between the two lights. Interference fringes are generated at the reference detector.
  • the inclination cannot be detected and corrected with high accuracy.
  • the contrast of the interference light of the measurement light is lowered, and the interferogram cannot be detected with high accuracy.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a reference light source in a configuration for detecting and correcting the inclination of light between two optical paths based on an output from a reference detector. Even with a configuration in which a semiconductor laser is used and collimated with a collimating optical system, it is possible to avoid a decrease in the contrast of the interferogram due to oblique incidence, thereby (1) a small configuration and (2) movement
  • An object of the present invention is to provide an interferometer capable of detecting an interferogram with high accuracy with a large amount of mirror movement and high resolution, and a Fourier transform spectroscopic analyzer equipped with the interferometer.
  • the interference system includes a moving mirror and a fixed mirror, and a beam splitter that separates measurement light and guides the measurement light to the moving mirror and the fixed mirror, and combines the lights reflected by the moving mirror and the fixed mirror. And a first optical system that detects first interference light formed by combining the light reflected by the movable mirror and the fixed mirror by the beam splitter, An interferometer for measuring the first interference light by moving the movable mirror, having a reference light source, separating the reference light from the reference light source by the beam splitter, and the movable mirror and the fixed mirror A second optical system for guiding the second interference light formed by combining the light reflected by the movable mirror and the fixed mirror by the beam splitter to the second photodetector; and Received light signal of the second interference light from the photodetector Based on this, the inclination between the light incident on the first photodetector via the movable mirror and the light incident on the first photodetector via the fixed mirror is detected and corrected.
  • a correction unit; and the second photodetector is a split sensor, and the reference light source is a semiconductor laser or a laser beam emitted from the semiconductor laser via a waveguide or a fiber.
  • the second optical system includes a collimating optical system that converts laser light emitted from the semiconductor laser into parallel light, and the light emitting surface of the reference light source The size is smaller than the size of the light exit surface of the measurement light.
  • the size of the light exit surface of the reference light source is smaller than the size of the light exit surface of the measurement light, even if the semiconductor laser is used as the reference light source and collimated by the collimating optical system, A decrease in the contrast of the interferogram due to incidence can be avoided.
  • This makes it possible to (1) a small configuration using a semiconductor laser as a reference light source, (2) a large amount of movement of the moving mirror with high resolution, and (3) highly accurate detection of the light tilt between the two optical paths. By correcting, the interferogram can be detected with high accuracy.
  • FIG. 1 is an explanatory diagram schematically showing a schematic configuration of the Fourier transform spectroscopic analyzer of the present embodiment.
  • This apparatus includes an interferometer 1, a calculation unit 2, and an output unit 3.
  • the interferometer 1 is composed of a two-optical path branching Michelson interferometer, the details of which will be described later.
  • the computing unit 2 performs sampling of the signal output from the interferometer 1, A / D conversion, and Fourier transform, and indicates the spectrum of the wavelength included in the measurement light, that is, the light intensity for each wave number (1 / wavelength). Generate a spectrum.
  • the output unit 3 outputs (for example, displays) the spectrum generated by the calculation unit 2.
  • details of the interferometer 1 will be described.
  • the interferometer 1 includes a first optical system 10, a second optical system 20, and a correction unit 30. Hereinafter, it demonstrates in order.
  • the first optical system 10 includes a measurement light source 11, a collimating optical system (first collimating optical system) 12, a BS (beam splitter) 13, a compensation plate 14, a fixed mirror 15, and a moving mirror 16. , A condensing optical system 17, a first photodetector 18, and a drive mechanism 19. Note that the positional relationship between the fixed mirror 15 and the movable mirror 16 with respect to the BS 13 may be reversed.
  • the measurement light source 11 emits, for example, near infrared light including a plurality of wavelengths as measurement light.
  • the collimating optical system 12 is an optical system that converts the light from the measurement light source 11 into parallel light and guides it to the BS 13, and is composed of, for example, a collimator lens.
  • the BS 13 separates incident light, that is, light emitted from the measurement light source 11 into two lights, which are guided to the fixed mirror 15 and the movable mirror 16 and reflected by the fixed mirror 15 and the movable mirror 16, respectively. Each light is synthesized and emitted as first interference light, and is composed of, for example, a half mirror.
  • the compensation plate 14 is a substrate for correcting an optical path length corresponding to the thickness of the BS 13 and an optical path shift due to refraction when light passes through the BS 13. Depending on how the interferometer 1 is assembled, the compensation plate 14 may be unnecessary.
  • the condensing optical system 17 is an optical system that condenses the light synthesized and emitted by the BS 13 and guides it to the first photodetector 18, and is composed of, for example, a focus lens.
  • the first photodetector 18 receives first interference light incident from the BS 13 via the condensing optical system 17 and detects an interferogram (interference pattern).
  • the drive mechanism 19 moves the movable mirror 16 to the optical axis so that the difference (optical path length difference) between the optical path of the light reflected by the fixed mirror 15 and the optical path of the light reflected by the movable mirror 16 changes. It is a moving mechanism that translates (translates) in the direction, and is composed of, for example, an electromagnetic drive mechanism using a VCM (voice coil motor).
  • the drive mechanism 19 may be a parallel leaf spring type drive mechanism.
  • the light (measurement light) emitted from the measurement light source 11 is converted into parallel light by the collimating optical system 12 and then separated into two light beams by transmission and reflection at the BS 13.
  • One of the separated light beams is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15.
  • Each of the separated light beams returns to the original optical path and is superimposed on the BS 13, and the first interference light passes through the compensation plate 14.
  • Is irradiated to a sample (not shown). At this time, the sample is irradiated with light while continuously moving the movable mirror 16 by the drive mechanism 19, but the difference in optical path length from the BS 13 to each mirror (movable mirror 16, fixed mirror 15) is an integral multiple of the wavelength.
  • the intensity of the superimposed light becomes the maximum.
  • the intensity of the superimposed light changes.
  • the light transmitted through the sample is collected by the condensing optical system 17 and enters the first photodetector 18 where it is detected as an interferogram.
  • the computing unit 2 samples the detection signal (interferogram) from the first photodetector 18 and performs A / D conversion and Fourier transform to generate a spectrum indicating the light intensity for each wave number.
  • the above spectrum is output (for example, displayed) by the output unit 3, and based on this spectrum, the characteristics (material, structure, component amount, etc.) of the sample can be analyzed.
  • the second optical system 20 shares a part of the configuration with the first optical system 10 described above.
  • the compensation plate 14 the fixed mirror 15, and the movable mirror 16, the reference is made.
  • a light source 21, a collimating optical system (second collimating optical system) 22, an optical path synthesis mirror 23, an optical path separation mirror 24, and a second photodetector 25 are provided.
  • the reference light source 21 is a light source for detecting the position of the movable mirror 16 and generating a timing signal for sampling in the calculation unit 2, and is configured by a semiconductor laser that emits red light or blue light as reference light, for example. Has been. That is, the semiconductor laser constituting the reference light source 21 emits laser light having a shorter wavelength than the shortest wavelength of light (near infrared light) emitted from the measurement light source 11.
  • the reference light source 21 may be a laser light source that emits laser light emitted from the semiconductor laser described above via a waveguide or fiber.
  • the collimating optical system 22 is an optical system that converts the laser light emitted from the reference light source 21 into parallel light and guides it to the BS 13, and is composed of, for example, a collimating lens.
  • the optical path combining mirror 23 is an optical axis combining beam combiner that transmits light from the measurement light source 11 and reflects light from the reference light source 21 to combine the optical paths of these lights into the same optical path.
  • the optical path separation mirror 24 transmits the light emitted from the measurement light source 11 and incident through the BS 13, and reflects the light emitted from the reference light source 21 and incident through the BS 13. Is a beam splitter.
  • the second photodetector 25 is a reference detector that detects light (second interference light and reference interference light) that is emitted from the reference light source 21 and incident on the optical path separation mirror 24 via the BS 13 and reflected there.
  • it is composed of a quadrant sensor.
  • the correction unit 30 is incident on the first photodetector 18 from the measurement light source 11 via the movable mirror 16, and The relative inclination between the light source 11 for measurement and the light incident on the first photodetector 18 through the fixed mirror 15 is detected and corrected.
  • the relative inclination may be considered as the sum of the inclination of the light reflected by the fixed mirror 15 with respect to the optical axis and the inclination of the light reflected by the movable mirror 16 with respect to the optical axis.
  • the optical axes on the measurement light side and the reference light side are coaxial, and an optical path when one light separated by the BS 13 is reflected by the movable mirror 16 and enters the BS 13 again, and the BS 13
  • the first optical system 10 and the second optical system 20 share (coaxial) the optical path when the other light separated in step (b) is reflected by the fixed mirror 15 and again enters the BS 13.
  • the relative inclination between the light traveling in the order of 25 and the light traveling in the order of the reference light source 21, BS13, fixed mirror 15, BS13, and second photodetector 25 (hereinafter also referred to as the second inclination). And become the same.
  • the correction unit 30 is equivalent to detecting the first inclination by detecting the second inclination based on the light reception signal of the second interference light from the second photodetector 25.
  • the first inclination can be corrected.
  • the first inclination and the second inclination are also referred to as light inclination between two optical paths.
  • such a correction unit 30 includes a signal processing unit 31 and an optical path correction device 32.
  • the signal processing unit 31 detects the inclination of the light between the two optical paths based on the intensity of the second interference light detected by the second photodetector 25.
  • the four light receiving areas of the second photodetector 25 are E1 to E4 counterclockwise, and the light spot D of the second interference light is located at the center of the entire light receiving area. It shall be.
  • the sum of the light intensities detected in the light receiving areas E1 and E2 is A1
  • the sum of the light intensities detected in the light receiving areas E3 and E4 is A2
  • the change in the intensity A1 and A2 over time is shown. Assuming that the signals shown in FIG.
  • phase signals it is possible to detect the light inclination (relative inclination direction and amount of inclination) between the two optical paths based on these signals.
  • the light is tilted between the two optical paths by an angle corresponding to the phase difference ⁇ in the direction in which the light receiving regions E1 and E2 and the light receiving regions E3 and E4 are arranged (vertical direction in FIG. 2).
  • shaft of FIG. 3 is shown by the relative value. Note that when the frequency of the phase signal is slow (low), it is possible to detect the inclination of the light between the two optical paths not from the phase comparison but from the intensity ratio.
  • the signal processing unit 31 generates a pulse signal indicating the sampling timing based on the intensity of the second interference light detected by the second photodetector 25.
  • the arithmetic unit 2 samples the detection signal (interferogram) from the first photodetector 18 in synchronization with the generation timing of the pulse signal and converts it into digital data.
  • the optical path correction device 32 corrects the optical path of the light reflected by the fixed mirror 15 based on the inclination of the light between the two optical paths detected by the signal processing unit 31.
  • a plurality of piezoelectric elements 32a whose tips are connected to the fixed mirror 15 and expand and contract in the optical axis direction, and a drive unit 32b that expands and contracts the piezoelectric elements 32a by applying a voltage to these piezoelectric elements 32a. ing.
  • four piezoelectric elements 32a are provided, but only two piezoelectric elements 32a are shown in FIG.
  • each piezoelectric element 32a Based on the detection result of the signal processing unit 31, the voltage applied to each piezoelectric element 32a is controlled, and each piezoelectric element 32a is expanded and contracted to tilt the fixed mirror 15 (the optical path of the reflected light at the fixed mirror 15). Can be changed.
