WO2012056586A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2012056586A1
WO2012056586A1 PCT/JP2010/069384 JP2010069384W WO2012056586A1 WO 2012056586 A1 WO2012056586 A1 WO 2012056586A1 JP 2010069384 W JP2010069384 W JP 2010069384W WO 2012056586 A1 WO2012056586 A1 WO 2012056586A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
region
light
semiconductor region
solid
Prior art date
Application number
PCT/JP2010/069384
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
原田 望
Original Assignee
日本ユニサンティスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ユニサンティスエレクトロニクス株式会社 filed Critical 日本ユニサンティスエレクトロニクス株式会社
Priority to JP2011503695A priority Critical patent/JP4769911B1/ja
Priority to PCT/JP2010/069384 priority patent/WO2012056586A1/ja
Priority to KR1020127011946A priority patent/KR20120125600A/ko
Priority to CN2011800045670A priority patent/CN102668084A/zh
Priority to PCT/JP2011/067540 priority patent/WO2012056782A1/ja
Priority to TW100127348A priority patent/TW201218364A/zh
Publication of WO2012056586A1 publication Critical patent/WO2012056586A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device that enables high pixel density, high resolution, low color mixing, and high sensitivity.
  • CCD and CMOS solid-state imaging devices are widely used for video cameras, stale cameras, and the like. Further, there is a constant demand for improved performance such as higher pixel density, higher resolution, lower color mixing in color imaging, and higher sensitivity in solid-state imaging devices. On the other hand, technological innovations such as higher pixel density have been performed in order to achieve higher resolution of solid-state imaging devices.
  • FIG. 12A As a solid-state imaging device that realizes a high pixel density, there is one in which one pixel is formed in one island-shaped semiconductor 30 as shown in FIG. 12A (see, for example, Patent Document 1).
  • a signal line N + layer 31 is formed on the substrate.
  • a MOS transistor including a semiconductor P layer 32, insulating layers 33a and 33b, and gate conductor layers 34a and 34b is formed on the outer periphery of the island-shaped semiconductor 30 connected to the signal line N + layer 31.
  • a photodiode that is connected to the MOS transistor and accumulates signal charges generated by light irradiation is formed on the outer periphery of the island-shaped semiconductor 30.
  • the photodiode includes a semiconductor P layer 32 and semiconductor N layers 35a and 35b.
  • the semiconductor P layer 32 surrounded by the photodiode is used as a channel, the photodiode is used as a gate, the semiconductor P + layer 36 formed on the photodiode and electrically connected to the pixel selection lines 37a and 37b, a signal
  • An amplifying junction transistor is formed in which the semiconductor P layer 32 in the vicinity of the line N + layer 31 is used as a source and a drain, respectively.
  • the basic operation of this solid-state imaging device is based on a signal charge accumulation operation in which signal charges (electrons in this case) generated by light irradiation are accumulated in a photodiode, and a gate voltage by a photodiode voltage corresponding to the accumulated signal charge,
  • a signal read operation for reading the source / drain current flowing between the semiconductor P layer 32 and the semiconductor P + layer 36 in the vicinity of the signal line N + layer 31 as a signal current, and a photodiode after the signal read operation
  • This is a reset operation for removing the signal charges accumulated in the signal line N + layer 31 by applying an ON voltage to the gate conductor layers 34a and 34b of the MOS transistors.
  • strength I with respect to depth (micrometer) is shown.
  • the normalized value I / I 0 decreases exponentially with respect to the light penetration depth.
  • the photosensitive region in the solid-state imaging device of FIG. 12A is a photodiode region formed by the semiconductor P layer 32 and the semiconductor N layers 35a and 35b. For this reason, the height Ld of the photodiode region needs to be 2.5 to 3 ⁇ m.
  • the light beam 38 incident on the pixel (island semiconductor 30) from an oblique direction may be incident on the diode region of the pixel adjacent to the pixel 30. Due to the decrease in the light collection rate in the pixel, signal charges that should originally be generated in one pixel are generated by being distributed to surrounding pixels. As a result, a reduction in resolution of the solid-state imaging device and color mixing in color imaging occur. Such inconvenience increases as the density of pixels increases.
  • metal walls 39a and 39b are provided above the photodiode region 41 as shown in FIG. 13 (see, for example, Patent Document 2).
  • a photodiode region 41 is formed in a semiconductor substrate 40, and an element isolation region 42 and source / drain regions 43 and 43 of MOS transistors are formed around the photodiode region 41.
  • Metal walls 39 a and 39 b surrounding the gate electrode 45, the contact hole 46 a, and the photodiode region 41 of the MOS transistor are formed in the first interlayer insulating layer 44 formed on the semiconductor substrate 40.
  • a second interlayer insulating layer 47 is formed on the first interlayer insulating layer 44, and an SiO 2 film 48, an SiN film 49, and a microlens 50 are formed on the second interlayer insulating layer 47 in this order. Yes.
  • contact holes 46b, 46c for circuit wiring and metal wirings 51a, 51b, 51c, 51d are formed.
  • the light rays 52a, 52b, 52c, and 52d that have passed through the microlens 50 are reflected by the metal walls 39a and 39b and enter the photodiode region 41.
  • the light collection rate at which the light incident from the microlens 50 enters the photodiode region 41 is improved.
  • some of the light rays 53a, 53b, 53c, and 53d incident on the photodiode region 41 leak to the pixels adjacent to the pixel. To do.
  • a technique for improving the light collection rate in one pixel a technique of providing a metal wall in a color filter layer formed between a microlens and a photodiode region (see, for example, Patent Document 3), or A technique for forming an optical waveguide on the upper part of the photodiode region (for example, see Patent Document 4) is known.
  • Patent Document 3 a technique of providing a metal wall in a color filter layer formed between a microlens and a photodiode region
  • a technique for forming an optical waveguide on the upper part of the photodiode region for example, see Patent Document 4
  • incident light is incident on the surface of the photodiode region from an oblique direction, so that part of the incident light on the photodiode region leaks to a pixel adjacent to the pixel.
  • the height Ld required for the photodiode region does not change even if the pixel density is increased, and therefore, when the pixel density is increased, a considerably high aspect ratio (ratio of the upper side length to the diode height) It is necessary to form the island-shaped semiconductor 30 so that That is, it is necessary to form the gate conductor layers 34a and 34b of the MOS transistor in the narrow and deep semiconductor trench. It is also difficult to form the signal line N + layer 31 at the bottom of the island-shaped semiconductor 30. As described above, it is difficult to form the pixel structure using the island-shaped semiconductor 30, which makes it difficult to increase the pixel density of the solid-state imaging device. For this reason, in the solid-state imaging device, a technique for reducing the height Ld of the photodiode region without causing a decrease in sensitivity is required.
  • the light beam 38 incident on the pixel (island semiconductor 30) from an oblique direction may enter the diode region of the pixel adjacent to the pixel. Due to the decrease in the light collection rate in one pixel, signal charges that should originally be generated in one pixel are dispersed and generated in surrounding pixels. As a result, a decrease in resolution of the solid-state imaging device or color mixing in color imaging occurs. Since this color mixture lowers the image quality of the color reproduction image, it is required to reduce the color mixture.
  • Patent Document 2 is a technique in which the metal walls 39a and 39b provided on the photodiode region 41 are provided to increase the light collection rate.
  • the light collection rate can be improved by reducing the light leakage to the pixel adjacent to the pixel above the photodiode region 41.
  • a part of the light incident on the photodiode region 41 in an oblique direction is incident on a pixel adjacent to the pixel, a reduction in resolution of the solid-state imaging device or color mixture in color imaging cannot be avoided.
  • Such a situation also applies to the conventional solid-state imaging devices described in Patent Document 3 and Patent Document 4.
  • the decrease in the light collection rate increases as the pixel density increases. For this reason, there is a demand for a technique for improving a decrease in the light collection rate of light incident on the surface of the photodiode region 41.
  • the present invention has been made in view of the above circumstances, and in particular, an object thereof is to realize a solid-state imaging device capable of high pixel density, high resolution, low color mixing, and high sensitivity.
  • a solid-state imaging device includes: A solid-state imaging device having one or a plurality of pixels, An island-shaped semiconductor that constitutes a pixel is formed on the substrate, The island-shaped semiconductor is A photoelectric conversion unit that generates signal charges by light irradiation; and A signal charge storage section for storing the signal charge; A signal charge read-out unit that reads out a signal corresponding to the amount of signal charge accumulated in the signal charge accumulation unit; A signal charge removal unit that removes the signal charge accumulated in the signal charge accumulation unit to the outside of the pixel, A reflective conductor layer that surrounds at least the photoelectric conversion portion and reflects light incident on the island-shaped semiconductor; and A microlens having a focal point in the vicinity of the upper surface of the island-shaped semiconductor, It is characterized by that.
  • the signal charge accumulating unit is composed of a diode
  • the signal charge readout part is composed of a junction transistor having a source and a drain at the upper and lower parts of the island-shaped semiconductor,
  • the diode functions as the gate of the junction transistor;
  • the photoelectric conversion unit exists in a region formed by the diode and the channel of the junction transistor,
  • the signal charge removing unit is a transistor formed adjacent to the diode; It is characterized by that.
  • Each of the pixels A first semiconductor region formed on the substrate; A second semiconductor region formed on the first semiconductor region and having a conductivity type or intrinsic semiconductor opposite to the first semiconductor region; A third semiconductor region formed in an upper side region of the second semiconductor region and having the same conductivity type as the first semiconductor region; An insulating layer formed on an outer periphery of a lower side surface region of the third semiconductor region and the second semiconductor region; A conductor layer formed on the outer periphery of the insulating layer and forming a channel in a lower region of the second semiconductor region; A reflective conductor layer for reflecting light formed on the outer periphery of the third semiconductor region and the insulating layer excluding the conductor layer; A fifth semiconductor region formed on the second semiconductor region and the third semiconductor region and having the same conductivity type as the second semiconductor region; A microlens formed on the fifth semiconductor region and having a focal point near the upper surface of the fifth semiconductor region,
  • the photoelectric conversion unit is composed of the second semiconductor region and the third semiconductor region, The signal charge
  • the first semiconductor region includes a sixth semiconductor region having the same conductivity type as the first semiconductor region, a seventh semiconductor region having a conductivity type opposite to the first semiconductor region, and the first semiconductor region. Consisting of an eighth semiconductor region of the same conductivity type as the region, It is characterized by that.
  • the first semiconductor region includes a ninth semiconductor region having a conductivity type opposite to the first semiconductor region, a seventh semiconductor region having a conductivity type opposite to the first semiconductor region, and the first semiconductor region. Consisting of an eighth semiconductor region of the same conductivity type as the semiconductor region, It is characterized by that.
  • a reflective layer formed below the island-shaped semiconductor It is characterized by that.
  • the thickness of the light transmission insulating layer is set so as to be relatively large and relatively small with red light, It is characterized by that.
  • a light-transmitting insulating layer formed below the island-shaped semiconductor, and a light-absorbing layer formed below the light-transmitting insulating layer The reflectance of light that has entered the microlens, passed through the first to fifth semiconductor regions while being reflected by the conductor layer and the reflective conductor layer, and reached the light transmission insulating layer is green light and The thickness of the light transmission insulating layer is set so as to be relatively large with red light, It is characterized by that.
  • a concave portion or a convex portion is formed in the central surface layer portion of the island-shaped semiconductor upper portion,
  • the light refractive indices of two substance regions that are in contact with each other with the concave surface of the concave portion or the convex surface of the convex portion as a boundary surface are different from each other, It is characterized by that.
  • the focal point of the microlens is located inside the light transparent intermediate layer; It is characterized by that.
  • a light transparent intermediate layer formed between the microlens and the island-shaped semiconductor A light beam that enters from one point on the outer periphery of the microlens, passes through a centerline of the microlens and the light transparent intermediate layer, and reaches one point on the outer periphery of the upper part of the island-shaped semiconductor;
  • the plurality of pixels are arranged in a square lattice shape, a rectangular lattice shape, or a staggered shape, Among the plurality of pixels, the first semiconductor regions in the plurality of pixels arranged in the vertical direction are electrically connected to each other, and a plurality of conductor wirings extending in the vertical direction; Among the plurality of pixels, the conductor layers in the plurality of pixels arranged in the lateral direction are electrically connected to each other, and a plurality of conductor wirings extending in the lateral direction; The reflective conductor layers in the plurality of pixels arranged in the horizontal direction among the plurality of pixels are electrically connected to each other, and further include a plurality of reflective conductor wirings extending in the horizontal direction, The conductor wiring extending in the horizontal direction and the reflective conductor wiring are alternately arranged in the vertical direction without overlapping each other when viewed from the light irradiation direction to the plurality of pixels. It is characterized by that.
  • the reflective conductor layer in each of the plurality of pixels is electrically isolated from the fifth semiconductor region in the pixel, and all the reflective conductor layers of the plurality of pixels have the plurality of pixels. Connected to each other so as to cover the pixel region over the pixel region It is characterized by that.
  • FIG. 1 is a schematic cross-sectional view illustrating a pixel structure of a solid-state imaging device according to a first embodiment of the present invention.
  • FIG. 3 is a schematic three-dimensional view illustrating a three-dimensional structure of two adjacent pixels in the solid-state imaging device according to the first embodiment. It is a schematic cross section which shows the pixel structure of the solid-state imaging device which concerns on the modification of the 1st Embodiment of this invention. It is a schematic cross section which shows the pixel structure of the solid-state imaging device which concerns on the 2nd Embodiment of this invention. It is a schematic cross section which shows the pixel structure of the solid-state imaging device which concerns on 2nd Embodiment.
  • FIG. 6 is a schematic plan view showing an arrangement state of 3 ⁇ 3 pixels in the solid-state imaging device according to the first to sixth embodiments.
  • FIG. 3 is a schematic three-dimensional view showing a state where light rays are incident on a gap between pixels. It is a schematic plan view which shows the arrangement
  • FIG. 10B is a schematic plan view taken along the line AA ′ of FIG. 10A showing an arrangement state of 3 ⁇ 3 pixels in the pixel region of the solid-state imaging device according to the eighth embodiment. It is a schematic cross section which shows the pixel structure of the solid-state imaging device which concerns on the modification of this invention. It is a schematic cross section which shows the pixel structure of the solid-state imaging device of a prior art example. It is a graph which shows the relationship between Si (silicon) depth and light absorption intensity. It is a schematic cross section which shows the pixel structure of the solid-state imaging device of another prior art example.
  • FIG. 1A shows a structure of a pixel (island semiconductor) 1a of the solid-state imaging device according to the first embodiment of the present invention.
