WO2012056749A1 - 劣化食用油用再生剤 - Google Patents
劣化食用油用再生剤 Download PDFInfo
- Publication number
- WO2012056749A1 WO2012056749A1 PCT/JP2011/057780 JP2011057780W WO2012056749A1 WO 2012056749 A1 WO2012056749 A1 WO 2012056749A1 JP 2011057780 W JP2011057780 W JP 2011057780W WO 2012056749 A1 WO2012056749 A1 WO 2012056749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium silicate
- silicate
- edible oil
- agent
- calcium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/22—Magnesium silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/36—Silicates having base-exchange properties but not having molecular sieve properties
- C01B33/38—Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
- C01B33/40—Clays
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B13/00—Recovery of fats, fatty oils or fatty acids from waste materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/74—Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes
Definitions
- the present invention relates to a regenerating agent for deteriorated edible oil. More specifically, the present invention relates to an edible oil regenerating agent and a method for regenerating deteriorated edible oil for regenerating deteriorated edible oil after frying beans, side dishes, and the like.
- magnesium silicate or the like as a regenerant.
- a processing agent means comprising at least one of calcium silicate, magnesium silicate, porous rhyolite material and silicon dioxide, and an appropriate amount of the processing agent means Will greatly improve the stability of the used pumped oil that has been processed by contacting with the used pumped oil, greatly reducing the free fatty acids, and recycling the used pumped oil for reuse.
- a method has been proposed.
- magnesium silicate a commercial product Magnesol is presented (Patent Document 3).
- the conventional magnesium silicate regenerant is not sufficient in terms of deoxidizing ability and decolorizing ability, and further improvement is necessary.
- the main object of the present invention is to provide a magnesium silicate-based regenerated edible oil regenerator having both good deoxidizing ability and decolorizing ability.
- magnesium silicate having a specific crystal structure and the like can achieve the above object, and has completed the present invention.
- the present invention relates to the following regenerated agent for deteriorated edible oil.
- the regenerated agent for deteriorated edible oil according to Item 1 wherein the magnesium silicate has a BET specific surface area of 400 m 2 / g or more. 3.
- Item 3. The regenerated agent for deteriorated edible oil according to Item 2, wherein the external specific surface area calculated by the t-plot method accounts for 40% or more of the total specific surface area. 4).
- Item 3. The regenerated agent for deteriorated edible oil according to Item 2, wherein the external specific surface area calculated by the t-plot method accounts for 60% or more of the total specific surface area. 5.
- the regenerated agent for degraded edible oil according to Item 5 wherein the content of calcium silicate is 25% by weight or less.
- Item 8 The regenerated agent for deteriorated edible oil according to Item 7, wherein the calcium compound content is 7% by weight or less in terms of calcium oxide.
- a method for regenerating degraded edible oil comprising the step of bringing the regenerated agent for degraded edible oil according to Item 1 into contact with the degraded edible oil heated to a temperature of 200 ° C or lower. 10.
- a method for producing a regenerated agent for deteriorated cooking oil 1) A step of obtaining an acidic mixed solution by mixing a solution containing magnesium ions and a sodium silicate solution under acidic conditions, 2) A step of obtaining a precipitate by adding an alkali to the obtained acidic mixed solution, 3) A step of obtaining magnesium silicate by aging the precipitate at 70 ° C. or higher 4) A step of obtaining a mixture by mixing a sodium silicate solution with the aqueous slurry containing the magnesium silicate, and 5) In the mixture
- the manufacturing method of magnesium silicate including the process of adding an acid. 11.
- a method for producing a regenerated agent for deteriorated edible oil comprising: a step of obtaining a mixture by mixing a sodium silicate solution with an aqueous slurry containing magnesium silicate; and a step of adding an acid to the mixture. Production method.
- Regenerated agent for deteriorated edible oil is a regenerated agent for deteriorated edible oil containing magnesium silicate
- crystalline magnesium silicate (the present invention magnesium silicate) having a specific configuration (crystal structure and composition) is used as magnesium silicate.
- crystalline magnesium silicate has various crystal systems, but the crystal system of the magnesium silicate of the present invention is a crystal system of a trioctahedral smectite group clay mineral. That is, it is a smectite group having a layer structure of 2: 1 and its subgroup is a crystal system of a trioctahedral smectite group.
- the crystal system of the magnesium silicate of the present invention is a crystal system of a trioctahedral smectite group clay mineral. That is, it is a smectite group having a layer structure of 2: 1 and its subgroup is a crystal system of a trioctahedral smectite group.
- the ratio I b / I a is in the range of 1-2.
- the magnesium silicate of the present invention has a SiO 2 / MgO molar ratio (X) of 1.2 to 3.8, preferably 1.3 to 3.3.
- X SiO 2 / MgO molar ratio
- the BET specific surface area of the magnesium silicate of the present invention is not particularly limited, but is usually 400 m 2 / g or more, particularly preferably 400 to 700 m 2 / g, and preferably 500 to 700 m 2 / g. By setting to such a range, more excellent deoxidation performance and decolorization performance can be exhibited.
- the external specific surface area calculated by the t-plot method preferably accounts for 40% or more of the total specific surface area, more preferably 60% or more.
- the regenerator of the present invention may contain components other than the magnesium silicate of the present invention as long as the effects of the present invention are not hindered.
- at least one of calcium silicate and a calcium compound (excluding calcium silicate) may be included.
- the deoxidation capability which calcium silicate has can be exhibited more effectively.
- the calcium compound for example, at least one of calcium oxide, calcium hydroxide, calcium carbonate, and the like can be used.
- the content of at least one of calcium silicate and calcium compound (excluding calcium silicate) can be appropriately set according to the type of the compound.
- calcium silicate may be contained within a range of 25% by weight or less (particularly 20% by weight or less, and further 3 to 15% by weight).
- a calcium compound When a calcium compound is used, it may be 7% by weight or less (particularly 0.1 to 4% by weight) in terms of calcium oxide.
- a compound used as a known regenerative agent may be contained as necessary.
- it may further contain at least one of silicon dioxide, magnesium hydroxide, and magnesium oxide.
- the content of these is not limited, but is usually 90% by weight or less in the regenerant of the present invention.
- the regenerative agent of the present invention can usually be used in the form of a powder, but can be granulated or the like if necessary.
- a known granulation method can be employed.
- the average particle size of the granulated product is generally about 10 to 300 ⁇ m.
- an organic solvent such as alcohols can be used as a solvent or a drying step can be carried out after granulation in order to effectively suppress fluctuations in the moisture content of calcium silicate. .
- the regenerator of the present invention can be used in the same manner as a known regenerant.
- a deteriorated edible oil used edible oil
- regeneration of degraded edible oil can be suitably performed.
- the method of contacting is not particularly limited.
- a) a method in which the regenerated agent of the present invention is dispersed and stirred in a deteriorated edible oil; Etc. can be adopted.
- the regenerant of the present invention is separated and separated by a known method such as filtration. It can be recovered.
- the amount of the regenerant used in the regeneration method of the present invention can be appropriately set according to the acid value and the like of the deteriorated edible oil to be used, but usually 0.1 to 10 parts by weight with respect to 100 parts by weight of the deteriorated edible oil.
- the content is preferably 0.4 to 4 parts by weight.
- the regenerator of the present invention can be used in combination with a decolorizing agent.
- a decoloring effect can be obtained together with a deoxidizing effect. That is, the color component is adsorbed by the decoloring agent, and the deteriorated edible oil that has turned yellowish brown or brown can be returned to a color close to the original color.
- the decoloring agent a known one or a commercially available product can be used, and for example, at least one of acid clay, activated clay, activated carbon, silicon dioxide and the like can be suitably used.
- the amount used in the case of using the decoloring agent can be appropriately determined according to the discoloration level or the like of the deteriorated edible oil, but is usually about 0.1 to 10 parts by weight, particularly about 100 parts by weight of the regenerator of the present invention. Desirably, the content is 0.4 to 4 parts by weight.
- the edible oil is not particularly limited and can be applied to any known or commercially available edible oil. Moreover, as long as an acid value can be lowered
- animal oils include butter, lard, fish oil, chicken oil, whale oil and the like.
- vegetable oils include palm oil, shortening, salad oil, soybean oil, corn oil, sesame oil, and rapeseed oil.
- the regenerant of the present invention comprises a step of preparing the magnesium silicate of the present invention. That is, 1) a step of obtaining an acidic mixed solution by mixing a solution containing magnesium ions and a sodium silicate solution under acidic conditions (first step), 2) precipitation by adding an alkali to the obtained acidic mixed solution A step of obtaining a product (second step), 3) A magnesium silicate of the present invention is suitably obtained by a production method including a step of obtaining magnesium silicate by aging the precipitate at 70 ° C. or higher (third step). be able to.
- an acidic mixed solution is obtained by mixing a solution containing magnesium ions and a sodium silicate solution under acidic conditions.
- a solution containing magnesium ions can be prepared by dissolving a magnesium compound in a solvent.
- the magnesium compound is not limited as long as it is soluble in the solvent to be used.
- an inorganic acid salt or an organic acid salt of magnesium such as magnesium chloride, magnesium sulfate, and magnesium acetate can be suitably used.
- an organic solvent of alcohols such as ethanol as well as water can be used.
- the concentration of the solution is not particularly limited, but is usually about 0.1 to 3.0 mol / L.
- the sodium silicate solution can be prepared by dissolving sodium silicate in a solvent.
- a known or commercially available sodium silicate may be used.
- As a solvent an organic solvent of alcohols such as ethanol as well as water can be used.