  • the optical path correction device 32 may correct the optical path of the light reflected by the movable mirror 16 based on the inclination of the light between the two optical paths detected by the signal processing unit 31.
  • the tip of each piezoelectric element 32 a is connected to the bottom of the drive mechanism 19 of the movable mirror 16, and each piezoelectric element 32 a is expanded and contracted to change the inclination of the movable mirror 16 and reflected by the movable mirror 16.
  • the optical path of light can be corrected.
  • the light emitted from the reference light source 21 is converted into parallel light by the collimating optical system 22, then reflected by the optical path combining mirror 23 and incident on the BS 13, where it is separated into two light beams.
  • One light beam separated by the BS 13 is reflected by the movable mirror 16, and the other light beam is reflected by the fixed mirror 15, and each of the light beams returns to the original optical path and is superposed by the BS 13.
  • a sample (not shown) is irradiated as interference light. The light transmitted through the sample is reflected by the optical path separation mirror 24 and is incident on the second photodetector 25.
  • the signal processing unit 31 detects the inclination of light between the two optical paths based on the intensity of the second interference light detected by the second photodetector 25, and the optical path correction device 32. However, based on the detection result of the signal processing unit 31, the posture of the fixed mirror 15 (angle with respect to the BS 13) is adjusted, and the optical path of the reflected light at the fixed mirror 15 is corrected. By performing feedback control that repeats correction of the optical path of the reflected light and detection of the tilt of the light between the two optical paths, the tilt of the light between the two optical paths can be made as close to zero as possible.
  • phase difference of ⁇ / 2 ( ⁇ is the wavelength of the measurement light) or more is generated within the beam diameter of the measurement light, the contrast at the time of interferogram measurement is lowered and the spectral performance is deteriorated. Therefore, when the beam diameter is ⁇ , the phase difference of ⁇ / 2 or more is not generated in the beam diameter at the shortest wavelength of the measurement light so that it is less than ⁇ / (2 ⁇ ) (rad.) Between the two optical paths. It is necessary to suppress the inclination (angle) of light.
  • the light inclination between the two optical paths can be made as close to zero as possible, and the inclination can be suppressed to ⁇ / (2 ⁇ ) (rad.) Or less.
  • the spectroscopic analysis based on the spectrum obtained by the Fourier transform in the calculation unit 2 can be performed with high accuracy.
  • the optical path between the BS 13 and the movable mirror 16 and the optical path between the BS 13 and the fixed mirror 15 are coaxial in the first optical system 10 and the second optical system 20.
  • the measurement light and the reference light pass through the same optical path between the BS 13 and the movable mirror 16 and between the BS 13 and the fixed mirror 15.
  • the second optical system 20 on the reference light side observes fluctuations in the first optical system 10 on the measurement light side, and the measurement light side and the reference light side have the same optical axis as the same axis.
  • the correction unit 30 detects and corrects the inclination of light between the two optical paths based on the detection result of the second photodetector 25 of the second optical system 20 without being affected by the measurement error due to disturbance. Thus, a decrease in the contrast of the interferogram can be avoided.
  • the correction unit 30 determines the tilt of the other light with respect to one light (the tilt direction and the tilt) based on the signal from each region of the split sensor. Amount (angle difference)) can be reliably detected.
  • the signal processing unit 31 of the correction unit 30 determines the signal sum of the two adjacent areas E1 and E2 of the four-divided sensor and the rest. It is possible to detect the inclination of light between the two optical paths by taking the signal sum of the regions E3 and E4 and comparing the phase of these signal sums. Therefore, the inclination can be detected with high accuracy.
  • the correction unit 30 corrects the inclination of the light between the two optical paths by adjusting the inclination of the fixed mirror 15 (or the movable mirror 16), so that the correction can be reliably performed.
  • Examples 1 to 4 examples of the Fourier transform spectroscopic analyzer of the present embodiment will be described as Examples 1 to 4.
  • the Fourier transform spectroscopic analyzers according to the first, third, and fourth embodiments basically have the configuration shown in FIG.
  • the Fourier transform spectroscopic analyzer of Example 2 basically has the configuration shown in FIG.
  • FIG. 4 is an explanatory view schematically showing another configuration of the Fourier transform spectroscopic analyzer.
  • the measurement light source 11 includes a fiber coupling optical system including, for example, a light source 11a that emits near-infrared light and an optical fiber 11b that is coupled to the light source 11a.
  • the reference light source 21 includes a fiber coupling optical system including a light source 21a that is a semiconductor laser that emits red light and an optical fiber 21b that is coupled to the light source 21a. That is, the fiber coupling optical system of the second optical system 20 constitutes a laser light source that emits laser light emitted from the semiconductor laser through the fiber.
  • the fiber may be a waveguide.
  • the remaining configuration of the apparatus according to the second embodiment is the same as that illustrated in FIG.
  • FIG. 5 is an explanatory diagram showing the parameters of the first to fourth embodiments.
  • ⁇ 1 indicates the shortest wavelength (mm) of the measurement light.
  • r1 represents the radius (mm) of the light emission surface of the measurement light source 11 (in Example 2, the light emission surface of the optical fiber 11b).
  • the light exit surface is basically circular.
  • NA1 indicates the numerical aperture on the incident side of the measurement light, that is, the divergence angle (rad.) Of the measurement light incident on the collimating optical system 12.
  • f1 indicates the focal length (mm) of the collimating optical system 12.
  • ⁇ 1 indicates the beam diameter (mm) of the measurement light converted into parallel light by the collimating optical system 12.
  • OPD optical phase difference
  • ⁇ 2 indicates the wavelength (mm) of the reference light.
  • r2 represents the radius (mm) of the light emitting surface of the reference light source 21 (in Example 2, the light emitting surface of the optical fiber 21b).
  • the light exit surface is basically circular.
  • NA2 represents the incident-side numerical aperture of the reference light, that is, the divergence angle (rad.) Of the reference light incident on the collimating optical system 22.
  • f2 represents the focal length (mm) of the collimating optical system 22.
  • ⁇ 2 indicates the beam diameter (mm) of the reference light converted into parallel light by the collimating optical system 22.
  • is a factor indicating sensitivity to oblique incidence.
  • the oblique incidence will be described with reference to the literature ("spectrum fundamentals and methods", Keiei Kudo, Ohmsha, p.492-507, 1985). If the light exit surface of the light source has a size, the light exiting the periphery of the light source is incident on the interferometer (here, the optical system after the collimating optical system) at an angle, so the axis of the interferometer As a result of the extra optical path difference compared to the light incident in parallel to the light and interference of these lights, interference fringes are generated within the beam diameter, reducing the contrast of the interferogram.
  • oblique incidence avoidance condition A condition that can avoid the influence of such oblique incidence is referred to as oblique incidence avoidance condition.
  • P1 / P2.
  • ⁇ > 1 This is because the influence (sensitivity) due to oblique incidence is smaller (duller) in the second optical system 20 than in the first optical system 10, that is, the second optical system 20 is inferior to the first optical system 10. Also shows that it is not easily affected by oblique incidence.
  • represents the ratio of the sensitivity to the inclination between the two optical paths of the measurement light and the sensitivity to the inclination between the two optical paths of the reference light.
  • ⁇ 1 Shortest wavelength of measurement light (mm)
  • ⁇ 2 wavelength of reference light (mm)
  • ⁇ 1 Beam diameter (mm) of measurement light converted into parallel light by collimating optical system 12
  • ⁇ 2 Beam diameter (mm) of reference light converted into parallel light by collimating optical system 22 It is.
  • the product of the ratio of the shortest wavelength of the measurement light to the wavelength of the reference light ( ⁇ 2 / ⁇ 1) and the ratio of the beam diameter of the reference light to the beam diameter of the measurement light ( ⁇ 1 / ⁇ 2) is a lower limit of 1.1 or more.
  • the degree of contrast reduction with respect to the inclination between the two optical paths of the reference light can be made slower than the degree of contrast reduction with respect to the inclination between the two optical paths of the measurement light.
  • By detecting and correcting it is possible to suppress a decrease in contrast of the interferogram.
  • ⁇ / (2 ⁇ ) (rad.) Described above is an angle at which the contrast of the interference light does not appear at all.
  • ⁇ 2 / (2 ⁇ 2) (rad.) Needs to be at least larger than ⁇ 1 / (2 ⁇ 1) (rad.). That is, ( ⁇ 2 / ⁇ 2)> ( ⁇ 1 / ⁇ 1) and ( ⁇ 2 ⁇ ⁇ 1) / ( ⁇ 1 ⁇ ⁇ 2)> 1.
  • the light source (light quantity) and the detector are selected so that the sensitivity of the detector is sufficiently exerted in the state with the best contrast of the measurement light. If a contrast of about 10 can be detected, the sensitivity of the detector is sufficient. For this reason, the lower limit of ⁇ is 1.1. In order to detect the contrast reliably, it is preferable that ⁇ ⁇ 1.2.
  • the size of the light exit surface of the reference light source 21 is the size of the light exit surface of the measurement light (here, for measurement) It is smaller than the size of the light exit surface of the light source 11).
  • the size of the light emitting surface of the reference light source 21 is smaller than the size of the light emitting surface of the measurement light source 11, the light is emitted from the center of the light emitting surface of the reference light source 21 and moves through the collimating optical system 22.
  • the degree of oblique incidence of light incident on the mirror 16 and incident on the movable mirror 16 via the collimating optical system 22 after being emitted from the periphery of the light exit surface of the reference light source 21 is larger than that on the measurement light side. Get smaller.
  • the optical path difference between the two lights emitted from the same reference light source 21 is reduced, and the occurrence of interference fringes due to interference between the two lights in the second photodetector 25 can be reduced.
  • the correction unit 30 can detect the inclination of light between the two optical paths with high accuracy based on the light reception signal of the second interference light from the second photodetector 25. As a result, even if the laser light emitted from the semiconductor laser is converted into parallel light by the collimating optical system 22, the correction by the correction unit 30 can be reliably corrected, and the first photodetector The decrease in contrast of the interferogram detected at 18 can be reliably suppressed.
  • the semiconductor laser is smaller than the He—Ne laser conventionally used as the reference light source 21, even when the collimating optical system 22 is used, the small collimating optical system 22 can be used. The whole is not enlarged.
  • the interferometer 1 and the Fourier transform spectroscopic analyzer capable of detecting the interferogram with high accuracy can be realized by detecting and correcting the inclination of the light between them with high accuracy.
  • the oblique incidence avoidance condition in the second optical system 20 is the first condition. This is relaxed by about 10 times compared to the condition for avoiding the oblique incidence in the optical system 10.
  • the reference light is less affected by the oblique incidence by about 10 times than the measurement light. This reliably reduces the occurrence of interference fringes due to interference between the light emitted from the center portion of the reference light source 21 and the light emitted from the peripheral portion, and the inclination of the light between the two optical paths in the correction unit 30 is reduced. Detection can be performed with higher accuracy.
  • the size of the light emitting surface of the reference light source 21 is preferably 1/10 or less, and more preferably 1/30 or less, of the size of the light emitting surface of the measurement light source 11.
  • the beam diameter ⁇ 2 of the reference light converted into parallel light by the collimating optical system 22 is smaller than the beam diameter ⁇ 1 of the measuring light converted into parallel light by the collimating optical system 12.
  • the correction unit 30 cannot detect the inclination based on the light reception signal of the second interference light from the second photodetector 25.
