JP2018061060A - Solid-state imaging apparatus and imaging system - Google Patents

Solid-state imaging apparatus and imaging system Download PDF

Info

Publication number
JP2018061060A
JP2018061060A JP2017252782A JP2017252782A JP2018061060A JP 2018061060 A JP2018061060 A JP 2018061060A JP 2017252782 A JP2017252782 A JP 2017252782A JP 2017252782 A JP2017252782 A JP 2017252782A JP 2018061060 A JP2018061060 A JP 2018061060A
Authority
JP
Japan
Prior art keywords
waveguide
photoelectric conversion
light shielding
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017252782A
Other languages
Japanese (ja)
Inventor
下津佐 峰生
Mineo Shimotsusa
峰生 下津佐
政次 板橋
Masaji Itabashi
政次 板橋
小林 昌弘
Masahiro Kobayashi
昌弘 小林
一成 川端
Kazunari Kawabata
一成 川端
市川 武史
Takeshi Ichikawa
武史 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017252782A priority Critical patent/JP2018061060A/en
Publication of JP2018061060A publication Critical patent/JP2018061060A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress generation of noise.SOLUTION: A solid-state imaging apparatus includes a plurality of pixels each including: a photoelectric conversion part which applies photoelectric conversion to incident light to generate a signal charge; a charge storage part which stores the signal charge transferred from the photoelectric conversion part; a floating diffusion part to which the signal charge in the charge storage part is transferred; a waveguide for converging the incident light to the photoelectric conversion part; and a light shielding part which is provided to cover at least the charge storage part and includes an opening for making the converged light incident to the photoelectric conversion part. The waveguide includes an incident part to which light is made incident and an emission part which emits light, and an interval between the emission part and the photoelectric conversion part is larger than an interval between a lower end of the light shielding part and the photoelectric conversion part.SELECTED DRAWING: Figure 3

Description

本発明は固体撮像装置及びそれを用いた撮像システムに関する。   The present invention relates to a solid-state imaging device and an imaging system using the same.

特許文献1には、光電変換部と、光導波路と、光電変換部から電荷が転送される電荷蓄積部とを備えた画素が配列された固体撮像装置が開示されている。光導波路は光電変換部への集光のために設けられている。光電変換部以外の領域は遮光膜で覆われている。電荷蓄積部は光電変換部からの電荷蓄積部への電荷の転送開始と終了を全ての画素に対して同時に行うことにより、面内同期型電子シャッタが実現される旨が特許文献1に記載されている。   Patent Document 1 discloses a solid-state imaging device in which pixels including a photoelectric conversion unit, an optical waveguide, and a charge storage unit to which charges are transferred from the photoelectric conversion unit are arranged. The optical waveguide is provided for condensing light to the photoelectric conversion unit. The area other than the photoelectric conversion part is covered with a light shielding film. Patent Document 1 describes that an in-plane synchronous electronic shutter is realized by simultaneously starting and ending transfer of charges from the photoelectric conversion unit to the charge storage unit for all the pixels. ing.

特開2011−238949号公報JP2011-238949A

光が電荷蓄積部に入射されると、電荷蓄積部で電荷が生成され、ノイズの原因となり得る。特許文献1には、光導波路と遮光部との位置関係が具体的に開示されていない。光導波路と遮光部との位置関係によっては、入射された光が電荷蓄積部に入射され、ノイズが発生する場合がある。
本発明は、上述した課題に鑑みてなされたものであって、ノイズの発生を抑制することを目的とする。
When light is incident on the charge storage unit, charges are generated in the charge storage unit, which may cause noise. Patent Document 1 does not specifically disclose the positional relationship between the optical waveguide and the light shielding portion. Depending on the positional relationship between the optical waveguide and the light shielding portion, incident light may be incident on the charge storage portion and noise may be generated.
The present invention has been made in view of the above-described problems, and an object thereof is to suppress the generation of noise.

本発明の一態様に係る固体撮像装置は、半導体基板と、半導体基板に配され、入射された光を光電変換して信号電荷を生成する光電変換部と、光電変換部から転送される信号電荷を蓄積する電荷蓄積部と、光電変換部から電荷蓄積部に電荷を転送するための制御電極を有するトランジスタと、電荷蓄積部の信号電荷が転送されるフローティングディフュージョン部と、を含む複数の画素と、入射された光を光電変換部に導くための導波路と、少なくとも電荷蓄積部を覆うように設けられた遮光部と、を備え、遮光部は、制御電極を覆う第1の部分と、半導体基板の上に絶縁層を介して配され、かつ、光電変換部の一部を覆うように半導体基板の表面に沿って延びた第2の部分とを含み、導波路と半導体基板との間に絶縁層が配され、導波路と半導体基板との間隔が、遮光部の第2の部分と半導体基板との間隔よりも大きく、かつ、遮光部の第2の部分の上面と半導体基板との距離よりも小さいことを特徴とする。   A solid-state imaging device according to one embodiment of the present invention includes a semiconductor substrate, a photoelectric conversion unit that is disposed on the semiconductor substrate and photoelectrically converts incident light to generate a signal charge, and a signal charge transferred from the photoelectric conversion unit A plurality of pixels including: a charge storage unit that stores charge; a transistor having a control electrode for transferring charge from the photoelectric conversion unit to the charge storage unit; and a floating diffusion unit to which signal charges of the charge storage unit are transferred , A waveguide for guiding the incident light to the photoelectric conversion portion, and a light shielding portion provided so as to cover at least the charge storage portion, the light shielding portion including a first portion covering the control electrode, and a semiconductor A second portion disposed on the substrate via an insulating layer and extending along the surface of the semiconductor substrate so as to cover a portion of the photoelectric conversion portion, and between the waveguide and the semiconductor substrate An insulating layer is arranged, and the waveguide and Distance between conductors substrate is greater than the distance between the second portion and the semiconductor substrate of the light-shielding portion, and wherein the less than the distance between the upper surface and the semiconductor substrate of the second portion of the light-shielding portion.

本発明の固体撮像装置によれば、ノイズの発生を抑制することができる。   According to the solid-state imaging device of the present invention, the generation of noise can be suppressed.

第1の実施形態に係る画素の回路構成を示す図である。It is a figure which shows the circuit structure of the pixel which concerns on 1st Embodiment. 第1の実施形態に係る画素の平面図(a)及び断面図(b)である。It is the top view (a) and sectional drawing (b) of the pixel which concern on 1st Embodiment. 第1の実施形態に係る遮光膜と導波路の位置関係を説明する図である。It is a figure explaining the positional relationship of the light shielding film and waveguide concerning 1st Embodiment. 第1の実施形態に係る遮光膜と導波路の位置関係の変形例を説明する図である。It is a figure explaining the modification of the positional relationship of the light shielding film and waveguide which concern on 1st Embodiment. 第2の実施形態に係る遮光膜と導波路の位置関係を説明する図である。It is a figure explaining the positional relationship of the light shielding film and waveguide concerning 2nd Embodiment. 第3の実施形態に係る遮光膜と導波路の位置関係を説明する図である。It is a figure explaining the positional relationship of the light shielding film and waveguide concerning 3rd Embodiment. 第4の実施形態に係る画素の平面図(a)及び断面図(b)である。It is the top view (a) and sectional drawing (b) of the pixel which concern on 4th Embodiment. 第5の実施形態に係る画素の平面図である。It is a top view of the pixel concerning a 5th embodiment. 第5の実施形態に係る画素の断面図である。It is sectional drawing of the pixel which concerns on 5th Embodiment. 第6の実施形態に係る撮像システムのブロック図である。It is a block diagram of the imaging system concerning a 6th embodiment.

以下、本発明に係る固体撮像装置の実施形態を詳細に説明する。各図面を通じて同一の構成要素には同一の参照符号を付し、重複する構成要素についてはその説明を省略することもある。また、以下に説明する実施形態は、本発明の一態様を例示的に示すものであって、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of a solid-state imaging device according to the present invention will be described in detail. Throughout the drawings, the same components are denoted by the same reference numerals, and the description of the overlapping components may be omitted. In addition, the embodiment described below is an example of one aspect of the present invention, and the present invention is not limited to the following embodiment.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る画素の回路構成を示す図である。画素は入射された光を電気信号に変換して出力する素子である。画素を行列状に配置することにより固体撮像装置の受光部である画素アレイが構成される。画素はシリコン(Si)等の半導体基板上に形成される。
(First embodiment)
FIG. 1 is a diagram showing a circuit configuration of a pixel according to the first embodiment of the present invention. A pixel is an element that converts incident light into an electrical signal and outputs the electrical signal. A pixel array which is a light receiving unit of the solid-state imaging device is configured by arranging the pixels in a matrix. The pixel is formed on a semiconductor substrate such as silicon (Si).

画素は、光電変換部1、電荷蓄積部2、フローティングディフュージョン部(FD部)3、垂直出力線8及びオーバーフロードレイン部(OFD部)15を備える。画素はこれらの各部の接続/非接続の切替え又は信号増幅のための、第1の転送トランジスタ4、第2の転送トランジスタ5、選択トランジスタ7、リセットトランジスタ9、ソースフォロアトランジスタ10及びOFDトランジスタ16をさらに備える。各トランジスタはMOSFET等により構成され、ドレイン−ソース間に制御電極として設けられたゲート電極を有する。   The pixel includes a photoelectric conversion unit 1, a charge storage unit 2, a floating diffusion unit (FD unit) 3, a vertical output line 8, and an overflow drain unit (OFD unit) 15. The pixel includes a first transfer transistor 4, a second transfer transistor 5, a selection transistor 7, a reset transistor 9, a source follower transistor 10, and an OFD transistor 16 for switching connection / disconnection of these parts or signal amplification. Further prepare. Each transistor is composed of a MOSFET or the like, and has a gate electrode provided as a control electrode between the drain and the source.

