TW201218364A - Solid imaging device - Google Patents
Solid imaging device Download PDFInfo
- Publication number
- TW201218364A TW201218364A TW100127348A TW100127348A TW201218364A TW 201218364 A TW201218364 A TW 201218364A TW 100127348 A TW100127348 A TW 100127348A TW 100127348 A TW100127348 A TW 100127348A TW 201218364 A TW201218364 A TW 201218364A
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor
- region
- light
- semiconductor region
- imaging device
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 170
- 239000007787 solid Substances 0.000 title abstract description 4
- 239000004065 semiconductor Substances 0.000 claims abstract description 593
- 239000004020 conductor Substances 0.000 claims abstract description 146
- 230000002093 peripheral effect Effects 0.000 claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 269
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 17
- 238000009825 accumulation Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 5
- 239000002184 metal Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 30
- 230000035945 sensitivity Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 16
- 238000009826 distribution Methods 0.000 description 16
- 238000002156 mixing Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000000149 penetrating effect Effects 0.000 description 12
- 239000012535 impurity Substances 0.000 description 11
- 239000011229 interlayer Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 210000000746 body region Anatomy 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 241001580017 Jana Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
- H01L27/14607—Geometry of the photosensitive area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
- H01L27/14612—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
- H01L27/14614—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
- H01L27/14612—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
- H01L27/14616—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
201218364 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種固體攝像裝置,尤其是關於一種能 夠實現高像素密度、高解像度、低混色、高靈敏度的固體 攝像裝置。 【先前技術】 目前CCD及CMOS固體攝像裝置已廣泛地用在視訊攝影 機(video camera)、靜物攝影機(still camera)等中。而 且,始終被要求能夠提高固體攝像裝置之高像素密度化、 高解像度化、彩色攝像中之低混色化、加上高靈敏度化等 的性能。相對於此,為了要實現固體攝像裝置之高解像度 化已有進行一種取決於像素高密度化等的技術革新。 第12A圖至第12B圖及第13圖係顯示習知的固體攝像 裝置。 第12A圖係顯示習知例之在1個島狀半導體30構成有 1個像素的固體攝像裝置之剖視圖(例如,參照專利文獻 1)。如第12A圖所示,在該構成像素之島狀半導體30中, 於未圖示的基板上,形成有信號線半導體N+區域31(以 下,將「半導體N+區域」當作含有較多施體雜質的半導體 區域)。在該信號線半導體N+區域31上形成有半導體P區 域32(以下,將「半導體P區域」當作含有受體雜質的半 導體區域),且在該半導體P區域32之外周部形成有絕緣 層33a、33b,並夾介存在該絕緣層33a、33b而形成有閘 極導體層34a、34b。在該閘極導體層34a、34b之上方部BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device capable of realizing high pixel density, high resolution, low color mixing, and high sensitivity. [Prior Art] Currently, CCD and CMOS solid-state imaging devices have been widely used in video cameras, still cameras, and the like. Further, it is required to improve the performance of the solid-state imaging device such as high pixel density, high resolution, low color mixing in color imaging, and high sensitivity. On the other hand, in order to achieve high resolution of a solid-state imaging device, there has been a technological innovation that depends on the increase in density of pixels. Figs. 12A to 12B and 13 show a conventional solid-state imaging device. Fig. 12A is a cross-sectional view showing a solid-state imaging device in which one island-shaped semiconductor 30 is formed of one pixel in a conventional example (see, for example, Patent Document 1). As shown in Fig. 12A, in the island-shaped semiconductor 30 constituting the pixel, a signal line semiconductor N+ region 31 is formed on a substrate (not shown) (hereinafter, "semiconductor N+ region" is regarded as containing a large amount of donor body Semiconductor region of impurities). A semiconductor P region 32 is formed on the signal line semiconductor N+ region 31 (hereinafter, "semiconductor P region" is regarded as a semiconductor region containing an acceptor impurity), and an insulating layer 33a is formed on the outer peripheral portion of the semiconductor P region 32. The gate conductor layers 34a and 34b are formed by sandwiching the insulating layers 33a and 33b. Above the gate conductor layers 34a, 34b
S 4 323367 201218364 位的半導體p區域之外周部’形成有半導體N區域咖、 35b(以下’將「半導❹區域」當作含有施體雜質的半導 體區域)°在该半導體N區域35a、35b及半導體p區域% 上’於島狀半導體3G之上部形成有半導體p+區域%(以 y 將「半導體P+區域」當作含有較多受體雜質的半導體 區域)。該半導體P+區域36係連接於像素選擇線37a、37b。 上述的絕緣層33a、33b,係在包圍島狀半導體3〇之外周 部的狀態下相互地連接。同樣地,閘極導體層3乜、3扑、 半V體N區域35a、35b也是在包圍島狀半導體3〇之外周 部的狀態下相互地連接。 針對該島狀半導體30,屬於電磁能量波之一種的光, 係從島狀料體3〇上面之半導體p+區域36側照射。在島 狀半導體30内,形成有由半導體p區域犯與半導體N區 域35a、35b所構成的光電二極體區域,且藉由該光照射, 可在該光電二極體區域的光電轉換區域產生信號電荷(在 此為自由電子)。然後,該信號電荷,係蓄積於光電二極體 區域之半導體區域35a、35b。又,在島狀半導體3〇内構 成有接合電aa體,§亥接合電晶體係將該半導體n區域35a、 35b當作閘極,將半導體P+區域36當作源極,將信號線半 導體N+區域31近旁之半導體p區域32當作汲極。然後, 接合電晶體之汲極源極間電流(輸出信號),係對應蓄積於 半導體N區域35a、35b之信號電荷量而產生變化,且可藉 由從信號線半導體N+區域31取出至外部’並讀出至外部。 更且,在島狀半導體30内形成有MOS電晶體,該MOS電晶 3- 323367 201218364 體係將光電二極體之半導體N區域35a、35b當作源極,將 閘極導體層34a、34b當作閘極,將信號線半導體N+區域 31當作没極’將位於半導體n區域35a、35b與信號線半 導體N+區域31之間的半導體p區域32當作通道。然後, 蓄積於該半導體N區域35a、35b之信號電荷,係藉由在 M0S電晶體之閘極導體層34a、34b施加正接通電壓(plus on voltage) ’而可在信號線半導體穸區域31予以去除。 該固體攝像裝置之攝像動作,係包含:信號電荷蓄積 動作’在對信號線半導體N+區域31、閘極導體層34a、34b、 半導體P+區域36施加有接地電壓(0V)的狀態下,將藉由 從島狀半導體30之上面入射的光線之照射而在光電轉換 區域(光電二極體區域)產生之信號電荷,蓄積於半導體N 區域35a、35b ;信號電荷讀出動作,在對信號線半導體γ 區域31及閘極導體層34a、34b施加有接地電壓,並且 半導體P+區域36施加有正電壓的狀態下,讀出接合電曰 體之汲極源極間電流作為輸出信號,該汲極源極間電漭^ 藉由按照蓄積信號電荷量而產生變化的半導體N區係 35a、35b之電位來調變所得;以及重置(reset)動作品域 該信號電荷讀出動作之後,在對半導體p+區域於在 接地電壓,並且對閘極導體層34a、34b及信鞔線^加有 N+區域31施加有正電壓的狀態下,將蓄積於半導體n :體 35a、35b之信號電荷在信號線半導體N+區域31予以區域 第12B圖係顯示來自照射光波長;I為藍色光(λ除° =400nm)、綠色光(A=55〇nm)、紅色光(λ=7〇〇 紅外線 6 323367 201218364 光(;l=870nin)中的光照射面之光吸收強度丨對以(矽)深度 (#m)的關係。當以照射表面之光吸收強度〗。來將光吸收 強度規格化時,規格化值Ι/Ιβ係相對於光之進入深度以指 數函數方式而減少。第12Β圖係顯示:藍色光以深度1//m 左右大部分被吸收,相對於此在綠色光方面光是到達 m’而在紅色光方面光是到達1〇/zm以上之深度,因此而產 生仏號電荷。在實際的固體攝像裝置中,例如非專利文獻 1所記載,需要將感光區域之深度設為2.5#111至3以111,俾 於吸收綠色光之80%。 第12A圖之固體攝像裝置中的光電轉換區域,係藉由 半導體P區域32及半導體N區域35a、35b而形成的光電 一極體區域。因此,藉由上述的理由,該光電二極體區域 之高度Ld需為2.5/zm至3//m。目前排列成2次元狀的像 素之間距’由於在製品化的固體攝像裝置之中為最小,所 以間距為1 · 4 // m ’就間距為〇· 9以m的製品而言也已被公 佈(例如,參照非專利文獻2)。而且,更被要求像素間距 之縮小化。又,由於彼此鄰接、且將構成像素之島狀半導 體30間的距離予以縮小’也可提高在光電二極體區域有效 地接受光線的受光率,且關係著固體攝像裝置之靈敏度提 高,所以也被要求鄰接的島狀半導體30之間的距離之縮小 化。在設計規則為0· 2#in(200nm)的情況下,通常是將鄰 接的島狀半導體30間之距離加工成儘可能接近該〇.2//m 的尺寸。該情況下,島狀半導體間之高寬比(鄰接的島狀半 導體間之深度長度對距離長度的比)為12·5至15,或15 7 323367 201218364 以上 門 必要在形成於寬 且較深的島狀半導 一 3之/冓渠内,形成M0S電晶體之閘極導體屛 *3 \ 均 〇 ^ 3、 r區域31’ T在島狀半導體3〇之底部形成信t線半導體 °°域31。轉此,難以製造固體攝像裝置。如此, 固體攝像楚置之島狀半導體30中,需要高度Ld為2 ^成 光電一極體區域’藉此就難以達成固體攝像誓置 之回像素岔度化及高靈度化。因此,在固 被要电一接 所丨豕衮置中, 區域之”了會發生靈敏度之降低,而可降低光電二極體 又阿度u的技術。 、 又在實際的攝像時,如第12A圖所示從斜方向對作 $像素之島狀半導體30入射的光線38也會入射於與構成 β亥像素之島狀半導體3〇鄰接的島狀半導體3〇之 體區秘朴 u ™ 一 -错由該像素内的收光率之降低’就會發生本來應 周構成1個像素之島狀半導體3〇產生的信號電荷被分散ς ^邊的構成像素之島狀半導體30的問題。藉此會發生固體 像裝置的解像度之降低、或彩色攝像中之混色。如此的 良情形’若像素越高密度化就會越大。 “又’為了防止如此的收光率之降低,如第13圖所示, 机半導體裝置中,有存在一種於光電二極體區域41之上部 广置金屬壁39a、39b的技術(例如,參照專利文獻2)。在 讀像素構造令,係於半導體基板4〇内形成有光電二極體區 域 41 w. ’並且在光電二極體區域41之周邊形成有元件隔離 區域42、與MOS電晶體之源極汲極區域43a、43b。在形成 於半導體基板40上的第1層間絕緣膜44内,形成有包圍 5 8 323367 201218364 M0S ^^曰*夕 00 間極電極45、接觸窗(contact hole)46a、光 電一極體區域41的金屬壁39a、39b。在第1層間絕緣層 44上形成有第2層間絕緣層47,進而在第2層間絕緣層 47上依序形戍有Si〇2膜48、SiN膜49、微透鏡50。在第 2層H緣層<7内形成有電路配線用的接觸g 46b、46c, :'在第2層間絕緣層47上形成有金屬配線51 a、51 b、 51c、51d。 在該半導體装置中,通過微透鏡50的光線52a、52b、 52c、52d’係在金屬壁39a、39b反射,且入射於光電二極 體區域41 °轎此,可改善從微透鏡50入射的光線入射於 光電二極體區域41之收光率。但是,此等的入射光線由於 疋從斜方向對光電二極體41表面入射,所以入射於光電二 極體41的光線53a、53b、53c、53d之一部分,會洩漏於 與該像素鄰接之像素。 其他’作為改善1個像素内之收光率的技術,為人所 知者有:在形成於微透鏡與光電二極體區域之間的彩色濾 光片(color filter)層内設置金屬壁的技術(例如,參照專 利文獻3)、或在光電二極體區域之上部形成光波路的技術 (例如’參照專利文獻4)等。然而,即使藉由此等的技術, 由於入射光線也會從斜方向入射於光電二極體區域之表 面,所以入射於光電二極體區域之入射光線的一部分,會 洩漏於與該像素鄰接之像素。 [專利文獻] (專利文獻D國際公開第2009/034623號 9 323367 201218364 (專利文獻2)美國專利申請案公開第2〇〇8/〇185622號 說明書 « (專利文獻3)美國專利申請案公開第2〇〇9/〇1〇1946號 ^ 說明書 (專利文獻4)美國專利申請案公開第2008/0145965號 說明書 [非專利文獻] (非專利文獻 1)G. Agranov,R. Mauritzson; J. Ladd, A. Dokoutchaev, X. fan, X. Li, Z. Yin, R. Johnson, V. lenchenkov, S. Nagaraja, W. Gazeley, J.Bai, H. Lee, 瀧澤義順;"CMOS影像感測器之像素尺寸縮小與特性比較 "、影像資訊媒體學會報告、ITE Technical Report Vol. 33, No. 38, pp. 9-12(Sept.2009) (非專利文獻 2)S.G.Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J.Lin, C. S. Tsai, Y. P. Chao, K. Y. Chou, P. S. CHOU, Η. Y. Tu, F. L. Hsueh, L. Tran; "A Leading-Edge 0. 9 ^ m Pixel CMOS Image Sensor Technology with Backside Illumination: Future Challenges for Pixel Scaling", IEDM2010 Digest Papers, 14.1.1(2010) 【發明内容】 (發明所欲解決之課題) 第12A圖所示之固體攝像裝置,由於是藉由1個島狀 半導體30而形成1個像素,所以適於高像素密度化。因而, 10 323367 201218364 ,、要應用尖端細微加卫技術,就可謀求從光照射 平面上之料尺寸的高像切度化。但是,當 到的 文獻1所記载的光吸收之條件時,若依據帛12B圖作專利 圖則在以Si开>成島狀半導體的情況下光電曲綠 之高度Ld需為2.5//m至3,。該光電二極體:域:區域 南度Ld’即便隨著像素之高密度化的進展也斤需之 變。此外,為了要提高靈敏度,而被要求島狀有所改 間之距離的縮小化。因&,就需要進行較高之高—30 半導體30間之距離與光電二極體區域 ^狀 半導體_加工。因而,為了要在形成於寬度較細 1+3Γ Tilt =34b,並且在島狀半導體30之底部形成信號線n+ &域31,就會發生製造上的困難度。如此要形成取決於 狀半,體3G之像素構造是有困難的,且此將㈣體攝像裝 置之尚像素密度化與高靈敏度化更為困難。因此,在固體 攝像裝置中,被要求-種不會產生靈敏度之降低而可降低 光電二極體區域之高度Ld的技術。 _ 此外,如上所述,在習知的固體攝像裝置中,從斜方 向入射於構成像素之烏狀半導體30的光線38,有時會入 射於與該島狀半導體30鄰接的島狀半導體30之光電二極 體區域。耨由構成該1個像素的1個島狀半導體3〇内之收 光率的降低,就會發生本來應在1個像素(島狀半導體3〇) 產生的信號電荷分散於周邊之像素(島狀半導體30)的問 題。藉此就會發生固體攝像裝置之解像度的降低、或彩色 5 323367 11 201218364 攝像中之混色。該混色由於會使彩色再生影像之畫質降 低’所以被要求低混色化。 又,第13圖所示之像素構造(例如,參照專利文獻2), 係在光電二極體區域41之上設爹金屬壁39a、39b以提高 收光率的技術。在該技術中的光電二極體區域41之上部, 係使朝與該像素鄰接的像素之光洩漏減少而藉此提高收光 率。然而,由於以斜方向入射於光電二極體區域41的光線 之一部分’會入射於與該像素鄰接的像素,所以無法避開 固體攝像襞置之解像度的降低、或彩色攝像中之混色。如 此的情事’即使在專利文獻3及專利文獻4所揭示的習知 例之固體攝像裝置中也是同樣的。該收光率之降低,若越 進行咼像素密度化就會越大。因此,有被要求一種可改善 入射於光電二極體區域之表面的光線之收光率之降低 的技術。 本發明係有鑒於上述情事而開發完成者,尤其是其目 ^在於實現—種能夠獲得高像素密度、高解像度、低混色、 高靈敏度的固體攝像裝置。 (解決課題之手段) ‘’、、了達成上述目的,本發明之固體攝像裝置,係 數個像素排 2 :欠元狀而成者,其特徵為: 半導^基板上形成有構成前述複數個像素的複數個 各個前述島狀半導體,係分別具備: 第1半導籠域’形成於該島狀半導體之下部; 12 323367 201218364 第2半導體區域,形成於前述第i半導體區域上,且 為與刚述第1半導體區域相反之導電型或為时半導體; 第3半導體區域,形成於前述第2半導體區域之上部 侧面區域,且為與前述第丨半導體區域相同之導電型; 第4半導體區域,形成於前述第3半導體區域之外周 部,且為與前述第丨半導體區域相反之導電型; 絕緣層,形成於前述第4半導體區域之外周部及前述 第2半導體區域的下部侧面區域之外周部; 導體層,形成於前述絕緣層之外周部,且發揮作為在 前述第2半導體區域之下部區域形成通道的閑極電極之功 能; 反射導體層,形成於前述第3半導體區域、前述第4 半導體區域及前述絕緣層之外周部,且反射電磁能量波; 第5半導體區域,形成於前述第2半導體區域及前述 第3半導體區域之上部區域,且為與前述第4半導體區域 相同之導電型;以及 微透鏡,形成於前述第5半導體區域上,且焦點位於 該第5半導體區域之上表面近旁;其中, 前述島狀半導體,係包含:發揮作為光電轉換部之功 能的部位、發揮作為信號電荷蓄積部之功能的部位、發揮 作為信號電荷讀出部之功能的部位、及發揮作為蓄積信號 電荷去除部之功能的部位; 前述光電轉換部,係由包含前述第2半導體區域及前 述第3半導體區域之光電二極體區域所構成,且藉由入射 323367 5, 13 201218364 於前述微透鏡之電磁能量波而在前述光電轉換部產生信號 電荷; 前述信號電荷蓄積部,係由前述第3半導體區域所構 成,且蓄積在前述光電轉換部產生之信號電荷; 前述信號電荷讀出部,係由接合電晶體所構成,該接 合電晶體係將前述第5半導體區域、前述第2半導體區域 之下部區域當作汲極或源極,且將前述信號電荷蓄積部當 作閘極,並且該信號電荷讀出部係發揮讀出汲極源極間電 流作為輸出信號之功能,該汲極源極間電流係流通至按照 蓄積於前述信號電荷蓄積部的信號電荷之量而產生變化的 前述接合電晶體之汲極與源極之間; 前述蓄積信號電荷去除部係由M0S電晶體所構成,該 M0S電晶體係將前述第1半導體區域當作汲極,將前述導 體層當作閘極,將前述第3半導體區域當作源極,將藉由 前述第1半導體區域與前述第3半導體區域而包夾的前述 第2半導體區域當作通道,且該蓄積信號電荷去除部係發 揮如下功能:藉由對前述導體層施加預定電壓而將蓄積於 前述信號電荷蓄積部之信號電荷,在前述第1半導體區域 予以去除。 又,在本發明之較佳態樣中,在前述固體攝像裝置 中,藉由該固體攝像裝置而執行之攝像動作,係包含: 信號電荷蓄積動作,將在前述光電轉換部產生之信號 電荷,蓄積於前述第3半導體區域; 信號電荷讀出動作,按照蓄積於前述第3半導體區域 14 323367 201218364 的信號電荷之量,讀出前述接合電晶體之前述汲極源極間 電流作為輸出信號;以及 畜積^號電荷去除動作,藉由對前述導體層施加預定 電壓而將蓄積於前述第3半導體區域之蓄積信號電荷,在 刖述第1半導體區域予以去除; 當前述信號電荷蓄積動作、前述信號電荷讀出動作及 刖述蓄積信號電荷去除動作各進行動作時,在前述第4半 導體區域蓄積有與前述信號電荷之極性相反的電荷。 又’在本發明之較佳態樣中,具備第6半導體區域或 第9半導體區域、第7半導體區域及第8半導體區域來取 代m述第1半導體區域,該第6半導體區域為與前述第2 半導體區域相同之導電型,該第9半導體區域為與前述第 2半導體區域相反之導電型,該第7半導體區域為與前述 第2半導體區域相同之導電型,且與前述第2半導體區域 連接,該第8半導體區域為與前述第2半導體區域相反之 導電型,而前述第6半導體區域、前述第9半導體區域之 近旁的則述第2半導體區域之下部區域係分別為前述接合 電晶體之汲極、源極,前述第8半導體區域為前述M〇s電 晶體之汲極。 “又,在本發明之較佳態樣中,具備:形成於前述島狀 半導體之下方區域的反射層。 又,在本發明之較佳態樣中,復具備:形成於前述島 狀半導體之下方區域的光穿透絕緣層;以及形成於該光穿 透絕緣層之下方區域的光吸收層,S 4 323367 201218364 The semiconductor peripheral region of the semiconductor region p is formed with a semiconductor N region, 35b (hereinafter, "a semi-conductive region" is regarded as a semiconductor region containing a donor impurity). In the semiconductor N region 35a, 35b In the semiconductor p region %, a semiconductor p+ region% is formed on the upper portion of the island-shaped semiconductor 3G (the semiconductor P+ region is regarded as a semiconductor region containing a large amount of acceptor impurities by y). The semiconductor P+ region 36 is connected to the pixel selection lines 37a, 37b. The insulating layers 33a and 33b described above are connected to each other in a state surrounding the outer periphery of the island-shaped semiconductor 3A. Similarly, the gate conductor layers 3, 3, and the half V body N regions 35a and 35b are also connected to each other in a state surrounding the outer periphery of the island-shaped semiconductor 3A. With respect to the island-shaped semiconductor 30, light belonging to one of electromagnetic energy waves is irradiated from the side of the semiconductor p+ region 36 on the upper surface of the island-shaped material 3. In the island-shaped semiconductor 30, a photodiode region composed of the semiconductor p region and the semiconductor N regions 35a and 35b is formed, and by the light irradiation, the photoelectric conversion region of the photodiode region can be generated. Signal charge (here free electron). Then, the signal charge is accumulated in the semiconductor regions 35a and 35b of the photodiode region. Further, a bonding electric aa body is formed in the island-shaped semiconductor 3A, and the semiconductor n-regions 35a and 35b are regarded as gates, and the semiconductor P+ region 36 is used as a source, and the signal line semiconductor N+ is used. The semiconductor p region 32 near the region 31 serves as a drain. Then, the current (output signal) between the drain and the source of the bonded transistor is changed in accordance with the amount of signal charge accumulated in the semiconductor N regions 35a and 35b, and can be taken out from the signal line semiconductor N+ region 31 to the outside. And read out to the outside. Further, an MOS transistor is formed in the island-shaped semiconductor 30, and the MOS transistor 3-323367 201218364 system uses the semiconductor N regions 35a, 35b of the photodiode as a source, and the gate conductor layers 34a, 34b As a gate, the signal line semiconductor N+ region 31 is regarded as a gateless semiconductor d region 32 located between the semiconductor n regions 35a and 35b and the signal line semiconductor N+ region 31 as a channel. Then, the signal charges accumulated in the semiconductor N regions 35a, 35b are applied to the signal line semiconductor germanium region 31 by applying a plus on voltage ' to the gate conductor layers 34a, 34b of the MOS transistor. Remove it. The imaging operation of the solid-state imaging device includes a signal charge accumulation operation 'in a state where a ground voltage (0 V) is applied to the signal line semiconductor N+ region 31, the gate conductor layers 34a and 34b, and the semiconductor P+ region 36. The signal charges generated in the photoelectric conversion region (photodiode region) by the light incident from the upper surface of the island-shaped semiconductor 30 are accumulated in the semiconductor N regions 35a and 35b; the signal charge readout operation is performed on the signal line semiconductor When the γ region 31 and the gate conductor layers 34a and 34b are applied with a ground voltage, and the semiconductor P+ region 36 is applied with a positive voltage, the current between the drain and the source of the bonded electrode body is read as an output signal. The interelectrode is modulated by the potential of the semiconductor N regions 35a, 35b that vary according to the amount of accumulated signal charge; and the reset of the moving field after the signal charge readout operation is performed on the semiconductor The p+ region is accumulated in the semiconductor n: body 35a, 35b in a state where a ground voltage is applied and a positive voltage is applied to the gate conductor layers 34a and 34b and the signal line plus the N+ region 31. The signal charge is shown in the signal line semiconductor N+ region 31. The 12B picture shows the wavelength from the illumination light; I is the blue light (λ divided by ° = 400 nm), the green light (A = 55 〇 nm), and the red light (λ = 7 〇). 