- the concentration of the solution is not particularly limited, but is usually about 1 to 90% by weight.
- an acidic mixed solution is prepared by mixing both solutions under acidic conditions.
- hydrochloric acid, sulfuric acid, nitric acid or the like may be added, and these can be used after appropriately diluted with water.
- an acidic mixed solution can be suitably prepared by dropping an acid together with a sodium silicate solution into a solution containing magnesium ions.
- the pH of the acidic mixed solution can be adjusted as appropriate, but it is usually adjusted to 5 or less, particularly preferably within the range of pH 1 to 4.
- the mixing ratio of both solutions may be suitably adjusted within a predetermined range of SiO 2 / MgO molar ratio of magnesium silicate obtained (X).
- the temperature at which the two solutions are mixed can be adjusted as appropriate, but it is particularly preferably 50 ° C. or lower, more preferably 45 ° C. or lower. By setting to such a temperature range, an effect that a stable precipitation reaction product can be obtained can be obtained.
- a precipitate is obtained by adding alkali to the obtained acidic mixture.
- the precipitate produced in the second step mainly contains magnesium hydroxide. Any known alkali may be used. For example, sodium hydroxide, potassium hydroxide, aqueous ammonia, or the like can be used, and these are preferably used in the form of a solution (or an aqueous solution). Moreover, what is necessary is just to add the addition amount of an alkali until a predetermined
- the reaction temperature in the second step can be adjusted as appropriate, but it is particularly preferably 50 ° C. or lower, more preferably 45 ° C. or lower. By setting to such a temperature range, a stable precipitation reaction product can be obtained.
- magnesium silicate is obtained by aging the precipitate at 70 ° C. or higher.
- the precipitate for example, the slurry containing the precipitate obtained in the second step may be subjected to the third step as it is, or the precipitate obtained in the second step is recovered from the slurry, An aqueous slurry obtained by dispersing the precipitate in water can also be subjected to the third step.
- the aging temperature is usually 50 to 300 ° C, preferably 70 to 200 ° C.
- the aging may be performed under normal pressure, but when the aging temperature is 100 ° C. or higher, the reaction may be performed under pressure (for example, saturated vapor pressure).
- the reaction can be carried out in an autoclave. More specifically, aging can be performed at a temperature of 100 to 300 ° C. in an autoclave.
- the aging time may be appropriately adjusted according to the aging temperature and the like, and is usually about 3 to 6 hours, but may be outside this range.
- the obtained reaction product is subjected to dehydration, washing with water, drying and the like as necessary (collectively referred to as “purification treatment”) to obtain magnesium silicate.
- the dehydration method may follow a known solid-liquid separation method, drying method, or the like.
- a solid-liquid separation method for example, filtration, centrifugation and the like can be generally employed.
- the drying method includes heat drying or freeze drying. In the case of heat drying, it is desirable to carry out at 150 ° C. or lower.
- the drying apparatus is not limited.
- a fixed bed type blower dryer for example, a fixed bed type blower dryer, a conveyor type blower dryer, a fluidized bed dryer, a rolling dryer, a vibration dryer, a drum dryer, an air dryer, a spray dryer, a freezing A dryer, a vacuum dryer or the like can be used.
- slurry of magnesium silicate water is preferably used as a dispersion medium. That is, an aqueous slurry of magnesium silicate can be suitably used. The solid content of the slurry can be adjusted as appropriate.
- the magnesium silicate slurry a slurry obtained by a known method such as a coprecipitation method can be used.
- a slurry containing magnesium silicate obtained in the third step can be used preferably.
- this slurry can be used as it is or after adjusting solid content. Therefore, in the present invention, for example, it can be suitably employed as a method for producing magnesium silicate including a series of steps of the first step to the third step and the additional step.
- a step of obtaining an acidic mixed solution by mixing a solution containing magnesium ions and a sodium silicate solution under acidic conditions (first step), 2) precipitation by adding an alkali to the obtained acidic mixed solution
- a step of obtaining a product (second step), 3) a step of obtaining magnesium silicate by aging the precipitate at 70 ° C. or higher (third step), and 4) sodium silicate in an aqueous slurry containing the magnesium silicate.
- a method for producing magnesium silicate which includes a step of obtaining a mixture by mixing a solution (addition step 1) and 5) a step of adding an acid to the mixture (addition step 2), is also included in the present invention.
- the form of the aqueous slurry in the form of the third step is used. Any of the methods used after adjusting the solid content (water content) of the reaction product is included.
- the sodium silicate solution that can be used in the additional step 1 the same solution as that used in the first step can be used.
- the concentration of the sodium silicate solution may be about 1 to 90% by weight.
- the addition amount of the sodium silicate solution may be appropriately adjusted so that the SiO 2 / MgO molar ratio (X) of magnesium silicate is in the range of 1.2 to 3.8.
- the same acid as that used in the first step may be used.
- sulfuric acid, hydrochloric acid, nitric acid and the like can be used. These may be used after appropriately diluted with water.
- the amount of acid added is preferably such that the SiO 2 / MgO molar ratio (X) of magnesium silicate is in the range of 1.2 to 3.8.
- the temperature at which the post-treatment is carried out is not particularly limited, but it is usually preferably 90 ° C. or lower, particularly 40 to 80 ° C.
- Example 9 Magnesium chloride was dissolved in 10 L of tap water so as to be (MgO solid content: 330 g) in a 25 L tank. Tap water was added to 2215.8 g of No. 3 sodium silicate (SiO 2 solid content: 642.5 g) to the solution, and a diluted solution with a total volume of 3.6 L and a thin sulfuric acid (70 wt% sulfuric acid) were added at a pH of 2-3. Then, tap water was added to 1064.4 g of 48% sodium hydroxide, and a diluted solution with a total amount of 1.8 L was added dropwise. The reaction product was warmed to 92 ° C. Aging was performed at 92 ° C. for 2 hours.
- Test example 1 The physical properties of each sample obtained in Examples 1 to 12 were measured as shown in Table 1. For comparison, the same measurement was performed on a comparative sample such as the following (1). In addition, the measuring method was implemented by the method of following (2).
- Comparative Sample Comparative Example 1 Commercially available magnesium silicate-based regenerant (trade name “Magnesol” manufactured by DALLAS, USA) (amorphous) Comparative Example 2: Synthetic saponite (Japan Clay Society) Comparative Example 3: Talc (reagent Wako Pure Chemical Industries) (belonging to three octahedral types but not belonging to the smectite group) Comparative Example 4: Montmorillonite (reagent Wako Pure Chemical Industries) (belonging to the smectite group but having a two-octahedron type)
- Apparatus X-ray diffractometer (RINT2000) manufactured by Rigaku Corporation
- X-ray Cu-K ⁇ Filter: Unused counter: Scintillation counter voltage: 40kV Current: 20 mA Scanning speed: 3.00 ° / min
- Sampling step 0.050 °
- Divergence slit 1 deg Scattering slit: 1 deg Receiving slit: 0.15 mm
- the multiple peak separation method is a method for approximating a profile consisting of multiple overlapping peaks with an appropriate function and calculating the position, intensity, half-value width, integral intensity, etc.
- a measuring device a high-speed specific surface area / pore distribution measuring device “NOVA4000e type” manufactured by Quantachrome was used.
- 0.05 g of the sample was accurately measured, sealed in a test tube, and deaerated at 105 ° C. for 3 hours.
- the specific surface area is measured by determining the adsorption isotherm of nitrogen gas at the temperature of liquid nitrogen gas after completion of the pretreatment, and using the adsorption isotherm, the specific surface area by the multipoint BET method and the external specific surface area by the t-plot method. Calculated.
- the t-plot method is a known technique and is described in detail in, for example, the literature [Seiichi Kondo et al., Chemical Seminar 16 “Science of adsorption” Maruzen Co., Ltd., pages 52-54, pages 79-80]. From this document, the t-plot method uses a standard isotherm in which the average thickness (t) of the adsorbed film is plotted against the relative pressure (P / P 0 ).
- (t) is represented by the product of the average total number of adsorption (V / Vm) in the adsorption film and the thickness ( ⁇ ) of the monomolecular layer.
- the adsorption amount (V l ) plotted against (t) is a t-plot, and the adsorption isotherm of each sample is expressed as a relative pressure (P / P 0 ) using the de-Bore standard isotherm. And converted to a plot. Since the sample of the example has micropores, the t-plot does not become one straight line passing through the coordinate origin, and a straight line shifted downward is obtained at a location where t is large (that is, the high pressure portion). The external surface area is determined from the slope of the straight line at the location where t is large.
- Acid value (0.1 mol / L consumption of ethanol-made potassium hydroxide solution (ml) ⁇ 5.611) / (sample collected (g))
- hydrochloric acid obtained by diluting synthetic hydrochloric acid twice with tap water (volume ratio 1: 1) was used for silica gel production.
- Tap water was added to No. 3 sodium silicate in advance to make a total amount of 530 mL, No. 3 sodium silicate dilution, and for calcium hydroxide, tap water was added to prepare a calcium hydroxide suspension with a total amount of 460 mL. .
- No. 3 sodium silicate 102.0 g in terms of SiO 2
- CaO solid content 34.0 g
- R CaO charged weight ratio
- Example 14 A mixed product was prepared by blending the magnesium silicate of Example 9 and the calcium silicate of Example 13 so that the weight ratio (calcium silicate: magnesium silicate) was 10:90 and dry mixing.
- Example 15 The mixed product was prepared by blending the magnesium silicate of Example 9 and the calcium silicate described in Example 13 so that the weight ratio (calcium silicate: magnesium silicate) was 15:85 and dry mixing. Prepared.