光電変換部1は入射された光量に応じた信号電荷を発生する素子である。電荷蓄積部2は、第1の転送トランジスタ4を介して光電変換部1に接続される。電荷蓄積部2は回路的には接地容量として機能し、電荷蓄積部2は光電変換部1から転送された電荷を一時的に蓄積する。   The photoelectric conversion unit 1 is an element that generates signal charges according to the amount of incident light. The charge storage unit 2 is connected to the photoelectric conversion unit 1 via the first transfer transistor 4. The charge storage unit 2 functions as a grounded capacitor in terms of circuit, and the charge storage unit 2 temporarily stores the charge transferred from the photoelectric conversion unit 1.

FD部3は電荷蓄積部2から転送された電荷を電圧信号に変換する。FD部3は第2の転送トランジスタ5を介して電荷蓄積部2と接続される。また、FD部3はリセットトランジスタ9のソース端子及びソースフォロアトランジスタ10のゲート端子とも接続される。リセットトランジスタ9のドレイン端子には電源電圧が供給される。リセットトランジスタ9をオンにすることでFD部3の電圧は電源電圧にリセットされる。このとき、リセット信号電圧がソースフォロアトランジスタ10のソース端子に出力される。   The FD unit 3 converts the charge transferred from the charge storage unit 2 into a voltage signal. The FD unit 3 is connected to the charge storage unit 2 through the second transfer transistor 5. The FD unit 3 is also connected to the source terminal of the reset transistor 9 and the gate terminal of the source follower transistor 10. A power supply voltage is supplied to the drain terminal of the reset transistor 9. By turning on the reset transistor 9, the voltage of the FD section 3 is reset to the power supply voltage. At this time, the reset signal voltage is output to the source terminal of the source follower transistor 10.

転送トランジスタ5がオンになり電荷蓄積部2からFD部3に電荷が転送されると、転送された電荷量に対応した画素信号電圧がソースフォロアトランジスタ10のソース端子に出力される。   When the transfer transistor 5 is turned on and charges are transferred from the charge storage unit 2 to the FD unit 3, a pixel signal voltage corresponding to the transferred charge amount is output to the source terminal of the source follower transistor 10.

ソースフォロアトランジスタ10のソース端子は選択トランジスタ7のドレイン端子に接続される。選択トランジスタ7のソース端子は垂直出力線8に接続される。選択トランジスタ7がオンになると、リセット信号又は画素信号が垂直出力線8に出力される。このようにして、画素からの信号の読み出しが行われる。   The source terminal of the source follower transistor 10 is connected to the drain terminal of the selection transistor 7. The source terminal of the selection transistor 7 is connected to the vertical output line 8. When the selection transistor 7 is turned on, a reset signal or a pixel signal is output to the vertical output line 8. In this way, the signal is read from the pixel.

光電変換部1には、さらにOFDトランジスタ16を介してOFD部15が接続される。OFDトランジスタ16がオンになると、光電変換部1に蓄積されている電荷はOFD部15に排出される。全画素に対し同時にOFD部15へ電荷を排出し、その後蓄積された電荷を電荷蓄積部2に転送することにより、全画素に対し同時かつ一定の露光時間を設定する電子シャッタが実現される。これにより、各画素から順次電荷を読み出すために生じる露光タイミングのずれが抑制され、画像の歪みが低減される。   An OFD unit 15 is further connected to the photoelectric conversion unit 1 via an OFD transistor 16. When the OFD transistor 16 is turned on, the charge accumulated in the photoelectric conversion unit 1 is discharged to the OFD unit 15. By discharging the charges to all the pixels simultaneously to the OFD unit 15 and then transferring the accumulated charges to the charge storage unit 2, an electronic shutter that simultaneously sets a constant exposure time for all the pixels is realized. As a result, a shift in exposure timing that occurs in order to sequentially read out charges from each pixel is suppressed, and image distortion is reduced.

図2(a)は本発明の第1の実施形態に係る画素の平面図であり、図2(b)は図2(a)のX−X’における断面図である。図1の回路と対応する部分には同一の符号が付されており、既に説明した構成及び機能については説明を省略することもある。   2A is a plan view of a pixel according to the first embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line X-X ′ of FIG. Portions corresponding to those in the circuit of FIG. 1 are denoted by the same reference numerals, and description of the configuration and functions already described may be omitted.

画素は光電変換部1の直上に配置された光学系として、カラーフィルタ100、マイクロレンズ101、層内レンズ102及び導波路31をさらに備える。光電変換部1は埋め込み型のフォトダイオードである。光電変換部1の上方から入射した光はマイクロレンズ101、カラーフィルタ100、層内レンズ102、導波路31を順に通過して、光電変換部1に入射し、電子に変換される。なお、層内レンズ102、導波路31、配線41、42、43、光電変換部1等の各部材の間は、図面上空隙として図示されているが、これらの空隙部には層間絶縁層(不図示)が形成されている。   The pixel further includes a color filter 100, a microlens 101, an in-layer lens 102, and a waveguide 31 as an optical system disposed immediately above the photoelectric conversion unit 1. The photoelectric conversion unit 1 is an embedded photodiode. Light incident from above the photoelectric conversion unit 1 sequentially passes through the microlens 101, the color filter 100, the in-layer lens 102, and the waveguide 31, enters the photoelectric conversion unit 1, and is converted into electrons. In addition, although each member, such as the intralayer lens 102, the waveguide 31, the wiring 41, 42, 43, and the photoelectric conversion portion 1, is illustrated as a gap in the drawing, an interlayer insulating layer ( (Not shown) is formed.

マイクロレンズ101及び層内レンズ102は、入射された光を光電変換部1に集中させることにより、感度を向上させるためのレンズである。カラーフィルタ100は特定の波長の光を選択的に透過させる薄膜であり、色情報を含む画像信号を得るために設けられる。   The microlens 101 and the in-layer lens 102 are lenses for improving sensitivity by concentrating incident light on the photoelectric conversion unit 1. The color filter 100 is a thin film that selectively transmits light of a specific wavelength, and is provided to obtain an image signal including color information.

導波路31は、層内レンズ102側と対向し、光が入射される上開口部(入射部)と、光電変換部1と対向し、光が出射される下開口部(出射部)とを有する。図2(a)に示されるように、上開口部の端部31bと下開口部の端部31aは円形である。図2(b)に示されたX−X’断面において導波路31は、上開口部の幅が下開口部の幅に比べて広い台形形状となっている。なお、導波路31の上面形状は円形として図示されているが、正方形、長方形、楕円、多角形等の形状であってもよい。   The waveguide 31 is opposed to the inner lens 102 side, and has an upper opening (incident part) where light is incident, and a lower opening (emitter) opposite to the photoelectric conversion part 1 and from which light is emitted. Have. As shown in FIG. 2A, the end 31b of the upper opening and the end 31a of the lower opening are circular. In the X-X ′ cross section shown in FIG. 2B, the waveguide 31 has a trapezoidal shape in which the width of the upper opening is wider than the width of the lower opening. In addition, although the upper surface shape of the waveguide 31 is illustrated as a circle, it may be a square, a rectangle, an ellipse, a polygon, or the like.

導波路31は、入射された光を光電変換部1に集中させる機能を有する。導波路31により光電変換部1に入射される光量が増加するため、導波路31が無い場合に比べ感度が向上する。特に、光電変換部1の面積が小さい場合又はFナンバーが大きい場合、感度低下が問題となり得るが、導波路31を設けることによりこの影響を抑制することが可能となる。   The waveguide 31 has a function of concentrating incident light on the photoelectric conversion unit 1. Since the amount of light incident on the photoelectric conversion unit 1 by the waveguide 31 is increased, the sensitivity is improved as compared with the case without the waveguide 31. In particular, when the area of the photoelectric conversion unit 1 is small or the F number is large, a decrease in sensitivity may be a problem, but by providing the waveguide 31, this influence can be suppressed.

配線部間の層間絶縁層の材料には屈折率約1.5のシリコン酸化膜(SiO)を用い、導波路31の材料には屈折率約1.8のシリコン酸窒化膜(SiON)を用いることができる。導波路31と層間絶縁層の界面に対し、所定の角度で斜めに入射された光は界面で全反射される。よって、光は層間絶縁層に漏出せず導波路31内を伝搬し、光電変換部1に導かれる。   A silicon oxide film (SiO) with a refractive index of about 1.5 is used as the material for the interlayer insulating layer between the wiring portions, and a silicon oxynitride film (SiON) with a refractive index of about 1.8 is used as the material for the waveguide 31. be able to. Light incident obliquely at a predetermined angle with respect to the interface between the waveguide 31 and the interlayer insulating layer is totally reflected at the interface. Accordingly, light does not leak into the interlayer insulating layer but propagates in the waveguide 31 and is guided to the photoelectric conversion unit 1.

