WO2012056614A1 - アーク溶接の制御システムおよび制御方法 - Google Patents

アーク溶接の制御システムおよび制御方法 Download PDF

Info

Publication number
WO2012056614A1
WO2012056614A1 PCT/JP2011/003872 JP2011003872W WO2012056614A1 WO 2012056614 A1 WO2012056614 A1 WO 2012056614A1 JP 2011003872 W JP2011003872 W JP 2011003872W WO 2012056614 A1 WO2012056614 A1 WO 2012056614A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
torch height
deviation
torch
operation amount
Prior art date
Application number
PCT/JP2011/003872
Other languages
English (en)
French (fr)
Inventor
篤人 青木
武市 正次
瀬渡 賢
行雄 池澤
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US13/881,096 priority Critical patent/US9468987B2/en
Priority to CN201180046370.3A priority patent/CN103124612B/zh
Priority to KR1020137007689A priority patent/KR101386741B1/ko
Publication of WO2012056614A1 publication Critical patent/WO2012056614A1/ja
Priority to US14/962,767 priority patent/US10144081B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Definitions

  • the present invention relates to an arc welding control system and control method for controlling the position of a welding torch in accordance with an arc current or voltage.
  • the welding current or arc of the arc generated between the electrode protruding from the tip of the welding torch and the workpiece The position of the welding torch is grasped by detecting the voltage and calculating the distance between the tip of the electrode and the workpiece.
  • the welding line scanning can be controlled by comparing the welding current value or arc voltage value at both ends of the weaving, and by comparing the welding current value or arc voltage value during weaving with the target value.
  • the torch height can be controlled.
  • control is performed to increase or decrease the weaving width by comparing the welding current value or arc voltage value at the end of the weaving with the target value.
  • FIG. 11A to 11C are schematic diagrams for explaining disadvantages in the conventional arc sensor weaving width control.
  • the weaving width is such that the horizontal distance (wall distance) between the end of the weaving width w and the workpiece becomes the target value d ref.
  • the control for widening w is performed and the control for decreasing the torch height z so that the torch height z becomes the target value z ref is performed, as shown in FIG. Since the horizontal distance between the end portion of the width and the workpiece is also shortened, the weaving width w becomes larger than the target weaving width w t at the target torch height z ref .
  • the control of the weaving width and the torch height is changed little by little every predetermined control cycle. Therefore, with regard to the weaving width w, as shown by the broken line in FIG. 11C, it is desirable to gradually approach the target weaving width w t as the control cycle is repeated from the initial weaving width w 0 .
  • the above conventional arrangement widening the initial weaving width w 0 weaving width w despite it is necessary to perform control for narrowing the weaving width w to approach the target weaving width w t would otherwise against Since control is performed, as shown by the solid line in FIG. 11C, it takes time to operate in the opposite direction to the target value or to stabilize at the target value.
  • the present invention has been made to solve the above-described problems, and provides an arc welding control system and control method capable of simultaneously controlling the weaving width and the torch height with high performance.
  • the purpose is to do.
  • An arc welding control system is configured to periodically move a welding torch in a width direction of a groove of a workpiece to be welded with a predetermined weaving width at a predetermined torch height in the weld line direction of the workpiece.
  • An arc for forming a good bead in the groove of the workpiece comprising an actuator for moving the welding torch to follow the welding line of the workpiece and a sensor for detecting a welding current or an arc voltage
  • An arc sensor control system for welding which corresponds to a groove wall distance indicating a horizontal distance between the welding torch and the workpiece at the end of the weaving from the welding current or arc voltage, and the torch height.
  • Each value is acquired, the difference from each target value is calculated, and the deviation of the value corresponding to the groove wall distance from the target value (hereinafter referred to as the opening value).
  • An operation amount related to the weaving width of the actuator is calculated from a deviation from a target value (hereinafter referred to as a torch height deviation) of a value corresponding to the torch height, and a distance corresponding to the torch height.
  • An arithmetic unit that calculates an operation amount related to the torch height of the actuator from a wall distance deviation and the torch height deviation, an operation amount related to the weaving width, and an operation amount related to the torch height, and the weaving width and the A controller for controlling the torch height, respectively, and the ratio of the groove wall distance deviation and the torch height deviation to the manipulation amount of the weaving width and the manipulation amount of the torch height, respectively (
  • the influence ratio is set according to the groove angle of the workpiece, and the groove wall distance deviation and the torque
  • the influence ratio of the torch height deviation is set such that the influence ratio of the torch height deviation is relatively larger than the influence ratio of the groove wall distance deviation as the groove angle is larger. ing.
  • the operation amount may be obtained by multiplying the influence ratio by an adjustment coefficient for adjusting the influence ratio. Thereby, even if it is the same groove angle, it can adjust to more suitable control performance according to the kind and use application of a workpiece
  • the operation amount ⁇ z of the torch height may be expressed by the following equation (1)
  • the operation amount ⁇ w of the weaving width may be expressed by the following equation (2).
  • K z, K w denotes the respective gains of the operation amount and the horizontal actuator operation amount of vertical actuators
  • [Delta] P d represents the groove wall distance deviation
  • [Delta] P h denotes the height of the torch deviation
  • K h represents an adjustment coefficient.
  • the computing unit calculates an average value of the welding current or arc voltage detected from the sensor for each of a plurality of sections obtained by dividing one period of weaving by a predetermined number, and the plurality of sections A value corresponding to the groove wall distance based on the average value of one or a plurality of sections corresponding to the end of the weaving, and the average value of the welding current or arc voltage for one cycle of weaving.
  • a value corresponding to the torch height may be obtained based on the above.
  • the arc sensor control method for arc welding includes a welding torch which is periodically moved in a width direction of a groove of a workpiece to be welded with a predetermined weaving width in a predetermined welding line direction of the workpiece.
  • Arc welding for forming a bead at the groove of the workpiece comprising: an actuator for moving the welding torch at a height of the torch to follow the welding line of the workpiece; and a sensor for detecting a welding current or an arc voltage. And a step of detecting the welding current or arc voltage, and a groove wall distance indicating a horizontal distance between the welding torch and the workpiece at the end of the weaving from the welding current or arc voltage.
  • Deviation of the value corresponding to the groove wall distance from the target value hereinafter referred to as groove wall distance deviation
  • deviation of the value corresponding to the torch height from the target value hereinafter referred to as torch height deviation.
  • the ratio that the groove wall distance deviation and the torch height deviation influence (hereinafter referred to as the influence ratio) is the workpiece.
  • the influence ratio of the groove wall distance deviation and the torch height deviation is set according to the groove angle. The larger the groove angle, the larger the groove angle, the more the groove wall distance deviation influence ratio, the torch height.
  • the influence ratio of the deviation is set to be relatively large.
  • the influence ratio (weighting factor) of the parameters relating to the groove wall distance deviation and torch height deviation at each operation amount is set according to the groove angle of the workpiece. Then, after earnest research, the inventors have made the influence ratio of the torch height deviation relatively larger than the influence ratio of the groove wall distance deviation as the groove angle of the workpiece is larger at any operation amount. As a result, it has been found that the weaving width and the torch height can be quickly and optimally controlled without lowering the gain. Therefore, by controlling using the above method, weaving width control and torch height control can be performed simultaneously and with high performance.
  • the present invention is configured as described above, and has an effect that the weaving width control and the torch height control can be performed simultaneously and with high performance.
  • FIG. 1 It is a block diagram showing a schematic structure of a control system of arc welding concerning one embodiment of the present invention. It is a figure which shows the geometric shape model which modeled the positional relationship of the welding torch and workpiece
  • FIG. It is a perspective view which shows the shape of the workpiece
  • FIG. It is a figure which shows the arc voltage detected in the arc sensor control in Example 1.
  • FIG. It is a figure which shows the deviation with respect to the target value of the weaving width
  • FIG. It is a figure which shows the horizontal position locus
  • FIG. It is a figure which shows the vertical position locus
  • FIG. It is a figure which shows the time change of the weaving width
  • FIG. 1 is a block diagram showing a schematic configuration of a welding system to which an arc welding arc sensor control system according to an embodiment of the present invention is applied.
  • a welding system to which an arc welding arc sensor control system of this embodiment is applied includes a welding apparatus 1, an arithmetic controller 2 that controls the welding apparatus 1, and an arc generated in the welding apparatus 1. And a sensor 4 for detecting the arc welding current and arc voltage.
  • the welding apparatus 1 has a welding torch 11 having a nozzle for supplying a shielding gas to the welded portion.
  • An electrode 12 is provided at the tip (lower end) of the welding torch 11.
  • a power line from the welding power source 3 is connected to the welding torch 11 and supplied with power.
  • the welding apparatus 1 includes a horizontal actuator 13 that moves the welding torch 11 in the horizontal axis direction, and a vertical actuator 14 that moves the welding torch 11 in the vertical direction.
  • the horizontal actuator 13 and the vertical actuator 14 operate based on a control signal from the arithmetic controller 2 to move the welding torch 11 in the horizontal direction and the vertical direction.
  • such a structure may be comprised by the articulated robot provided with the welding torch 11 in the front-end
  • the work 5 to be welded is placed below the welding torch 11.
  • the workpiece 5 is arranged in a state where two materials to be welded are in contact with each other, and a groove 51 is formed at a position to be welded.
  • the groove 51 is arranged so that each groove surface has a predetermined groove angle ⁇ in a state where two workpieces are abutted.
  • the groove angle ⁇ means an angle formed when the surfaces extending the groove surfaces intersect each other because the vicinity of the contact portion between the workpieces may be a curved surface. .
  • the welding power source 3 is configured such that the power line of the welding power source 3 is also connected to the workpiece 5. A voltage is applied between the welding torch 11 (electrode 12 thereof) and the workpiece 5 by the electric power supplied from the welding power source 3, and an arc is generated between the electrode 12 protruding from the tip of the welding torch 11 and the workpiece 5. appear. Thereby, the workpiece
  • work 5 is welded and a bead is formed.
  • a voltage sensor 41 for detecting an arc voltage of the welding current or the arc voltage is provided as the sensor 4. .
  • a current sensor 42 provided on any one of the power lines is also provided as the sensor 4.
  • the sensor 4 that detects the welding current or arc voltage includes both the voltage sensor 41 that detects the arc voltage value and the current sensor 42 that detects the welding current value. But you can.
  • the welding current or arc voltage may be detected directly or indirectly from the welding current or arc voltage between the power lines from the welding power source 3.
  • MIG welding, MAG welding, and CO2 welding are controlled by a current value
  • TIG welding is controlled by a voltage value. Therefore, the configuration may be rearranged or used properly according to the type of welding.