  • each pixel 1a has a first semiconductor N + region 2 electrically connected to a signal line (not shown in FIG. 1A) extending in the first scanning direction on the substrate. Is formed.
  • a second semiconductor P region 3 having a conductivity type opposite to that of the first semiconductor N + region 2 is formed.
  • third semiconductor N + regions 6 a and 6 b having the same conductivity type as the first semiconductor N + region 2 are formed.
  • Insulating layers 4 a and 4 b are formed on the outer peripheral portions of the lower side surface regions of the third semiconductor N + regions 6 a and 6 b and the second semiconductor P region 3.
  • Conductor layers 5 a and 5 b that form channels in the lower region of the second semiconductor P region 3 are formed on the outer peripheral portions of the insulating layers 4 a and 4 b.
  • the conductor layers 5a and 5b are formed in a single layer structure using a metal, and function as a gate conductor layer through which a current flows and a light reflection layer that reflects light such as infrared rays, visible rays, and ultraviolet rays.
  • a MOS transistor having a second semiconductor P region 3, insulating layers 4a and 4b, and conductor layers 5a and 5b is formed.
  • a channel is formed in the second semiconductor P region 3 by applying a voltage to the conductor layers 5a and 5b.
  • a photodiode region 7 composed of the second semiconductor P region 3 and the third semiconductor N + regions 6a and 6b is formed so as to be connected to the MOS transistor.
  • fourth semiconductor P + regions 8 a and 8 b are formed.
  • the fourth semiconductor P + regions 8a and 8b are formed in contact with the insulating layers 4a and 4b between the third semiconductor N + regions 6a and 6b and the insulating layers 4a and 4b.
  • Light reflecting conductor layers 9a and 9b for reflecting light are formed on the outer periphery of the fourth semiconductor P + regions 8a and 8b via the insulating layers 4a and 4b.
  • the light reflecting conductor layers 9a and 9b are formed on the outer periphery of the third semiconductor N + regions 6a and 6b and the insulating layers 4a and 4b excluding the conductor layers 5a and 5b.
  • the light reflecting conductor layers 9a and 9b are formed in a single layer structure using metal, and function as a conductor layer for passing current and a light reflecting layer for reflecting light.
  • the fifth semiconductor P + region 10 is electrically connected to a pixel selection line (not shown in FIG. 1A) extending in a direction orthogonal to the first scanning direction of the pixel region.
  • the fifth semiconductor P + region 10 is electrically connected to the light reflecting conductor layers 9a and 9b. For this reason, the light reflection conductor layers 9a and 9b also function as pixel selection lines.
  • the photodiode region 7 is formed in the island-shaped semiconductor.
  • the region where the photodiode region 7 is formed is the upper region where the third semiconductor N + regions 6a and 6b are formed in the second semiconductor P region 3, the third semiconductor N + regions 6a and 6b, 4 semiconductor P + regions 8 a and 8 b and a fifth semiconductor P + region 10.
  • the third semiconductor N + regions 6a and 6b and the fifth semiconductor P + region 10 are preferably formed in an island-shaped semiconductor.
  • the light transmissive intermediate region 24 made of a material that transmits light is formed, on the light transmitting intermediate region 24, in the vicinity of the surface on the fifth semiconductor P + region 10 of the A microlens 11 in which the focal point is located is formed.
  • the light beam is collected at the focal point of the microlens 11 located near the upper surface of the fifth semiconductor P + region 10.
  • the light rays 12a and 12b incident on the pixel (island semiconductor) 1a other than the light rays perpendicularly incident on the central portion of the microlens 11 are reflected by the light reflecting conductor layers 9a and 9b and the conductor layer.
  • the light is reflected by 5a and 5b and propagates below the pixel 1a. For this reason, the light propagation length in the photodiode region 7 which is the photosensitive region is longer than the height Ld of the photodiode region.
  • the light propagation length in the photodiode region 7 that is the photosensitive region can be increased because the height Ld of the photodiode region is lowered as compared with the solid-state imaging device having the pixel structure of the conventional example shown in FIG. 12A. This means that the same sensitivity can be obtained.
  • FIG. 1B shows a three-dimensional schematic diagram in the case where the pixel 1a of the solid-state imaging device of the present embodiment shown in FIG. 1A is composed of two adjacent pixels 1b and 1c.
  • the pixels 1b and 1c have first semiconductor N + regions 2a and 2b corresponding to the first semiconductor N + region 2 of the pixel 1a.
  • the first semiconductor N + regions 2a and 2b are electrically connected to signal line N + layers 2aa and 2bb extending in the first scanning direction on the substrate.
  • conductor layers 5aa and 5bb corresponding to the conductor layers 5a and 5b which are the gate conductor layers of the MOS transistors in the pixel 1a are formed so as to surround the outer periphery of the pixels 1b and 1c. ing.
  • Conductive layers 5aa and 5bb are electrically connected to MOS gate wiring 5ab extending in a direction orthogonal to signal line N + layers 2aa and 2bb.
  • Light reflecting conductor layers 9aa and 9bb corresponding to the light reflecting conductor layers 9a and 9b of the pixel 1a are formed so as to surround the outer periphery of the pixels 1b and 1c.
  • the light reflecting conductor layers 9aa and 9bb are electrically connected to a pixel selection line 9ab extending in a direction orthogonal to the signal line N + layers 2aa and 2bb.
  • the light reflecting conductor layers 9aa and 9bb are electrically connected to the fifth semiconductor P + regions 10a and 10b corresponding to the fifth semiconductor P + region 10 of the pixel 1a.
  • Microlenses 11a and 11b corresponding to the microlenses 11 of the pixel 1a are disposed on the fifth semiconductor P + regions 10a and 10b.
  • the pixels 1b and 1c formed on the signal line N + layers 2aa and 2bb constitute an island-shaped semiconductor, and the conductor layers 5aa and 5bb and the light-reflecting conductor layers 9aa and 9bb are formed so as to surround the island-shaped semiconductor. Is formed. Since the first semiconductor N + regions 2a and 2b and the signal line N + layers 2aa and 2bb are layers sufficiently doped with donor impurities, the first semiconductor N + regions 2a and 2b and the signal line N + layer 2aa , 2bb does not generate signal charges.
  • the light incident on the pixels 1b and 1c from the microlenses 11a and 11b does not leak to the pixels adjacent to the pixels 1b and 1c, and is transmitted through the conductor layers 5aa and 5bb and the light reflecting conductor layers 9aa and 9bb, respectively.
  • the light propagates through the island-like semiconductor while being reflected, and reaches the first semiconductor N + regions 2a and 2b and the signal line N + layers 2aa and 2bb.
  • the height of the island-shaped semiconductor can be reduced, the workability of the pixel structure is improved, the pixel density is increased, the resolution is lowered, and a solid-state imaging device free from color mixing in color imaging is achieved. Can be provided.
  • the second semiconductor P region 3 is made of a P-type conductivity semiconductor.
  • the second semiconductor P region 3 is replaced with the second semiconductor P region 3 as shown in FIG. 1C.
  • the region may be a unique semiconductor (i) region 3a made of a unique semiconductor.
  • the intrinsic semiconductor here is a semiconductor in which impurities are not mixed in the matrix, and its Fermi rank is located near the center of the energy gap between the lower end of the conductor and the upper end of the valence band. Intrinsic semiconductors are actually difficult to produce if they are completely free of impurities. Therefore, depending on the level of impurities, if there is a small amount of acceptor impurities, it will not contain P - type impurities at all.
  • pure silicon is not used, it is an intrinsic type, and if it contains a small amount of donor impurities, it is an N ⁇ type.
  • the intrinsic semiconductor is a high-resistance body, and when a voltage is applied between the fifth semiconductor P + region 10 and the signal line N + layers 2aa and 2bb, an internal potential gradient is generated, and this channel.
  • holes injected from the fifth semiconductor P + region flow toward the signal line N + layers 2aa and 2bb, they function as a channel of the junction transistor.
  • the photodiode region 7 is a photoelectric conversion portion in that a signal charge is generated by incident light into the island-shaped semiconductor constituting the pixel 1a, and the second semiconductor P A photodiode which is a diode composed of the region 3 or the intrinsic semiconductor region 3a and the third semiconductor N + regions 6a and 6b has a signal charge that accumulates the signal charge at a point where the signal charge generated in the photoelectric conversion unit is accumulated. It is a storage part.
  • an amplification junction transistor in which the fifth semiconductor P + region 10, the second semiconductor P region 3 near the signal line N + layer 2 or the intrinsic semiconductor region 3 a is used as a source / drain and the photodiode region 7 is used as a gate is
  • the MOS transistor having the second semiconductor P region 3 or the intrinsic semiconductor region 3a, the insulating layers 4a and 4b, and the conductor layers 5a and 5b transfers the signal charges accumulated in the photodiode region 7 to the signal line N + layer 2. This is a signal charge removing unit for removing the signal.
  • an island-shaped semiconductor in which a photoelectric conversion unit, a signal charge storage unit, a signal readout unit, and a signal charge removal unit are formed in the island-shaped semiconductor, and at least the photoelectric conversion unit is formed.
  • the outer peripheral part of the semiconductor is covered with a light reflecting layer.
  • the conductor layers 5a, 5b, 5aa, and 5bb and the light reflecting conductor layers 9a, 9b, 9aa, and 9bb are electrically separated, but the conductor layers 5a, 5b, 5aa, 5bb and The light reflecting conductor layers 9a, 9b, 9aa, 9bb are electrically connected, and the conductor layers 5a, 5b, 5aa, 5bb and the light reflecting conductor layers 9a, 9b, 9aa, 9bb and the fifth semiconductor P + region 10 may be electrically separated. Also, the light reflection conductor layers 9a, 9b, 9aa, 9bb are separated from other conductive regions, and the same effect as in the first embodiment can be obtained even in an independent structure.
  • FIG. 2A shows a pixel structure of a solid-state imaging device according to the second embodiment of the present invention.
  • the solid-state imaging device of this embodiment reflects light and is made of a conductor below the pixel (island semiconductor) 1a of the solid-state imaging device of the first embodiment shown in FIG. 1A.
  • the pixel structure is the same as that of the solid-state imaging device of the first embodiment except that the light reflecting conductor layers 14a and 14b are further formed.
  • an insulating layer 13 is formed below the pixel 1a in the solid-state imaging device of the first embodiment shown in FIG. 1A, and from the metal or the like below the insulating layer 13.
  • a light reflecting conductor layer 14a is formed which reflects light and is made of a conductor. The light ray 12c reflected by the light reflecting conductor layers 9a and 9b and the conductor layers 5a and 5b and propagating below the pixel 1a and entering the insulating layer 13 is reflected by the light reflecting conductor layer 14a and again in the pixel 1a. A signal charge is generated by reaching the photodiode region 7.
  • the height Ld of the photodiode region 7 is the same as that of the solid-state imaging device of the first embodiment shown in FIG. 1A.
  • the height Ld of the photodiode region 7 is further reduced as compared with the solid-state imaging device of the first embodiment. can do. This facilitates processing of the pixel structure and realizes a high pixel density of the solid-state imaging device.
  • the height Ld of the photodiode region 7 is not simply reduced, but the height is adjusted appropriately so that the photodiode region, which is a photosensitive region, is adjusted. Since the light propagation length at 7 can be increased, the signal charge generated by the reflected light 12e from the light reflecting conductor layer 14a can also contribute to the improvement in sensitivity.
  • FIG. 2B shows a modification of the second embodiment.
  • the light reflecting conductor layer 14b is formed directly below the pixel 1a shown in FIG. 1A without an insulating layer.
  • the reflected light 12e reflected by the light reflecting conductor layer 14b again enters the photodiode region 7 of the pixel 1a to generate signal charges.
  • the solid-state imaging device of the second embodiment shown in FIG. 2A can be obtained.
  • the solid-state imaging device which can obtain high pixel density, high resolution, low color mixing, and high sensitivity is implement
  • FIG. 3A shows a pixel structure of a solid-state imaging device according to the third embodiment of the present invention.
  • the solid-state imaging device of the present embodiment is formed from an insulator such as a SiO 2 film below the pixel (island semiconductor) 1a of the solid-state imaging device of the first embodiment shown in FIG. 1A.
  • the light beam 17 incident on the light transmission insulating layer 15 causes multiple reflection in the light transmission insulating layer 15, and reflected light 18 a, 18 b,... On the surface of the light absorption layer 16. , Incident light 19a, 19b,...
  • the multiple reflection light transmitting insulating layer within 15, the amount of light returning to the photodiode region 7, the thickness of the light-transmissive insulating layer 15, Si and SiO 2 of the light absorption, refractive index, the wavelength of the incident light, the incident It varies depending on the angle.
  • the SiO 2 film thickness is about 0.5 ⁇ m
  • the reflectance of both green light and red light can be relatively increased.
  • the SiO 2 film thickness is about 0.2 ⁇ m
  • the reflectance of green light can be relatively increased and the reflectance of red light can be relatively decreased.
  • the signal processing for adjusting the balance of the blue, green, and red light signal output in color imaging increases the sensitivity of green light by setting the SiO 2 film thickness to about 0.2 ⁇ m. By reducing the sensitivity of red light, it is possible to contribute to improving the sensitivity of the color solid-state imaging device.
  • the SiO 2 film thickness is set to about 0.5 ⁇ m and the reflectance of both green light and red light is increased, it is possible to contribute to improvement of sensitivity in monochrome imaging.
  • the SiO 2 film thickness it can change the reflectance depending on the wavelength of the light, by changing the SiO 2 film thickness, the wavelength of the incident light, the spectral sensitivity characteristic showing the relationship between the sensitivity of the solid-state imaging device It means that it can be controlled.
  • the technique of changing the reflectance according to the wavelength of light by changing the thickness of the light transmission insulating layer (SiO 2 film) 15 provides an effective method for obtaining a desired spectral sensitivity characteristic. .
  • FIG. 4A shows a pixel structure of a solid-state imaging device according to the fourth embodiment of the present invention.
  • the solid-state imaging device of the present embodiment is a central surface layer portion of the fifth semiconductor P + region 10 in the pixel (island semiconductor) 1a of the solid-state imaging device of the first embodiment shown in FIG. 1A.
  • the pixel structure is the same as that of the solid-state imaging device of the first embodiment.
  • FIG. 4A shows an example in which a triangular pyramid-shaped recess 20a is formed in the central surface layer portion of the fifth semiconductor P + region 10 in the pixel 1a shown in FIG. 1A.
  • the recess 20 a does not exist in the central surface layer portion of the fifth semiconductor P + region 10.
  • the light rays 21a and 21c perpendicularly incident on the central portion of the microlens 11 enter the inside of the pixel 1a without being reflected by the light reflecting conductor layers 9a and 9b.
  • the light propagation length in the photodiode region 7 which is the photosensitive region cannot be longer than the height Ld of the photodiode region for the light rays 21a and 21c perpendicularly incident on the central portion of the microlens 11. .
  • the incident light 21b incident on the fifth semiconductor P + region 10 from the center of the microlens 11 except for the light ray 21b incident from the center line of the microlens 11 is The light is refracted toward the light reflecting conductor layers 9a and 9b by the recess 20a.
  • the refracted light beam 22a is reflected by the light reflecting conductor layers 9a and 9b, the light propagation length in the photodiode region 7 is increased, and the sensitivity of the solid-state imaging device is improved.
  • the refraction of the light beam in the recess 20 a is caused by the difference between the refractive index of Si (silicon) that is the material of the fifth semiconductor P + region 10 and the refractive index of the transparent resin material that is the material of the microlens 11.
  • FIG. 4B shows an example in which a triangular pyramid-shaped convex portion 20b is formed in the central surface layer portion of the fifth semiconductor P + region 10 in the pixel structure shown in FIG. 1A.