〇Infrared light 6 323367 201218364 Light absorption intensity of light-irradiated surface in light (;l=870nin) 丨 is related to (矽) depth (#m). When light absorption intensity is irradiated on the surface, the light absorption intensity is used. In the normalization, the normalized value Ι/Ιβ is reduced by an exponential function with respect to the depth of light entering. The 12th image shows that the blue light is mostly absorbed at a depth of about 1//m, relative to the green light. In the actual solid-state imaging device, for example, the non-patent document 1 needs to be used for the photosensitive region, the light is at a depth of 1 〇/zm or more. The depth is set to 2.5#111 to 3 to 111, and 80% of the green light is absorbed. The photoelectric conversion region in the solid-state imaging device of Fig. 12A is formed by the semiconductor P region 32 and the semiconductor N regions 35a and 35b. Photoelectric one-pole region. Therefore, by using For the reason, the height Ld of the photodiode region needs to be 2.5/zm to 3//m. The distance between pixels currently arranged in a 2nd order is the smallest because of the smallest solid-state imaging device in the product. It is also disclosed as a product having a pitch of 〇·9 in m (for example, refer to Non-Patent Document 2). Moreover, the pixel pitch is required to be reduced. Further, since they are adjacent to each other Further, the distance between the island-shaped semiconductors 30 constituting the pixels is reduced. The light-receiving rate of the light rays can be efficiently received in the photodiode region, and the sensitivity of the solid-state imaging device is improved. Therefore, adjacent islands are also required. The distance between the semiconductors 30 is reduced. In the case where the design rule is 0·2#in (200 nm), the distance between the adjacent island-shaped semiconductors 30 is usually processed to be as close as possible to the size of 〇.2//m. In this case, the aspect ratio between the island-shaped semiconductors (the ratio of the depth length to the distance length between adjacent island-shaped semiconductors) is 12·5 to 15, or 15 7 323367 201218364. The gate must be formed in a wide and deep In the island-shaped semi-conductor-3/channel, the gate conductor of the MOS transistor is formed 屛*3 \ 〇^ 3, r region 31' T forms a t-line semiconductor at the bottom of the island-shaped semiconductor 3〇°°° Domain 31. At this point, it is difficult to manufacture a solid-state imaging device. As described above, in the island-shaped semiconductor 30 in which the solid-state imaging is performed, the height Ld is required to be 2^ into the photodiode region, whereby it is difficult to achieve the pixel density and high-intensity of the solid-state imaging. Therefore, in the case where the solid is to be connected, the sensitivity of the region is reduced, and the technique of the photodiode and the Adu u can be reduced. The light ray 38 incident on the island semiconductor 30 as a pixel from the oblique direction as shown in FIG. 12A is also incident on the body region of the island-shaped semiconductor 3 〇 adjacent to the island-shaped semiconductor 3 构成 constituting the β-pixel. - The problem of the decrease in the light-receiving rate in the pixel is that the island-shaped semiconductor 30 constituting the pixel in which the signal charge generated by the island-shaped semiconductor 3 constituting one pixel is originally dispersed is generated. This causes a decrease in the resolution of the solid-state image device or a color mixture in color imaging. Such a good situation 'If the pixel is higher, the density will increase. "And in order to prevent such a decrease in the light-receiving rate, as in the 13th As shown in the figure, in the semiconductor device, there is a technique in which the metal walls 39a and 39b are placed on the upper portion of the photodiode region 41 (see, for example, Patent Document 2). In the read pixel structure, a photodiode region 41 w. ' is formed in the semiconductor substrate 4 并且 and an element isolation region 42 and a source drain region of the MOS transistor are formed around the photodiode region 41 . 43a, 43b. In the first interlayer insulating film 44 formed on the semiconductor substrate 40, a peripheral electrode 45, a contact hole 46a, and a photo-electrode region 41 are formed in the first interlayer insulating film 44 formed on the semiconductor substrate 40. Metal walls 39a, 39b. The second interlayer insulating layer 47 is formed on the first interlayer insulating layer 44, and the Si〇2 film 48, the SiN film 49, and the microlens 50 are sequentially formed on the second interlayer insulating layer 47. Contact g 46b, 46c for circuit wiring is formed in the second layer H edge layer <7, and 'the metal wirings 51a, 51b, 51c, and 51d are formed on the second interlayer insulating layer 47. In the semiconductor device, the light rays 52a, 52b, 52c, 52d' passing through the microlens 50 are reflected by the metal walls 39a, 39b, and are incident on the photodiode region 41, thereby improving the incidence from the microlens 50. The light is incident on the light-receiving rate of the photodiode region 41. However, since such incident light rays are incident on the surface of the photodiode 41 from the oblique direction, a portion of the light rays 53a, 53b, 53c, 53d incident on the photodiode 41 may leak to the pixel adjacent to the pixel. . Other 'as a technique for improving the light-receiving rate in one pixel, it is known to provide a metal wall in a color filter layer formed between a microlens and a photodiode region. A technique (for example, refer to Patent Document 3) or a technique of forming an optical path in an upper portion of a photodiode region (for example, 'refer to Patent Document 4). However, even with this technique, since incident light rays are incident on the surface of the photodiode region from an oblique direction, a part of incident light rays incident on the photodiode region may leak adjacent to the pixel. Pixel. [Patent Document] [Patent Document D International Publication No. 2009/034623 No. 9 323367 201218364 (Patent Document 2) US Patent Application Publication No. 2/8/185622 2 〇〇 9 / 〇 1〇 1946 ^ Specification (Patent Document 4) US Patent Application Publication No. 2008/0145965 Specification [Non-Patent Document 1] (Non-Patent Document 1) G. Agranov, R. Mauritzson; J. Ladd , A. Dokoutchaev, X. fan, X. Li, Z. Yin, R. Johnson, V. lenchenkov, S. Nagaraja, W. Gazeley, J.Bai, H. Lee, 泷泽义顺; "CMOS image sense Pixel size reduction and feature comparison of the detector", Image Information Media Society Report, ITE Technical Report Vol. 33, No. 38, pp. 9-12 (Sept. 2009) (Non-Patent Document 2) SGWuu, CC Wang , BC Hseih, YL Tu, CH Tseng, TH Hsu, RS Hsiao, S. Takahashi, RJLin, CS Tsai, YP Chao, KY Chou, PS CHOU, Η. Y. Tu, FL Hsueh, L. Tran; " A Leading-Edge 0. 9 ^ m Pixel CMOS Image Sensor Technology with Backside Illumination: Future Challenges for Pixel Sca Ling", IEDM2010 Digest Papers, 14.1.1 (2010) [Problem to be Solved by the Invention] The solid-state imaging device shown in Fig. 12A is formed by one island-shaped semiconductor 30 to form one pixel. Therefore, it is suitable for high pixel density. Therefore, in order to apply the fine-grained technique, it is possible to achieve high image cut from the size of the light irradiation plane. However, when the document 1 is obtained, In the case of the light absorption conditions described above, the height Ld of the photoelectric green is required to be 2.5//m to 3 in the case of forming an island-shaped semiconductor by Si according to the patent diagram of FIG. 12B. The photodiode: domain: region South Ld' is required to change even as the pixel density increases. In addition, in order to increase the sensitivity, it is required to reduce the distance of the island shape. Because &, it is necessary to carry out a higher high- 30 semiconductor distance between 30 and the photodiode region. Therefore, in order to form the signal line n+ & field 31 at a thinner width of 1 + 3 Γ Tilt = 34b and at the bottom of the island-shaped semiconductor 30, manufacturing difficulty occurs. In this case, it is difficult to form the pixel structure of the body 3G, and it is more difficult to increase the pixel density and sensitivity of the (four) body imaging device. Therefore, in the solid-state imaging device, there is a demand for a technique which can reduce the height Ld of the photodiode region without causing a decrease in sensitivity. Further, as described above, in the conventional solid-state imaging device, the light ray 38 incident on the ridge semiconductor 30 constituting the pixel from the oblique direction may be incident on the island-shaped semiconductor 30 adjacent to the island-shaped semiconductor 30. Photodiode region.耨The decrease in the light-receiving rate in one of the three island-shaped semiconductors constituting the one pixel causes the signal charge originally generated in one pixel (island-shaped semiconductor 3〇) to be dispersed in the periphery (island) The problem of the semiconductor 30). As a result, the resolution of the solid-state imaging device is lowered, or the color mixture in the color image is 5 323367 11 201218364. This color mixing is required to lower the color quality of the color reproduction image, so that low color mixing is required. Further, the pixel structure shown in Fig. 13 (see, for example, Patent Document 2) is a technique in which the metal walls 39a and 39b are provided on the photodiode region 41 to increase the light collection rate. In the upper portion of the photodiode region 41 in this technique, the light leakage toward the pixel adjacent to the pixel is reduced, thereby increasing the light collection rate. However, since a part of the light ray incident on the photodiode region 41 in the oblique direction is incident on the pixel adjacent to the pixel, the resolution of the solid-state imaging device cannot be avoided or the color mixture in color imaging cannot be avoided. The same applies to the solid-state imaging device of the conventional example disclosed in Patent Document 3 and Patent Document 4. The decrease in the light-receiving rate is greater as the pixel density is increased. Therefore, there has been a demand for a technique for improving the light-receiving rate of light incident on the surface of the photodiode region. The present invention has been developed in view of the above circumstances, and in particular, it is aimed at realizing a solid-state imaging device capable of obtaining high pixel density, high resolution, low color mixing, and high sensitivity. (Means for Solving the Problem) The solid-state imaging device according to the present invention has a coefficient pixel row 2 and an under-shaped shape, and is characterized in that the plurality of substrates are formed on the semiconductor substrate. Each of the plurality of island-shaped semiconductors of the pixel includes: a first semiconductor cage region 'formed under the island-shaped semiconductor; 12 323367 201218364 a second semiconductor region formed on the ith semiconductor region and The first semiconductor region is opposite to the conductivity type or the semiconductor; the third semiconductor region is formed on the upper surface region of the second semiconductor region and is the same conductivity type as the second semiconductor region; and the fourth semiconductor region a conductive type formed on the outer peripheral portion of the third semiconductor region and opposite to the second semiconductor region; and an insulating layer formed on the outer peripheral portion of the fourth semiconductor region and the outer peripheral portion of the lower side surface region of the second semiconductor region a conductor layer formed on a peripheral portion of the insulating layer and configured to form a channel in a lower region of the second semiconductor region The function of the idle electrode; the reflective conductor layer is formed on the third semiconductor region, the fourth semiconductor region, and the outer peripheral portion of the insulating layer, and reflects electromagnetic energy waves; and the fifth semiconductor region is formed in the second semiconductor region And an upper portion of the third semiconductor region and a conductivity type similar to the fourth semiconductor region; and a microlens formed on the fifth semiconductor region, wherein the focus is located near the upper surface of the fifth semiconductor region; The island-shaped semiconductor includes a portion that functions as a photoelectric conversion unit, a portion that functions as a signal charge storage unit, a portion that functions as a signal charge reading unit, and an accumulated signal charge removal unit. a portion of the function; the photoelectric conversion portion is composed of a photodiode region including the second semiconductor region and the third semiconductor region, and the electromagnetic energy wave of the microlens by the incident 323367 5, 13 201218364 And generating a signal charge in the photoelectric conversion unit; the signal charge accumulation unit, a signal charge generated by the photoelectric conversion unit is formed by the third semiconductor region; the signal charge readout portion is formed of a bonded transistor, and the bonded transistor system includes the fifth semiconductor region and the first (2) a lower region of the semiconductor region is regarded as a drain or a source, and the signal charge storage portion is regarded as a gate, and the signal charge readout portion functions to read a current between the drain and the source as an output signal. The drain-source current flows between the drain and the source of the bonded transistor that varies according to the amount of signal charge accumulated in the signal charge storage portion; the accumulated signal charge removal portion is a MOS transistor The MOS electro-crystal system has the first semiconductor region as a drain, the conductor layer as a gate, and the third semiconductor region as a source, and the first semiconductor region and the first The second semiconductor region sandwiched by the semiconductor region serves as a channel, and the accumulated signal charge removing portion functions as follows by applying the conductor layer Predetermined voltage and the signal charge accumulated in the signal charge storage portion of the, to be removed in the first semiconductor region. Further, in a preferred aspect of the present invention, in the solid-state imaging device, the imaging operation performed by the solid-state imaging device includes a signal charge accumulation operation and a signal charge generated in the photoelectric conversion unit. Accumulating in the third semiconductor region; and in the signal charge reading operation, reading the current between the drain and the source of the bonded transistor as an output signal according to the amount of signal charge accumulated in the third semiconductor region 14 323367 201218364; In the charge removing operation, the accumulated signal charges accumulated in the third semiconductor region are removed by applying a predetermined voltage to the conductor layer, and the first semiconductor region is removed; the signal charge accumulation operation and the signal are When each of the charge reading operation and the accumulation signal charge removing operation is performed, charges having opposite polarities to the signal charges are accumulated in the fourth semiconductor region. Further, in a preferred aspect of the present invention, the sixth semiconductor region, the ninth semiconductor region, the seventh semiconductor region, and the eighth semiconductor region are provided instead of the first semiconductor region, and the sixth semiconductor region is the same as the first semiconductor region. a conductive type having the same semiconductor region, the ninth semiconductor region being of a conductivity type opposite to the second semiconductor region, wherein the seventh semiconductor region is of the same conductivity type as the second semiconductor region, and is connected to the second semiconductor region The eighth semiconductor region is a conductivity type opposite to the second semiconductor region, and the lower region of the second semiconductor region in the vicinity of the sixth semiconductor region and the ninth semiconductor region is a bonded transistor. The drain and the source, the eighth semiconductor region is the drain of the M?s transistor. Further, in a preferred aspect of the invention, there is provided a reflective layer formed in a region below the island-shaped semiconductor. Further, in a preferred aspect of the invention, the method further comprises: forming the island-shaped semiconductor a light penetrating the insulating layer in the lower region; and a light absorbing layer formed in a region below the light penetrating insulating layer,
S 323367 15 201218364 且前述光穿透絕緣層之厚度係以如下方式設定:從前 述微透鏡入射且一邊在前述導體層及前述反射導體層反 射、一邊通過前述第1至第4半導體區域並到達前述光穿 透絕緣層的光之反射率,在綠色光時會相對地變大並且在 紅色光時會相對地變小。 又’在本發明之較佳態樣中,復具備:形成於前述島 狀半導體之下方區域的光穿透絕緣層;以及形成於該光穿 透絕緣層之下方區域的光吸收層, 而前述光穿透絕緣層之厚度係以如下方式設定:從前 述微透鏡入射且在前述導體層及前述反射導體層一邊反 射、邊通過第1至第4半導體區域並到達前述光穿透絕 緣層的光之反射率,在綠色光及紅色光時會相對地變大。 2,在本發明之較佳態樣中,具備:形成於前述微透 鏡與前述島狀半導體之間的光透明中間層, 而別述微透鏡之焦點係位於前述光透明中間層之内 部0 又, 在本發明之較佳態樣中,在前述島狀半導體上部 之中央表層部形成有凹部或凸部, 二:述凹部之凹狀面或前述凸部之凸狀面為境界 面^相接的二個物質區域之光折射率係互為不同。 本發明之較佳態樣中,具備:形狀前述微透 鏡與别:!狀半導體之間的光透明,間層, 之_心線及f微透鏡的外周部之1點人射並通過該微透鏡 之^線〜述光朗㈣層㈣達前料狀半導體上部S 323 367 15 201218364 The thickness of the light-transmitting insulating layer is set such that it is incident from the microlens and is reflected by the conductor layer and the reflective conductor layer, and passes through the first to fourth semiconductor regions and reaches the foregoing The reflectance of light passing through the insulating layer is relatively large in green light and relatively small in red light. Further, in a preferred aspect of the present invention, a light-transmitting insulating layer formed in a lower region of the island-shaped semiconductor; and a light absorbing layer formed in a region below the light-transmitting insulating layer, The thickness of the light-transmitting insulating layer is set such that light that is incident from the microlens and that is reflected by the conductive layer and the reflective conductor layer and passes through the first to fourth semiconductor regions and reaches the light-transmitting insulating layer The reflectance is relatively large in green and red light. 2. In a preferred aspect of the present invention, the optical transparent intermediate layer formed between the microlens and the island-shaped semiconductor is disposed, and the focus of the other microlens is located inside the light transparent intermediate layer. In a preferred aspect of the present invention, a concave portion or a convex portion is formed in a central surface layer portion of the upper portion of the island-shaped semiconductor, and a concave surface of the concave portion or a convex surface of the convex portion is a boundary interface The refractive indices of the two material regions are different from each other. In a preferred aspect of the invention, there is provided: the shape of the microlens and the other:! The light between the semiconductors is transparent, and the interlayer, the center line and the outer peripheral portion of the f-microlens are incident on the first line and pass through the microlens to the upper (four) layer (four).