  • the arithmetic controller 2 corresponds to the groove wall distance indicating the horizontal distance between the welding torch 11 and the groove wall of the workpiece 5 at the end of the weaving from the arc voltage or the welding current when the welding torch follows the weld line. And a value corresponding to the torch height, respectively, and calculating a difference from each target value, a deviation of the value corresponding to the groove wall distance from the target value (groove wall distance deviation) and An operation amount related to the weaving width of the actuator (that is, an operation amount of the vertical actuator 14) is calculated from a deviation (torch height deviation) of a value corresponding to the torch height from the target value, and a groove wall distance deviation and It functions as a calculator 21 that calculates an operation amount related to the torch height of the actuator (ie, an operation amount of the horizontal actuator 13) from the torch height deviation.
  • the arithmetic controller 2 functions as a controller 22 that controls the actuators 13 and 14 of the welding apparatus 1 based on the operation amount relating to the weaving width and the operation amount relating to the torch height.
  • the arithmetic controller 2 that functions as the controller 22 of the present embodiment uses the welding torch 11 to be a groove 51 of the workpiece 5 to be welded based on the welding current or arc voltage detected by the sensor 4. Control is made so that a bead is formed in the groove 51 of the work 5 by moving it at a predetermined torch height in the welding line direction of the groove 51 of the work 5 while periodically moving in the width direction of the work 5 with a predetermined weaving width. To do.
  • the arithmetic controller 2 may have any configuration as long as it has a processing function, and includes, for example, a micro controller, a CPU, an MPU, a PLC (programmable logic controller), a logic circuit, and the like.
  • one arithmetic controller 2 is described as a configuration that functions as both the arithmetic unit 21 and the controller 22, but may be configured as a separate controller or arithmetic unit.
  • the arithmetic controller 2 acquires a value corresponding to the groove wall distance and a value corresponding to the torch height from the welding current or arc voltage detected by the sensor 4.
  • the horizontal distance between the welding torch 11 and the workpiece 5 at the end of the weaving and the average height of the welding torch 11 are calculated from the arc voltage.
  • FIG. 2 is a diagram showing a geometric shape model in which the positional relationship between the welding torch and the workpiece of the welding system shown in FIG. 1 is modeled.
  • the Y axis is taken in the horizontal direction and the Z axis is taken in the vertical direction with the lower end of the groove 51 as the origin.
  • the center coordinates of the weaving width w are (y, z), and these are used as control parameters.
  • the horizontal distance between the left end of the weaving width w and the left wall of the workpiece 5 (the workpiece to be welded on the left side) is defined as dl, and the distance between the right end of the weaving width and the right wall of the workpiece 5 (the workpiece to be welded on the right side). Is the horizontal distance of dr, and the average vertical distance from the weaving position to the workpiece 5 is the average torch height h.
  • the inventors of the present invention set the relationship between the above-mentioned parameters by the following equations after intensive research. That is, the weaving width w and the actual torch height z at the weaving center are set to be included at a predetermined ratio at any of the horizontal distances dl and dr and the average torch height h.
  • the relational expression of each parameter at this time was set to the following expression.
  • ⁇ y represents the operation amount for copying the welding line
  • ⁇ z represents the operation amount for the torch height
  • ⁇ w represents the operation amount for the weaving width
  • the ratio that the torch height deviation influences at any operation amount is the ratio that the groove wall distance deviation affects as the groove angle ⁇ of the workpiece 5 is larger from the above expression (6). It was found that the weaving width w and the torch height z can be optimally controlled with high performance without lowering the gain by setting it to be relatively larger.
  • V dref ⁇ (V dl + V dr ) / 2 indicates a groove wall distance deviation
  • V href ⁇ V h indicates a torch height deviation
  • K z, K w denotes the respective gains of the operation amount related to the torch height and weaving width
  • K h denotes an adjustment factor
  • FIG. 4 is a diagram showing the trajectory of the welding torch of the welding system shown in FIG. 1 and the corresponding arc voltage change.
  • the upper diagram in FIG. 4 shows a graph of the torch trajectory, and the lower diagram in FIG. 4 shows a graph of the arc voltage change corresponding to the torch trajectory.
  • the initial value is 0.
  • the computing unit 21 calculates an average value of arc voltages detected from the sensor 4 for each of a plurality of sections obtained by dividing one period of weaving by a predetermined number, Among them, a value (voltage value) corresponding to the groove wall distance is acquired based on the average value of one or a plurality of sections corresponding to the calculated weaving end, and the average value of the arc voltage for one cycle of the weaving is obtained. Based on the torch height, a value (voltage value) corresponding to the torch height is acquired. Specifically, as shown in the lower diagram of FIG. 4, for example, one period of weaving is equally divided into eight sections (in the example of FIG. 4, eight sections 0 to 7 are divided into eight sections).
  • the average arc voltage values in the sections 1 and 2 and sections 5 and 6) are used as the voltages V dl and V dr at the end of the weaving, and the entire average arc voltage value in one period of the weaving is a voltage V h indicating the torch height.
  • the arc voltage at each position of the welding torch can be easily calculated.
  • the arc voltage at the end of the weaving is detected by dividing one period of weaving into eight.
  • the number of divisions is larger than this. May be less or less.
  • the arc voltage at the end of the weaving may be a peak voltage value at the end of the weaving.
  • the voltage at the center position of the weaving may be detected as a voltage indicating the voltage of the torch height.
  • the distance between the tip of the wire serving as the electrode 12 and the workpiece falls within a predetermined distance, the arc is extinguished and short-circuiting time (short-circuiting time) is required. It becomes longer or the number of short circuits (number of short circuits) increases. Therefore, the distance between the tip of the wire and the workpiece may be estimated by measuring the short circuit time and the number of short circuits.
  • a value corresponding to the groove wall distance and a value corresponding to the torch height are acquired by detecting an arc voltage in a predetermined section, and the voltage value itself is set as a target value (voltage value).
  • the ratio of the groove wall deviation ⁇ P d and the torch height deviation ⁇ P h to the torch height manipulation amount ⁇ z and the weaving width manipulation amount ⁇ w (hereinafter referred to as influence).
  • Ratio) is set according to the groove angle ⁇ of the workpiece 5. Specifically, the impact ratio is shown as the absolute value of the coefficient representing the weight of the groove wall distance deviation [Delta] P d and the torch height deviation [Delta] P h in the above equation (7) and (8).
  • the calculator 21 increases the influence ratios ⁇ wh and ⁇ zh of the torch height deviation relative to the influence ratios ⁇ wd and ⁇ zd of the groove wall distance deviation as the groove angle ⁇ increases. Then, the operation amount ⁇ z of the torch height and the operation amount ⁇ w of the weaving width are calculated (so that the ratios ⁇ w and ⁇ z of the influence ratio are increased).
  • the larger the groove angle ⁇ the greater the influence of the torch height deviation ⁇ P h than the influence of the groove wall distance deviation ⁇ P d at any operation amount ⁇ z, ⁇ w (the ratio of influence ratios ⁇ w , ⁇ z Will increase in size).
  • the controller 22 controls the horizontal and vertical actuators 13 and 14 to move the welding torch 11 based on the operation amounts calculated by the calculator 21.
  • An operation amount ⁇ w related to the width is calculated.
  • the influence ratio (weighting factor) multiplied by the parameters related to the groove wall distance deviation ⁇ P d and the torch height deviation ⁇ P h at each operation amount is set according to the groove angle ⁇ of the workpiece 5.
  • the gain is lowered by setting the influence ratio of the torch height deviation ⁇ P h to be larger than the influence ratio of the groove wall distance deviation ⁇ P d as the groove angle ⁇ of the work 5 is larger at any operation amount.
  • the weaving width w and the torch height z can be controlled quickly and optimally. Therefore, by introducing such a control model, weaving width control and torch height control can be performed simultaneously and with high performance.
  • FIGS. 11A and 11C are schematic diagrams conceptually showing the welding torch control of the welding system shown in FIG. 5A and 5B are diagrams corresponding to FIGS. 11A and 11C showing a conventional example.
  • the welding torch 11 and the workpiece 5 can be prevented from abnormally approaching each other.
  • the initial weaving width w 0 can be made asymptotic from the target weaving width w t in a short control cycle.
  • each operation amount adjustment factor K h to adjust the effect ratio influences the ratio is multiplied. Thereby, even if it is the same groove angle (theta), according to the kind and use application of the workpiece
  • arc sensor control is generally performed using a welding current, and therefore, a detection value for calculating an operation amount is preferably set to a welding current value, for example, TIG welding.
  • arc sensor control is generally performed using an arc voltage, and it is preferable that the detected value for calculating the manipulated variable is also the arc voltage value.
  • FIG. 6A and 6B are diagrams showing the shape of the workpiece used in the first embodiment.
  • 6A is a side view
  • FIG. 6B is a perspective view.
  • the side surface perpendicular to the short axis of the steel plate 5A having a shape in which the plate surface is curved around the short direction axis at the center in the longitudinal direction as the work 5 is inclined by 45 °.
  • the welding line L turns to the left in the traveling direction while the welding torch 11 goes up, and turns to the right in the moving direction while going down the center part. Go.
  • 7A, 7B, 8A and 8B show the results of actual welding operations performed under the above conditions.
  • 7A, 7B, 8A, and 8B are diagrams illustrating the results of arc sensor control in the first embodiment.
  • 7A is a diagram showing the detected arc voltage
  • FIG. 7B is a diagram showing a deviation of the weaving width with respect to the target value
  • FIG. 8A is a diagram showing a horizontal position trajectory of the welding torch
  • FIG. 8B is a welding torch.
  • FIG. 8A and 8B the initial value is set to 0 in both figures.
  • the curve of the weld line could be copied with high performance in both the horizontal position related to the weld line copy and the vertical position related to the torch height control.
  • the welding line L rises in the first half of welding, and the welding torch tends to move horizontally, so that the relative distance between the welding torch 11 and the workpiece 5 approaches,
  • the weaving width is relatively small. This can also be confirmed by the horizontal position and amplitude in the first half of FIG. 8A.
  • the welding line L goes down and the welding torch tries to move horizontally, so that the relative distance between the welding torch 11 and the workpiece 5 is increased, so that the weaving width is as shown in FIG. 7B. It is relatively large. This can also be confirmed by the horizontal position and amplitude in the latter half of FIG. 8B. Thus, it was shown that arc welding was performed faithfully according to the shape of the workpiece 5.
  • FIG. 9A, 9B, 10A, and 10B show the results of actual welding operations performed under the above conditions.
  • 9A, 9B, 10A, and 10B are diagrams showing the results of arc sensor control in Example 2 and the comparative example.
  • FIG. 9A is a diagram showing the time change of the weaving width
  • FIG. 9B is a diagram showing the time change of the horizontal distance between the weaving end and the workpiece
  • FIG. 10A is a diagram showing the time change of the central torch height.
  • FIG. 10B is a diagram showing the change over time of the average torch height.
  • the weaving width overshoots immediately after the start of control. That is, as shown in FIG. 9B, the horizontal distance between the welding torch 11 and the workpiece 5 is abnormally close. Such an abnormal approach causes a welding defect such as an undercut.
  • the weaving width is controlled smoothly without overshoot, there is no fear of welding defects as in the comparative example, and the weaving width is stable after a predetermined time. ing.
  • the torch height as shown in FIGS. 10A and 10B, in the comparative example, the torch height overshoots immediately after the start of control, whereas in the embodiment, smooth and stable control is performed. Yes.
  • the convergence of the weaving width and the torch height to the target values can be quickly performed without overshooting.
  • control system and control method for arc welding according to the present invention are useful for performing the weaving width control and the torch height control simultaneously and with high performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

 ウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができるアーク溶接の制御システムおよび制御方法を提供する。ウィービング幅の操作量(Δw)およびトーチ高さの操作量(Δz)は、それぞれ開先壁距離偏差(ΔP)に対してトーチ高さ偏差(ΔP)が各操作量に影響する影響比率(δ,δ)がワーク(5)の開先角度(θ)に応じて設定されており、演算器(21)は、当該開先角度(θ)が大きいほど影響比率(δ,δ)が大きくなるようにアクチュエータ(13,14)のトーチ高さおよびウィービング幅に関する操作量(Δz,Δw)を演算する。

Description

アーク溶接の制御システムおよび制御方法
 本発明は、アーク(arc)の電流または電圧に応じて溶接トーチ(torch)を位置制御するためのアーク溶接の制御システムおよび制御方法に関する。
 溶接対象であるワーク(workpiece)に対してワークの溶接線に沿って溶接トーチを自動的に倣わせながらアーク溶接を行う技術が知られている。このような自動アーク溶接装置において、溶接トーチをワークの開先の幅方向に所定のウィービング幅(weaving width)および所定のトーチ高さで周期的に移動させつつワークの溶接線方向に沿ってビード(bead)が形成されるように移動させる制御を行う必要がある。このような制御においては、溶接トーチとワークの溶接線との相対的な位置関係を把握する必要がある。例えば、溶接トーチにレーザセンサ等の位置センサ(position sensor)を設けることも考えられるが、高価であるし、狭隘部を溶接する場合には位置センサが邪魔となる場合がある。
 そこで、溶接アークの特性を利用して溶接トーチ周りに付加装置の不要なアークセンサを用いた溶接では、溶接トーチの先端に突出された電極とワークとの間で発生するアークの溶接電流やアーク電圧を検出し、電極の先端とワークとの距離を演算することにより溶接トーチの位置を把握している。具体的には、ウィービングの両端での溶接電流値またはアーク電圧値を比較することにより溶接線倣いを制御することができ、ウィービング中の溶接電流値またはアーク電圧値を目標値と比較することによりトーチ高さの制御を行うことができる。
 さらに、ワークの開先幅に対して適切なウィービング幅を得るためにウィービング幅を制御する方法も知られている(例えば、特許文献1参照)。この場合、ウィービングの端部における溶接電流値またはアーク電圧値を目標値と比較してウィービング幅を増減する制御が行われる。
特公平4-70117号公報
 上記特許文献1の方法においては、ウィービング幅の制御とトーチ高さの制御とは独立して行われている。しかしながら、ウィービング幅の制御とトーチ高さの制御とは互いに影響しあうものであるため、それぞれの制御において最適化しようとすると、以下のような不都合が生じる。
 図11A~図11Cは従来のアークセンサウィービング幅制御における不都合を説明するための模式図である。図11Aに示されるような初期ウィービング幅wおよびトーチ高さzである場合に、ウィービング幅wの端部とワークとの水平距離(壁距離)が目標値drefとなるようにウィービング幅wを広げる制御を行うとともに、トーチ高さzが目標値zrefとなるようにトーチ高さzを低くする制御を行うと、図11Bに示されるように、トーチ高さが低くなることによりウィービング幅の端部とワークとの水平距離も短くなるため、ウィービング幅wが目標トーチ高さzrefにおける目標ウィービング幅wより大きくなってしまう。一般に、ウィービング幅およびトーチ高さの制御は所定の制御サイクルごとに少しずつ変化させる。従って、ウィービング幅wに関して言えば、図11Cの破線で示すように、初期ウィービング幅wから制御サイクルを繰り返すほど目標ウィービング幅wに漸近して行くのが望ましい。しかしながら、上記従来の構成においては、初期ウィービング幅wに対して本来であれば目標ウィービング幅wに近づけるためにウィービング幅wを狭める制御を行う必要があるにも拘らずウィービング幅wを広げる制御を行ってしまうため、図11Cの実線で示すように、目標値に対し反対方向に動作したり、目標値で安定するまでに時間がかかることとなる。
 このように、ウィービング幅の制御およびトーチ高さの制御のそれぞれの制御において個別に最適な制御を行うと、結果として溶接トーチとワークとの水平距離が近づき過ぎ、溶接欠陥になったり、溶接トーチとワークとが接触したりする問題が生じ得る。従って、このような従来の方法において、ウィービング幅の制御とトーチ高さの制御とを独立して行いつつ溶接欠陥等の問題を生じさせないためには、それぞれの制御においてゲインを下げる他なく、高性能な制御を行うことができない。
 また、ウィービング幅の制御とトーチ高さの制御とをウィービングの周期に応じて交互に行うことも可能である。すなわち、この方法においてはウィービング幅の制御を行う際にはトーチ高さの制御は行わず、トーチ高さの制御を行う際にはウィービング幅の制御は行わないことも可能である。このようにすれば、溶接欠陥等の問題は生じないが、それぞれの制御において当該制御を行わない期間が存在することとなるため、結果的にゲインが半減してしまい、高性能な制御を行うことができない。
 本発明は、以上のような課題を解決すべくなされたものであり、ウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができるアーク溶接の制御システムおよび制御方法を提供することを目的とする。
 本発明に係るアーク溶接の制御システムは、溶接トーチを溶接対象であるワークの開先の幅方向に所定のウィービング幅で周期的に移動させつつ前記ワークの溶接線方向に所定のトーチ高さで前記溶接トーチを移動させて前記ワークの溶接線を倣わせるアクチュエータ(actuator)と、溶接電流またはアーク電圧を検出するセンサとを備え、前記ワークの開先に良好なビードを形成するためのアーク溶接のアークセンサ制御システムであって、前記溶接電流またはアーク電圧からウィービングの端部における前記溶接トーチと前記ワークとの水平距離を示す開先壁距離に相当する値および前記トーチ高さに相当する値をそれぞれ取得し、それぞれの目標値との差をそれぞれ演算し、前記開先壁距離に相当する値のその目標値からの偏差(以下、開先壁距離偏差という)と前記トーチ高さに相当する値のその目標値からの偏差(以下、トーチ高さ偏差という)とから前記アクチュエータの前記ウィービング幅に関する操作量を演算するとともに、前記開先壁距離偏差と前記トーチ高さ偏差とから前記アクチュエータの前記トーチ高さに関する操作量を演算する演算器と、前記ウィービング幅に関する操作量および前記トーチ高さに関する操作量に基づいて前記ウィービング幅および前記トーチ高さをそれぞれ制御する制御器と、を有し、前記ウィービング幅の操作量および前記トーチ高さの操作量に対し、それぞれ前記開先壁距離偏差および前記トーチ高さ偏差が影響する比率(以下、影響比率という)が前記ワークの開先角度に応じて設定されており、前記開先壁距離偏差および前記トーチ高さ偏差の影響比率は、前記開先角度が大きいほど前記開先壁距離偏差の影響比率に対し前記トーチ高さ偏差の影響比率が相対的に大きくなるように設定されているよう構成されている。
 上記構成によれば、溶接トーチを溶接線に倣わせる際に、センサで検出された溶接電流またはアーク電圧の値から取得された開先壁距離に相当する値およびトーチ高さに相当する値の両方を用いてウィービング幅に関する水平アクチュエータの操作量およびトーチ高さに関する鉛直アクチュエータの操作量がそれぞれ演算される。しかも、各操作量における開先壁距離偏差およびトーチ高さ偏差に関するパラメータに掛けられた影響比率(重み係数)がワークの開先角度に応じて設定されている。そして、発明者らは鋭意研究の末、いずれの操作量においてもワークの開先角度が大きいほどトーチ高さ偏差の影響比率が開先壁距離偏差の影響比率より相対的に大きくなるように設定することでゲインを下げることなくウィービング幅とトーチ高さとを迅速かつ最適に制御することができるという知見を得たものである。従って、上記構成を有することによりウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができる。
 前記操作量は、前記影響比率に当該影響比率を調整する調整係数が掛けられていてもよい。これにより、同じ開先角度であってもワークの種類や使用用途に応じてより好適な制御性能に調整することができる。
 さらに、前記トーチ高さの操作量Δzは、次式(1)で表され、前記ウィービング幅の操作量Δwは、次式(2)で表されるものでもよい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、K,Kは、鉛直アクチュエータの操作量および水平アクチュエータの操作量の各ゲインを示し、ΔPは、開先壁距離偏差を示し、ΔPは、トーチ高さ偏差を示し、tは、開先角度θを用いてt=tan(θ/2)で表される値を示し、Kは、調整係数を示す。