  • a convex portion 20b may be formed in the central surface layer portion of the fifth semiconductor P + region 10 instead of the concave portion 20a shown in FIG. 4A.
  • the incident light 21b incident on the fifth semiconductor P + region 10 from the central portion of the microlens 11 is reflected by the convex portion 20b.
  • the light is refracted to the 9a and 9b sides.
  • the refracted light beam 22a is reflected by the light reflecting conductor layers 9a and 9b, the light propagation length in the photodiode region 7 is increased, and the sensitivity of the solid-state imaging device is improved.
  • the light refractive indexes of the two substance regions that are in contact with each other with the concave surface of the concave portion 20a or the convex surface of the convex portion 20b as the boundary surface are made different from each other.
  • the present invention is not limited to this, and the concave portion 20a or the convex portion 20b itself may be formed of Si that is the material of the fifth semiconductor P + region 10 or a material having a refractive index different from that of the transparent resin material of the microlens 11. .
  • incident light that enters the fifth semiconductor P + region 10 from the center of the microlens 11 is refracted toward the light reflecting conductor layers 9a and 9b by the concave portion 20a or the convex portion 20b. Then, the light propagation length in the photodiode region 7 that is the photosensitive region is increased, and the sensitivity of the solid-state imaging device is improved.
  • the shape of the recessed part 20a and the convex part 20b was made into the triangular pyramid shape.
  • the present invention is not limited to this, and any other shape such as a conical shape or a square shape may be used as long as the light beam incident on the central portion of the microlens 11 is refracted by the concave portion 20a or the convex portion 20b and reflected by the light reflecting conductor layer. It may be a spindle shape or a semicircular shape.
  • FIG. 5 shows a pixel structure of a solid-state imaging device according to the fifth embodiment of the present invention.
  • the focal point 23 of the microlens 11 is the fifth semiconductor in the pixel (island semiconductor) 1a of the solid-state imaging device of the first embodiment shown in FIG. 1A.
  • the pixel structure is the same as that of the solid-state imaging device according to the first embodiment except that it is located in the light transmission intermediate region 24 above the upper surface of the P + region 10.
  • the focal point 23 of the microlens 11 is formed in the light transmission intermediate region 24 above the fifth semiconductor P + region 10.
  • the light beam 25b that is incident from the microlens 11 and focused on the focal point 23 inside the light transmission intermediate region 24 is the fifth semiconductor P.
  • the position where the light-reflecting conductor layers 9a and 9b are first reached is the fifth semiconductor P rather than the light ray 25a when the focal point is located on the upper surface of the + region 10 (in the case of the pixel structure of the first embodiment). + Further approach the upper surface of region 10.
  • the light beam 25b with the pixel structure of the present embodiment can have a longer light propagation length in the photodiode region 7 than the light beam 25a with the pixel structure of the first embodiment. Therefore, according to the solid-state imaging device of the present embodiment, the sensitivity is further improved as compared with the solid-state imaging device of the first embodiment.
  • FIG. 6 shows a pixel structure of a solid-state imaging device according to the sixth embodiment of the present invention.
  • the solid-state imaging device of the present embodiment has a pixel (island semiconductor) 1 a of the solid-state imaging device of the first embodiment shown in FIG. incident, through the center line 27 of the microlens 11, orthogonal to the fifth semiconductor P + a ray 29 reaching the point 28 of the outer peripheral portion of the region 10, the fifth semiconductor P + region 10 on the surface of
  • the angle ⁇ i formed by the line to be formed is smaller than the Brewster angle ⁇ b.
  • the photodiode region 7 is the first and light reflecting conductors no matter what angle the light enters the photodiode region 7. Since it is completely surrounded by the layers 5aa, 5bb, 9aa, 9bb, it is possible to eliminate light leakage to adjacent pixels. This is because all the incident light incident from the microlens 11 reaches the surface of the fifth semiconductor P + region 10, and all the incident light can be effectively contributed to the generation of signal charges. means.
  • FIG. 6 shows a pixel structure of a solid-state imaging device according to the sixth embodiment of the present invention.
  • the light enters from one point 26 on the outer peripheral portion of the microlens 11, passes through the center line 27 and the light transmission intermediate region 24 of the microlens 11, and the outer peripheral portion of the fifth semiconductor P + region 10.
  • An angle ⁇ i perpendicular to the surface of the fifth semiconductor P + region 10 is smaller than the Brewster angle ⁇ b.
  • the Brewster angle ⁇ b is expressed by the following equation, where N 1 is the refractive index of the light transmission intermediate region 24 and N 2 is the refractive index of the fifth semiconductor P + region 10.
  • the signal line N + layers S 1 , S 2 , S 3 correspond to the light reflecting conductor layer 14b in the pixel structure shown in FIG. 2B.
  • MOS gate wirings 5ab1, 5ab2, 5ab3 corresponding to the MOS gate wiring 5ab shown in FIG. 1B are formed below the pixel selection lines 9ab1, 9ab2, 9ab3. That is, the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 are formed so as to overlap each other.
  • the light ray 100 incident on the gap G 3 includes pixels P 11 to P 33. It reaches the signal line N + layer S 1 on the formed substrate.
  • light rays 100 incident on the gap G 3 are incident on the signal line N + layer 2aa located below the pixel 11a.
  • the multiple reflected lights 101a, 101b, 101c, and 101d are incident on the photodiode region 7 (see FIG. 1A) of the pixel 11b adjacent to the pixel 11a to generate signal charges.
  • This light leakage to the adjacent pixel 11b causes a decrease in resolution of the solid-state imaging device and a color mixture in color imaging.
  • FIGS. 9A and 9B a solid-state imaging device according to a seventh embodiment of the present invention will be described with reference to FIGS. 9A and 9B.
  • the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 are formed so as to overlap each other, and the signal lines N + layers S 1 , Multiple reflections within S 2 and S 3 caused a reduction in resolution and color mixing in color imaging.
  • the pixels P 11 to P 33 are arranged in a square lattice shape or a rectangular lattice shape.
  • the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 are arranged so as not to overlap each other. That is, the pixel selection lines 9ab1, 9ab2, and 9ab3 are light reflecting conductor layers 9a and 9b (FIG. 1A) in the gaps G 1 , G 2 , G 3 , and G 4 formed between the MOS gate wirings 5ab1, 5ab2, and 5ab3. Wiring is performed in a state of being electrically connected to the conductor layer in the pixels P 11 to P 33 corresponding to the reference).
  • the incident light incident from the light irradiation surface is blocked by the pixel selection lines 9ab1, 9ab2, and 9ab3, and the signal line N + layer S that directly generates multiple reflections. Reaching 1 , S 2 , S 3 is prevented. Thereby, according to the solid-state imaging device of the present embodiment, a decrease in resolution and color mixing in color imaging are prevented.
  • the pixels P 11 to P 33 are not arranged in a line in the vertical direction, but are arranged in a staggered manner. As the pixels P 11 to P 33 are arranged in a staggered manner in this way, the signal line N + layers S 1 , S 2 , and S 3 meander the pixels P 11 to P 33 while meandering vertically. Are connected. Similar to the seventh embodiment shown in FIG. 9B, the seventh embodiment shown in FIG. 9B, the pixels P 11 to P 33 are not arranged in a line in the vertical direction, but are arranged in a staggered manner. As the pixels P 11 to P 33 are arranged in a staggered manner in this way, the signal line N + layers S 1 , S 2 , and S 3 meander the pixels P 11 to P 33 while meandering vertically. Are connected. Similar to the seventh embodiment shown in FIG.
  • the incident light reaches the signal line wiring N + layers S 1 , S 2 , and S 3 that directly cause multiple reflection by the pixel selection lines 9ab1, 9ab2, and 9ab3 in the entire pixel region of the solid-state imaging device. Is prevented.
  • the solid-state imaging device of this modification the resolution fall and the color mixing in color imaging are prevented.
  • a minute gap is formed between the pixel selection lines 9ab1, 9ab2, and 9ab3 and the MOS gate wirings 5ab1, 5ab2, and 5ab3 when viewed from the light irradiation surface.
  • the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 can be formed to overlap each other.
  • the incident light reaches the signal line N + layers S 1 , S 2 , and S 3 that generate multiple reflections directly by the pixel selection lines 9ab1, 9ab2, and 9ab3 in the entire pixel region of the solid-state imaging device. Is more reliably prevented.
  • the resolution fall and the color mixing in color imaging are prevented.
  • FIGS. 10A and 10B a solid-state imaging device according to an eighth embodiment of the present invention will be described with reference to FIGS. 10A and 10B.
  • the light reflecting conductor layers 9 a and 9 b surrounding the photodiode region 7 are electrically connected to the fifth semiconductor P + region 10.
  • the fifth semiconductor P + region 10 is electrically connected to the pixel selection lines 10aa and 10bb and reflects light.
  • the light reflecting conductor layers 99a and 99b differs from the light reflecting conductor layers 99a and 99b corresponding to the conductor layers 9a and 9b in that they are electrically separated.
  • the light reflecting conductor layers 99a and 99b are electrically connected to the light reflecting conductor wiring layers 99c and 99d.
  • the light incident on the center of the microlens 11 out of the light collected at the focal point of the microlens 11 located in the vicinity of the upper surface of the fifth semiconductor P + region 10 is perpendicularly incident.
  • Light rays 12a and 12b incident on the pixel 1a other than the light rays are reflected by the light reflecting conductor layers 99a and 99b and the conductor layers 5a and 5b and propagate downward in the pixel 1a.
  • the light propagation length in the photodiode region 7 which is the photosensitive region is longer than the height Ld of the photodiode region.
  • FIG. 10B shows a state where the regions indicated by the line AA ′ of the light reflecting conductor layers 99c and 99d in FIG. 10A are viewed from the light irradiation surface. Since the light reflecting conductor layers 99a and 99b do not function as pixel selection lines, the light reflecting conductor wiring layers 99c and 99d may be integrally connected so as to cover the pixel region of the solid-state imaging device. As a result, as shown in FIG. 10B, the light reflecting conductor wiring layers 99c and 99d form an integral light reflecting conductor layer 99 in all pixel regions of the solid-state imaging device.
  • the present invention is not limited to this, and the technical idea of the present invention can be applied to a solid-state imaging device in which a plurality of other pixels are arranged one-dimensionally or two-dimensionally in the pixel region.
  • a pixel having a photodiode region 7 that is a photoelectric conversion unit, a photodiode that is a signal charge storage unit, a junction transistor that is a signal charge readout unit, and a MOS transistor that is a signal charge removal unit in an island-shaped semiconductor has a structure, even if the island-like semiconductor has a structure in which a photoelectric change portion, a signal charge accumulation portion, a signal readout portion, and a signal charge removal portion are provided by other configurations, the technical idea of the present invention is applied. Needless to say, it is included.
  • the island-shaped semiconductor structures in the pixels 1a and 1b and the pixels P 11 to P 33 are all cylindrical.
  • the shape is not limited to this, and may be a quadrangular prism shape or a polygonal column shape.
  • the first semiconductor N + region 2 and the third semiconductor N + regions 6a and 6b are N-type conductivity type
  • the second semiconductor P region 3 is P-type conductivity type
  • the semiconductor P + regions 8a and 8b and the fifth semiconductor P + region 10 were P-type conductivity type.
  • the present invention is not limited to this, and the first semiconductor region 2 and the third semiconductor regions 6a and 6b are P-type conductivity type, the second semiconductor region 3 is N-type conductivity type, and the fourth semiconductor regions 8a, 8b and the fifth semiconductor region 10 may be N-type conductivity type.
  • the first semiconductor N + region 2 is formed in the entire lower part of the MOS transistor.
  • the first semiconductor region 2 is replaced with the sixth semiconductor P + region 2c.
  • a second semiconductor P region 3 is constituted by a seventh semiconductor N + region 2d isolated from the sixth semiconductor P + region 2c, the sixth semiconductor P + region 2c and the drain of the amplifying junction transistor, the The semiconductor N + region 2d may be configured as a reset drain for removing signal charges accumulated in the photodiode.
  • a region sandwiched between the sixth semiconductor P + region 2c and the seventh semiconductor N + region 2d is an eighth semiconductor P region.
  • the sixth semiconductor P + region 2c of the amplification junction transistor can be replaced with a ninth semiconductor N + region 2c.
  • a region sandwiched between the ninth semiconductor N + region 2c and the seventh semiconductor N + region 2d is an eighth semiconductor P region.
  • the channel of the MOS transistor is formed in the second semiconductor P region 3 by an electric field (enhancement type).
  • the channel of the MOS transistor can be formed by implanting impurities into the second semiconductor P region 3 by ion implantation (depletion type) or by using a buried channel.
  • the light transmission intermediate region 24 has a single layer structure, but the light transmission intermediate region may be formed of a plurality of layers, and further, the light transmission intermediate region includes a color filter layer. Also good.
  • the light reflecting conductor layers 9a and 9b are electrically connected to the fifth semiconductor P + region 10, but this is not an essential structure for the embodiment of the present invention.
  • the light reflecting conductor layers 9 a and 9 b may be formed so as to surround the photodiode region 7.
  • the fifth semiconductor P + region 10 is electrically connected to the pixel selection lines 10aa and 10bb and electrically connected to the light reflecting conductor layers 99a and 99b. It may be separated.
  • the fifth semiconductor P + region 10 is electrically connected to the fifth semiconductor P + regions 8a and 8b in the photodiode region 7, but they may be electrically separated.
  • the fifth semiconductor P + region 10 is electrically connected to the third semiconductor N + regions 6a and 6b in the photodiode region 7, but they may be electrically separated.
  • the conductor layers 5a and 5b and the light reflecting conductor layers 9a, 9b, 99a and 99b are formed from a single-layer metal film, but may be formed from a plurality of metal films.
  • the conductor layers 5a and 5b and the light reflecting conductor layers 9a, 9b, 99a, and 99b are not limited to metals, and a material layer that reflects long wavelength light such as impurity-doped polycrystalline Si or silicide is made of metal. It may be formed by being included in a part, or may be formed only by impurity-doped polycrystalline Si or silicide.
  • the signal lines N + layers S 1 , S 2 , and S 3 are N + layers, but as shown in FIG. 2B, below the first semiconductor N + region 2,
  • the resistance of the signal line N + layers S 1 , S 2 , S 3 is lowered by the light reflecting conductor layer 14b.
  • the signal line N + layers S 1 , S 2 , S 3 do not have to be N + layers.
  • the light beam 100 that has entered the gaps G 1 , G 2 , G 3 , and G 4 is reflected by the light reflecting conductor layer 14b, and a part thereof leaks to the photodiode region of the pixel adjacent to the pixel. Is prevented.
  • the conductor layers 5a and 5b and the light reflecting conductor layers 9a, 9b, 99a, and 99b are structured to surround the pixel (island semiconductor) 1a with a thin film, but the space between the pixels is filled with a metal material. Such a structure may be used.
  • the conductor layers 5a, 5b, 5aa, 5bb and the light reflecting conductor layers 9a, 9b, 9aa, 9bb reflect light (infrared rays, visible rays, ultraviolet rays) which is a kind of electromagnetic energy wave (electromagnetic wave).
  • the light-reflecting conductor layer may also function as a layer that reflects other electromagnetic energy waves, such as X-rays, gamma rays, and electron beams, depending on the intended use of the solid-state imaging device.
  • the present invention can be applied to a solid-state imaging device that enables high pixel density, high resolution, low color mixing, and high sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 各画素(1a)は、基板上に形成された第1の半導体N領域(2)と、この領域(2)上に形成された第2の半導体P領域(3)と、その上部側面領域に形成された第3の半導体N領域(6a,6b)と、領域(6a,6b)及び領域(2)の下部側面領域の外周部に形成された絶縁層(4a,4b)と、絶縁層(4a,4b)の外周部に形成され、領域(2)の下部領域にチャネルを形成する導体層(5a,5b)と、導体層(5a,5b)を除く第3の半導体N領域(6a,6b)及び絶縁層(4a,4b)の外周部に形成された光反射導体層(9a,9b)と、領域(3)及び領域(6a,6b)上に形成された第5の半導体P領域(10)と、領域(10)上に形成され、該領域(10)の上表面近傍に焦点が位置するマイクロレンズ(11)と、を備えている。少なくとも領域(6a,6b)と領域(10)とは、島状半導体内に形成されている。