C 323367 16 201218364 的外周部之1點的光線、和與前述第5半導體區域之上表 面正交的線所構成之角度,係比布魯斯特(Brewster) 角Θ bOtan^^/%),其中,Nl為前述光透明中間層之折 射率,沁為前述第5半導體區域之折射率)還更小。 又,在本發明之較佳態樣中,前述複數個像素係排列 成正方格子狀、矩形格子狀、或千鳥狀,且 該固體攝像裝置復具備: 縱向延伸之複數條導體配線,將前述 縱向排列的複數個像素中之前述第 象素^ 性連接,並且朝縱向延伸; +導紅域相互地電 橫向將前述複數個像㈣ 並且朝橫向延伸ίΓ 導體層相互地電性連接’ 之複數條反射導體配線,將前述複數個像素 之中向排列的複數個像素 性連接,並且朝橫向延伸; 汉射導體層相互地電 且橫向延伸之前述導體配線與前述反射導 從對前述複數個像素照射 4’係 沒有上下重“且是在縱向交二方向來看’彼此並 像素二前述複數個像素之各個 趙區域電性隔離,而前;複素中之前述第5半導 導齅厗及、®t 迖複數個像素中之全部的前述反射 台,’、以覆羞該像素區域之方 複數個像素所存在的像素區域。4互地連接及於前述 17C 323367 16 201218364 The angle between the light of one point on the outer peripheral portion and the line orthogonal to the upper surface of the fifth semiconductor region is the Brewster angle Θ bOtan^^/%), wherein Nl is a refractive index of the optically transparent intermediate layer, and 沁 is a refractive index of the fifth semiconductor region). Moreover, in a preferred aspect of the present invention, the plurality of pixels are arranged in a square lattice shape, a rectangular lattice shape, or a thousand bird shape, and the solid-state imaging device further includes: a plurality of longitudinally extending conductor tracks, which are longitudinally The foregoing plurality of pixels of the plurality of pixels are connected and extend in a longitudinal direction; the red-conducting red field electrically crosses the plurality of images (four) and laterally extends to the lateral direction, and the plurality of conductor layers are electrically connected to each other a reflective conductor wiring connecting a plurality of pixels arranged in a plurality of pixels and extending in a lateral direction; the conductor wirings electrically and laterally extending from each other, and the reflection guides illuminating the plurality of pixels from the plurality of pixels The 4' system has no upper and lower weights, and is electrically isolated from each other in the longitudinal direction of the two directions and two pixels of the aforementioned plurality of pixels, and the former fifth semi-guided 齅厗 and t 迖 all of the plurality of pixels of the reflection stage, ', to cover the pixel area of the plurality of pixels of the pixel area. 4 mutually connected and Above 17
S 323367 201218364 (發明效果) 密度、高解像 依據本發明,可提供一種能實現高像素 度、低混色、高靈敏度的固體攝像裝置。 【實施方式】 置一邊參照 以下,就本發明之實施形態的固體攝像裝 圖式一邊加以說明。 (第1實施形態) 第1A圖係顯示本發明第1實施形態的固體攝像裝置 之構成像素之島狀半導體la的剖面構造。 如第1A圖所示’在構成各像素的島狀半導體h =位的全體,形成有在基板上之像素區域中朝^择描 方向延伸之作為信號線的第丨半導體N+區域2。在第^ 導體N+區域2,係形成有與第!半導體N+區域2之導電型 相反的第2羊導體P區域3。在第2半導體p區域3之上. 部侧面區域,係形成有與第丨半導體N+區域2之導電型相 同的第3半導體n區域6a、6b。 包 以包圍第3半導體N區域6a、6b之外周部及第2半 導體P區域3的下部側面區域之外周部的方式形成有絕緣 層4a、4b。以包圍該絕緣層4a、4b之外周部的方式,在 第2半導體p區域3之下部區域形成有閘極導體層5&、5小 該閘極導體層5a、5b,係使用例如金屬材料而形成,且也 發揮作為將光(電磁能量波)予以反射之光反射層的功能。 在構成像素之島狀半導體la係形成有MOS電晶體, 該MOS電晶體係將第3半導體n區域6a、6b當作源極,將 18 323367 5 201218364 閘極導體層5a、5b當作閘極,將第i半導體『區 各 作汲極’將藉由第3半導體N區域6a、6b邀第°:丰:二 N+區域2而包夾的第2半導體p區域3當作通道 ^體 在閘極導體層5a、5b之上方侧,形成有由第 ; 區域3及第3半導體N區域6—構成的光電二極體區域 7 〇 在光電二極體區域7之表層部,係形成有第4半導體 P+區域8a、8b。第4半導體p+區域8a、8b,係在第3半導 體N區域6a、6b與絕緣層4a、4b之間,以與絕緣層如、 4b相接的狀態形成。在第4半導體p+區域知、肋之外周 部,係隔著絕緣從4a、4b而形成有將光等之電磁能量波^ 以反射的光反射導體層9a、9b。光反射導體層9a、gb,係 形成於除了導體層5a、5b以外的絕緣層4a、4b之外周部、 即第3半導體N區域6a、6b之外周部。光反射導體層9a、 9b,係使用例如金屬材料而形成,且發揮作為流通電流的 導體層及將光予以反射的光反射層之功能。 在第3半導體N區域6a、6b之上部,係形成有與第4 半導體P+區域8a、8b電性連接之與第2半導體p區域3 之導電型相同的第5半導體p+區域1〇。該第5半導體p+ 區域10,係與光反射導體層9a、9b連接。該光反射導體 層9a、9b,係成為朝與第丨掃描方向(信號線)正交之方向 延伸的像素選擇線。因此,光反射導體層9a、9b,係發揮 作為光反射層及像素選擇線的功能。另外,至少第3半導 體N區域6a、6b、第4半導體P+區域8a、8b及第5半導 19 323367 201218364 體P+區域10,較佳是形成於島狀半導體la内^ 在構成像素之島狀半導體la中,由第2半導體ρ區 域3及第3半導體N區域6a、6b構成的光電二極體區域7 係為光電轉換部,而光電二極體區域7之第3半導體N區 域6a、6b係為蓄積在光電轉換部產生之信號電荷的信號電 荷蓄積部。然後,接合電晶體係為信號電荷讀出部,該接 合電晶體係將第5半導體P+區域1〇、與第1半導體區域 2近旁的第2半導體P區域3當作源極舰極,將光電二 極體7之第3半導體N區域6a、牝當作閘極;而該信號電 荷讀出部係用以從第1半導體N+區域2讀出與蓄積於光電 =極體區域7之信號電荷量對應的源極沒極電流作為信號 電流。然後,M0S電晶體係為用以將蓄積於第3半導體N 區域6a、6b之信號電荷在第i半導體N+區域2予以去除 的蓄積信號電荷去除部,該M0S電晶體係將第3半導體N 區域6a、6b當作源極,將閘極導體層5a、讥當作閘極, 將第1半導體N+區域2當作汲極,將第3半導體N區域6a、 6b與第1半導體區域2間的第2半導體p區域3當作通 道。在本實施形態中,係在島狀半導體la内,形成有光電 ,換部、信號電荷蓄積部、信號電荷讀出部及蓄積信號電 何去除部,並且形成有光電轉換部的島狀半導體h之外周 邓可由光反射導體層9a、9b所覆蓋。 …丨後,在第5半導體p+區域1 〇上形成有由穿透光之 材料構成的光穿透中間區域24,且在該光穿透中間區域24 上形成有焦點位於第5半導體沪區域1〇之上表面近旁的 323367 20 201218364 微透鏡11。該光穿透中間區域24及微透鏡11,係例妒由 透明樹脂材料所形成。 在該島狀半導體la中,由微透鏡11之上面入射的糸 線(電磁能量波)12a、12b ’係聚光於位於第5半導體〆隱 域10之上表面近旁的微透鏡11之焦點。該聚光來的光瘃 12a、12b之令除了垂直地入射於微透鏡u之中心部的弟 線以外之入射於島狀半導體la的光線心、咖,^藉由 作為像素選擇線的光反射導體層9a、9b及導體層 而反射且傳播於島狀半導體la< 曰 # h内被吸收而產生信號電荷。 ^島狀+淨 因此,在作為感光區域的光電二極體區域7之光得搆 長度,係比光電二極體區域之高度Ld還長。如此,矸#在 作為感光區域的光電二極體區_ 7之光傳播長产予以妒 :二意味著:與第则所示之習知例的像素ς造y 體攝像裝置相較,可-邊降低光電二極體區域之高虞Ld 一邊獲得相同的靈敏度。 錯此 崎可縮小㈣半導體la之高寬tbUM淨 以了 1 之上部1邊長與光電二極區域之高度Ld的比),戶斤 可谷易進行包含誠像素之島狀半導㈣像素構造一 :壯’在本實施形態中’從斜方向入射於構成像素之 2+導體h的光線12a、l2b,由於可藉由光反射導體 及導體層%、❿而切,所以可防止光線⑽ 丰莫二Ϊ像素之島狀半導體1a鄰接的構成像素之島狀 體。糟此,可防止固體攝像装置之解像度的降低、與 21S 323367 201218364 (Effect of the Invention) Density and High Resolution According to the present invention, it is possible to provide a solid-state imaging device capable of realizing high pixel size, low color mixing, and high sensitivity. [Embodiment] Referring to the following, a solid-state imaging device according to an embodiment of the present invention will be described. (first embodiment) Fig. 1A is a cross-sectional view showing the island-shaped semiconductor la of the constituent pixels of the solid-state imaging device according to the first embodiment of the present invention. As shown in Fig. 1A, the second semiconductor N+ region 2 as a signal line extending in the pixel direction on the substrate is formed in the entire h = position of the island-shaped semiconductor constituting each pixel. In the second conductor N+ region 2, the system is formed with the first! The conductivity type of the semiconductor N+ region 2 is opposite to the second sheep conductor P region 3. The third semiconductor n regions 6a and 6b having the same conductivity type as the second semiconductor N+ region 2 are formed on the side surface region of the second semiconductor p region 3. The insulating layers 4a and 4b are formed so as to surround the outer peripheral portion of the third semiconductor N regions 6a and 6b and the outer peripheral portion of the lower side surface region of the second semiconductor P region 3. In order to surround the outer peripheral portions of the insulating layers 4a and 4b, a gate conductor layer 5& and a small gate conductor layer 5a and 5b are formed in a lower region of the second semiconductor p region 3, and a metal material is used, for example. It also forms a function as a light reflection layer that reflects light (electromagnetic energy waves). An MOS transistor is formed in the island-shaped semiconductor la constituting the pixel. The MOS transistor system uses the third semiconductor n region 6a, 6b as a source, and the gate electrode layer 5a, 5b of the 18 323367 5 201218364 gate is used as a gate. The second semiconductor p region 3, which is sandwiched by the third semiconductor N region 6a, 6b, and the second semiconductor p region 3, which is sandwiched by the third semiconductor N region 6a, 6b, is used as a channel body in the gate. On the upper side of the pole conductor layers 5a and 5b, a photodiode region 7 formed of the first region 3 and the third semiconductor N region 6 is formed in the surface layer portion of the photodiode region 7, and the fourth portion is formed. Semiconductor P+ regions 8a, 8b. The fourth semiconductor p+ regions 8a and 8b are formed between the third semiconductor N regions 6a and 6b and the insulating layers 4a and 4b in contact with the insulating layers 4 and 4b. In the fourth semiconductor p+ region, the light-reflecting conductor layers 9a and 9b for reflecting the electromagnetic energy waves such as light are formed from the 4a and 4b via the insulation. The light-reflecting conductor layers 9a and gb are formed on the outer peripheral portions of the insulating layers 4a and 4b other than the conductor layers 5a and 5b, that is, the outer peripheral portions of the third semiconductor N regions 6a and 6b. The light-reflecting conductor layers 9a and 9b are formed using, for example, a metal material, and function as a conductor layer through which a current flows and a light-reflecting layer that reflects light. In the upper portion of the third semiconductor N regions 6a and 6b, a fifth semiconductor p+ region 1A having the same conductivity type as that of the second semiconductor p region 3 electrically connected to the fourth semiconductor P+ regions 8a and 8b is formed. The fifth semiconductor p+ region 10 is connected to the light reflection conductor layers 9a and 9b. The light-reflecting conductor layers 9a and 9b are pixel selection lines extending in a direction orthogonal to the second scanning direction (signal line). Therefore, the light-reflecting conductor layers 9a and 9b function as a light-reflecting layer and a pixel selection line. Further, at least the third semiconductor N regions 6a and 6b, the fourth semiconductor P+ regions 8a and 8b, and the fifth semiconductor derivative 19 323367 201218364 body P+ region 10 are preferably formed in the island-shaped semiconductor la. In the semiconductor la, the photodiode region 7 composed of the second semiconductor ρ region 3 and the third semiconductor N regions 6a and 6b is a photoelectric conversion portion, and the third semiconductor N region 6a, 6b of the photodiode region 7 is formed. It is a signal charge storage unit that accumulates signal charges generated in the photoelectric conversion unit. Then, the bonded crystal system is a signal charge reading unit that uses the fifth semiconductor P+ region 1〇 and the second semiconductor P region 3 near the first semiconductor region 2 as a source ship, and photoelectrically The third semiconductor N region 6a of the diode 7 is a gate, and the signal charge reading portion is for reading and accumulating the signal charge amount from the first semiconductor N+ region 2 and accumulating in the photoelectric body region 7. The corresponding source has no pole current as the signal current. Then, the MOS transistor system is an accumulation signal charge removing portion for removing signal charges accumulated in the third semiconductor N regions 6a and 6b in the i-th semiconductor N+ region 2, and the MOS transistor system is a third semiconductor N region. 6a and 6b serve as sources, and the gate conductor layers 5a and 讥 are used as gates, and the first semiconductor N+ region 2 is regarded as a drain, and between the third semiconductor N regions 6a and 6b and the first semiconductor region 2 The second semiconductor p region 3 serves as a channel. In the present embodiment, the island-shaped semiconductor h in which the photoelectric conversion portion is formed is formed in the island-shaped semiconductor la, and the photoelectric conversion portion, the signal charge storage portion, the signal charge reading portion, and the accumulation signal electric removal portion are formed. The outer circumference Deng can be covered by the light reflecting conductor layers 9a, 9b. After that, a light-transmitting intermediate region 24 composed of a material that penetrates light is formed on the fifth semiconductor p+ region 1 , and a focus is formed on the fifth semiconductor region 1 on the light-transmissive intermediate region 24 323367 20 201218364 Microlens 11 near the surface. This light penetrates the intermediate portion 24 and the microlens 11 and is formed of a transparent resin material. In the island-shaped semiconductor la, the ridges (electromagnetic energy waves) 12a, 12b' incident from the upper surface of the microlens 11 are concentrated at the focus of the microlens 11 located near the upper surface of the fifth semiconductor cryptic region 10. The light ray 12a, 12b of the condensed light is reflected by the light ray which is incident on the island-shaped semiconductor la except for the line which is perpendicularly incident on the central portion of the microlens u, and is reflected by the light as the pixel selection line. The conductor layers 9a and 9b and the conductor layer are reflected and propagated in the island-shaped semiconductor la<曰# h to be absorbed to generate signal charges. ^ Island shape + net Therefore, the length of the light in the photodiode region 7 as the photosensitive region is longer than the height Ld of the photodiode region. Thus, 矸# is a long-term transmission of light in the photodiode region _ 7 as a photosensitive region: second means: compared with the conventional pixel-based y-camera device shown in the first example, The same sensitivity is obtained while lowering the high 虞Ld of the photodiode region. The fault can be narrowed down. (4) The height and width of the semiconductor la tbUM is the ratio of the upper side length of 1 to the height Ld of the photodiode area, and the user can perform the island-shaped semi-conductor (four) pixel structure including the pixel. 1. In the present embodiment, the light rays 12a and 12b which are incident on the 2+ conductor h constituting the pixel from the oblique direction can be prevented by the light-reflecting conductor and the conductor layer % and ❿, so that the light (10) can be prevented. An island-shaped body constituting a pixel adjacent to the island-shaped semiconductor 1a of the pixel. In this case, the resolution of the solid-state imaging device can be prevented from being lowered, and
S 323367 201218364 彩色攝像中之混色。 第1B圖係顯示在本實施形態的固體攝像裝置中,從 光入射面側看到形成於像素區域之構成3x3個(=9個)像素 的島狀半導體Ριι至Pm之排列狀態的俯視示意圖。 如第1B圖所示,在上面具有微透鏡的構成像素之島 狀半導體Ριι至P33,係形成於在該圖上朝垂直方向延伸的 信號線半導體N+區域Si、S2、S3上。然後,像素選擇線9ab卜 9ab2、9ab3及M0S閘極配線5abl、5ab2、5ab3,係以包圍 被排列於配置成矩陣狀的島狀半導體Pll至Pa之列方向的 島狀半導體P"至P33之方式而形成。像素選擇線gabi、 9ab2、9ab3、與 M0S 閘極配線 5abl、5ab2、5ab3,係以上 下重疊的方式而形成。然後,島狀半導體pu至p33、 閘極配線 5abl、5ab2、5ab3、像素選擇線 9aM、9ab2、9ab3, 係連接於設置在像素區域之周邊的驅動/輸出電路(未圖 示)。 第1C圖係顯示由第1B圖中之一點鏈線a包圍的矩形 狀區域中之立體構造示意圖。如第lc圖所示,在島狀半導 體Pii、Pi2’係存在有與第1A圖所示的島狀半導體化之第 1半導體N+區域2對應的第1半導體if區域2a、2b。該第 1半導體N+區域2a、2b,係電性連接於在基板上朝第i掃 描方向延伸的帶狀信號線N+區域2aa、2沾。 又,以包圍島狀半導體Pu、之外周部的方式,形 成有環狀的閘極導體詹5aa、5bb。閘極導體層5aa、5bb, 係電性連接於朝與帶狀信號線N+區域2aa、2bb正交之方 22 323367 201218364 向延伸的M0S閘極配線5ab(5abl、5ab2、5ab3)。環狀的 光反射導體層9aa、9bb,係以包圍島狀半導體Pn、p12之 外周的方式而形成。光反射導體層9aa、9bb,係電性連接 於朝與帶狀信號線N+區域2aa、2bb正交之方向延伸的像 素選擇線9ab。光反射導體層9aa、9bb,係電性連接於形 成於其上方的第5半導體P+區域10a、10b。在第5半導體 P+區域10a、10b上,係配置有微透鏡11a、lib。 在形成於帶狀信號線N+區域2aa、2bb上的島狀半導 體Pn、P1Z,係以包圍該島狀半導體Pn、P!2之方式,形成 有將光予以反射的導體層5aa、5bb、光反射導體層9aa、 9bb。由於第1半導體N+區域2a、2b及帶狀信號線if區域 2aa、2bb為充分地摻雜有施體雜質的區域,所以在第1半 導體N+區域2a、2b及帶狀信號線N+區域2aa、2bb,不會 因所入射的光線(電磁能量波)而產生信號電荷(在此為自 由電子)。藉此從微透鏡11a、lib入射於島狀半導體pn、 Pu的光線,幾乎不會產生朝與該島狀半導體Ρπ、P12鄰接 的構成像素之島狀半導體的光洩漏,而會分別一邊在導體 層5aa、5bb、光反射導體層9aa、9bb反射一邊傳播於高 狀半導體Pn、Pu内,且在該島狀半導體P"、Pl2内被吸收 而產生信號電荷。藉此,可降低島狀半導體Pl1、Pu之高 度,並且可提高像素構造之加工性,且可實現高像素密度 化。更且,可提供一種沒有解像度之降低、彩色攝像之混 色的固體攝像裝置。 在第1實施形態中,雖然第2半導體P區域3(參照第S 323367 201218364 Color mixing in color photography. In the solid-state imaging device of the present embodiment, a schematic plan view of the arrangement of the island-shaped semiconductors Ρι to Pm constituting 3x3 (=9) pixels formed in the pixel region is seen from the light incident surface side. As shown in Fig. 1B, the island-shaped semiconductors Ρι to P33 constituting the pixels having the microlenses thereon are formed on the signal line semiconductors N+ regions Si, S2, and S3 extending in the vertical direction in the figure. Then, the pixel selection lines 9ab, 9ab2, 9ab3, and the MOS gate wirings 5ab1, 5ab2, and 5ab3 surround the island-shaped semiconductors P" to P33 arranged in the direction of the array of the island-shaped semiconductors P11 to Pa arranged in a matrix. Formed by the way. The pixel selection lines gabi, 9ab2, and 9ab3 and the MOS gate wirings 5ab1, 5ab2, and 5ab3 are formed so as to overlap each other. Then, the island-shaped semiconductors pu to p33, the gate wirings 5ab1, 5ab2, and 5ab3, and the pixel selection lines 9aM, 9ab2, and 9ab3 are connected to a drive/output circuit (not shown) provided around the pixel region. Fig. 1C is a schematic perspective view showing a three-dimensional structure in a rectangular region surrounded by a dot chain line a in Fig. 1B. As shown in Fig. 1c, the first semiconductor if regions 2a and 2b corresponding to the island-semiconductor-first semiconductor N+ region 2 shown in Fig. 1A are present in the island-shaped semiconductors Pii and Pi2'. The first semiconductor N+ regions 2a and 2b are electrically connected to the strip-shaped signal line N+ regions 2aa and 2 extending in the i-th scan direction on the substrate. Further, a ring-shaped gate conductors Jana 5aa and 5bb are formed so as to surround the island-shaped semiconductor Pu and the outer peripheral portion. The gate conductor layers 5aa and 5bb are electrically connected to the MOS gate wirings 5ab (5abl, 5ab2, 5ab3) extending toward the side 22 323367 201218364 orthogonal to the strip signal line N+ regions 2aa and 2bb. The annular light-reflecting conductor layers 9aa and 9bb are formed to surround the outer circumferences of the island-shaped semiconductors Pn and p12. The light-reflecting conductor layers 9aa and 9bb are electrically connected to the pixel selection line 9ab extending in a direction orthogonal to the strip-shaped signal line N+ regions 2aa and 2bb. The light-reflecting conductor layers 9aa and 9bb are electrically connected to the fifth semiconductor P+ regions 10a and 10b formed thereon. The microlenses 11a and 11b are disposed on the fifth semiconductor P+ regions 10a and 10b. The island-shaped semiconductors Pn and P1Z formed on the strip-shaped signal line N+ regions 2a and 2bb form a conductor layer 5aa, 5bb, and light that reflects light so as to surround the island-shaped semiconductors Pn and P!2. Reflective conductor layers 9aa, 9bb. Since the first semiconductor N+ regions 2a and 2b and the strip-shaped signal line if regions 2aa and 2bb are regions in which the donor impurities are sufficiently doped, the first semiconductor N+ regions 2a and 2b and the strip-shaped signal line N+ region 2aa are 2bb, does not generate signal charge (here, free electron) due to the incident light (electromagnetic energy wave). Thus, light rays incident on the island-shaped semiconductors pn and Pu from the microlenses 11a and lib hardly cause light leakage to the island-shaped semiconductors constituting the pixels adjacent to the island-shaped semiconductors Ρπ and P12, and are respectively on the conductors. The layers 5aa and 5bb and the light-reflecting conductor layers 9aa and 9bb are reflected and propagated in the high-profile semiconductors Pn and Pu, and are absorbed in the island-shaped semiconductors P" and P12 to generate signal charges. Thereby, the height of the island-shaped semiconductors P1, Pu can be lowered, and the workability of the pixel structure can be improved, and high pixel density can be realized. Further, it is possible to provide a solid-state imaging device which does not have a reduction in resolution and a color mixture of color imaging. In the first embodiment, the second semiconductor P region 3 (see the
S 23 323367 201218364 1A圖)是由P型半導體所構成,但是該第2半導體p區域3 亦可為固有半導體(intrinsic semiconductor)來取代如 此的P型半導體。所有半導體,係指母财並未包含 雜質的半導體’且其f米能階係位於傳導體下端與價電子 帶之上端的能帶隙之中心近旁。时半導體,若含有微量 的文體雜質則成為P-型,若為完全未含雜質之純粹的半導 體則成為本徵型’若含有微量的施體雜㈣成為N—型。固 有半導體’係為高電阻器,當在第5半導體p+區域1〇 &、 l〇b、與帶狀信號線N+區域2紐、2bb之間施加有電壓時就 會在内部產生電位梯度。然後’由於從該第5半導體p+區 域10 a、10b >主入於該具有電位梯度的基體(bulk)内的電 洞(hole)會朝向帶狀信號線N+區域2aa、2bb流通,所以 由固有半導體構成的第2半導體區域3,可發揮作為接合 電晶體之通道的功能。 (第2實施形態) 第2A圖及第2B圖係分別顯示習知例的固體攝像裳置 之剖視圖、電位分佈圖。又,第2C圖至第2F圖係顯示本 發明第2實施形態的固體攝像裝置之像素構造、電位分佈 圖、俯視示意圖。 本實施形態的固體攝像裝置,係如第1實施形態的固 體攝像裝置般’不僅可解決習知例的固體攝像裝置(參照第 12A圖)中成為課題的高像素化與高靈敏度化、解像度之降 低及彩色攝像之混色的問題,更可防止暗電流與暗電流雜 訊之產生。S 23 323 367 201218364 1A) is composed of a P-type semiconductor, but the second semiconductor p region 3 may be an intrinsic semiconductor instead of such a P-type semiconductor. All semiconductors refer to semiconductors whose parent wealth does not contain impurities' and whose f-meter energy system is located near the center of the energy band gap at the lower end of the conductor and the upper end of the valence band. When the semiconductor contains a trace amount of a trace impurity, it becomes a P-type, and if it is a pure semiconductor which does not contain a completely impurity, it becomes an intrinsic type, and if it contains a trace amount of a dopant (4), it becomes an N-type. The built-in semiconductor is a high-resistance, and a potential gradient is generated internally when a voltage is applied between the fifth semiconductor p+ regions 1 〇 &, l 〇 b and the strip-shaped signal line N+ region 2 纽 2 bb. Then, 'holes from the fifth semiconductor p+ regions 10a and 10b> that are mainly in the bulk having the potential gradient flow toward the strip-shaped signal lines N+ regions 2aa and 2bb, so The second semiconductor region 3 composed of the intrinsic semiconductor functions as a channel for bonding the transistors. (Second Embodiment) Figs. 2A and 2B are a cross-sectional view and a potential distribution diagram of a solid-state imaging device of a conventional example, respectively. 2C to 2F are a schematic view showing a pixel structure, a potential distribution diagram, and a plan view of a solid-state imaging device according to a second embodiment of the present invention. In the solid-state imaging device according to the first embodiment, the solid-state imaging device of the first embodiment can solve the problem of high pixelation, high sensitivity, and resolution in the solid-state imaging device of the conventional example (see FIG. 12A). Reduce the problem of color mixing with color imaging, and prevent dark current and dark current noise.