  • the sensitivity to the tilt on the reference light side can be reduced, and the tilt can be detected even when the tilt is large.
  • the divergence angle NA2 of the reference light incident on the collimating optical system 22 is smaller than the divergence angle NA1 of the measurement light incident on the collimating optical system 12.
  • the collimating optical system 22 converts the divergence angle NA2 of the reference light to be smaller than the divergence angle NA1 of the measuring light. After that, the beam diameter ⁇ 2 of the reference light can be made smaller than the beam diameter ⁇ 1 of the measurement light after being converted into parallel light by the collimating optical system 12. As a result, the sensitivity to the tilt can be reduced on the reference light side, and the tilt can be reliably detected even when the tilt between the two optical paths of the reference light is large.
  • the focal length of the collimating optical system 22 can be increased, the shift sensitivity of the collimating optical system 22 can be reduced, and a Fourier transform spectroscopic analyzer that is resistant to disturbance can be realized.
  • the shift sensitivity refers to the degree of influence on the collimated light when the collimating optical system 22 is shifted with respect to the reference light source 21.
  • the collimating optical system 22 is shifted in the optical axis direction, the degree to which the wavefront of the collimated light has a curvature is increased (the degree to which the collimated light is condensed or diverges is increased).
  • the focal length of the collimating optical system 22 long, the influence on the collimated light can be suppressed to be small, and a device that is resistant to disturbance can be realized.
  • the divergence angle NA2 of the reference light is desirably 0.15 or less (for example, 0.12 or less or 0.1 or less), and the divergence angle NA1 of the measurement light is 0.3 or less (for example, 0.25 or less). Or 0.22 or less) (the unit is rad.).
  • the reference light source 21 can be configured by using a single mode fiber or a polarization maintaining fiber, and the measurement light source 11 is a step-index type. (SI type) fiber or graded index type (GI type) fiber can be used.
  • the focal length f2 of the collimating optical system 22 is shorter than the focal length f1 of the collimating optical system 12.
  • the beam diameter ⁇ 2 of the reference light after being converted into parallel light by the collimating optical system 22 is set.
  • the beam diameter ⁇ 1 of the measurement light after being converted into parallel light by the collimating optical system 12 can be made smaller. As a result, the sensitivity to the tilt can be reduced on the reference light side, and the tilt can be reliably detected even when the tilt between the two optical paths of the reference light is large.
  • the divergence angle NA2 of the reference light is 0.1 (rad.)
  • the divergence angle NA1 of the measurement light is 0.2 (rad.)
  • the focal length f2 of the collimating optical system 22 is 8 (mm), and the collimation is performed.
  • the focal length f1 of the optical system 12 is 9 (mm)
  • the distance from the reference light source 21 to the collimating optical system 22 can be shortened, and the apparatus can be miniaturized.
  • an InGaInP-based edge emitting semiconductor laser that emits red light having a wavelength of 660 nm is used as the reference light source 21.
  • Semiconductor lasers with a wavelength of 660 nm are widespread, and the reference light source 21 can be configured at low cost.
  • a semiconductor laser that emits red light having a wavelength of 630 nm is used as the light source 21 a of the reference light source 21, and a polarization maintaining fiber is used as the optical fiber 21 b of the reference light source 21.
  • the light source size (the diameter of the light exit surface of the optical fiber 21b) is as small as 4 ⁇ m, and the divergence angle NA2 is also as small as 0.12 (rad.).
  • a surface-emitting type semiconductor laser light source that emits blue light with a wavelength of 400 nm is used as the reference light source 21, and the divergence angle NA2 is as small as 0.04 (rad.).
  • an edge-emitting type semiconductor laser light source that emits blue light having a wavelength of 400 nm is used as the reference light source 21, and the light source size is small, but the divergence angle NA2 is as large as 0.3 (rad.). ing.
  • the light transmission surface (for example, the light transmission surface of the BS 13) in the first optical system 10 and the second optical system 20 is provided with an antireflection coating (AR coating) to increase the light use efficiency.
  • AR coating antireflection coating
  • the antireflection coating it is difficult to provide antireflection characteristics in a wide band. Further, if the wavelength band for preventing reflection is widened, the reflectance increases in that wavelength band. Therefore, when the measurement light is near-infrared light, as in Examples 1 and 2, the reference light is a red semiconductor laser light, and the wavelength band of the reference light and the measurement light is made closer, thereby designing the antireflection coat. It is desirable to make it easier.
  • the semiconductor laser used in the present embodiment may have a configuration in which a specific wavelength is returned into the laser resonator by, for example, VHG (Volume Holographic Gratin) to lock the transmission wavelength.
  • VHG Volume Holographic Gratin
  • the interferometer 1 includes the measurement light source 11 and obtains the first interference light using the measurement light emitted from the measurement light source 11 has been described.
  • the interferometer of the present invention is described. 1 does not necessarily include the measurement light source 11. That is, the measurement light for obtaining the first interference light may be light emitted from a light source built in the interferometer, or may be light incident from the outside of the interferometer. . Even in the latter case, if the size of the light emitting surface of the reference light source 21 is smaller than the size of the light emitting surface of the measurement light (the light emitting surface of the external light source), the above-described effects of the present invention can be obtained.
  • the measurement light is separated by the beam splitter and guided to the moving mirror and the fixed mirror, and each light reflected by the moving mirror and the fixed mirror is transmitted to the beam splitter.
  • An interferometer that includes the first optical system that guides the first interference light synthesized in step 1 to the first photodetector, and that measures the first interference light by moving the movable mirror;
  • a light source, the reference light from the reference light source is separated by the beam splitter and guided to the moving mirror and the fixed mirror, and each light reflected by the moving mirror and the fixed mirror is combined by the beam splitter
  • the movable mirror is Light incident on the first photodetector through the fixed mirror
  • a correction unit that detects and corrects an inclination between the light incident on the first light detector and the second light detector includes a split sensor, and the reference The
  • the correction unit is configured to determine the tilt of the other light with respect to one light (the tilt direction and the tilt amount (angle) based on the signal from each region of the split sensor. The difference)) can be reliably detected.
  • the correction unit detects the inclination of light between the two optical paths based on the light reception signal of the second interference light from the second photodetector (the light obtained via the moving mirror and the fixed mirror). Relative inclination with the obtained light) can be detected with high accuracy. Therefore, even when the laser light emitted from the semiconductor laser is converted into parallel light by the collimating optical system, the correction by the correction unit can be reliably corrected, and the contrast of the interferogram can be reliably reduced. Can be suppressed.
  • the reference light source made of a semiconductor laser is smaller than the He—Ne laser generally used as a reference light source, a small collimating optical system can be used even when a collimating optical system is used.
  • the entire apparatus is not increased in size.
  • the light source (measurement light source) that emits the measurement light may be inside or outside the interferometer. That is, the measurement light for obtaining the first interference light by the interferometer may be light emitted from a light source incorporated in the interferometer, or light incident from the outside of the interferometer. There may be.
  • the first optical system has a measurement light source that emits the measurement light, and the size of the light emission surface of the reference light source is the light emission surface of the measurement light source.
  • the structure may be smaller than the size.
  • the above-described effects of the present invention can be obtained.
  • the diameter of the light emission surface of the measurement light source is L1
  • the diameter of the light emission surface of the reference light source is L2
  • the influence of the oblique incidence on the reference light can be surely reduced as compared with the influence of the oblique incidence on the measurement light, and the light emitted from the central portion and the peripheral portion of the reference light source is emitted.
  • Generation of interference fringes due to interference with light can be reliably reduced.
  • the inclination of the light between the two optical paths can be detected with higher accuracy by the correction unit, and the contrast reduction of the interferogram can be reliably suppressed.
  • the first optical system has a first collimating optical system that converts the measurement light into parallel light
  • the collimating optical system of the second optical system is the first collimating optical system.
  • the beam diameter of the reference light converted into parallel light by the second collimating optical system is equal to the beam diameter of the measuring light converted into parallel light by the first collimating optical system.
  • a smaller configuration may be used.
  • the sensitivity to the light inclination between the two optical paths in the second optical system can be made slower than the sensitivity in the first optical system, and even when the inclination is large, the inclination on the reference light side is Can be detected.
  • the optical path when one light separated by the beam splitter is reflected by the moving mirror and enters the beam splitter again, and the other light separated by the beam splitter is It is desirable that the first optical system and the second optical system have a coaxial optical path when reflected by a fixed mirror and incident on the beam splitter again.
  • the correction unit can detect and correct the inclination of light between the two optical paths without being affected by a measurement error due to disturbance, and can avoid a decrease in contrast of the interferogram.
  • the interferometer of this embodiment satisfies the following conditional expression. That is, ( ⁇ 2 ⁇ ⁇ 1) / ( ⁇ 1 ⁇ ⁇ 2) ⁇ 1.1
  • ⁇ 1 Shortest wavelength of measurement light
  • ⁇ 2 Wavelength of reference light
  • ⁇ 1 Beam diameter of measurement light converted to parallel light by the first collimating optical system
  • ⁇ 2 Converted to parallel light by the second collimating optical system The beam diameter of the reference beam.
  • the product of the ratio of the shortest wavelength of the measurement light to the wavelength of the reference light ( ⁇ 2 / ⁇ 1) and the ratio of the beam diameter of the reference light to the beam diameter of the measurement light ( ⁇ 1 / ⁇ 2) is equal to or greater than the lower limit of the equation (2) If so, the degree of decrease in contrast with respect to the inclination between the two optical paths of the reference light can be made slower than the degree of decrease in contrast with respect to the inclination between the two optical paths of the measurement light. As a result, it is possible to detect the inclination of a wider angle range, and detect the inclination between the two optical paths of the reference light even if an angle is formed between the two optical paths of the measurement light due to disturbance and the contrast does not occur. It can be corrected.
  • the divergence angle of the reference light incident on the second collimating optical system may be smaller than the divergence angle of the measuring light incident on the first collimating optical system.
  • the reference light is diverged by making the divergence angle smaller than the divergence angle of the measurement light, thereby being parallel by the second collimating optical system.
  • the beam diameter of the reference light after being converted into light can be made smaller than the beam diameter of the measuring light after being converted into parallel light by the first collimating optical system.
  • the focal length of the second collimating optical system may be shorter than the focal length of the first collimating optical system.
  • the focal length of the second collimating optical system is set to the first collimating optical system.
  • the beam diameter of the reference light after being converted into parallel light by the second collimating optical system is converted into parallel light by the first collimating optical system.
  • the beam diameter of the measurement light can be made smaller. Therefore, even when the inclination between the two optical paths of the reference light is large, the inclination can be reliably detected.
  • the measurement light is near infrared light and the reference light is red semiconductor laser light.
  • the wavelength bands of the measurement light and the reference light are close, even when an antireflection coating is applied to the light transmission surface of the beam splitter to increase the light utilization efficiency, the wavelength band for preventing reflection can be narrowed. The design of the antireflection coating can be facilitated.
  • the split sensor is composed of four split sensors.
  • the light inclination between two optical paths is obtained by phase comparison between the signal sum of two adjacent regions in the four-divided sensor and the signal sum of the remaining two adjacent regions.
  • Direction and amount of inclination can be detected, and the inclination can be detected with high accuracy.
  • the correction unit includes light incident on the first photodetector via the movable mirror, and light incident on the first photodetector via the fixed mirror.
  • amends the inclination between these by adjusting the inclination of the said fixed mirror or the said movable mirror may be sufficient.