Description

固体撮像装置
 本発明は、固体撮像装置に関し、特に、高画素密度、高解像度、低混色、高感度を可能にする固体撮像装置に関する。
 現在、CCDおよびCMOS固体撮像装置は、ビデオカメラ、ステールカメラなどに広く用いられている。そして、固体撮像装置の高画素密度化、高解像度化、カラー撮像における低混色化、そして高感度化などの性能向上が常に求められている。これに対し、固体撮像装置の高解像度化を実現するために画素高密度化などによる技術革新が行われてきた。
 高画素密度を実現する固体撮像装置として、図12Aに示すような、1個の島状半導体30に1個の画素を構成するものがある(例えば、特許文献1を参照)。この画素においては、基板上に信号線N層31が形成されている。また、信号線N層31に接続された島状半導体30の外周部に半導体P層32、絶縁層33a,33b、ゲート導体層34a,34bよりなるMOSトランジスタが形成されている。さらに、このMOSトランジスタに繋がって、光照射によって発生する信号電荷を蓄積するフォトダイオードが島状半導体30の外周部に形成されている。このフォトダイオードは、半導体P層32と半導体N層35a,35bとから構成される。また、このフォトダイオードで囲まれた半導体P層32をチャネルとし、このフォトダイオードをゲートとし、フォトダイオード上に形成され画素選択線37a,37bに電気的に接続された半導体P層36、信号線N層31近傍の半導体P層32を、それぞれ、ソース、ドレインにした増幅接合トランジスタが形成されている。
 この固体撮像装置の基本動作は、光照射により発生した信号電荷(この場合は電子)をフォトダイオードに蓄積する信号電荷蓄積動作と、蓄積された信号電荷に応じたフォトダイオード電圧によるゲート電圧によって、信号線N層31近傍の半導体P層32と半導体P層36との間に流れるソース・ドレイン電流を変調し、これを信号電流として読み出す信号読み出し動作と、この信号読み出し動作後、フォトダイオードに蓄積されている信号電荷をMOSトランジスタのゲート導体層34a,34bにオン電圧を印加して信号線N層31に除去するリセット動作よりなる。
 図12Bに照射光波長λが青色光(λ=400nm)、緑色光(λ=550nm)、赤色光(λ=700nm)、赤外光(λ=870nm)における光照射面からのSi(シリコン)深さ(μm)に対する光吸収強度Iの関係を示す。光吸収強度Iを照射表面での光吸収強度Iで規格化すると、規格化値I/Iは光の進入深さに対して指数関数的に減少する。図12Bは、青色光は深さ1μm程度でそのほとんどが吸収されるのに対して、緑色光では5μm、赤色光では10μm以上の深さにも光が到達し、そこで信号電荷が発生することを示している。実際の固体撮像装置においては、例えば、非特許文献1に記載されているように、緑色光の80%を吸収するように、感光領域の深さを2.5~3μmとすることが必要とされている。
 図12Aの固体撮像装置での感光領域は、半導体P層32と半導体N層35a,35bによって形成されるフォトダイオード領域である。このため、このフォトダイオード領域の高さLdは2.5~3μmであることが必要である。
 また、図12Aに示すように画素(島状半導体30)に斜め方向から入射する光線38はその画素30に隣接する画素のダイオード領域に入射する場合がある。この画素内での収光率の低下により、本来は1個の画素で発生するべき信号電荷が周辺の画素に分散されて発生してしまう。これにより固体撮像装置の解像度の低下や、カラー撮像における混色を発生する。このような不具合は、画素が高密度化されるほど大きくなる。
 この収光率の低下を防ぐため、図13に示すようにフォトダイオード領域41の上部に金属壁39a,39bを設ける技術が存在する(例えば、特許文献2を参照)。この画素構図では、半導体基板40内にフォトダイオード領域41が形成されるとともに、フォトダイオード領域41の周辺に素子分離領域42とMOSトランジスタのソース・ドレイン領域43,43とが形成されている。半導体基板40上に形成された第1の層間絶縁層内44に、MOSトランジスタのゲート電極45、コンタクトホール46a、フォトダイオード領域41を包囲する金属壁39a,39bが形成されている。第1の層間絶縁層44上に第2の層間絶縁層47が形成され、さらに第2の層間絶縁層47上に、SiO2膜48、SiN膜49、マイクロレンズ50がこの順で形成されている。第2の層間絶縁層47内及び第2の層間絶縁層47上に、回路配線のためのコンタクトホール46b,46c、金属配線51a,51b,51c,51dが形成されている。
 マイクロレンズ50を通過した光線52a,52b,52c,52dは、金属壁39a,39bで反射され、フォトダイオード領域41に入射する。これによって、マイクロレンズ50から入射した光がフォトダイオード領域41に入射する収光率が改善される。しかし、これらの入射光線は、フォトダイオード領域41表面に斜め方向から入射するので、フォトダイオード領域41への入射する光線53a,53b,53c,53dの一部は、当該画素に隣接する画素に漏洩する。
 その他、1個の画素内での収光率を改善する技術として、マイクロレンズとフォトダイオード領域の間に形成したカラーフィルタ層内に金属壁を設ける技術(例えば、特許文献3を参照)、又はフォトダイオード領域の上部に光波路を形成する技術(例えば、特許文献4を参照)などが知られている。しかしながら、これらの技術によっても、入射光線はフォトダイオード領域の表面に斜め方向から入射するので、フォトダイオード領域への入射光の一部は、当該画素に隣接する画素に漏洩する。
国際公開第2009/034623号
米国特許出願公開第2008/0185622(A1)号明細書
米国特許出願公開第2009/0101946(A1)号明細書
米国特許出願公開第2008/0145965(A1)号明細書
G.Agranov,R.Mauritzson,J.Ladd,A.Dokoutchaev,X.fan,X.Li,Z.Yin,R.Johnson,V.Lenchenkov,S.Nagaraja,W.Gazeley,J.Bai,H.Lee,瀧澤義順;"CMOSイメージセンサの画素サイズ縮小と特性比較"、映像情報メディア学会技術報告 Vol.33,No.38,pp.9-12(Sept.2009)
 図12Aに示す固体撮像装置は、1個の画素が1個の島状半導体30により形成されるので、高画素密度化に適している。したがって、先端微細加工技術を適用すれば、光照射面から見た平面上の画素サイズの高画素密度化を図ることができる。例えば、200nm(=0.2μm)の加工技術によれば、400×400nm2の画素サイズが実現できる。更に、微細加工技術の開発によって高画素密度化が可能となる。しかし、非特許文献1に記載の条件を適用すると、図12Bのグラフによれば、フォトダイオード領域の高さLdは2.5~3μmが必要である。このフォトダイオード領域に必要な高さLdは、画素の高密度化が進んでも変わらないため、高密度画素化が進むと、相当に高いアスペクト比(上部1辺長とダイオードの高さとの比)になるように島状半導体30を形成する必要がある。つまり、幅が細く、深い半導体の溝内にMOSトランジスタのゲート導体層34a,34bを形成する必要がある。また、島状半導体30の底部に信号線N層31を形成することも困難である。このように、島状半導体30による画素構造の形成が困難であることが、固体撮像装置の高画素密度化を困難にさせる原因となっている。このため、固体撮像装置において、感度の低下を生じることなく、フォトダイオード領域の高さLdを低くする技術が求められている。
 また、図12Aに示す従来例の固体撮像装置では、画素(島状半導体30)に斜め方向から入射する光線38は、当該画素に隣接する画素のダイオード領域に入射することがある。この1個の画素内での収光率の低下により、本来は1個の画素で発生するべき信号電荷が周辺の画素に分散して発生する。これにより固体撮像装置の解像度の低下、またはカラー撮像における混色を発生する。この混色はカラー再生画像の画質を低下させるので、低混色化が求められている。
 一方、特許文献2は、フォトダイオード領域41の上に設けた金属壁39a,39bを設けて収光率を上げる技術である。この技術ではフォトダイオード領域41の上部においては、当該画素に隣接する画素への光漏洩を減少させて収光率を向上できる。しかしながら、フォトダイオード領域41に斜め方向に入射した光の一部が、当該画素に隣接する画素に入射するため、固体撮像装置の解像度の低下、またはカラー撮像における混色を避けることはできない。このような事情は、特許文献3および特許文献4に記載の従来例の固体撮像装置においても同様である。この収光率の低下は、高画素密度化されるほど大きくなる。このため、フォトダイオード領域41の表面に入射する光の収光率の低下を改善する技術が求められている。
 本発明は、上記の事情を鑑みてなされたものであり、特に、高画素密度、高解像度、低混色、高感度を可能にする固体撮像装置を実現することを目的とする。
 上記目的を達成するため、本発明に係る固体撮像装置は、
 1個又は複数の画素を有する固体撮像装置であって、
 基板上に画素を構成する島状半導体が形成され、
 前記島状半導体は、
 光の照射により信号電荷を発生する光電変換部と、
 前記信号電荷を蓄積する信号電荷蓄積部と、
 前記信号電荷蓄積部に蓄積された信号電荷の蓄積量に応じた信号を読み出す信号電荷読み出し部と、
 前記信号電荷蓄積部に蓄積された前記信号電荷を前記画素の外部に除去する信号電荷除去部と、を備え、
 少なくとも前記光電変換部を包囲するとともに、前記島状半導体に入射された光を反射する反射導体層と、
 前記島状半導体の上表面近傍に焦点が位置するマイクロレンズと、を有する、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記信号電荷蓄積部がダイオードから構成され、
 前記信号電荷読み出し部が、前記島状半導体の上下部にソースとドレインを有する接合トランジスタから構成され、
 前記ダイオードが前記接合トランジスタのゲートとして機能し、
 前記光電変換部が前記ダイオードと前記接合トランジスタのチャネルとから構成される領域内に存在し、
 前記信号電荷除去部が前記ダイオードに隣接して形成されているトランジスタである、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記画素のそれぞれが、
 基板上に形成された第1の半導体領域と、
 前記第1の半導体領域上に形成され、該第1の半導体領域と反対の導電型又は固有半導体である第2の半導体領域と、
 前記第2の半導体領域の上部側面領域に形成され、前記第1の半導体領域と同じ導電型である第3の半導体領域と、
 前記第3の半導体領域及び前記第2の半導体領域の下部側面領域の外周部に形成された絶縁層と、
 前記絶縁層の外周部に形成され、前記第2の半導体領域の下部領域にチャネルを形成する導体層と、
 前記導体層を除く前記第3の半導体領域及び前記絶縁層の外周部に形成された光を反射する反射導体層と、
 前記第2の半導体領域及び前記第3の半導体領域上に形成され、前記第2の半導体領域と同じ導電型である第5の半導体領域と、
 前記第5の半導体領域上に形成され、該第5の半導体領域の上表面近傍に焦点が位置するマイクロレンズと、を備え、
 前記光電変換部が、前記第2の半導体領域及び前記第3の半導体領域から構成され、
 前記信号電荷蓄積部が、前記第2の半導体領域及び前記第3の半導体領域からなるダイオードから構成され、
 前記信号電荷読み出し部が、前記第5の半導体領域、前記第2の半導体領域の下部領域をソース、ドレインとし、前記信号電荷蓄積部をゲートとした接合トランジスタから構成され、
 前記信号電荷除去部が、前記第2の半導体領域と、前記島状半導体の外周部に設けた導体層と、前記第2の半導体領域と前記導体層の間に配置された絶縁層と、を有するMOSトランジスタから構成され、
 少なくとも前記第3の半導体領域と前記第5の半導体領域とは、前記島状半導体内に形成されている、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記第1の半導体領域が、前記第1の半導体領域と同じ導電型の第6の半導体領域と、前記第1の半導体領域と反対の導電型の第7の半導体領域と、前記第1の半導体領域と同じ導電型の第8の半導体領域からなる、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記第1の半導体領域が、前記第1の半導体領域と反対の導電型の第9の半導体領域と、前記第1の半導体領域と反対の導電型の第7の半導体領域と、前記第1の半導体領域と同じ導電型の第8の半導体領域からなる、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記島状半導体の下方に形成された反射層を備える、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記島状半導体の下方に形成された光透過絶縁層と、該光透過絶縁層の下方に形成された光吸収層と、をさらに備え、
 前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1~第5の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光で相対的に大きくなるとともに赤色光で相対的に小さくなるように、前記光透過絶縁層の厚さが設定されている、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記島状半導体の下方に形成された光透過絶縁層と、該光透過絶縁層の下方に形成された光吸収層と、をさらに備え、
 前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1~第5の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光及び赤色光で相対的に大きくなるように、前記光透過絶縁層の厚さが設定されている、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記島状半導体上部の中央表層部に、凹部又は凸部が形成され、