.S 323367 24 201218364 在第2A圖所示的島狀半導體30之剖面構造中,為了 要防止在第12A圖所示之習知例的固體攝像裝置中產生的 解像度之降低、彩色攝像中之混色,除了如下差異點以外 由於其餘與第1A圖所示的像素構造相同,所以除了以下說 明的情況其餘省略附記相同之元件符號的部位之說明,該 差異點為:以包圍光電二極體區域的半導體N區域35a、 35b之外周部的方式,透過絕緣層33a、33b,設置遮蔽光 的光遮蔽金屬層55a、55b ;以及在光電二極體區域之表層 部並未形成第4半導體P+區域8a、8b。在該像素構造中, 係可藉由該光遮蔽金屬層55a、55b,來反射所入射的光線 38a,藉此可防止朝鄰接的像素之光電二極體區域的光洩 漏。 但是,雖然可藉由以包圍光電二極體區域之半導體N 區域35a、35b的方式,設置光遮蔽金屬層55a、55b,來 防止解像度之降低與彩色攝像之混色,但是卻無法防止暗 電流與暗電流雜訊之產生。 第2B圖係顯示本實施形態的固體攝像裝置之信號電 荷蓄積動作時沿著第2A圖之A-A’線的電位分佈圖。如第 2B圖所示,在光遮蔽金屬層55a(55b)施加有正電壓Vg(V), 而半導體P區域32之電壓Vp(V)會變成接地電位Vp(=0V)。 在第2B圖中,係以虛線顯示當在半導體N區域35a 沒有蓄積信號電荷Qsig(在此為自由電子)時的電位分佈, 且以實線顯示有蓄積信號電荷Qsig時的電位分佈。沒有蓄 積信號電荷時的電位分佈之底部(電壓最高之處)係位於半.S 323367 24 201218364 In the cross-sectional structure of the island-shaped semiconductor 30 shown in Fig. 2A, in order to prevent the reduction of the resolution generated in the solid-state imaging device of the conventional example shown in Fig. 12A, the color mixture in color imaging is prevented. Except for the following difference points, since the rest of the pixel structure is the same as that shown in FIG. 1A, the description of the portion of the same component symbol is omitted except for the case where the following description is made to surround the photodiode region. In the outer peripheral portion of the semiconductor N regions 35a and 35b, the light shielding metal layers 55a and 55b for shielding light are provided through the insulating layers 33a and 33b, and the fourth semiconductor P+ region 8a is not formed in the surface portion of the photodiode region. , 8b. In this pixel structure, the incident light ray 38a can be reflected by the light shielding metal layers 55a, 55b, whereby light leakage to the photodiode region of the adjacent pixel can be prevented. However, although the light shielding metal layers 55a and 55b can be provided in such a manner as to surround the semiconductor N regions 35a and 35b of the photodiode region, the reduction in resolution and color mixing can be prevented, but the dark current cannot be prevented. The generation of dark current noise. Fig. 2B is a view showing a potential distribution along the line A-A' of Fig. 2A when the signal charge storage operation of the solid-state imaging device of the embodiment is performed. As shown in Fig. 2B, a positive voltage Vg (V) is applied to the light shielding metal layer 55a (55b), and the voltage Vp (V) of the semiconductor P region 32 becomes the ground potential Vp (=0 V). In FIG. 2B, the potential distribution when the signal charge Qsig (here, free electron) is not accumulated in the semiconductor N region 35a is shown by a broken line, and the potential distribution when the signal charge Qsig is accumulated is shown by a solid line. The bottom of the potential distribution (the highest voltage) when no signal charge is accumulated is located in the middle
S 25 323367 201218364 導體N區域35a之内部,且該電位分佈之底部的電位為 Vcm 〇 在信號電荷Qsig蓄積於半導體N區域35a的情況下, 從光遮蔽金屬層55a(55b)至絕緣層33a、半導體n區域35a 之界面電位vi’電位會變深^然後,在蓄積有信號電荷Qsig 的區域,信號電荷蓄積部之電位Vs變成平垣,且從此處朝 向半導體N區域35a、半導體p區域32,電位會從Vs朝 Vp變淺。 如此擴展於半導體P區域32的空乏層長度Ldw,可依 4吕號電何Qsig之有無而產生變化。又,在半導體n區域 35a中’當將絕緣層33a與半導體N區域35a之界面電位 設為Vi(V)時’就會依信號電荷Qsig之有無,從該界面朝 向半導體N區域35a内部以電位變深至Vcm或“的方式而S 25 323367 201218364 The inside of the conductor N region 35a, and the potential at the bottom of the potential distribution is Vcm 〇, in the case where the signal charge Qsig is accumulated in the semiconductor N region 35a, from the light shielding metal layer 55a (55b) to the insulating layer 33a, The potential of the interface potential vi' of the semiconductor n region 35a becomes deeper. Then, in the region where the signal charge Qsig is accumulated, the potential Vs of the signal charge storage portion becomes flat, and from there toward the semiconductor N region 35a, the semiconductor p region 32, the potential Will lighten from Vs towards Vp. The length Ldw of the depletion layer thus expanded in the semiconductor P region 32 can be varied depending on the presence or absence of the Q-ray. Further, in the semiconductor n region 35a, 'when the interface potential between the insulating layer 33a and the semiconductor N region 35a is set to Vi (V)', depending on the presence or absence of the signal charge Qsig, the potential is applied from the interface toward the inside of the semiconductor N region 35a. Deepen to Vcm or "the way
產生變化。在此狀態下,當存在於絕緣層33a與半導體N 區域35a之界面的能階之電子56熱激勵至導電帶 (conduction band)時,該電子56,就會在半導體N區域 35a中,混入於位在更深之電位的信號電荷Qsig中。該混 入的電子56係被稱為暗電流’且像素間的暗電流變動會產 生造成原因的暗電流不均等。又,暗電流本身會變成雜訊 (不要的信號),而成為使S/N(信號/雜訊比)降低的原因。 在第2B圖中,由於即便使光遮蔽金屬層55a、55b之電壓Make a difference. In this state, when the energy of the energy level 56 existing at the interface between the insulating layer 33a and the semiconductor N region 35a is thermally excited to a conduction band, the electron 56 is mixed in the semiconductor N region 35a. It is located in the signal charge Qsig at a deeper potential. The mixed electrons 56 are referred to as dark currents, and dark current fluctuations between pixels cause uneven current leakage. Also, the dark current itself becomes a noise (an unwanted signal), which is a cause of lowering the S/N (signal/noise ratio). In Fig. 2B, since the voltage of the light shielding metal layers 55a, 55b is made even
Vg變化至接地電壓(0V)等’在Vs變得比Vi還深的方面也 • 不會有所變化,所以始終在絕緣層33a與半導體N區域35a 之界面產生的暗電流之電子56會移動至半導體n區域35aVg changes to the ground voltage (0V), etc. 'The Vs become deeper than Vi. ・There is no change, so the electrons 56 that always generate dark current at the interface between the insulating layer 33a and the semiconductor N region 35a will move. To semiconductor n region 35a
C 323367 26 201218364 之内部,且混入於信號電荷Qsig中。因此,在第12A圖所 示之習知例的像素構造中設置光遮蔽金屬層55a、55b的情 況’並無法抑制暗電流及暗電流雜訊之產生。 第2C圖係顯示本實施形態的固體攝像裝置之像素構 造。如第2C圖所示,在構成像素之島狀半導體ia的下方 部位,形成有成為信號線的第丨半導體N+區域2。在第j 半導體N+區域2上,係形成有與第丨半導體N+區域2之導 電型相反的第2半導體p區域3(該第2半導體p區域,亦 可由固有半導體所形成以取代p型半導體)。在該第2半導 體P區域3之上部側面區域,係形成有與第丨半導體穸區 域2之導電型相同的第3半導體N區域。 以包圍苐3半導體N區域6a、6b之外周部及第2半 導體P區域3的下部側面區域之外周部的方式而形成有絕 緣層4a、4b。以包圍該絕緣層4a、4b之外周部的方式, 在第2半導體P區域3之下部區域形成有閘極導體層 5b。該閘極導體層5a、5b,係制例如金屬材料所形成, 且也發揮作為將光線(電磁能量波)予以反射的光反射層之 功能。 在構成像素之島狀半導體la係形成有M〇s電晶體, 該M0S電晶體係將第3半導體N區域6a、6b當作源極,將 閘極導體層5a、5b當作閘極,將第i半導體N+區域2當 作沒極’將第1半導體N+區域2與第3半導體N區域6a、 6b間的第2半導體p區域3當作通道。然後,在問極導體 層5a、5b之上方側’形成有由第2半導體p區域3及第3 C. 323367 27 201218364 半導體N區域6a、6b構成的光電二極體區域7。 在光電二極體區域7之表層部,係形成有第4半導體 P+區域8a、8b。第4半導體P+區域8a、8b ’係在第3半導 體N區域6a、6b與絕緣層4a、4b之間,以與絕緣層4a、 4b相接的狀態形成。在第4半導體P+區域8a、8b之外周 部,係隔著絕緣從4a、4b而形成有將光等之電磁能量波予 以反射的光反射導體層99a、99b。光反射導體層99a、99b, 係形成於除了導體層5a、5b以外的絕緣層4a、4b之外周 部、即第3半導體N區域6a、6b之外周部。光反射導體層 99a、99b,係使用例如金屬材料而形成,且發揮作為流通 電流的導體層及將光予以反射的光反射層之功能。 在第3半導體N區域6a、6b之上部,係形成有與第4 半導體P+區域8a、8b電性連接之與第2半導體p區域3 之導電型相同的第5半導體P+區域1〇。該第5半導體p+ 區域10,係與金屬層l〇aa、10bb連接。該金屬層1〇时、 10bb,係成為朝與第1掃描方向(信i缘)正交之方向延伸 的像素選擇線。因此,金屬層1Gaa、獅,係發揮作為光 反射層及像素選擇線的功能。更且,光反射導體層咖、 99b係電性連接於位於構成像素之島狀半導體_ 射導體層99c、99d。 ,另夕^在=施形態中,光電轉換部(光電二極_ 域7) L號電β何蓄積#、信號電荷讀出部、蓄積信號電荷 去除部,由於是與第1Α圖所干夕笛,虫 Ab , 口所不之第1實施形態中的島狀半 導體la相同’所以省略其說明。 323367 28 201218364 然後,在第5半導體P+區域ι〇上形成有由穿透光之 材料構成的光穿透中間區域24,且在該光穿透中間區域24 上形成有焦點位於第5半導體P+區域1〇之上表面近旁的 微透鏡11。該光穿透中間區域24及微透鏡11,係例如由 透明樹脂材料所形成。 在該島狀半導體la中,由微透鏡11之上面入射的光 線12a、12b ’係聚光於位於第5半導體P+區域1〇之上表 面近旁的微透鏡11之焦點。該聚光來的光線12a、12b之 中除了垂直地入射於微透鏡11之中心部的光線以外之入 射於島狀半導體la的光線12a、12b,可藉由作為像素選 擇線的光反射導體層99a、99b及閘極導體層5a、5b而反 射且傳播於島狀半導體la内,並在該島狀半導體ia内被 吸收而產生信號電荷。藉此,與第1實施形態之固體攝像 裝置同樣’可降低島狀半導體la之高度(光電二極體區域 7之高度Ld)。結果,可提供一種能提高包含構成像素之島 狀半導體的像素構造之加工性、能實現高像素密度化並且 能防止解像度之降低、彩色攝像之混色的固體攝像裝置。 第2D圖係顯示本實施形態的固體攝像裝置之信號電荷 蓄積動作時沿著第2C圖之B-B,線的電位分佈圖。如第2D 圖所不’在光反射導體層99a係施加有接地電壓Vg(=〇y)。 與此同樣,在第1半導體N+區域2及第5半導體p+區域1〇 亦施加有接地電壓vg(=〇v)。 在第2C圖中,由於第4半導體P+區域8a係電性連接 於第5半導體P+區域1〇,所以第4半導體p+區域%之電C 323367 26 201218364 Internal, and mixed in the signal charge Qsig. Therefore, the case where the light shielding metal layers 55a and 55b are provided in the pixel structure of the conventional example shown in Fig. 12A does not suppress the generation of dark current and dark current noise. Fig. 2C is a diagram showing the pixel structure of the solid-state imaging device of the embodiment. As shown in Fig. 2C, a second semiconductor N+ region 2 serving as a signal line is formed under the island-shaped semiconductor ia constituting the pixel. In the j-th semiconductor N+ region 2, a second semiconductor p region 3 opposite to the conductivity type of the second semiconductor N+ region 2 is formed (the second semiconductor p region may be formed of an intrinsic semiconductor instead of the p-type semiconductor) . In the upper side surface region of the second semiconductor P region 3, a third semiconductor N region having the same conductivity as that of the second semiconductor germanium region 2 is formed. The insulating layers 4a and 4b are formed so as to surround the outer peripheral portion of the 半导体3 semiconductor N regions 6a and 6b and the outer peripheral portion of the lower side surface region of the second semiconductor P region 3. A gate conductor layer 5b is formed in a lower region of the second semiconductor P region 3 so as to surround the outer peripheral portions of the insulating layers 4a and 4b. The gate conductor layers 5a and 5b are formed, for example, of a metal material, and also function as a light reflection layer that reflects light (electromagnetic energy waves). An M〇s transistor is formed in the island-shaped semiconductor la system constituting the pixel, and the MOS transistor system uses the third semiconductor N regions 6a and 6b as a source and the gate conductor layers 5a and 5b as a gate. The i-th semiconductor N+ region 2 is regarded as a gateless electrode', and the second semiconductor p region 3 between the first semiconductor N+ region 2 and the third semiconductor N regions 6a and 6b is regarded as a channel. Then, a photodiode region 7 composed of the second semiconductor p region 3 and the third C. 323367 27 201218364 semiconductor N regions 6a and 6b is formed on the upper side of the polarity conducting conductor layers 5a and 5b. The fourth semiconductor P+ regions 8a and 8b are formed in the surface layer portion of the photodiode region 7. The fourth semiconductor P+ regions 8a and 8b' are formed between the third semiconductor N regions 6a and 6b and the insulating layers 4a and 4b, and are in contact with the insulating layers 4a and 4b. In the outer periphery of the fourth semiconductor P+ regions 8a and 8b, light-reflecting conductor layers 99a and 99b for reflecting electromagnetic energy waves such as light are formed from the electrodes 4a and 4b via insulation. The light-reflecting conductor layers 99a and 99b are formed on the outer peripheral portions of the third semiconductor N regions 6a and 6b except for the insulating layers 4a and 4b other than the conductor layers 5a and 5b. The light-reflecting conductor layers 99a and 99b are formed using, for example, a metal material, and function as a conductor layer through which a current flows and a light-reflecting layer that reflects light. In the upper portion of the third semiconductor N regions 6a and 6b, a fifth semiconductor P+ region 1A having the same conductivity type as that of the second semiconductor p region 3 electrically connected to the fourth semiconductor P+ regions 8a and 8b is formed. The fifth semiconductor p+ region 10 is connected to the metal layers 10a and 10b. When the metal layer is 1 、 and 10 bb, it is a pixel selection line extending in a direction orthogonal to the first scanning direction (the edge of the signal). Therefore, the metal layer 1Gaa and the lion function as a light reflecting layer and a pixel selection line. Further, the light-reflecting conductor layer and 99b are electrically connected to the island-shaped semiconductor-emitter conductive layers 99c and 99d constituting the pixel. In the case of the other embodiment, the photoelectric conversion unit (photodiode _ field 7) L number electric charge β accumulation product #, signal charge readout unit, and accumulated signal charge removal unit are the same as the first map. The whistle, the insect Ab, and the island-shaped semiconductor la in the first embodiment are the same, and the description thereof is omitted. 323367 28 201218364 Then, a light-transparent intermediate region 24 composed of a material that penetrates light is formed on the fifth semiconductor P+ region ι, and a focus is located on the fifth semiconductor P+ region on the light-transmissive intermediate region 24. 1) The microlens 11 near the upper surface. The light penetrates the intermediate portion 24 and the microlens 11 and is formed, for example, of a transparent resin material. In the island-shaped semiconductor 1a, the light rays 12a and 12b' incident on the upper surface of the microlens 11 are concentrated on the focus of the microlens 11 located near the surface of the fifth semiconductor P+ region 1A. The light rays 12a, 12b which are incident on the island-shaped semiconductor la other than the light rays incident on the central portion of the microlens 11 in the collected light rays 12a, 12b can be used as the light-reflecting conductor layer as the pixel selection line. 99a and 99b and the gate conductor layers 5a and 5b are reflected and propagated in the island-shaped semiconductor la, and are absorbed in the island-shaped semiconductor ia to generate signal charges. As a result, the height of the island-shaped semiconductor la (the height Ld of the photodiode region 7) can be reduced similarly to the solid-state imaging device of the first embodiment. As a result, it is possible to provide a solid-state imaging device capable of improving the processability of the pixel structure including the island-shaped semiconductor constituting the pixel, achieving high pixel density, preventing the reduction of the resolution, and color mixing by color imaging. Fig. 2D is a diagram showing the potential distribution along the line B-B of Fig. 2C when the signal charge storage operation of the solid-state imaging device of the present embodiment is performed. The grounding voltage Vg (= 〇 y) is applied to the light-reflecting conductor layer 99a as shown in Fig. 2D. Similarly, a ground voltage vg (= 〇v) is also applied to the first semiconductor N+ region 2 and the fifth semiconductor p+ region 1A. In Fig. 2C, since the fourth semiconductor P+ region 8a is electrically connected to the fifth semiconductor P+ region 1〇, the fourth semiconductor p+ region% is electrically
S 29 323367 201218364 位會變成接地電壓Vg(=〇V)。 在信號電荷Qsig蓄積於第3半導體N區域6a的狀態 下’從第4半導體p+區域8a至第3半導體N區域6a,電 位會從Vg朝具有信號電荷Qsig之電位Vs變深,且在蓄積 有信號電荷Qsig的區域中,保持有一定的電位,並從 此處朝向第2半導體p區域3,降低至該第2半導體P區 域3之電位Vp。在該狀態下’在第4半導體p+區域8a, 係存在有較多的從第5半導體p+區域1〇供給來的電洞 (hole)56d。因此,當存在於絕緣層4a與第4半導體p+區 域8a之界面的能階之電子56c熱激勵至導電帶時,該電子 56c,就會與存在於第4半導體p+區域如之電洞56d再結 合而消滅。藉此,被激勵的電子56c,就不會混入於信號 電荷Qsig中,且不會產生暗電流及暗電流雜訊。 第2E圖係顯示本實施形態的固體攝像裝置之信號電 荷讀出動作時沿著第2C圖之B_B,線的電位分佈圖。參照 第2C圖及第2E圖,當信號電荷讀出動作時,在第5半導 體P+區域10施加有正電壓VH(V),且在光反射導體層99a、 作為信號線的第1半導體N+區域2、及閘極導體層5a分別 施加有接地電壓Vg(=0V)。如第2C圖所示,由於第4半導 體P+區域8a係電性連接於第5半導體p+區域1〇,所以第 4半導體P+區域8a會變成正電壓vh。 在此狀態下的電位分佈圖,係從光反射導體層9如之 電位Vg,經由第4半導體P+區域如之電位VH,上升至蓄 積有信號電荷Qsig的區域之電位Vs。然後,在蓄積有信 C. 323367 30 201218364 號電荷Qsig的區域中,保持有一定的電位Vs,且更朝向 第2半導體P區域3,變淺至該第2半導體p區域3之電 位Vp。 在此狀態下,在第4半導體P+區域8a,係存在有較多 的從第5半導體P+區域1〇供給來的電洞(h〇le:^因此, 與第2D圖所示的狀態同樣,當存在於絕緣層乜與第4半 導體P+區域8a之界面的能階之電子56c熱激勵至導電帶 時,該電子56c’就會與存在於第4半導體p+區域8a之電 洞56d再結合而消滅。藉此,被激勵的電子56c,就不會 混入於信號電荷Qsig中,且不會產生暗電流及暗電流雜 訊。 如此,依據本實施形態之固體攝像裝置,由於即便使 第4半導體P+區域8a之電位產生變化,電子56c也會藉 由與電洞56d之再結合而消滅’所以可維持不產生暗電流 及暗電流雜訊的狀態。又,即便光反射導體層99a之電位 產生變化’由於第4半導體p+區域8a之電位仍可保持於 第5半導體P+區域10之電位,所以即便存在於絕緣層知 與第4半導體P+區域8a之界面的能階之電子56c熱激勵 至導電帶,該電子56c,也會與位於第4半導體p+區域% 之電洞56d再結合而消滅,而可維持不會產生暗電流及暗 電流雜訊的狀態。 如上所述,由於第4半導體P+區域8a,係電性連接於 第5半導體P+區域1〇 ’所以在第4半導體p+區域如,不 僅於信號電荷蓄積時,就連信號電荷讀出時、蓄積信號電 31 323367 201218364 荷去&時’也能在第4半導體P+區化存在較多的從第5 半導體P+區域10供給來的電洞。因此,從絕緣層如盥第 4半導體P+_8a之界面熱激勵至導電帶的電子脱,、合 與存在於第4半導體P+區域8a之電網56d再結合而消滅胃。 結果,可防止暗電流及暗電流雜訊之產生。 第2F圖係從光入射面侧看到第2C圖所示之本實施形 態的固體攝像裝置之俯視示意圖。如第2F圖所示,與第 2C圖之光反射導體層99a、99b連接的光反射導體層99c、 99d ’係存在及於像素區域全體而形成光反射導體連接層 99。像素選擇線(金屬層)9abl、9ab2、9ab3(對應第2C圖 之金屬層10aa、10bb),係形成為:從光反射導體層99a、 99b及光反射導體層99c、99d而隔離,並且朝配置成矩陣 狀的島狀半導體Pn至P33之列方向延伸。又,M0S閘極配 線5abl、5ab2、5ab3、信號線半導體N+區域S!、S2、S3 ’ 係在與第1B圖相同的狀態下形成。光反射導體連接層99’ 係除了構成像素之島狀半導體Pn至P33的上面以外其餘可 遮蔽像素區域而避免被光照射。因此,由於入射於形成於 構成像素之島狀半導體Pu至P33之列方向的間隙Gi至& 之入射光線100,可藉由以包圍島狀半導體Pu至P33之外 周部的方式連接的光反射導體連接層99而防止從間隙Gl 至G4之間進入構造體内部,所以可防止如習知的固體攝像 裝置的解像度之降低、彩色攝像中之混色。 以下,一邊參照第3A圖及第3B圖一邊就第2實施形 態之變化例加以說明。 323367 201218364 第3A圖係顯示本實施形態之變化例的固體攝像裝置 之像素構造。在第2C圖中’係在第3半導體N區域6a、 6b及第4半導體P+區域8a、8b之外周部,形成有相對於 閘極導體層5a、5b及金屬層(像素選擇線)10aa、i〇bb而 隔離的光反射導體層99a、99b。但是,在第3A圖所示之 變化例的像素構造中’閘極導體層56a、56t),係以延伸至 第3半導體N區域68、61)及第4半導體?+區域83、81)之 外周部的方式而形成。其他的構成部位,由於是與第% 圖所示的剖面構造相同,所以除了以下說明的情況以外其 餘省略附記相同元件符號的部位之說明。 第3B圖係顯示本實施形態的固體攝像裝置之信號電 荷蓄積動作時沿著第3A圖之c_c,線的電位分佈圖^第 3B圖所示的狀態下,於信號電荷蓄積動作時,在閑極導體 層56a施加有接地電壓Vrgl(=〇v),另一方面,於蓄積芦 號電荷去除動作時,在閘極導體層咖施加有正電壓 3B圖中,係以實線顯示在閘極導體層56a施加 於加1ί :=位为佈圖’而以虛線顯示在閘極導體層56a :二f時的絕緣層知之電位圖。如第兆圖所示,在 U電何QSlg畜積於第3半導 第4半導體作域⑹朝向第3半導二=狀從 變深至具有信號電荷Qsig之電位^ N &域6a ’電位係 # Osis: i 電位Vs,而在蓄積有信號電 何如ig的區域♦,可保持一 电 第2半導且從此處朝向 位Vp。 2+導體p區域3之電 33 Q. 323367 201218364 如第3A圖所示,由於笛j企,兹 、 半導體P區域8a係電性連 接於弟5半導體p+區域1〇 tr 所从第4 +導體p+區域8a之 電位Vpl係與第5半導體p+ 導俨届以• 域1〇同電位。