 これによれば、トーチ高さの操作量におけるトーチ高さ偏差による影響比率がウィービング幅の操作量におけるよりも大きくなるため、トーチ高さ偏差をより反映させて制御することができる。
 また、前記演算器は、ウィービングの1周期が予め定められた数で分割された複数の区間ごとに、前記センサから検出される前記溶接電流またはアーク電圧の平均値を算出し、前記複数の区間のうち、ウィービングの端部に対応する1または複数の区間の平均値に基づいて前記開先壁距離に相当する値を取得し、ウィービングの1周期分の前記溶接電流またはアーク電圧の平均値に基づいて前記トーチ高さに相当する値を取得することとしてもよい。このように、溶接電流またはアーク電圧をウィービング周期に応じて区分けすることによって溶接トーチの各位置におけるアークの電流または電圧を簡便に演算することができる。
 また、本発明に係るアーク溶接のアークセンサ制御方法は、溶接トーチを溶接対象であるワークの開先の幅方向に所定のウィービング幅で周期的に移動させつつ前記ワークの溶接線方向に所定のトーチ高さで前記溶接トーチを移動させて前記ワークの溶接線を倣わせるアクチュエータと、溶接電流またはアーク電圧を検出するセンサとを備え、前記ワークの開先にビードを形成するためのアーク溶接のアークセンサ制御方法であって、前記溶接電流またはアーク電圧を検出するステップと、前記溶接電流またはアーク電圧からウィービングの端部における前記溶接トーチと前記ワークとの水平距離を示す開先壁距離に相当する値および前記トーチ高さに相当する値をそれぞれ取得し、それぞれの目標値との差をそれぞれ演算するステップと、前記開先壁距離に相当する値のその目標値からの偏差(以下、開先壁距離偏差という)と前記トーチ高さに相当する値のその目標値からの偏差(以下、トーチ高さ偏差という)とから前記アクチュエータの前記ウィービング幅に関する操作量を演算するとともに、前記開先壁距離偏差と前記トーチ高さ偏差とから前記アクチュエータの前記トーチ高さに関する操作量を演算するステップと、前記ウィービング幅に関する操作量および前記トーチ高さに関する操作量に基づいて前記ウィービング幅および前記トーチ高さをそれぞれ制御するステップと、を含み、前記ウィービング幅の操作量および前記トーチ高さの操作量に対し、それぞれ前記開先壁距離偏差および前記トーチ高さ偏差が影響する比率(以下、影響比率という)が前記ワークの開先角度に応じて設定されており、前記開先壁距離偏差および前記トーチ高さ偏差の影響比率は、前記開先角度が大きいほど前記開先壁距離偏差の影響比率に対し前記トーチ高さ偏差の影響比率が相対的に大きくなるように設定されているものである。
 上記方法によれば、溶接トーチを溶接線に倣わせる際に、センサで検出された溶接電流またはアーク電圧の値から取得された開先壁距離に相当する値およびトーチ高さに相当する値の両方を用いてウィービング幅の操作量およびトーチ高さの操作量がそれぞれ演算される。しかも、各操作量における開先壁距離偏差およびトーチ高さ偏差に関するパラメータの影響比率(重み係数)がワークの開先角度に応じて設定されている。そして、発明者らは鋭意研究の末、いずれの操作量においてもワークの開先角度が大きいほどトーチ高さ偏差の影響比率が開先壁距離偏差の影響比率に対し相対的に大きくなるように設定することでゲインを下げることなくウィービング幅とトーチ高さとを迅速かつ最適に制御することができるという知見を得たものである。従って、上記方法を用いて制御することによりウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明は以上に説明したように構成され、ウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができるという効果を奏する。
本発明の一実施形態に係るアーク溶接の制御システムの概略構成を示すブロック図である。 図1に示す溶接システムの溶接トーチとワークとの位置関係をモデル化した幾何形状モデルを示す図である。 図1に示す溶接システムの制御モデルを示すブロック線図である。 図1に示す溶接システムの溶接トーチの軌跡およびそれに対応するアーク電圧変化を示す図である。 図1に示す溶接システムの溶接トーチ制御を概念的に示す模式図である。 図1に示す溶接システムの溶接トーチ制御を概念的に示す模式図である。 本実施例1において用いたワークの形状を示す側面図である。 本実施例1において用いたワークの形状を示す斜視図である。 実施例1におけるアークセンサ制御において検出されたアーク電圧を示す図である。 実施例1におけるアークセンサ制御におけるウィービング幅の目標値に対する偏差を示す図である。 実施例1におけるアークセンサ制御における溶接トーチの水平位置軌跡を示す図である。 実施例1におけるアークセンサ制御における溶接トーチの鉛直位置軌跡を示す図である。 実施例2および比較例におけるアークセンサ制御におけるウィービング幅の時間変化を示す図である。 実施例2および比較例におけるアークセンサ制御におけるウィービング端とワークとの間の水平距離の時間変化を示す図である。 実施例2および比較例におけるアークセンサ制御における中央トーチ高さの時間変化を示す図である。 実施例2および比較例におけるアークセンサ制御における平均トーチ高さの時間変化を示す図である。 従来のアークセンサウィービング幅制御における不都合を説明するための模式図である。 従来のアークセンサウィービング幅制御における不都合を説明するための模式図である。 従来のアークセンサウィービング幅制御における不都合を説明するための模式図である。
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 図1は本発明の一実施形態に係るアーク溶接のアークセンサ制御システムが適用される溶接システムの概略構成を示すブロック図である。図1に示すように、本実施形態のアーク溶接のアークセンサ制御システムが適用される溶接システムは、溶接装置1と、溶接装置1を制御する演算制御器2と、溶接装置1においてアークを発生させるための溶接電源3と、アークの溶接電流およびアーク電圧を検出するセンサ4とを備えている。
 溶接装置1は、シールドガスを溶接部に供給するノズルを有する溶接トーチ11を有している。溶接トーチ11の先端(下端)には電極12が設けられている。溶接トーチ11には、溶接電源3からの電力線が接続され、電力が供給される。また、溶接装置1は、溶接トーチ11を水平軸方向に移動させる水平アクチュエータ13と、溶接トーチ11を鉛直方向に移動させる鉛直アクチュエータ14とを有している。水平アクチュエータ13および鉛直アクチュエータ14は、演算制御器2からの制御信号に基づいて作動し、溶接トーチ11を水平方向および鉛直方向に移動させる。なお、このような構成は、先端部に溶接トーチ11が備えられた多関節のロボットにより構成されてもよい。
 溶接トーチ11の下方には、溶接対象であるワーク5が載置される。ワーク5は2つの被溶接材が突き合わされた状態で配置されており、溶接すべき箇所に開先51が形成されている。開先51は、2つの被溶接材が突き合わされた状態で各々の開先面が所定の開先角度θを有するように配置されている。なお、この開先角度θは、被溶接材同士の当接部近傍が曲面となっている場合もあるため、開先面同士を延長した面同士が交差した際のなす角を意味している。
 溶接電源3は、ワーク5にも溶接電源3の電力線が接続されるよう構成されている。溶接電源3から供給される電力により、溶接トーチ11(の電極12)とワーク5との間に電圧が印加され、溶接トーチ11の先端から突出された電極12とワーク5との間にアークが発生する。これにより、ワーク5が溶接され、ビードが形成される。溶接電源3および溶接トーチ11の間の電力線と溶接電源3およびワーク5の間の電力線との間には溶接電流またはアーク電圧のうちアーク電圧を検出する電圧センサ41がセンサ4として設けられている。さらに、本実施形態においては、電力線の何れかに設けられた電流センサ42もセンサ4として設けられている。なお、本実施形態においては溶接電流またはアーク電圧を検出するセンサ4としてアーク電圧値を検出する電圧センサ41および溶接電流値を検出する電流センサ42の双方を有しているが、いずれか一方のみでもよい。また、溶接電流またはアーク電圧は溶接電源3からの電源線間の溶接電流またはアーク電圧を直接的に検出してもよいし、間接的に検出してもよい。一般的にMIG溶接、MAG溶接、CO2溶接では電流値で制御し、TIG溶接では電圧値で制御するため、溶接の種類に応じて構成を組み替えたり、使い分けたりすればよい。