 前記凹部の凹状の面又は前記凸部の凸状の面を境界面として互いに接する2つの物質領域の光屈折率が互いに異なる、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記マイクロレンズと前記島状半導体との間に形成された光透明中間層をさらに備え、
 前記マイクロレンズの焦点が、前記光透明中間層の内部に位置する、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記マイクロレンズと前記島状半導体との間に形成された光透明中間層をさらに備え、
 前記マイクロレンズの外周部の1点から入射し、該マイクロレンズの中心線及び前記光透明中間層を通過して、前記島状半導体上部の外周部の1点に到達する光線と、前記第5の半導体領域の上表面と直交する線とがなす角度θiが、ブリュースター角θb(=tan-1(N/N);ここで、N:前記光透明中間層の屈折率、N:前記第5の半導体領域の屈折率)よりも小さい、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記複数の画素が正方格子状、矩形格子状、又は千鳥状に配列されており、
 前記複数の画素の内、縦方向に配列されている複数の画素における前記第1の半導体領域を互いに電気的に接続するとともに、縦方向に延びる複数の導体配線と、
 前記複数の画素の内、横方向に配列されている複数の画素における前記導体層を互いに電気的に接続するとともに、横方向に延びる複数の導体配線と、
 前記複数の画素の内、横方向に配列されている複数の画素における前記反射導体層を互いに電気的に接続するとともに、横方向に延びる複数の反射導体配線と、をさらに備え、
 前記横方向に延びる導体配線と、前記反射導体配線とが、前記複数の画素への光の照射方向から見て、互いに上下に重なることなく、かつ、縦方向に交互に配列されている、
 ことを特徴とする。
 また、本発明の好ましい態様では、
 前記複数の画素のそれぞれにおける前記反射導体層は、その画素における前記第5の半導体領域と電気的に分離されており、前記複数の画素の全ての前記反射導体層は、前記複数の画素が存在する画素領域に亘って、当該画素領域を覆うように互いに繋がっている、
 ことを特徴とする。
 本発明によれば、高画素密度、高解像度、低混色、高感度を可能にする固体撮像装置を提供することができる。
本発明の第1の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 第1の実施形態に係る固体撮像装置における隣接する2個の画素の立体構造を示す模式立体図である。 本発明の第1の実施形態の変形例に係る固体撮像装置の画素構造を示す模式断面図である。 本発明の第2の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 第2の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 本発明の第3の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 緑色光、赤色光の反射率の膜厚依存性の計算結果を示すグラフである。 本発明の第4の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 第4の実施形態に係る固体撮像装置の別の画素構造を示す模式断面図である。 本発明の第5の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 本発明の第6の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 第1~第6の実施形態に係る固体撮像装置における3×3個の画素の配列状態を示す模式平面図である。 光線が画素の間隙に入射した状態を示す模式立体図である。 本発明の第7の実施形態に係る固体撮像装置における3×3個の画素の配列状態を示す模式平面図である。 第7の実施形態に係る固体撮像装置における3×3個の画素の別の配列状態を示す模式平面図である。 本発明の第8の実施形態に係る固体撮像装置の画素構造を示す模式断面図である。 第8の実施形態に係る固体撮像装置の画素領域の3×3個の画素の配列状態を示す、図10AのA-A´線での模式平面図である。 本発明の変形例に係る固体撮像装置の画素構造を示す模式断面図である。 従来例の固体撮像装置の画素構造を示す模式断面図である。 Si(シリコン)深さと光吸収強度の関係を示すグラフである。 別の従来例の固体撮像装置の画素構造を示す模式断面図である。
 以下、本発明の実施形態に係る固体撮像装置について図面を参照しながら説明する。
(第1の実施形態)
 図1Aに本発明の第1の実施形態に係る固体撮像装置の画素(島状半導体)1aの構造を示す。
 図1Aに示すように、各画素1aには、基板上で第1の走査方向に延びる信号線(図1Aには図示せず)に電気的に接続された第1の半導体N領域2が形成されている。第1の半導体N領域2上には、第1の半導体N領域2と反対の導電型である第2の半導体P領域3が形成されている。第2の半導体P領域3の上部側面領域には、第1の半導体N領域2と同じ導電型である第3の半導体N領域6a,6bが形成されている。
 第3の半導体N領域6a,6b及び第2の半導体P領域3の下部側面領域の外周部には絶縁層4a,4bが形成されている。絶縁層4a,4bの外周部には、第2の半導体P領域3の下部領域にチャネルを形成する導体層5a,5bが形成されている。導体層5a,5bは、金属を用いて単層構造に形成され、電流を流すゲート導体層、及び、赤外線、可視光線、紫外線などの光を反射する光反射層として機能する。
 画素1aには、第2の半導体P領域3と、絶縁層4a,4bと、導体層5a,5bとを有するMOSトランジスタが形成されている。このMOSトランジスタでは、導体層5a,5bに電圧が印加されることにより、チャネルが第2の半導体P領域3に形成される。そして、このMOSトランジスタに繋がるように、第2の半導体P領域3と第3の半導体N領域6a,6bとからなるフォトダイオード領域7が形成されている。
 フォトダイオード領域7の表層部には、第4の半導体P領域8a,8bが形成されている。第4の半導体P領域8a,8bは、第3の半導体N領域6a,6bと絶縁層4a,4bとの間に絶縁層4a,4bに接するように形成されている。第4の半導体P領域8a,8bの外周部には、絶縁層4a,4bを介して、光を反射する光反射導体層9a,9bが形成されている。光反射導体層9a,9bは、導体層5a,5bを除く第3の半導体N領域6a,6b及び絶縁層4a,4bの外周部に形成されている。光反射導体層9a,9bは、金属を用いて単層構造に形成され、電流を流す導体層及び光を反射する光反射層として機能する。
 第3の半導体N領域6a,6b及び第4の半導体P領域8a,8b上には、第3の半導体N領域6a,6b及び第4の半導体P領域8a,8bと電気的に接続され、第2の半導体P領域3と同じ導電型である第5の半導体P領域10が形成されている。
 第5の半導体P領域10は、画素領域の第1の走査方向と直交する方向に延びる画素選択線(図1Aでは図示せず)に電気的に接続されている。第5の半導体P領域10は、光反射導体層9a,9bに電気的に接続されている。このため、光反射導体層9a,9bは画素選択線としても機能する。また、少なくともフォトダイオード領域7が形成される領域は、島状半導体内に形成されている。このフォトダイオード領域7が形成される領域は、第2の半導体P領域3において第3の半導体N領域6a,6bが形成されている上部領域、第3の半導体N領域6a,6b、第4の半導体P領域8a,8b、及び第5の半導体P領域10からなる。なお、少なくとも第3の半導体N領域6a,6bと第5の半導体P領域10とは、島状半導体内に形成されていることが好ましい。
 第5の半導体P領域10上には、光を透過する材料からなる光透過中間領域24が形成され、この光透過中間領域24上に、第5の半導体P領域10の上表面近傍に焦点が位置するマイクロレンズ11が形成されている。
 本実施形態の固体撮像装置では、図1Aに示すように、第5の半導体P領域10の上表面近傍に位置する、マイクロレンズ11の焦点に光線が集光される。この集光された光線の内、マイクロレンズ11の中心部に垂直に入射した光線以外の、画素(島状半導体)1aに入射した光線12a,12bは、光反射導体層9a,9bと導体層5a,5bにより反射され、画素1aの下方に伝播する。このため、感光領域であるフォトダイオード領域7での光伝播長は、フォトダイオード領域の高さLdより長くなる。このように、感光領域であるフォトダイオード領域7での光伝播長を長くできることは、図12Aに示す従来例の画素構造の固体撮像装置と比較して、フォトダイオード領域の高さLdを低くしながら同じ感度が得られることを意味している。
 これにより、画素1aのアスペクト比(上部1辺長とダイオード高さとの比)を低くできるので、画素構造の加工が容易になる。加えて、本実施形態では、マイクロレンズ11の中心部に垂直に入射した光線だけでなく、画素1aに斜め方向から入射された光線12a,12b(図1A参照)も、光反射導体層9a,9bと導体層5a,5bで反射されるので、光線12a,12bが、当該画素に隣接する画素に漏洩することが防止される。これにより、固体撮像装置の解像度の低下と、カラー撮像における混色の原因となることが防止される。
 図1Bに、図1Aに示す本実施形態の固体撮像装置の画素1aが、隣接する2個の画素1b,1cからなる場合の立体模式図を示す。図1Bに示すように、この画素1b,1cには、画素1aの第1の半導体N領域2に対応する第1の半導体N領域2a,2bが存在する。この第1の半導体N領域2a,2bは、基板上で第1の走査方向に延びる信号線N層2aa,2bbに電気的に接続されている。
 図1Bに示すように、画素1aにおけるMOSトランジスタのゲート導体層である導体層5a,5b(図1A参照)に対応する導体層5aa,5bbが、画素1b,1cの外周を囲むように形成されている。導体層5aa,5bbは、信号線N層2aa,2bbに直交する方向に延びるMOSゲート配線5abに電気的に接続されている。画素1aの光反射導体層9a,9bに対応する光反射導体層9aa,9bbが、画素1b,1cの外周を囲むように形成されている。光反射導体層9aa,9bbは、信号線N層2aa,2bbに直交する方向に延びる画素選択線9abに電気的に接続されている。光反射導体層9aa,9bbは、画素1aの第5の半導体P領域10に対応する第5の半導体P領域10a,10bに電気的に接続されている。第5の半導体P領域10a,10b上には、画素1aのマイクロレンズ11に対応するマイクロレンズ11a,11bが配置されている。
 信号線N層2aa,2bb上に形成されている画素1b,1cは島状半導体を構成し、この島状半導体を包囲するように、導体層5aa,5bb,光反射導体層9aa,9bbが形成されている。第1の半導体N領域2a,2b及び信号線N層2aa,2bbは十分にドナー不純物がドープされた層であるため、第1の半導体N領域2a,2b及び信号線N層2aa,2bbに入射した光によって信号電荷は発生しない。これによりマイクロレンズ11a,11bから画素1b,1cに入射した光は、当該画素1b,1cに隣接する画素への光漏洩がなく、それぞれ、導体層5aa,5bb、光反射導体層9aa,9bbで反射されながら島状半導体内を伝播し、第1の半導体N領域2a,2b及び信号線N層2aa,2bbに到達する。これにより、島状半導体の高さを低くすることができ、画素構造の加工性が高められ、高画素密度化が実現されるとともに、解像度の低下、カラー撮像での混色のない固体撮像装置が提供できる。
 第1の実施形態において、第2の半導体P領域3は、P型導電型の半導体からなるものとしたが、その変形例として、図1Cに示すように、第2の半導体P領域3に代えて、当該領域は、固有半導体からなる固有半導体(i)領域3aであってもよい。ここでの固有半導体とは、母体中に不純物が混入されていない半導体であり、そのフェルミ順位が伝導体下端と価電子帯上端とのエネルギギャップの中心近傍に位置するものである。固有半導体は、実際には完全には不純物が含まれていないものは作成することが困難であるので、その不純物レベルに応じ、アクセプタ不純物が微量含まれていればP型、不純物が全く含まれていない純粋なシリコンであれば真性型、ドナー不純物が微量含まれていればN型となる。固有半導体は、高抵抗体であり、第5の半導体P領域10と、信号線N層2aa,2bbとの間に電圧が印加されたときに内部に電位勾配が発生し、このチャネル内に前記第5の半導体P領域から注入した正孔(ホール)が信号線N層2aa,2bbに向かって流れるので、接合トランジスタのチャネルとして機能する。
 図1A、図1Cに示す画素構造においては、フォトダイオード領域7は、画素1aを構成する島状半導体中への入射光により信号電荷を発生する点で光電変換部であり、第2の半導体P領域3又は固有半導体領域3aと、第3の半導体N領域6a,6bとからなるダイオードであるフォトダイオードは、その光電変換部で発生した信号電荷を蓄積する点で信号電荷を蓄積する信号電荷蓄積部である。また、第5の半導体P領域10、信号線N層2近傍の第2の半導体P領域3又は固有半導体領域3aをソース・ドレインとし、フォトダイオード領域7をゲートとした増幅接合トランジスタは、信号電荷読み出し部である。第2の半導体P領域3又は固有半導体領域3aと、絶縁層4a,4bと、導体層5a,5bとを有するMOSトランジスタは、フォトダイオード領域7に蓄積された信号電荷を信号線N層2に除去するための信号電荷除去部である。第1の実施形態においては、島状半導体中に、光電変換部と、信号電荷蓄積部と、信号読出し部と、信号電荷除去部とが形成され、少なくとも光電変換部が形成されている島状半導体の外周部が、光反射層で覆われていることを特徴としている。
 このため、図1A,1B,1Cでは導体層5a,5b,5aa,5bbと光反射導体層9a,9b,9aa,9bbとは電気的に分離したが、導体層5a,5b,5aa,5bbと光反射導体層9a,9b,9aa,9bbとは電気的に接続されるとともに、導体層5a,5b,5aa,5bb及び光反射導体層9a,9b,9aa,9bbと、第5の半導体P+領域10とは電気的に分離されていても良い。また、光反射導体層9a,9b,9aa,9bbが他の導電領域と分離され、独立した構造においても、本第1の実施形態と同様な効果が得られる。