因此’閘極 ^層之電位’即使在蓄積信號電荷去除動作時從S 29 323367 201218364 The bit will become the ground voltage Vg (= 〇 V). In the state in which the signal charge Qsig is accumulated in the third semiconductor N region 6a, the potential from the fourth semiconductor p+ region 8a to the third semiconductor N region 6a is deeper from Vg toward the potential Vs having the signal charge Qsig, and is accumulated. In the region of the signal charge Qsig, a constant potential is maintained, and from this point toward the second semiconductor p region 3, the potential Vp of the second semiconductor P region 3 is lowered. In this state, a large number of holes 56d supplied from the fifth semiconductor p+ region 1A are present in the fourth semiconductor p+ region 8a. Therefore, when the energy level 56c existing at the interface between the insulating layer 4a and the fourth semiconductor p+ region 8a is thermally excited to the conductive strip, the electron 56c is present in the fourth semiconductor p+ region such as the hole 56d. Eliminated by combination. Thereby, the excited electrons 56c are not mixed in the signal charge Qsig, and dark current and dark current noise are not generated. Fig. 2E is a diagram showing the potential distribution along the line B_B of Fig. 2C when the signal charge reading operation of the solid-state imaging device of the embodiment is performed. Referring to FIGS. 2C and 2E, when the signal charge is read, a positive voltage VH (V) is applied to the fifth semiconductor P+ region 10, and the light-reflecting conductor layer 99a and the first semiconductor N+ region serving as a signal line. 2. The gate conductor layer 5a is applied with a ground voltage Vg (=0 V). As shown in Fig. 2C, since the fourth semiconductor P+ region 8a is electrically connected to the fifth semiconductor p+ region 1A, the fourth semiconductor P+ region 8a becomes a positive voltage vh. The potential distribution map in this state rises from the potential Vg of the light-reflecting conductor layer 9 via the potential VH of the fourth semiconductor P+ region to the potential Vs of the region where the signal charge Qsig is accumulated. Then, in a region where the electric charge Qsig of the letter C.323367 30 201218364 is accumulated, a constant potential Vs is maintained, and further toward the second semiconductor P region 3, the potential Vp of the second semiconductor p region 3 is shallowed. In this state, in the fourth semiconductor P+ region 8a, there are many holes that are supplied from the fifth semiconductor P+ region 1A (h〇le: ^, therefore, similarly to the state shown in FIG. 2D, When the energy level 56c existing at the interface between the insulating layer 乜 and the fourth semiconductor P+ region 8a is thermally excited to the conductive strip, the electron 56c' is recombined with the hole 56d existing in the fourth semiconductor p+ region 8a. Therefore, the excited electrons 56c are not mixed in the signal charge Qsig, and dark current and dark current noise are not generated. Thus, according to the solid-state imaging device of the embodiment, even the fourth semiconductor is used. The potential of the P+ region 8a changes, and the electron 56c is also destroyed by recombination with the hole 56d. Therefore, the state in which dark current and dark current noise are not generated can be maintained. Further, even if the potential of the light-reflecting conductor layer 99a is generated Since the potential of the fourth semiconductor p+ region 8a can be maintained at the potential of the fifth semiconductor P+ region 10, even the energy of the energy level 56c existing at the interface between the insulating layer and the fourth semiconductor P+ region 8a is thermally excited to be electrically conductive. Belt, the electricity The sub-56c is also combined with the hole 56d located in the p+ region of the fourth semiconductor to be eliminated, and the state in which dark current and dark current noise are not generated can be maintained. As described above, since the fourth semiconductor P+ region 8a, It is electrically connected to the fifth semiconductor P+ region 1〇', so that in the fourth semiconductor p+ region, not only when the signal charge is accumulated, but also when the signal charge is read, the signal is charged 31 323367 201218364 A large number of holes supplied from the fifth semiconductor P+ region 10 can be formed in the fourth semiconductor P+ region. Therefore, heat is excited from the interface of the insulating layer such as the fourth semiconductor P+_8a to the electrons of the conductive strip, The grid 56d, which is present in the fourth semiconductor P+ region 8a, is combined to eliminate the stomach. As a result, dark current and dark current noise can be prevented from being generated. Fig. 2F is seen from the light incident surface side as shown in Fig. 2C. A schematic plan view of the solid-state imaging device according to the present embodiment. As shown in FIG. 2F, the light-reflecting conductor layers 99c and 99d' connected to the light-reflecting conductor layers 99a and 99b of the second embodiment are formed in the entire pixel region. Reflective conductor connection layer 99 The pixel selection lines (metal layers) 9ab1, 9ab2, and 9ab3 (corresponding to the metal layers 10aa and 10bb of FIG. 2C) are formed to be isolated from the light-reflecting conductor layers 99a and 99b and the light-reflecting conductor layers 99c and 99d, and are The array of island-shaped semiconductors Pn to P33 arranged in a matrix is extended in the column direction. Further, the MOS gate wirings 5ab1, 5ab2, and 5ab3 and the signal line semiconductors N+ regions S!, S2, and S3' are in the same state as in the first panel. The light-reflecting-conductor connection layer 99' is shielded from the pixel region except for the upper surface of the island-shaped semiconductors Pn to P33 constituting the pixel to avoid light irradiation. Therefore, the incident light ray 100 incident on the gaps Gi to & in the direction of the column-like semiconductors Pu to P33 constituting the pixels can be reflected by light that surrounds the outer peripheral portions of the island-shaped semiconductors Pu to P33. Since the conductor connection layer 99 prevents entry into the structure from between the gaps G1 to G4, it is possible to prevent the resolution of the conventional solid-state imaging device from being lowered and the color mixture in color imaging. Hereinafter, a modification of the second embodiment will be described with reference to Figs. 3A and 3B. 323367 201218364 Fig. 3A is a view showing a pixel structure of a solid-state imaging device according to a variation of the embodiment. In FIG. 2C, 'the outer peripheral portions of the third semiconductor N regions 6a and 6b and the fourth semiconductor P+ regions 8a and 8b are formed with respect to the gate conductor layers 5a and 5b and the metal layer (pixel selection line) 10aa. The light-reflecting conductor layers 99a, 99b are isolated by i〇bb. However, in the pixel structure of the variation shown in Fig. 3A, the "gate conductor layers 56a, 56t" extend to the third semiconductor N regions 68, 61) and the fourth semiconductor. The outer regions of the + regions 83 and 81) are formed. The other components are the same as those of the cross-sectional structure shown in Fig. 100. Therefore, the description of the portions with the same reference numerals will be omitted except for the following description. In the state of the signal charge storage operation of the solid-state imaging device of the present embodiment, the state of the signal charge accumulation operation of the solid-state imaging device of the third embodiment is shown in FIG. 3B. The ground conductor voltage Vrgl (=〇v) is applied to the pole conductor layer 56a, and the positive voltage 3B is applied to the gate conductor layer when the charge is removed. The conductor layer 56a is applied to a potential map in which the insulating layer is formed by adding a 1 ί := bit to the layout ' and a broken line to the gate conductor layer 56 a : 2 f. As shown in the megagraph, in the U-Electrical QSlg corpus in the 3rd semi-conductive fourth semiconductor field (6) toward the 3rd semi-conductor 2 = the deeper to the potential with the signal charge Qsig ^ N & field 6a ' The potential system # Osis: i is the potential Vs, and in the region ♦ where the signal is stored as ig, the second semiconductor half can be maintained and from here to the position Vp. 2+ conductor p region 3 electric 33 Q. 323367 201218364 As shown in Fig. 3A, due to the flute, the semiconductor P region 8a is electrically connected to the fourth 5 conductor of the semiconductor 5 p + region 1 〇tr The potential Vpl of the p+ region 8a is the same as the potential of the fifth semiconductor p+. Therefore, the 'potential of the gate layer' is from the time of accumulating the signal charge removing action.
Vrgl變化至Vrg2(>Vrgl) ’由於第4半導體p+區域8係 連接於第5半導體P+區域1〇,所以可固定在¥。因此, 在弟4半導體P+區域8a,係存在有較多的從作為施體區域 之第5半導體p+區域1〇供給來的電洞(h〇⑷跡同樣地, 即使在k號電荷讀出動作時,由於第4半導體p+區域8係 ^生連接於第5半導體p+區域1(),所以在第4半導體p+ 區域8a ’係存在有較多的從第5半導體p+區域ι〇供給來 ,電洞(hole)56d。因此,與第2D圖、第2E圖所示的狀態 同樣,當存在於位於絕緣層4a與第4半導體p+區域⑸之 界面的能階之電子56c熱激勵至導電帶時,該電子56c, 就會與位於第4半導體p+區域8a之電洞56d再結合而消 滅。藉此,被激勵的電子56c’就不會混入於信號電荷Qsig 中,且不會產生暗電流及暗電流雜訊。如此,依據本實施 形態之固體攝像裝置,即便閘極導體層56a之電位產生變 化,亦可維持不產生暗電流及暗電流雜訊的狀態。 ▲ 以下’一邊參照第4A圖及第4B圖一邊就第2實施形 態之另一變化例加以說明。Vrgl changes to Vrg2 (>Vrgl)' Since the fourth semiconductor p+ region 8 is connected to the fifth semiconductor P+ region 1〇, it can be fixed at ¥. Therefore, in the fourth semiconductor P+ region 8a, there are many holes that are supplied from the fifth semiconductor p+ region 1A as the donor region (the h〇(4) trace is similar, even in the k-charge reading operation. In the case where the fourth semiconductor p+ region 8 is connected to the fifth semiconductor p+ region 1 (), a large amount of the fourth semiconductor p+ region 8a' is supplied from the fifth semiconductor p+ region ι, and electricity is supplied. Hole 56d. Therefore, similarly to the state shown in FIGS. 2D and 2E, when the energy level 56c existing at the interface between the insulating layer 4a and the fourth semiconductor p+ region (5) is thermally excited to the conductive tape The electron 56c is recombined with the hole 56d located in the fourth semiconductor p+ region 8a, whereby the excited electron 56c' is not mixed into the signal charge Qsig, and no dark current is generated. In the solid-state imaging device according to the present embodiment, even if the potential of the gate conductor layer 56a changes, it is possible to maintain a state in which no dark current or dark current noise is generated. ▲ The following is referred to FIG. 4A. And the fourth embodiment, as in the second embodiment A variation embodiment will be described.
第4A圖係顯示本實施形態之變化例的固體攝像裝置 之像素構造。在第2C圖中,形成於第3半導體N區域6a、 此之外周部的第4半導體P+區域8a、8b及第3半導體N 323367 34 201218364 區域6a、6b,係電性連接於第5半導體p+區域ι〇。相對 於此在本變化例之像素構造中,第4半導體p+區域、 88b及第3半導體N區域66a、_,係與第5半導體p+區 f W電性隔離。在第3半導體N區域66a、及第4半 導體P+區域88a、88k外周部,係隔著絕緣層如、扑而 ,成有光反射導體層9a、9b。其他的構成部分由於是與 第2C圖所示的剖面構造相同,所以除了以下說明的情況以 外其餘省略附記相同元件符號的部位之說明。 第4B圖係顯示本實施形態的固體攝像裝置之信號電 荷蓄積動作時沿著第4A圖之D-D,線的電位分佈圖。在第 圖所示的狀態下,係以第4半導體p+區域,、成 為電洞之蓄積狀態(電職第2半導體p區域3供給,且存 在車乂夕的狀i、)之方式,在光反射導體層9a、gb施加有負 電壓Vpg(<〇V=Vp)。又,第4半導體p+區域8如、之 2位’係為VP2(与0V)。如第4B圖所示,在信號電荷Qsig 蓄積於第3半導體N區域66a的狀態下,從第4半導體p+ 區戈88a(88b)朝向第3半導體n區域66a,電位會從Vp2 ^罙至具有信號電荷Qsig的電位Vs,而在#積有信號電 荷Qsig的區域中,可保持一定的電位Vs,且從此處朝向 第2半導體p區域3,變淺至該第2半導體p區域3之電 位Vp。 在第4A圖所示的像素構造中,由於第4半導體p+區 域88a、_係與第5半導體P+區域1〇電性隔離,所以第 4半導體P+區域88a、88b之電位,與第5半導體p+區域Fig. 4A is a view showing a pixel structure of a solid-state imaging device according to a modification of the embodiment. In FIG. 2C, the fourth semiconductor P+ regions 8a and 8b and the third semiconductor N 323367 34 201218364 regions 6a and 6b formed in the third semiconductor N region 6a and the outer peripheral portion are electrically connected to the fifth semiconductor p+. Area ι〇. In contrast, in the pixel structure of the present variation, the fourth semiconductor p+ region, 88b, and the third semiconductor N region 66a, _ are electrically isolated from the fifth semiconductor p+ region f W . In the outer periphery of the third semiconductor N region 66a and the fourth semiconductor P+ regions 88a and 88k, light-reflecting conductor layers 9a and 9b are formed via an insulating layer. Since the other components are the same as those of the cross-sectional structure shown in Fig. 2C, the description of the portions of the same component symbols will be omitted except for the following description. Fig. 4B is a view showing a potential distribution along the line D-D of Fig. 4A when the signal charge storage operation of the solid-state imaging device of the embodiment is performed. In the state shown in the figure, the fourth semiconductor p+ region is in the state of being stored in the hole (the second semiconductor p region 3 is supplied to the electric power, and there is a shape i of the rut). The reflection conductor layers 9a and gb are applied with a negative voltage Vpg (<〇V=Vp). Further, the second semiconductor p+ region 8 is VP2 (and 0 V). As shown in FIG. 4B, in a state where the signal charge Qsig is accumulated in the third semiconductor N region 66a, the potential from the fourth semiconductor p+ region geo 88a (88b) toward the third semiconductor n region 66a is from Vp2 to 具有The potential Vs of the signal charge Qsig, while in the region where the signal charge Qsig is accumulated, a certain potential Vs can be maintained, and from here toward the second semiconductor p region 3, the potential Vp of the second semiconductor p region 3 is shallowed. . In the pixel structure shown in FIG. 4A, since the fourth semiconductor p+ region 88a and the _ system are electrically isolated from the fifth semiconductor P+ region 1〇, the potential of the fourth semiconductor P+ regions 88a and 88b is the same as that of the fifth semiconductor p+. region
^ 谓 S 201218364 ίο之電位並非一定為同電位。 在該情況下,在第4半導體P+區域88a、88b,係從第 2半導體P區域3注入有電洞,且存在較多的電洞。因此, 與第3B圖所示的狀態同樣,當存在於絕緣層4a與第4半 導體P+區域88a(88b)之界面的能階之電子56c熱激勵至導 電帶時,該電子56c,就會與位於第4半導體P+區域88a(88b) 之電洞56d再結合而消滅。藉此,被激勵的電子56c,就 不會混入於信號電荷Qsig中,且不會產生暗電流及暗電流 雜訊。 以上如一邊參照第2C圖、第3A圖、第4A圖一邊加 以說明般,在第3半導體N區域6a、6b、66a、66b之外周 部,與第4半導體P+區域8a、8b、88a、88b,隔著絕緣層 4a、4b而形成光反射導體層99a、99b、閘極導體層56a、 56b、光反射導體層9a、9b,且在取決於固體攝像裝置之 信號電荷蓄積動作、信號電荷讀出動作、蓄積信號電荷去 除動作時,成為在第4半導體P+區域8a、8b、88a、88b 存在有較多的電洞之狀態,藉此不僅可解決在習知例的固 體攝像裝置令成為課題的高像素化與高靈敏度化之實現、 以及解像度之降低、彩色攝像中之混色的產生,也可防止 暗電流及暗電流雜訊之產生。 (第3實施形態) 第5A圖及第5B圖係分別顯示本發明第3實施形態的 固體攝像裝置之像素構造、其變化例的固體攝像裝置之像 素構造。 S- 36 323367 201218364 在第5A圖所示之本實施形態的固體攝像裝置中,係 在第1A圖所示之第1實施形態的固體攝像裝置中的島狀半 導體la之下方形成有絕緣層13,且在該絕緣層13之下方 形成有光反射導體層14a,該光反射導體層14a係由金屬 等所形成,且將光予以反射並且由導電體所構成。由微透 鏡上面入射的光線12b,係可藉由作為像素選擇線之光反 射導體層9a、9b及閘極導體層5a、5b而反射,且傳播於 島狀半導體la之下方。然後,入射於絕緣層13之光線12c 係在光反射導體層14a反射,而該反射光線12d,係再次 到達形成像素之島狀半導體la内的光電二極體區域7而產 生信號電荷。此與第1A圖所示之第1實施形態的固體攝像 裝置相較,在本實施形態之固體攝像裝置中,係在將其靈 敏度設為與第1實施形態之固體攝像裝置相同的情況下, 可比第1實施形態之固體攝像裝置還更降低光電二極體區 域7之高度Ld。藉此,可容易進行像素構造之加工,且可 實現固體攝像裝置之高像素密度化。 又,在本實施形態之固體攝像裝置中,由於光電二極 體區域7之高度Ld,即使與第1實施形態之固體攝像裝置 相同,仍可加長作為感光區域的光電二極體區域7之光傳 播長度,所以亦可使藉由來自光反射導體層14a之反射光 線12d而產生的信號電荷,有助於靈敏度提高。 在第5B圖所示的本實施形態之變化例中,係在第1A 圖所示的島狀半導體la之下部,不隔著絕緣層而直接地形 成有光反射導體層14b。即使藉由該像素構造,在該光反 37 323367 201218364 射導體層14b反射的反射光線12e,也會再次入射於構成 像素之島狀半導體la的光電二極體區域7而產生信號電 荷。藉此,可獲得與第2A圖所示之第2實施形態的固體攝 _ 像裝置相同的效果。 藉此,依據第2實施形態及其變化例,可實現一種能 獲得高像素密度、高解像度、低混色、高靈敏度的固體攝 像裝置。 (第4實施形態) 第6A圖係顯示本發明第4實施形態的固體攝像裝置 之像素構造。如第6A圖所示,本實施形態之固體攝像裝置, 係除了如下差異點以外,其餘具有與第1實施形態之固體 攝像裝置相同的像素構造,差異點為:在第1A圖所示之第 1實施形態的固體攝像裝置之構成像素的島狀半導體18之 下方’形成有Si〇2膜等的光穿透絕緣層15,並且在該光穿 透絕緣層15之下方,形成有由Si(矽)等構成之吸收入射 光線之一部分的光吸收層16。 入射於光穿透絕緣層15之光線17,係如第6A圖所 示’會在光穿透絕緣層15内產生多重反射,且產生:在光 吸收層16之表面反射的反射光線丨%、18b、…;以及朝 光吸收層16入射的入射光線19a、19b、…。在該情況下, 在光穿透絕緣層15内進行多重反射且回到光電二極體區 域7的光量’會依存於光穿透絕緣層15之厚度、Si與Si〇2 之光吸收率、折射率、入射光線之波長、入射角度等而產 生變化。^ S 201218364 ίο The potential is not necessarily the same potential. In this case, in the fourth semiconductor P+ regions 88a and 88b, holes are injected from the second semiconductor P region 3, and a large number of holes are present. Therefore, as in the state shown in FIG. 3B, when the energy level 56c existing at the interface between the insulating layer 4a and the fourth semiconductor P+ region 88a (88b) is thermally excited to the conductive tape, the electron 56c is The hole 56d located in the fourth semiconductor P+ region 88a (88b) is combined and eliminated. Thereby, the excited electrons 56c are not mixed in the signal charge Qsig, and dark current and dark current noise are not generated. As described above with reference to the 2C, 3A, and 4A, the peripheral portions of the third semiconductor N regions 6a, 6b, 66a, and 66b and the fourth semiconductor P+ regions 8a, 8b, 88a, and 88b are described. The light-reflecting conductor layers 99a and 99b, the gate conductor layers 56a and 56b, and the light-reflecting conductor layers 9a and 9b are formed via the insulating layers 4a and 4b, and are subjected to signal charge accumulation operation and signal charge reading depending on the solid-state imaging device. In the case where the operation and the accumulation of the signal charge are removed, a large number of holes are formed in the fourth semiconductor P+ regions 8a, 8b, 88a, and 88b, thereby solving the problem of the solid-state imaging device of the conventional example. The realization of high pixelation and high sensitivity, reduction of resolution, and color mixing in color imaging can also prevent dark current and dark current noise. (Third Embodiment) Fig. 5A and Fig. 5B are diagrams showing the pixel structure of the solid-state imaging device and the pixel structure of the solid-state imaging device according to the modification of the third embodiment of the present invention. S-36 323367 201218364 In the solid-state imaging device of the present embodiment shown in FIG. 5A, an insulating layer 13 is formed under the island-shaped semiconductor la in the solid-state imaging device according to the first embodiment shown in FIG. A light-reflecting conductor layer 14a is formed under the insulating layer 13, and the light-reflecting conductor layer 14a is formed of metal or the like, and reflects light and is composed of a conductor. The light ray 12b incident from the upper surface of the microlens is reflected by the light reflecting conductor layers 9a and 9b and the gate conductor layers 5a and 5b as pixel selection lines, and propagates under the island semiconductor la. Then, the light ray 12c incident on the insulating layer 13 is reflected by the light-reflecting conductor layer 14a, and the reflected light ray 12d reaches the photodiode region 7 in the island-shaped semiconductor la forming the pixel again to generate a signal charge. In the solid-state imaging device according to the first embodiment, the sensitivity of the solid-state imaging device of the first embodiment is the same as that of the solid-state imaging device according to the first embodiment. The height Ld of the photodiode region 7 can be further reduced than the solid-state imaging device of the first embodiment. Thereby, the processing of the pixel structure can be easily performed, and the high pixel density of the solid-state imaging device can be achieved. Further, in the solid-state imaging device of the present embodiment, the height Ld of the photodiode region 7 can be lengthened by the photodiode region 7 as the photosensitive region even in the same manner as the solid-state imaging device of the first embodiment. Since the length is propagated, the signal charge generated by the reflected light 12d from the light-reflecting conductor layer 14a can also contribute to the sensitivity improvement. In the variation of the embodiment shown in Fig. 5B, the light-reflecting conductor layer 14b is directly formed on the lower portion of the island-shaped semiconductor 1a shown in Fig. 1A without interposing the insulating layer. Even with this pixel structure, the reflected light ray 12e reflected by the light-emitting layer 14b is incident on the photodiode region 7 of the island-shaped semiconductor la constituting the pixel again to generate a signal charge. Thereby, the same effects as those of the solid-state imaging device of the second embodiment shown in Fig. 2A can be obtained. As a result, according to the second embodiment and its modifications, a solid-state imaging device capable of obtaining high pixel density, high resolution, low color mixing, and high sensitivity can be realized. (Fourth Embodiment) Fig. 6A is a view showing a pixel structure of a solid-state imaging device according to a fourth embodiment of the present invention. As shown in FIG. 6A, the solid-state imaging device according to the present embodiment has the same pixel structure as the solid-state imaging device according to the first embodiment except for the following differences, and the difference is as shown in FIG. 1 below the island-shaped semiconductor 18 constituting the pixel of the solid-state imaging device of the embodiment, a light-transmissive insulating layer 15 of a Si 2 film or the like is formed, and under the light-transmitting insulating layer 15 , Si is formed. A light absorbing layer 16 constituting a portion absorbing incident light. The light ray 17 incident on the light penetrating the insulating layer 15 is as shown in FIG. 6A, which causes multiple reflections in the light penetrating insulating layer 15, and produces: 反射% of the reflected light reflected on the surface of the light absorbing layer 16, 18b, ...; and incident light rays 19a, 19b, ... incident on the light absorbing layer 16. In this case, the amount of light 'reflected in the light-transmitting insulating layer 15 and returned to the photodiode region 7 depends on the thickness of the light-transmitting insulating layer 15, the light absorptance of Si and Si〇2, The refractive index, the wavelength of the incident light, the incident angle, and the like change.