 演算制御器2は、溶接トーチを溶接線に倣わせる際におけるアーク電圧または溶接電流からウィービングの端部における溶接トーチ11とワーク5の開先壁との水平距離を示す開先壁距離に相当する値およびトーチ高さに相当する値をそれぞれ取得し、それぞれの目標値との差をそれぞれ演算し、開先壁距離に相当する値のその目標値からの偏差(開先壁距離偏差)とトーチ高さに相当する値のその目標値からの偏差(トーチ高さ偏差)とからアクチュエータのウィービング幅に関する操作量(すなわち、鉛直アクチュエータ14の操作量)を演算するとともに、開先壁距離偏差とトーチ高さ偏差とからアクチュエータのトーチ高さに関する操作量(すなわち、水平アクチュエータ13の操作量)を演算する演算器21として機能する。さらに、演算制御器2は、ウィービング幅に関する操作量およびトーチ高さに関する操作量に基づいて溶接装置1の各アクチュエータ13,14を制御する制御器22として機能する。具体的には、本実施形態の制御器22として機能する演算制御器2は、センサ4で検出された溶接電流又はアーク電圧に基づいて、溶接トーチ11を溶接対象であるワーク5の開先51の幅方向に所定のウィービング幅で周期的に移動させつつワーク5の開先51の溶接線方向に所定のトーチ高さで移動させて、ワーク5の開先51にビードを形成するように制御する。演算制御器2は、処理機能を有する限りどのような構成でもよく、例えばマイクロコントローラ(micro controller)、CPU、MPU、PLC(Programmable Logic Controller)、論理回路等で構成されている。また、本実施形態においては1つの演算制御器2が演算器21および制御器22の何れとしても機能する構成として説明しているが、別個の制御器または演算器で構成されてもよい。
 以下、具体的な制御態様について説明する。まず、演算制御器2は、センサ4で検出された溶接電流またはアーク電圧から開先壁距離に相当する値およびトーチ高さに相当する値を取得する。このために、本実施形態においては、アーク電圧からウィービングの端部における溶接トーチ11とワーク5との水平距離と、溶接トーチ11の平均高さとを演算する。図2は図1に示す溶接システムの溶接トーチとワークとの位置関係をモデル化した幾何形状モデルを示す図である。
 図2に示すように、開先51の下端を原点として水平方向にY軸および鉛直方向にZ軸を取っている。また、ウィービング幅wの中心座標を(y,z)とし、これらを制御パラメータとして用いる。また、ウィービング幅wの左端とワーク5の左壁(左側の被溶接材)との間の水平距離をdlとし、ウィービング幅の右端とワーク5の右壁(右側の被溶接材)との間の水平距離をdrとし、ウィービング位置からワーク5までの鉛直距離の平均値を平均トーチ高さhとしている。
 ここで、本発明の発明者らは、鋭意研究の末、上記各パラメータの関係を以下の式で設定した。すなわち、水平距離dl,drおよび平均トーチ高さhのいずれにおいてもウィービング幅wとウィービング中心における実際のトーチ高さzとが所定の割合で含まれるように設定している。
Figure JPOXMLDOC01-appb-M000003
 そして、本実施形態においては、上記式(3)を用いた制御モデルが適用され、制御器22は、適用された制御モデルに基づいて制御する。図3は図1に示す溶接システムの制御モデルを示すブロック線図である。図3に示されるブロック線図より、上記式(3)は、出力ベクトルをxとし、入力ベクトルをuとしたとき、x=Muとして表されるものである。このときの操作量Δuは、目標値をxrefとし、ゲインをK,Kとして、Δu=K-1(xref-x)で表される。このときの各パラメータの関係式を以下の式に設定した。
Figure JPOXMLDOC01-appb-M000004
 式(4)を展開すると、以下の式のようになる。
Figure JPOXMLDOC01-appb-M000005
 ここで、距離dと電圧Vとは一次式の関係(d=mV+b、ただしm,bは定数)を有することが知られているため、これを用いて式(5)を変換すると、以下の式で表される。
Figure JPOXMLDOC01-appb-M000006
 以上より、Δyが溶接線倣いの操作量を示し、Δzがトーチ高さの操作量を示し、Δwがウィービング幅の操作量を示すものとなる。
 このような式の導出の結果、上記式(6)よりこのワーク5の開先角度θが大きいほどいずれの操作量においてもトーチ高さ偏差が影響する比率が開先壁距離偏差が影響する比率より相対的に大きくなるように設定することでゲインを下げることなく高性能にウィービング幅wとトーチ高さzとを最適に制御することができるという知見を得ることができた。
 なお、Vdref-(Vdl+Vdr)/2は、開先壁距離偏差を示し、Vhref-Vは、トーチ高さ偏差を示すものであるため、それぞれΔP,ΔPとおくと、トーチ高さの操作量Δzは、次式(7)で表され、ウィービング幅wの操作量Δwは、次式(8)で表される。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、K,Kは、トーチ高さおよびウィービング幅に関する操作量の各ゲインを示し、Kは、調整係数を示す。
 次に、上記で得られた式(6)の入力パラメータであるVdl,Vdr,Vの検出方法について説明する。図4は図1に示す溶接システムの溶接トーチの軌跡およびそれに対応するアーク電圧変化を示す図である。図4の上側の図はトーチ軌跡のグラフを示し、図4の下側の図はトーチ軌跡に対応するアーク電圧変化のグラフを示している。トーチ軌跡のグラフにおいては、初期値を0としている。
 本実施形態においては、演算器21は、ウィービングの1周期が予め定められた数で分割された複数の区間ごとに、センサ4から検出されるアーク電圧の平均値を算出し、複数の区間のうち、算出されるウィービング端部に対応する1または複数の区分の平均値に基づいて開先壁距離に相当する値(電圧値)を取得し、ウィービングの1周期分のアーク電圧の平均値に基づいてトーチ高さに相当する値(電圧値)を取得するよう構成されている。具体的には、図4の下側の図に示されるように、例えばウィービングの1周期を8等分し、ウィービング端部に対応する区間(図4の例においては8つの区間0~7のうち区間1,2および区間5,6)の平均アーク電圧値をウィービング端部における電圧Vdl,Vdrとして用い、ウィービングの1周期の全体の平均アーク電圧値をトーチ高さを示す電圧Vとして用いる。
 このように、溶接電流またはアーク電圧をウィービング周期に応じて区分けすることによって溶接トーチの各位置におけるアーク電圧を簡便に演算することができる。なお、本実施形態においてはウィービングの1周期を8分割することによりウィービングの端部におけるアーク電圧を検出するとしたが、ウィービングの端部におけるアーク電圧を検出可能である限り、分割数をこれより多くしてもよいし、少なくしてもよい。また、ウィービングの端部のアーク電圧は、ウィービングの端部におけるピーク電圧値を用いることとしてもよい。また、トーチ高さの電圧を示す電圧として、ウィービングの中央位置における電圧を検出することとしてもよい。さらに、MIG,MAG,CO2溶接等の消耗電極式溶接においては、電極12であるワイヤの先端とワークの距離とが所定距離以内に近づくとアークが消弧して短絡する時間(短絡時間)が長くなったり、短絡する回数(短絡回数)が増加する。従って、このような短絡時間や短絡回数を計測することで、ワイヤの先端とワークとの距離を推定することとしてもよい。
 また、本実施形態においては、開先壁距離に相当する値およびトーチ高さに相当する値を所定区間におけるアーク電圧を検出することで取得し、その電圧値自体を目標値(電圧値)と比較することとしているが、検出したアーク電圧または溶接電流から実際に開先壁距離およびトーチ高さを演算により求めた上で、開先壁距離およびトーチ高さのそれぞれの目標値(距離値)と比較することとしてもよい。
 以上のように、本実施形態において、トーチ高さの操作量Δzおよびウィービング幅の操作量Δwに対し、それぞれ開先壁距離偏差ΔPおよびトーチ高さ偏差ΔPが影響する比率(以下、影響比率という)がワーク5の開先角度θに応じて設定されている。具体的には、影響比率は、上記式(7)および(8)における開先壁距離偏差ΔPおよびトーチ高さ偏差ΔPの重みを示す係数の絶対値として示される。ウィービング幅の操作量Δwにおける開先壁距離偏差ΔPの影響比率は、δwd=4であり、トーチ高さ偏差ΔPの影響比率は、δwh=8tKであり、その比(ΔP/ΔP)はδ=2tKとなる。また、トーチ高さの操作量Δzにおける開先壁距離偏差ΔPの影響比率は、δzd=1/tであり、トーチ高さ偏差ΔPの影響比率は、δzh=Kであり、その比(ΔP/ΔP)はδ=tKとなる。その結果、演算器21は、当該開先角度θが大きいほど開先壁距離偏差の影響比率δwd,δzdに対しトーチ高さ偏差の影響比率δwh,δzhが相対的に大きくなるように(影響比率の比δ,δが大きくなるように)トーチ高さの操作量Δzおよびウィービング幅の操作量Δwを演算する。