(第2の実施形態)
 図2Aに本発明の第2の実施形態に係る固体撮像装置の画素構造を示す。
 図2Aに示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aの下方に、光を反射するとともに導電体からなる光反射導体層14a,14bがさらに形成されている点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
 図2Aに示す本実施形態の固体撮像装置では、図1Aに示す第1の実施形態の固体撮像装置における画素1aの下方に絶縁層13が形成され、その絶縁層13の下方に、金属などから形成され、光を反射するとともに導電体からなる光反射導体層14aが形成されている。光反射導体層9a,9bと導体層5a,5bにより反射され、画素1aの下方に伝播し、この絶縁層13に入射した光線12cは、光反射導体層14aで反射され、再び画素1a内のフォトダイオード領域7に到達して信号電荷を発生させる。これは、図1Aに示す第1の実施形態の固体撮像装置と比較して、フォトダイオード領域7の高さLdが同じであっても、さらに高い感度が得られることを意味する。また、本実施形態の固体撮像装置では、その感度を第1の実施形態の固体撮像装置と同じとすると、第1の実施形態の固体撮像装置よりもさらにフォトダイオード領域7の高さLdを低くすることができる。これにより、画素構造の加工が容易となり、固体撮像装置の高画素密度化が実現される。
 さらに、本実施形態の固体撮像装置では、フォトダイオード領域7の高さLdは、単にその高さを低くするだけでなく、その高さを適宜に調整することで、感光領域であるフォトダイオード領域7での光伝播長を長くすることができるので、光反射導体層14aからの反射光12eにより発生した信号電荷を、感度向上に寄与させることもできる。
 図2Bに第2の実施形態の変形例を示す。図2Bに示すように、本変形例では、図1Aに示す画素1aの下部に、絶縁層を介することなく直接に光反射導体層14bが形成されている。この画素構造によっても、該光反射導体層14bで反射された反射光12eが、再び画素1aのフォトダイオード領域7に入射して信号電荷を発生する。これにより、図2Aに示す第2の実施形態の固体撮像装置と同様な効果が得られる。
 これにより、第2の実施形態及びその変形例によれば、高画素密度、高解像度、低混色、高感度が得られる固体撮像装置が実現される。
(第3の実施形態)
 図3Aに本発明の第3の実施形態に係る固体撮像装置の画素構造を示す。
 図3Aに示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aの下方に、SiO2膜などの絶縁体から形成され、光を透過する光透過絶縁層(SiO2膜)15と、光透過絶縁層15の下方に、Si(シリコン)などから形成され、入射光の一部を吸収する光吸収層(Si層)16とが形成されている点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
 光透過絶縁層15に入射した光線17は、図3Aに示すように、光透過絶縁層15内で多重反射を発生し、光吸収層16の表面での反射光18a,18b,・・・と、光吸収層16への入射光19a,19b,・・・を生じる。この場合、光透過絶縁層15内で多重反射され、フォトダイオード領域7に戻る光量は、光透過絶縁層15の厚さ、SiとSiO2の光吸収率、屈折率、入射光の波長、入射角度などに依存して変化する。
 図3Bに光透過絶縁層15の表面に45度の角度で入射した緑色光(λ=550nm)、赤色光(λ=650nm)の、光吸収層16による反射率のSiO2膜の膜厚依存性を計算した結果を示す。なお、青色光は画素1aの表面近傍のフォトダイオード領域7で吸収されるので、このような膜厚依存性はみられない。この反射率は、光透過絶縁層15への入射光量に対するフォトダイオード領域7への戻り光量の割合を示す。図3Bに示すように、緑色光、赤色光は、SiO2膜の厚さに依存して反射率が高くなったり低くなったりする。例えば、SiO2膜厚を0.5μm程度にすると、緑色光、赤色光ともに反射率を相対的に大きくすることができる。一方、例えば、SiO2膜厚を0.2μm程度にすると、緑色光の反射率を相対的に大きくするとともに、赤色光の反射率を相対的に小さくすることができる。このようなSiO2膜厚の変更により、カラー撮像で青・緑・赤色光の信号出力のバランスを調整する信号処理においては、SiO2膜厚を0.2μm程度とし、緑色光の感度を上げ、赤色光の感度を下げることによりカラー固体撮像装置の感度向上に寄与させることができる。また、SiO2膜厚を0.5μm程度とし、緑色光、赤色光ともに反射率を高めると、白黒撮像における感度向上に寄与させることができる。このように、SiO2膜厚の変更により、光の波長によって反射率を変更できることは、SiO2膜厚の変更により、入射光の波長と、固体撮像装置の感度の関係を示す分光感度特性が制御できることを意味する。
 実際の固体撮像装置では、SiO2層の表面にいろいろな入射角度で光が入射し、またマイクロレンズの設計によっても、図3Bの特性は変化する。また、カラー撮像、白黒撮像によっても要求される分光感度特性は異なる。このように、光透過絶縁層(SiO2膜)15の厚さを変化させ、光の波長によって反射率を変更する技術は、所望する分光感度特性を得る上で、効果的な手法を提供する。
(第4の実施形態)
 図4Aに本発明の第4の実施形態に係る固体撮像装置の画素構造を示す。
 図4Aに示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aにおける第5の半導体P領域10の中央表層部に凹部20a又は凸部20bを形成するとともに、凹部20aの凹状の面又は凸部20bの凸状の面を境界面として互いに接する2つの物質領域の光屈折率を互いに異ならせた点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
 図4Aに図1Aに示す画素1aにおける第5の半導体P領域10の中央表層部に三角錐状の凹部20aが形成されている例を示す。
 図1Aに示す画素構造では、第5の半導体P領域10の中央表層部に凹部20aが存在しない。このため、マイクロレンズ11の中央部に垂直に入射した光線21a,21cは、そのまま、光反射導体層9a,9bで反射されることなく、画素1aの内部に入射する。このため、マイクロレンズ11の中央部に垂直に入射する光線21a,21cに対しては、感光領域であるフォトダイオード領域7における光伝播長は、フォトダイオード領域の高さLdより長くすることはできない。
 これに対し、図4Aに示す画素構造では、マイクロレンズ11の中心線から入射する光線21bを除いて、マイクロレンズ11の中央部から第5の半導体P領域10に入射する入射光21bは、凹部20aによって光反射導体層9a,9b側に屈折する。これにより、この屈折された光線22aが光反射導体層9a,9bで反射され、フォトダイオード領域7での光伝播長が長くなり、固体撮像装置の感度が向上する。この凹部20aにおける光線の屈折は、第5の半導体P領域10の材料であるSi(シリコン)の屈折率と、マイクロレンズ11の材料である透明樹脂材料の屈折率との差異により生じる。
 図4Bに図1Aに示す画素構造における第5の半導体P領域10の中央表層部に三角錐状の凸部20bが形成されている例を示す。
 図4Bに示すように、第5の半導体P領域10の中央表層部には、図4Aに示す凹部20aの代わりに凸部20bを形成してもよい。この場合も、マイクロレンズ11の中心線から入射する光線21cを除いて、マイクロレンズ11の中央部から第5の半導体P領域10に入射する入射光21bは、凸部20bによって光反射導体層9a,9b側に屈折する。これにより、この屈折された光線22aが光反射導体層9a,9bで反射され、フォトダイオード領域7での光伝播長が長くなり、固体撮像装置の感度が向上する。
 本実施形態では、凹部20aの凹状の面又は凸部20bの凸状の面を境界面として互いに接する2つの物質領域の光屈折率が互いに異なるようにした。これに限られず、凹部20a又は凸部20b自体が、第5の半導体P領域10の材料であるSi又はマイクロレンズ11の透明樹脂材料とは異なる屈折率を有する材料で形成されていてもよい。これによっても、マイクロレンズ11の中央部から第5の半導体P領域10に入射する入射光は、凹部20a又は凸部20bによって光反射導体層9a,9b側に屈折する。そして、感光領域であるフォトダイオード領域7での光伝播長が長くなり、固体撮像装置の感度が向上する。
 本実施形態では、図4A,図4Bを参照して、凹部20a及び凸部20bの形状は、いずれも三角錐状とした。これに限られず、マイクロレンズ11の中央部に入射した光線が、凹部20a又は凸部20bで屈折し、光反射導体層で反射される形状であれば、その他の形状、例えば、円錐状、四角錘状、半円状であってもよい。
(第5の実施形態)
 図5に本発明の第5の実施形態に係る固体撮像装置の画素構造を示す。
 図5に示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aにおいて、マイクロレンズ11の焦点23が第5の半導体P領域10の上表面よりも上方側の光透過中間領域24内に位置する点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
 図5に示す画素構造において、マイクロレンズ11の焦点23は第5の半導体P領域10より上部の光透過中間領域24内に形成されている。
 本実施形態の固体撮像装置では、このような画素構造を有することで、マイクロレンズ11から入射し、光透過中間領域24の内部の焦点23に集光される光線25bは、第5の半導体P領域10の上表面に焦点が位置する場合(第1の実施形態の画素構造の場合)の光線25aよりも、最初に光反射導体層9a,9bに到達する位置が、第5の半導体P領域10の上表面にさらに接近する。これは、本実施形態の画素構造による光線25bの方が、第1の実施形態の画素構造における光線25aよりもフォトダイオード領域7での光伝播長がさらに長くできることを意味する。したがって、本実施形態の固体撮像装置によれば、第1の実施形態の固体撮像装置と比べ、感度がさらに向上するようになる。
(第6の実施形態)
 図6に本発明の第6の実施形態に係る固体撮像装置の画素構造を示す。
 図6に示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aにおいて、マイクロレンズ11の外周部の1点26から入射し、マイクロレンズ11の中心線27を通過して、第5の半導体P領域10の外周部の1点28に到達する光線29と、第5の半導体P領域10の上表面と直交する線とがなす角度θiが、ブリュースター(Brewster)角θbより小さいことを特徴としている。
 図12A、図13に示す従来例の固体撮像装置においては、フォトダイオード領域が光を反射する物質で完全に囲まれていないため、フォトダイオード領域に大きい入射角で入射する光線は、当該画素に隣接する画素に漏洩することが想定される。これに対して、図1Aに示したように、本実施形態の画素構造では、フォトダイオード領域7にどのような角度で光が入射しても、フォトダイオード領域7全体が第1及び光反射導体層5aa,5bb,9aa,9bbで完全に包囲されているため、隣接する画素への光漏洩をなくすことが可能になる。これは、マイクロレンズ11から入射する全ての入射光が、第5の半導体P領域10の表面に到達することのみで、その入射光を全て有効に信号電荷の発生に寄与させることができることを意味する。
 図6に本発明の第6の実施形態に係る固体撮像装置の画素構造を示す。
 図6に示すように、マイクロレンズ11の外周部の1点26から入射し、マイクロレンズ11の中心線27及び光透過中間領域24を通過して、第5の半導体P領域10の外周部の1点28に到達する光線29と、第5の半導体P領域10の表面と直交する角度θiが、ブリュースター角θbより小さくなっている。ブリュースター角θbは、光透過中間領域24の屈折率をN1、第5の半導体P領域10の屈折率をN2とすると次式で示される。
 θb=tan-1(N/N
 上述した角度θiが、ブリュースター角θbより大きいと、マイクロレンズ11から入射し、光透過中間領域24を通過した入射光は、第5の半導体P領域10の表面で全反射され、第5の半導体P領域10内に進入しない。このように、角度θiをブリュースター角θbよりも小さくすることにより、マイクロレンズ11に入射し、光透過中間領域24を通過した全ての光線がフォトダイオード領域7に有効に導かれるようになる。ここで、光線を有効に導くとは、第5の半導体P領域10の表面に入射した光線は全反射することなく第5の半導体P領域10内に入射することを意味する。これにより、固体撮像装置の感度向上が実現できる。
 図7に第1~第6の実施形態に係る固体撮像装置における画素領域に形成された3×3個(=9個)の画素P11~P33の配列状態を光照射面から見た模式平面図を示す。
 図7に示すように、光照射面から、マイクロレンズを上面に有する画素P11~P33と、図1Bに示す画素選択線9abに対応する画素選択線9ab1,9ab2,9ab3と、図1Bに示す信号線N層2aa,2bbに対応する信号線N層S1,S2,S3とが形成されている。この信号線N層S1,S2,S3は、図2Bに示す画素構造では、光反射導体層14bが対応する。図1Bに示すMOSゲート配線5abに対応するMOSゲート配線5ab1,5ab2,5ab3が、画素選択線9ab1,9ab2,9ab3の下方に形成されている。即ち、画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3とが上下に重なるように形成されている。図7では、画素選択線9ab1,9ab2,9ab3間に形成された間隙G1,G2,G3,G4の内、一例として間隙G3に入射した光線100は画素P11~P33が形成されている基板上の信号線N層S1に到達する。