S 323367 38 201218364 第6B圖係顯示在本實施形態之固體攝像裝置中,以 45度之角度入射於光透明絕緣層(Si〇2層)15之表面的綠 色光(波長λ=550ηπ〇、紅色光(A=650nm)在Si光吸收層 16反射時之反射率的si〇2層15之膜厚依存性之計算結果 的曲線圖。另外,由於藍色光是在島狀半導體1&之表面近 旁的光電二極體區域7被吸收,所以看不到如此的膜厚依 存性。該反射率,係顯示回到光電二極體區域7的返回光 對入射於光穿透絕緣層15的入射光量之比例。如第6B 圖所示,綠色光、紅色光會因依存於si〇2層15之厚度而 使反射量變高或變低❶例如,當將Si〇2膜厚設為〇. 5vm 左右時,綠色光、紅色光均可相對地加大反射量。另一方 面,例如,當將SiCh膜厚設為〇.2/zm左右時,可相對地 加大綠色光之反射量,並且可相對地減小紅色光之反射 率。在有需要藉由如此的Si〇2膜厚之變更,來調整彩色攝 像之藍、綠、紅色光之信號輸出的平衡之信號處理中,係 將Si〇z膜厚設為0.2//m左右,來提高綠色光之靈敏度及 降低紅色光之靈敏度,藉此可有助於彩色固體攝像裝置之 靈敏度尚。又,當將Si〇2膜厚設為〇.5"m左右,而綠 色光、紅色光均可提高反射率時,就可有助於黑白攝像中 之靈敏度提高。如此,可藉由Si〇2層15之膜厚的變更, 且依光之波長而變更反射率,此意味著:可藉由Si〇2膜厚 之變更,來控制顯示入射光線之波長、與固體攝像裝置之 靈敏度之關係的光靈敏度特性。 在實際的固體攝像裝置中,係在光穿透絕緣層(Si〇2S 323367 38 201218364 Fig. 6B shows green light (wavelength λ = 550 η π 〇, red) incident on the surface of the light transparent insulating layer (Si 〇 2 layer) 15 at an angle of 45 degrees in the solid-state imaging device of the present embodiment. A graph showing the calculation result of the film thickness dependence of the reflectance of the Si 〇 2 layer 15 when the light (A = 650 nm) is reflected by the Si light absorbing layer 16. In addition, since the blue light is near the surface of the island-shaped semiconductor 1 & The photodiode region 7 is absorbed, so that such film thickness dependence is not observed. The reflectance indicates the amount of incident light returning to the photodiode region 7 to the incident light incident on the insulating layer 15 The ratio of the green light and the red light is higher or lower depending on the thickness of the layer 2 of the si layer 2, for example, when the thickness of the Si〇2 film is set to 〇. 5vm or so. In the case of the green light or the red light, the amount of reflection can be relatively increased. On the other hand, for example, when the thickness of the SiCh film is set to about 2.2/zm, the amount of reflection of the green light can be relatively increased, and Relatively reduce the reflectivity of red light. In need of such a Si〇2 In the signal processing to adjust the balance of the signal output of the blue, green and red light of the color camera, the film thickness of the Si〇z is set to about 0.2//m to improve the sensitivity of the green light and reduce the red light. The sensitivity of the color solid-state imaging device can be improved, and when the thickness of the Si〇2 film is set to about 55"m, and the green light and the red light can increase the reflectance, This improves the sensitivity in black-and-white imaging. Thus, by changing the film thickness of the Si〇2 layer 15, the reflectance can be changed depending on the wavelength of light, which means that the film thickness can be changed by Si〇2. To control the light sensitivity characteristic showing the relationship between the wavelength of the incident light and the sensitivity of the solid-state imaging device. In an actual solid-state imaging device, the light penetrates the insulating layer (Si〇2
S 39 323367 201218364 層)15之表面以各種的入射角度來入射光,且藉由微透鏡 之設計,亦可改變第6B圖之特性。又,藉由彩色攝像、黑 白攝像亦可使被要求的分光靈敏度有所不同。如此,使光 穿透絕緣層(Si 〇2層)15之厚度產生變化,且藉由光之波長 而變更反射率的技術,在獲得所期望的分光靈敏度特性之 方面,係提供一種有效的手法。 (第5實施形態) 第7A圖及第7B圖係顯示本發明第5實施形態的固體 攝像裝置之像素構造。 如第7A圖及第7B圖所示,本實施形態之固體攝像裝 置,係除了如下差異點以外,其餘具有與第1實施形態之 固體攝像裝置相同的像素構造,該差異點為:在第1A圖所 示之第1實施形態的固體攝像裝置之像素(島狀半導體)la 中的第5半導體P+區域10之中央表層部形成凹部20a或 凸部20b,並且使以凹部20a之凹狀面或凸部20b之凸狀 面為境界面而彼此相接的二個物質區域之光折射率相互地 不同。 第7A圖係顯示在構成像素之島狀半導體la中的第5 半導體P+區域10之中央表層部形成有三角錐狀之凹部20a 之例。 在第1A圖所示之第1實施形態的像素構造中,係在 第5半導體P+區域10之中央表層部不存在凹部20a。因此, 垂直地入射於微透鏡11之中央部的光線21a、21b,並不 會在光反射導體層9a、9b反射,而是以原狀直接入射於構 40 323367 201218364 成像素之島狀半導體la之内部。因此,對垂直地入射於微 透鏡ll·之中央部的光線21a、21b而言,無法獲得加長藉 由光反射導體層9a、9b之反射而在光電二極體區域7之光 傳播長度之效果。 相對於此,在第7 A圖所示的像素構造中,除了沿著 微透鏡11之中心線而入射的光線21a以外,其餘與微透鏡 11之中央部垂直地入射於第5半導體P+區域10的光線 21b,係可藉甴凹部20a而折射於光反射導體層9a、9b侧。 藉此,該折射後的光線22a會在光反射導體層9a、9b反射, 且使在光電二極體區域7之光傳播長度變長,而可提高固 體攝像裝置之靈敏度。在該凹部20a中的光線之折射,係 藉由作為第5半導體P+區域10之材料的Si(矽)之折射 率、與作為光穿透中間區域24之材料的透明樹脂材料之折 射率的差異而產生。 第7B圖係顯示在第5半導體P+區域10之中央表層部 形成有三角錐狀之凸部20b之例。 如第7B圖所示,在第5半導體P+區域10之中央表層 部,亦可形成凸部20b來取代第7A圖所示的凹部20a。在 此情況下,也是除了沿著微透鏡11之中心線而入射的光線 21c以外,其餘從微透鏡11之中央部垂直地入射於第5半 導體P+區域10的光線21d,係可藉由凸部20b而折射於光 反射導體層9a、9b側。藉此,該折射後的光線22a會在光 反射導體層9a、9b反射,而可使在光電二極體區域7之光 傳播長度變長,且提高固體攝像裝置之靈敏度。 S. 41 323367 201218364 在本實施形態中,以凹部20a之凹狀面或凸部20b之 凸狀面為境界面而彼此相接的二個物質區域之光折射率係 設為相互地不同。並不限於此,凹部20a或凸部20b本身, 亦可由具有與作為第5半導體P+區域10之材料的Si或光 穿透中間區域24之透明樹脂材料不同之折射率的材料所 形成。藉此,從微透鏡11之中央部入射於第5半導體P+ 區域10的光線,亦可藉由凹部20a或凸部20b而折射於光 反射導體層9a、9b。然後,可使在作為感光區域的光電二 極體區域7之光傳播長度變長,且提高固體攝像裝置之靈 敏度。 在本實施形態中,參照第7A圖、第7B圖,凹部20a 及凸部20b之形狀,均是設為三角錐狀。並不限於此,入 射於微透鏡11之中央部的光線,只要是在凹部20a或凸部 20b折射,且在光反射導體層反射的形狀,亦可為其他的 形狀,例如圓錐狀、四角錐狀、半圓狀。 (第6實施形態) 第8圖係顯示本發明第6實施形態的固體攝像裝置之 像素構造。如第8圖所示,本實施形態之固體攝像裝置, 係除了如下之差異點以外,其餘具有與第1實施形態之固 體攝像裝置相同的像素構造,該差異點為:在第1A圖所示 的第1實施形態中之固體攝像裝置的構成像素之島狀半導 體la中,使微透鏡11之焦點23位於比第5半導體P+區 域10之上表面還更靠近上方側的光穿透中間區域24内。 在第8圖所示的像素構造中,微透鏡11之焦點23係The surface of S 39 323367 201218364 layer 15 is incident at various incident angles, and the characteristics of Fig. 6B can also be changed by the design of the microlens. Moreover, the required spectral sensitivity can be different by color imaging and black and white imaging. Thus, the technique of changing the thickness of the light penetrating insulating layer (Si 〇 2 layer) 15 and changing the reflectance by the wavelength of light provides an effective method for obtaining desired spectral sensitivity characteristics. . (Fifth Embodiment) Fig. 7A and Fig. 7B are diagrams showing a pixel structure of a solid-state imaging device according to a fifth embodiment of the present invention. As shown in FIGS. 7A and 7B, the solid-state imaging device according to the present embodiment has the same pixel structure as that of the solid-state imaging device according to the first embodiment except for the following difference, and the difference is: The central surface layer portion of the fifth semiconductor P+ region 10 in the pixel (island semiconductor) la of the solid-state imaging device according to the first embodiment shown in the figure is formed with the concave portion 20a or the convex portion 20b, and the concave surface of the concave portion 20a or The refractive indices of the two substance regions in which the convex surfaces of the convex portions 20b are the boundary interfaces and are in contact with each other are different from each other. Fig. 7A shows an example in which a triangular pyramid-shaped recess 20a is formed in the central surface layer portion of the fifth semiconductor P+ region 10 in the island-shaped semiconductor la constituting the pixel. In the pixel structure of the first embodiment shown in Fig. 1A, the concave portion 20a is not present in the central surface layer portion of the fifth semiconductor P+ region 10. Therefore, the light rays 21a, 21b incident perpendicularly to the central portion of the microlens 11 are not reflected by the light-reflecting conductor layers 9a, 9b, but are directly incident on the island-shaped semiconductor la of the structure 40 323367 201218364. internal. Therefore, the effect of lengthening the light propagation length in the photodiode region 7 by the reflection of the light-reflecting conductor layers 9a and 9b cannot be obtained for the light rays 21a and 21b which are vertically incident on the central portion of the microlens 11·. . On the other hand, in the pixel structure shown in FIG. 7A, the fifth semiconductor P+ region 10 is incident perpendicularly to the central portion of the microlens 11 except for the light ray 21a incident along the center line of the microlens 11. The light ray 21b can be refracted on the side of the light-reflecting conductor layers 9a and 9b by the recess 20a. Thereby, the refracted ray 22a is reflected by the light-reflecting conductor layers 9a and 9b, and the light propagation length in the photodiode region 7 is lengthened, whereby the sensitivity of the solid-state imaging device can be improved. The refraction of the light in the concave portion 20a is caused by the difference between the refractive index of Si which is the material of the fifth semiconductor P+ region 10 and the refractive index of the transparent resin material which is the material of the light penetrating the intermediate portion 24. And produced. Fig. 7B shows an example in which a triangular pyramid-shaped convex portion 20b is formed in the central surface layer portion of the fifth semiconductor P+ region 10. As shown in Fig. 7B, the convex portion 20b may be formed in the central surface layer portion of the fifth semiconductor P+ region 10 instead of the concave portion 20a shown in Fig. 7A. In this case, in addition to the light ray 21c incident along the center line of the microlens 11, the light ray 21d which is perpendicularly incident on the fifth semiconductor P+ region 10 from the central portion of the microlens 11 can be made by the convex portion. 20b is refracted to the side of the light-reflecting conductor layers 9a, 9b. Thereby, the refracted ray 22a is reflected by the light-reflecting conductor layers 9a, 9b, and the light propagation length in the photodiode region 7 can be lengthened, and the sensitivity of the solid-state imaging device can be improved. In the present embodiment, the refractive indices of the two substance regions which are in contact with each other by the concave surface of the concave portion 20a or the convex surface of the convex portion 20b are different from each other. The recess 20a or the projection 20b itself may be formed of a material having a refractive index different from that of the material of the fifth semiconductor P+ region 10 or the transparent resin material penetrating the intermediate portion 24, without being limited thereto. Thereby, the light incident on the fifth semiconductor P+ region 10 from the central portion of the microlens 11 can be refracted to the light reflection conductor layers 9a and 9b by the concave portion 20a or the convex portion 20b. Then, the light propagation length in the photodiode region 7 as the photosensitive region can be lengthened, and the sensitivity of the solid-state imaging device can be improved. In the present embodiment, referring to Figs. 7A and 7B, the shapes of the concave portion 20a and the convex portion 20b are each a triangular pyramid shape. The light incident on the central portion of the microlens 11 may be other shapes such as a conical shape or a quadrangular pyramid as long as it is refracted in the concave portion 20a or the convex portion 20b and reflected in the light reflection conductor layer. Shaped, semi-circular. (Embodiment 6) FIG. 8 is a view showing a pixel structure of a solid-state imaging device according to a sixth embodiment of the present invention. As shown in Fig. 8, the solid-state imaging device according to the present embodiment has the same pixel structure as that of the solid-state imaging device according to the first embodiment except for the following differences, and the difference is as shown in Fig. 1A. In the island-shaped semiconductor la constituting the pixel of the solid-state imaging device according to the first embodiment, the light beam 23 of the microlens 11 is positioned closer to the upper side than the upper surface of the fifth semiconductor P+ region 10 to penetrate the intermediate portion 24 Inside. In the pixel structure shown in FIG. 8, the focus 23 of the microlens 11 is
S 42 323367 201218364 形成於比第5半導體P+區域10還靠近上部的光穿透中間 區域24内。 在本實施形態之固體攝像裝置中,藉由具有如此的像 素構造,從微透鏡11入射,且聚光於光穿透中間區域24 内部之焦點23的入射光線25b,最初到達光反射導體層 9a、9b的位置,係比焦點位於第5半導體P+區域10之上 表面的情況(第1實施形態之像素構造的情況)之入射光線 25a,還更接近第5半導體P+區域10之上表面。此意味著: 由本實施形態之像素構造所產生的入射光線25b,比第1 實施形態之像素構造中的入射光線25a還更能加長在光電 二極體區域7之光傳播長度。因而,依據本實施形態之固 體攝像裝置,與第1實施形態之固體攝像裝置相較,還可 更加提高靈敏度。 即使在第8圖所示的像素構造中,對入射於第7A圖、 第7B圖所示的微透鏡11之中心部的光線21b、21d而言, 也無法獲得加長在光電二極體區域7之光傳播長度的效 果。因此,藉由將第7A圖、第7B圖所說明的第5實施形 態中之構成(形成於第5半導體P+區域10之中央部的凹部 20a或凸部20b),應用於本第6實施形態,更可實現固體 攝像裝置之靈敏度提高。 (第7實施形態) 第9圖係顯示本發明第7實施形態的固體攝像裝置之 像素構造。如第9圖所示,本實施形態之固體攝像裝置, 其特徵為:在第1A圖所示之第1實施形態中的固體攝像裝 43 323367 201218364 置之構成像㈣島狀半導體la中,從微透鏡u的外周部 之1點26a、26b入射並通過微透鏡11之中心線27而到達 第5半^體P區域1〇的外周部之丄點哪、2北的光線 29a、29b、和與第5半導體p+區域1〇之上表面正交的線 所構成之角度0 i ’係比布魯斯特(如咐打)角0 b還更 /J、〇 在第12A圖、帛13圖所示之習知例的固體攝像褒置 中,由於光電二極體區域並未被將光予以反射的物質完全 地包圍’所以以較大之人射角人射於光電二極體區域的光 線38’會洩漏於與該像素鄰接的像素。相對於此,如第ia 圖所示,在本實施形態之像素構造巾,較光線是以何種 的角度入射於光電二極體區域7,由於光電二極體區域7 全體是被導體層5a、5b及光反射導體層9a、%完全地包 圍,所以可消除朝鄰接的像素之光洩漏。此意味著:若從 微透鏡11入射之光線’到達第5半導體p+區域1〇之内部, 則可使该入射光線之全部有效地有助於信號電荷之產生。 但疋,以較大之入射角度對微透鏡Η入射的光線係在第5 半導體Ρ+區域10表面反射,並無助於信號電荷之產生。 相對於此,在第7實施形態之固體攝像裝置中,係如下所 述,入射於微透鏡11並通過光穿透中間區域%的全部光 線可有效地導引至光電二極體區域7。 如第9圖所示,從微透鏡11的外周部之丨點26a、26b 入射並通過微透鏡11之中心線27及光穿透中間區域24 而到達第5半導體P+區域10的外周部之i點28a、28b的 323367 44 201218364 ^線^、哪、和與第5半導體P+區域1G之表面正交的 角度Μ,佩布魯斯特還更小 係當將光透明中間區域24之抽鉍玄 * <折射率設為Nr、將第5半導 體P區域10之折射率設為N2時可以下式表示。 Θ b=tan_1(Ni/N2) ’、 當上述的角❹i比布魯斯特角Μ大時,從微透鏡 11入射並通過光穿透中間區域24的人射光線,就會在第5 半導體作域Η)之表面全反射,而不會進人第5半導體 Ρ+區域10内。如此,藉由將角❹i設為比布魯斯特角Θ b還更小,入射於微透鏡u並通過光穿透中間區域24的 全部光線就可有效地導引至光電二極體區域7。在此,所 謂有效地導引光線,係指入射於第5半導體p+區域1〇之 表面的光線不會全反射而會入射於第5半導體P+區域1〇 内之思。藉此,可實現固體攝像裝置之靈敏度提高。 (第8實施形態) 以下,一邊參照第10A圖至第10E圖一邊就本發明第 8實施形態之固體攝像裝置加以說明。 第10A圖係顯示入射光線1〇〇入射於在第1B圖所示 之第1實施形態中之構成像素的島狀半導體Pu至p33之間 朝列方向延伸的間隙G2的狀態之立體構造示意圖。 如第10A圖所示,從上方入射的入射光線100係入射 於位在島狀半導體Pn之下方的帶狀信號線N+區域2aa。該 入射光線100之中的一部分,係在藉由折射率不同之二個 絕緣層而包夾的帶狀信號線N+區域2aa、和與其鄰接的帶 45 323367 201218364 狀k號線N+區域2bb(信號線半導體N+區域Si、S2、S3)内產 生多重反射光l〇la、101b、101c、l〇ld。多重反射光i〇la、 101b、l〇ic、1〇ld,係入射於與構成像素之島狀半導體ριι 鄰接的構成像素之島狀半導體Pi2的光電二極體區域7(參 照第1A圖)而產生信號電荷。朝該鄰接的構成像素之島狀 半導體Plz的光洩漏’會發生固體攝像裝置之解像度的降低 與彩色攝像令之混色。 第1〇Β圖係顯示從光入射面側看到本實施形態的固體 攝像裝置之俯視示意圖。如第10B圖所示,構成像素之島 狀半導體pu至Pm,係排列成正方格子狀或矩形格子狀。 朝圖式之水平方向延長而形成的像素選擇線9abl、9ab2、 9ab3、與閘極配線5abl、5ab2、5ab3,從圖式上面來 看’係以彼此不重疊的方式排列。像素選擇線9abl、9ab2、 9ab3 ’係配線於:在M0S閘極配線5abl、5ab2、5ab3間所 形成的間隙G!、G2、G3、G4内。藉由該構成,在固體攝像 袭置之像素區域的全區’從光照射面入射的入射光,會因 像素選揮線9abl、9ab2、9ab3而阻礙行進路線,可防止直 接地1到達產多重反射的信號線半導體N+區域Si、S2、S3。 藉此’依據本實施形態之固體攝像裝置,可防止解像度之 降低、與彩色攝像中之混色。 第1 圖係顯示由第10B圖之一點鏈線B所包圍的區 域中之立體構造示意圖。如第10C圖所示,形成有:與形 成於島狀半導體Pn、Plz之外周部的光反射導體層9aa、9bb 連接的像素選擇線9abl。然後’該像素選擇線9abl係以 C. 46 323367 201218364 朝水平方向延伸的方式形成於形成有間隙g2的區域。其 他由於,、第1C圖所不的像素構造相同,所以在相同的地 謂°己相同的70件符號並省略說明。當從光人射面侧觀看 ,、由ϋ*電轉換部所存在的島狀半導體Pu、pi2以外之 ,域可藉由像素選擇線9abl及燃閘極配線5ab而大致覆 蓋’所以入射光、線100,不會如第10A圖所示的像素構造 般地茂漏於鄰接的島狀半導體之内部。 第10D圖係顯示在構成像素之島狀半導體之間朝列方 向延伸的間隙G2之區域設置M0S閘極配線55abl的狀態之 立體構造示意圖。除了設置M0S閘極配線55abl以外’其 餘與第1C一圖、第1〇A圖所示的立體示意構造相同。藉由第 10D圖所示的構造,亦與第1()c圖所示的構造同樣,當從 光入射面侧觀看時,由於光電轉換部所存在的島狀半導體S 42 323367 201218364 Light is formed in the upper portion 24 that is closer to the upper portion than the fifth semiconductor P+ region 10. In the solid-state imaging device of the present embodiment, the incident light ray 25b incident from the microlens 11 and concentrated on the focus 23 of the light penetrating the intermediate portion 24 initially has the pixel structure, and initially reaches the light-reflecting conductor layer 9a. The position of 9b is such that the incident light ray 25a is located closer to the upper surface of the fifth semiconductor P+ region 10 (in the case of the pixel structure of the first embodiment), and is closer to the upper surface of the fifth semiconductor P+ region 10. This means that the incident light ray 25b generated by the pixel structure of the present embodiment can lengthen the light propagation length in the photodiode region 7 more than the incident light ray 25a in the pixel structure of the first embodiment. Therefore, according to the solid-state imaging device of the first embodiment, the sensitivity can be further improved as compared with the solid-state imaging device of the first embodiment. Even in the pixel structure shown in Fig. 8, the light rays 21b and 21d incident on the central portion of the microlens 11 shown in Figs. 7A and 7B cannot be lengthened in the photodiode region 7 The effect of the light propagation length. Therefore, the configuration of the fifth embodiment (the concave portion 20a or the convex portion 20b formed in the central portion of the fifth semiconductor P+ region 10) described in the seventh embodiment and the seventh embodiment is applied to the sixth embodiment. The sensitivity of the solid-state imaging device can be improved. (Embodiment 7) FIG. 9 is a view showing a pixel structure of a solid-state imaging device according to a seventh embodiment of the present invention. As shown in Fig. 9, the solid-state imaging device of the present embodiment is characterized by the configuration of the solid-state imaging device 43 323367 201218364 in the first embodiment shown in Fig. 1A. One point 26a, 26b of the outer peripheral portion of the microlens u is incident and passes through the center line 27 of the microlens 11 to reach the outer peripheral portion of the fifth half-body P region 1A, the two north rays 29a, 29b, and The angle 0 i ' formed by the line orthogonal to the upper surface of the fifth semiconductor p+ region 1 系 is more than the Brewster (such as the beaten) angle 0 b / J, 〇 in the 12A, 帛 13 In the solid-state imaging device of the prior art, since the photodiode region is not completely surrounded by the material that reflects the light, the light 38' that is incident on the photodiode region by a larger human angle is used. Will leak into the pixels adjacent to the pixel. On the other hand, as shown in Fig. ia, in the pixel structure sheet of the present embodiment, the light is incident on the photodiode region 7 at a different angle, and the entire photodiode region 7 is the conductor layer 5a. The 5b and the light-reflecting conductor layers 9a and % are completely surrounded, so that light leakage to adjacent pixels can be eliminated. This means that if the light incident from the microlens 11 reaches the inside of the fifth semiconductor p+ region 1〇, all of the incident light can be effectively contributed to the generation of the signal charge. However, the light incident on the microlens Η at a larger angle of incidence is reflected on the surface of the fifth semiconductor Ρ+ region 10, and does not contribute to the generation of signal charges. On the other hand, in the solid-state imaging device according to the seventh embodiment, as described below, all the light rays incident on the microlens 11 and passing through the intermediate region % by light can be efficiently guided to the photodiode region 7. As shown in Fig. 9, the entrance point 26a, 26b of the outer peripheral portion of the microlens 11 enters and passes through the center line 27 of the microlens 11 and the light penetrates the intermediate portion 24 to reach the outer peripheral portion of the fifth semiconductor P+ region 10. 