層間絶縁層と導波路31の材料はシリコン酸化膜とシリコン酸窒化膜の組合せに限定されない。導波路31の屈折率が層間絶縁層の屈折率よりも高くなるように材料が組合せられていればよく、任意の材料を選択可能である。例えば、層間絶縁層がシリコン酸化膜であり、導波路31が屈折率約2.0のシリコン窒化膜(SiN)であってもよい。また、有機膜材料及び有機膜材料に酸化チタン等の粒子を混入した材料を用いてもよい。層間絶縁層が異なる材料からなる積層膜で形成されていてもよく、その場合は、導波路31の屈折率がその周りの層間絶縁層の屈折率の体積平均よりも高くなるように構成すればよい。   The material of the interlayer insulating layer and the waveguide 31 is not limited to a combination of a silicon oxide film and a silicon oxynitride film. Any material may be selected as long as the materials are combined so that the refractive index of the waveguide 31 is higher than the refractive index of the interlayer insulating layer. For example, the interlayer insulating layer may be a silicon oxide film, and the waveguide 31 may be a silicon nitride film (SiN) having a refractive index of about 2.0. Alternatively, an organic film material and a material in which particles such as titanium oxide are mixed in the organic film material may be used. The interlayer insulating layer may be formed of a laminated film made of different materials. In that case, if the refractive index of the waveguide 31 is configured to be higher than the volume average of the refractive indexes of the surrounding interlayer insulating layers. Good.

導波路31の側壁の傾斜角度はスネルの法則により決定できる。例えば導波路31の屈折率が1.9、層間絶縁層の屈折率が1.46の場合、導波路31の側壁の垂線に対して、50.2度以上の入射角で入射した光が全反射する。例えば、導波路31の側壁の角度を基板の垂直方向に対し39.8度以下とすれば、導波路31に垂直に入射した光の漏出は抑制され、光電変換部1に到達する。層間絶縁層に対する導波路31の屈折率の比率が大きいほど全反射し得る入射角の範囲が広くなり、側壁の角度の設計自由度が向上する。   The inclination angle of the side wall of the waveguide 31 can be determined by Snell's law. For example, when the refractive index of the waveguide 31 is 1.9 and the refractive index of the interlayer insulating layer is 1.46, the light incident at an incident angle of 50.2 degrees or more with respect to the perpendicular of the side wall of the waveguide 31 is all. reflect. For example, if the angle of the side wall of the waveguide 31 is set to 39.8 degrees or less with respect to the vertical direction of the substrate, leakage of the light incident perpendicularly to the waveguide 31 is suppressed and reaches the photoelectric conversion unit 1. The larger the ratio of the refractive index of the waveguide 31 to the interlayer insulating layer, the wider the range of incident angles that can be totally reflected, and the degree of freedom in designing the side wall angle is improved.

導波路31の上開口部と層内レンズ102の間、下開口部と光電変換部1の間などの入射光の光路内に反射防止層が備えられていてもよい。反射による光量の損失が低減され、入射光の透過率が向上するため、感度を向上させることができる。   An antireflection layer may be provided in the optical path of incident light such as between the upper opening of the waveguide 31 and the intralayer lens 102 and between the lower opening and the photoelectric conversion unit 1. Since the loss of light quantity due to reflection is reduced and the transmittance of incident light is improved, the sensitivity can be improved.

画素は信号の伝達等のための配線41、42、43をさらに有する。配線41、42、43は光を透過しにくいアルミニウムや銅等の材料で形成されるため、配線41、42、43は導波路31を避けてその周囲に配置される。   The pixel further includes wirings 41, 42, and 43 for signal transmission and the like. Since the wirings 41, 42, and 43 are formed of a material such as aluminum or copper that does not easily transmit light, the wirings 41, 42, and 43 are arranged around the waveguide 31 so as to avoid the waveguide 31.

次に光電変換部1及び電荷蓄積部2の構造を説明する。光電変換部1は第1導電型の第1の半導体領域11、第2導電型の第2の半導体領域12を含む。第2の半導体領域12は基板表面に形成され、第1の半導体領域11はその直下に配置される。以下、第1導電型はn型、第2導電型はp型として説明するが、その逆であってもよい。第1の半導体領域11及び第2の半導体領域12の接合界面はPN接合を形成する。すなわち、光電変換部1はPN接合界面が基板内部にあり、基板表面に接しない埋め込み型の構造である。埋め込み型の構造では、PN接合界面が基板中に埋め込まれているため、基板表面のノイズの影響が抑制される。   Next, the structure of the photoelectric conversion unit 1 and the charge storage unit 2 will be described. The photoelectric conversion unit 1 includes a first conductivity type first semiconductor region 11 and a second conductivity type second semiconductor region 12. The second semiconductor region 12 is formed on the substrate surface, and the first semiconductor region 11 is disposed immediately below. Hereinafter, the first conductivity type will be described as n-type, and the second conductivity type will be described as p-type. The junction interface between the first semiconductor region 11 and the second semiconductor region 12 forms a PN junction. That is, the photoelectric conversion unit 1 has a buried structure in which the PN junction interface is inside the substrate and does not contact the substrate surface. In the embedded structure, the influence of noise on the substrate surface is suppressed because the PN junction interface is embedded in the substrate.

第1の半導体領域11の直下にはさらにn型の第3の半導体領域13が形成されている。第3の半導体領域13の不純物濃度は第1の半導体領域11の不純物濃度よりも低い。これにより、第3の半導体領域13で光電変換された電子を第1の半導体領域11に集めることができる。なお、第3の半導体領域13はp型であってもよい。   An n-type third semiconductor region 13 is further formed immediately below the first semiconductor region 11. The impurity concentration of the third semiconductor region 13 is lower than the impurity concentration of the first semiconductor region 11. Thereby, electrons photoelectrically converted in the third semiconductor region 13 can be collected in the first semiconductor region 11. Note that the third semiconductor region 13 may be p-type.

第3の半導体領域13の下部には第4の半導体領域17が形成され、第4の半導体領域17は、電荷蓄積部2及びFD部3の領域に延在している。第4の半導体領域17はp型の半導体領域である。光電変換部1で発生する電子に対して、第4の半導体領域17はポテンシャルバリアとして働き、電子が基板に漏出することを抑制する機能を持つ。   A fourth semiconductor region 17 is formed below the third semiconductor region 13, and the fourth semiconductor region 17 extends to the regions of the charge storage portion 2 and the FD portion 3. The fourth semiconductor region 17 is a p-type semiconductor region. The fourth semiconductor region 17 functions as a potential barrier against electrons generated in the photoelectric conversion unit 1 and has a function of suppressing leakage of electrons to the substrate.

電荷蓄積部2はn型の第5の半導体領域201及びp型の第6の半導体領域202を有する。第6の半導体領域202は基板表面に形成され、第5の半導体領域201はその直下に配置される。電荷蓄積部2も光電変換部1と同様に埋め込み型の構造であり、基板表面のノイズを抑制することができる。なお、第6の半導体領域202を省略し、第5の半導体領域201のみを配置して電荷蓄積部2とすることも可能である。その場合は第1の転送トランジスタ4のゲート電極を、電荷蓄積部2を覆うように延在させ、該電極には負電位を与えてホールを表面に誘起させることにより界面で発生するノイズを抑制することができる。   The charge storage unit 2 includes an n-type fifth semiconductor region 201 and a p-type sixth semiconductor region 202. The sixth semiconductor region 202 is formed on the surface of the substrate, and the fifth semiconductor region 201 is disposed immediately below. Similarly to the photoelectric conversion unit 1, the charge storage unit 2 has a buried structure and can suppress noise on the substrate surface. Note that the sixth semiconductor region 202 may be omitted, and only the fifth semiconductor region 201 may be disposed to form the charge storage unit 2. In that case, the gate electrode of the first transfer transistor 4 is extended so as to cover the charge storage section 2, and a negative potential is applied to the electrode to induce holes on the surface, thereby suppressing noise generated at the interface. can do.

画素は、光電変換部1の直上以外を覆う遮光部として、遮光膜203をさらに備える。遮光膜203は、少なくとも電荷蓄積部2及び第1の転送トランジスタ4のゲート電極を覆うように配置される。光電変換部以外の部分は遮光され、光電変換部1には光が照射されるようにする必要があるため、遮光膜203の光電変換部1の直上は開口部となっている。ただし、遮光膜203は、光電変換部1の端部に部分的に延在していてもよい。   The pixel further includes a light-shielding film 203 as a light-shielding part that covers other than just above the photoelectric conversion part 1. The light shielding film 203 is disposed so as to cover at least the charge accumulation unit 2 and the gate electrode of the first transfer transistor 4. Since the portions other than the photoelectric conversion portion are shielded from light and the photoelectric conversion portion 1 needs to be irradiated with light, an opening is provided immediately above the photoelectric conversion portion 1 of the light shielding film 203. However, the light shielding film 203 may partially extend at the end of the photoelectric conversion unit 1.

遮光膜203は電荷蓄積部2等への光の入射を抑制する。これにより、入射光によって電荷蓄積部2で電荷が生成され、ノイズが発生することが抑制される。遮光膜203は例えばタングステン、タングステンシリサイド、タングステン酸化膜、アルミニウム又はそれらの合金膜等の可視光を透過しにくい材料を用いて形成することができる。遮光膜203の膜厚は、例えば100〜200nm程度である。遮光膜203は、ゲート電極が配置されている部分と配置されていない部分とに一括で形成されるので、ゲート電極の膜厚に起因する凹凸を有する。   The light shielding film 203 suppresses the incidence of light on the charge storage unit 2 and the like. Thereby, it is suppressed that an electric charge is produced | generated in the charge storage part 2 by incident light, and noise generate | occur | produces. The light shielding film 203 can be formed using a material that hardly transmits visible light, such as tungsten, tungsten silicide, tungsten oxide film, aluminum, or an alloy film thereof. The thickness of the light shielding film 203 is, for example, about 100 to 200 nm. Since the light shielding film 203 is formed in a lump in a portion where the gate electrode is disposed and a portion where the gate electrode is not disposed, the light shielding film 203 has unevenness due to the film thickness of the gate electrode.

