JP3713418B2 - Manufacturing method of three-dimensional image processing apparatus - Google Patents

Manufacturing method of three-dimensional image processing apparatus Download PDF

Info

Publication number
JP3713418B2
JP3713418B2 JP2000160330A JP2000160330A JP3713418B2 JP 3713418 B2 JP3713418 B2 JP 3713418B2 JP 2000160330 A JP2000160330 A JP 2000160330A JP 2000160330 A JP2000160330 A JP 2000160330A JP 3713418 B2 JP3713418 B2 JP 3713418B2
Authority
JP
Japan
Prior art keywords
substrate
dimensional image
processing apparatus
image processing
embedded wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000160330A
Other languages
Japanese (ja)
Other versions
JP2001339057A (en
Inventor
光正 小柳
泰典 岡野
宣明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2000160330A priority Critical patent/JP3713418B2/en
Publication of JP2001339057A publication Critical patent/JP2001339057A/en
Application granted granted Critical
Publication of JP3713418B2 publication Critical patent/JP3713418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Description

【0001】
【発明の属する技術分野】
本発明は、3次元画像処理装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路装置の高集積化・高密度化等の目的から、複数の回路機能ブロックを立体的に集積した3次元半導体集積回路装置の開発が進められている。特に、イメージセンサとその信号を処理するための信号処理回路を一体化した3次元画像処理装置(インテリジェントイメージプロセッサ)は、光センサから得られる画像データを並列に高速処理し、高画質画像をリアルタイムで得ることが可能になることから、多くの期待が寄せられている。
【0003】
これら3次元半導体集積回路装置は、当初はレ−ザ再結晶化等によるSOI(Silicon On Insulator)技術を利用してSOI基板形成とSOI基板への半導体装置の形成を繰り返すモノリシック法によりその製造が検討されてきたが、SOIを多層に積層するには、結晶性の確保が難しい、製造時間が長い等の問題があった。
【0004】
このため、半導体装置または半導体集積回路装置が予め作製された単結晶半導体基板同士を貼り合わせる貼り合わせ技術による3次元半導体集積回路装置の製造方法が種々検討されている。
【0005】
月刊セミコンダクターワールド(林善宏等、1990年9月号p58〜64)には、貼り合わせ技術の一種として、研磨により薄膜化した半導体基板を貼り合わせるCUBIC技術が提案されている。CUBIC技術では、まずシリコン基板上に半導体素子が形成された第1の半導体基板を支持基板に接着した後、余分なシリコン基板をポリッシングして薄膜化する。次に、埋め込み配線、裏面配線、バンプ/プールからなるコンタクト部材等のデバイスの縦方向の接続に必要な配線を形成し、第1の半導体基板とシリコン基板上に半導体素子の形成された第2の半導体基板とを貼り合わせる。そして最後に支持基板を取り外して多層構造の半導体装置が完成する。
【0006】
また、特開平6−260594号公報には、貼り合わせ技術による3次元半導体集積回路装置の製造方法が開示されている。この方法は、シリコン基板上に半導体素子が形成された第1の半導体基板を支持基板に接着した後、余分なシリコン基板をポリッシングして薄膜化する点はCUBIC技術と共通しているが、第1の半導体基板に予め埋め込み配線を形成するための深溝が設けられている点、及び第1の半導体基板とシリコン基板上に半導体素子の形成された第2の半導体基板とを貼り合わせ、貼り合わせ後に支持基板を取り除き埋め込み配線を形成する点で、CUBIC技術とは異なっている。
【0007】
【発明が解決しようとする課題】
しかしながら、いずれの製造方法も、第1の半導体基板を支持基板に貼り合わせ、研磨した後に支持基板から第1の半導体基板を剥離する工程を含んでおり、製造工程が煩雑であるという問題があった。特に、3次元画像処理装置を製造する場合には、支持基板を取り除いた後にその表面にイメージセンサを構成するマイクロレンズを備えた透明基板を設ける必要があるため、なおさら製造工程が煩雑になる。
【0008】
また、CUBIC技術では、余分なシリコン基板をポリッシングして薄膜化した後に支持基板を取り除くため、支持基板を取り除く際に半導体基板上に形成された集積回路が破損するという問題があった。
【0009】
また、特開平6−260594号公報に記載された方法では、埋め込み配線を形成するための深溝が予め設けられた第1の半導体基板を支持基板に接着するため、深溝に入り込んだ接着剤の除去が困難であるという問題や、第1の半導体基板と第2の半導体基板とを接着した後に深溝の側壁を酸化して絶縁膜を形成するため、接着剤の耐熱温度以上に酸化温度を上げることができず、信頼性のある絶縁膜を形成することができないという問題があった。
【0010】
本発明は上記従来技術の問題点に鑑みなされたものであり、本発明の目的は、支持基板の着脱工程が不要で製造工程を大幅に簡略化することができ、簡素かつ容易な工程により3次元画像処理装置を製造することができる3次元画像処理装置の製造方法を提供することにある。また、本発明の他の目的は、信頼性の高い絶縁膜で囲まれた埋め込み配線を形成することができる3次元画像処理装置の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の3次元画像処理装置の製造方法は、光を集光するレンズを備えた透明基板と、主面に光電変換素子が形成されると共に該光電変換素子に電気的に接続された埋め込み配線が形成された光電変換基板とを、透明基板の裏面と光電変換基板の主面とが対向するように接着して、3次元画像処理装置を製造することを特徴とする。
【0012】
請求項1の発明では、支持基板等を用いることなく、光を集光するレンズを備えた透明基板と、主面に光電変換素子が形成されると共に該光電変換素子に電気的に接続された埋め込み配線が形成された光電変換基板とを、透明基板の裏面と光電変換基板の主面とが対向するように接着するため、透明基板をそのままイメージセンサの透明基板として使用することができ、支持基板への接着工程、支持基板からの除去工程、及び透明基板の形成工程が不要であり、3次元画像処理装置の製造工程を大幅に簡略化することができる。また、光電変換基板に埋め込み配線を形成した後に透明基板と貼り合わせるため、信頼性の高い絶縁膜で囲まれた埋め込み配線を形成することができる。
【0013】
請求項2に記載の3次元画像処理装置の製造方法は、請求項1の発明において、前記光電変換基板の裏面側を研磨して前記埋め込み配線を露出させ、該光電変換基板の裏面に、主面に増幅器及びアナログ/デジタル変換器が形成されると共に該増幅器及びアナログ/デジタル変換器に電気的に接続された埋め込み配線が形成された増幅変換基板を、該増幅器及びアナログ/デジタル変換器が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造することを特徴とする。
【0014】
請求項2の発明によれば、透明基板及び光電変換基板からなるイメージセンサ部に、研磨及び接着という簡素かつ容易な工程により、増幅器及びアナログ/デジタル変換器に電気的に接続された埋め込み配線が形成された増幅変換基板を積層した3次元画像処理装置を製造することができる。
【0015】
請求項3に記載の3次元画像処理装置の製造方法は、請求項2の発明において、前記増幅変換基板の裏面側を研磨して前記埋め込み配線を露出させ、 該増幅変換基板の裏面に、主面にデータ記憶装置が形成されると共に該データ記憶装置に電気的に接続された埋め込み配線が形成されたデータ記憶基板を、該データ記憶装置が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造することを特徴とする。
【0016】
請求項3の発明によれば、透明基板及び光電変換基板からなるイメージセンサ部に研磨と接着とにより増幅変換基板が形成された積層体に、研磨及び接着という簡素かつ容易な工程により、主面に記憶装置が形成されると共にデータ記憶装置に電気的に接続された埋め込み配線が形成されたデータ記憶基板を積層した3次元画像処理装置を製造することができる。
【0017】
請求項4に記載の3次元画像処理装置の製造方法は、請求項2の発明において、前記データ記憶基板の裏面側を研磨して前記埋め込み配線を露出させ、該データ記憶基板の裏面に、主面にデータ処理装置が形成されると共に該データ処理装置に電気的に接続された埋め込み配線が形成されたデータ処理基板を、該データ処理装置が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造することを特徴とする。
【0018】
請求項4の発明によれば、透明基板及び光電変換基板からなるイメージセンサ部に研磨と接着とにより増幅変換基板及びデータ記憶基板が形成された積層体に、研磨及び接着という簡素かつ容易な工程により、主面にデータ処理装置が形成されると共に該データ処理装置に電気的に接続された埋め込み配線が形成されたデータ処理基板を積層した3次元画像処理装置を製造することができる。
【0019】
請求項5に記載の3次元画像処理装置の製造方法は、請求項4の発明において、前記データ処理基板の裏面側を研磨して前記埋め込み配線を露出させ、該データ処理基板の裏面に、主面に出力回路が形成されると共に該出力回路に電気的に接続された埋め込み配線が形成された出力回路基板を、該出力回路が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造することを特徴とする。
【0020】
請求項5の発明によれば、透明基板及び光電変換基板からなるイメージセンサ部に研磨と接着とにより増幅変換基板、データ記憶基板、及びデータ処理装置が形成された積層体に、研磨及び接着という簡素かつ容易な工程により、主面に出力回路が形成されると共に該出力回路に電気的に接続された埋め込み配線が形成された出力回路基板を積層した3次元画像処理装置を製造することができる。
【0021】
【発明の実施の形態】
以下、本発明の3次元画像処理装置の製造方法を、図面を参照しつつ具体的に説明する。図1〜図5は、本発明の3次元画像処理装置の製造方法の各工程を示す断面図である。
【0022】
まず、図1に示すように、光電変換基板20に、多数のマイクロレンズ12が2次元状に形成された石英ガラス製の透明基板10を、光電変換基板20の主面と透明基板10の裏面とが対向するように、エポキシ樹脂やポリイミド樹脂等の高分子材料からなる接着剤14を介して接着する。
【0023】
上記で用いる光電変換基板20は、内部にニ酸化ケイ素からなる絶縁層36が挿入されたn型シリコン結晶基板16上に、フォトダイオードとMOSトランジスタとを形成したものである。フォトダイオードは、光電変換基板20のn型シリコン結晶基板16上にp型不純物層18を形成し、p型不純物層18表層のマイクロレンズ12の焦点位置に対応する領域にn型不純物層22を設けることにより形成されている。また、MOSトランジスタは、p型不純物層18表層の撮像領域以外の部分にソース及びドレインとなるn型不純物層22を設け、このn型不純物層22間のp型不純物層18上に絶縁膜24Aにより相互に絶縁されたポリシリコンからなるゲート電極26を設けることにより形成されている。なお、隣接するMOSトランジスタはニ酸化ケイ素からなる素子分離膜30で分離されている。
【0024】
また、光電変換基板20には、素子分離膜30を貫通し光電変換基板20の裏面に達するトレンチ(深溝)が設けられている。なお、このようなトレンチは誘導結合型プラズマエッチング等により形成することができる。このトレンチの内表面に絶縁膜32が形成され、トレンチ内に導電材料が充填されて埋め込み配線34が形成されている。埋め込み配線34を形成する導電材料としては、例えば不純物をドープした低抵抗多結晶シリコンやタングステン等の低抵抗の金属が使用される。
【0025】
MOSトランジスタのソースとなるn型不純物層22は、例えばアルミニウムからなるソース電極28に接続されおり、ドレインとなるn型不純物層22は、絶縁膜24Bによりソース電極28と絶縁された例えばアルミニウムからなるドレイン電極29に接続されている。このドレイン電極29は埋め込み配線34に接続されており、ゲート電極26に所定電圧を印加することによりn型チャネル22及びp型不純物層18からなるフォトダイオードに蓄積された電荷はこの埋め込み配線34を介して後述する増幅器へと転送される。
【0026】
次に、図2に示すように、透明基板10に接着された光電変換基板20を、化学的機械研磨により裏面側から研磨して薄膜化する。n型シリコン結晶基板16に挿入された絶縁層36を構成するニ酸化ケイ素はシリコンよりも研磨耐性が大きいため、研磨は絶縁層36の手前で止まり、埋め込み配線34が絶縁層36から露出される。このとき透明基板10が支持基板の役割を果たすが、当初からマイクロレンズ12を一体化して形成した石英ガラス製の透明基板を用いているので後で取り外す必要はない。
【0027】
以上の工程により、光を集光するレンズを備えた透明基板10、及び光電変換基板20を備えたイメージセンサ部が完成する。
【0028】
次に、図3に示すように、光電変換基板20の裏面に、光電変換基板20からの信号を増幅すると共に増幅されたアナログ信号をデジタル信号に変換する増幅変換基板40を接着する。この増幅変換基板40は、内部にニ酸化ケイ素からなる絶縁層36Aが挿入されたシリコン基板38A上に、絶縁膜42Aにより絶縁されたゲート44A、ソース46A、及びドレイン48Aからなる複数のMOSFET50A(本実施の形態では2つのMOSFETを図示する)を形成したものである。これら隣接するMOSFET50Aは、ニ酸化ケイ素からなる素子分離膜52Aにより分離されている。
【0029】
また、増幅変換基板40には、この素子分離膜52Aを貫通し増幅変換基板40の裏面側表面から回路面に達するトレンチが設けられている。このトレンチの内表面に絶縁膜54Aが形成され、トレンチ内に導電材料が充填されて埋め込み配線56Aが形成されている。埋め込み配線56Aを形成する導電材料としては、例えば不純物をドープした低抵抗多結晶シリコンやタングステン等の低抵抗の金属が使用される。この埋め込み配線56Aの回路面側の端部にはアルミニウム配線58Aが直接接続されている。これにより増幅器(アンプ)及びアナログ/デジタル変換器(ADC)を含む集積回路が構成されている。形成された集積回路はニ酸化ケイ素からなる絶縁膜60Aにより被覆され、増幅変換基板40の集積回路側の表面が平坦化されている。また、この絶縁膜60Aに設けられた開口からアルミニウム配線58Aが引き出され、絶縁膜60Aの表面に露出されている。
【0030】
上記光電変換基板20の裏面側の表面に、絶縁層36の表面から露出した埋め込み配線34の端部に接触するようにマイクロバンプ62を形成する。一方、増幅変換基板40の集積回路側の表面にも、絶縁膜60Aの表面に露出したアルミニウム配線58Aの端部に接触するようにマイクロバンプ64を形成する。マイクロバンプは、レジストマスクを用いたリフトオフ等により形成することができ、マイクロバンプの材料としては例えば金とインジウムとの合金またはインジウムを用いることができる。
【0031】
光電変換基板20の裏面側の表面に設けられたマイクロバンプ62と、増幅変換基板40の集積回路面側の表面に設けられたマイクロバンプ64とが電気的に接続されるように、増幅変換基板40上に光電変換基板20を重ね合わせて仮接着する。なお、光電変換基板20と増幅変換基板40との位置合わせは、例えばシリコンウエハを透過する赤外線を用いた位置合わせ装置により行うことができる。
【0032】
仮接着した光電変換基板20と増幅変換基板40とを、液状のエポキシ樹脂を保持した容器と共に気圧調整が可能なチャンバーに入れてチャンバー内を真空にし、仮接着した光電変換基板20と増幅変換基板40とを液状のエポキシ樹脂にディップして常圧に戻し基板間の隙間にエポキシ樹脂66を注入する。その後基板を引き上げエポキシ樹脂66を硬化させて、増幅変換基板40と光電変換基板20との接着が完了する。
【0033】
次に、図4に示すように、増幅変換基板40を裏面側から化学的機械研磨により均一な厚さに研磨して薄膜化する。絶縁層36Aを構成するニ酸化ケイ素はシリコンよりも研磨耐性が大きいため、研磨は絶縁層36Aの手前で止まり、絶縁層36Aよりも深い位置まで形成されている埋め込み配線56Aが絶縁層36Aから露出される。
【0034】
次に、図5に示すように、光電変換基板20に接着された増幅変換基板40の裏面に、一時的にデータを記憶するデータ記憶装置(レジスタアレイ)を備えたデータ記憶基板70を接着する。ここで用いるデータ記憶基板70は、増幅変換基板40と同様に、内部にニ酸化ケイ素からなる絶縁層36Bが挿入されたシリコン基板38B上に、絶縁膜42Bにより絶縁されたゲート44B、ソース46B、及びドレイン48Bからなる複数のMOSFET50B(本実施の形態では2つのMOSFETを図示する)を形成したものであり、隣接するMOSFET50Bは、ニ酸化ケイ素からなる素子分離膜52Bにより分離されている。
【0035】
また、データ記憶基板70には、この素子分離膜52Bを貫通しデータ記憶基板70の裏面側表面から回路面に達するトレンチが設けられている。このトレンチの内表面に絶縁膜54Bが形成され、トレンチ内に導電材料が充填されて埋め込み配線56Bが形成されている。埋め込み配線56Bを形成する導電材料としては、例えば不純物をドープした低抵抗多結晶シリコンやタングステン等の低抵抗の金属が使用される。埋め込み配線56Bの回路面側の端部にはアルミニウム配線58Bが直接接続されている。これによりデータ記憶装置を含む集積回路が構成されている。形成された集積回路は、ニ酸化ケイ素からなる絶縁膜60Bにより被覆され、データ記憶基板70の集積回路側の表面が平坦化されている。この絶縁膜60Bに設けられた開口からアルミニウム配線58Bが引き出されて、絶縁膜60Bの表面に露出されている。
【0036】