 例えば、開先角度θが90°(すなわちt=1)かつ後述する調整係数K=1とすると、トーチ高さの操作量Δzにおける開先壁距離偏差ΔPとトーチ高さ偏差ΔPとの影響比率の比δはδ=2(ΔP:ΔP=1:2)となり、同じくウィービング幅の操作量Δwにおける上記影響比率の比δはδ=1(ΔP:ΔP=1:1)となる。また、開先角度θが120°(すなわちt=1.73)かつ調整係数K=1とすると、トーチ高さの操作量Δzにおける上記影響比率δはδ=3.46(ΔP:ΔP=1:3.46)となり、同じくウィービング幅の操作量Δwにおける上記影響比率δはδ=1.73(ΔP:ΔP=1:1.73)となる。このように開先角度θが大きいほどいずれの操作量Δz,Δwにおいてもトーチ高さ偏差ΔPによる影響が開先壁距離偏差ΔPによる影響より大きくなる(影響比率の比δ,δの大きさが大きくなる)。
 制御器22は、演算器21で演算された各操作量に基づいて水平および鉛直アクチュエータ13,14を駆動して溶接トーチ11を移動させる制御を行う。
 上記構成によれば、センサ4で検出されたウィービング1周期の平均アーク電圧値およびウィービング端部区間の平均アーク電圧値の両方を用いて各アクチュエータ13,14のトーチ高さに関する操作量Δzおよびウィービング幅に関する操作量Δwがそれぞれ演算される。しかも、各操作量における開先壁距離偏差ΔPおよびトーチ高さ偏差ΔPに関するパラメータに掛けられた影響比率(重み係数)がワーク5の開先角度θに応じて設定されている。そして、いずれの操作量においてもワーク5の開先角度θが大きいほどトーチ高さ偏差ΔPの影響比率が開先壁距離偏差ΔPの影響比率より大きくなるように設定することでゲインを下げることなくウィービング幅wとトーチ高さzとを迅速かつ最適に制御することができる。従って、このような制御モデルを導入することにより、ウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うことができる。
 図5Aおよび図5Bは図1に示す溶接システムの溶接トーチ制御を概念的に示す模式図である。図5Aおよび図5Bは従来例を示す図11Aおよび図11Cに対応した図である。本実施形態によれば、図5Aに示すように、ウィービング幅の制御と同時にトーチ高さの制御が行われるため、溶接トーチ11とワーク5とが異常接近することを防止することができ、図5Bに示すように、初期ウィービング幅wから目標ウィービング幅wに短い制御サイクルで漸近させることができる。
 また、上記式(7)および(8)に示すように、各操作量は、影響比率に当該影響比率を調整する調整係数Kが掛けられている。これにより、同じ開先角度θであってもワーク5の種類や使用用途に応じてより好適な制御性能に調整することができる。なお、調整係数Kは、必ずしも必要ではなく、K=1で固定されていてもよい。
 なお、本実施形態においてはアーク電圧を検出する構成について説明したが、溶接電流を検出する構成としてもよい。この場合、電流の距離との関係が電圧における距離との関係とは逆(距離が大きくなると電圧は大きくなるが電流は小さくなる)となるため、式(6)(すなわち式(7)および(8))のそれぞれの式においてマイナス(-)の符号が付加されたものとなる。また、例えばMIG,MAG,CO2溶接においては、溶接電流を用いてアークセンサ制御することが一般的であるため、操作量演算のための検出値も溶接電流値とすることが好ましく、例えばTIG溶接においては、アーク電圧を用いてアークセンサ制御することが一般的であるため、操作量演算のための検出値もアーク電圧値とすることが好ましい。
 上記実施形態の溶接システムにおいて実際にワークをTIG溶接する実験を行った。図6Aおよび図6Bは本実施例1において用いたワークの形状を示す図である。図6Aは側面図であり、図6Bは斜視図である。図6Aおよび図6Bに示すように本実施例においてはワーク5として板面が長手方向中央部で短手方向軸回りに湾曲した形状を有する鋼板5Aの短手軸に垂直な側面を45°傾けた鋼板5Bに溶接する場合(開先角度θ=90°)の溶接線倣いを検証した。このようなワーク5に図6Aにおける左側から右側へ溶接を施す場合、溶接線Lは、溶接トーチ11が上りながら進行方向左に曲がっていき、中央部を超えると下りながら進行方向右に曲がっていく。
 また、本実施例の溶接条件は、以下のように設定した。
Figure JPOXMLDOC01-appb-T000001
 そして、本実施例における式(6)の各制御パラメータを以下のように設定した上で、溶接線倣いを行いながら、検出されたアーク電圧値に基づいて式(6)を用いてウィービング幅およびトーチ高さの操作量を演算し、溶接トーチ11の制御を行った。なお、アークが安定するまでの開始から数秒間はアークセンサ制御を行わないこととした。また、溶接装置1には溶接開始位置および終了位置の2点のみを教示し、制御を行わない場合には溶接トーチ11がこの2点間を結ぶ直線上を移動するように設定されている。
Figure JPOXMLDOC01-appb-T000002
 上記の条件で実際に溶接動作を行った結果を図7A、図7B、図8Aおよび図8Bに示す。図7A、図7B、図8Aおよび図8Bは実施例1におけるアークセンサ制御の結果を示す図である。図7Aは検出されたアーク電圧を示す図であり、図7Bはウィービング幅の目標値に対する偏差を示す図であり、図8Aは溶接トーチの水平位置軌跡を示す図であり、図8Bは溶接トーチの鉛直位置軌跡を示す図である。なお、図8Aおよび図8Bにおいてはいずれの図も初期値を0にとっている。
 図8Aおよび図8Bに示すように、本実施例においては、溶接線倣いに関する水平位置およびトーチ高さ制御に関する鉛直位置ともに、溶接線の曲線を高性能に倣うことができた。特に、本実施例のワーク5の形状により、溶接の前半は、溶接線Lが上りとなり、溶接トーチは水平に動こうとするため、溶接トーチ11とワーク5との相対距離が近づくことにより、図7Bに示すように、ウィービング幅が比較的小さくなっている。このことは図8Aの前半部分における水平位置および振幅でも確認することができる。一方、溶接の後半は、溶接線Lが下りとなり、溶接トーチが水平に動こうとするため、溶接トーチ11とワーク5との相対距離が離れることにより、図7Bに示すように、ウィービング幅が比較的大きくなっている。このことは図8Bの後半部分における水平位置および振幅でも確認することができる。このように、ワーク5の形状に応じてアーク溶接が忠実に行われていることが示された。
 さらに、本実施形態の制御態様を比較例と比較する実験を行った。本実施例においても、上記実施例1と同様に、下記のような溶接条件に基づいて、式(6)を用いて制御を行った。
Figure JPOXMLDOC01-appb-T000003
 また、比較例において、トーチ高さの操作量Δzについては、式(6)のΔzの式のうちVdref-(Vdl+Vdr)/2の項がない式を用いるとともに、ウィービング幅の操作量Δwについては、式(6)のΔwの式のうちVhref-Vの項がない式を用いて各操作量を演算することとした。すなわち、比較例においては、トーチ高さの操作量Δzの演算において開先壁距離方向の値は寄与せず、ウィービング幅の操作量Δwの演算においてトーチ高さの値は寄与しない制御とした。なお、比較し易いように本実施例と比較例とにおいては各ゲインの値を異ならせている。また、アークが安定するまでの開始から数秒間はアークセンサ制御を行わないこととした。
 上記の条件で実際に溶接動作を行った結果を図9A、図9B、図10Aおよび図10Bに示す。図9A、図9B、図10Aおよび図10Bは実施例2および比較例におけるアークセンサ制御の結果を示す図である。図9Aはウィービング幅の時間変化を示す図であり、図9Bはウィービング端とワークとの間の水平距離の時間変化を示す図であり、図10Aは中央トーチ高さの時間変化を示す図であり、図10Bは平均トーチ高さの時間変化を示す図である。
 図9Aに示すように、比較例においてはウィービング幅が制御開始直後にオーバーシュートしている。すなわち、図9Bに示すように、溶接トーチ11とワーク5との間の水平距離が異常接近している。このような異常接近はアンダーカット等の溶接欠陥の要因となる。これに対し、本実施例においてはウィービング幅の制御がオーバーシュートすることなく滑らかに行われており、比較例のような溶接欠陥のおそれはなく、しかも、所定時間経過後はウィービング幅が安定している。トーチ高さに関しても、図10Aおよび図10Bに示すように、比較例においてはトーチ高さが制御開始直後にオーバーシュートしているのに対し、実施例においては滑らか且つ安定した制御が行われている。このことからも明らかなように、本実施形態の制御方法を用いることにより、ウィービング幅およびトーチ高さの目標値への収束をオーバーシュートさせることなく迅速に行うことができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
 本発明のアーク溶接の制御システムおよび制御方法は、ウィービング幅の制御とトーチ高さの制御とを同時且つ高性能に行うために有用である。
1 溶接装置
2 演算制御器
3 溶接電源
4 センサ
5 ワーク
11 溶接トーチ
12 電極
13 水平アクチュエータ
14 鉛直アクチュエータ
21 演算器
22 制御器
41 電圧センサ
42 電流センサ
51 開先
θ 開先角度