  • the correction unit can reliably correct the inclination of light between the two optical paths by adjusting the inclination of the fixed mirror or the movable mirror.
  • the Fourier transform spectroscopic analyzer of the present embodiment performs Fourier transform on the interferogram obtained by receiving the first interference light at the above-described interferometer of the present invention and the first photodetector of the interferometer.
  • the measurement light may include a plurality of wavelengths, and the calculation unit may generate a spectrum of the wavelength included in the measurement light by Fourier transform of the interferogram.
  • the present invention can be used for a Michelson interferometer and a Fourier transform spectroscopic apparatus for performing spectroscopic analysis using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 参照光源(21)からの参照光(半導体レーザ光)は、コリメート光学系(22)によって平行光に変換され、BS(13)で分離され、移動鏡(16)および固定鏡(15)で反射された後、BS(13)で合成され、参照干渉光として第2の光検出器(25)に導かれる。補正部(30)は、第2の光検出器(25)からの参照干渉光の受光信号に基づいて、移動鏡(16)を介して第1の光検出器(18)に入射する光と、固定鏡(15)を介して第1の光検出器(18)に入射する光との間の傾きを検出して補正する。上記構成において、参照光源(21)の光出射面のサイズは、BS(13)に入射する測定光の光出射面のサイズよりも小さい。

Description

干渉計およびフーリエ変換分光分析装置
 本発明は、マイケルソン型の干渉計と、その干渉計を備えたフーリエ変換分光分析装置に関するものである。
 FTIR(Fourier Transform Infrared Spectroscopy)に利用されるマイケルソン2光束干渉計では、光源から発した赤外光をビームスプリッタで固定鏡および移動鏡の2方向に分割し、その固定鏡および移動鏡でそれぞれ反射して戻ってきた光を上記ビームスプリッタで1つの光路に合成するという構成を採用している。移動鏡を前後に(入射光の光軸方向に)移動させると、分割された2光束の光路差が変化するため、合成された光はその移動鏡の移動量に応じて光の強度が変化する干渉光(インターフェログラム)となる。このインターフェログラムをサンプリングし、AD変換およびフーリエ変換することにより、入射光のスペクトル分布を求めることができ、このスペクトル分布から、波数(1/波長)ごとの干渉光の強度を求めることができる。
 このようなFTIRにおいて高い性能を発揮するには、干渉計での干渉効率を最良に保つことが望ましい。そのためには、固定鏡および移動鏡とビームスプリッタとの角度関係をそれぞれ一定に保つ必要がある。つまり、FTIRの分光精度(分解能)は、移動鏡の移動量に応じたものとなり、移動量が大きいほど高分解能となるが、移動鏡の移動量が大きいと、移動鏡の並進性を保つことが困難となり、移動鏡での反射光と固定鏡での反射光とで相対的な傾きが生じて(各反射光が光軸から傾いて)干渉光のコントラストが低下する。このため、上記傾きを補正することが必要となる。
 そこで、例えば特許文献1では、干渉光を検出するセンサからの出力に基づいて、一方の反射面のチルト角を調整することにより、2つの反射面で反射される各光の相対的な傾きを補正している。
米国特許第4053231号明細書(Fig.1等参照)
 ところで、上記のインターフェログラムは、移動鏡と固定鏡との位相差、すなわち、移動鏡での反射光と固定鏡での反射光との光路差の関数で示されることから、干渉光の強度を求めるにあたっては、移動鏡の位置(インターフェログラムのサンプリングのタイミング)を常に監視する必要がある。そこで、通常は、赤外光を出射する光源とは別に、干渉性(コヒーレンシー)の高いHe-Neレーザなどの参照光源を用いて移動鏡の位置を監視している。具体的には、参照光源から出射される参照光をビームスプリッタで分離して移動鏡および固定鏡に導き、移動鏡および固定鏡で反射される各光をビームスプリッタで合成し、参照干渉光として位置検出用の参照検出器に導く。干渉性の高い参照光源を用いた場合、移動鏡の変位量が大きくても、移動鏡および固定鏡での各反射光は干渉する。したがって、移動鏡の変位量が大きくても、参照干渉光の強度に基づいて移動鏡の位置を求めることが可能となる。
 この点、特許文献1では、移動鏡の位置検出については触れられていないが、2光路間での光の傾きを検出するための光源としてHe-Neレーザを用いているので、このHe-Neレーザを移動鏡の位置検出用の光源(参照光源)としても用いることにより、2光路間での光の傾きの検出と移動鏡の位置検出とを、1つのセンサ(参照検出器)で行うことができると考えられる。
 ところが、He-Neレーザは大型であるとともに、波長の安定性を維持するために小型化することが困難である。このため、参照光源としてHe-Neレーザを用いる構成では、装置自体が大型化する。
 そこで、参照光源として、例えば半導体レーザを用いれば、装置を小型化することができると考えられる。ただし、半導体レーザ光はコリメートされていないので、参照光源として半導体レーザを用いる場合は、同時にコリメート光学系も必要となる。
 しかし、コリメート光学系を用いると、斜入射による影響で、測定光の干渉光のコントラストが低下し、インターフェログラムを高精度に検出することができなくなる場合がある。
 つまり、コリメート光学系を用いることにより、例えば、参照光源の光出射面の中心部から出射されてコリメート光学系を介して移動鏡に入射する光に対して、参照光源の光出射面の周辺部から出射されてコリメート光学系を介して移動鏡に入射する光の斜め入射の度合いが大きくなると、同じ参照光源から出射される上記2つの光の光路差が大きくなり、上記2つの光の干渉による干渉縞が参照検出器で発生する。このため、参照検出器からの出力に基づいて2光路間での光の傾きを検出して補正する構成では、上記傾きを高精度に検出して補正することができなくなる。その結果、測定光の干渉光のコントラストが低下し、インターフェログラムを高精度に検出することができなくなる。
 近年では、世間的に安全や安心への関心が高まり、小型かつ高い性能を有する小型計測機器の需要が高まっている。このような背景のもと、高性能かつモバイル可能な小型の干渉系およびフーリエ変換分光分析装置は未だ開発されていない。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、参照検出器からの出力に基づいて2光路間での光の傾きを検出して補正する構成において、参照光源として半導体レーザを用い、コリメート光学系でコリメートする構成であっても、斜入射によるインターフェログラムのコントラストの低下を回避することができ、これによって、(1)小型の構成で、(2)移動鏡の移動量が大きく高分解能で、(3)インターフェログラムを高精度に検出することができる干渉計と、その干渉計を備えたフーリエ変換分光分析装置とを提供することにある。
 本発明の干渉系は、移動鏡および固定鏡と、測定光を分離して前記移動鏡および前記固定鏡に導く一方、前記移動鏡および前記固定鏡にて反射された各光を合成するビームスプリッタと、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第1の干渉光を検出する第1の光検出器とを有する第1の光学系を備え、前記移動鏡を移動させて前記第1の干渉光を計測する干渉計であって、参照光源を有し、前記参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第2の干渉光を第2の光検出器に導く第2の光学系と、前記第2の光検出器からの前記第2の干渉光の受光信号に基づいて、前記移動鏡を介して前記第1の光検出器に入射する光と、前記固定鏡を介して前記第1の光検出器に入射する光との間の傾きを検出して補正する補正部とをさらに備え、前記第2の光検出器は、分割センサで構成されており、前記参照光源は、半導体レーザ、または前記半導体レーザから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、前記第2の光学系は、前記半導体レーザから出射されるレーザ光を平行光に変換するコリメート光学系を有しており、前記参照光源の光出射面のサイズは、前記測定光の光出射面のサイズよりも小さいことを特徴としている。
 本発明によれば、参照光源の光出射面のサイズは、測定光の光出射面のサイズよりも小さいので、参照光源として半導体レーザを用い、コリメート光学系でコリメートする構成であっても、斜入射によるインターフェログラムのコントラストの低下を回避することができる。これにより、(1)参照光源として半導体レーザを用いた小型の構成で、(2)移動鏡の移動量が大きく高分解能で、(3)2光路間での光の傾きを高精度に検出し、補正することによってインターフェログラムを高精度に検出することができる。
本発明の実施の一形態のフーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。 上記フーリエ変換分光分析装置に適用される干渉計の第2の光検出器の概略の構成を示す平面図である。 上記第2の光検出器での検出結果に基づいて出力される位相信号を示す説明図である。 上記フーリエ変換分光分析装置の他の構成を模式的に示す説明図である。 実施例1~4における各パラメータを示す説明図である。
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。
 〔フーリエ変換分光分析装置の構成〕
 図1は、本実施形態のフーリエ変換分光分析装置の概略の構成を模式的に示す説明図である。この装置は、干渉計1と、演算部2と、出力部3とを有して構成されている。干渉計1は、2光路分岐型のマイケルソン干渉計で構成されているが、その詳細については後述する。演算部2は、干渉計1から出力される信号のサンプリング、A/D変換およびフーリエ変換を行い、測定光に含まれる波長のスペクトル、すなわち、波数(1/波長)ごとの光の強度を示すスペクトルを生成する。出力部3は、演算部2にて生成されたスペクトルを出力(例えば表示)する。以下、干渉計1の詳細について説明する。
 干渉計1は、第1の光学系10と、第2の光学系20と、補正部30とを有している。以下、順に説明する。
 第1の光学系10は、測定用光源11と、コリメート光学系(第1のコリメート光学系)12と、BS(ビームスプリッタ)13と、補償板14と、固定鏡15と、移動鏡16と、集光光学系17と、第1の光検出器18と、駆動機構19とを備えている。なお、BS13に対する固定鏡15と移動鏡16との位置関係は、逆であってもよい。
 測定用光源11は、例えば複数波長を含む近赤外光を測定光として出射する。コリメート光学系12は、測定用光源11からの光を平行光に変換してBS13に導く光学系であり、例えばコリメータレンズで構成されている。BS13は、入射光、すなわち、測定用光源11から出射された光を2つの光に分離して、それぞれを固定鏡15および移動鏡16に導くとともに、固定鏡15および移動鏡16にて反射された各光を合成し、第1の干渉光として出射するものであり、例えばハーフミラーで構成されている。
 補償板14は、BS13の厚み分の光路長、および光がBS13を透過する際の屈折による光路シフトを補正するための基板である。なお、干渉計1の組み方次第では、補償板14を不要とすることもできる。
 集光光学系17は、BS13にて合成されて出射された光を集光して第1の光検出器18に導く光学系であり、例えばフォーカスレンズで構成されている。第1の光検出器18は、BS13から集光光学系17を介して入射する第1の干渉光を受光してインターフェログラム(干渉パターン)を検出する。