上記増幅変換基板40の裏面側の表面に、絶縁層36Aの表面から露出した埋め込み配線56Aの端部に接触するようにマイクロバンプ71を形成する。一方、データ記憶基板70の集積回路側の表面にも、絶縁膜60Bの表面に露出したアルミニウム配線58Bの端部に接触するようにマイクロバンプ72を形成する。そして増幅変換基板40の裏面側の表面に設けられたマイクロバンプ71と、データ記憶基板70の集積回路側の表面に設けられたマイクロバンプ72とが電気的に接続されるようにデータ記憶基板70上に増幅変換基板40を重ね合わせて仮接着し、光電変換基板20及び増幅変換基板40を接着する場合と同様にして、増幅変換基板40とデータ記憶基板70とをエポキシ樹脂74により接着する。
【0037】
次に、図6に示すように、データ記憶基板70の裏面に、データ処理基板80、出力回路基板90、及び出力端子部100を順に形成する。上記増幅変換基板40やデータ記憶基板70の形成工程と同様にして、増幅変換基板40に接着されたデータ記憶基板70を裏面側から研磨し、データ記憶基板70の裏面に、データ処理装置(プロセッサアレイ)を備え埋め込み配線82の形成されたデータ処理基板80を、両基板に設けられた集積回路が埋め込み配線82により電気的に接続されるように接着する。さらに、このデータ処理基板80を裏面側から研磨した後に、データ処理基板80の裏面に埋め込み配線92の形成された出力回路基板90を、両基板に設けられた集積回路が埋め込み配線92により電気的に接続されるように接着する。そして出力回路基板90を裏面側から研磨して、出力回路基板90裏面の絶縁膜から埋め込み配線92の端部を露出させ、露出した埋め込み配線92の端部に接触するようにマイクロバンプ93を形成する。
【0038】
そして最後に出力回路基板90の裏面に出力端子部100を形成する。出力端子部100はシリコン基板102にこのシリコン基板102を貫通し基板両面側に露出した埋め込み配線104が形成されたものである。埋め込み配線104を形成する導電材料としては、例えば銅、タングステン、金等の低抵抗の金属が使用される。この出力端子部100の入力側の表面に、出力端子部100の絶縁層の表面から露出した埋め込み配線104の一方の端部に接触するようにマイクロバンプ94を形成する。そして出力回路基板90の裏面側の表面に設けられたマイクロバンプ93と出力端子部100の入力側の表面に設けられたマイクロバンプ94とが接触し、出力回路基板90に設けられた集積回路が出力端子部100の出力端子に電気的に接続されるように両基板を接着する。そして上記出力端子部100の出力側の表面には、埋め込み配線104の他方の端部に接触するようにマイクロバンプ106を形成する。マイクロバンプ106は、例えば金やインジウムまたはそれらの合金から形成することができる。また、はんだバンプとしてもよい。
【0039】
以上の工程により、光を集光するレンズを備えた透明基板10及び光電変換基板20からなるイメージセンサ部と、そのイメージセンサ部からの信号を処理するための処理部(増幅変換基板40、データ記憶基板70、データ処理基板80及び出力回路基板90)とを一体化した図6に示す3次元画像処理装置を得ることができる。
【0040】
本実施の形態では、多数のマイクロレンズが2次元状に形成された石英ガラス製の透明基板に光電変換基板を直接接着するので、支持基板を別途用意する必要がなく支持基板の着脱工程が不要となる。これにより製造工程を大幅に簡略化することができ、簡素かつ容易な工程により3次元画像処理装置を製造することができる。また、各集積回路基板の埋め込み配線は貼り合わせ前に形成されるので、信頼性の高い絶縁膜で囲まれた埋め込み配線を形成することができる。
【0041】
上記実施の形態では、集積回路を形成するための各半導体基板にニ酸化ケイ素からなる絶縁層が内部に形成されたシリコン基板を使用したが、ニ酸化ケイ素からなる絶縁層を含まないシリコン基板を使用してもよい。
【0042】
上記実施の形態では、埋め込み配線の両端部にマイクロバンプを形成し、マイクロバンプ同士を接触させて隣接する基板を電気的に接続する例について説明したが、埋め込み配線の一方の端部にのみマイクロバンプを形成して隣接する基板を電気的に接続するようにしても良い。
【0043】
上記実施の形態では、集光レンズを備えた透明基板及び光電変換基板からなるイメージセンサ部に、そのイメージセンサ部からの信号を処理するための増幅変換基板、データ記憶基板、データ処理基板、及び出力回路基板の各処理部を研磨及び貼合せを繰り返すことにより形成する例について説明したが、イメージセンサ部を構成する光電変換基板を裏面側から研磨して埋め込み配線を露出させた後、配線により光電変換基板を増幅変換基板と電気的に接続することもできる。
【0044】
また、上記実施の形態と同様にしてイメージセンサ部に研磨及び貼合せにより増幅変換基板を形成し、増幅変換基板を裏面側から研磨して埋め込み配線を露出させた後、配線により増幅変換基板をデータ記憶基板と電気的に接続することもできる。また、上記実施の形態と同様にしてイメージセンサ部に研磨及び貼合せにより増幅変換基板及びデータ記憶基板を形成し、データ記憶基板を裏面側から研磨して埋め込み配線を露出させた後、配線によりデータ記憶基板をデータ処理基板と電気的に接続することもできる。また、上記実施の形態と同様にしてイメージセンサ部に研磨及び貼合せにより増幅変換基板、データ記憶基板、及びデータ処理基板を形成し、データ処理基板を裏面側から研磨して埋め込み配線を露出させた後、配線によりデータ処理基板を出力回路基板と電気的に接続することもできる。
【0045】
なお、上記実施の形態において使用するシリコン基板は、ウエハスケールでもチップスケールでもよい。
【0046】
【発明の効果】
本発明の3次元画像処理装置の製造方法は、支持基板の着脱工程が不要で、製造工程を大幅に簡略化することができ、簡素かつ容易な工程により3次元画像処理装置を製造することができる、という効果を奏する。また、本発明の3次元画像処理装置の製造方法は、信頼性の高い絶縁膜で囲まれた埋め込み配線を形成することができる、という効果を奏する。
【図面の簡単な説明】
【図1】本実施の形態の3次元画像形成装置の製造工程を示す概略断面図である。
【図2】本実施の形態の3次元画像形成装置の製造工程を示す概略断面図である。
【図3】本実施の形態の3次元画像形成装置の製造工程を示す概略断面図である。
【図4】本実施の形態の3次元画像形成装置の製造工程を示す概略断面図である。
【図5】本実施の形態の3次元画像形成装置の製造工程を示す概略断面図である。
【図6】本実施の形態の3次元画像形成装置の構造を示す概略断面図である。
【符号の説明】
10 透明基板
12 マイクロレンズ
16 n型シリコン結晶基板
18 p型不純物層
20 光電変換基板
22 n型不純物層
26 ゲート電極
28 電極
34 埋め込み配線
40 増幅変換基板
70 データ記憶基板
80 データ処理基板
90 出力回路基板
100 出力端子部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a three-dimensional image processing apparatus.
[0002]
[Prior art]
In recent years, development of a three-dimensional semiconductor integrated circuit device in which a plurality of circuit function blocks are three-dimensionally integrated has been promoted for the purpose of high integration and high density of the semiconductor integrated circuit device. In particular, a three-dimensional image processing device (intelligent image processor) that integrates an image sensor and a signal processing circuit for processing the signal processes image data obtained from the optical sensor in parallel at high speed to produce a high-quality image in real time. Many expectations are placed on it.
[0003]
These three-dimensional semiconductor integrated circuit devices are initially manufactured by a monolithic method that repeats the formation of an SOI substrate and the formation of a semiconductor device on the SOI substrate using SOI (Silicon On Insulator) technology such as laser recrystallization. As discussed above, in order to stack SOI in multiple layers, there are problems such as difficulty in securing crystallinity and long manufacturing time.
[0004]
For this reason, various methods for manufacturing a three-dimensional semiconductor integrated circuit device using a bonding technique for bonding single crystal semiconductor substrates on which a semiconductor device or a semiconductor integrated circuit device is manufactured in advance have been studied.
[0005]
Monthly Semiconductor World (Yoshihiro Hayashi et al., September 1990 issue p58-64) proposes a CUBIC technique for bonding a semiconductor substrate thinned by polishing as a kind of bonding technique. In the CUBIC technology, first, a first semiconductor substrate having a semiconductor element formed on a silicon substrate is bonded to a support substrate, and then the excess silicon substrate is polished to reduce the thickness. Next, wiring necessary for vertical connection of devices such as embedded wiring, back surface wiring, and bump / pool contact members is formed, and a second semiconductor device is formed on the first semiconductor substrate and the silicon substrate. The semiconductor substrate is bonded together. Finally, the support substrate is removed to complete the multilayer semiconductor device.
[0006]
Japanese Patent Application Laid-Open No. 6-260594 discloses a method for manufacturing a three-dimensional semiconductor integrated circuit device by a bonding technique. This method is common to the CUBIC technology in that after a first semiconductor substrate having a semiconductor element formed on a silicon substrate is bonded to a support substrate, the excess silicon substrate is polished and thinned. The first semiconductor substrate is provided with a deep groove for forming a buried wiring in advance, and the first semiconductor substrate is bonded to the second semiconductor substrate on which the semiconductor element is formed on the silicon substrate. It differs from the CUBIC technology in that the support substrate is removed later to form a buried wiring.
[0007]
[Problems to be solved by the invention]
However, each of the manufacturing methods includes a step of peeling the first semiconductor substrate from the support substrate after bonding and polishing the first semiconductor substrate to the support substrate, and there is a problem that the manufacturing process is complicated. It was. In particular, in the case of manufacturing a three-dimensional image processing apparatus, it is necessary to provide a transparent substrate having a microlens constituting an image sensor on the surface after removing the support substrate, so that the manufacturing process becomes even more complicated.
[0008]
In addition, in the CUBIC technology, since the support substrate is removed after polishing the excess silicon substrate to reduce the thickness, the integrated circuit formed on the semiconductor substrate is damaged when the support substrate is removed.
[0009]
Further, in the method described in Japanese Patent Laid-Open No. 6-260594, the first semiconductor substrate provided with the deep groove for forming the embedded wiring is bonded to the support substrate, so that the adhesive that has entered the deep groove is removed. In order to form an insulating film by oxidizing the sidewall of the deep groove after bonding the first semiconductor substrate and the second semiconductor substrate, the oxidation temperature must be raised above the heat resistance temperature of the adhesive. There was a problem that a reliable insulating film could not be formed.
[0010]
The present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to eliminate the support substrate attaching / detaching step and greatly simplify the manufacturing process. An object of the present invention is to provide a method for manufacturing a three-dimensional image processing apparatus capable of manufacturing a three-dimensional image processing apparatus. Another object of the present invention is to provide a method for manufacturing a three-dimensional image processing apparatus capable of forming a buried wiring surrounded by a highly reliable insulating film.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a three-dimensional image processing apparatus according to claim 1 includes a transparent substrate having a lens for condensing light, a photoelectric conversion element formed on a main surface, and the photoelectric conversion element. A photoelectric conversion substrate on which an embedded wiring electrically connected to the conversion element is formed is bonded so that the back surface of the transparent substrate and the main surface of the photoelectric conversion substrate face each other to manufacture a three-dimensional image processing apparatus. It is characterized by that.