図3は本実施形態における遮光膜203と導波路31との位置関係を説明する図である。図3は図2(a)のX−X”の断面図であり、図2(b)の光電変換部1近傍の拡大図である。   FIG. 3 is a view for explaining the positional relationship between the light shielding film 203 and the waveguide 31 in the present embodiment. 3 is a cross-sectional view taken along the line XX ″ of FIG. 2A, and is an enlarged view of the vicinity of the photoelectric conversion unit 1 of FIG.

図3の符号h2031、h2032、h2033、h311で示される点線は遮光膜203及び導波路31と基板面である光電変換部1との間隔(高さ)を示している。例えば、符号h311が付されている点線は、導波路31の底部(出射部)の位置が高さh311であることを意味する。以下の説明では、この符号を用いて、「導波路31の底部の高さはh311」等と表現することもある。   Dotted lines indicated by reference numerals h2031, h2032, h2033, and h311 in FIG. 3 indicate intervals (heights) between the light shielding film 203 and the waveguide 31 and the photoelectric conversion unit 1 that is the substrate surface. For example, the dotted line to which the symbol h311 is attached means that the position of the bottom portion (outgoing portion) of the waveguide 31 is the height h311. In the following description, this symbol may be used to express “the height of the bottom of the waveguide 31 is h311” or the like.

遮光膜203の下端の高さをh2031、ゲート電極が無い領域における遮光膜上端の高さをh2032、ゲート電極上に遮光膜203が形成されている領域の遮光膜上端の高さをh2033とする。導波路31の底部の高さh311は遮光膜203の下端の高さh2031より高い位置とすることが好適である。本実施形態では、導波路31の底部の高さh311は高さh2032と高さh2033の間にある。   The height of the lower end of the light shielding film 203 is h2031, the height of the upper end of the light shielding film in the region without the gate electrode is h2032, and the height of the upper end of the light shielding film in the region where the light shielding film 203 is formed on the gate electrode is h2033. . The height h311 of the bottom of the waveguide 31 is preferably higher than the height h2031 of the lower end of the light shielding film 203. In the present embodiment, the height h311 of the bottom of the waveguide 31 is between the height h2032 and the height h2033.

導波路の底部の高さh311が遮光膜203の下端の高さh2031より低い場合、導波路31の底部から放射された光が回折により拡がり、光電変換部1だけでなく、電荷蓄積部2にも入射する。光が電荷蓄積部2に入射すると、電荷蓄積部2のPN接合部で電荷が発生し、この電荷がノイズの原因となり得る。これに対して本実施形態では、導波路の底部の高さh311が遮光膜203の下端の高さh2031より高い位置にある。よって、導波路31の底部から放射された光は回折により拡がったとしても、遮光膜203により遮られる。これにより、光が電荷蓄積部2に入射されることを軽減又は防止できるため、ノイズの発生を抑制できる。   When the height h311 of the bottom of the waveguide is lower than the height h2031 of the lower end of the light shielding film 203, the light emitted from the bottom of the waveguide 31 spreads by diffraction, and not only in the photoelectric conversion unit 1 but also in the charge storage unit 2. Is also incident. When light enters the charge storage unit 2, charges are generated at the PN junction of the charge storage unit 2, and this charge can cause noise. On the other hand, in the present embodiment, the height h311 of the bottom of the waveguide is higher than the height h2031 of the lower end of the light shielding film 203. Therefore, even if the light emitted from the bottom of the waveguide 31 spreads by diffraction, it is blocked by the light shielding film 203. Thereby, since it can reduce or prevent that light enters into the electric charge storage part 2, generation | occurrence | production of noise can be suppressed.

図4(a)及び(b)は導波路31と遮光膜203の位置関係の変形例を説明する図である。図4も図2(a)のX−X”の断面図であり、図2(b)の光電変換部1付近を拡大して示すものである。図4(a)及び(b)では、図3に示した構成に対し導波路31の位置が異なっている。   FIGS. 4A and 4B are diagrams for explaining a modification of the positional relationship between the waveguide 31 and the light shielding film 203. 4 is also a cross-sectional view taken along the line XX ″ in FIG. 2A, and shows an enlarged view of the vicinity of the photoelectric conversion unit 1 in FIG. 2B. In FIGS. The position of the waveguide 31 is different from the configuration shown in FIG.

図4(a)において、導波路31の底部の高さh311は、遮光膜203の下端の高さh2031とゲート電極が無い領域の膜上端の高さh2032の間となっている。この場合、導波路31の底部から放射され、回折した光は、遮光膜203の側面で反射される。したがって、上述の場合と同様に電荷蓄積部に入射されることを軽減又は防止できるため、ノイズの発生を抑制できる。遮光膜203の側面で反射された光は光電変換部1に入射され得る。遮光膜203の上面で反射される成分が減少し、遮光膜203の側面で反射されて光電変換部1に集光される光量が増加するため、より高い感度を得ることができる。   In FIG. 4A, the height h311 at the bottom of the waveguide 31 is between the height h2031 at the lower end of the light shielding film 203 and the height h2032 at the upper end of the film in the region without the gate electrode. In this case, the diffracted light emitted from the bottom of the waveguide 31 is reflected by the side surface of the light shielding film 203. Therefore, it is possible to reduce or prevent the light from being incident on the charge storage portion as in the case described above, so that the generation of noise can be suppressed. The light reflected by the side surface of the light shielding film 203 can be incident on the photoelectric conversion unit 1. Since the component reflected on the upper surface of the light shielding film 203 decreases and the amount of light reflected on the side surface of the light shielding film 203 and condensed on the photoelectric conversion unit 1 increases, higher sensitivity can be obtained.

図4(b)において、導波路31の底部の高さh311は、ゲート電極上に遮光膜203が形成されている領域の遮光膜上端の高さh2033よりも高い。導波路31は画素に入射された光を、配線41、42、43及びそれらの間の層間絶縁層が形成された層を通過させるとともに、光電変換部1に集めるために設けられている。そのため、導波路31は回路の配線41、42、43、及び層間絶縁層が形成された少なくとも一層を貫通するように設けられていればよい。回路の配線41、42、43及び配線43上の層間絶縁層の上端面の高さをそれぞれh413、h423、h433及びh443とする。このとき、導波路31の底部の高さ311は、少なくとも高さh433よりも低い位置であれば上述の効果を得ることができる。導波路31の底部の高さh311が、配線42の上端面の高さh423より低い位置であればより好ましい。図4(b)ではさらに好適な例として、導波路31の底部の高さh311が、配線42の上端面の高さh423と配線41の上端面の高さh413の間である例が示されている。   In FIG. 4B, the height h311 of the bottom of the waveguide 31 is higher than the height h2033 of the upper end of the light shielding film in the region where the light shielding film 203 is formed on the gate electrode. The waveguide 31 is provided to allow light incident on the pixels to pass through the wirings 41, 42, 43 and the layer on which the interlayer insulating layer is formed and to collect the light in the photoelectric conversion unit 1. Therefore, the waveguide 31 may be provided so as to penetrate at least one layer in which the circuit wirings 41, 42, and 43 and the interlayer insulating layer are formed. The heights of the circuit wirings 41, 42, 43 and the upper end surface of the interlayer insulating layer on the wiring 43 are h413, h423, h433, and h443, respectively. At this time, if the height 311 of the bottom of the waveguide 31 is at least a position lower than the height h433, the above-described effects can be obtained. It is more preferable that the height h311 of the bottom portion of the waveguide 31 is lower than the height h423 of the upper end surface of the wiring. FIG. 4B shows a more preferable example in which the height h311 of the bottom of the waveguide 31 is between the height h423 of the upper end surface of the wiring 42 and the height h413 of the upper end surface of the wiring 41. ing.

(第2の実施形態)
図5は第2の実施形態における遮光膜203と導波路31との位置関係を説明する図である。図5は図2(a)のX−X”に相当する箇所の断面図であり、光電変換部1付近を拡大して示すものである。第2の実施形態では、第1の実施形態の構成に加えて、導波路31と光電変換部1の間に反射防止層52が配置されている。
(Second Embodiment)
FIG. 5 is a diagram illustrating the positional relationship between the light shielding film 203 and the waveguide 31 in the second embodiment. 5 is a cross-sectional view of a portion corresponding to XX ″ in FIG. 2A, and shows the vicinity of the photoelectric conversion unit 1 in an enlarged manner. The second embodiment is the same as that of the first embodiment. In addition to the configuration, an antireflection layer 52 is disposed between the waveguide 31 and the photoelectric conversion unit 1.

第1の転送トランジスタ4及びOFDトランジスタ16のゲート電極と基板との間にはゲート絶縁膜51が形成されている。ゲート絶縁膜51には例えばシリコン酸化膜が用いられ、その膜厚は約10nmである。ゲート絶縁膜51の上には反射防止層52が形成されている。   A gate insulating film 51 is formed between the gate electrodes of the first transfer transistor 4 and the OFD transistor 16 and the substrate. For example, a silicon oxide film is used for the gate insulating film 51, and its film thickness is about 10 nm. An antireflection layer 52 is formed on the gate insulating film 51.