 駆動機構19は、固定鏡15にて反射される光の光路と、移動鏡16にて反射される光の光路との差(光路長の差)が変化するように、移動鏡16を光軸方向に平行移動(並進)させる移動機構であり、例えばVCM(ボイスコイルモータ)を用いた電磁式の駆動機構で構成されている。なお、駆動機構19は、平行板ばね式の駆動機構で構成されてもよい。
 上記の構成において、測定用光源11から出射された光(測定光)は、コリメート光学系12によって平行光に変換された後、BS13での透過および反射によって2光束に分離される。分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、補償板14を介して第1の干渉光として試料(図示せず)に照射される。このとき、駆動機構19によって移動鏡16を連続的に移動させながら試料に光が照射されるが、BS13から各ミラー(移動鏡16、固定鏡15)までの光路長の差が波長の整数倍のときは、重ね合わされた光の強度は最大となる。一方、移動鏡16の移動によって2つの光路長に差が生じている場合には、重ね合わされた光の強度に変化が生じる。試料を透過した光は、集光光学系17にて集光されて第1の光検出器18に入射し、そこでインターフェログラムとして検出される。
 演算部2では、第1の光検出器18からの検出信号(インターフェログラム)をサンプリングし、A/D変換およびフーリエ変換することにより、波数ごとの光の強度を示すスペクトルが生成される。上記のスペクトルは、出力部3にて出力(例えば表示)され、このスペクトルに基づき、試料の特性(材料、構造、成分量など)を分析することが可能となる。
 次に、第2の光学系20および補正部30について説明する。第2の光学系20は、上記した第1の光学系10と構成を一部共有しており、上述したBS13と、補償板14と、固定鏡15と、移動鏡16とに加えて、参照光源21と、コリメート光学系(第2のコリメート光学系)22と、光路合成ミラー23と、光路分離ミラー24と、第2の光検出器25とを有している。
 参照光源21は、移動鏡16の位置を検出したり、演算部2でのサンプリングのタイミング信号を生成にするための光源であり、例えば赤色光や青色光を参照光として発光する半導体レーザで構成されている。すなわち、参照光源21を構成する半導体レーザは、測定用光源11から出射される光(近赤外光)の最短波長よりも短波長のレーザ光を出射する。なお、参照光源21は、上記の半導体レーザから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されていてもよい。
 コリメート光学系22は、参照光源21から出射されるレーザ光を平行光に変換してBS13に導く光学系であり、例えばコリメートレンズで構成されている。光路合成ミラー23は、測定用光源11からの光を透過させ、参照光源21からの光を反射させることにより、これらの光の光路を同一光路に合成する光軸合成ビームコンバイナである。光路分離ミラー24は、測定用光源11から出射されてBS13を介して入射する光を透過させ、参照光源21から出射されてBS13を介して入射する光を反射させることにより、これらの光の光路を分離するビームスプリッタである。
 第2の光検出器25は、参照光源21から出射されてBS13を介して光路分離ミラー24に入射し、そこで反射された光(第2の干渉光、参照干渉光)を検出する参照検出器であり、例えば4分割センサで構成されている。
 補正部30は、第2の光検出器25からの第2の干渉光の受光信号に基づいて、測定用光源11から移動鏡16を介して第1の光検出器18に入射する光と、測定用光源11から固定鏡15を介して第1の光検出器18に入射する光との間の相対的な傾きを検出して補正するものである。なお、上記相対的な傾きは、固定鏡15で反射された光の光軸に対する傾きと、移動鏡16で反射された光の光軸に対する傾きとを足し合わせたものと考えてもよい。
 ここで、本実施形態では、測定光側および参照光側の光軸が同軸であり、BS13で分離された一方の光が移動鏡16で反射されて再びBS13に入射するときの光路と、BS13で分離された他方の光が固定鏡15で反射されて再びBS13に入射するときの光路とが、第1の光学系10と第2の光学系20とで共通(同軸)になっている。この構成では、(1)測定用光源11、BS13、移動鏡16、BS13、第1の光検出器18の順に進行する光と、測定用光源11、BS13、固定鏡15、BS13、第1の光検出器18の順に進行する光との間の相対的な傾き(以下、第1の傾きとも称する)と、(2)参照光源21、BS13、移動鏡16、BS13、第2の光検出器25の順に進行する光と、参照光源21、BS13、固定鏡15、BS13、第2の光検出器25の順に進行する光との間の相対的な傾き(以下、第2の傾きとも称する)とが同じになる。したがって、補正部30は、第2の光検出器25からの第2の干渉光の受光信号に基づいて、第2の傾きを検出することにより、第1の傾きを検出したのと等価になり、第1の傾きを補正することができる。以下、第1の傾きおよび第2の傾きのことを、2光路間での光の傾きとも称する。
 このような補正部30は、具体的には、信号処理部31と、光路補正装置32とで構成されている。信号処理部31は、第2の光検出器25にて検出された第2の干渉光の強度に基づいて、2光路間での光の傾きを検出する。例えば、図2に示すように、第2の光検出器25の4つの受光領域を反時計回りにE1~E4とし、全体の受光領域の中心に第2の干渉光の光スポットDが位置しているものとする。受光領域E1・E2で検出された光の強度の和をA1とし、受光領域E3・E4で検出された光の強度の和をA2としたときに、時間経過に対する強度A1・A2の変化を示す位相信号として、図3に示す信号が得られたとすると、これらの信号に基づいて2光路間での光の傾き(相対的な傾き方向および傾き量)を検出することができる。この例では、受光領域E1・E2と受光領域E3・E4とが並ぶ方向(図2では上下方向)に位相差Δに対応する角度だけ、2光路間で光の傾きが生じていることになる。なお、図3の縦軸の強度は相対値で示している。なお、位相信号の周波数が遅い(低い)場合、位相比較ではなく強度比から2光路間での光の傾きを検知することもできる。
 また、信号処理部31は、第2の光検出器25にて検出された第2の干渉光の強度に基づいて、サンプリングのタイミングを示すパルス信号を生成する。演算部2は、このパルス信号の発生タイミングに同期して、第1の光検出器18からの検出信号(インターフェログラム)をサンプリングし、デジタルデータに変換することになる。
 光路補正装置32は、信号処理部31にて検出された2光路間での光の傾きに基づいて、固定鏡15で反射される光の光路を補正するものであり、図1に示すように、先端が固定鏡15と連結されて光軸方向に伸縮する複数の圧電素子32aと、これらの圧電素子32aに電圧を印加して圧電素子32aを伸縮させる駆動部32bとを有して構成されている。なお、本実施形態では、圧電素子32aは4つ設けられているが、図1では2つの圧電素子32aのみを図示している。信号処理部31での検出結果に基づいて、各圧電素子32aに印加する電圧を制御し、各圧電素子32aを伸縮させることにより、固定鏡15の傾き(固定鏡15での反射光の光路)を変化させることができる。
 なお、光路補正装置32は、信号処理部31にて検出された2光路間での光の傾きに基づいて、移動鏡16で反射される光の光路を補正するようにしてもよい。この場合、各圧電素子32aの先端を移動鏡16の駆動機構19の底部と連結し、各圧電素子32aを伸縮させることにより、移動鏡16の傾きを変化させて、移動鏡16で反射される光の光路を補正することができる。
 上記の構成において、参照光源21から出射された光は、コリメート光学系22で平行光に変換された後、光路合成ミラー23で反射されてBS13に入射し、そこで2光束に分離される。BS13にて分離された一方の光束は移動鏡16で反射され、他方の光束は固定鏡15で反射され、それぞれ元の光路を逆戻りしてBS13で重ね合わせられ、補償板14を介して第2の干渉光として試料(図示せず)に照射される。試料を透過した光は、光路分離ミラー24で反射されて第2の光検出器25に入射する。信号処理部31は、上述のように、第2の光検出器25にて検出された第2の干渉光の強度に基づいて、2光路間での光の傾きを検出し、光路補正装置32が、信号処理部31での検出結果に基づいて、固定鏡15の姿勢(BS13に対する角度)を調整し、固定鏡15での反射光の光路を補正することになる。反射光の光路の補正、2光路間での光の傾きの検出、を繰り返すフィードバック制御を行うことにより、最終的には、2光路間での光の傾きを限りなくゼロに近づけることができる。
 測定光は、ビーム径内でλ/2(λは測定光の波長)以上の位相差が生まれると、インターフェログラム測定時のコントラストが低下し、分光性能を悪化させてしまう。したがって、ビーム径をφとしたとき、測定光の最短波長において、ビーム径内にλ/2以上の位相差が生まれないように、λ/(2φ)(rad.)以下に、2光路間での光の傾き(角度)を抑える必要がある。
 本実施形態では、補正部30によるフィードバック制御により、2光路間での光の傾きを限りなくゼロに近づけることができ、上記傾きをλ/(2φ)(rad.)以下に抑えることができる。これにより、2光路間での光の傾きによって生じる第1の干渉光のコントラストの低下を抑えることができ、インターフェログラムを高精度に検出することができるる。したがって、演算部2でのフーリエ変換によって得られるスペクトルに基づく分光分析を精度よく行うことができる。移動鏡16の移動量を増大させたときには、移動鏡16の並進性が崩れて、2光路間での光の傾きが生じやすいので、このような場合に本実施形態の構成は特に有効となり、移動鏡16の移動量を増大させて分解能を向上させることが可能となる。
 また、本実施形態では、上述のように、BS13-移動鏡16間の光路と、BS13-固定鏡15間の光路とが、第1の光学系10と第2の光学系20とで同軸であり、測定光と参照光とは、BS13と移動鏡16との間、BS13と固定鏡15との間で同一の光路を通る。この構成では、外乱による2光路間の光の傾きおよび光路差の変動があっても、それらは第1の光学系10と第2の光学系20とで同じように働く。つまり、参照光側の第2の光学系20は、測定光側の第1の光学系10での変動を観測するものであり、測定光側と参照光側とで光軸を同軸として、同一空間を光が伝搬する構成とすることで、測定光側の光路変化や光路間の傾きの情報が参照光側に精度よく反映される。したがって、補正部30は、第2の光学系20の第2の光検出器25での検出結果に基づき、外乱による計測誤差の影響を受けることなく、2光路間の光の傾きを検出、補正して、インターフェログラムのコントラストの低下を回避することができる。
 また、第2の光検出器25は、分割センサで構成されているので、補正部30は分割センサの各領域からの信号に基づいて、一方の光に対する他方の光の傾き(傾き方向および傾き量(角度差))を確実に検出することができる。特に、第2の光検出器25が4分割センサであれば、上述したように、補正部30の信号処理部31は、4分割センサの隣り合う2つの領域E1・E2の信号和と、残りの領域E3・E4の信号和とを取り、それらの信号和の位相比較によって2光路間での光の傾きを検出することができる。したがって、上記傾きの検出を高精度に行うことができる。
 また、補正部30は、固定鏡15(または移動鏡16)の傾きを調整することによって2光路間での光の傾きを補正するので、その補正を確実に行うことができる。
 〔実施例〕
 次に、本実施形態のフーリエ変換分光分析装置の実施例について、実施例1~4として説明する。実施例1、3、4のフーリエ変換分光分析装置は、基本的には図1の構成であり、各パラメータが若干異なっている。実施例2のフーリエ変換分光分析装置は、基本的には図4の構成である。
 図4は、フーリエ変換分光分析装置の他の構成を模式的に示す説明図である。実施例2の装置は、測定用光源11は、例えば近赤外光を出射する光源11aと、光源11aに結合される光ファイバ11bとからなるファイバ結合光学系で構成されている。また、参照光源21は、赤色光を出射する半導体レーザかなる光源21aと、光源21aに結合される光ファイバ21bとからなるファイバ結合光学系で構成されている。すなわち、第2の光学系20の上記ファイバ結合光学系は、半導体レーザから出射されるレーザ光をファイバを介して射出するレーザ光源を構成している。なお、上記のファイバは、導波路であってもよい。実施例2の装置の残りの構成については、図1と同様である。
 以下、実施例1~4の各パラメータについて説明する。図5は、実施例1~4の各パラメータを示す説明図である。なお、図5において、λ1は、測定光の最短波長(mm)を示す。r1は、測定用光源11の光出射面(実施例2では光ファイバ11bの光出射面)の半径(mm)を示す。なお、上記光出射面は、基本的に円形とする。NA1は、測定光の入射側開口数、すなわち、コリメート光学系12に入射する測定光の発散角(rad.)を示す。f1は、コリメート光学系12の焦点距離(mm)を示す。φ1は、コリメート光学系12にて平行光に変換された測定光のビーム径(mm)を示す。OPD(optical phase difference)は、移動鏡16の最大変位量(全幅)を示す。