[0012]
In the first aspect of the invention, a transparent substrate having a lens for condensing light without using a support substrate or the like, and a photoelectric conversion element formed on the main surface and electrically connected to the photoelectric conversion element Since the photoelectric conversion substrate on which the embedded wiring is formed is bonded so that the back surface of the transparent substrate and the main surface of the photoelectric conversion substrate face each other, the transparent substrate can be used as it is as the transparent substrate of the image sensor. The step of bonding to the substrate, the step of removing from the support substrate, and the step of forming the transparent substrate are unnecessary, and the manufacturing process of the three-dimensional image processing apparatus can be greatly simplified. Further, since the embedded wiring is formed on the photoelectric conversion substrate and then bonded to the transparent substrate, the embedded wiring surrounded by the highly reliable insulating film can be formed.
[0013]
The manufacturing method of the three-dimensional image processing apparatus according to claim 2 is the invention according to claim 1, wherein the back surface side of the photoelectric conversion substrate is polished to expose the embedded wiring, and the back surface of the photoelectric conversion substrate is The amplifier and the analog / digital converter have the amplifier and the analog / digital converter formed on the surface, and the embedded conversion board formed with the embedded wiring electrically connected to the amplifier and the analog / digital converter. The three-dimensional image processing apparatus is manufactured by being bonded so as to be electrically connected to the exposed portion of the embedded wiring.
[0014]
According to the second aspect of the present invention, the embedded wiring electrically connected to the amplifier and the analog / digital converter is formed on the image sensor unit including the transparent substrate and the photoelectric conversion substrate by a simple and easy process of polishing and adhesion. A three-dimensional image processing apparatus in which the formed amplification conversion substrates are stacked can be manufactured.
[0015]
According to a third aspect of the present invention, there is provided a method of manufacturing a three-dimensional image processing apparatus according to the second aspect of the invention, wherein the back surface side of the amplification conversion substrate is polished to expose the embedded wiring, and the back surface of the amplification conversion substrate is A data storage substrate on which a data storage device is formed and an embedded wiring electrically connected to the data storage device is formed, and the data storage device is electrically connected to an exposed portion of the embedded wiring The three-dimensional image processing apparatus is manufactured by bonding as described above.
[0016]
According to the invention of claim 3, the main surface is obtained by a simple and easy process of polishing and bonding on a laminate in which an amplification conversion substrate is formed by polishing and bonding on an image sensor unit comprising a transparent substrate and a photoelectric conversion substrate. In addition, a three-dimensional image processing apparatus can be manufactured in which a storage device is formed and a data storage substrate on which an embedded wiring electrically connected to the data storage device is formed is laminated.
[0017]
According to a fourth aspect of the present invention, there is provided a method of manufacturing a three-dimensional image processing apparatus according to the second aspect of the invention, wherein the back surface side of the data storage substrate is polished to expose the embedded wiring, and the back surface of the data storage substrate is A data processing substrate having a data processing device formed on the surface and an embedded wiring electrically connected to the data processing device is electrically connected to the exposed portion of the embedded wiring. The three-dimensional image processing apparatus is manufactured by bonding as described above.
[0018]
According to the invention of claim 4, a simple and easy process of polishing and bonding to a laminate in which an amplification conversion substrate and a data storage substrate are formed by polishing and bonding on an image sensor unit composed of a transparent substrate and a photoelectric conversion substrate. Thus, it is possible to manufacture a three-dimensional image processing apparatus in which a data processing substrate is formed on a main surface and a data processing substrate on which an embedded wiring electrically connected to the data processing apparatus is formed.
[0019]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a three-dimensional image processing apparatus according to the fourth aspect of the invention, wherein the back surface side of the data processing board is polished to expose the embedded wiring, and the main surface is formed on the back surface of the data processing board. An output circuit board on which an output circuit is formed and an embedded wiring electrically connected to the output circuit is bonded so that the output circuit is electrically connected to an exposed portion of the embedded wiring Then, a three-dimensional image processing apparatus is manufactured.
[0020]
According to the invention of claim 5, polishing and adhesion are performed on a laminate in which an amplification conversion substrate, a data storage substrate, and a data processing device are formed by polishing and adhesion on an image sensor unit composed of a transparent substrate and a photoelectric conversion substrate. Through a simple and easy process, it is possible to manufacture a three-dimensional image processing apparatus in which an output circuit board is formed by forming an output circuit on the main surface and forming an embedded wiring electrically connected to the output circuit. .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the three-dimensional image processing apparatus of the present invention will be specifically described with reference to the drawings. 1-5 is sectional drawing which shows each process of the manufacturing method of the three-dimensional image processing apparatus of this invention.
[0022]
First, as shown in FIG. 1, a quartz glass transparent substrate 10 in which a large number of microlenses 12 are two-dimensionally formed on a photoelectric conversion substrate 20, a main surface of the photoelectric conversion substrate 20, and a back surface of the transparent substrate 10. Are bonded via an adhesive 14 made of a polymer material such as an epoxy resin or a polyimide resin.
[0023]
The photoelectric conversion substrate 20 used above is obtained by forming a photodiode and a MOS transistor on an n-type silicon crystal substrate 16 in which an insulating layer 36 made of silicon dioxide is inserted. In the photodiode, the p-type impurity layer 18 is formed on the n-type silicon crystal substrate 16 of the photoelectric conversion substrate 20, and the n-type impurity layer 22 is formed in a region corresponding to the focal position of the microlens 12 on the surface layer of the p-type impurity layer 18. It is formed by providing. Further, in the MOS transistor, an n-type impurity layer 22 serving as a source and a drain is provided in a portion other than the imaging region of the surface layer of the p-type impurity layer 18, and an insulating film 24A is formed on the p-type impurity layer 18 between the n-type impurity layers 22. The gate electrode 26 is made of polysilicon which is insulated from each other. Adjacent MOS transistors are separated by an element isolation film 30 made of silicon dioxide.
[0024]
The photoelectric conversion substrate 20 is provided with a trench (deep groove) that penetrates the element isolation film 30 and reaches the back surface of the photoelectric conversion substrate 20. Such a trench can be formed by inductively coupled plasma etching or the like. An insulating film 32 is formed on the inner surface of the trench, and a buried wiring 34 is formed by filling the trench with a conductive material. As the conductive material for forming the buried wiring 34, for example, a low-resistance metal such as low-resistance polycrystalline silicon or tungsten doped with impurities is used.