- Example 16 The mixed product was prepared by blending the magnesium silicate of Example 9 and the calcium silicate described in Example 13 so that the weight ratio (calcium silicate: magnesium silicate) was 20:80 and dry mixing. Prepared.
- Test example 2 For the samples of Examples 13 to 16, model oil (oil adjusted to have an acid value of 2.0 by adding 0.9 g of oleic acid and 0.5 g of soy lecithin to 100 g of soybean oil) Except that it was used, the same measurement as “C. Decolorization rate” and “D. Acid value reduction rate” in Test Example 1 was performed. In addition, the presence or absence of cloudiness was also examined. The presence or absence of cloudiness was evaluated visually. The results are shown in Table 2. Table 2 also shows the results of Example 9.
- Test example 3 The samples of Examples 17 to 21 were measured in the same manner as “C. Decolorization rate” and “D. Acid value reduction rate” in Test Example 1 except that bean oil having an acid value of 2.72 was used as the used deteriorated oil. Carried out. The results are shown in Table 3. Table 3 also shows the results of Example 9 and Comparative Example 1.
- Example 22 Magnesium chloride was dissolved in 10 L of tap water so as to be (MgO solid content: 493.8 g) in a 25 L tank. Tap water was added to 2215.8 g of No. 3 sodium silicate (SiO 2 solid content: 642.5 g) to the solution, and a diluted solution with a total volume of 3.6 L and a thin sulfuric acid (70 wt% sulfuric acid) were added at a pH of 2 to 3. Then, tap water was added to 1742.0 g of 48% sodium hydroxide, and a diluted solution having a total amount of 1.8 L was added dropwise. The reaction product was warmed to 92 ° C. Aging was performed at 92 ° C. for 2 hours.
- Tap water was added to 2215.8 g of No. 3 sodium silicate (SiO 2 solid content: 642.5 g) to the solution, and a diluted solution with a total volume of 3.6 L and a thin sulfuric acid (70 wt% sulfuric acid
- Example 24 Magnesium chloride was dissolved in 10 L of tap water so as to be (MgO solid content: 330 g) in a 25 L tank. Tap water was added to 2215.8 g of No. 3 sodium silicate (SiO 2 solid content: 642.5 g) to the solution, and a diluted solution with a total volume of 3.6 L and a thin sulfuric acid (70 wt% sulfuric acid) were added at a pH of 2 to 3. Then, tap water was added to 1064.4 g of 48% sodium hydroxide, and a diluted solution with a total amount of 1.8 L was added dropwise. The reaction product was warmed to 92 ° C. Aging was performed at 92 ° C. for 2 hours.
- Tap water was added to 2215.8 g of No. 3 sodium silicate (SiO 2 solid content: 642.5 g) to the solution, and a diluted solution with a total volume of 3.6 L and a thin sulfuric acid (70 wt% sulfuric acid
- Test example 4 For the samples of Examples 22 to 24, the same test as in Test Example 1 was performed. The results are shown in Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
【課題】良好な脱酸能力と脱色能力とを併せ持つケイ酸マグネシウム系劣化食用油用再生剤を提供する。 【解決手段】ケイ酸マグネシウムを含む劣化食用油用再生剤であって、前記ケイ酸マグネシウムは、(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、(3)SiO2/MgOモル比(X)が1.2~3.8であることを特徴とする劣化食用油用再生剤に係る。
Description
本発明は、劣化食用油用再生剤に関する。より具体的には、フライビーンズ、惣菜等を揚げた後の劣化食用油を再生するための食用油用再生剤及び劣化食用油の再生方法に関する。
近年、コンビニエンスストアー、惣菜屋等の揚物をその場で調理して販売する食品営業では、食用油が多量に使用されている。このような食用油で惣菜等の揚種を揚げる場合、食用油は高温に曝されるとともに繰り返し使用されることになる。このため、食用油は、加水分解、酸化等を受けて劣化を生じる。その結果、食用油中に遊離脂肪酸が生成することにより酸価が上昇することとなる。常に新しい食用油を用いることが理想的であるが、そのようにすると調理コストの上昇が避けられない。このため、資源の有効利用、食品のリサイクル化の要請等も相まって、使用済み食用油(劣化食用油)については再生剤(脱酸剤)による再生も行われている。再生剤を用いた場合には食用油の酸価を下げることができ、再利用が可能となる。このような再生剤としては、従来よりシリカ、酸化マグネシウム等が用いられている(特許文献1、特許文献2等)。
これに対し、ケイ酸マグネシウム等を再生剤として用いることも知られている。具体的には、ケイ酸カルシウムとケイ酸マグネシウムと多孔質性流紋岩の物質(porous rhyolitic material)と二酸化ケイ素とのうちの少なくとも一つとから成る処理剤手段で、前記処理剤手段の適正量により、使用済み揚油と接触(コンタクト)させ、遊離脂肪酸を非常に減らして処理された使用済み揚油の安定性を大幅に改善し、再利用のために使用済み揚油を処理する使用済み揚油の再生方法が提案されている。ここにケイ酸マグネシウムとしては、市販品マグネソル(Magnesol)が提示されている(特許文献3)。
しかしながら、従来のケイ酸マグネシウムの再生剤では、特に脱酸能力及び脱色能力という点では十分なものとは言えず、さらなる改善が必要である。
従って、本発明の主な目的は、良好な脱酸能力と脱色能力とを併せ持つケイ酸マグネシウム系劣化食用油用再生剤を提供することにある。
本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の結晶構造等を有するケイ酸マグネシウムが上記目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記の劣化食用油用再生剤に係る。
1. ケイ酸マグネシウムを含む劣化食用油用再生剤であって、
前記ケイ酸マグネシウムは、
(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、
(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、
(3)SiO2/MgOモル比(X)が1.2~3.8である
ことを特徴とする劣化食用油用再生剤。
2. 前記ケイ酸マグネシウムのBET比表面積が400m2/g以上である、前記項1に記載の劣化食用油用再生剤。
3. t-プロット法で算出した外部比表面積が全比表面積の40%以上を占める、前記項2に記載の劣化食用油用再生剤。
4. t-プロット法で算出した外部比表面積が全比表面積の60%以上を占める、前記項2に記載の劣化食用油用再生剤。
5. さらにケイ酸カルシウムを含む、前記項1に記載の劣化食用油用再生剤。
6. ケイ酸カルシウムの含有量が25重量%以下である、前記項5に記載の劣化食用油用再生剤。
7. さらにカルシウム化合物(但し、ケイ酸カルシウムを除く。)を含む、前記項1に記載の劣化食用油用再生剤。
8. カルシウム化合物の含有量が酸化カルシウム換算で7重量%以下である、前記項7に記載の劣化食用油用再生剤。
9. 前記項1に記載の劣化食用油用再生剤と、200℃以下の温度に加熱された劣化食用油とを接触させる工程を含むことを特徴とする劣化食用油の再生方法。
10. 劣化食用油用再生剤を製造する方法であって、
1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程、
2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程、
3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程
4)前記ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び
5)前記混合物に酸を添加する工程
を含むケイ酸マグネシウムの製造方法。
11. 劣化食用油用再生剤を製造する方法であって、ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び前記混合物に酸を添加する工程を含むケイ酸マグネシウムの製造方法。
1. ケイ酸マグネシウムを含む劣化食用油用再生剤であって、
前記ケイ酸マグネシウムは、
(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、
(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、
(3)SiO2/MgOモル比(X)が1.2~3.8である
ことを特徴とする劣化食用油用再生剤。
2. 前記ケイ酸マグネシウムのBET比表面積が400m2/g以上である、前記項1に記載の劣化食用油用再生剤。
3. t-プロット法で算出した外部比表面積が全比表面積の40%以上を占める、前記項2に記載の劣化食用油用再生剤。
4. t-プロット法で算出した外部比表面積が全比表面積の60%以上を占める、前記項2に記載の劣化食用油用再生剤。
5. さらにケイ酸カルシウムを含む、前記項1に記載の劣化食用油用再生剤。
6. ケイ酸カルシウムの含有量が25重量%以下である、前記項5に記載の劣化食用油用再生剤。