Claims (5)

  1.  溶接トーチを溶接対象であるワークの開先の幅方向に所定のウィービング幅で周期的に移動させつつ前記ワークの溶接線方向に所定のトーチ高さで前記溶接トーチを移動させて前記ワークの溶接線を倣わせるアクチュエータと、溶接電流またはアーク電圧を検出するセンサとを備え、前記ワークの開先に良好なビードを形成するためのアーク溶接のアークセンサ制御システムであって、
     前記溶接電流またはアーク電圧からウィービングの端部における前記溶接トーチと前記ワークとの水平距離を示す開先壁距離に相当する値および前記トーチ高さに相当する値をそれぞれ取得し、それぞれの目標値との差をそれぞれ演算し、前記開先壁距離に相当する値のその目標値からの偏差(以下、開先壁距離偏差という)と前記トーチ高さに相当する値のその目標値からの偏差(以下、トーチ高さ偏差という)とから前記アクチュエータの前記ウィービング幅に関する操作量を演算するとともに、前記開先壁距離偏差と前記トーチ高さ偏差とから前記アクチュエータの前記トーチ高さに関する操作量を演算する演算器と、
     前記ウィービング幅に関する操作量および前記トーチ高さに関する操作量に基づいて前記ウィービング幅および前記トーチ高さをそれぞれ制御する制御器と、を有し、
     前記ウィービング幅の操作量および前記トーチ高さの操作量に対し、それぞれ前記開先壁距離偏差および前記トーチ高さ偏差が影響する比率(以下、影響比率という)が前記ワークの開先角度に応じて設定されており、
     前記開先壁距離偏差および前記トーチ高さ偏差の影響比率は、前記開先角度が大きいほど前記開先壁距離偏差の影響比率に対し前記トーチ高さ偏差の影響比率が相対的に大きくなるように設定されている、アーク溶接のアークセンサ制御システム。
  2.  前記操作量は、前記影響比率に当該影響比率を調整する調整係数が掛けられている、請求項1に記載のアーク溶接の制御システム。
  3.  前記トーチ高さの操作量Δzは、次式(1)で表され、前記ウィービング幅の操作量Δwは、次式(2)で表される、請求項2に記載のアーク溶接の制御システム。
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
     ここで、K,Kは、トーチ高さに関する操作量およびウィービング幅に関する操作量の各ゲインを示し、ΔPは、開先壁距離偏差を示し、ΔPは、トーチ高さ偏差を示し、tは、開先角度θを用いてt=tan(θ/2)で表される値を示し、Kは、調整係数を示す。
  4.  前記演算器は、ウィービングの1周期が予め定められた数で分割された複数の区間ごとに、前記センサから検出される前記溶接電流またはアーク電圧の平均値を算出し、前記複数の区間のうち、ウィービングの端部に対応する1または複数の区間の平均値に基づいて前記開先壁距離に相当する値を取得し、ウィービングの1周期分の前記溶接電流またはアーク電圧の平均値に基づいて前記トーチ高さに相当する値を取得する、請求項1に記載のアーク溶接の制御システム。
  5.  溶接トーチを溶接対象であるワークの開先の幅方向に所定のウィービング幅で周期的に移動させつつ前記ワークの溶接線方向に所定のトーチ高さで前記溶接トーチを移動させて前記ワークの溶接線を倣わせるアクチュエータと、溶接電流またはアーク電圧を検出するセンサとを備え、前記ワークの開先にビードを形成するためのアーク溶接のアークセンサ制御方法であって、
     前記溶接電流またはアーク電圧を検出するステップと、
     前記溶接電流またはアーク電圧からウィービングの端部における前記溶接トーチと前記ワークとの水平距離を示す開先壁距離に相当する値および前記トーチ高さに相当する値をそれぞれ取得し、それぞれの目標値との差をそれぞれ演算するステップと、
     前記開先壁距離に相当する値のその目標値からの偏差(以下、開先壁距離偏差という)と前記トーチ高さに相当する値のその目標値からの偏差(以下、トーチ高さ偏差という)とから前記アクチュエータの前記ウィービング幅に関する操作量を演算するとともに、前記開先壁距離偏差と前記トーチ高さ偏差とから前記アクチュエータの前記トーチ高さに関する操作量を演算するステップと、
     前記ウィービング幅に関する操作量および前記トーチ高さに関する操作量に基づいて前記ウィービング幅および前記トーチ高さをそれぞれ制御するステップと、を含み、
     前記ウィービング幅の操作量および前記トーチ高さの操作量に対し、それぞれ前記開先壁距離偏差および前記トーチ高さ偏差が影響する比率(以下、影響比率という)が前記ワークの開先角度に応じて設定されており、
     前記開先壁距離偏差および前記トーチ高さ偏差の影響比率は、前記開先角度が大きいほど前記開先壁距離偏差の影響比率に対し前記トーチ高さ偏差の影響比率が相対的に大きくなるように設定されている、アーク溶接の制御方法。
PCT/JP2011/003872 2010-10-26 2011-07-06 アーク溶接の制御システムおよび制御方法 WO2012056614A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/881,096 US9468987B2 (en) 2010-10-26 2011-07-06 Arc welding control system and method
CN201180046370.3A CN103124612B (zh) 2010-10-26 2011-07-06 电弧焊接的控制系统及控制方法
KR1020137007689A KR101386741B1 (ko) 2010-10-26 2011-07-06 아크 용접의 제어시스템 및 제어방법
US14/962,767 US10144081B2 (en) 2010-10-26 2015-12-08 Arc welding control system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240089A JP5538181B2 (ja) 2010-10-26 2010-10-26 アーク溶接の制御システムおよび制御方法
JP2010-240089 2010-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/881,096 A-371-Of-International US9468987B2 (en) 2010-10-26 2011-07-06 Arc welding control system and method
US14/962,767 Division US10144081B2 (en) 2010-10-26 2015-12-08 Arc welding control system and method