[0025]
The n-type impurity layer 22 serving as the source of the MOS transistor is connected to the source electrode 28 made of, for example, aluminum, and the n-type impurity layer 22 serving as the drain is made of, for example, aluminum insulated from the source electrode 28 by the insulating film 24B. The drain electrode 29 is connected. The drain electrode 29 is connected to the buried wiring 34. When a predetermined voltage is applied to the gate electrode 26, the charge accumulated in the photodiode composed of the n-type channel 22 and the p-type impurity layer 18 passes through the buried wiring 34. Via the amplifier described later.
[0026]
Next, as shown in FIG. 2, the photoelectric conversion substrate 20 bonded to the transparent substrate 10 is polished from the back side by chemical mechanical polishing to form a thin film. Since silicon dioxide constituting the insulating layer 36 inserted into the n-type silicon crystal substrate 16 has higher polishing resistance than silicon, polishing stops before the insulating layer 36 and the embedded wiring 34 is exposed from the insulating layer 36. . At this time, the transparent substrate 10 serves as a support substrate, but since a transparent substrate made of quartz glass formed by integrating the microlens 12 from the beginning is used, it is not necessary to remove it later.
[0027]
Through the above steps, an image sensor unit including the transparent substrate 10 including the lens for condensing light and the photoelectric conversion substrate 20 is completed.
[0028]
Next, as illustrated in FIG. 3, an amplification conversion substrate 40 that amplifies the signal from the photoelectric conversion substrate 20 and converts the amplified analog signal into a digital signal is bonded to the back surface of the photoelectric conversion substrate 20. This amplification conversion substrate 40 has a plurality of MOSFETs 50A (this book) composed of a gate 44A, a source 46A, and a drain 48A insulated by an insulating film 42A on a silicon substrate 38A in which an insulating layer 36A made of silicon dioxide is inserted. In the embodiment, two MOSFETs are illustrated). These adjacent MOSFETs 50A are separated by an element isolation film 52A made of silicon dioxide.
[0029]
The amplification conversion substrate 40 is provided with a trench that penetrates the element isolation film 52 </ b> A and reaches the circuit surface from the back surface of the amplification conversion substrate 40. An insulating film 54A is formed on the inner surface of the trench, and the buried wiring 56A is formed by filling the trench with a conductive material. As a conductive material for forming the embedded wiring 56A, for example, a low-resistance metal such as low-resistance polycrystalline silicon or tungsten doped with impurities is used. An aluminum wiring 58A is directly connected to the end of the embedded wiring 56A on the circuit surface side. Thus, an integrated circuit including an amplifier and an analog / digital converter (ADC) is configured. The formed integrated circuit is covered with an insulating film 60A made of silicon dioxide, and the surface of the amplification conversion substrate 40 on the integrated circuit side is flattened. Further, the aluminum wiring 58A is drawn out from the opening provided in the insulating film 60A and exposed on the surface of the insulating film 60A.
[0030]
Micro bumps 62 are formed on the back surface of the photoelectric conversion substrate 20 so as to be in contact with the ends of the embedded wiring 34 exposed from the surface of the insulating layer 36. On the other hand, micro bumps 64 are also formed on the surface of the amplification conversion substrate 40 on the integrated circuit side so as to be in contact with the end of the aluminum wiring 58A exposed on the surface of the insulating film 60A. The micro bumps can be formed by lift-off using a resist mask, and the material of the micro bumps can be, for example, an alloy of gold and indium or indium.
[0031]
Amplification conversion substrate so that micro bumps 62 provided on the back surface of photoelectric conversion substrate 20 and micro bumps 64 provided on the surface of integrated circuit surface of amplification conversion substrate 40 are electrically connected. The photoelectric conversion substrate 20 is superposed on 40 and temporarily bonded. The alignment between the photoelectric conversion substrate 20 and the amplification conversion substrate 40 can be performed by, for example, an alignment apparatus using infrared rays that pass through a silicon wafer.
[0032]
The temporarily bonded photoelectric conversion substrate 20 and amplification conversion substrate 40 are placed in a chamber capable of adjusting the atmospheric pressure together with a container holding a liquid epoxy resin, and the chamber is evacuated to temporarily bond the photoelectric conversion substrate 20 and amplification conversion substrate. 40 is dipped in a liquid epoxy resin to return to normal pressure, and an epoxy resin 66 is injected into the gap between the substrates. Thereafter, the substrate is pulled up to cure the epoxy resin 66, and the adhesion between the amplification conversion substrate 40 and the photoelectric conversion substrate 20 is completed.
[0033]
Next, as shown in FIG. 4, the amplification conversion substrate 40 is polished to a uniform thickness by chemical mechanical polishing from the back side. Since silicon dioxide constituting the insulating layer 36A has higher polishing resistance than silicon, polishing stops before the insulating layer 36A, and the embedded wiring 56A formed to a position deeper than the insulating layer 36A is exposed from the insulating layer 36A. Is done.
[0034]
Next, as shown in FIG. 5, a data storage substrate 70 having a data storage device (register array) for temporarily storing data is bonded to the back surface of the amplification conversion substrate 40 bonded to the photoelectric conversion substrate 20. . As in the case of the amplification conversion substrate 40, the data storage substrate 70 used here has a gate 44B, a source 46B, an insulating film 42B, and a gate 44B insulated on an insulating layer 36B made of silicon dioxide. And a plurality of MOSFETs 50B (in the present embodiment, two MOSFETs are shown in the figure) are formed, and adjacent MOSFETs 50B are separated by an element isolation film 52B made of silicon dioxide.
[0035]
Further, the data storage substrate 70 is provided with a trench that penetrates the element isolation film 52 </ b> B and reaches the circuit surface from the back surface of the data storage substrate 70. An insulating film 54B is formed on the inner surface of the trench, and the buried wiring 56B is formed by filling the trench with a conductive material. As the conductive material for forming the buried wiring 56B, for example, a low-resistance metal such as low-resistance polycrystalline silicon or tungsten doped with impurities is used. An aluminum wiring 58B is directly connected to the end of the embedded wiring 56B on the circuit surface side. Thus, an integrated circuit including a data storage device is configured. The formed integrated circuit is covered with an insulating film 60B made of silicon dioxide, and the surface of the data storage substrate 70 on the integrated circuit side is flattened. The aluminum wiring 58B is drawn out from the opening provided in the insulating film 60B and exposed on the surface of the insulating film 60B.
[0036]
Micro bumps 71 are formed on the back surface of the amplification conversion substrate 40 so as to be in contact with the ends of the embedded wiring 56A exposed from the surface of the insulating layer 36A. On the other hand, micro bumps 72 are also formed on the surface of the data storage substrate 70 on the side of the integrated circuit so as to be in contact with the end of the aluminum wiring 58B exposed on the surface of the insulating film 60B. The data storage substrate 70 is electrically connected to the micro bumps 71 provided on the back surface of the amplification conversion substrate 40 and the micro bumps 72 provided on the surface of the data storage substrate 70 on the integrated circuit side. The amplification conversion substrate 40 is superposed and temporarily bonded, and the amplification conversion substrate 40 and the data storage substrate 70 are bonded by the epoxy resin 74 in the same manner as when the photoelectric conversion substrate 20 and the amplification conversion substrate 40 are bonded.