反射防止層52には例えばシリコン窒化膜が用いられ、その膜厚は約50nmである。反射防止層52と遮光膜203との間にはバッファ膜53が形成されている。バッファ膜53には例えばシリコン酸化膜が用いられ、その膜厚は20〜100nm程度である。反射防止の効果を得るためには導波路31と反射防止層52を適正な距離にする必要がある。光の波長が550nmで、導波路31の屈折率が1.8とすると、導波路31と反射防止層52との距離は110nm程度が適切である。そのため、基板から導波路31の底部311までの距離は170nm程度、基板から遮光膜203の下端の高さh2031までの距離は80〜160nm程度となる。これらの距離の関係より、導波路31の底部の高さh311と遮光膜203の下端の高さh2031との距離は10〜90nmとなる。すなわち、導波路31の底部の高さh311は遮光膜203の下端の高さh2031より高い位置にすることが可能となる。   For example, a silicon nitride film is used for the antireflection layer 52, and the film thickness is about 50 nm. A buffer film 53 is formed between the antireflection layer 52 and the light shielding film 203. For example, a silicon oxide film is used for the buffer film 53, and the film thickness is about 20 to 100 nm. In order to obtain an antireflection effect, the waveguide 31 and the antireflection layer 52 need to be at an appropriate distance. When the wavelength of light is 550 nm and the refractive index of the waveguide 31 is 1.8, the distance between the waveguide 31 and the antireflection layer 52 is appropriately about 110 nm. Therefore, the distance from the substrate to the bottom 311 of the waveguide 31 is about 170 nm, and the distance from the substrate to the height h2031 at the lower end of the light shielding film 203 is about 80 to 160 nm. From the relationship between these distances, the distance between the height h311 of the bottom of the waveguide 31 and the height h2031 of the lower end of the light shielding film 203 is 10 to 90 nm. That is, the height h311 of the bottom portion of the waveguide 31 can be set higher than the height h2031 of the lower end of the light shielding film 203.

したがって、本実施形態においても第1の実施形態と同様に光が電荷蓄積部2に入射されることを軽減又は防止できるため、ノイズの発生を抑制できる。これに加え、反射防止層52の効果により、反射による光量の損失が低減され、入射光の透過率が向上するため、感度を向上させることができる。   Therefore, also in this embodiment, it is possible to reduce or prevent light from entering the charge accumulating unit 2 as in the first embodiment, and thus it is possible to suppress the generation of noise. In addition to this, the effect of the antireflection layer 52 reduces the loss of light quantity due to reflection and improves the transmittance of incident light, so that the sensitivity can be improved.

(第3の実施形態)
図6は第3の実施形態における遮光膜203と導波路31との位置関係を説明する図である。図6は図2(a)のX−X”に相当する箇所の断面図であり、光電変換部1付近を拡大して示すものである。
(Third embodiment)
FIG. 6 is a view for explaining the positional relationship between the light shielding film 203 and the waveguide 31 in the third embodiment. FIG. 6 is a cross-sectional view of a portion corresponding to XX ″ in FIG. 2A, and shows the vicinity of the photoelectric conversion unit 1 in an enlarged manner.

図6における導波路31は、上述の台形形状に加え、上開口部が外側に延在した部分を有するT字型をなしている。また、図6における導波路31の底部には、導波路31を形成する際のエッチングストップ層(ESL)32が設けられている。ESL32は安定して所定の深さでエッチング工程を完了させるための層である。ESL32の膜厚は例えば50nmである。ESL32が導波路31と同等の屈折率の場合は、ESL32は導波路31と同様に集光の効果を有する。本実施形態の形状は、製造上の理由により採用される場合がある。   In addition to the trapezoidal shape described above, the waveguide 31 in FIG. 6 has a T shape having a portion in which the upper opening extends outward. Further, an etching stop layer (ESL) 32 for forming the waveguide 31 is provided at the bottom of the waveguide 31 in FIG. The ESL 32 is a layer for stably completing the etching process at a predetermined depth. The film thickness of ESL32 is, for example, 50 nm. When the ESL 32 has a refractive index equivalent to that of the waveguide 31, the ESL 32 has a light collecting effect similarly to the waveguide 31. The shape of this embodiment may be adopted for manufacturing reasons.

導波路31の底部の開口部の幅(導波路下開口幅)をw31a、導波路31の頂部の開口部の幅(導波路上開口幅)w31b、遮光膜203の開口幅(遮光開口幅)をw203aとする。第1の実施形態と同様に、導波路31の底部の高さ311は遮光膜203の下端の高さh2031よりも高い。この構成による効果は第1の実施形態において上述したとおりである。これに加え、本実施形態では、遮光膜203の遮光開口幅w203aが、導波路下開口幅w31aよりも長く、導波路上開口幅w31bよりも短い。このとき、遮光膜203の端部203aは、導波路31の光軸方向から見て導波路31の底部の端部31aと導波路31の頂部の端部31bの間に位置する。以下、この構成による効果について説明する。   The width of the opening at the bottom of the waveguide 31 (opening width under the waveguide) is w31a, the width of the opening at the top of the waveguide 31 (opening width on the waveguide) w31b, and the opening width of the light shielding film 203 (light shielding opening width). Is w203a. Similar to the first embodiment, the height 311 of the bottom of the waveguide 31 is higher than the height h2031 of the lower end of the light shielding film 203. The effect of this configuration is as described above in the first embodiment. In addition, in this embodiment, the light shielding opening width w203a of the light shielding film 203 is longer than the waveguide lower opening width w31a and shorter than the waveguide upper opening width w31b. At this time, the end portion 203 a of the light shielding film 203 is positioned between the bottom end portion 31 a of the waveguide 31 and the top end portion 31 b of the waveguide 31 when viewed from the optical axis direction of the waveguide 31. Hereinafter, the effect by this structure is demonstrated.

遮光開口幅w203aが導波路下開口幅w31aよりも短い場合、導波路31の底部から出力された光の一部が遮光膜203で反射され、光電変換部1に流入する光が減少するため、感度が低下し得る。これに対し本実施形態では、遮光開口幅w203aが導波路下開口幅w31aよりも長くしているため、導波路31の底部から出力された光は遮光膜203で反射されにくくなり、感度が向上する。   When the light shielding opening width w203a is shorter than the waveguide lower opening width w31a, part of the light output from the bottom of the waveguide 31 is reflected by the light shielding film 203, and the light flowing into the photoelectric conversion unit 1 is reduced. Sensitivity can be reduced. On the other hand, in the present embodiment, since the light shielding opening width w203a is longer than the waveguide lower opening width w31a, the light output from the bottom of the waveguide 31 is not easily reflected by the light shielding film 203, and the sensitivity is improved. To do.

一方、遮光開口幅w203aが導波路上開口幅w31bよりも長い場合、入射された光が十分に導波路31内に取り込めず、感度が低下し得る。また、遮光開口幅w203aが大きいことにより、電荷蓄積部2に回折光が入射されて、ノイズが発生する場合もある。これに対し本実施形態では、遮光開口幅w203aを導波路上開口幅w31bよりも短くしているため、感度が向上するとともに、電荷蓄積部2への光の流入を防ぎ、ノイズの発生が抑制される。   On the other hand, when the light shielding opening width w203a is longer than the on-waveguide opening width w31b, the incident light cannot be sufficiently taken into the waveguide 31 and the sensitivity can be lowered. Further, since the light shielding opening width w203a is large, diffracted light is incident on the charge storage unit 2 and noise may be generated. On the other hand, in the present embodiment, since the light shielding opening width w203a is shorter than the waveguide upper opening width w31b, the sensitivity is improved, the inflow of light to the charge storage unit 2 is prevented, and the generation of noise is suppressed. Is done.

なお、配線41、42、43の位置は導波路31の底部の端部31aよりも外側であればよく、導波路31の頂部の端部31bよりも内側であってもよい。これは他の実施形態においても同様である。   The positions of the wirings 41, 42, and 43 may be outside the end 31 a at the bottom of the waveguide 31, and may be inside the end 31 b at the top of the waveguide 31. The same applies to other embodiments.

(第4の実施形態)
図7(a)は、本発明の第4の実施形態に係る画素の平面図であり、図7(b)は、図7(a)のY−Y’における断面図である。対応する部材には同一の符号が付されている。
(Fourth embodiment)
FIG. 7A is a plan view of a pixel according to the fourth embodiment of the present invention, and FIG. 7B is a cross-sectional view taken along line YY ′ of FIG. Corresponding members are given the same reference numerals.

本実施形態と前述の各実施形態の差異点は、図7(a)、(b)に示されているように、遮光膜203の開口部がソースフォロアトランジスタ10、選択トランジスタ7、リセットトランジスタ9に部分的に重なっている点である。そのためソースフォロアトランジスタ10等のゲート電極の段差により、ESL32の形成時に段差が発生し、これにより導波路31の底部が段差を有する形状となっている。   As shown in FIGS. 7A and 7B, the difference between this embodiment and each of the above-described embodiments is that the opening of the light shielding film 203 is the source follower transistor 10, the selection transistor 7, and the reset transistor 9. It is a point that partially overlaps. Therefore, a step is generated when the ESL 32 is formed due to the step of the gate electrode of the source follower transistor 10 or the like, and the bottom of the waveguide 31 has a step.

上述した理由で、ノイズを防ぐためには電荷蓄積部2の遮光が必要である。これに対し、ソースフォロアトランジスタ10、選択トランジスタ7、リセットトランジスタ9への遮光は必ずしも必要ではない。   For the reasons described above, it is necessary to shield the charge storage unit 2 in order to prevent noise. On the other hand, light shielding to the source follower transistor 10, the selection transistor 7, and the reset transistor 9 is not always necessary.