Publications (1)

Publication Number Publication Date
WO2012056614A1 true WO2012056614A1 (ja) 2012-05-03

Family

ID=45993363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003872 WO2012056614A1 (ja) 2010-10-26 2011-07-06 アーク溶接の制御システムおよび制御方法

Country Status (5)

Country Link
US (2) US9468987B2 (ja)
JP (1) JP5538181B2 (ja)
KR (1) KR101386741B1 (ja)
CN (1) CN103124612B (ja)
WO (1) WO2012056614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493332A (zh) * 2014-11-05 2015-04-08 湘潭大学 一种基于电弧摆动自调节传感机构的焊缝跟踪控制方法
CN111266710A (zh) * 2020-03-23 2020-06-12 昆山安意源管道科技有限公司 钨极惰性气体保护焊接方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473639B1 (ko) * 2013-02-25 2014-12-17 대우조선해양 주식회사 수평 맞대기 이음 대용착 용접 장치 및 그 방법
US9962785B2 (en) * 2013-12-12 2018-05-08 Lincoln Global, Inc. System and method for true electrode speed
US20160346867A1 (en) * 2014-02-11 2016-12-01 John Hill Method Of Joining Dissimilar Materials
US10665128B2 (en) * 2014-06-27 2020-05-26 Illinois Tool Works Inc. System and method of monitoring welding information
EP3165314A1 (de) * 2015-11-06 2017-05-10 Siegfried Plasch Auftragsschweissverfahren
CN105665885B (zh) * 2016-04-07 2018-05-25 湘潭大学 一种自适应调节焊枪倾角的立焊焊缝跟踪方法
JP6794596B2 (ja) * 2016-07-04 2020-12-02 株式会社神戸製鋼所 下向き溶接における溶接条件作成方法
US11235414B2 (en) * 2016-11-16 2022-02-01 Kobe Steel, Ltd. Method of detecting amount of discrepancy in arc tracking welding
JP6367985B2 (ja) 2017-01-26 2018-08-01 ファナック株式会社 アークセンサ調整装置、及びアークセンサ調整方法
CN108037665B (zh) * 2017-12-13 2020-07-03 唐山松下产业机器有限公司 短路过渡状态的电弧自适应控制方法
CN110434429A (zh) * 2018-05-03 2019-11-12 天津大学 一种基于人机交互的机器人多层多道焊焊缝的跟踪方法
JP7251988B2 (ja) * 2019-01-22 2023-04-04 株式会社神戸製鋼所 パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源
KR102233733B1 (ko) * 2019-09-06 2021-04-01 한국생산기술연구원 Plc기반의 용접선 자동 제어 방법
US20210268594A1 (en) * 2020-02-27 2021-09-02 The Esab Group Inc. Dynamic torch head
CN111283310A (zh) * 2020-03-23 2020-06-16 昆山安意源管道科技有限公司 熔化极气体保护焊接方法
WO2022221142A1 (en) * 2021-04-12 2022-10-20 Newfrey Llc Computer modeling for detection of discontinuities and remedial actions in joining systems
KR102591186B1 (ko) * 2023-03-29 2023-10-19 김정현 바른 용접비드가 형성되는 동시에 열변형이 발생하지 않도록 적정 헤르츠로 위빙 동작을 수행하며 한 쌍의 강관의 이음부위의 구배의 차이에 따라 용접선과의 거리를 보정하여 정교한 용접을 수행할 수 있는 용접 로봇

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230476A (ja) * 1985-11-09 1987-10-09 Nippon Steel Corp 消耗電極式ア−ク溶接方法
JPS62267071A (ja) * 1986-05-14 1987-11-19 Nippon Kokan Kk <Nkk> 片面溶接の制御方法
JP2000158136A (ja) * 1998-11-20 2000-06-13 Daihen Corp チップ・被溶接物間距離算出方法並びに溶接線倣い制御方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646309A (en) * 1971-01-26 1972-02-29 Atomic Energy Commission Self-adaptive welding torch controller
US3924094A (en) * 1973-11-15 1975-12-02 Crayton John W Welding control arrangement with orbital torch-mounted transducing assembly
US4336440A (en) * 1979-07-03 1982-06-22 Westinghouse Electric Corp. Weld tracking/electronic arc sensing system
US4495400A (en) * 1982-04-26 1985-01-22 Crutcher Resources Corporation Method and apparatus for positioning a welding torch in automatic electric welding
US4477713A (en) * 1982-07-09 1984-10-16 Crc Welding Systems, Inc. Sidewall-matching adaptive control system for welding
JPS59120369A (ja) * 1982-12-27 1984-07-11 Hitachi Ltd 溶接線倣い制御方法および装置
JPH0259179A (ja) 1988-08-26 1990-02-28 Kobe Steel Ltd アーク溶接方法
JP3532067B2 (ja) 1997-04-17 2004-05-31 新日本製鐵株式会社 アークセンサー倣い制御方法
JP3733485B2 (ja) * 2002-03-04 2006-01-11 川崎重工業株式会社 自動開先倣い溶接装置および方法
KR100614298B1 (ko) * 2002-12-24 2006-08-21 대우조선해양 주식회사 4축기구부 로봇을 이용한 자동 용접장치
JP4640908B2 (ja) * 2003-01-24 2011-03-02 日立建機株式会社 溶接装置及び溶接方法
CN2776613Y (zh) * 2005-03-23 2006-05-03 江苏科技大学 空心轴电机驱动的旋转电弧窄间隙焊炬
US7397015B2 (en) * 2006-04-13 2008-07-08 Lincoln Global, Inc. Metal cored electrode for open root pass welding
JP2008114279A (ja) * 2006-11-07 2008-05-22 Kawasaki Heavy Ind Ltd アーク溶接装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230476A (ja) * 1985-11-09 1987-10-09 Nippon Steel Corp 消耗電極式ア−ク溶接方法
JPS62267071A (ja) * 1986-05-14 1987-11-19 Nippon Kokan Kk <Nkk> 片面溶接の制御方法
JP2000158136A (ja) * 1998-11-20 2000-06-13 Daihen Corp チップ・被溶接物間距離算出方法並びに溶接線倣い制御方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493332A (zh) * 2014-11-05 2015-04-08 湘潭大学 一种基于电弧摆动自调节传感机构的焊缝跟踪控制方法
CN111266710A (zh) * 2020-03-23 2020-06-12 昆山安意源管道科技有限公司 钨极惰性气体保护焊接方法

Also Published As

Publication number Publication date
JP5538181B2 (ja) 2014-07-02
US20130299475A1 (en) 2013-11-14
KR20130055667A (ko) 2013-05-28
CN103124612B (zh) 2015-04-22
US20160107255A1 (en) 2016-04-21
US10144081B2 (en) 2018-12-04
KR101386741B1 (ko) 2014-04-17
CN103124612A (zh) 2013-05-29
US9468987B2 (en) 2016-10-18
JP2012091197A (ja) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5538181B2 (ja) アーク溶接の制御システムおよび制御方法
KR102452174B1 (ko) 적층 가공을 위한 위치 피드백을 제공하는 시스템 및 방법
JP3196142U (ja) アークブローを排除するワーク電流スイッチング
JP2012091197A5 (ja)
WO2019146318A1 (ja) アーク溶接の制御方法
JP2010094697A (ja) 溶接ロボットの制御装置
JP5396994B2 (ja) 溶接方法
US11478871B2 (en) Welding apparatus and welding method
JP2006312186A (ja) 両面アーク溶接のアーク長制御方法と溶接装置
EP3385021A1 (en) Heat manipulation and seam tracking of weaved welds
JP2012139789A (ja) 粗倣い制御を行うロボットの制御装置
CN103687688B (zh) 一种操作焊接电源的方法和焊接电源
WO2022014240A1 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラム
JP7376377B2 (ja) ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置
JP7161903B2 (ja) 溶接装置および溶接方法
WO2024048113A1 (ja) 溶接機の制御器および溶接機の制御方法
JP6274173B2 (ja) アーク溶接システムおよびアーク溶接方法
JP4500489B2 (ja) 溶接方法及び溶接装置
JP5163922B2 (ja) ロボットの制御装置およびロボットの軌跡制御方法
KR102271523B1 (ko) 아크 전류 제어 가능한 가스 금속 아크용접용 다관절 로봇
JP2008238227A (ja) 片面溶接装置
TW202410997A (zh) 熔接機之控制器及熔接機之控制方法
WO2019171706A1 (ja) 溶接装置およびその制御方法
JPH03114671A (ja) アークセンサによる開先自動倣い制御におけるトーチ角度制御方法
CN116367948A (zh) 机器人焊接系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046370.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007689

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13881096

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11835762

Country of ref document: EP

Kind code of ref document: A1