[0037]
Next, as shown in FIG. 6, the data processing board 80, the output circuit board 90, and the output terminal unit 100 are sequentially formed on the back surface of the data storage board 70. Similar to the formation process of the amplification conversion substrate 40 and the data storage substrate 70, the data storage substrate 70 bonded to the amplification conversion substrate 40 is polished from the back surface side, and a data processing device (processor) is mounted on the back surface of the data storage substrate 70. The data processing substrate 80 including the array and having the embedded wiring 82 formed thereon is bonded so that the integrated circuits provided on both substrates are electrically connected by the embedded wiring 82. Further, after polishing the data processing board 80 from the back side, the output circuit board 90 having the embedded wiring 92 formed on the back side of the data processing board 80 is electrically connected to the integrated circuit provided on both substrates by the embedded wiring 92. Glue to be connected to. Then, the output circuit board 90 is polished from the back surface side, the end of the embedded wiring 92 is exposed from the insulating film on the back surface of the output circuit board 90, and the micro bump 93 is formed so as to be in contact with the exposed end of the embedded wiring 92. To do.
[0038]
Finally, the output terminal portion 100 is formed on the back surface of the output circuit board 90. The output terminal unit 100 is formed by forming embedded wirings 104 penetrating through the silicon substrate 102 and exposed on both sides of the substrate. As a conductive material for forming the embedded wiring 104, a low resistance metal such as copper, tungsten, or gold is used. A micro bump 94 is formed on the input side surface of the output terminal portion 100 so as to be in contact with one end portion of the embedded wiring 104 exposed from the surface of the insulating layer of the output terminal portion 100. Then, the micro bumps 93 provided on the back surface of the output circuit board 90 and the micro bumps 94 provided on the input surface of the output terminal unit 100 come into contact with each other, and the integrated circuit provided on the output circuit board 90 is The two substrates are bonded so as to be electrically connected to the output terminal of the output terminal unit 100. A micro bump 106 is formed on the output side surface of the output terminal portion 100 so as to be in contact with the other end portion of the embedded wiring 104. The micro bump 106 can be formed from, for example, gold, indium, or an alloy thereof. Moreover, it is good also as a solder bump.
[0039]
Through the above steps, an image sensor unit comprising the transparent substrate 10 and the photoelectric conversion substrate 20 having a lens for condensing light, and a processing unit (amplification conversion substrate 40, data for processing a signal from the image sensor unit). A three-dimensional image processing apparatus shown in FIG. 6 in which the storage substrate 70, the data processing substrate 80, and the output circuit substrate 90) are integrated can be obtained.
[0040]
In this embodiment, the photoelectric conversion substrate is directly bonded to a quartz glass transparent substrate on which a large number of microlenses are two-dimensionally formed, so that it is not necessary to prepare a support substrate separately, and a support substrate attaching / detaching step is unnecessary. It becomes. As a result, the manufacturing process can be greatly simplified, and the three-dimensional image processing apparatus can be manufactured by a simple and easy process. Further, since the embedded wiring of each integrated circuit substrate is formed before bonding, the embedded wiring surrounded by a highly reliable insulating film can be formed.
[0041]
In the above embodiment, a silicon substrate in which an insulating layer made of silicon dioxide is formed in each semiconductor substrate for forming an integrated circuit is used. However, a silicon substrate that does not include an insulating layer made of silicon dioxide is used. May be used.
[0042]
In the above embodiment, an example in which micro bumps are formed at both ends of the embedded wiring and the adjacent substrates are electrically connected by bringing the micro bumps into contact with each other is described. However, the micro wiring is only applied to one end of the embedded wiring. Bumps may be formed to electrically connect adjacent substrates.
[0043]
In the above-described embodiment, the image sensor unit including the transparent substrate and the photoelectric conversion substrate provided with the condensing lens, the amplification conversion substrate for processing the signal from the image sensor unit, the data storage substrate, the data processing substrate, and Although the example which forms each processing part of an output circuit board by repeating grinding and pasting was explained, after polishing the photoelectric conversion board which constitutes an image sensor part from the back side, and exposing the embedded wiring, The photoelectric conversion substrate can be electrically connected to the amplification conversion substrate.
[0044]
Similarly to the above embodiment, the amplification conversion substrate is formed on the image sensor portion by polishing and bonding, and the amplification conversion substrate is polished from the back side to expose the embedded wiring, and then the amplification conversion substrate is formed by the wiring. It can also be electrically connected to the data storage substrate. Similarly to the above embodiment, the amplification conversion substrate and the data storage substrate are formed on the image sensor portion by polishing and bonding, and the data storage substrate is polished from the back side to expose the embedded wiring, and then the wiring is formed. The data storage board can also be electrically connected to the data processing board. Similarly to the above embodiment, an amplification conversion substrate, a data storage substrate, and a data processing substrate are formed on the image sensor portion by polishing and bonding, and the data processing substrate is polished from the back side to expose the embedded wiring. Thereafter, the data processing board can be electrically connected to the output circuit board by wiring.
[0045]
The silicon substrate used in the above embodiment may be a wafer scale or a chip scale.
[0046]
【The invention's effect】
The manufacturing method of the three-dimensional image processing apparatus of the present invention does not require the attaching / detaching process of the support substrate, can greatly simplify the manufacturing process, and can manufacture the three-dimensional image processing apparatus by a simple and easy process. There is an effect that it is possible. In addition, the method for manufacturing a three-dimensional image processing apparatus according to the present invention has an effect that a buried wiring surrounded by a highly reliable insulating film can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a three-dimensional image forming apparatus according to an embodiment.
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the three-dimensional image forming apparatus of the present embodiment.
FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the three-dimensional image forming apparatus of the present embodiment.
FIG. 4 is a schematic cross-sectional view showing a manufacturing process of the three-dimensional image forming apparatus of the present embodiment.
FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the three-dimensional image forming apparatus of the present embodiment.
FIG. 6 is a schematic cross-sectional view showing the structure of the three-dimensional image forming apparatus according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Transparent substrate 12 Micro lens 16 N-type silicon crystal substrate 18 P-type impurity layer 20 Photoelectric conversion substrate 22 N-type impurity layer 26 Gate electrode 28 Electrode 34 Embedded wiring 40 Amplification conversion substrate 70 Data storage substrate 80 Data processing substrate 90 Output circuit substrate 100 Output terminal