 λ2は、参照光の波長(mm)を示す。r2は、参照光源21の光出射面(実施例2では光ファイバ21bの光出射面)の半径(mm)を示す。なお、上記光出射面は、基本的に円形とする。NA2は、参照光の入射側開口数、すなわち、コリメート光学系22に入射する参照光の発散角(rad.)を示す。f2は、コリメート光学系22の焦点距離(mm)を示す。φ2は、コリメート光学系22にて平行光に変換された参照光のビーム径(mm)を示す。
 αは、斜入射に対する感度を示す因子である。ここで、文献(「分光の基礎と方法」、工藤恵栄、オーム社、p.492-507、1985年)を参照しながら、斜入射について説明する。光源の光出射面がサイズを持つ場合、光源の周辺を出た光は、干渉計(ここではコリメート光学系以降の光学系を指す)に対して角度を持って入射するため、干渉計の軸に平行に入射した光と比べて光路差が余分につき、これらの光が干渉し合う結果、ビーム径内に干渉縞が発生し、インターフェログラムのコントラストを低下させる。このような斜入射の影響を回避できる条件を斜入射回避条件と称する。
 このような斜入射回避条件は、以下の式で表わされる。
   f/2r>(1/2)・√(OPD/λ)   ・・・(F1)
  ただし、
     f:コリメート光学系の焦点距離(mm)
     r:光源の光射出面の半径(mm)
     OPD:光路差(移動鏡の移動距離(全幅))(mm)
である。上記の(F1)式より、以下の(F2)式が得られる。
   f・λ/(r・OPD)>1   ・・・(F2)
 つまり、(F2)式は、左辺の値が右辺の1よりも大きくなければ、光源の中心部から出射される光と周辺部から出射される光とで光路差が生じてこれらの光が干渉し、斜入射による干渉縞が発生することを意味している。
 本実施形態では、第1の光学系10における(F2)式の左辺の値をP1とし、第2の光学系20における(F2)式の左辺の値をP2としたときに、α=P1/P2としている。実施例1~4では、α>1となっている。これは、斜入射による影響(感度)は、第1の光学系10よりも第2の光学系20のほうが小さい(鈍い)、すなわち、第2の光学系20は、第1の光学系10よりも斜入射の影響を受けにくいことを示している。
 次に、βについて説明する。βは、測定光の2光路間の傾きに対する感度と参照光の2光路間の傾きに対する感度との比を示しており、本実施形態では、測定光側でコントラストが出ている範囲において、
  β=(λ2・φ1)/(λ1・φ2)=(λ2/λ1)・(φ1/φ2)≧1.1
を満足している。ただし、上記したように、
   λ1:測定光の最短波長(mm)
   λ2:参照光の波長(mm)
   φ1:コリメート光学系12にて平行光に変換された測定光のビーム
      径(mm)
   φ2:コリメート光学系22にて平行光に変換された参照光のビーム
      径(mm)
である。
 参照光の波長に対する測定光の最短波長の比(λ2/λ1)と、測定光のビーム径に対する参照光のビーム径の比(φ1/φ2)との積が下限値の1.1以上であれば、参照光の2光路間の傾きに対するコントラストの低下の度合いを、測定光の2光路間の傾きに対するコントラストの低下の度合いよりも鈍くすることができる。これにより、より広い角度範囲の傾き検出を行うことができ、外乱によって測定光の2光路間に角度がつき、インターフェログラムのコントラストが出なくなるような場合でも、参照光の2光路間の傾きを検出して補正することにより、上記インターフェログラムのコントラストの低下を抑えることができる。
 なお、βの下限値を1.1とした理由は、以下の通りである。先に述べたλ/(2φ)(rad.)は、干渉光のコントラストが全く出なくなる角度であるが、第2の光学系20において、より広い角度範囲の傾き検出を行うためには、λ2/(2φ2)(rad.)は、少なくともλ1/(2φ1)(rad.)よりも大きいことが必要である。すなわち、(λ2/φ2)>(λ1/φ1)であり、(λ2・φ1)/(λ1・φ2)>1である。また、一般に、測定光の最もコントラストの良い状態で検出器の感度が十分発揮されるように、光源(光量)と検出器とが選択されるが、最もコントラストの良い状態に対してその1/10程度のコントラストを検出できれば、検出器の感度としても十分である。このため、βの下限値を1.1としている。なお、コントラストを確実に検知するためには、β≧1.2であることが好ましい。
 (光源サイズについて)
 図5に示すように、実施例1~4では、半径r1およびr2を比較すればわかるように、参照光源21の光出射面のサイズは、測定光の光出射面のサイズ(ここでは測定用光源11)の光出射面のサイズよりも小さい。これにより、参照光源21としての半導体レーザから出射されるレーザ光(半導体レーザから導波路またはファイバを介して射出されるレーザ光を含む)を、コリメート光学系22で平行光に変換する構成において、コリメート光学系22を用いることによる斜入射の影響を回避できる。
 つまり、参照光源21の光出射面のサイズが、測定用光源11の光出射面のサイズよりも小さいと、参照光源21の光出射面の中心部から出射されてコリメート光学系22を介して移動鏡16に入射する光に対して、参照光源21の光出射面の周辺部から出射されてコリメート光学系22を介して移動鏡16に入射する光の斜め入射の度合いが、測定光側よりも小さくなる。これにより、同じ参照光源21から出射される上記2つの光の光路差が小さくなり、上記2つの光の干渉による干渉縞が第2の光検出器25で発生するのを低減することができる。したがって、補正部30は、第2の光検出器25からの第2の干渉光の受光信号に基づいて、2光路間での光の傾きを高精度に検出することができる。その結果、半導体レーザから出射されるレーザ光を、コリメート光学系22で平行光に変換する構成であっても、補正部30による傾きの補正を確実に行うことができ、第1の光検出器18で検出されるインターフェログラムのコントラストの低下を確実に抑えることができる。
 このとき、半導体レーザは、参照光源21として従来用いられているHe-Neレーザに比べて小型であるので、コリメート光学系22を用いる場合でも、小型のコリメート光学系22を用いることができ、装置全体が大型化することはない。
 よって、実施例1~4の構成によれば、(1)参照光源21として半導体レーザを用いた小型の構成で、(2)移動鏡15の移動量が大きく高分解能で、(3)2光路間での光の傾きを高精度に検出し、補正することによってインターフェログラムを高精度に検出することができる干渉計1およびフーリエ変換分光分析装置を実現することができる。
 特に、測定用光源11の光出射面の直径をL1(mm)とし、参照光源21の光出射面の直径をL2(mm)とすると、実施例1~4では、
   L2/L1≦1/3
を満足している。ただし、L1=2r1、L2=2r2である。なお、上記の式は、
   r2/r1≦1/3
と置き換えることもできる。
 L2/L1≦1/3の条件を満たす場合、上述した(F2)式の左辺に「1/r」の因子があることから、第2の光学系20における斜入射回避条件は、第1の光学系10における斜入射回避条件よりもおよそ10倍緩和される。言い換えれば、参照光は、斜入射による影響を、測定光よりも10倍程度受けないことになる。これにより、参照光源21の中心部から出射される光と周辺部から出射される光との干渉による干渉縞の発生を確実に低減して、補正部30における2光路間での光の傾きの検出をより高精度に行うことができる。なお、参照光源21の光出射面のサイズは、測定用光源11の光出射面のサイズの1/10以下であることが望ましく、1/30以下であることがさらに望ましい。
 (ビーム径について)
 実施例1~4では、コリメート光学系22にて平行光に変換された参照光のビーム径φ2は、コリメート光学系12にて平行光に変換された測定光のビーム径φ1よりも小さい。
 参照光のビーム径が大きいと、2光路間での光の傾きに対する感度が高くなり、2光路間で光の傾きが少し生じただけでも、上記傾きによって生じる干渉縞の本数が増大する。このため、上記傾きが大きい場合には、補正部30が第2の光検出器25からの第2の干渉光の受光信号に基づいて上記傾きを検出することができなくなる。
 そこで、φ2<φ1とすることにより、参照光側での上記傾きに対する感度を鈍くすることができ、上記傾きが大きい場合でも、上記傾きを検出することが可能となる。
 (発散角について)
 実施例2~4では、コリメート光学系22に入射する参照光の発散角NA2は、コリメート光学系12に入射する測定光の発散角NA1よりも小さい。
 コリメート光学系22とコリメート光学系12とで焦点距離を同じとした場合、参照光の発散角NA2を測定光の発散角NA1よりも小さくすることにより、コリメート光学系22にて平行光に変換された後の参照光のビーム径φ2を、コリメート光学系12にて平行光に変換された後の測定光のビーム径φ1よりも小さくすることができる。これにより、参照光側で上記傾きに対する感度を鈍くすることができ、参照光の2光路間での傾きが大きい場合でも、上記傾きを確実に検出することが可能となる。
 また、コリメート光学系22の焦点距離を長くして、コリメート光学系22のシフト感度を小さくすることができ、外乱に強いフーリエ変換分光分析装置を実現することができる。なお、上記のシフト感度とは、参照光源21に対してコリメート光学系22がシフトしたときにコリメート光に与える影響度を指す。
 つまり、コリメート光学系22の焦点距離が短いほど、コリメート光学系22の光軸に垂直な方向に参照光源21がシフトしたときのコリメート光の放射方向の変化が大きくなり、また、参照光源21に対してコリメート光学系22が光軸方向にシフトしたときの、コリメート光の波面が曲率を持つ程度が大きくなる(コリメート光が集光または発散する程度が大きくなる)。しかし、コリメート光学系22の焦点距離を長くすることで、このようなコリメート光に与える影響を小さく抑えることができ、外乱に強い装置を実現できる。
 特に、参照光の発散角NA2は、0.15以下(例えば0.12以下または0.1以下)であることが望ましく、測定光の発散角NA1は、0.3以下(例えば0.25以下または0.22以下)であることが望ましい(単位はいずれもrad.)。この場合、実施例2のようにファイバ結合光学系で光源を構成する場合は、参照光源21をシングルモードファイバまたは偏光保持ファイバを用いて構成することが可能となり、測定用光源11をstep index型(SI型)ファイバあるいはgraded index型(GI型)ファイバを用いて構成することが可能となる。
 (焦点距離について)
 実施例1、2、4では、コリメート光学系22の焦点距離f2は、コリメート光学系12の焦点距離f1よりも短い。
 参照光の発散角NA2と、測定光の発散角NA1とを同じとした場合、f2<f1とすることにより、コリメート光学系22にて平行光に変換された後の参照光のビーム径φ2を、コリメート光学系12にて平行光に変換された後の測定光のビーム径φ1よりも小さくすることができる。これにより、参照光側で上記傾きに対する感度を鈍くすることができ、参照光の2光路間での傾きが大きい場合でも、上記傾きを確実に検出することが可能となる。
 例えば、参照光の発散角NA2を0.1(rad.)とし、測定光の発散角NA1を0.2(rad.)とし、コリメート光学系22の焦点距離f2を8(mm)とし、コリメート光学系12の焦点距離f1を9(mm)とした場合、およそ、測定光のビーム径φ1=3.6mmに対して、参照光のビーム径φ2を1.6mmと細くすることができる。これにより、測定光のビーム径と参照光のビーム径との比の分だけ、広い角度範囲で2光路間での光の傾きを検出をすることができる。
 また、焦点距離f2の短いコリメート光学系22を用いることにより、参照光源21からコリメート光学系22までの距離を短くすることができ、装置を小型化することができる。
 (参照光源の詳細について)
 実施例1では、参照光源21として、波長660nmの赤色光を発光するInGaInP系の端面発光型半導体レーザを用いている。波長660nmの半導体レーザは普及しており、参照光源21を安価に構成することができる。実施例2では、参照光源21の光源21aとして波長630nmの赤色光を発光する半導体レーザを用い、参照光源21の光ファイバ21bとして、偏光保持ファイバを用いている。これにより、光源サイズ(光ファイバ21bの光出射面の直径)は4μmと小さく、発散角NA2も0.12(rad.)と小さくなっている。実施例3では、参照光源21として、波長400nmの青色光を発光する面発光タイプの半導体レーザ光源を用いており、発散角NA2は0.04(rad.)と小さくなっている。実施例4では、参照光源21として、波長400nmの青色光を発光する端面発光タイプの半導体レーザ光源を用いており、光源サイズは小さいが、発散角NA2は0.3(rad.)と大きくなっている。