323367 44 201218364 of the points 28a, 28b ^, ^, and the angle 正交 orthogonal to the surface of the fifth semiconductor P+ region 1G, Pebble is also smaller when the light transparent intermediate region 24 is twitched * < When the refractive index is Nr and the refractive index of the fifth semiconductor P region 10 is N2, it can be expressed by the following formula. Θ b=tan_1(Ni/N2) ', when the above-mentioned angle ❹i is larger than the Brewster angle, the person who enters the microlens 11 and passes through the intermediate portion 24 through the light, will be in the fifth semiconductor field.表面) The surface is totally reflected, and will not enter the fifth semiconductor Ρ+ area 10. Thus, by setting the corner ❹i to be smaller than the Brewster angle Θb, all of the light incident on the microlens u and passing through the intermediate portion 24 through the light can be efficiently guided to the photodiode region 7. Here, the effective guiding of the light means that the light incident on the surface of the fifth semiconductor p+ region 1〇 is not totally reflected and enters the fifth semiconductor P+ region 1〇. Thereby, the sensitivity of the solid-state imaging device can be improved. (Embodiment 8) Hereinafter, a solid-state imaging device according to an eighth embodiment of the present invention will be described with reference to Figs. 10A to 10E. Fig. 10A is a perspective view showing a state in which the incident light ray is incident on the gap G2 extending in the column direction between the island-shaped semiconductors Pu to p33 constituting the pixels in the first embodiment shown in Fig. 1B. As shown in Fig. 10A, the incident light ray 100 incident from above is incident on the strip-shaped signal line N+ region 2aa located below the island-shaped semiconductor Pn. A part of the incident light ray 100 is a strip-shaped signal line N+ region 2aa sandwiched by two insulating layers having different refractive indices, and a strip adjacent thereto 45 323367 201218364-shaped k-line N+ region 2bb (signal Multiple reflected lights l〇la, 101b, 101c, l〇ld are generated in the line semiconductor N+ regions Si, S2, and S3). The multiple reflected lights i〇la, 101b, l〇ic, and 1〇ld are photodiode regions 7 incident on the island-shaped semiconductor Pi2 constituting the pixels adjacent to the island-shaped semiconductors ρ1 constituting the pixels (see FIG. 1A). And the signal charge is generated. The light leakage of the island-shaped semiconductor P1z constituting the adjacent pixels causes a decrease in the resolution of the solid-state imaging device and color mixing with the color imaging command. Fig. 1 is a schematic plan view showing the solid-state imaging device of the embodiment as seen from the light incident surface side. As shown in Fig. 10B, the island-shaped semiconductors pu to Pm constituting the pixels are arranged in a square lattice shape or a rectangular lattice shape. The pixel selection lines 9ab1, 9ab2, 9ab3 and the gate wirings 5ab1, 5ab2, and 5ab3 which are formed in the horizontal direction of the drawing are arranged so as not to overlap each other from the top of the drawing. The pixel selection lines 9ab1, 9ab2, and 9ab3' are wired in the gaps G!, G2, G3, and G4 formed between the MOS gate wirings 5ab1, 5ab2, and 5ab3. According to this configuration, the incident light incident from the light irradiation surface in the entire region of the pixel region where the solid image capture occurs is blocked by the pixel selection lines 9ab1, 9ab2, and 9ab3, thereby preventing the direct arrival of the multiple Reflected signal line semiconductor N+ regions Si, S2, S3. According to the solid-state imaging device of the present embodiment, it is possible to prevent the resolution from being lowered and the color mixture in color imaging. Fig. 1 is a perspective view showing a three-dimensional structure in a region surrounded by a point chain line B of Fig. 10B. As shown in Fig. 10C, pixel selection lines 9ab1 connected to the light reflection conductor layers 9aa and 9bb formed on the outer peripheral portions of the island-shaped semiconductors Pn and P1z are formed. Then, the pixel selection line 9abl is formed in a region where the gap g2 is formed so as to extend in the horizontal direction by C. 46 323367 201218364. Others have the same pixel structure as that of Fig. 1C, and therefore the same reference numerals are used for the same reference numerals, and the description thereof is omitted. When viewed from the side of the light-emitting surface, the domain can be substantially covered by the pixel selection line 9abl and the burn-off wiring 5ab, except for the island-shaped semiconductors Pu and pi2 existing in the ϋ*-electric conversion portion, so that the incident light is The line 100 does not leak into the interior of the adjacent island-shaped semiconductor as in the pixel structure shown in FIG. 10A. Fig. 10D is a perspective view showing a state in which the MOS gate wiring 55abl is provided in a region of the gap G2 extending in the column direction between the island-shaped semiconductors constituting the pixel. The same as the stereoscopic schematic structure shown in Fig. 1C and Fig. 1A except that the MOS gate wiring 55abl is provided. The structure shown in Fig. 10D is also the same as the structure shown in Fig. 1(), and the island semiconductor exists in the photoelectric conversion portion when viewed from the light incident surface side.
Pll、Pl2以外之區域可藉由像素選擇線9ab及M0S閘極配線 55abl而大致覆蓋,所以入射光線1〇〇,不會如第l〇A圖所 示的像素構造般地洩漏於鄰接的島狀半導體内部。 第圖係顯示本實施形態之變化例的固體攝像裝置 之俯視圖。如第1〇E圖所示,構成像素之島狀半導體Ριι 至P33 ’並未在上下方向配置成1行,而是配置成千鳥狀。 如此隨著構成像素之島狀半導體Pu至Pm被配置成千鳥 狀’信號線半導體N+區域Si、S2、S3,就會在上下方面一 邊蛇行成千鳥狀一邊連接各島狀半導體Pll至P33。與第1〇Β 圖同樣’像素選擇線9abl、9ab2、9ab3,係配線於M0S閘 極配線5abl、5ab2、5ab3之間隙、G2、G3、G4内。藉此, 47 323367 201218364 在固體攝像裝置之像素裝置的全區,藉由像素選擇線 9abl、9ab2、9ab3 與 M0S 閘極配線 5abl、5ab2、5ab3,就 可防止入射光線直接地到達產生多重反射的信號線半導體 N+區域Si、S2、S3。藉此,依據本變化例之固體攝像裝置, 可防止解像度之降低、與彩色攝像中之混色。 另外,在第10B圖、第10E圖中,雖然在從光入射面 觀看的狀態下,在像素選擇線9abl、9ab2、9ab3與M0S 閘極配線5abl、5ab2、5ab3之間形成有微小的間隙,但是 可將像素選擇線9abl、9ab2、9ab3與M0S閘極配線5abl、 5ab2、5ab3以上下重疊的方式形成。藉此,在固體攝像裝 置之像素裝置的全區,入射光線可藉由像素選擇線9abl、 9ab2、9ab3,更確實地防止直接地到達產生多重反射的信 號線半導體N+區域Si、S2、S3。藉此,依據本變化例之固 體攝像裝置,可防止解像度之降低、與彩色攝像中之混色。 (第9實施形態) 以下’一邊參照第11A圖及第11B圖一邊就本發明第 9實施形態之固體攝像裝置加以說明。 第11A圖係顯示本實施形態的固體攝像裝置之剖視圖。 在第1A圖所示的第1實施形態中,第1半導體n+區域2, 係形成M0S電晶體之下方部位的全體。相對於此,如第ha 圖所示,在本實施形態中,於第1實施形態中形成有第1 半導體N+區域2的區域,係包含:第6半導體p+區域2c ; 與第2半導體P區域3連接的第7半導體P區域3b;以及 藉由該第7半導體P區域3b而從第6半導體P+區域2c隔 48 323367 201218364 離的第8半導艫N+區域& P+區域2c,& & . π 像素構造中,第6半 *成為.發揮作為用 切繼 區域7之錢電荷的信號電荷 出畜=於先電二極發 之沒極;第8半導體『區*2。之功此的接合電晶發 蓄積於光電二極體區域7 带成為:發揮作為用以將 電荷去除部之功能的Μ〇 予以去除的蓄積信銳 藉由與第2半_= /=半導體㈣域心係 地隔離。藉此,在信號電荷導體,區域%而相互 除動作争,可使電後之 與畜積㈣電荷去 間推移方式獨,的信號電; = 利用時 此夠達行高⑱尸?動作的攝像動作上之優點。可獲得 又,在第iJA圖尹,接合電晶體之第6半導體 2c,係如第⑽圖所示的本實施形態之變化爿的】域 裝置之像素構造,即便置換成第9半導體Ν+區域ka、, 實現同樣的攝像動作。在此情况下,第9半導體N+ a亦可 之近旁的第2半導體矿區域2之下部區域,係成為=2ca 為信號電荷讀出部之功能的接合電晶體之源極。 作 另外,在上述實施形態中,係使用在像素區域配 個、2個、或3x3個(=9個)的像素,就固體攝像舉置置1 素構造及其攝像動作加以說明。但是並不限於此,之像 之技術思想,當然可應用於除此以外的複數個像素a明 區域排列成丨次元或2次元狀的固體攝像襞置中。 令' 323367 49 201218364 在上述實施形態中,雖然是設為:在島狀半導體la 中,具有作為光電轉換部之光電二極體區域7、作為信號 電荷蓄積部之第3半導體N區域6a、6b、作為錢電^讀° 出部之接合電晶體、作為蓄積信號電荷去除部之M〇s電晶 體的像素構造,但是即便為如下構造:在島狀半導體中, 藉由除此以外的構成,而設置光電變化部、信號電荷蓄積 部、信號電荷讀出部、蓄積信號電荷去除部的構造,當然 也涵蓋在本發明之技術思想中。 在上述實施形態中,構成像素之島狀半導體1 a、Pi 1 至Pm的構造,均形成為圓柱狀。並不限於此,亦可為四角 柱狀、多角柱狀。 在上述實施形態中,第1半導體N+區域2及第3半導 體N區域6a、6b係設為N型導電型,第2半導體p區域3 係設為P型導電型,且第4半導體P+區域8a、8b及第5 ,導體P+區域1〇係設為p型導電型。但是並不限於此, 第1半導體區域2及第3半導體區域6a、6b亦可設為p 型導電型,第2半導體區域3亦可設為n型導電型,且第 4半導體區域8a、8b及第5半導體區域1〇亦可設為型 導電型。在此情況下,在N+型之第4半導體N+區域,係蓄 積有較多的作為信號電荷之電洞的相反極性之電子。在此 =態下,在絕緣層4a與N+型之第4半導體區域的界面, 田存在於“電子帶的電子以禁帶(forbidden band)内的能 =熱激勵至導電帶時,就會產生造成暗電流之原因的電 同°亥電洞,會與存在於N+型之第4半導體N+區域的電子 C. 50 323367 201218364 :結合:消減。藉此’成為暗電流的電洞,就不會混入於 仏號電荷Qsig中,且不會產生暗電流及暗電流雜訊。 在上述實施形態ψ,M〇s電晶體之通道係藉由電場而 形成於第2半導體p區域3(enhancement type ••增強型)。 並不限於此,聰電晶體之通道,例如亦可藉由以離子植 入法等將雜質植入於第2半導體p區域3的空乏型 (depletion type)、或埋設通道而形成。 在上述實施形態中,雖然光穿透中間區域24係設為 單層構造,但是光穿透中間區域亦可由複數個層而形成, 更可在光穿透中間區域24包含有彩色濾光片層。 在上述實施形態中,雖然導體層5a、5b、光反射導體 層9a、9b、99a、99b,係由單層的金屬膜所形成,但是亦 可由複數層的金屬膜所形成。又,導體層5a、5b、光反射 導體層9a、9b、99a、99b ’並不限於金屬,亦可如摻雜有 雜質之多晶矽Si、或金屬矽化物將反射長波光之材料層包 含於金屬之一部分而形成,亦可僅由摻雜有雜質之多晶矽 Si、或金屬矽化物而形成。 在第1B圖、第2F圖、第10B圖、第ι〇Ε圖中,構成 “號線之Si、S2、S3係設為半導體N+區域。但是並不限於 此,如第5B圖所示,在第1半導體N+區域2之下方,不 隔著絕緣層而直接地形成有由金屬構成的光反射導體層 14b之情況下,由於信號線Si、S2、S3之電阻會因該光反射 導體層14b而降低,所以信號線S!、S2、S3亦可非為半導 體N+區域。在此情況下,入射於第2F圖所示之間隙&、The regions other than P11 and P12 can be substantially covered by the pixel selection line 9ab and the MOS gate wiring 55ab1, so that the incident light rays are not leaked to the adjacent islands as in the pixel structure shown in FIG. Inside the semiconductor. Fig. 1 is a plan view showing a solid-state imaging device according to a modification of the embodiment. As shown in Fig. 1E, the island-shaped semiconductors Ρι to P33' constituting the pixels are not arranged in one row in the vertical direction, but are arranged in a thousand bird shape. When the island-shaped semiconductors Pu to Pm constituting the pixels are arranged in the thousands of bird-shaped signal line semiconductors N+ regions Si, S2, and S3, the island-shaped semiconductors P11 to P33 are connected to each other in the upper and lower sides. Similarly to the first drawing, the pixel selection lines 9ab1, 9ab2, and 9ab3 are wired in the gaps of the MOS gate wirings 5ab1, 5ab2, and 5ab3, and in G2, G3, and G4. Thereby, 47 323367 201218364 in the entire area of the pixel device of the solid-state imaging device, by the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3, the incident light can be prevented from directly reaching the multiple reflections. Signal line semiconductor N+ regions Si, S2, S3. As a result, according to the solid-state imaging device according to the present modification, it is possible to prevent a decrease in the resolution and color mixing in color imaging. Further, in FIGS. 10B and 10E, a slight gap is formed between the pixel selection lines 9ab1, 9ab2, and 9ab3 and the MOS gate wirings 5ab1, 5ab2, and 5ab3 in a state of being viewed from the light incident surface. However, the pixel selection lines 9ab1, 9ab2, and 9ab3 and the MOS gate wirings 5ab1, 5ab2, and 5ab3 may be formed to overlap each other. Thereby, in the entire area of the pixel device of the solid-state imaging device, the incident light can be more reliably prevented from directly reaching the signal line semiconductor N+ regions Si, S2, S3 which generate multiple reflections by the pixel selection lines 9ab1, 9ab2, 9ab3. As a result, according to the solid-state imaging device of the present modification, it is possible to prevent a decrease in the resolution and color mixing in color imaging. (Ninth embodiment) A solid-state imaging device according to a ninth embodiment of the present invention will be described with reference to Figs. 11A and 11B. Fig. 11A is a cross-sectional view showing the solid-state imaging device of the embodiment. In the first embodiment shown in Fig. 1A, the first semiconductor n+ region 2 forms the entirety of the lower portion of the MOS transistor. On the other hand, as shown in FIG. 19, in the first embodiment, the region in which the first semiconductor N+ region 2 is formed in the first embodiment includes the sixth semiconductor p+ region 2c and the second semiconductor P region. 3th connected seventh semiconductor P region 3b; and 8th semi-conducting N+ region & P+ region 2c, & & separated from the sixth semiconductor P+ region 2c by the seventh semiconductor P region 3b by 48 323367 201218364 In the π-pixel structure, the sixth half* becomes the signal charge that is used as the charge of the cut region 7 to be discharged from the animal = the second pole of the first electric pole; the eighth semiconductor "zone *2. The bonding electric crystal is accumulated in the photodiode region 7 band to function as an accumulation signal for removing the enthalpy of the function of the charge removing portion by the second half _= /= semiconductor (4) The domain is isolated. In this way, in the signal charge conductor, the area % and the action of each other, the post-electricity and the accumulation of the (4) charge will be separated by the mode of the signal; = when it is enough to reach the height of 18 bodies? The advantage of the camera action of the action. In addition, in the ith image, the sixth semiconductor 2c of the bonded transistor is a pixel structure of the domain device of the present embodiment as shown in the (10) figure, and is replaced by the ninth semiconductor Ν+ region. Ka,, achieve the same camera action. In this case, the region below the second semiconductor ore region 2 in the vicinity of the ninth semiconductor N+a is the source of the junction transistor in which =2ca is a function of the signal charge reading portion. Further, in the above-described embodiment, a pixel structure, two or three or three (= nine) pixels are used in the pixel region, and a solid-state imaging device and an imaging operation thereof will be described. However, the present invention is not limited to this, and the technical idea of the image can be applied to a plurality of solid-state imaging devices in which a plurality of pixels a bright regions are arranged in a 丨-dimensional or 2-dimensional shape. In the above-described embodiment, the island-shaped semiconductor la has a photodiode region 7 as a photoelectric conversion portion and a third semiconductor N region 6a, 6b as a signal charge storage portion. In addition, the structure of the junction transistor of the output portion and the M〇s transistor of the signal charge removal unit is the same as the structure of the island semiconductor, and other structures are used. The configuration in which the photoelectric change portion, the signal charge storage portion, the signal charge readout portion, and the accumulated signal charge removal portion are provided is of course also encompassed by the technical idea of the present invention. In the above embodiment, the structures of the island-shaped semiconductors 1 a and Pi 1 to Pm constituting the pixels are each formed in a columnar shape. It is not limited thereto, and may be a quadrangular column or a polygonal column. In the above embodiment, the first semiconductor N+ region 2 and the third semiconductor N regions 6a and 6b are N-type conductivity type, the second semiconductor p region 3 is P-type conductivity type, and the fourth semiconductor P+ region 8a 8b and 5, the conductor P+ region 1 is a p-type conductivity type. However, the first semiconductor region 2 and the third semiconductor regions 6a and 6b may be of a p-type conductivity type, and the second semiconductor region 3 may be of an n-type conductivity type, and the fourth semiconductor regions 8a and 8b may be used. And the fifth semiconductor region 1 can also be a type conductivity type. In this case, in the fourth semiconductor N+ region of the N+ type, a large number of electrons of opposite polarities are accumulated as holes of the signal charge. In this = state, at the interface between the insulating layer 4a and the fourth semiconductor region of the N+ type, the field exists when the electrons of the electron band are in the forbidden band of energy = thermal excitation to the conductive strip. The electricity that causes the dark current is the same as that of the electrons in the fourth semiconductor N+ region of the N+ type. C: 50 323367 201218364: Combination: By this, the hole that becomes a dark current will not In the above-described embodiment, the channel of the M〇s transistor is formed in the second semiconductor p region 3 by the electric field (enhancement type • • Enhanced type. The channel of the smart transistor is not limited thereto, for example, by implanting impurities into a depletion type or embedding channel of the second semiconductor p region 3 by ion implantation or the like. In the above embodiment, although the light penetrating intermediate portion 24 is a single layer structure, the light penetrating intermediate portion may be formed by a plurality of layers, and may further include color filtering in the light penetrating intermediate portion 24. Sheet layer. In the above embodiment Although the conductor layers 5a and 5b and the light-reflecting conductor layers 9a, 9b, 99a, and 99b are formed of a single-layer metal film, they may be formed of a plurality of metal films. Further, the conductor layers 5a and 5b and the light reflection are provided. The conductor layers 9a, 9b, 99a, and 99b' are not limited to metals, and may be formed by, for example, polysilicon doped with impurities, or metal halides, including a material layer that reflects long-wavelength light, in one part of the metal, or may be merely doped. It is formed by polycrystalline germanium Si or metal germanide mixed with impurities. In the first B, 2F, 10B, and ι〇Ε diagrams, the Si, S2, and S3 lines forming the "line" are set as the semiconductor N+ region. . However, as shown in FIG. 5B, in the case where the light-reflecting conductor layer 14b made of a metal is directly formed under the first semiconductor N+ region 2 without interposing an insulating layer, the signal line Si is formed. Since the resistances of S2 and S3 are lowered by the light-reflecting conductor layer 14b, the signal lines S!, S2, and S3 may not be semiconductor N+ regions. In this case, it is incident on the gap &