7. さらにカルシウム化合物(但し、ケイ酸カルシウムを除く。)を含む、前記項1に記載の劣化食用油用再生剤。
8. カルシウム化合物の含有量が酸化カルシウム換算で7重量%以下である、前記項7に記載の劣化食用油用再生剤。
9. 前記項1に記載の劣化食用油用再生剤と、200℃以下の温度に加熱された劣化食用油とを接触させる工程を含むことを特徴とする劣化食用油の再生方法。
10. 劣化食用油用再生剤を製造する方法であって、
1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程、
2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程、
3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程
4)前記ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び
5)前記混合物に酸を添加する工程
を含むケイ酸マグネシウムの製造方法。
11. 劣化食用油用再生剤を製造する方法であって、ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び前記混合物に酸を添加する工程を含むケイ酸マグネシウムの製造方法。
本発明によれば、良好な脱酸能力と脱色能力とを併せ持つケイ酸マグネシウム系劣化食用油用再生剤を提供することができる。
また、本発明再生剤において、ケイ酸カルシウム又はそれ以外のカルシウム化合物を併用する場合は、より優れた脱酸効果及び脱色効果を得ることができる。
1.劣化食用油用再生剤
本発明の劣化食用油用再生剤(以下「本発明再生剤」ともいう。)は、ケイ酸マグネシウムを含む劣化食用油用再生剤であって、
前記ケイ酸マグネシウムは、
(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、
(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、
(3)SiO2/MgOモル比(X)が1.2~3.8である
ことを特徴とする。
本発明の劣化食用油用再生剤(以下「本発明再生剤」ともいう。)は、ケイ酸マグネシウムを含む劣化食用油用再生剤であって、
前記ケイ酸マグネシウムは、
(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、
(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、
(3)SiO2/MgOモル比(X)が1.2~3.8である
ことを特徴とする。
本発明では、ケイ酸マグネシウムとして特定の構成(結晶構造及び組成)を有する結晶性ケイ酸マグネシウム(本発明ケイ酸マグネシウム)を用いる。
一般に結晶性ケイ酸マグネシウムは種々の結晶系を有するが、本発明ケイ酸マグネシウムの結晶系は3八面体型スメクタイト族粘土鉱物の結晶系である。すなわち、層構成が2:1であるスメクタイト族であって、その亜族が3八面体型スメクタイト族の結晶系である。かかる結晶系のケイ酸マグネシウムを採用することによって、より優れた脱酸性能と脱色性能とをともに効果的に発揮することができる。
また、本発明ケイ酸マグネシウムは、X線回折測定において、当該結晶系に特有の2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2の範囲内にある。かかる範囲内のケイ酸マグネシウムを採用することによって、優れた脱酸性能と脱色性能とを発揮することができる。
さらに、本発明ケイ酸マグネシウムは、SiO2/MgOモル比(X)が1.2~3.8であり、好ましくは1.3~3.3である。Xが1.2未満の場合は、脱色性能の低下という問題が生じる。また、Xが3.8を超える場合は、脱酸価性能の低下という問題が生じる。
本発明ケイ酸マグネシウムのBET比表面積は特に制限されないが、通常は400m2/g以上とし、特に400~700m2/gとすることが好ましく、500~700m2/gとすることが好ましい。このような範囲に設定することによって、より優れた脱酸性能及び脱色性能を発揮することができる。
本発明ケイ酸マグネシウムは、t-プロット法で算出した外部比表面積が全比表面積の40%以上を占めることが好ましく、特に60%以上を占めることがより好ましい。
本発明再生剤では、本発明の効果を妨げない範囲内で本発明ケイ酸マグネシウム以外の成分が含まれていても良い。例えば、ケイ酸カルシウム及びカルシウム化合物(ケイ酸カルシウムを除く。)の少なくとも1種が含まれていても良い。これにより、ケイ酸カルシウムのもつ脱酸能力をより効果的に発揮させることができる。前記カルシウム化合物としては、例えば酸化カルシウム、水酸化カルシウム、炭酸カルシウム等の少なくとも1種を用いることができる。ケイ酸カルシウム及びカルシウム化合物(ケイ酸カルシウムを除く。)の少なくとも1種の含有量はその化合物の種類等に応じて適宜設定することができる。例えば、ケイ酸カルシウムの場合は25重量%以下(特に20重量%以下、さらには3~15重量%)の範囲内で含まれていても良い。また、カルシウム化合物を用いる場合は、酸化カルシウム換算で7重量%以下(特に0.1~4重量%)とすれば良い。
また例えば、公知の再生剤として使用されている化合物が必要に応じて含有されていても良い。例えば、二酸化ケイ素、水酸化マグネシウム及び酸化マグネシウムの少なくとも1種をさらに含んでいても良い。これらの含有量は限定的ではないが、通常は本発明再生剤中90重量%以下とすれば良い。
本発明再生剤は、通常は粉末の形態で使用することができるが、必要に応じて造粒等の成形を行うこともできる。造粒する場合は、公知の造粒方法を採用することができる。造粒物の平均粒径は、一般的には10~300μm程度とすれば良い。なお、造粒に際しては、ケイ酸カルシウムの含有水分率の変動を効果的に抑制するために、溶媒としてアルコール類等の有機溶剤を使用したり、あるいは造粒後に乾燥工程を実施することもできる。
本発明再生剤は、公知の再生剤と同様にして用いることができる。例えば、本発明再生剤と、200℃以下(好ましくは70~200℃、より好ましくは120~150℃)の温度に加熱された劣化食用油(使用済み食用油)とを接触させる工程を含むことを特徴とする劣化食用油の再生方法により、劣化食用油の再生を好適に行うことができる。接触させる方法は特に制限されず、例えばa)劣化食用油に本発明再生剤を分散・攪拌させる方法、b)本発明再生剤を含むフィルター層に劣化食用油を1回又は複数回流通させる方法等を採用することができる。なお、本発明再生剤を用いて再生処理を実施した後において、再生された食用油中に本発明再生剤が含まれている場合は、ろ過等の公知の方法により本発明再生剤を分離・回収することができる。
本発明の再生方法における再生剤の使用量は、用いる劣化食用油の酸価等に応じて適宜設定することができるが、通常は劣化食用油100重量部に対して0.1~10重量部、特に0.4~4重量部とすることが好ましい。
本発明の再生方法では、本発明再生剤とともに、脱色剤と併用することもできる。脱色剤の併用により、脱酸効果とともに脱色効果が得ることができる。すなわち、脱色剤により色素成分を吸着し、黄褐色ないしは茶褐色に変色した劣化食用油をもとの色に近い色に戻すことができる。脱色剤としては、公知のもの又は市販品を使用することができ、例えば酸性白土、活性白土、活性炭、二酸化ケイ素等の少なくとも1種を好適に用いることができる。
脱色剤を使用する場合の使用量は、劣化食用油の変色レベル等に応じて適宜決定することができるが、通常は本発明再生剤100重量に対して0.1~10重量部程度、特に0.4~4重量部とすることが望ましい。
食用油としては、特に限定的でなく、公知又は市販の食用油のいずれにも適用することができる。また、本発明再生剤により酸価を下げることができる限り、動物性油又は植物性油のいずれであっても良い。動物性油としては、例えばバター、ラード、魚油、鶏油、鯨油等が挙げられる。植物性油としては、例えばパーム油、ショートニング、サラダ油、大豆油、コーン油、ごま油、菜種油等が挙げられる。
2.劣化食用油用再生剤の製造
本発明の再生剤は、本発明ケイ酸マグネシウムを調製する工程を含むことを特徴とするものである。すなわち、1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程(第1工程)、2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程(第2工程)、3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程(第3工程)を含む製造方法によって、本発明ケイ酸マグネシウムを好適に得ることができる。
本発明の再生剤は、本発明ケイ酸マグネシウムを調製する工程を含むことを特徴とするものである。すなわち、1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程(第1工程)、2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程(第2工程)、3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程(第3工程)を含む製造方法によって、本発明ケイ酸マグネシウムを好適に得ることができる。
第1工程
第1工程では、マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る。
第1工程では、マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る。
マグネシウムイオンを含む溶液は、マグネシウム化合物を溶媒に溶解させることにより調製することができる。マグネシウム化合物としては、用いる溶媒に可溶性のものであれば限定的でなく、例えば塩化マグネシウム、硫酸マグネシウム、酢酸マグネシウム等のマグネシウムの無機酸塩又は有機酸塩を好適に用いることができる。溶媒としては、水のほか、エタノール等のアルコール類の有機溶媒を使用することができる。溶液の濃度は特に制限されないが、通常は0.1~3.0mol/L程度とすれば良い。
ケイ酸ナトリウム溶液は、ケイ酸ナトリウムを溶媒に溶解させることにより調製することができる。ケイ酸ナトリウムは公知又は市販のものを使用すれば良い。溶媒としては、水のほか、エタノール等のアルコール類の有機溶媒を使用することができる。溶液の濃度は特に制限されないが、通常は1~90重量%程度とすれば良い。
第1工程では、両溶液を酸性下で混合することによって酸性混合液を調製する。例えば、両溶液の混合中又は混合後において、例えば塩酸、硫酸、硝酸等を添加すれば良く、これらは水で適宜希釈して使用することもできる。より具体的には、例えばマグネシウムイオンを含む溶液にケイ酸ナトリウム溶液とともに酸を滴下することによって酸性混合液を好適に調製することができる。この場合の酸性混合液のpHは適宜調節することができるが、通常はpH5以下とし、特にpH1~4の範囲内とすることが好ましい。
また、両溶液の混合割合は、得られるケイ酸マグネシウムの所定のSiO2/MgOモル比(X)の範囲内になるように適宜調整すれば良い。
両溶液を混合する際の温度は、適宜調整することができるが、特に50℃以下、さらには45℃以下の範囲内で行うことが好ましい。かかる温度範囲に設定することによって、安定した沈殿反応物が得られるという効果を得ることができる。
第2工程
第2工程では、得られた酸性混合液にアルカリを添加することにより沈殿物を得る。第2工程で生成される沈殿物は、主として水酸化マグネシウムを含むものである。アルカリは公知のものを使用すれば良く、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水等を用いることができ、これらは溶液(又は水溶液)の形態で用いることが望ましい。また、アルカリの添加量は、所定の沈殿物が生成されるまで添加すれば良い。
第2工程では、得られた酸性混合液にアルカリを添加することにより沈殿物を得る。第2工程で生成される沈殿物は、主として水酸化マグネシウムを含むものである。アルカリは公知のものを使用すれば良く、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水等を用いることができ、これらは溶液(又は水溶液)の形態で用いることが望ましい。また、アルカリの添加量は、所定の沈殿物が生成されるまで添加すれば良い。
第2工程における反応温度は、適宜調整することができるが、特に50℃以下、さらには45℃以下の範囲内で行うことが好ましい。かかる温度範囲に設定することによって、安定した沈殿反応物を得ることができる。
第3工程