Claims (5)

光を集光するレンズを備えた透明基板と、主面に光電変換素子が形成されると共に該光電変換素子に電気的に接続された埋め込み配線が形成された光電変換基板とを、透明基板の裏面と光電変換基板の主面とが対向するように接着して、3次元画像処理装置を製造する
3次元画像処理装置の製造方法。
A transparent substrate having a lens for condensing light, and a photoelectric conversion substrate in which a photoelectric conversion element is formed on a main surface and an embedded wiring electrically connected to the photoelectric conversion element is formed. A method for manufacturing a three-dimensional image processing apparatus, in which a back surface and a main surface of a photoelectric conversion substrate are bonded so as to face each other to manufacture a three-dimensional image processing apparatus.
前記光電変換基板の裏面側を研磨して前記埋め込み配線を露出させ、
該光電変換基板の裏面に、主面に増幅器及びアナログ/デジタル変換器が形成されると共に該増幅器及びアナログ/デジタル変換器に電気的に接続された埋め込み配線が形成された増幅変換基板を、該増幅器及びアナログ/デジタル変換器が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造する
請求項1に記載の3次元画像処理装置の製造方法。
Polishing the back side of the photoelectric conversion substrate to expose the embedded wiring,
An amplification conversion substrate having an amplifier and an analog / digital converter formed on the main surface and an embedded wiring electrically connected to the amplifier and the analog / digital converter formed on the back surface of the photoelectric conversion substrate; The method of manufacturing a three-dimensional image processing apparatus according to claim 1, wherein an amplifier and an analog / digital converter are bonded so as to be electrically connected to the exposed portion of the embedded wiring to manufacture the three-dimensional image processing apparatus.
前記増幅変換基板の裏面側を研磨して前記埋め込み配線を露出させ、
該増幅変換基板の裏面に、主面にデータ記憶装置が形成されると共に該データ記憶装置に電気的に接続された埋め込み配線が形成されたデータ記憶基板を、該データ記憶装置が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造する
請求項2に記載の3次元画像処理装置の製造方法。
Polishing the back side of the amplification conversion substrate to expose the embedded wiring;
A data storage substrate on which a data storage device is formed on the back surface of the amplification conversion substrate and an embedded wiring electrically connected to the data storage device is formed. The method for manufacturing a three-dimensional image processing apparatus according to claim 2, wherein the three-dimensional image processing apparatus is manufactured by being bonded so as to be electrically connected to the exposed portion.
前記データ記憶基板の裏面側を研磨して前記埋め込み配線を露出させ、
該データ記憶基板の裏面に、主面にデータ処理装置が形成されると共に該データ処理装置に電気的に接続された埋め込み配線が形成されたデータ処理基板を、該データ処理装置が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造する
請求項3に記載の3次元画像処理装置の製造方法。
Polishing the back side of the data storage substrate to expose the embedded wiring;
A data processing board on which a data processing device is formed on the back surface of the data storage substrate and an embedded wiring electrically connected to the data processing device is formed. The method for manufacturing a three-dimensional image processing apparatus according to claim 3, wherein the three-dimensional image processing apparatus is manufactured by being bonded so as to be electrically connected to the exposed portion.
前記データ処理基板の裏面側を研磨して前記埋め込み配線を露出させ、
該データ処理基板の裏面に、主面に出力回路が形成されると共に該出力回路に電気的に接続された埋め込み配線が形成された出力回路基板を、該出力回路が前記埋め込み配線の露出部に電気的に接続されるように接着して、3次元画像処理装置を製造する
請求項4に記載の3次元画像処理装置の製造方法。
Polishing the back side of the data processing substrate to expose the embedded wiring;
An output circuit board on which an output circuit is formed on the back surface of the data processing board and an embedded wiring electrically connected to the output circuit is formed on the back surface of the data processing board. The method for manufacturing a three-dimensional image processing apparatus according to claim 4, wherein the three-dimensional image processing apparatus is manufactured by bonding so as to be electrically connected.
JP2000160330A 2000-05-30 2000-05-30 Manufacturing method of three-dimensional image processing apparatus Expired - Fee Related JP3713418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000160330A JP3713418B2 (en) 2000-05-30 2000-05-30 Manufacturing method of three-dimensional image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000160330A JP3713418B2 (en) 2000-05-30 2000-05-30 Manufacturing method of three-dimensional image processing apparatus