 図8に示すように、間隙G3に入射した光線100は、画素11aの下方に位置する信号線N層2aaに入射する。光線100の内の一部の光線102は、屈折率の異なる2つの絶縁層によって挟まれている信号線N層2aaと、それに隣接する信号線N層2bb(信号線N層S1,S2,S3)内で多重反射光101a,101b,101c,101dを生じる。多重反射光101a,101b,101c,101dは、画素11aに隣接する画素11bのフォトダイオード領域7(図1A参照)に入射して信号電荷を発生する。この隣接する画素11bへの光漏洩は、固体撮像装置の解像度の低下とカラー撮像での混色を発生する。
(第7の実施形態)
 以下、図9A、図9Bを参照しながら、本発明の第7の実施形態に係る固体撮像装置を説明する。
 上述したように、図7に示す固体撮像装置では、画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3とが上下に重なるように形成され、信号線N層S1,S2,S3内での多重反射によって解像度の低下とカラー撮像での混色を生じていた。
 これに対し、図9Aに示す本実施形態の固体撮像装置では、画素P11~P33は、正方格子状又は矩形格子状に配列されている。詳しくは、画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3とは上下に重ならないように配列されている。即ち、画素選択線9ab1,9ab2,9ab3は、MOSゲート配線5ab1,5ab2,5ab3間に形成された間隙G1,G2,G3,G4内において、光反射導体層9a,9b(図1A参照)に対応する画素P11~P33における導体層に電気的に接続された状態で配線されている。この構成によって、固体撮像装置の画素領域の全域において、光照射面から入射した入射光は、画素選択線9ab1,9ab2,9ab3によって進路を阻まれ、直接に多重反射を生じる信号線N層S1,S2,S3に到達することが防止される。これにより、本実施形態の固体撮像装置によれば、解像度の低下と、カラー撮像における混色が防止される。
 図9Bに示す本実施形態の変形例では、画素P11~P33は、上下方向に一列に配置されず、千鳥状に配置されている。このように画素P11~P33が千鳥状に配置されるに伴い、信号線N層S1,S2,S3は、上下方向に千鳥状に蛇行しながら各画素P11~P33を繋げている。図9Aに示す第7の実施形態と同様に、画素選択線9ab1,9ab2,9ab3は、MOSゲート配線5ab1,5ab2,5ab3間に形成された間隙G1,G2,G3,G4内において、光反射導体層9a,9b(図1A参照)に対応する画素P11~P33の光反射導体層に電気的に接続された状態で配線されている。これによって、固体撮像装置の画素領域の全域において、画素選択線9ab1,9ab2,9ab3によって、入射光が直接に多重反射を生じる信号線配線N層S1,S2,S3に到達することが防止される。これにより、本変形例の固体撮像装置によれば、解像度の低下と、カラー撮像における混色が防止される。
 なお、図9A、図9Bでは、光照射面から見た状態で、画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3との間に微小な隙間が形成されているが、上下方向の画素P11~P33間の離間距離を長くすることにより、画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3とを上下に重なるように形成することができる。これによって、固体撮像装置の画素領域の全域において、入射光は、画素選択線9ab1,9ab2,9ab3によって、直接に多重反射を生じる信号線N層S1,S2,S3に到達することがより確実に防止される。これにより、本変形例の固体撮像装置によれば、解像度の低下と、カラー撮像における混色が防止される。
(第8の実施形態)
 以下、図10A、図10Bを参照しながら、本発明の第8の実施形態に係る固体撮像装置を説明する。
 図1Aに示す第1の実施形態の固体撮像装置の画素構造では、フォトダイオード領域7を包囲する光反射導体層9a,9bは、第5の半導体P領域10に電気的に接続されていた。これに対し、本実施形態の固体撮像装置の画素構造では、図10Aに示すように、第5の半導体P領域10は、画素選択線10aa,10bbに電気的に接続されるとともに、光反射導体層9a,9bに対応する光反射導体層99a,99bとは電気的に分離されている点で異なっている。なお、図10Aでは、光反射導体層99a,99bは、光反射導体配線層99c,99dに電気的に接続されている。
 本実施形態の固体撮像装置では、第5の半導体P領域10の上表面近傍に位置する、マイクロレンズ11の焦点に集光された光線の内、マイクロレンズ11の中心部に垂直に入射した光線以外の、画素1aに入射した光線12a,12bは、光反射導体層99a,99b及び導体層5a,5bにより反射され、画素1a内を下方に伝播する。このため、感光領域であるフォトダイオード領域7での光伝播長は、フォトダイオード領域の高さLdより長くなる。これにより、第1の実施形態の固体撮像装置と同様、画素構造の加工が容易になり、高画素密度化が実現されるとともに、固体撮像装置の感度が向上する。
 図10Bに、図10Aにおける光反射導体層99c,99dのA-A’線で示す領域を、光照射面から見た状態を示す。この光反射導体層99a,99bは、画素選択線としては機能しないので、固体撮像装置の画素領域を覆うように、光反射導体配線層99c,99dが一体的に繋がるようにしてもよい。これによって、図10Bに示すように、光反射導体配線層99c,99dは、固体撮像装置の全画素領域で、一体の光反射導体層99を形成する。これにより、光照射面から画素P11~P33間に入射した光は、多重反射を生じる信号線N層S1,S2,S3に到達することがより確実に防止される。これにより、本実施形態の固体撮像装置によれば、解像度の低下と、カラー撮像における混色が防止される。
 なお、上記実施形態では、画素領域に1個、2個、又は3×3個(=9個)で配列された画素を用いて、固体撮像装置の画素構造及びその動作について説明した。しかしこれに限られず、本発明の技術的思想は、それ以外の複数の画素が画素領域に1次元又は2次元状に配列された固体撮像装置に適用できることは勿論である。
 上記実施形態では、島状半導体中に、光電変換部であるフォトダイオード領域7、信号電荷蓄積部であるフォトダイオード、信号電荷読み出し部である接合トランジスタ、信号電荷除去部であるMOSトランジスタを有する画素構造としたが、島状半導体中には、それ以外の構成によって、光電変化部、信号電荷蓄積部、信号読出し部、信号電荷除去部を設けた構造であっても、本発明の技術思想に含まれることは言うまでもない。
 上記実施形態では、画素1a,1b、画素P11~P33における島状半導体の構造は、いずれも円柱状のものとした。これに限られず、四角柱状、多角柱状であってもよい。
 上記実施形態では、第1の半導体N領域2及び第3の半導体N領域6a,6bはN型導電型とし、第2の半導体P領域3はP型導電型とし、かつ、第4の半導体P領域8a,8b及び前記第5の半導体P領域10はP型導電型とした。しかしこれに限られず、第1の半導体領域2及び第3の半導体領域6a,6bはP型導電型とし、第2の半導体領域3はN型導電型とし、かつ、第4の半導体領域8a,8b及び前記第5の半導体領域10はN型導電型とすることもできる。
 上記実施形態では、第1の半導体N領域2は、MOSトランジスタの下部全体に形成したが、図11に示すように、この第1の半導体領域2を第6の半導体P領域2cと、第2の半導体P領域3によって第6の半導体P領域2cから分離された第7の半導体N領域2dとから構成し、第6の半導体P領域2cを増幅接合トランジスタのドレインとし、第7の半導体N領域2dを、フォトダイオードに蓄積された信号電荷を除去するためのリセットドレインとした構造としてもよい。この場合、第6の半導体P領域2cと、第7の半導体N領域2dによって挟まれた領域は、第8の半導体P領域となる。
 また、図11において、増幅接合トランジスタの第6の半導体P領域2cは、第9の半導体N領域2cに置換することも可能である。この場合、第9の半導体N領域2cと、第7の半導体N領域2dによって挟まれた領域は、第8の半導体P領域となる。
 上記実施形態では、MOSトランジスタのチャネルは第2の半導体P領域3に電界により形成した(エンハンストメント型)。これに限られず、MOSトランジスタのチャネルは、例えば、第2の半導体P領域3にイオン注入などで不純物を注入すること(デプレッション型)、または埋め込みチャネルによって形成することもできる。
 上記実施形態では、光透過中間領域24は単層構造としたが、光透過中間領域は複数の層で形成されていてもよく、さらには、光透過中間領域にカラーフィルタ層が含まれていてもよい。
 上記実施形態では、光反射導体層9a,9bは、第5の半導体P領域10と電気的に接続したが、これは、本発明の実施形態に必須の構造ではない。光反射導体層9a,9bは、フォトダイオード領域7を囲むように形成されていればよい。例えば、図10Aに示した画素構造のように、第5の半導体P領域10は、画素選択線10aa,10bbに電気的に接続されるとともに、光反射導体層99a,99bとは電気的に分離されていてもよい。
 上記実施形態では、第5の半導体P領域10は、フォトダイオード領域7における第5の半導体P領域8a,8bに電気的に接続したが、両者は電気的に分離されていてもよい。
 上記実施形態では、第5の半導体P領域10は、フォトダイオード領域7における第3の半導体N領域6a,6bに電気的に接続したが、両者は電気的に分離されていてもよい。
 上記実施形態では、導体層5a,5b、光反射導体層9a,9b、99a,99bは、単層の金属膜から形成したが、複数層の金属膜から形成してもよい。
 また、導体層5a,5b、光反射導体層9a,9b、99a,99bは,金属に限られず、不純物ドープされた多結晶Siや、シリサイドのように長波長光を反射する材料層を金属の一部に含ませて形成してもよく、不純物ドープされた多結晶Siや、シリサイドのみで形成してもよい。
 図7、図9A、図9Bでは、信号線N層S1,S2,S3はN層としたが、図2Bに示すように、第1の半導体N領域2の下方に、絶縁層を介することなく直接に金属からなる光反射導体層14bが形成されている場合では、信号線N層S1,S2,S3の抵抗はこの光反射導体層14bによって低下するので、信号線N層S1,S2,S3はN層でなくともよい。この場合も、間隙G1,G2,G3,G4に入射した光線100は、光反射導体層14bで反射され、その一部が当該画素に隣接する画素のフォトダイオード領域に漏洩することが防止される。
 上記実施形態では、導体層5a,5b、光反射導体層9a,9b、99a,99bは、画素(島状半導体)1aを薄膜で包囲する構造としたが、金属材料を用いて画素間を埋めるような構造であってもよい。
 上記実施形態では、導体層5a,5b,5aa,5bb、光反射導体層9a,9b,9aa,9bbは、電磁エネルギー波(電磁波)の一種である光(赤外線、可視光線、紫外線)を反射するものとしたが、光反射導体層は、固体撮像装置の使用目的に応じて、その他の電磁エネルギー波、例えば、X線、ガンマ線、電子線などを反射するものとしても機能するものでもよい。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
 本発明は、高画素密度、高解像度、低混色、高感度を可能にする固体撮像装置に適用できる。
 1a,1b,1c,P11~P33 画素
 2,2a,2b 第1の半導体N領域
 2c 第6の半導体P領域、第9の半導体N領域
 2d 第7の半導体N領域
 2aa,2bb,S1,S2,S3 信号線N
 3 第2の半導体P領域
 3a 固有半導体領域
 4a,4b 絶縁層
 5a,5b,5aa,5bb 導体層(MOSトランジスタのゲート導体層)
 5ab,5ab1,5ab2,5ab3 MOSゲート配線(MOSトランジスタのゲート配線;導体配線)
 6a,6b 第3の半導体N領域
 7 フォトダイオード領域
 8a,8b 第4の半導体P領域
 9a,9b,9aa,9bb 光反射導体層
 9ab,9ab1,9ab2,9ab3 画素選択線(光反射導体配線)
 10,10a,10b 第5の半導体P領域
 10aa,10bb 画素選択線
 11,11a,11b マイクロレンズ
 12a,12b 光線(第5の半導体P領域の上表面近傍の焦点に集光される光線)
 12c,12e 反射光
 Ld フォトダイオード領域の高さ
 13 絶縁層
 14a,14b 光反射導体層
 15 光透過絶縁層
 16 光吸収層
 17 光線(SiO2膜への入射光)
 18a,18b 反射光(Si層による反射光)
 19a,19b 入射光(Si層への入射光)
 20a 凹部(P領域の凹部)
 20b 凸部(P領域の凸部)
 21a,21c 光線(マイクロレンズの中央部に垂直に入射する光線)
 21b,21d 光線(マイクロレンズの中心線から入射する光線)
 22a 光線(凹部での屈折光)
 22b 光線(凸部での屈折光)
 23 マイクロレンズの焦点
 24 光透過中間領域
 25a,25b 第5の半導体P領域への入射光
 26 マイクロレンズの外周部の1点
 27 マイクロレンズの中心線
 28 第5の半導体P領域の外周部の1点
 29 光線(マイクロレンズの中心線及び光透過中間領域を通過した光線)
 30 島状半導体
 31 信号線N
 32 半導体P層
 33a,33b 絶縁層
 34a,34b ゲート導体層
 35a,35b 半導体N層
 36 半導体P
 37a,37b 画素選択線
 38 光線(島状半導体に斜め方向から入射する光線)
 39a,39b 金属壁
 40 半導体基板
 41 フォトダイオード領域
 42 素子分離領域
 43 MOSトランジスタのソース・ドレイン領域
 44 第1の層間絶縁層
 45 MOSトランジスタのゲート電極
 46a,46b,46c コンタクトホール
 47 第2の層間絶縁層
 48 SiO2
 49 SiN膜
 50 マイクロレンズ
 51a,51b,51c,51d 金属配線 
 52a,52b,52c,52d,100 光線
 53a,53b,53c,53d,102 フォトダイオードへの入射光
 99 光反射導体層
 101a,101b,101c,101d 信号線N層内での多重反射光
 G1,G2,G3,G4 間隙