第3工程では、前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る。この場合、前記沈殿物としては、例えば、第2工程で得られた沈殿物を含むスラリーをそのまま第3工程に供しても良いし、第2工程で得られた沈殿物をスラリーから回収し、前記沈殿物を水に分散させて得られる水性スラリーを第3工程に供することもできる。
第3工程では、前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る。この場合、前記沈殿物としては、例えば、第2工程で得られた沈殿物を含むスラリーをそのまま第3工程に供しても良いし、第2工程で得られた沈殿物をスラリーから回収し、前記沈殿物を水に分散させて得られる水性スラリーを第3工程に供することもできる。
熟成温度は、通常50~300℃とし、好ましくは70~200℃とする。また、熟成は、常圧下で実施しても良いが、熟成温度が100℃以上の場合は加圧下(例えば飽和蒸気圧下)で反応させても良い。例えば、オートクレーブ中で反応させることもできる。より具体的には、オートクレーブ中100~300℃の温度で熟成することもできる。熟成時間は、熟成温度等に応じて適宜調整すれば良く、通常は3~6時間程度すれば良いが、この範囲外となっても良い。
得られた反応生成物は、必要に応じて脱水、水洗、乾燥等(これらをまとめて「精製処理」という。)を行うことによりケイ酸マグネシウムを得る。脱水方法は、公知の固液分離方法、乾燥方法等に従えば良い。固液分離方法としては、例えばろ過、遠心分離等を一般的に採用することができる。また、乾燥方法としては、加熱乾燥又は凍結乾燥があるが、加熱乾燥の場合は150℃以下で行うことが望ましい。乾燥装置は限定的でなく、例えば固定床式送風乾燥機、コンベヤ式送風乾燥機、流動層乾燥機、転動乾燥機、振動乾燥機、ドラム式乾燥機、気流乾燥機、噴霧乾燥機、凍結乾燥機、減圧乾燥機等を用いることができる。
追加工程
本発明の製造方法では、第3工程の熟成後の精製処理に先立って、未反応のマグネシウムイオンが共存する場合は、必要に応じて次のような追加工程を実施することもできる。すなわち、(1)ケイ酸マグネシウムの水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程(追加工程1)及び(2)前記混合物に酸を添加する工程(追加工程2)を実施することができる。この後処理により、Mg含有量等をコントロールすることができる。
本発明の製造方法では、第3工程の熟成後の精製処理に先立って、未反応のマグネシウムイオンが共存する場合は、必要に応じて次のような追加工程を実施することもできる。すなわち、(1)ケイ酸マグネシウムの水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程(追加工程1)及び(2)前記混合物に酸を添加する工程(追加工程2)を実施することができる。この後処理により、Mg含有量等をコントロールすることができる。
ケイ酸マグネシウムをスラリーとしては、水を分散媒とすることが好ましい。すなわち、ケイ酸マグネシウムの水性スラリーを好適に用いることができる。スラリーの固形分含有量は適宜調整することができる。
本発明では、ケイ酸マグネシウムのスラリーとしては、共沈法等の公知の方法で得られたスラリーを用いることができるが、特に前記第3工程で得られたケイ酸マグネシウムを含むスラリー(特に水性スラリー)を好適に用いることができる。なお、このスラリーはそのまま又は固形分含有量を調整した上で使用することができる。従って、本発明では、例えば第1工程~第3工程及び追加工程の一連の工程を含むケイ酸マグネシウムの製造方法として好適に採用することもできる。すなわち、1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程(第1工程)、2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程(第2工程)、3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程(第3工程)、4)前記ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程(追加工程1)及び5)前記混合物に酸を添加する工程(追加工程2)を含むケイ酸マグネシウムの製造方法も本発明に包含される。この場合においても、ケイ酸マグネシウムを含む水性スラリーの使用に関しては、第3工程で得られた水性スラリー形態の反応生成物をそのまま使用する方法のほか、第3工程で得られた水性スラリー形態の反応生成物の固形分含有量(水分含有量)を調整した上で使用する方法等のいずれも包含される。
追加工程1で使用できるケイ酸ナトリウム溶液としては、前記第1工程で用いるものと同様のものを使用することができる。ケイ酸ナトリウム溶液の濃度は1~90重量%程度とすれば良い。ケイ酸ナトリウム溶液の添加量は、ケイ酸マグネシウムのSiO2/MgOモル比(X)が1.2~3.8の範囲内になるように適宜調節すれば良い。
追加工程2で混合物に添加される酸としては、前記第1工程で使用するものと同様のものを使用すれば良い。例えば、硫酸、塩酸、硝酸等を用いることができる。これらは水で適宜希釈して使用しても良い。また、酸の添加量は、ケイ酸マグネシウムのSiO2/MgOモル比(X)が1.2~3.8の範囲内になるようにすることが好ましい。
後処理を実施する際の温度は特に限定されないが、通常は90℃以下、特に40~80℃の範囲内とすることが好ましい。
以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。
実施例1
5L容量タンクにおいて塩化マグネシウム(MgO固形分:105.6g)を水道水1Lに溶解した。得られた水溶液に対し、3号ケイ酸ナトリウム739g(SiO2固形分:214.4g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム436.7gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗して、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.2)を得た。
5L容量タンクにおいて塩化マグネシウム(MgO固形分:105.6g)を水道水1Lに溶解した。得られた水溶液に対し、3号ケイ酸ナトリウム739g(SiO2固形分:214.4g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム436.7gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗して、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.2)を得た。
実施例2
実施例1の加温前の反応生成物600mLを容量1LのTAS-09-20-300型耐圧反応容器(耐圧ガラス工業株式会社製)に投入し、撹拌しながら200℃まで加温し、200℃にて4時間水熱処理を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.2)を得た。
実施例1の加温前の反応生成物600mLを容量1LのTAS-09-20-300型耐圧反応容器(耐圧ガラス工業株式会社製)に投入し、撹拌しながら200℃まで加温し、200℃にて4時間水熱処理を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.2)を得た。
実施例3
5L容量タンクにおいて塩化マグネシウム(MgO固形分:91.5g)を水道水1Lに溶解した。得られた水溶液に3号ケイ酸ナトリウム788g(SiO2固形分:228.5g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム378.4gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.6)を得た。
5L容量タンクにおいて塩化マグネシウム(MgO固形分:91.5g)を水道水1Lに溶解した。得られた水溶液に3号ケイ酸ナトリウム788g(SiO2固形分:228.5g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム378.4gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.6)を得た。
実施例4
実施例2と同様にして、実施例3で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=1.6)を得た。
実施例2と同様にして、実施例3で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=1.6)を得た。
実施例5
5L容量タンクにおいて塩化マグネシウム(MgO固形分:80g)を水道水1Lに溶解させた。得られた水溶液に3号ケイ酸ナトリウム827.6g(SiO2固形分:240g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム330.8gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.9)を得た。
5L容量タンクにおいて塩化マグネシウム(MgO固形分:80g)を水道水1Lに溶解させた。得られた水溶液に3号ケイ酸ナトリウム827.6g(SiO2固形分:240g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム330.8gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=1.9)を得た。
実施例6
実施例2と同様にして、実施例5で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=1.9)を得た。
実施例2と同様にして、実施例5で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=1.9)を得た。
実施例7
5L容量タンクにおいて塩化マグネシウム(MgO固形分:67.6g)を水道水1Lに溶解させた。得られた水溶液に3号ケイ酸ナトリウム874.5g(SiO2固形分:253.6g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム279.6gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗して、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5)を得た。
5L容量タンクにおいて塩化マグネシウム(MgO固形分:67.6g)を水道水1Lに溶解させた。得られた水溶液に3号ケイ酸ナトリウム874.5g(SiO2固形分:253.6g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム279.6gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗して、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5)を得た。
実施例8
実施例2と同様にして、実施例7で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.5)を得た。
実施例2と同様にして、実施例7で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.5)を得た。
実施例9
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:330g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1064.4gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸252g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5)を得た。
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:330g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1064.4gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸252g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5)を得た。