本実施形態においても第3の実施形態と同様に、光電変換部1から電荷蓄積部2への方向における、遮光開口部203の端部203aが、導波路下開口幅31aの端部と導波路上開口幅31bの端部の間に位置していればよい。すなわち、前述のソースフォロアトランジスタ10等のゲート電極は遮光膜203の開口部と重なっていてもよい。このように配置することにより、電荷蓄積部2の遮光を維持しながら素子面積の使用効率を向上することができる。したがって、第4の実施形態の導波路31の形状及び素子レイアウトを用いることにより画素の小型化と、ノイズの抑制が両立される。   Also in the present embodiment, as in the third embodiment, the end 203a of the light shielding opening 203 in the direction from the photoelectric conversion unit 1 to the charge storage unit 2 is guided by the end of the waveguide lower opening width 31a. What is necessary is just to be located between the edge parts of the road opening width 31b. That is, the gate electrode of the source follower transistor 10 or the like described above may overlap with the opening of the light shielding film 203. By arranging in this way, the use efficiency of the element area can be improved while maintaining the light shielding of the charge storage section 2. Therefore, by using the shape of the waveguide 31 and the element layout of the fourth embodiment, both the reduction in size of the pixel and the suppression of noise can be achieved.

(第5の実施形態)
第5の実施形態について、図8と図9を用いて説明する。図8と図9において、図2(a)、(b)と同じ機能を有する部分の符号は同一としている。図8は第5の実施形態に係る画素の平面図を示しており、図9は図8のZ−Z’における本発明の第5の実施形態に係る画素の断面図である。第5の実施形態に係る画素は固体撮像装置の画素アレイの周辺部に配置される画素として用いられる。画素アレイの周辺部では被写体から照射される光が画素に斜めに入射する場合がある。斜めに入射した光は部分的に遮光膜203に遮られ、光電変換部1に入射する光量が減少する場合がある。これにより、画素アレイの周辺部で光量が不足する。このような画素アレイを用いたカメラ等の撮影システムで撮影を行うと、画像の周辺部が光量不足により暗くなることがある。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIGS. In FIG. 8 and FIG. 9, the reference numerals of the parts having the same functions as those in FIGS. 2A and 2B are the same. FIG. 8 is a plan view of a pixel according to the fifth embodiment, and FIG. 9 is a cross-sectional view of the pixel according to the fifth embodiment of the present invention at ZZ ′ in FIG. The pixels according to the fifth embodiment are used as pixels arranged in the peripheral part of the pixel array of the solid-state imaging device. In the peripheral part of the pixel array, light emitted from the subject may enter the pixel obliquely. The light incident obliquely is partially blocked by the light shielding film 203, and the amount of light incident on the photoelectric conversion unit 1 may be reduced. As a result, the amount of light is insufficient at the periphery of the pixel array. When photographing is performed with a photographing system such as a camera using such a pixel array, the peripheral portion of the image may become dark due to insufficient light quantity.

斜め入射光に対しても集光性能を向上させるため、本実施形態ではマイクロレンズ501、カラーフィルタ500、層内レンズ502、導波路531が画素の中央を通る垂線Pからセンサチップの撮像エリアの中央の方向へずらして配置されている。図中の531aは導波路531の底部の開口を示している。これにより、図2(b)に示されるようにマイクロレンズ101、層内レンズ102、導波路31等の中心が垂線Pと一致している場合に比べて、斜め入射光が遮光膜203で遮られることによる光の損失が抑制される。よって、第5の実施形態に係る画素を画素アレイの周辺部に用いることにより画素アレイ周辺部の光量不足を改善することができる。なお、垂線Pの位置である「画素の中央」は、遮光膜の開口部の重心で定義されてもよく、光電変換部1を構成する第1及び第2導電型半導体領域の重心で定義されてもよい。   In this embodiment, in order to improve the light collection performance even for obliquely incident light, in this embodiment, the micro lens 501, the color filter 500, the in-layer lens 502, and the waveguide 531 extend from the perpendicular P passing through the center of the pixel to the imaging area of the sensor chip. It is arranged shifted in the central direction. In the figure, reference numeral 531 a denotes an opening at the bottom of the waveguide 531. As a result, as shown in FIG. 2B, the oblique incident light is blocked by the light shielding film 203 as compared with the case where the centers of the microlens 101, the inner lens 102, the waveguide 31 and the like coincide with the perpendicular line P. Loss of light due to being suppressed. Therefore, by using the pixel according to the fifth embodiment in the peripheral portion of the pixel array, it is possible to improve the light quantity shortage in the peripheral portion of the pixel array. The “center of the pixel”, which is the position of the perpendicular line P, may be defined by the center of gravity of the opening of the light shielding film, and is defined by the center of gravity of the first and second conductivity type semiconductor regions constituting the photoelectric conversion unit 1. May be.

なお、マイクロレンズ501、層内レンズ502、導波路531等の光学部材のずらし量は、感度、光学特性及び電荷蓄積部2の遮光性能に基づいて適宜調整可能である。例えば、マイクロレンズ501、層内レンズ502、導波路531の各頂点が各画素の行又は列に対し一様に設定されていてもよい。画素アレイの中心からの距離に依存して、ずらし量が大きくなるようにしてもよい。図9に示した2つの画素においては、左側の画素の方が、右側の画素より撮像エリアの中心に近い。この場合に、図9に示されているように、撮像エリア(画素アレイ)の中心から遠い右側の画素の導波路のずらし量S2は、撮像エリアの中心に近い左側の画素の導波路のずらし量S1より大きくすることが好ましい。   Note that the shift amounts of the optical members such as the microlens 501, the in-layer lens 502, and the waveguide 531 can be appropriately adjusted based on sensitivity, optical characteristics, and light shielding performance of the charge storage unit 2. For example, the vertices of the microlens 501, the intralayer lens 502, and the waveguide 531 may be set uniformly with respect to the row or column of each pixel. The shift amount may be increased depending on the distance from the center of the pixel array. In the two pixels shown in FIG. 9, the left pixel is closer to the center of the imaging area than the right pixel. In this case, as shown in FIG. 9, the shift amount S2 of the waveguide of the right pixel far from the center of the imaging area (pixel array) is the shift amount of the waveguide of the left pixel close to the center of the imaging area. It is preferable to make it larger than the amount S1.

画素の中心からずらす光学材料は適宜選択可能である。マイクロレンズ501、層内レンズ502、導波路531、カラーフィルタ500の1つだけをずらしてもよく、2つ以上をずらしてもよい。各光学部材において、ずらし量が異なっていてもよく、光電変換部1から離れた位置にある光学部材ほどずらし量を大きくすることが好ましい。   The optical material shifted from the center of the pixel can be appropriately selected. Only one of the microlens 501, the intralayer lens 502, the waveguide 531 and the color filter 500 may be shifted, or two or more may be shifted. In each optical member, the shift amount may be different, and it is preferable to increase the shift amount as the optical member is located farther from the photoelectric conversion unit 1.

また、本実施形態の変形例として、上述の光学部材をずらす方向を、光電変換部1と電荷蓄積部2の並ぶ方向(図8の上下方向)としてもよい。電荷蓄積部2への光の入射をさらに軽減又は防止できるため、ノイズの発生をさらに抑制することができる。   As a modification of the present embodiment, the direction in which the above-described optical member is displaced may be the direction in which the photoelectric conversion unit 1 and the charge storage unit 2 are arranged (the vertical direction in FIG. 8). Since the incidence of light on the charge storage unit 2 can be further reduced or prevented, the generation of noise can be further suppressed.

(第6の実施形態)
図10は、本発明の第6の実施形態に係る固体撮像装置を用いた撮像システムの構成を示す図である。撮像システム800は、光学部810、固体撮像装置820、映像信号処理部830、記録・通信部840、タイミング制御部850、システム制御部860、及び再生・表示部870を備える。固体撮像装置820には、第1〜第5の実施形態として前述した固体撮像装置が用いられる。
(Sixth embodiment)
FIG. 10 is a diagram illustrating a configuration of an imaging system using a solid-state imaging device according to the sixth embodiment of the present invention. The imaging system 800 includes an optical unit 810, a solid-state imaging device 820, a video signal processing unit 830, a recording / communication unit 840, a timing control unit 850, a system control unit 860, and a playback / display unit 870. As the solid-state imaging device 820, the solid-state imaging device described above as the first to fifth embodiments is used.

レンズ等の光学系である光学部810は、被写体からの光を固体撮像装置820の、複数の画素が2次元状に配列された画素アレイに結像させ、被写体の像を形成する。固体撮像装置820は、タイミング制御部850からの信号に基づくタイミングで、画素に結像された光に応じた信号を出力する。固体撮像装置820から出力された信号は、映像信号処理部830に入力される。映像信号処理部830は、プログラム等によって定められた方法に従って、入力された信号の処理を行う。映像信号処理部830での処理によって得られた信号は画像データとして記録・通信部840に送られる。記録・通信部840は、画像を形成するための信号を再生・表示部870に送り、再生・表示部870に動画や静止画像を再生・表示させる。記録・通信部840は、また、映像信号処理部830からの信号を受けて、システム制御部860と通信を行うほか、不図示の記録媒体に、画像を形成するための信号を記録する動作も行う。   An optical unit 810 that is an optical system such as a lens forms an image of a subject by forming light from the subject on a pixel array in which a plurality of pixels are two-dimensionally arranged in the solid-state imaging device 820. The solid-state imaging device 820 outputs a signal corresponding to the light imaged on the pixel at a timing based on the signal from the timing control unit 850. A signal output from the solid-state imaging device 820 is input to the video signal processing unit 830. The video signal processing unit 830 processes an input signal according to a method determined by a program or the like. The signal obtained by the processing in the video signal processing unit 830 is sent to the recording / communication unit 840 as image data. The recording / communication unit 840 sends a signal for forming an image to the reproduction / display unit 870 and causes the reproduction / display unit 870 to reproduce / display a moving image or a still image. The recording / communication unit 840 receives a signal from the video signal processing unit 830 and communicates with the system control unit 860, and also records an operation for recording a signal for forming an image on a recording medium (not shown). Do.