 ここで、多くの材料は、指紋領域と呼ばれる近赤外光および赤外光に吸収帯を持つことが多く、そのため、分光分析は、近赤外光および赤外光を用いて行うことが多い。このような分光分析では、第1の光学系10および第2の光学系20における光透過面(例えばBS13の光透過面)に反射防止コート(ARコート)を施して光の利用効率を高めることが多い。
 このとき、反射防止コートの設計上、広い帯域で反射防止特性を持たせることは困難である。また、反射を防止する波長帯域を広くとると、その波長帯域で反射率が上がってしまう。したがって、測定光が近赤外光である場合、実施例1および2のように、参照光を赤色半導体レーザ光として、参照光と測定光の波長帯域を近づけることにより、反射防止コートの設計を容易にすることが望ましい。
 なお、本実施形態で用いる半導体レーザは、例えばVHG(Volume Holographic Gratin;体積ホログラム)によって特定の波長をレーザ共振器内へ戻し、発信波長をロックする構成であってもよい。これにより、半導体レーザの波長を安定化することができ、小型で安定したコヒーレント光源を実現することができる。
 なお、本実施形態では、干渉計1が測定用光源11を内蔵し、測定用光源11から出射される測定光を用いて第1の干渉光を得る構成について説明したが、本発明の干渉計1は、必ずしも測定用光源11を内蔵していなくてもよい。つまり、第1の干渉光を得るための測定光は、干渉計が内蔵している光源から出射される光であってもよいし、干渉計の外部から入射してくる光であってもよい。後者の場合でも、参照光源21の光出射面のサイズが測定光の光出射面(外部光源の光出射面)のサイズよりも小さければ、上述した本発明の効果を得ることができる。
 したがって、例えば、(1)干渉計の外部で試料に光を当てて、試料を介して得られる光を干渉計に入射させて分光分析を行う場合、(2)干渉計の外部から導入した光を用いて干渉計にて干渉光を生成し、その干渉光を試料に当てて分光分析を行う場合、(3)干渉計の外部から入射する光そのものを分析の対象とする場合、のいずれについても、本発明の干渉計1を適用することが可能である。
 以上のように、本実施形態で説明した干渉系は、測定光をビームスプリッタで分離して移動鏡および固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第1の干渉光を第1の光検出器に導く第1の光学系を備え、前記移動鏡を移動させて前記第1の干渉光を計測する干渉計であって、参照光源を有し、前記参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第2の干渉光を第2の光検出器に導く第2の光学系と、前記第2の光検出器からの前記第2の干渉光の受光信号に基づいて、前記移動鏡を介して前記第1の光検出器に入射する光と、前記固定鏡を介して前記第1の光検出器に入射する光との間の傾きを検出して補正する補正部とをさらに備え、前記第2の光検出器は、分割センサで構成されており、前記参照光源は、半導体レーザ、または前記半導体レーザから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、前記第2の光学系は、前記半導体レーザから出射されるレーザ光を平行光に変換するコリメート光学系を有しており、前記参照光源の光出射面のサイズは、前記測定光の光出射面のサイズよりも小さい構成である。
 上記の構成によれば、移動鏡の移動量を増大させたときに移動鏡の並進性が崩れ、2光路を進行して第1の光検出器に入射する各光に傾きが生じた場合でも、補正部によって上記傾きが補正されるので、上記傾きによって生じるインターフェログラムのコントラストの低下を抑えることができる。これにより、移動鏡の移動量を増大させても、インターフェログラムを高精度に検出することができる。
 また、第2の光検出器が分割センサで構成されているので、補正部は分割センサの各領域からの信号に基づいて、一方の光に対する他方の光の傾き(傾き方向および傾き量(角度差))を確実に検出することができる。
 また、参照光源としての半導体レーザから出射されるレーザ光(半導体レーザから出射されるレーザ光を導波路またはファイバを介して射出する場合も含む)を、コリメート光学系で平行光に変換する構成において、参照光源の光出射面のサイズは、測定光の光出射面のサイズよりも小さいので、コリメート光学系を用いることによる斜入射の影響を回避できる。
 すなわち、参照光源の光出射面の中心部から出射されてコリメート光学系を介して移動鏡に入射する光に対して、参照光源の光出射面の周辺部から出射されてコリメート光学系を介して移動鏡に入射する光の斜め入射の度合いが、測定光側よりも小さくなるので、同じ参照光源から出射される上記2つの光の光路差が小さくなり、上記2つの光の干渉による干渉縞が第2の光検出器で発生するのを低減することができる。これにより、補正部は、第2の光検出器からの第2の干渉光の受光信号に基づいて、2光路間での光の傾き(移動鏡を介して得られる光と固定鏡を介して得られる光との相対的な傾き)を高精度に検出することができる。したがって、半導体レーザから出射されるレーザ光を、コリメート光学系で平行光に変換する構成であっても、補正部による傾きの補正を確実に行うことができ、インターフェログラムのコントラストの低下を確実に抑えることができる。
 このとき、半導体レーザからなる参照光源は、参照光源として一般的に用いられているHe-Neレーザに比べて小型であるので、コリメート光学系を用いる場合でも、小型のコリメート光学系を用いることができ、装置全体が大型化することはない。
 よって、上記構成によれば、(1)参照光源として半導体レーザを用いた小型の構成で、(2)移動鏡の移動量が大きく高分解能で、(3)2光路間での光の傾きを高精度に検出し、補正することによってインターフェログラムを高精度に検出することができる干渉計を実現することができる。
 なお、上記の測定光を出射する光源(測定用光源)は、干渉計の内部にあってもよいし、外部にあってもよい。つまり、干渉計にて第1の干渉光を得るための測定光は、干渉計が内蔵している光源から出射される光であってもよいし、干渉計の外部から入射してくる光であってもよい。
 本実施形態の干渉系において、前記第1の光学系は、前記測定光を出射する測定用光源を有しており、前記参照光源の光出射面のサイズは、前記測定用光源の光出射面のサイズよりも小さい構成であってもよい。
 この場合、特に、第1の光学系が測定用光源を内蔵しており、測定用光源からの光を利用してインターフェログラムを得る構成において、上述した本発明の効果を得ることができる。
 本実施形態の干渉計において、前記測定用光源の光出射面の直径をL1とし、前記参照光源の光出射面の直径をL2とすると、
   L2/L1≦1/3
であることが望ましい。
 この条件を満たすことにより、参照光に対する斜入射の影響を、測定光に対する斜入射の影響よりも確実に低減することができ、参照光源の中心部から出射される光と周辺部から出射される光との干渉による干渉縞の発生を確実に低減することができる。これにより、補正部による2光路間での光の傾きの検出をより高精度に行って、インターフェログラムのコントラスト低下を確実に抑えることができる。
 本実施形態の干渉計において、前記第1の光学系は、前記測定光を平行光に変換する第1のコリメート光学系を有しており、前記第2の光学系の前記コリメート光学系を第2のコリメート光学系とすると、前記第2のコリメート光学系にて平行光に変換された参照光のビーム径は、前記第1のコリメート光学系にて平行光に変換された測定光のビーム径よりも小さい構成であってもよい。
 この構成では、第2の光学系における2光路間での光の傾きに対する感度を、第1の光学系における感度よりも鈍くすることができ、上記傾きが大きい場合でも、参照光側で上記傾きを検出することが可能となる。
 本実施形態の干渉計において、前記ビームスプリッタで分離された一方の光が前記移動鏡で反射されて再び前記ビームスプリッタに入射するときの光路と、前記ビームスプリッタで分離された他方の光が前記固定鏡で反射されて再び前記ビームスプリッタに入射するときの光路とが、前記第1の光学系と前記第2の光学系とで同軸であることが望ましい。
 この場合、測定光と参照光とは、ビームスプリッタと移動鏡との間、ビームスプリッタと固定鏡との間で同一の光路を通るので、外乱による2光路間での光の傾きおよび光路差の変動があっても、それらは、第1の光学系と第2の光学系とで同じように働く。したがって、補正部は、外乱による計測誤差の影響を受けることなく、2光路間での光の傾きを検出、補正して、インターフェログラムのコントラストの低下を回避することができる。
 本実施形態の干渉計は、以下の条件式を満足することが望ましい。すなわち、
   (λ2・φ1)/(λ1・φ2)≧1.1
  ただし、
   λ1:測定光の最短波長
   λ2:参照光の波長
   φ1:第1のコリメート光学系にて平行光に変換された測定光のビー
      ム径
   φ2:第2のコリメート光学系にて平行光に変換された参照光のビー
      ム径
である。
 参照光の波長に対する測定光の最短波長の比(λ2/λ1)と、測定光のビーム径に対する参照光のビーム径の比(φ1/φ2)との積が(2)式の下限値以上であれば、参照光の2光路間での傾きに対するコントラストの低下の度合いを、測定光の2光路間での傾きに対するコントラストの低下の度合いよりも鈍くすることができる。これにより、より広い角度範囲の傾き検出を行うことができ、外乱によって測定光の2光路間に角度がつき、コントラストが出なくなったとしても、参照光の2光路間での傾きを検出して補正することができる。
 本実施形態の干渉計において、前記第2のコリメート光学系に入射する参照光の発散角は、前記第1のコリメート光学系に入射する測定光の発散角よりも小さくてもよい。
 第2のコリメート光学系と第1のコリメート光学系とで焦点距離を同じとした場合、参照光の発散角を測定光の発散角よりも小さくすることにより、第2のコリメート光学系にて平行光に変換された後の参照光のビーム径を、第1のコリメート光学系にて平行光に変換された後の測定光のビーム径よりも小さくすることができる。これにより、参照光の2光路間での傾きが大きい場合でも、上記傾きを確実に検出することが可能となる。
 本実施形態の干渉計において、前記第2のコリメート光学系の焦点距離は、前記第1のコリメート光学系の焦点距離よりも短くてもよい。
 第2のコリメート光学系に入射する参照光の発散角と、第1のコリメート光学系に入射する測定光の発散角とを同じとした場合、第2のコリメート光学系の焦点距離を、第1のコリメート光学系の焦点距離よりも短くすることにより、第2のコリメート光学系にて平行光に変換された後の参照光のビーム径を、第1のコリメート光学系にて平行光に変換された後の測定光のビーム径よりも小さくすることができる。これにより、参照光の2光路間での傾きが大きい場合でも、上記傾きを確実に検出することが可能となる。
 本実施形態の干渉計において、前記測定光は近赤外光であり、前記参照光は赤色半導体レーザ光であることが望ましい。
 この場合、測定光と参照光との波長帯域が近いので、ビームスプリッタの光透過面に反射防止コートを施して光利用効率を高める場合でも、反射を防止する波長帯域を狭くすることができ、反射防止コートの設計を容易にすることができる。
 本実施形態の干渉計において、前記分割センサは、4分割センサで構成されていることが望ましい。
 分割センサとして4分割センサを用いれば、4分割センサにおける隣り合う2つの領域の信号和と、残りの隣り合う2つの領域の信号和との位相比較によって、2光路間での光の傾き(傾き方向および傾き量)を検出することができ、傾きの検出を高精度に行うことができる。
 本実施形態の干渉計において、前記補正部は、前記移動鏡を介して前記第1の光検出器に入射する光と、前記固定鏡を介して前記第1の光検出器に入射する光との間の傾きを、前記固定鏡または前記移動鏡の傾きを調整することによって補正する構成であってもよい。
 補正部は、固定鏡または移動鏡の傾きを調整することにより、2光路間での光の傾きを確実に補正することができる。
 本実施形態のフーリエ変換分光分析装置は、上述した本発明の干渉計と、前記干渉計の前記第1の光検出器での第1の干渉光の受光によって得られるインターフェログラムをフーリエ変換する演算部とを備え、前記測定光は、複数の波長を含み、前記演算部は、前記インターフェログラムのフーリエ変換によって、前記測定光に含まれる波長のスペクトルを生成する構成であってもよい。
 この構成では、演算部でのフーリエ変換によって得られるスペクトルに基づく分光分析を精度よく行うことができ、移動鏡の移動量を増大させて分解能を向上させることが可能となる。