実施例10
実施例2と同様にして、実施例9で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.5)を得た。
実施例2と同様にして、実施例9で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.5)を得た。
実施例11
5L容量タンクにおいて塩化マグネシウム(MgO固形分:51.2g)を水道水1Lで溶解した。溶解液に3号ケイ酸ナトリウム926.9g(SiO2固形分:268.8g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム211.7gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=3.2)を得た。
5L容量タンクにおいて塩化マグネシウム(MgO固形分:51.2g)を水道水1Lで溶解した。溶解液に3号ケイ酸ナトリウム926.9g(SiO2固形分:268.8g)に水道水を加え、全量を2Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム211.7gに水道水を加え、全量を500mlとした希釈溶液を滴下し、反応生成物を得た。反応生成物を92℃まで加温した後、92℃にて5時間熟成を行った。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=3.2)を得た。
実施例12
実施例2と同様にして、実施例11で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=3.2)を得た。
実施例2と同様にして、実施例11で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=3.2)を得た。
試験例1
実施例1~12で得られた各試料について、表1に示すような物性の測定を実施した。また、比較のため、下記(1)のような比較サンプルについても同様の測定を行った。なお、測定方法は、下記(2)の方法によって実施した。
実施例1~12で得られた各試料について、表1に示すような物性の測定を実施した。また、比較のため、下記(1)のような比較サンプルについても同様の測定を行った。なお、測定方法は、下記(2)の方法によって実施した。
(1)比較サンプル
比較例1:市販のケイ酸マグネシウム系再生剤(商品名「Magnesol」米DALLAS社製)(非晶質)
比較例2:合成サポナイト(日本粘土学会)
比較例3:タルク(試薬 和光純薬工業)(3八面体型に属するがスメクタイト族に属しない)
比較例4:モンモリロナイト(試薬 和光純薬工業)(スメクタイト族に属するが2八面体型となる)
比較例1:市販のケイ酸マグネシウム系再生剤(商品名「Magnesol」米DALLAS社製)(非晶質)
比較例2:合成サポナイト(日本粘土学会)
比較例3:タルク(試薬 和光純薬工業)(3八面体型に属するがスメクタイト族に属しない)
比較例4:モンモリロナイト(試薬 和光純薬工業)(スメクタイト族に属するが2八面体型となる)
(2)試験方法
以下の方法によってそれぞれの試験を行った。
以下の方法によってそれぞれの試験を行った。
A)XRD積分強度比
まず、X線回折測定を以下の測定条件で実施した。
装置 : 株式会社リガク製X線回折装置(RINT2000)
X線 : Cu-Kα
フィルター : 使用しない
カウンター : シンチレーションカウンター
電圧 : 40kV
電流 : 20mA
走査速度 : 3.00°/分
サンプリングステップ: 0.050°
発散スリット : 1deg
散乱スリット : 1deg
受光スリット : 0.15mm
次いで、多重ピーク分離を行った。多重ピーク分離法は、重なり合った複数のピークからなるプロファイルを適当な関数で近似し、そのパラメータからそれぞれのピークの位置、強度、半価幅、積分強度などを算出することを目的とする手法である。なお、X線回折の測定は「RINT2000」(株式会社リガク)を用い、上記のデーター解析は付属の応用ソフトウエアを用いて行った。3八面体型スメクタイト族のサポナイトのX線回折結果をもとにピーク位置を特定し、上記サポナイトから得られた2θ=19°付近のピーク(19°±1°)、2θ=27°付近のピーク(27°±1°)、2θ=34°付近のピーク(34°±1°)、2θ=38°付近のピーク(38°±1°)、2θ=52°付近のピーク(52°±1°)、2θ=60°付近のピーク(60°±1°)と非晶質二酸化ケイ素22.5°のハローピークを対象に実施例及び比較例の各試料について多重ピーク分離法を行った。得られたピーク分離法の結果から、2θ=19°付近のピークの積分強度Iaと、2θ=27°付近のピークの積分強度Ibとをそれぞれ算出し、その比率Ib/Iaを求めた。
まず、X線回折測定を以下の測定条件で実施した。
装置 : 株式会社リガク製X線回折装置(RINT2000)
X線 : Cu-Kα
フィルター : 使用しない
カウンター : シンチレーションカウンター
電圧 : 40kV
電流 : 20mA
走査速度 : 3.00°/分
サンプリングステップ: 0.050°
発散スリット : 1deg
散乱スリット : 1deg
受光スリット : 0.15mm
次いで、多重ピーク分離を行った。多重ピーク分離法は、重なり合った複数のピークからなるプロファイルを適当な関数で近似し、そのパラメータからそれぞれのピークの位置、強度、半価幅、積分強度などを算出することを目的とする手法である。なお、X線回折の測定は「RINT2000」(株式会社リガク)を用い、上記のデーター解析は付属の応用ソフトウエアを用いて行った。3八面体型スメクタイト族のサポナイトのX線回折結果をもとにピーク位置を特定し、上記サポナイトから得られた2θ=19°付近のピーク(19°±1°)、2θ=27°付近のピーク(27°±1°)、2θ=34°付近のピーク(34°±1°)、2θ=38°付近のピーク(38°±1°)、2θ=52°付近のピーク(52°±1°)、2θ=60°付近のピーク(60°±1°)と非晶質二酸化ケイ素22.5°のハローピークを対象に実施例及び比較例の各試料について多重ピーク分離法を行った。得られたピーク分離法の結果から、2θ=19°付近のピークの積分強度Iaと、2θ=27°付近のピークの積分強度Ibとをそれぞれ算出し、その比率Ib/Iaを求めた。
B)BET比表面積等
測定装置としてQuantachrome社製の高速比表面積・細孔分布測定装置「NOVA4000e型」を用いた。試料の前処理として、試料0.05gを正確に測り、試験管に封入し、105℃で3時間脱気を行った。比表面積の測定は、前処理終了後、液体窒素ガス温度下で窒素ガスの吸着等温線を求め、その吸着等温線を用いて多点BET法により比表面積、t-プロット法より外部比表面積を算出した。
t-プロット法は、公知の技術であり、例えば文献[近藤精一他 化学セミナー16「吸着の科学」丸善株式会社、52-54頁、79-80頁]に詳細に記載されている。この文献から、t-プロット法は吸着膜の平均厚さ(t)を相対圧(P/P0)に対してプロットした標準等温線を使う。ここで、(t)は吸着膜中の平均吸着総数(V/Vm)と単分子層の厚さ(σ)の積で表され、吸着質が窒素分子である場合、σ=0.354nm、Vは窒素吸着量、Vmは窒素の単分子層吸着量で表される。吸着量(Vl)を(t)に対してプロットしたものがt-プロットであり、各試料の吸着等温線をde-Boreの標準等温線を用いて相対圧(P/P0)をtに変換してプロットした。
実施例の試料がミクロポアを有するため、t-プロットは座標原点を通る1本の直線にはならず、tの大きい箇所(すなわち、高圧部)では下方にずれた直線が得られる。tが大きい箇所の直線の傾きから外部表面積が求められる。
測定装置としてQuantachrome社製の高速比表面積・細孔分布測定装置「NOVA4000e型」を用いた。試料の前処理として、試料0.05gを正確に測り、試験管に封入し、105℃で3時間脱気を行った。比表面積の測定は、前処理終了後、液体窒素ガス温度下で窒素ガスの吸着等温線を求め、その吸着等温線を用いて多点BET法により比表面積、t-プロット法より外部比表面積を算出した。
t-プロット法は、公知の技術であり、例えば文献[近藤精一他 化学セミナー16「吸着の科学」丸善株式会社、52-54頁、79-80頁]に詳細に記載されている。この文献から、t-プロット法は吸着膜の平均厚さ(t)を相対圧(P/P0)に対してプロットした標準等温線を使う。ここで、(t)は吸着膜中の平均吸着総数(V/Vm)と単分子層の厚さ(σ)の積で表され、吸着質が窒素分子である場合、σ=0.354nm、Vは窒素吸着量、Vmは窒素の単分子層吸着量で表される。吸着量(Vl)を(t)に対してプロットしたものがt-プロットであり、各試料の吸着等温線をde-Boreの標準等温線を用いて相対圧(P/P0)をtに変換してプロットした。
実施例の試料がミクロポアを有するため、t-プロットは座標原点を通る1本の直線にはならず、tの大きい箇所(すなわち、高圧部)では下方にずれた直線が得られる。tが大きい箇所の直線の傾きから外部表面積が求められる。
C)脱色率
使用済み劣化油10gに再生剤0.1gを添加した後、150℃のオイルバス中、振とう器にて130回/分の条件で15分間振とうした。振とう後、直ちにメンブランフィルター(目開き0.8μm)にてろ過した。使用済み劣化油としては、酸価2.72の豆油(そら豆、コーン油)、酸価0.87の惣菜油(一般惣菜、大豆白絞油)を使用した。得られたろ過液の吸光度450nmを測定した。未処理劣化油10gをブランクとし、同様な処理を行ってろ過液の吸光度を測定した。これらの測定結果を下記式に導入して脱色率(%)を求めた。
・脱色率(%)=(ブランクの吸光度-処理後の吸光度)/ブランクの吸光度×100
使用済み劣化油10gに再生剤0.1gを添加した後、150℃のオイルバス中、振とう器にて130回/分の条件で15分間振とうした。振とう後、直ちにメンブランフィルター(目開き0.8μm)にてろ過した。使用済み劣化油としては、酸価2.72の豆油(そら豆、コーン油)、酸価0.87の惣菜油(一般惣菜、大豆白絞油)を使用した。得られたろ過液の吸光度450nmを測定した。未処理劣化油10gをブランクとし、同様な処理を行ってろ過液の吸光度を測定した。これらの測定結果を下記式に導入して脱色率(%)を求めた。
・脱色率(%)=(ブランクの吸光度-処理後の吸光度)/ブランクの吸光度×100
D)酸価低減率
使用済み劣化油10gに再生剤0.1gを添加した後、150℃のオイルバス中、振とう器にて130回/分の条件で15分間振とうした。振とう後、直ちにメンブランフィルター(目開き0.8μm)にてろ過した。使用済み劣化油としては、酸価2.72の豆油(そら豆 コーン油)、酸価0.87の惣菜油(一般惣菜、大豆白絞油)、モデル油(大豆油100gにオレイン酸0.9g及び大豆レシチン0.5gを加え、酸価が2.0になるように調整した油)を使用した。得られたろ過液1gを精密に量り、エタノール/ジエチルエーテル混合液(容積比1:1)50mLを加え、必要に応じて加温して溶かし、検液とした。冷却後、フェノールフタレイン試液数滴を加え、0.1mol/Lエタノール製水酸化カリウム溶液(本表記は食品添加物公定書の記載方法に準ずる。)で30秒間持続する紅色を呈するまで滴定し、下記式により酸価を求めた。ただし、使用する溶媒は、予め使用前にフェノールフタレイン試液を指示薬として30秒間持続する紅色を呈するまで0.1mol/Lエタノール製水酸化カリウム溶液を加えた。なお、脱酸価値及び酸価低減率は、それぞれ下記式により算出した。
・酸価=(0.1mol/Lエタノール製水酸化カリウム溶液の消費量(ml)×5.611)/(試料の採取量(g))
・脱酸価値=処理前の油の酸価値-処理後の油の酸価値
・酸価低減率=(処理前の油の酸価値-処理後の油の酸価値)/処理前の油の酸価値×100
使用済み劣化油10gに再生剤0.1gを添加した後、150℃のオイルバス中、振とう器にて130回/分の条件で15分間振とうした。振とう後、直ちにメンブランフィルター(目開き0.8μm)にてろ過した。使用済み劣化油としては、酸価2.72の豆油(そら豆 コーン油)、酸価0.87の惣菜油(一般惣菜、大豆白絞油)、モデル油(大豆油100gにオレイン酸0.9g及び大豆レシチン0.5gを加え、酸価が2.0になるように調整した油)を使用した。得られたろ過液1gを精密に量り、エタノール/ジエチルエーテル混合液(容積比1:1)50mLを加え、必要に応じて加温して溶かし、検液とした。冷却後、フェノールフタレイン試液数滴を加え、0.1mol/Lエタノール製水酸化カリウム溶液(本表記は食品添加物公定書の記載方法に準ずる。)で30秒間持続する紅色を呈するまで滴定し、下記式により酸価を求めた。ただし、使用する溶媒は、予め使用前にフェノールフタレイン試液を指示薬として30秒間持続する紅色を呈するまで0.1mol/Lエタノール製水酸化カリウム溶液を加えた。なお、脱酸価値及び酸価低減率は、それぞれ下記式により算出した。