S 323367 51 201218364S 323367 51 201218364
G G G4的入射光線1〇〇,亦可在光反射導體層反射, 而可防止其一部分洩漏於與該像素(島狀半導體la)鄰接 的像素(島狀半導體)之光電二極體區域7。 在上述實施形態中,雖然光反射導體層14a、14b,係 將屬於電磁波之_種的光等之電磁能量波^以反射,但是 光反射導體層亦可為:按照固體攝像裝置之使用目的,而 發揮作為將其他的電磁能量波、例如紅外線、可視光線、 養外線、X射線、伽瑪射線(gamma ray)、電子射線等予以 反射之功能的電磁波反射導體層。 另外’本申請案的基礎案為2010年1〇月29日提出 申請的 PCT/JP2010/69384。參照 PCT/JP2010/69384 之說 明書、申請專利範圍、圖式全部並編入於本說明書中。 又,本發明只要未脫離本發明之廣義精神及範圍仍可 進行各種的實施形態及變化。又,上述的實施形態,係用 以說明本發明之一實施例,並非用以限定本發明之範圍。 (產業上之可利用性) 本發明係可應用於具備電晶體的半導體裝置中,該電 晶體係在具有柱狀構造之半導體内形成有通道區域。 【圖式簡單說明】 第1A圖係顯示本發明第1實施形態的固體攝像裝置 之像素構造的剖視圖。 第1B圖係從第1實施形態的固體攝像浆置之光入射 面侧看到的俯視示意圖。 第1C圖係顯示第1實施形態的固體攝像裝置中之鄰接 g- 52 323367 201218364 的2個像素(島狀半導體)之立體構造的立體構造示意圖。 第2A圖係顯示習知例的固體攝像裝置之像素構造的 剖視圖。 第2B圖係沿著第2A圖之A-A’線的電位分佈圖。 第2C圖係顯示本發明第2實施形態的固體攝像裝置 之像素構造的剖視圖。 第2D圖係沿著第2C圖之B-B’線的電位分佈圖。 第2E圖係沿著第2C圖之B-B’線的電位分佈圖。 第2F圖係從第2實施形態的固體攝像裝置之光入射 面侧看到的俯視示意圖。 第3A圖係顯示第2實施形態之變化例的固體攝像裝 置之像素構造的剖視圖。 第3B圖係沿著第3A圖之C-C’線的電位分佈圖。 第4A圖係顯示第2實施形態之變化例的固體攝像裝 置之像素構造的剖視圖。 第4B圖係沿著第4A圖之D-D’線的電位分佈圖。 第5A圖係顯示本發明第3實施形態的固體攝像裝置 之像素構造的剖視圖。 第5B圖係顯示第3實施形態之變化例的固體攝像裝 置之像素構造的剖視圖。 第6A圖係顯示本發明第4實施形態的固體攝像裝置 之像素構造的剖視圖。 第6B圖係顯示第4實施形態的固體攝像裝置之在光 透明絕緣層(Si〇2層)表面的綠色光、紅色光之反射率的光 53 323367 201218364 透明絕緣層之膜厚依存性之計算結果的曲線圖。 第7A圖係顯示本發明第5實施形態的固體攝像裝置 之像素構造的剖視圖。 第7B圖係顯示第5實施形態的固體攝像裝置之另一 像素構造的剖視圖。 第8圖係顯示本發明第6實施形態的固體攝像裝置之 像素構造的剖視圖。 第9圖係顯示本發明第7實施形態的固體攝像裝置之 像素構造的剖視圖。 第10A圖係顯示在第1C圖所示之立體構造模型中光 線入射於島狀半導體之間隙G2的狀悲之立體構造不意圖。 第10B圖係本發明第8實施形態的固體攝像裝置之俯 視不意圖。 第10C圖係顯示第8實施形態的固體攝像裝置中之鄰 接的2個像素(島狀半導體)之立體構造的立體構造示意 圖。 第10D圖係顯示第8實施形態之變化例的固體攝像裝 置中之鄰接的2個像素(島狀半導體)之立體構造的立體構 造不意圖。 第10E圖係從光入射面侧看到第8實施形態之變化例 的固體攝像裝置之俯視示意圖。 第11A圖係顯示本發明第9實施形態的固體攝像裝置 之像素構造的剖視圖。 第11B圖係顯示第9實施形態之變化例的固體攝像裝 5 54 323367 201218364 置之像素構造的剖視圖。 第12A圖係顯示習知例的固體攝像裝置之像素構造的 剖視圖。 第12B圖係顯示si(矽)深度與光吸收強度之關係的曲 線圖。 第13圖係顯示習知例的另一固體攝像裝置之像素構 造的剖視圖。 【主要元件符號說明】 la、lb、lc、Pu至〜 構成像素之島狀半導體 2、2a、2b第1半導體n+區域 2c 第6半導體p+區域 2ca 第9半導體區域 2d 第8半導體N+區域 2aa、2bb 帶狀信號線N+區域 3 第2半導體P區域 3a 第2半導體區域(固有半導體區域) 3b 第7半導體P區域 4a、4b 絕緣層 5a、5b、5aa、5bb 閘極導體層(M0S電晶體之閘極導體層) 5ab、5abl、5ab2、5ab3、55abl MOS 閘極配線(MOS 電晶體 之閘極配線;導體配線) 6a、6b、66a、66b 第3半導體N區域 7 光電二極體區域 8a、8b、88a、88b 第4半導體P+區域 55 323367 201218364 9a、9b、9aa ' 9bb 光反射導體層 10、 10a、10b第5半導體p+區域 lOaa、lObb 金屬層(像素選擇線) 11、 11a、lib 微透鏡 12a、12b光線(聚集於第5半導體P+區域之上表面近旁 之焦點的光) 12c 光線 12d、12e反射光線 13 絕緣層 14a、14b光反射導體層 15 光穿透絕緣層 16 光吸收層 17 光線(朝Si〇2膜入射之光線) 18a、18b反射光線(由Si層引起之反射光) 19a、19b入射光線(朝Si層入射之入射光) 20a 凹部(P+區域之凹部) 20b 凸部(P+區域之凸部) 21a ' 21c光線(沿著微透鏡之中心線入射的光) 21b、21d 光線(垂直地入射於微透鏡之中央部的光) 22a 光線(在凹部之折射光) 22b 光線(在凸部之折射光) 23 微透鏡之焦點 24 光穿透中間區域 25a、25b朝第5半導體P+區域入射之入射光線 26 微透鏡的外周部之1點 27 微透鏡之中心線 28a、28b第5半導體P+區域的外周部之1點 29a、29b光線(通過微透鏡之中心線及光穿透中間區域的光) 56 323367 201218364 30 32 34a 、 34b 36 38a 島狀半導體 半導體P區域 閘極導體層 半導體P+區域 31 信號線半導體N+區域 33a、33b 絕緣層 35a、35b 半導體N區域 37a、37b 像素選擇線 光線(從斜方向入射於島狀半導體之光) 39a、39b 金屬壁 40 半導體基板 41 光電二極體區域 42 元件隔離區域 43a、43b MOS電晶體之源極汲極區域 44 第1層間絕緣層 45 MOS電晶體之閘極電極 46a、46b、46c 接觸窗 47 第2層間絕緣層 48 31〇2膜 49 SiN 膜 50 微透鏡 51a、51b、51c、51d 金屬配線 52a、52b、52c、52d、100 光線 53a、53b、53c、53d、102 朝光電二極體入射之入射光線 55a、55b 光遮蔽金屬層 56、56c 電子 56a ' 56b 閘極導體層 56d 電洞 99 光反射導體連接層 99a、99b、99c、99d 光反射導體層 100 入射光線 101a、101b、101c、1 Old 在信號線N+區域之多重反射光The incident light of G G G4 is 1 〇〇, and can be reflected by the light-reflecting conductor layer, and a part thereof can be prevented from leaking into the photodiode region 7 of the pixel (island semiconductor) adjacent to the pixel (the island-shaped semiconductor la). In the above-described embodiment, the light-reflecting conductor layers 14a and 14b reflect electromagnetic energy waves such as light of an electromagnetic wave, but the light-reflecting conductor layer may be used according to the purpose of use of the solid-state imaging device. The electromagnetic wave reflection conductor layer functions as a function of reflecting other electromagnetic energy waves such as infrared rays, visible light rays, external rays, X-rays, gamma rays, electron beams, and the like. In addition, the basic case of this application is PCT/JP2010/69384, which was filed on January 29, 2010. The descriptions of PCT/JP2010/69384, the scope of the patent application, and the drawings are incorporated in this specification. Further, various embodiments and changes may be made without departing from the spirit and scope of the invention. Further, the above-described embodiments are intended to illustrate one embodiment of the invention and are not intended to limit the scope of the invention. (Industrial Applicability) The present invention is applicable to a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a first embodiment of the present invention. Fig. 1B is a plan view schematically seen from the light incident surface side of the solid-state imaging slurry of the first embodiment. Fig. 1C is a perspective view showing a three-dimensional structure of two pixels (island-shaped semiconductors) adjacent to g-52 323367 201218364 in the solid-state imaging device according to the first embodiment. Fig. 2A is a cross-sectional view showing a pixel structure of a solid-state imaging device of a conventional example. Fig. 2B is a potential distribution diagram along the line A-A' of Fig. 2A. Fig. 2C is a cross-sectional view showing the pixel structure of the solid-state imaging device according to the second embodiment of the present invention. The 2D diagram is a potential distribution diagram along the B-B' line of the 2Cth diagram. Fig. 2E is a potential distribution diagram along the B-B' line of Fig. 2C. Fig. 2F is a schematic plan view of the solid-state imaging device according to the second embodiment as seen from the light incident surface side. Fig. 3A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a modification of the second embodiment. Fig. 3B is a potential distribution diagram along the line C-C' of Fig. 3A. Fig. 4A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a modification of the second embodiment. Fig. 4B is a potential distribution diagram along the D-D' line of Fig. 4A. Fig. 5A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a third embodiment of the present invention. Fig. 5B is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a modification of the third embodiment. Fig. 6A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a fourth embodiment of the present invention. Fig. 6B is a view showing the dependence of the thickness of the green light and the red light on the surface of the light-transparent insulating layer (Si 2 layer) of the solid-state imaging device according to the fourth embodiment 53 323367 201218364 Calculation of the film thickness dependence of the transparent insulating layer A graph of the results. Fig. 7A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a fifth embodiment of the present invention. Fig. 7B is a cross-sectional view showing another pixel structure of the solid-state imaging device according to the fifth embodiment. Fig. 8 is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a sixth embodiment of the present invention. Figure 9 is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a seventh embodiment of the present invention. Fig. 10A is a view showing a three-dimensional structure in which the light is incident on the gap G2 of the island-shaped semiconductor in the three-dimensional structure model shown in Fig. 1C. Fig. 10B is a plan view of the solid-state imaging device according to the eighth embodiment of the present invention. Fig. 10C is a schematic perspective view showing a three-dimensional structure of two adjacent pixels (island semiconductors) in the solid-state imaging device according to the eighth embodiment. In the 10D, the three-dimensional structure of the two adjacent pixels (island semiconductors) in the solid-state imaging device according to the modification of the eighth embodiment is not intended. Fig. 10E is a schematic plan view showing a solid-state imaging device according to a modification of the eighth embodiment from the light incident surface side. Fig. 11A is a cross-sectional view showing a pixel structure of a solid-state imaging device according to a ninth embodiment of the present invention. Fig. 11B is a cross-sectional view showing a pixel structure of a solid-state imaging device 5 54 323 367 201218364 according to a modification of the ninth embodiment. Fig. 12A is a cross-sectional view showing the pixel structure of a solid-state imaging device of a conventional example. Fig. 12B is a graph showing the relationship between the depth of si (矽) and the intensity of light absorption. Fig. 13 is a cross-sectional view showing the pixel configuration of another solid-state imaging device of a conventional example. [Description of main component symbols] la, lb, lc, Pu to ~ island-shaped semiconductor 2, 2a, 2b constituting a pixel, first semiconductor n+ region 2c, sixth semiconductor p+ region 2ca, ninth semiconductor region 2d, eighth semiconductor N+ region 2aa, 2bb strip signal line N+ region 3 second semiconductor P region 3a second semiconductor region (inherent semiconductor region) 3b seventh semiconductor P region 4a, 4b insulating layer 5a, 5b, 5aa, 5bb gate conductor layer (M0S transistor Gate conductor layer) 5ab, 5abl, 5ab2, 5ab3, 55abl MOS gate wiring (gate wiring of MOS transistor; conductor wiring) 6a, 6b, 66a, 66b Third semiconductor N region 7 Photodiode region 8a, 8b, 88a, 88b Fourth semiconductor P+ region 55 323367 201218364 9a, 9b, 9aa ' 9bb Light-reflecting conductor layer 10, 10a, 10b Fifth semiconductor p+ region 10a, lObb Metal layer (pixel selection line) 11, 11a, lib Lens 12a, 12b light (light concentrated at a focus near the upper surface of the fifth semiconductor P+ region) 12c Light rays 12d, 12e reflect light 13 Insulating layers 14a, 14b Light reflecting conductor layer 15 Light penetrating insulating layer 16 Light absorbing layer 17 Light (towards S I〇2 film incident light) 18a, 18b reflected light (reflected light caused by Si layer) 19a, 19b incident light (incident light incident toward Si layer) 20a concave portion (P+ region concave portion) 20b convex portion (P+ region 21a '21c light (light incident along the center line of the microlens) 21b, 21d light (light incident perpendicularly to the central portion of the microlens) 22a light (refracted light in the concave portion) 22b light (at The refracted light of the convex portion) 23 The focal point of the microlens 24 The incident light ray that the light penetrates the intermediate portion 25a, 25b and enters the fifth semiconductor P+ region 26 The outer peripheral portion of the microlens is 1 point 27 The center line 28a, 28b of the microlens is 5th 1 point 29a, 29b of the outer peripheral portion of the semiconductor P+ region (light passing through the center line of the microlens and light passing through the intermediate portion) 56 323367 201218364 30 32 34a , 34b 36 38a Island semiconductor semiconductor P region gate conductor layer semiconductor P+ region 31 signal line semiconductor N+ region 33a, 33b insulating layer 35a, 35b semiconductor N region 37a, 37b pixel selection line light (light incident from island semiconductor from oblique direction) 39a, 39b metal wall 40 semiconductor base 41 Photodiode region 42 Element isolation region 43a, 43b Source gate region of MOS transistor 44 First interlayer insulating layer 45 MOS transistor gate electrode 46a, 46b, 46c Contact window 47 Second interlayer insulating layer 48 31〇2 film 49 SiN film 50 microlenses 51a, 51b, 51c, 51d metal wires 52a, 52b, 52c, 52d, 100 rays 53a, 53b, 53c, 53d, 102 incident light rays 55a, 55b incident on the photodiode Light-shielding metal layer 56, 56c Electronics 56a' 56b Gate conductor layer 56d Hole 99 Light-reflecting conductor connection layer 99a, 99b, 99c, 99d Light-reflecting conductor layer 100 Incident light 101a, 101b, 101c, 1 Old at signal line N+ Multiple reflected light in the area
Gi、G2、G3、G4 間隙 Ld 光電二極體區域之尚度Gi, G2, G3, G4 gap Ld Photodiode region
S 57 323367 201218364S 57 323367 201218364
Ldw 擴展於半導體P區域之空乏層長度Ldw extends to the length of the depletion layer in the semiconductor P region
Qsig 信號電荷 S!、S2、S3信號線半導體N+區域 φ (V) 電位方向 電位(電壓)Qsig signal charge S!, S2, S3 signal line semiconductor N+ region φ (V) potential direction potential (voltage)
Vs、Vp、Vg、Vpg、Vrg卜 Vrg2、Vp卜 Vp2、VH 58 323367Vs, Vp, Vg, Vpg, Vrg Bu Vrg2, Vp Bu Vp2, VH 58 323367
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/069384 WO2012056586A1 (en) | 2010-10-29 | 2010-10-29 | Solid-state imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201218364A true TW201218364A (en) | 2012-05-01 |
Family
ID=44693610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100127348A TW201218364A (en) | 2010-10-29 | 2011-08-02 | Solid imaging device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4769911B1 (en) |
KR (1) | KR20120125600A (en) |
CN (1) | CN102668084A (en) |
TW (1) | TW201218364A (en) |
WO (2) | WO2012056586A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI725827B (en) * | 2020-04-24 | 2021-04-21 | 力晶積成電子製造股份有限公司 | Image sensing module |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5054182B2 (en) * | 2010-03-12 | 2012-10-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Solid-state imaging device |
US8921905B2 (en) | 2012-10-16 | 2014-12-30 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
WO2014061100A1 (en) * | 2012-10-16 | 2014-04-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Solid-state image pickup device |
JP2014127545A (en) * | 2012-12-26 | 2014-07-07 | Sony Corp | Solid-state imaging element and solid-state imaging device including the same |
JP6368894B1 (en) * | 2017-07-04 | 2018-08-01 | 雫石 誠 | Photoelectric conversion element and optical measuring device |
CN111294493A (en) * | 2020-02-25 | 2020-06-16 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393174A (en) * | 1986-10-07 | 1988-04-23 | Nec Corp | Photodiode |
JP3008163B2 (en) * | 1995-08-24 | 2000-02-14 | エルジイ・セミコン・カンパニイ・リミテッド | Solid-state imaging device and method of manufacturing the same |
JP3713418B2 (en) * | 2000-05-30 | 2005-11-09 | 光正 小柳 | Manufacturing method of three-dimensional image processing apparatus |
JP2002100796A (en) * | 2000-07-18 | 2002-04-05 | Nippon Sheet Glass Co Ltd | Photodetection element array |
JP3762673B2 (en) * | 2001-08-29 | 2006-04-05 | シャープ株式会社 | Solid-state imaging device and manufacturing method thereof |
JP2003258220A (en) * | 2002-02-28 | 2003-09-12 | Canon Inc | Imaging element and imaging device |
JP2008112831A (en) * | 2006-10-30 | 2008-05-15 | Fujifilm Corp | Solid-state imaging element, and imaging apparatus equipped with it |
EP2197032B1 (en) * | 2007-09-12 | 2014-11-05 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
JP5369441B2 (en) * | 2008-01-24 | 2013-12-18 | ソニー株式会社 | Solid-state image sensor |
JP2009188316A (en) * | 2008-02-08 | 2009-08-20 | Denso Corp | Light receiving element |
WO2009133623A1 (en) * | 2008-05-02 | 2009-11-05 | 日本ユニサンティスエレクトロニクス株式会社 | Solid-state imaging element |
JP2010056167A (en) * | 2008-08-26 | 2010-03-11 | Sony Corp | Solid-state image pickup element and manufacturing method thereof |
-
2010
- 2010-10-29 WO PCT/JP2010/069384 patent/WO2012056586A1/en active Application Filing
- 2010-10-29 JP JP2011503695A patent/JP4769911B1/en active Active
-
2011
- 2011-07-29 KR KR1020127011946A patent/KR20120125600A/en not_active Application Discontinuation
- 2011-07-29 CN CN2011800045670A patent/CN102668084A/en active Pending
- 2011-07-29 WO PCT/JP2011/067540 patent/WO2012056782A1/en active Application Filing
- 2011-08-02 TW TW100127348A patent/TW201218364A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI725827B (en) * | 2020-04-24 | 2021-04-21 | 力晶積成電子製造股份有限公司 | Image sensing module |
US11563047B2 (en) | 2020-04-24 | 2023-01-24 | Powerchip Semiconductor Manufacturing Corporation | Image sensing module |
Also Published As
Publication number | Publication date |
---|---|
CN102668084A (en) | 2012-09-12 |
WO2012056782A1 (en) | 2012-05-03 |
JP4769911B1 (en) | 2011-09-07 |
WO2012056586A1 (en) | 2012-05-03 |
KR20120125600A (en) | 2012-11-16 |
JPWO2012056586A1 (en) | 2014-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8378400B2 (en) | Solid state imaging device | |
KR102115649B1 (en) | Solid state imaging device and electronic apparatus | |
KR102708011B1 (en) | Image sensor | |
US10608031B2 (en) | Image sensor | |
CN109659377B (en) | Single photon avalanche diode, manufacturing method, detector array and image sensor | |
US10074682B2 (en) | Phase difference detection in pixels | |
JP6274567B2 (en) | Solid-state imaging device and imaging system | |
JP5172819B2 (en) | Solid-state imaging device | |
JP7383597B2 (en) | Image sensor and imaging device | |
TW201218364A (en) | Solid imaging device | |
US7208811B2 (en) | Photo-detecting device | |
US20070023799A1 (en) | Structure and method for building a light tunnel for use with imaging devices | |
KR20100091891A (en) | Solid-state imaging device, method of manufacturing the same, and electronic apparatus | |
JP2012169530A (en) | Solid state image sensor, manufacturing method therefor, and electronic apparatus | |
KR20210027548A (en) | Imaging element and imaging device | |
JP5535261B2 (en) | Solid-state imaging device | |
US6278102B1 (en) | Method of detecting electromagnetic radiation with bandgap engineered active pixel cell design | |
JP4751803B2 (en) | Back-illuminated image sensor | |
JP2012099743A (en) | Solid-state imaging device and manufacturing method therefor | |
JP4769910B1 (en) | Solid-state imaging device | |
JP2020167248A (en) | Solid-state imaging device | |
US20200227458A1 (en) | Image sensors with diffractive lenses in a semiconductor substrate | |
CN117178367A (en) | Broadband image device and method for manufacturing the same | |
JP2018061060A (en) | Solid-state imaging apparatus and imaging system |