 本発明は、マイケルソン型の干渉計、およびそれを用いて分光分析を行うフーリエ変換分光分析装置に利用可能である。
   2   演算部
  10   第1の光学系
  11   測定用光源
  12   コリメート光学系(第1のコリメート光学系)
  13   BS(ビームスプリッタ)
  15   固定鏡
  16   移動鏡
  18   第1の光検出器
  20   第2の光学系
  21   参照光源
  22   コリメート光学系(第2のコリメート光学系)
  25   第2の光検出器
  31   信号処理部(補正部)
  32   光路補正装置(補正部)

Claims (12)

  1.  移動鏡および固定鏡と、
     測定光を分離して前記移動鏡および前記固定鏡に導く一方、前記移動鏡および前記固定鏡にて反射された各光を合成するビームスプリッタと、
     前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第1の干渉光を検出する第1の光検出器とを有する第1の光学系を備え、前記移動鏡を移動させて前記第1の干渉光を計測する干渉計であって、
     参照光源を有し、前記参照光源からの参照光を前記ビームスプリッタで分離して前記移動鏡および前記固定鏡に導き、前記移動鏡および前記固定鏡にて反射された各光を前記ビームスプリッタで合成してなる第2の干渉光を第2の光検出器に導く第2の光学系と、
     前記第2の光検出器からの前記第2の干渉光の受光信号に基づいて、前記移動鏡を介して前記第1の光検出器に入射する光と、前記固定鏡を介して前記第1の光検出器に入射する光との間の傾きを検出して補正する補正部とをさらに備え、
     前記第2の光検出器は、分割センサで構成されており、
     前記参照光源は、半導体レーザ、または前記半導体レーザから出射されるレーザ光を導波路またはファイバを介して射出するレーザ光源で構成されており、
     前記第2の光学系は、前記半導体レーザから出射されるレーザ光を平行光に変換するコリメート光学系を有しており、
     前記参照光源の光出射面のサイズは、前記測定光の光出射面のサイズよりも小さいことを特徴とする干渉計。
  2.  前記第1の光学系は、前記測定光を出射する測定用光源を有しており、
     前記参照光源の光出射面のサイズは、前記測定用光源の光出射面のサイズよりも小さいことを特徴とする請求項1に記載の干渉計。
  3.  前記測定用光源の光出射面の直径をL1とし、前記参照光源の光出射面の直径をL2とすると、
       L2/L1≦1/3
    であることを特徴とする請求項2に記載の干渉計。
  4.  前記第1の光学系は、前記測定光を平行光に変換する第1のコリメート光学系を有しており、
     前記第2の光学系の前記コリメート光学系を第2のコリメート光学系とすると、
     前記第2のコリメート光学系にて平行光に変換された参照光のビーム径は、前記第1のコリメート光学系にて平行光に変換された測定光のビーム径よりも小さいことを特徴とする請求項1に記載の干渉計。
  5.  前記ビームスプリッタで分離された一方の光が前記移動鏡で反射されて再び前記ビームスプリッタに入射するときの光路と、前記ビームスプリッタで分離された他方の光が前記固定鏡で反射されて再び前記ビームスプリッタに入射するときの光路とが、前記第1の光学系と前記第2の光学系とで同軸であることを特徴とする請求項1に記載の干渉計。
  6.  以下の条件式を満足することを特徴とする請求項4に記載の干渉計;
       (λ2・φ1)/(λ1・φ2)≧1.1
      ただし、
       λ1:測定光の最短波長
       λ2:参照光の波長
       φ1:第1のコリメート光学系にて平行光に変換された測定光
          のビーム径
       φ2:第2のコリメート光学系にて平行光に変換された参照光
          のビーム径
    である。
  7.  前記第2のコリメート光学系に入射する参照光の発散角は、前記第1のコリメート光学系に入射する測定光の発散角よりも小さいことを特徴とする請求項4に記載の干渉計。
  8.  前記第2のコリメート光学系の焦点距離は、前記第1のコリメート光学系の焦点距離よりも短いことを特徴とする請求項4に記載の干渉計。
  9.  前記測定光は近赤外光であり、前記参照光は赤色半導体レーザ光であることを特徴とする請求項1に記載の干渉計。
  10.  前記分割センサは、4分割センサで構成されていることを特徴とする請求項1に記載の干渉計。
  11.  前記補正部は、前記移動鏡を介して前記第1の光検出器に入射する光と、前記固定鏡を介して前記第1の光検出器に入射する光との間の傾きを、前記固定鏡または前記移動鏡の傾きを調整することによって補正することを特徴とする請求項1に記載の干渉計。
  12.  請求項1に記載の干渉計と、
     前記干渉計の前記第1の光検出器での第1の干渉光の受光によって得られるインターフェログラムをフーリエ変換する演算部とを備え、
     前記測定光は、複数の波長を含み、
     前記演算部は、前記インターフェログラムのフーリエ変換によって、前記測定光に含まれる波長のスペクトルを生成することを特徴とするフーリエ変換分光分析装置。
PCT/JP2011/058984 2010-05-28 2011-04-11 干渉計およびフーリエ変換分光分析装置 WO2011148726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517196A JPWO2011148726A1 (ja) 2010-05-28 2011-04-11 干渉計およびフーリエ変換分光分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122866 2010-05-28
JP2010-122866 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148726A1 true WO2011148726A1 (ja) 2011-12-01

Family

ID=45003719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058984 WO2011148726A1 (ja) 2010-05-28 2011-04-11 干渉計およびフーリエ変換分光分析装置

Country Status (2)

Country Link
JP (1) JPWO2011148726A1 (ja)
WO (1) WO2011148726A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084746A1 (ja) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 光半導体パッケージ、マイケルソン干渉計、およびフーリエ変換分光分析装置
CN106153196A (zh) * 2016-06-16 2016-11-23 电子科技大学 基于无定镜迈克尔逊干涉仪的傅里叶变换光谱仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168522A (ja) * 1986-12-30 1988-07-12 Shimadzu Corp 干渉計の調整装置
JPS63168502A (ja) * 1986-12-30 1988-07-12 Shimadzu Corp 干渉計の調整装置
JPH063192A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ分光装置における短波長領域測定のためのサンプリング用光路差の決定方法
JP2002148116A (ja) * 2000-11-07 2002-05-22 Shimadzu Corp 干渉分光光度計
JP2005521893A (ja) * 2002-04-04 2005-07-21 インライト ソリューションズ インコーポレイテッド 干渉計基準としての垂直共振器型面発光レーザ(vcsel)
WO2008128547A1 (en) * 2007-04-18 2008-10-30 Chemometec A/S Interferometer actuator
JP2008281484A (ja) * 2007-05-11 2008-11-20 Hamamatsu Photonics Kk 干渉測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168522A (ja) * 1986-12-30 1988-07-12 Shimadzu Corp 干渉計の調整装置
JPS63168502A (ja) * 1986-12-30 1988-07-12 Shimadzu Corp 干渉計の調整装置
JPH063192A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ分光装置における短波長領域測定のためのサンプリング用光路差の決定方法
JP2002148116A (ja) * 2000-11-07 2002-05-22 Shimadzu Corp 干渉分光光度計
JP2005521893A (ja) * 2002-04-04 2005-07-21 インライト ソリューションズ インコーポレイテッド 干渉計基準としての垂直共振器型面発光レーザ(vcsel)
WO2008128547A1 (en) * 2007-04-18 2008-10-30 Chemometec A/S Interferometer actuator
JP2008281484A (ja) * 2007-05-11 2008-11-20 Hamamatsu Photonics Kk 干渉測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084746A1 (ja) * 2011-12-06 2013-06-13 コニカミノルタ株式会社 光半導体パッケージ、マイケルソン干渉計、およびフーリエ変換分光分析装置
JPWO2013084746A1 (ja) * 2011-12-06 2015-04-27 コニカミノルタ株式会社 光半導体パッケージ、マイケルソン干渉計、およびフーリエ変換分光分析装置
CN106153196A (zh) * 2016-06-16 2016-11-23 电子科技大学 基于无定镜迈克尔逊干涉仪的傅里叶变换光谱仪

Also Published As

Publication number Publication date
JPWO2011148726A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5655859B2 (ja) 干渉計およびフーリエ変換分光分析装置
JP5835327B2 (ja) 干渉計およびそれを備えた分光器
JP5635624B2 (ja) 小型干渉分光計
US7292347B2 (en) Dual laser high precision interferometer
US8593637B2 (en) Spectrometric instrument
JP5954979B2 (ja) 多波長干渉計を有する計測装置
WO2012073681A1 (ja) レーザ光源、干渉計および分光器
US9025156B2 (en) Interferometer and fourier spectrometer using same
WO2011148726A1 (ja) 干渉計およびフーリエ変換分光分析装置
US20120002210A1 (en) Optical interferometer
EP2564154B1 (en) Spectrometric instrument
JP2012242280A (ja) 検知システム、マイケルソン干渉計、および、フーリエ変換分光分析装置
JP2012132881A (ja) 干渉計およびそれを備えたフーリエ変換分光器
NZ602603B2 (en) Spectrometric instrument
JP5835101B2 (ja) フーリエ変換型分光計およびフーリエ変換型分光方法ならびにフーリエ変換型分光計用アタッチメント
JP2024115237A (ja) 光路長差計測装置および振動計測装置
JP5521992B2 (ja) 干渉計およびそれを備えた分光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517196

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786426

Country of ref document: EP

Kind code of ref document: A1