・酸価=(0.1mol/Lエタノール製水酸化カリウム溶液の消費量(ml)×5.611)/(試料の採取量(g))
・脱酸価値=処理前の油の酸価値-処理後の油の酸価値
・酸価低減率=(処理前の油の酸価値-処理後の油の酸価値)/処理前の油の酸価値×100
表1の結果からも明らかなように、特定の結晶構造等をもつ本発明ケイ酸マグネシウムを用いる場合には、それ以外のケイ酸マグネシウムを使用する場合に比べて高い脱酸性能と脱色性能を発揮できることがわかる。
実施例13
シリカ原料として3号ケイ酸ナトリウム351.7g(SiO2換算102.0g)、カルシウム原料として水酸化カルシウム45.9g(CaO固形分34.0g)を量りとった(SiO2/CaO仕込み重量比(R)=3.0)。また、シリカゲル製造用に合成塩酸を水道水で2倍に希釈した(容積比1:1)塩酸を使用した。事前に3号ケイ酸ナトリウムに水道水を加え、全量を530mLとした3号ケイ酸ナトリウム希釈液、水酸化カルシウムについては水道水を加え、全量を460mLとした水酸化カルシウム懸濁液を調製した。次に、予め2500gの水道水を入れた容量5Lのステンレス鋼容器に3号ケイ酸ナトリウム希釈液を添加し、撹拌しながら加熱して約15分で65℃まで昇温した。昇温後、液のpHが7になるまで水で2倍希釈した塩酸を加え、シリカゲルを合成した。30分撹拌後、水酸化カルシウム懸濁液を添加した後、加熱により約15分で92℃まで昇温した。昇温後、92℃にて3時間熟成を行った。スラリーを減圧ろ過により脱水し、得られたケーキを乾燥機にいれ、100℃で乾燥し、ケイ酸カルシウム粉末(SiO2:64.68重量%、CaO:20.95重量%、SiO2/CaO重量比(R’)=3.1)を得た。このケイ酸カルシウムに実施例9のケイ酸マグネシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が5:95になるように配合し、乾式混合することにより混合品を調製した。
シリカ原料として3号ケイ酸ナトリウム351.7g(SiO2換算102.0g)、カルシウム原料として水酸化カルシウム45.9g(CaO固形分34.0g)を量りとった(SiO2/CaO仕込み重量比(R)=3.0)。また、シリカゲル製造用に合成塩酸を水道水で2倍に希釈した(容積比1:1)塩酸を使用した。事前に3号ケイ酸ナトリウムに水道水を加え、全量を530mLとした3号ケイ酸ナトリウム希釈液、水酸化カルシウムについては水道水を加え、全量を460mLとした水酸化カルシウム懸濁液を調製した。次に、予め2500gの水道水を入れた容量5Lのステンレス鋼容器に3号ケイ酸ナトリウム希釈液を添加し、撹拌しながら加熱して約15分で65℃まで昇温した。昇温後、液のpHが7になるまで水で2倍希釈した塩酸を加え、シリカゲルを合成した。30分撹拌後、水酸化カルシウム懸濁液を添加した後、加熱により約15分で92℃まで昇温した。昇温後、92℃にて3時間熟成を行った。スラリーを減圧ろ過により脱水し、得られたケーキを乾燥機にいれ、100℃で乾燥し、ケイ酸カルシウム粉末(SiO2:64.68重量%、CaO:20.95重量%、SiO2/CaO重量比(R’)=3.1)を得た。このケイ酸カルシウムに実施例9のケイ酸マグネシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が5:95になるように配合し、乾式混合することにより混合品を調製した。
実施例14
実施例9のケイ酸マグネシウムと実施例13のケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が10:90になるように配合し、乾式混合することにより混合品を調製した。
実施例9のケイ酸マグネシウムと実施例13のケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が10:90になるように配合し、乾式混合することにより混合品を調製した。
実施例15
実施例9のケイ酸マグネシウムと実施例13に記載されているケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が15:85になるように配合し、乾式混合することにより混合品を調製した。
実施例9のケイ酸マグネシウムと実施例13に記載されているケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が15:85になるように配合し、乾式混合することにより混合品を調製した。
実施例16
実施例9のケイ酸マグネシウムと実施例13に記載されているケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が20:80になるように配合し、乾式混合することにより混合品を調製した。
実施例9のケイ酸マグネシウムと実施例13に記載されているケイ酸カルシウムを重量比(ケイ酸カルシウム:ケイ酸マグネシウム)が20:80になるように配合し、乾式混合することにより混合品を調製した。
試験例2
実施例13~16の試料について、使用済み劣化油としてモデル油(大豆油100gにオレイン酸0.9g及び大豆レシチン0.5gを加え、酸価が2.0になるように調整した油)を使用したほかは、試験例1の「C.脱色率」及び「D.酸価低減率」と同様の測定を実施した。また、白濁の有無についても調べた。白濁の有無は、目視により評価した。その結果を表2に示す。なお、表2には、実施例9の結果も併せて示す。
実施例13~16の試料について、使用済み劣化油としてモデル油(大豆油100gにオレイン酸0.9g及び大豆レシチン0.5gを加え、酸価が2.0になるように調整した油)を使用したほかは、試験例1の「C.脱色率」及び「D.酸価低減率」と同様の測定を実施した。また、白濁の有無についても調べた。白濁の有無は、目視により評価した。その結果を表2に示す。なお、表2には、実施例9の結果も併せて示す。
表2の結果からも明らかなように、本発明ケイ酸マグネシウムとともにケイ酸カルシウムを併用することによって、より優れた脱酸性能及び脱色性能が得られることがわかる。
実施例17
実施例9のろ過・水洗ケーキに水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムとが3:97になるように配合し、固形分濃度10%になるように水で調整し、その懸濁液を乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=3重量%)を得た。
実施例9のろ過・水洗ケーキに水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムとが3:97になるように配合し、固形分濃度10%になるように水で調整し、その懸濁液を乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=3重量%)を得た。
実施例18
実施例9のろ過・水洗ケーキに水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが6:94になるように配合し、固形分濃度10%になるように水で調整し、その懸濁液を乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=6重量%)を得た。
実施例9のろ過・水洗ケーキに水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが6:94になるように配合し、固形分濃度10%になるように水で調整し、その懸濁液を乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=6重量%)を得た。
実施例19
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが1:99になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=1重量%)を得た。
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが1:99になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=1重量%)を得た。
実施例20
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが2:98になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=2重量%)を得た。
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが2:98になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=2重量%)を得た。
実施例21
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが3:97になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=3重量%)を得た。
実施例9のろ過・水洗前の反応生成物に水酸化カルシウム(CaO含量:74重量%)を換算物の重量比で酸化カルシウムとケイ酸マグネシウムが3:97になるように配合し、固形分濃度4%になるように水で調整し、その懸濁液をろ過・水洗して、得られたケーキを乾燥機に入れ100℃で乾燥し、カルシウム含有ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.5、酸化カルシウム含有量=3重量%)を得た。
試験例3
実施例17~21の試料について、使用済み劣化油として酸価2.72の豆油を使用したほかは、試験例1の「C.脱色率」及び「D.酸価低減率」と同様の測定を実施した。その結果を表3に示す。なお、表3には、実施例9及び比較例1の結果も併せて示す。
実施例17~21の試料について、使用済み劣化油として酸価2.72の豆油を使用したほかは、試験例1の「C.脱色率」及び「D.酸価低減率」と同様の測定を実施した。その結果を表3に示す。なお、表3には、実施例9及び比較例1の結果も併せて示す。
表3の結果からも明らかなように、本発明ケイ酸マグネシウムとともにカルシウム化合物(水酸化カルシウム)を併用することによって、より優れた脱酸性能及び脱色性能が得られることがわかる。
実施例22
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:493.8g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1742.0gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸603g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.1)を得た。
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:493.8g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1742.0gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸603g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=2.1)を得た。
実施例23
実施例2と同様にして、実施例22で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.1)を得た。
実施例2と同様にして、実施例22で得られた加温前の反応生成物の水熱熟成を行った。これによりケイ酸マグネシウム(SiO2/MgOモル比X=2.1)を得た。
実施例24
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:330g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1064.4gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸532g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=3.7)を得た。