Claims (13)

  1.  1個又は複数の画素を有する固体撮像装置であって、
     基板上に画素を構成する島状半導体が形成され、
     前記島状半導体は、
     光の照射により信号電荷を発生する光電変換部と、
     前記信号電荷を蓄積する信号電荷蓄積部と、
     前記信号電荷蓄積部に蓄積された信号電荷の蓄積量に応じた信号を読み出す信号電荷読み出し部と、
     前記信号電荷蓄積部に蓄積された前記信号電荷を前記画素の外部に除去する信号電荷除去部と、を備え、
     少なくとも前記光電変換部を包囲するとともに、前記島状半導体に入射された光を反射する反射導体層と、
     前記島状半導体の上表面近傍に焦点が位置するマイクロレンズと、を有する、
     ことを特徴とする固体撮像装置。
  2.  前記信号電荷蓄積部がダイオードから構成され、
     前記信号電荷読み出し部が、前記島状半導体の上下部にソースとドレインを有する接合トランジスタから構成され、
     前記ダイオードが前記接合トランジスタのゲートとして機能し、
     前記光電変換部が前記ダイオードと前記接合トランジスタのチャネルとから構成される領域内に存在し、
     前記信号電荷除去部が前記ダイオードに隣接して形成されているトランジスタであることを特徴とする請求項1に記載の固体撮像装置。
  3.  前記画素のそれぞれが、
     基板上に形成された第1の半導体領域と、
     前記第1の半導体領域上に形成され、該第1の半導体領域と反対の導電型又は固有半導体である第2の半導体領域と、
     前記第2の半導体領域の上部側面領域に形成され、前記第1の半導体領域と同じ導電型である第3の半導体領域と、
     前記第3の半導体領域及び前記第2の半導体領域の下部側面領域の外周部に形成された絶縁層と、
     前記絶縁層の外周部に形成され、前記第2の半導体領域の下部領域にチャネルを形成する導体層と、
     前記導体層を除く前記第3の半導体領域及び前記絶縁層の外周部に形成された光を反射する反射導体層と、
     前記第2の半導体領域及び前記第3の半導体領域上に形成され、前記第2の半導体領域と同じ導電型である第5の半導体領域と、
     前記第5の半導体領域上に形成され、該第5の半導体領域の上表面近傍に焦点が位置するマイクロレンズと、を備え、
     前記光電変換部が、前記第2の半導体領域及び前記第3の半導体領域から構成され、
     前記信号電荷蓄積部が、前記第2の半導体領域及び前記第3の半導体領域からなるダイオードから構成され、
     前記信号電荷読み出し部が、前記第5の半導体領域、前記第2の半導体領域の下部領域をソース、ドレインとし、前記信号電荷蓄積部をゲートとした接合トランジスタから構成され、
     前記信号電荷除去部が、前記第2の半導体領域と、前記島状半導体の外周部に設けた導体層と、前記第2の半導体領域と前記導体層の間に配置された絶縁層と、を有するMOSトランジスタから構成され、
     少なくとも前記第3の半導体領域と前記第5の半導体領域とは、前記島状半導体内に形成されている、
     ことを特徴とする請求項1に記載の固体撮像装置。
  4.  前記第1の半導体領域が、前記第1の半導体領域と同じ導電型の第6の半導体領域と、前記第1の半導体領域と反対の導電型の第7の半導体領域と、前記第1の半導体領域と同じ導電型の第8の半導体領域からなることを特徴とする請求項3に記載の固体撮像装置。
  5.  前記第1の半導体領域が、前記第1の半導体領域と反対の導電型の第9の半導体領域と、前記第1の半導体領域と反対の導電型の第7の半導体領域と、前記第1の半導体領域と同じ導電型の第8の半導体領域からなることを特徴とする請求項3に記載の固体撮像装置。
  6.  前記島状半導体の下方に形成された反射層を備えることを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像装置。
  7.  前記島状半導体の下方に形成された光透過絶縁層と、該光透過絶縁層の下方に形成された光吸収層と、をさらに備え、
     前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1~第5の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光で相対的に大きくなるとともに赤色光で相対的に小さくなるように、前記光透過絶縁層の厚さが設定されていることを特徴とする請求項3乃至5のいずれか1項に記載の固体撮像装置。
  8.  前記島状半導体の下方に形成された光透過絶縁層と、該光透過絶縁層の下方に形成された光吸収層と、をさらに備え、
     前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1~第5の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光及び赤色光で相対的に大きくなるように、前記光透過絶縁層の厚さが設定されていることを特徴とする請求項3乃至5のいずれか1項に記載の固体撮像装置。
  9.  前記島状半導体上部の中央表層部に、凹部又は凸部が形成され、
     前記凹部の凹状の面又は前記凸部の凸状の面を境界面として互いに接する2つの物質領域の光屈折率が互いに異なることを特徴とする請求項1に記載の固体撮像装置。
  10.  前記マイクロレンズと前記島状半導体との間に形成された光透明中間層をさらに備え、
     前記マイクロレンズの焦点が、前記光透明中間層の内部に位置することを特徴とする請求項1に記載の固体撮像装置。
  11.  前記マイクロレンズと前記島状半導体との間に形成された光透明中間層をさらに備え、
     前記マイクロレンズの外周部の1点から入射し、該マイクロレンズの中心線及び前記光透明中間層を通過して、前記島状半導体上部の外周部の1点に到達する光線と、前記第5の半導体領域の上表面と直交する線とがなす角度θiが、ブリュースター角θb(=tan-1(N/N);ここで、N:前記光透明中間層の屈折率、N:前記第5の半導体領域の屈折率)よりも小さいことを特徴とする請求項3に記載の固体撮像装置。
  12.  前記複数の画素が正方格子状、矩形格子状、又は千鳥状に配列されており、
     前記複数の画素の内、縦方向に配列されている複数の画素における前記第1の半導体領域を互いに電気的に接続するとともに、縦方向に延びる複数の導体配線と、
     前記複数の画素の内、横方向に配列されている複数の画素における前記導体層を互いに電気的に接続するとともに、横方向に延びる複数の導体配線と、
     前記複数の画素の内、横方向に配列されている複数の画素における前記反射導体層を互いに電気的に接続するとともに、横方向に延びる複数の反射導体配線と、をさらに備え、
     前記横方向に延びる導体配線と、前記反射導体配線とが、前記複数の画素への光の照射方向から見て、互いに上下に重なることなく、かつ、縦方向に交互に配列されていることを特徴とする請求項3に記載の固体撮像装置。
  13.  前記複数の画素のそれぞれにおける前記反射導体層は、その画素における前記第5の半導体領域と電気的に分離されており、前記複数の画素の全ての前記反射導体層は、前記複数の画素が存在する画素領域に亘って、当該画素領域を覆うように互いに繋がっていることを特徴とする請求項3に記載の固体撮像装置。
PCT/JP2010/069384 2010-10-29 2010-10-29 固体撮像装置 WO2012056586A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011503695A JP4769911B1 (ja) 2010-10-29 2010-10-29 固体撮像装置
PCT/JP2010/069384 WO2012056586A1 (ja) 2010-10-29 2010-10-29 固体撮像装置
KR1020127011946A KR20120125600A (ko) 2010-10-29 2011-07-29 고체 촬상 장치
CN2011800045670A CN102668084A (zh) 2010-10-29 2011-07-29 固体摄像器件
PCT/JP2011/067540 WO2012056782A1 (ja) 2010-10-29 2011-07-29 固体撮像装置
TW100127348A TW201218364A (en) 2010-10-29 2011-08-02 Solid imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069384 WO2012056586A1 (ja) 2010-10-29 2010-10-29 固体撮像装置

Publications (1)

Publication Number Publication Date
WO2012056586A1 true WO2012056586A1 (ja) 2012-05-03

Family

ID=44693610

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/069384 WO2012056586A1 (ja) 2010-10-29 2010-10-29 固体撮像装置
PCT/JP2011/067540 WO2012056782A1 (ja) 2010-10-29 2011-07-29 固体撮像装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067540 WO2012056782A1 (ja) 2010-10-29 2011-07-29 固体撮像装置

Country Status (5)

Country Link
JP (1) JP4769911B1 (ja)
KR (1) KR20120125600A (ja)
CN (1) CN102668084A (ja)
TW (1) TW201218364A (ja)
WO (2) WO2012056586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368894B1 (ja) * 2017-07-04 2018-08-01 雫石 誠 光電変換素子及び光学測定装置
CN110061016A (zh) * 2012-12-26 2019-07-26 索尼公司 图像传感器、摄像装置和电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054182B2 (ja) * 2010-03-12 2012-10-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
US8921905B2 (en) 2012-10-16 2014-12-30 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
JP5563179B1 (ja) * 2012-10-16 2014-07-30 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
CN111294493A (zh) * 2020-02-25 2020-06-16 Oppo广东移动通信有限公司 图像传感器、摄像头组件及移动终端
TWI725827B (zh) * 2020-04-24 2021-04-21 力晶積成電子製造股份有限公司 影像感測模組

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393174A (ja) * 1986-10-07 1988-04-23 Nec Corp フオトダイオ−ド
JPH0964328A (ja) * 1995-08-24 1997-03-07 Lg Semicon Co Ltd 固体撮像素子及びその製造方法
JP2002100796A (ja) * 2000-07-18 2002-04-05 Nippon Sheet Glass Co Ltd 受光素子アレイ
JP2003069001A (ja) * 2001-08-29 2003-03-07 Sharp Corp 固体撮像素子およびその製造方法
JP2003258220A (ja) * 2002-02-28 2003-09-12 Canon Inc 撮像素子及び撮像装置
JP2008112831A (ja) * 2006-10-30 2008-05-15 Fujifilm Corp 固体撮像素子及びこれを備えた撮像装置
WO2009034623A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
JP2009188316A (ja) * 2008-02-08 2009-08-20 Denso Corp 受光素子
WO2009133957A1 (ja) * 2008-05-02 2009-11-05 日本ユニサンティスエレクトロニクス株式会社 固体撮像素子
JP2010056167A (ja) * 2008-08-26 2010-03-11 Sony Corp 固体撮像素子及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713418B2 (ja) * 2000-05-30 2005-11-09 光正 小柳 3次元画像処理装置の製造方法
JP5369441B2 (ja) * 2008-01-24 2013-12-18 ソニー株式会社 固体撮像素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393174A (ja) * 1986-10-07 1988-04-23 Nec Corp フオトダイオ−ド
JPH0964328A (ja) * 1995-08-24 1997-03-07 Lg Semicon Co Ltd 固体撮像素子及びその製造方法
JP2002100796A (ja) * 2000-07-18 2002-04-05 Nippon Sheet Glass Co Ltd 受光素子アレイ
JP2003069001A (ja) * 2001-08-29 2003-03-07 Sharp Corp 固体撮像素子およびその製造方法
JP2003258220A (ja) * 2002-02-28 2003-09-12 Canon Inc 撮像素子及び撮像装置
JP2008112831A (ja) * 2006-10-30 2008-05-15 Fujifilm Corp 固体撮像素子及びこれを備えた撮像装置
WO2009034623A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
WO2009034731A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
JP2009188316A (ja) * 2008-02-08 2009-08-20 Denso Corp 受光素子
WO2009133957A1 (ja) * 2008-05-02 2009-11-05 日本ユニサンティスエレクトロニクス株式会社 固体撮像素子
JP2010056167A (ja) * 2008-08-26 2010-03-11 Sony Corp 固体撮像素子及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061016A (zh) * 2012-12-26 2019-07-26 索尼公司 图像传感器、摄像装置和电子设备
CN110061016B (zh) * 2012-12-26 2022-11-18 索尼公司 图像传感器、摄像装置和电子设备
JP6368894B1 (ja) * 2017-07-04 2018-08-01 雫石 誠 光電変換素子及び光学測定装置
WO2019008842A1 (ja) * 2017-07-04 2019-01-10 雫石 誠 光電変換素子及び光学測定装置
JP2019016769A (ja) * 2017-07-04 2019-01-31 雫石 誠 光電変換素子及び光学測定装置

Also Published As

Publication number Publication date
WO2012056782A1 (ja) 2012-05-03
JPWO2012056586A1 (ja) 2014-03-20
JP4769911B1 (ja) 2011-09-07
CN102668084A (zh) 2012-09-12
KR20120125600A (ko) 2012-11-16
TW201218364A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
US8378400B2 (en) Solid state imaging device
JP4769911B1 (ja) 固体撮像装置
JP6274567B2 (ja) 固体撮像装置及び撮像システム
US9263487B2 (en) Photoelectric conversion apparatus
US8759931B2 (en) Solid-state imaging device
US7683407B2 (en) Structure and method for building a light tunnel for use with imaging devices
US7646943B1 (en) Optical waveguides in image sensors
US20090250777A1 (en) Image sensor and image sensor manufacturing method
US9443891B2 (en) Solid-state image sensor and imaging device
US20140339606A1 (en) Bsi cmos image sensor
US20040214368A1 (en) Microlens array with improved fill factor
JP2023017991A (ja) 撮像素子
JP2003197897A (ja) 半導体光電変換装置
KR102225297B1 (ko) 촬상 소자 및 촬상 장치
WO2011151951A1 (ja) 固体撮像装置
JP2012009652A (ja) 固体撮像装置およびその製造方法
JP5535261B2 (ja) 固体撮像装置
TW563249B (en) Charge coupled device
JP4769910B1 (ja) 固体撮像装置
JP5784092B2 (ja) 光電変換装置
JP2011023455A (ja) 固体撮像装置
US20230009806A1 (en) Imaging device
WO2017183383A1 (ja) 固体撮像装置及びその製造方法
CN117616576A (zh) 光电探测器、光电探测器的制造方法和电子设备
JP2020080423A (ja) 撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011503695

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/07/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10858973

Country of ref document: EP

Kind code of ref document: A1