Publications (2)

Publication Number Publication Date
JP2001339057A JP2001339057A (en) 2001-12-07
JP3713418B2 true JP3713418B2 (en) 2005-11-09

Family

ID=18664539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000160330A Expired - Fee Related JP3713418B2 (en) 2000-05-30 2000-05-30 Manufacturing method of three-dimensional image processing apparatus

Country Status (1)

Country Link
JP (1) JP3713418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527523B2 (en) * 2018-12-10 2022-12-13 HangZhou HaiCun Information Technology Co., Ltd. Discrete three-dimensional processor

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
WO2003019653A2 (en) * 2001-08-24 2003-03-06 Schott Glas Method for producing contacts and printed circuit packages
WO2003019617A2 (en) * 2001-08-24 2003-03-06 Schott Glas Method for producing electronic components
WO2003041174A1 (en) * 2001-11-05 2003-05-15 Mitsumasa Koyanagi Solid-state image sensor and its production method
JP4012743B2 (en) 2002-02-12 2007-11-21 浜松ホトニクス株式会社 Photodetector
JP4237966B2 (en) * 2002-03-08 2009-03-11 浜松ホトニクス株式会社 Detector
US7230247B2 (en) 2002-03-08 2007-06-12 Hamamatsu Photonics K.K. Detector
FR2838565B1 (en) 2002-04-12 2004-06-25 Commissariat Energie Atomique PHOTODETECTORS MATRIX, ISOLATED PIXELS AND STORAGE GRID, HYBRIDED ON A READING CIRCUIT
US7074638B2 (en) 2002-04-22 2006-07-11 Fuji Photo Film Co., Ltd. Solid-state imaging device and method of manufacturing said solid-state imaging device
JP4478012B2 (en) * 2002-05-10 2010-06-09 浜松ホトニクス株式会社 Back-illuminated photodiode array and manufacturing method thereof
US6933489B2 (en) 2002-05-10 2005-08-23 Hamamatsu Photonics K.K. Back illuminated photodiode array and method of manufacturing the same
EP1942522A3 (en) * 2002-07-29 2009-11-11 FUJIFILM Corporation Solid-state imaging device and method of manufacturing the same
TWI227050B (en) 2002-10-11 2005-01-21 Sanyo Electric Co Semiconductor device and method for manufacturing the same
JP4511148B2 (en) * 2002-10-11 2010-07-28 三洋電機株式会社 Manufacturing method of semiconductor device
EP1554760B1 (en) * 2002-10-25 2009-08-19 Ipl Intellectual Property Licensing Limited Circuit substrate and method
JP4601897B2 (en) 2002-11-13 2010-12-22 ソニー株式会社 Solid-state imaging device and driving method thereof
JP4083553B2 (en) * 2002-11-28 2008-04-30 松下電器産業株式会社 Optical semiconductor device
JP5030360B2 (en) * 2002-12-25 2012-09-19 オリンパス株式会社 Method for manufacturing solid-state imaging device
EP1583985B1 (en) * 2003-01-06 2017-02-22 Koninklijke Philips N.V. Radiation detector with shielded electronics for computed tomography
JP4247017B2 (en) * 2003-03-10 2009-04-02 浜松ホトニクス株式会社 Manufacturing method of radiation detector
JP4421209B2 (en) * 2003-04-11 2010-02-24 浜松ホトニクス株式会社 Radiation detector
JP3800335B2 (en) 2003-04-16 2006-07-26 セイコーエプソン株式会社 Optical device, optical module, semiconductor device, and electronic apparatus
WO2004105137A1 (en) * 2003-05-23 2004-12-02 Hamamatsu Photonics K.K. Photo-detection device
US7226219B2 (en) 2003-11-12 2007-06-05 Hamamatsu Photonics K.K. High-frequency signal transmitting optical module and method of fabricating the same
JP4940533B2 (en) * 2003-12-12 2012-05-30 ソニー株式会社 Manufacturing method of semiconductor integrated circuit device
US7075091B2 (en) * 2004-01-29 2006-07-11 Ge Medical Systems Global Technology Company, Llc Apparatus for detecting ionizing radiation
WO2006025232A1 (en) 2004-09-02 2006-03-09 Sony Corporation Imaging device and method for outputting imaging result
JP2005276877A (en) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP4331033B2 (en) * 2004-03-29 2009-09-16 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method thereof
JP4731849B2 (en) 2004-07-16 2011-07-27 株式会社アドバンテスト Manufacturing method of semiconductor integrated circuit
JP4349232B2 (en) * 2004-07-30 2009-10-21 ソニー株式会社 Semiconductor module and MOS solid-state imaging device
KR100610481B1 (en) * 2004-12-30 2006-08-08 매그나칩 반도체 유한회사 Image sensor with enlarged photo detecting area and method for fabrication thereof
US8049293B2 (en) 2005-03-07 2011-11-01 Sony Corporation Solid-state image pickup device, electronic apparatus using such solid-state image pickup device and method of manufacturing solid-state image pickup device
KR100782463B1 (en) * 2005-04-13 2007-12-05 (주)실리콘화일 Separation type unit pixel of image sensor having 3 dimension structure and manufacture method thereof
TW201101476A (en) * 2005-06-02 2011-01-01 Sony Corp Semiconductor image sensor module and method of manufacturing the same
FR2888989B1 (en) * 2005-07-21 2008-06-06 St Microelectronics Sa IMAGE SENSOR
US7863188B2 (en) 2005-07-29 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5127178B2 (en) * 2005-07-29 2013-01-23 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4720434B2 (en) * 2005-10-31 2011-07-13 日本ビクター株式会社 Solid-state imaging device
JP2007228460A (en) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi Stacked semiconductor device with integrated sensor mounted thereon
US8049256B2 (en) 2006-10-05 2011-11-01 Omnivision Technologies, Inc. Active pixel sensor having a sensor wafer connected to a support circuit wafer
JP2008235478A (en) * 2007-03-19 2008-10-02 Nikon Corp Imaging device
US8330089B2 (en) 2007-09-12 2012-12-11 Unisantis Electronics Singapore Pte Ltd. Solid-state imaging device
EP2197032B1 (en) * 2007-09-12 2014-11-05 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
JP5350795B2 (en) * 2007-09-12 2013-11-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Solid-state image sensor
US8183628B2 (en) 2007-10-29 2012-05-22 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
JP5438895B2 (en) * 2007-12-12 2014-03-12 株式会社東芝 X-ray detector system and X-ray CT apparatus
US8598650B2 (en) 2008-01-29 2013-12-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
JP5317343B2 (en) 2009-04-28 2013-10-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and manufacturing method thereof
US7781716B2 (en) * 2008-03-17 2010-08-24 Eastman Kodak Company Stacked image sensor with shared diffusion regions in respective dropped pixel positions of a pixel array
EP3032578B1 (en) * 2008-03-19 2021-01-13 IMEC vzw Method for fabricating through-substrate vias and corresponding semiconductor device
US7858915B2 (en) 2008-03-31 2010-12-28 Eastman Kodak Company Active pixel sensor having two wafers
US8097907B2 (en) 2008-05-02 2012-01-17 Unisantis Electronics Singapore Pte Ltd. Solid-state imaging device
WO2009133623A1 (en) * 2008-05-02 2009-11-05 日本ユニサンティスエレクトロニクス株式会社 Solid-state imaging element
JP2009277719A (en) 2008-05-12 2009-11-26 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP4808748B2 (en) * 2008-06-13 2011-11-02 浜松ホトニクス株式会社 Manufacturing method of photodiode array
JP5367323B2 (en) * 2008-07-23 2013-12-11 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
US8471939B2 (en) 2008-08-01 2013-06-25 Omnivision Technologies, Inc. Image sensor having multiple sensing layers
JP4808759B2 (en) * 2008-11-18 2011-11-02 浜松ホトニクス株式会社 Radiation detector
JP4808760B2 (en) * 2008-11-19 2011-11-02 浜松ホトニクス株式会社 Manufacturing method of radiation detector
JP5985136B2 (en) 2009-03-19 2016-09-06 ソニー株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP5773379B2 (en) * 2009-03-19 2015-09-02 ソニー株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP5572979B2 (en) * 2009-03-30 2014-08-20 ソニー株式会社 Manufacturing method of semiconductor device
JP5083272B2 (en) * 2009-05-07 2012-11-28 ソニー株式会社 Semiconductor module
JP5482025B2 (en) 2009-08-28 2014-04-23 ソニー株式会社 SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
CN102630341A (en) 2009-09-17 2012-08-08 西奥尼克斯股份有限公司 Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
JP5356970B2 (en) 2009-10-01 2013-12-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device
JP5442394B2 (en) 2009-10-29 2014-03-12 ソニー株式会社 SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
NO20093601A1 (en) 2009-12-29 2011-06-30 Idex Asa surface Sensor
US20110156197A1 (en) * 2009-12-31 2011-06-30 Tivarus Cristian A Interwafer interconnects for stacked CMOS image sensors
JP5685898B2 (en) 2010-01-08 2015-03-18 ソニー株式会社 Semiconductor device, solid-state imaging device, and camera system
JP5126242B2 (en) * 2010-02-01 2013-01-23 ソニー株式会社 Solid-state imaging device, solid-state imaging device, and method for manufacturing solid-state imaging device
JP5426417B2 (en) * 2010-02-03 2014-02-26 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4912513B2 (en) 2010-03-08 2012-04-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Solid-state imaging device
JP5054182B2 (en) 2010-03-12 2012-10-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Solid-state imaging device
US8487357B2 (en) 2010-03-12 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device having high sensitivity and high pixel density
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
JP5066590B2 (en) 2010-06-09 2012-11-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and manufacturing method thereof
JP5087655B2 (en) 2010-06-15 2012-12-05 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and manufacturing method thereof
US20120146172A1 (en) 2010-06-18 2012-06-14 Sionyx, Inc. High Speed Photosensitive Devices and Associated Methods
US20120002092A1 (en) * 2010-06-30 2012-01-05 Guidash Robert M Low noise active pixel sensor
WO2012002186A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20120043468A1 (en) * 2010-08-18 2012-02-23 Frederick Flitsch Semiconductor photodetectors with integrated electronic control
JP4769911B1 (en) * 2010-10-29 2011-09-07 日本ユニサンティスエレクトロニクス株式会社 Solid-state imaging device
US8415623B2 (en) * 2010-11-23 2013-04-09 Raytheon Company Processing detector array signals using stacked readout integrated circuits
JP6019599B2 (en) * 2011-03-31 2016-11-02 ソニー株式会社 Semiconductor device and manufacturing method thereof
KR101942337B1 (en) 2011-05-12 2019-01-25 디퍼이 신테스 프로덕츠, 인코포레이티드 Pixel array area optimization using stacking scheme for hybrid image sensor with minimal vertical interconnects
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
CN103946867A (en) 2011-07-13 2014-07-23 西奥尼克斯公司 Biometric imaging devices and associated methods
US8564034B2 (en) 2011-09-08 2013-10-22 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US8669601B2 (en) 2011-09-15 2014-03-11 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
US8865507B2 (en) 2011-09-16 2014-10-21 Sionyx, Inc. Integrated visible and infrared imager devices and associated methods
WO2013056249A1 (en) * 2011-10-13 2013-04-18 Sionyx, Inc. Three dimensional architecture semiconductor devices and associated methods
KR20130063372A (en) * 2011-12-06 2013-06-14 삼성디스플레이 주식회사 3 dimensional image display apparatus
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8772175B2 (en) 2011-12-19 2014-07-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
TW201334169A (en) * 2012-02-10 2013-08-16 Sony Corp Image pickup element, manufacturing device and method, and image pickup device
US8748938B2 (en) 2012-02-20 2014-06-10 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
CN110265415A (en) 2012-03-30 2019-09-20 株式会社尼康 Shooting unit, filming apparatus and shooting control program
US9740343B2 (en) 2012-04-13 2017-08-22 Apple Inc. Capacitive sensing array modulation
US8629524B2 (en) * 2012-04-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for vertically integrated backside illuminated image sensors
US9030440B2 (en) 2012-05-18 2015-05-12 Apple Inc. Capacitive sensor packaging
JP5421475B2 (en) 2012-07-04 2014-02-19 誠 雫石 Imaging device, semiconductor integrated circuit, and imaging apparatus
BR112015001369A2 (en) 2012-07-26 2017-07-04 Olive Medical Corp CMOS Minimum Area Monolithic Image Sensor Camera System
JP6011409B2 (en) * 2012-09-18 2016-10-19 株式会社デンソー Image sensor
JP6128787B2 (en) 2012-09-28 2017-05-17 キヤノン株式会社 Semiconductor device
JP6376245B2 (en) * 2012-10-18 2018-08-22 ソニー株式会社 Solid-state imaging device and electronic device
JP2014099582A (en) 2012-10-18 2014-05-29 Sony Corp Solid-state imaging device
JP2014107448A (en) * 2012-11-28 2014-06-09 Nikon Corp Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus
JP6076123B2 (en) * 2013-02-14 2017-02-08 オリンパス株式会社 Semiconductor substrate, imaging device, and imaging apparatus
WO2014127376A2 (en) 2013-02-15 2014-08-21 Sionyx, Inc. High dynamic range cmos image sensor having anti-blooming properties and associated methods
NO20131423A1 (en) 2013-02-22 2014-08-25 Idex Asa Integrated fingerprint sensor
WO2014151093A1 (en) 2013-03-15 2014-09-25 Sionyx, Inc. Three dimensional imaging utilizing stacked imager devices and associated methods
CA2906975A1 (en) 2013-03-15 2014-09-18 Olive Medical Corporation Minimize image sensor i/o and conductor counts in endoscope applications
US10517469B2 (en) 2013-03-15 2019-12-31 DePuy Synthes Products, Inc. Image sensor synchronization without input clock and data transmission clock
JP5424371B1 (en) 2013-05-08 2014-02-26 誠 雫石 Solid-state imaging device and imaging apparatus
NL2012891B1 (en) 2013-06-05 2016-06-21 Apple Inc Biometric sensor chip having distributed sensor and control circuitry.
US9883822B2 (en) 2013-06-05 2018-02-06 Apple Inc. Biometric sensor chip having distributed sensor and control circuitry
US9209345B2 (en) 2013-06-29 2015-12-08 Sionyx, Inc. Shallow trench textured regions and associated methods
US9984270B2 (en) 2013-08-05 2018-05-29 Apple Inc. Fingerprint sensor in an electronic device
US9460332B1 (en) 2013-09-09 2016-10-04 Apple Inc. Capacitive fingerprint sensor including an electrostatic lens
US10296773B2 (en) 2013-09-09 2019-05-21 Apple Inc. Capacitive sensing array having electrical isolation
US9697409B2 (en) 2013-09-10 2017-07-04 Apple Inc. Biometric sensor stack structure
US9667900B2 (en) * 2013-12-09 2017-05-30 Optiz, Inc. Three dimensional system-on-chip image sensor package
JP6177117B2 (en) * 2013-12-10 2017-08-09 オリンパス株式会社 Solid-state imaging device, imaging device, and manufacturing method of solid-state imaging device
JP2015135839A (en) * 2014-01-16 2015-07-27 オリンパス株式会社 Semiconductor device, solid-state imaging apparatus, and imaging apparatus
US10095906B2 (en) 2014-02-21 2018-10-09 Idex Asa Sensor employing overlapping grid lines and conductive probes for extending a sensing surface from the grid lines
KR102261855B1 (en) 2014-06-13 2021-06-07 삼성전자주식회사 Stacked image sensor including color separation element and image pickup apparatus including the stacked image sensor
US10790407B2 (en) * 2014-08-06 2020-09-29 The Boeing Company Fabrication of sensor chip assemblies with microoptics elements
WO2016035184A1 (en) * 2014-09-04 2016-03-10 オリンパス株式会社 Solid-state image pickup device
JP6361633B2 (en) * 2015-11-02 2018-07-25 株式会社ニコン Image sensor
JP6662610B2 (en) * 2015-11-12 2020-03-11 旭化成エレクトロニクス株式会社 Optical sensor device
US10121812B2 (en) * 2015-12-29 2018-11-06 Taiwan Semiconductor Manufacturing Co., Ltd. Stacked substrate structure with inter-tier interconnection
WO2017163926A1 (en) * 2016-03-24 2017-09-28 ソニー株式会社 Image pickup device and electronic apparatus
JP2018078274A (en) 2016-11-10 2018-05-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. Image sensor device and image sensor module including image sensor device
JP2018190766A (en) * 2017-04-28 2018-11-29 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, manufacturing method, imaging element, and electronic equipment
JP2018011304A (en) * 2017-07-31 2018-01-18 株式会社ニコン Imaging device
KR102430496B1 (en) 2017-09-29 2022-08-08 삼성전자주식회사 Image sensing apparatus and manufacturing method thereof
WO2019130702A1 (en) 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 Image pickup device
JPWO2020100577A1 (en) * 2018-11-13 2021-09-30 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527523B2 (en) * 2018-12-10 2022-12-13 HangZhou HaiCun Information Technology Co., Ltd. Discrete three-dimensional processor