25L容量タンクにおいて塩化マグネシウムを(MgO固形分:330g)になるように水道水10Lで溶解した。溶解液に3号ケイ酸ナトリウム2215.8g(SiO2固形分:642.5g)に水道水を加え、全量を3.6Lとした希釈溶液と薄硫酸(70重量%硫酸)とをpH2~3となるように同時滴下を行った後、48%水酸化ナトリウム1064.4gに水道水を加え、全量を1.8Lとした希釈溶液を滴下した。反応生成物を92℃まで加温した。92℃にて2時間熟成を行った。熟成後、3号ケイ酸ナトリウム1241.4g(SiO2固形分:360g)に水道水を加え、全量を2Lとした希釈溶液を滴下した。滴下後、薄硫酸532g(70重量%硫酸)を滴下した。反応生成物をろ過・水洗し、得られたケーキを乾燥機に入れ、100℃で乾燥し、ケイ酸マグネシウム粉末(SiO2/MgOモル比X=3.7)を得た。
試験例4
実施例22~24の試料について、試験例1と同様の試験を実施した。その結果を表4に示す。
実施例22~24の試料について、試験例1と同様の試験を実施した。その結果を表4に示す。
Claims (11)
- ケイ酸マグネシウムを含む劣化食用油用再生剤であって、
前記ケイ酸マグネシウムは、
(1)3八面体型スメクタイト族粘土鉱物の結晶系であり、
(2)X線回折測定において、2θ=18~20度のピークにおける積分強度Iaと2θ=26~28度のピークにおける積分強度Ibとの比率Ib/Iaが1~2であり、
(3)SiO2/MgOモル比(X)が1.2~3.8である
ことを特徴とする劣化食用油用再生剤。 - 前記ケイ酸マグネシウムのBET比表面積が400m2/g以上である、請求項1に記載の劣化食用油用再生剤。
- t-プロット法で算出した外部比表面積が全比表面積の40%以上を占める、請求項2に記載の劣化食用油用再生剤。
- t-プロット法で算出した外部比表面積が全比表面積の60%以上を占める、請求項2に記載の劣化食用油用再生剤。
- さらにケイ酸カルシウムを含む、請求項1に記載の劣化食用油用再生剤。
- ケイ酸カルシウムの含有量が25重量%以下である、請求項5に記載の劣化食用油用再生剤。
- さらにカルシウム化合物(但し、ケイ酸カルシウムを除く。)を含む、請求項1に記載の劣化食用油用再生剤。
- カルシウム化合物の含有量が酸化カルシウム換算で7重量%以下である、請求項7に記載の劣化食用油用再生剤。
- 請求項1に記載の劣化食用油用再生剤と、200℃以下の温度に加熱された劣化食用油とを接触させる工程を含むことを特徴とする劣化食用油の再生方法。
- 劣化食用油用再生剤を製造する方法であって、
1)マグネシウムイオンを含む溶液とケイ酸ナトリウム溶液を酸性下で混合することにより酸性混合液を得る工程、
2)得られた酸性混合液にアルカリを添加することにより沈殿物を得る工程、
3)前記沈殿物を70℃以上で熟成することによりケイ酸マグネシウムを得る工程
4)前記ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び
5)前記混合物に酸を添加する工程
を含むケイ酸マグネシウムの製造方法。 - 劣化食用油用再生剤を製造する方法であって、ケイ酸マグネシウムを含む水性スラリーにケイ酸ナトリウム溶液を混合することにより混合物を得る工程及び前記混合物に酸を添加する工程を含むケイ酸マグネシウムの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011529410A JP4831517B1 (ja) | 2010-10-27 | 2011-03-29 | 劣化食用油用再生剤 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010240442 | 2010-10-27 | ||
JP2010-240442 | 2010-10-27 | ||
JP2010-253222 | 2010-11-11 | ||
JP2010253222 | 2010-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056749A1 true WO2012056749A1 (ja) | 2012-05-03 |
Family
ID=45993486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057780 WO2012056749A1 (ja) | 2010-10-27 | 2011-03-29 | 劣化食用油用再生剤 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012056749A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015036398A (ja) * | 2013-08-12 | 2015-02-23 | 富田製薬株式会社 | 油類精製用組成物 |
JP2015214691A (ja) * | 2014-04-23 | 2015-12-03 | 富田製薬株式会社 | 油脂精製剤 |
WO2022270388A1 (ja) * | 2021-06-25 | 2022-12-29 | 株式会社J-オイルミルズ | 食用油脂組成物の再生方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6261635A (ja) * | 1985-09-10 | 1987-03-18 | Morio Ueno | 吸着機能を有する組成物 |
JP2001207187A (ja) * | 2000-01-27 | 2001-07-31 | Musashi Yuka Co Ltd | 使用済食用油の精製法 |
JP2001335793A (ja) * | 2000-07-31 | 2001-12-04 | Hidetaka Sudo | 食用油の脱酸剤およびそれを用いた食用油の再生方法 |
JP2002517600A (ja) * | 1998-06-08 | 2002-06-18 | ザ ユニヴァーシティ オブ ジョージア リサーチファウンデーション, インク. | 使用済み揚油の再生方法及びその処理剤 |
JP2005006510A (ja) * | 2003-06-16 | 2005-01-13 | Mizusawa Ind Chem Ltd | 塩基吸着能に優れたシリカ・マグネシア系製剤及びその製造方法 |
JP2005008676A (ja) * | 2003-06-16 | 2005-01-13 | Mizusawa Ind Chem Ltd | 鉄分除去用シリカ・マグネシア系製剤及びその製造法 |
-
2011
- 2011-03-29 WO PCT/JP2011/057780 patent/WO2012056749A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6261635A (ja) * | 1985-09-10 | 1987-03-18 | Morio Ueno | 吸着機能を有する組成物 |
JP2002517600A (ja) * | 1998-06-08 | 2002-06-18 | ザ ユニヴァーシティ オブ ジョージア リサーチファウンデーション, インク. | 使用済み揚油の再生方法及びその処理剤 |
JP2001207187A (ja) * | 2000-01-27 | 2001-07-31 | Musashi Yuka Co Ltd | 使用済食用油の精製法 |
JP2001335793A (ja) * | 2000-07-31 | 2001-12-04 | Hidetaka Sudo | 食用油の脱酸剤およびそれを用いた食用油の再生方法 |
JP2005006510A (ja) * | 2003-06-16 | 2005-01-13 | Mizusawa Ind Chem Ltd | 塩基吸着能に優れたシリカ・マグネシア系製剤及びその製造方法 |
JP2005008676A (ja) * | 2003-06-16 | 2005-01-13 | Mizusawa Ind Chem Ltd | 鉄分除去用シリカ・マグネシア系製剤及びその製造法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015036398A (ja) * | 2013-08-12 | 2015-02-23 | 富田製薬株式会社 | 油類精製用組成物 |
JP2015214691A (ja) * | 2014-04-23 | 2015-12-03 | 富田製薬株式会社 | 油脂精製剤 |
WO2022270388A1 (ja) * | 2021-06-25 | 2022-12-29 | 株式会社J-オイルミルズ | 食用油脂組成物の再生方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5987128B1 (ja) | 使用済み食用油の酸価低減のための剤およびそれを用いた使用済み食用油の再生処理方法 | |
EP0234221B2 (en) | Method for refining glyceride oils using acid-treated amorphous silica | |
EP0269173B1 (en) | Metal-oxide-silica adsorbent and process for refining oil using the same | |
JP4404991B2 (ja) | 活性白土定形粒子、その製造方法及びその用途 | |
JP5804458B2 (ja) | 劣化食用油用再生剤 | |
JPH11500352A (ja) | 油及び/又は脂肪処理用吸着剤 | |
WO2018181006A1 (ja) | 無水リン酸水素カルシウム、及びその製造方法 | |
JP4831517B1 (ja) | 劣化食用油用再生剤 | |
WO2012056749A1 (ja) | 劣化食用油用再生剤 | |
US4812436A (en) | Metal-oxide-silica adsorbent for bleaching and refining oil | |
JP5785179B2 (ja) | 食用油用脱酸剤およびそれを用いた使用済み食用油の再生方法 | |
US5264597A (en) | Process for refining glyceride oil using precipitated silica | |
JP4669212B2 (ja) | シリカ・マグネシア系製剤及びその製法 | |
EP0361622B1 (en) | Process for refining glyceride oil | |
JP6229993B2 (ja) | 油類精製用組成物 | |
US20080160156A1 (en) | Treatment of cooking oils and fats with precipitated silica materials | |
JP2010163569A (ja) | 劣化食用油用再生剤 | |
JP2021155238A (ja) | トバモライト型ケイ酸カルシウム粒子およびその製造方法、ならびにそれを用いた油脂濾過剤 | |
US20070154602A1 (en) | Treatment of cooking oils and fats with calcium silicate-based materials | |
EP2040562B1 (de) | Verfahren zur abtrennung von proteinen aus flüssigen medien unter verwendung thermisch modifizierter tonmaterialien | |
JP4753200B2 (ja) | 劣化食用油用再生剤、劣化食用油の再生方法および劣化食用油用再生剤の製造方法 | |
JPH0724765B2 (ja) | 脱色用吸着剤組成物 | |
JP6489603B2 (ja) | 油類精製剤 | |
RU2825254C2 (ru) | Способ получения алюмосиликатного сорбента | |
JP2006335982A (ja) | 劣化食用油用再生剤、劣化食用油用再生剤の製造方法および劣化食用油の再生方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2011529410 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835893 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11835893 Country of ref document: EP Kind code of ref document: A1 |