システム制御部860は、撮像システム800の動作を統括的に制御するものであり、光学部810、タイミング制御部850、記録・通信部840、及び再生・表示部870の駆動を制御する。また、システム制御部860は、例えば記録媒体である不図示の記憶装置を備え、ここに撮像システム800の動作を制御するのに必要なプログラム等が記録される。また、システム制御部860は、例えばユーザの操作に応じて駆動モードを切り替える信号を撮像システム800内に供給する。具体的には、読み出す行やリセットする行の変更、電子ズームに伴う画角の変更や、電子防振に伴う画角のずらし等の切り替えを行うための信号が供給される。タイミング制御部850は、システム制御部860による制御に基づいて固体撮像装置820及び映像信号処理部830の駆動タイミングを制御する。   The system control unit 860 controls the operation of the imaging system 800 in an integrated manner, and controls driving of the optical unit 810, timing control unit 850, recording / communication unit 840, and reproduction / display unit 870. The system control unit 860 includes a storage device (not shown) that is a recording medium, for example, and a program and the like necessary for controlling the operation of the imaging system 800 are recorded therein. Further, the system control unit 860 supplies a signal for switching the drive mode in the imaging system 800 according to, for example, a user operation. Specifically, a signal for switching a row to be read out or a row to be reset, a change in the angle of view associated with electronic zoom, a shift in angle of view associated with electronic image stabilization, and the like is supplied. The timing control unit 850 controls the drive timing of the solid-state imaging device 820 and the video signal processing unit 830 based on control by the system control unit 860.

本実施形態に係る固体撮像装置820を搭載することにより、ノイズの発生が抑制された撮像システム800を実現することができる。   By mounting the solid-state imaging device 820 according to the present embodiment, it is possible to realize an imaging system 800 in which noise generation is suppressed.

1 光電変換部
2 電荷蓄積部
31 導波路
203 遮光部(遮光膜)
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion part 2 Charge storage part 31 Waveguide 203 Light-shielding part (light-shielding film)

本発明の一態様に係る固体撮像装置は、半導体基板と、前記半導体基板に配され、入射された光を光電変換して信号電荷を生成する光電変換部と、前記光電変換部から転送される信号電荷を蓄積する電荷蓄積部と、前記光電変換部から前記電荷蓄積部に電荷を転送するための制御電極を有するトランジスタと、前記電荷蓄積部の前記信号電荷が転送されるフローティングディフュージョン部と、を含む複数の画素と、入射された光を前記光電変換部に導くための導波路と、少なくとも前記制御電極および前記電荷蓄積部を覆う遮光部と、前記遮光部の上に配された複数の配線層と、を備え、前記導波路は、前記複数の配線層の少なくとも一部より前記半導体基板から遠い位置にある上端と、前記複数の配線層の前記少なくとも一部より前記半導体基板に近い位置にある下端と、を有し、前記導波路の前記下端と前記半導体基板との間に絶縁層が配され、前記導波路の前記下端と前記半導体基板との間隔が、前記遮光部の上端と前記半導体基板との間隔よりも小さいことを特徴とする
A solid-state imaging device according to one embodiment of the present invention includes a semiconductor substrate, a photoelectric conversion unit that is disposed on the semiconductor substrate and photoelectrically converts incident light to generate a signal charge, and is transferred from the photoelectric conversion unit A charge storage section that stores signal charges; a transistor having a control electrode for transferring charges from the photoelectric conversion section to the charge storage section; a floating diffusion section to which the signal charges of the charge storage section are transferred; A plurality of pixels including: a waveguide for guiding incident light to the photoelectric conversion unit; a light shielding unit covering at least the control electrode and the charge storage unit; and a plurality of light emitting units disposed on the light shielding unit. A wiring layer, and the waveguide has an upper end located farther from the semiconductor substrate than at least a part of the plurality of wiring layers, and the half of the waveguide from the at least a part of the plurality of wiring layers. A lower end at a position close to a body substrate, an insulating layer is disposed between the lower end of the waveguide and the semiconductor substrate, and an interval between the lower end of the waveguide and the semiconductor substrate is The distance between the upper end of the light shielding portion and the semiconductor substrate is smaller .

Claims (17)

半導体基板と、
前記半導体基板に配され、入射された光を光電変換して信号電荷を生成する光電変換部と、前記光電変換部から転送される信号電荷を蓄積する電荷蓄積部と、前記光電変換部から前記電荷蓄積部に電荷を転送するための制御電極を有するトランジスタと、前記電荷蓄積部の前記信号電荷が転送されるフローティングディフュージョン部と、を含む複数の画素と、
入射された光を前記光電変換部に導くための導波路と、
少なくとも前記電荷蓄積部を覆うように設けられた遮光部と、を備え、
前記遮光部は、前記制御電極を覆う第1の部分と、前記半導体基板の上に絶縁層を介して配され、かつ、前記光電変換部の一部を覆うように前記半導体基板の表面に沿って延びた第2の部分とを含み、
前記導波路と前記半導体基板との間に前記絶縁層が配され、
前記導波路と前記半導体基板との間隔が、前記遮光部の前記第2の部分と前記半導体基板との間隔よりも大きく、かつ、前記遮光部の前記第2の部分の上面と前記半導体基板との距離よりも小さい
ことを特徴とする固体撮像装置。
A semiconductor substrate;
A photoelectric conversion unit that is arranged on the semiconductor substrate and photoelectrically converts incident light to generate a signal charge, a charge storage unit that stores a signal charge transferred from the photoelectric conversion unit, and the photoelectric conversion unit from the photoelectric conversion unit A plurality of pixels including a transistor having a control electrode for transferring charge to the charge storage portion, and a floating diffusion portion to which the signal charge of the charge storage portion is transferred;
A waveguide for guiding incident light to the photoelectric conversion unit;
A light shielding portion provided to cover at least the charge accumulation portion,
The light shielding portion is disposed along the surface of the semiconductor substrate so as to cover a first portion covering the control electrode and an insulating layer on the semiconductor substrate and to cover a part of the photoelectric conversion portion. And a second portion extending
The insulating layer is disposed between the waveguide and the semiconductor substrate;
An interval between the waveguide and the semiconductor substrate is larger than an interval between the second portion of the light shielding portion and the semiconductor substrate, and an upper surface of the second portion of the light shielding portion and the semiconductor substrate A solid-state imaging device characterized by being smaller than the distance.
前記導波路は、光が入射される入射部と光を出射する出射部とを有し、
前記遮光部は、前記導波路から出射された光を通過させる開口部を有する
ことを特徴とする請求項1に記載の固体撮像装置。
The waveguide has an incident part where light is incident and an emission part which emits light,
The solid-state imaging device according to claim 1, wherein the light shielding unit includes an opening that allows light emitted from the waveguide to pass therethrough.
前記遮光部の前記開口部の端部の少なくとも一部が、前記導波路の光軸方向から見て前記入射部と前記出射部の間に位置していることを特徴とする請求項2に記載の固体撮像装置。   The at least part of the edge part of the said opening part of the said light-shielding part is located between the said incident part and the said output part seeing from the optical axis direction of the said waveguide. Solid-state imaging device. 前記遮光部の開口部の幅が、前記出射部の幅よりも大きく、前記入射部の幅よりも小さいことを特徴とする請求項2に記載の固体撮像装置。   3. The solid-state imaging device according to claim 2, wherein the width of the opening of the light shielding portion is larger than the width of the emitting portion and smaller than the width of the incident portion. 少なくとも1つの画素において、前記導波路の光軸方向から見て、前記出射部の重心の位置が、前記遮光部の前記開口部の重心の位置に対し、前記複数の画素の中心の方向にずらされていることを特徴とする請求項2に記載の固体撮像装置。   In at least one pixel, when viewed from the optical axis direction of the waveguide, the position of the center of gravity of the emitting portion is shifted in the direction of the center of the plurality of pixels with respect to the position of the center of gravity of the opening of the light shielding portion. The solid-state imaging device according to claim 2, wherein the solid-state imaging device is provided. 前記導波路の下面は、前記導波路とエッチングストップ層の界面を含むことを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像装置。   6. The solid-state imaging device according to claim 1, wherein a lower surface of the waveguide includes an interface between the waveguide and an etching stop layer. 前記導波路の下面は、前記導波路と層間絶縁層の界面を含むことを特徴とする請求項1乃至5のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein a lower surface of the waveguide includes an interface between the waveguide and an interlayer insulating layer. 前記導波路の下面は、段差を有する形状を有することを特徴とする請求項1乃至6のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein a lower surface of the waveguide has a stepped shape. 前記遮光部の上に配された複数の配線層をさらに備え、
前記導波路は、前記複数の配線層を貫通することを特徴とする請求項1乃至8のいずれか1項に記載の固体撮像装置。
A plurality of wiring layers disposed on the light shielding portion;
The solid-state imaging device according to claim 1, wherein the waveguide penetrates the plurality of wiring layers.
半導体基板と、
前記半導体基板に配され、入射された光を光電変換して信号電荷を生成する光電変換部と、前記光電変換部から転送される信号電荷を蓄積する電荷蓄積部と、前記光電変換部から前記電荷蓄積部に電荷を転送するための制御電極を有するトランジスタと、前記電荷蓄積部の前記信号電荷が転送されるフローティングディフュージョン部と、を含む複数の画素と、
入射された光を前記光電変換部に導くための導波路と、
少なくとも前記制御電極および前記電荷蓄積部を覆う遮光部と、
前記遮光部の上に配された複数の配線層と、を備え、
前記導波路は、前記複数の配線層の少なくとも一部より前記半導体基板から遠い位置にある上端と、前記複数の配線層の前記少なくとも一部より前記半導体基板に近い位置にある下端と、を有し、
前記導波路の前記下端と前記半導体基板との間に絶縁層が配され、
前記導波路の前記下端と前記半導体基板との間隔が、前記遮光部の上端と前記半導体基板との間隔よりも大きい
ことを特徴とする固体撮像装置。
A semiconductor substrate;
A photoelectric conversion unit that is arranged on the semiconductor substrate and photoelectrically converts incident light to generate a signal charge, a charge storage unit that stores a signal charge transferred from the photoelectric conversion unit, and the photoelectric conversion unit from the photoelectric conversion unit A plurality of pixels including a transistor having a control electrode for transferring charge to the charge storage portion, and a floating diffusion portion to which the signal charge of the charge storage portion is transferred;
A waveguide for guiding incident light to the photoelectric conversion unit;
A light shielding portion covering at least the control electrode and the charge storage portion;
A plurality of wiring layers disposed on the light shielding portion,
The waveguide has an upper end located at a position farther from the semiconductor substrate than at least a part of the plurality of wiring layers, and a lower end located at a position closer to the semiconductor substrate than the at least a part of the plurality of wiring layers. And
An insulating layer is disposed between the lower end of the waveguide and the semiconductor substrate;
The solid-state imaging device, wherein an interval between the lower end of the waveguide and the semiconductor substrate is larger than an interval between the upper end of the light shielding unit and the semiconductor substrate.
前記遮光部の開口部の端部の少なくとも一部が、前記導波路の光軸方向から見て前記上端と前記下端の間に位置していることを特徴とする請求項10に記載の固体撮像装置。   11. The solid-state imaging according to claim 10, wherein at least a part of an end of the opening of the light shielding part is located between the upper end and the lower end when viewed from the optical axis direction of the waveguide. apparatus. 前記遮光部の開口部の幅が、前記下端の幅よりも大きく、前記上端の幅よりも小さいことを特徴とする請求項10に記載の固体撮像装置。   The solid-state imaging device according to claim 10, wherein a width of the opening of the light shielding portion is larger than a width of the lower end and smaller than a width of the upper end. 前記導波路の前記下端は、前記導波路とエッチングストップ層の界面を含むことを特徴とする請求項10乃至12のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 10, wherein the lower end of the waveguide includes an interface between the waveguide and an etching stop layer. 前記導波路の前記下端は、前記導波路と層間絶縁層の界面を含むことを特徴とする請求項10乃至12のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to any one of claims 10 to 12, wherein the lower end of the waveguide includes an interface between the waveguide and an interlayer insulating layer. 前記導波路の前記下端は、段差を有する形状を有することを特徴とする請求項10乃至13のいずれか1項に記載の固体撮像装置。   The solid-state imaging device according to claim 10, wherein the lower end of the waveguide has a stepped shape. 半導体基板と、
前記半導体基板に配され、入射された光を光電変換して信号電荷を生成する光電変換部と、前記光電変換部から転送される信号電荷を蓄積する電荷蓄積部と、前記光電変換部から前記電荷蓄積部に電荷を転送するための制御電極を有するトランジスタと、前記電荷蓄積部の前記信号電荷が転送されるフローティングディフュージョン部と、を含む複数の画素と、
入射された光を前記光電変換部に導くための導波路と、
少なくとも前記制御電極および前記電荷蓄積部を覆う遮光部と、
前記遮光部の上に配された複数の配線層と、を備え、
前記導波路は、前記複数の配線層に含まれる第1の層の配線と同じ高さに配された部分と、前記複数の配線層に含まれる前記第1の層と異なる第2の層の配線と同じ高さに配された部分とを有し、
前記導波路と前記半導体基板との間に絶縁層が配され、
前記導波路と前記半導体基板との間隔が、前記遮光部の上端と前記半導体基板との間隔よりも大きい
ことを特徴とする固体撮像装置。
A semiconductor substrate;
A photoelectric conversion unit that is arranged on the semiconductor substrate and photoelectrically converts incident light to generate a signal charge, a charge storage unit that stores a signal charge transferred from the photoelectric conversion unit, and the photoelectric conversion unit from the photoelectric conversion unit A plurality of pixels including a transistor having a control electrode for transferring charge to the charge storage portion, and a floating diffusion portion to which the signal charge of the charge storage portion is transferred;
A waveguide for guiding incident light to the photoelectric conversion unit;
A light shielding portion covering at least the control electrode and the charge storage portion;
A plurality of wiring layers disposed on the light shielding portion,
The waveguide includes a portion arranged at the same height as the wiring of the first layer included in the plurality of wiring layers, and a second layer different from the first layer included in the plurality of wiring layers. And a portion arranged at the same height as the wiring,
An insulating layer is disposed between the waveguide and the semiconductor substrate;
The solid-state imaging device, wherein an interval between the waveguide and the semiconductor substrate is larger than an interval between an upper end of the light shielding unit and the semiconductor substrate.
請求項1乃至16のいずれか1項に記載の固体撮像装置と、
前記固体撮像装置から出力された信号を処理する映像信号処理部と、
を備えることを特徴とする撮像システム。
A solid-state imaging device according to any one of claims 1 to 16,
A video signal processing unit for processing a signal output from the solid-state imaging device;
An imaging system comprising:
JP2017252782A 2017-12-28 2017-12-28 Solid-state imaging apparatus and imaging system Pending JP2018061060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252782A JP2018061060A (en) 2017-12-28 2017-12-28 Solid-state imaging apparatus and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252782A JP2018061060A (en) 2017-12-28 2017-12-28 Solid-state imaging apparatus and imaging system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014051422A Division JP6274567B2 (en) 2014-03-14 2014-03-14 Solid-state imaging device and imaging system

Publications (1)

Publication Number Publication Date
JP2018061060A true JP2018061060A (en) 2018-04-12

Family

ID=61910140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252782A Pending JP2018061060A (en) 2017-12-28 2017-12-28 Solid-state imaging apparatus and imaging system

Country Status (1)

Country Link
JP (1) JP2018061060A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150845A (en) * 1998-11-11 2000-05-30 Sony Corp Solid state image sensor and manufacture thereof
JP2011222708A (en) * 2010-04-08 2011-11-04 Sony Corp Solid-state imaging apparatus, method of manufacturing the same, and electronic device
JP2011238949A (en) * 2005-02-04 2011-11-24 Canon Inc Imaging device
JP2013168546A (en) * 2012-02-16 2013-08-29 Sony Corp Image sensor, method of manufacturing the same, and electronic apparatus
JP2013207053A (en) * 2012-03-28 2013-10-07 Sony Corp Solid state imaging device and electronic apparatus
JP2015176969A (en) * 2014-03-14 2015-10-05 キヤノン株式会社 Solid-state imaging apparatus and imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150845A (en) * 1998-11-11 2000-05-30 Sony Corp Solid state image sensor and manufacture thereof
JP2011238949A (en) * 2005-02-04 2011-11-24 Canon Inc Imaging device
JP2011222708A (en) * 2010-04-08 2011-11-04 Sony Corp Solid-state imaging apparatus, method of manufacturing the same, and electronic device
JP2013168546A (en) * 2012-02-16 2013-08-29 Sony Corp Image sensor, method of manufacturing the same, and electronic apparatus
JP2013207053A (en) * 2012-03-28 2013-10-07 Sony Corp Solid state imaging device and electronic apparatus
JP2015176969A (en) * 2014-03-14 2015-10-05 キヤノン株式会社 Solid-state imaging apparatus and imaging system

Similar Documents

Publication Publication Date Title
JP6274567B2 (en) Solid-state imaging device and imaging system
US8477223B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
US7777260B2 (en) Solid-state imaging device
JP4751865B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP2012169530A (en) Solid state image sensor, manufacturing method therefor, and electronic apparatus
JP2003197897A (en) Semiconductor photoelectric transducer
JP2012064709A (en) Solid state image pick-up device and electronic device
US20180122852A1 (en) Photoelectric conversion apparatus and image pickup system
JP2006303468A (en) Solid-state imaging device and imaging apparatus
JP2008028240A (en) Solid-state imaging apparatus
JP2007180157A (en) Solid-state imaging element
JP2011040647A (en) Solid-state imaging device
JP6079807B2 (en) Solid-state imaging device and electronic apparatus
JP2021044572A (en) Imaging element and imaging apparatus
JP2021044571A (en) Imaging element
JP2014022649A (en) Solid-state image sensor, imaging device, and electronic apparatus
JP2008042024A (en) Solid-state imaging device
JP4751803B2 (en) Back-illuminated image sensor
JP2007201047A (en) Solid-state image pickup device and manufacturing method thereof
JP2013038383A (en) Solid state imaging device, solid state imaging device manufacturing method and electronic apparatus
JP2018061060A (en) Solid-state imaging apparatus and imaging system
JP2005086082A (en) Solid-state imaging device
JP2007158312A (en) Solid-state imaging device
JP7008054B2 (en) Photoelectric converters and equipment
JP6983925B2 (en) Imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604