Also Published As

Publication number Publication date
JP2001339057A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP3713418B2 (en) Manufacturing method of three-dimensional image processing apparatus
JP4443865B2 (en) Solid-state imaging device and manufacturing method thereof
US7906363B2 (en) Method of fabricating semiconductor device having three-dimensional stacked structure
JP4373695B2 (en) Manufacturing method of backside illuminated photodetector
JP5105695B2 (en) Solid-state image sensor and manufacturing method thereof
TWI246763B (en) Method and apparatus for producing ultra-thin semiconductor chip and method and apparatus for producing ultra-thin back-illuminated solid-state image pickup device
US7932575B2 (en) Method of fabricating back-illuminated imaging sensors using a bump bonding technique
US8178914B2 (en) Method of fabricating back-illuminated imaging sensors
JP4037197B2 (en) Manufacturing method of semiconductor imaging device mounting structure
JP4915107B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP2012114189A (en) Solid-state imaging device, manufacturing method thereof and electronic device using the device
JP2004006834A (en) Manufacturing method of solid state imaging apparatus
JP2004063751A (en) Solid-state image sensing device and its manufacturing method
JP2005259828A (en) Solid state imaging device and its manufacturing method
JP4174247B2 (en) Manufacturing method of solid-state imaging device
JP2004063786A (en) Solid-state image sensing device and its manufacturing method
JP2004063782A (en) Solid-state image sensing device and its manufacturing method
JP2003347529A (en) Solid-state image pickup device and its manufacturing method
KR100919964B1 (en) Color image sensor on transparent substrate and method for making same
JP4271909B2 (en) Solid-state imaging device and manufacturing method thereof
JP4271904B2 (en) Method for manufacturing solid-state imaging device
JP2010258463A (en) Method of manufacturing solid-state imaging device
JP2004063765A (en) Solid-state image sensing device and its manufacturing method
JP5047077B2 (en) Method for manufacturing solid-state imaging device
JP2004063772A (en) Solid-state image sensing device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3713418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees