JP2014107448A - Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus - Google Patents

Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2014107448A
JP2014107448A JP2012260135A JP2012260135A JP2014107448A JP 2014107448 A JP2014107448 A JP 2014107448A JP 2012260135 A JP2012260135 A JP 2012260135A JP 2012260135 A JP2012260135 A JP 2012260135A JP 2014107448 A JP2014107448 A JP 2014107448A
Authority
JP
Japan
Prior art keywords
substrate
light receiving
processing
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012260135A
Other languages
Japanese (ja)
Other versions
JP2014107448A5 (en
Inventor
Shiro Tsunai
史郎 綱井
Isao Sugaya
功 菅谷
Masashi Okada
政志 岡田
So Mitsuishi
創 三ッ石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012260135A priority Critical patent/JP2014107448A/en
Publication of JP2014107448A publication Critical patent/JP2014107448A/en
Publication of JP2014107448A5 publication Critical patent/JP2014107448A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a laminated semiconductor device in a simple process.SOLUTION: A laminated semiconductor device manufacturing method of laminating a light-receiving substrate having a light-receiving circuit including a light-receiving element and a processing substrate having a processing circuit for processing a signal received from the light-receiving circuit comprises: a heterogeneous substrate lamination step of laminating the light-receiving substrate and the processing substrate by facing a surface on the light-receiving circuit side and a surface on the processing circuit side; and a light-receiving substrate thinning step of thinning the light-receiving substrate after the heterogeneous substrate lamination step. In the above-described manufacturing method, a processing substrate thinning step for thinning the processing substrate may be included prior to the light-receiving substrate thinning step.

Description

本発明は、積層半導体装置の製造方法および積層半導体製造装置に関する。   The present invention relates to a method for manufacturing a stacked semiconductor device and a stacked semiconductor manufacturing device.

受光素子を含む基板と信号処理回路を含む基板とを積層して製造される積層半導体装置がある。
[先行技術文献]
[特許文献]
[特許文献1]特開2006−49361号公報
There is a stacked semiconductor device manufactured by stacking a substrate including a light receiving element and a substrate including a signal processing circuit.
[Prior art documents]
[Patent Literature]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2006-49361

積層半導体装置は、例えば、基板の薄化段階において支持用のダミー基板を脱着する等の手順により工数が多くなるので生産性が低い。   The laminated semiconductor device is low in productivity because the number of man-hours is increased by, for example, a procedure of detaching a supporting dummy substrate in the substrate thinning stage.

本発明の第一態様においては、受光素子を含む受光回路を有する受光基板と、受光回路から受けた信号を処理する処理回路を有する処理基板とを積層して積層半導体装置を製造する方法であって、受光回路側の面と処理回路側の面とを向い合せて受光基板および処理基板を積層する異種基板積層段階と、異種基板積層段階よりも後に受光基板を薄化する受光基板薄化段階とを備える積層半導体装置製造方法が提供される。   According to a first aspect of the present invention, there is provided a method of manufacturing a laminated semiconductor device by laminating a light receiving substrate having a light receiving circuit including a light receiving element and a processing substrate having a processing circuit for processing a signal received from the light receiving circuit. A heterogeneous substrate stacking step in which the light receiving substrate side and the processing circuit side surface face each other, and a light receiving substrate thinning step in which the light receiving substrate is thinned after the heterogeneous substrate stacking step. A method for manufacturing a stacked semiconductor device is provided.

本発明の第二態様においては、受光素子を含む受光回路を有する受光基板と、受光回路から受けた信号を処理する処理回路を有する処理基板とを積層して積層半導体装置を製造する装置であって、受光素子を含む受光回路を有する受光基板における受光回路側の面と受光回路から受けた信号を処理する処理回路を有する処理基板における処理回路側の面とを向い合せて受光基板および処理基板を積層する異種基板積層部と、異種基板積層部により処理基板に積層された受光基板において、受光基板を薄化する受光基板薄化部とを備える積層半導体製造装置が提供される。   In a second aspect of the present invention, there is provided an apparatus for manufacturing a laminated semiconductor device by laminating a light receiving substrate having a light receiving circuit including a light receiving element and a processing substrate having a processing circuit for processing a signal received from the light receiving circuit. The light receiving substrate and the processing substrate face each other with the light receiving circuit side surface of the light receiving substrate having the light receiving circuit including the light receiving element and the processing circuit side surface of the processing substrate having a processing circuit for processing a signal received from the light receiving circuit. There is provided a laminated semiconductor manufacturing apparatus comprising: a heterogeneous substrate laminating unit for laminating a semiconductor substrate; and a light receiving substrate laminated on a processing substrate by the heterogeneous substrate laminating unit, and a light receiving substrate thinning unit for thinning the light receiving substrate.

上記した発明の概要は、本発明の必要な特徴の全てを列挙したものではない。これら特徴群のサブコンビネーションも発明となり得る。   The above summary of the present invention does not enumerate all necessary features of the present invention. A sub-combination of these feature groups can also be an invention.

受光基板100の断面図である。2 is a cross-sectional view of a light receiving substrate 100. FIG. 処理基板200の断面図である。It is sectional drawing of the process board | substrate 200. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層基板300の断面図である。3 is a cross-sectional view of a multilayer substrate 300. FIG. 積層半導体装置400の断面図である。4 is a cross-sectional view of a laminated semiconductor device 400. FIG. 積層基板301の断面図である。2 is a cross-sectional view of a multilayer substrate 301. FIG. 積層基板301の断面図である。2 is a cross-sectional view of a multilayer substrate 301. FIG. 積層基板302の断面図である。3 is a cross-sectional view of a multilayer substrate 302. FIG. 積層基板302の断面図である。3 is a cross-sectional view of a multilayer substrate 302. FIG. 積層基板302の断面図である。3 is a cross-sectional view of a multilayer substrate 302. FIG. 積層半導体装置401の断面図である。2 is a cross-sectional view of a stacked semiconductor device 401. FIG. 積層基板303の断面図である。3 is a cross-sectional view of a multilayer substrate 303. FIG.

以下、発明の実施の形態を通じて本発明を説明する。下記の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention. The following embodiments do not limit the invention according to the claims. Not all combinations of features described in the embodiments are essential for the solution of the invention.

図1は、積層半導体装置400の材料として用い得る受光基板100の断面図である。受光基板100は、支持基板110、半導体ウェル130および多層配線層150を備える。   FIG. 1 is a cross-sectional view of a light receiving substrate 100 that can be used as a material of the laminated semiconductor device 400. The light receiving substrate 100 includes a support substrate 110, a semiconductor well 130, and a multilayer wiring layer 150.

支持基板110は、シリコン単結晶ウエハ等により形成され、受光基板100の機械的強度を担う厚さ、例えば、直径12インチのシリコン単結晶ウエハであれば、775μm程度の厚さを有する。支持基板110の一面には、絶縁層120を介して半導体ウェル130が配される。半導体ウェル130には、支持基板110の面方向に、複数のフォトダイオード132がマトリクス状に作り込まれている。   The support substrate 110 is formed of a silicon single crystal wafer or the like, and has a thickness that bears the mechanical strength of the light receiving substrate 100, for example, a thickness of about 775 μm if the silicon single crystal wafer has a diameter of 12 inches. A semiconductor well 130 is disposed on one surface of the support substrate 110 via an insulating layer 120. A plurality of photodiodes 132 are formed in a matrix in the semiconductor well 130 in the surface direction of the support substrate 110.

半導体ウェル130には、隣接して形成されたゲート電極140等により複数の電界効果トランジスタもが形成される。このような構造により、フォトダイオード132および電界効果トランジスタにより形成された受光回路111に対する支持基板110の浮遊容量が抑制され、受光回路111のスイッチング速度が向上されると共に消費電力が低減される。   A plurality of field effect transistors are also formed in the semiconductor well 130 by the gate electrode 140 and the like formed adjacent to each other. With such a structure, the stray capacitance of the support substrate 110 with respect to the light receiving circuit 111 formed by the photodiode 132 and the field effect transistor is suppressed, so that the switching speed of the light receiving circuit 111 is improved and the power consumption is reduced.

多層配線層150は、半導体ウェル130の表面に交互に積層された層間絶縁材152および配線材154により形成される。配線材154としては、チタン、タングステン等の金属材料を使用できる。   The multilayer wiring layer 150 is formed by interlayer insulating materials 152 and wiring materials 154 that are alternately stacked on the surface of the semiconductor well 130. As the wiring material 154, a metal material such as titanium or tungsten can be used.

フォトダイオード132および電界効果トランジスタは、多層配線層150により相互に接続されて、概ね厚さ10μm以下の受光回路111を形成する。多層配線層150における配線材154の一端は、支持基板110と反対側の一面において外部に露出した接続パッド160に電気的に接続される。   The photodiode 132 and the field effect transistor are connected to each other by the multilayer wiring layer 150 to form a light receiving circuit 111 having a thickness of approximately 10 μm or less. One end of the wiring member 154 in the multilayer wiring layer 150 is electrically connected to the connection pad 160 exposed to the outside on one surface opposite to the support substrate 110.

受光回路111においては、フォトダイオード132の各々が画素に対応し、電界効果トランジスタが画素毎にリセット、選択および増幅を担う。フォトダイオード132が入射光を受けて蓄積した電荷は、電界効果トランジスタによるソースフォロワを通じて電圧信号として接続パッド160から外部に出力される。   In the light receiving circuit 111, each of the photodiodes 132 corresponds to a pixel, and a field effect transistor performs reset, selection, and amplification for each pixel. The electric charge accumulated by the photodiode 132 upon receiving incident light is output to the outside from the connection pad 160 as a voltage signal through a source follower by a field effect transistor.

図2は、積層半導体装置400の材料として用い得る処理基板200の断面図である。処理基板200は、支持基板210、半導体ウェル230および多層配線層250を備える。   FIG. 2 is a cross-sectional view of a processing substrate 200 that can be used as a material for the stacked semiconductor device 400. The processing substrate 200 includes a support substrate 210, a semiconductor well 230, and a multilayer wiring layer 250.

支持基板210は、シリコン単結晶ウエハ等により形成され、受光基板100の機械的強度を担う厚さ、例えば、直径12インチのシリコン単結晶ウエハであれば、775μm程度の厚さを有する。支持基板210の一面には、半導体ウェル230が配される。半導体ウェル230には、半導体ウェル230に隣接して形成されたゲート電極240等により複数の電界効果トランジスタが作り込まれている。   The support substrate 210 is formed of a silicon single crystal wafer or the like, and has a thickness that bears the mechanical strength of the light receiving substrate 100, for example, a thickness of about 775 μm in the case of a silicon single crystal wafer having a diameter of 12 inches. A semiconductor well 230 is disposed on one surface of the support substrate 210. A plurality of field effect transistors are formed in the semiconductor well 230 by the gate electrode 240 formed adjacent to the semiconductor well 230.

多層配線層150は、半導体ウェル230の表面に交互に積層された層間絶縁材252および配線材254により形成される。複数の電界効果トランジスタは、多層配線層250により相互に接続されて処理回路211を形成する。   The multilayer wiring layer 150 is formed by interlayer insulating materials 252 and wiring materials 254 that are alternately stacked on the surface of the semiconductor well 230. The plurality of field effect transistors are connected to each other by the multilayer wiring layer 250 to form the processing circuit 211.

また、多層配線層250における配線材254の一端は、支持基板210と反対側の一面において外部に露出した接続パッド260に電気的に接続される。処理基板200の接続パッド260は、受光基板100の接続パッド160に接続される。これにより、処理基板200の処理回路211は、受光基板100の受光回路111の出力信号を処理する。処理回路211における処理としては、アナログ/デジタル変換、ノイズ抑圧、ファイル生成等を例示できる。   In addition, one end of the wiring member 254 in the multilayer wiring layer 250 is electrically connected to the connection pad 260 exposed to the outside on one surface opposite to the support substrate 210. The connection pad 260 of the processing substrate 200 is connected to the connection pad 160 of the light receiving substrate 100. As a result, the processing circuit 211 of the processing substrate 200 processes the output signal of the light receiving circuit 111 of the light receiving substrate 100. Examples of processing in the processing circuit 211 include analog / digital conversion, noise suppression, file generation, and the like.

なお、図示の処理基板200は、支持基板210に嵌入した貫通電極256を有する。貫通電極は、例えば、デュアルダマシン法により銅で形成される。貫通電極256の一端は、多層配線層250の配線材254に電気的に接続される。貫通電極256の他端は、図示の段階では、支持基板210の内部に埋没している。   The illustrated processing substrate 200 has a through electrode 256 fitted into the support substrate 210. The through electrode is formed of copper by a dual damascene method, for example. One end of the through electrode 256 is electrically connected to the wiring member 254 of the multilayer wiring layer 250. The other end of the through electrode 256 is buried in the support substrate 210 in the illustrated stage.

上記のような受光基板100および処理基板200を貼り合わせることにより、イメージセンサとして用い得る積層半導体装置400を製造できる。図3から図13は、そのような積層半導体装置400の製造過程を段階毎に示す断面図である。   By laminating the light receiving substrate 100 and the processing substrate 200 as described above, a laminated semiconductor device 400 that can be used as an image sensor can be manufactured. 3 to 13 are cross-sectional views showing the manufacturing process of such a stacked semiconductor device 400 step by step.

なお、受光基板100および処理基板200のそれぞれは、図1または図2に示した構造をそれぞれの面方向に繰り返し有する。よって、受光基板100および処理基板200を積層することにより、多数の積層半導体装置400を含む積層基板300を一括して製造できる。   Each of the light receiving substrate 100 and the processing substrate 200 has the structure shown in FIG. 1 or FIG. 2 repeatedly in each plane direction. Therefore, by stacking the light receiving substrate 100 and the processing substrate 200, the stacked substrate 300 including a large number of stacked semiconductor devices 400 can be manufactured collectively.

まず、図3に示すように、受光基板100および処理基板200を積層して積層基板300を形成する。図示の例では、図1に示した状態に対して受光基板100の表裏を反転させ、処理基板200に積層する。これにより、この段階において1550μm以上の厚さを有する積層基板300が形成される。積層基板300においては、受光基板100の接続パッド160と、処理基板200の接続パッド260とが互いに当接して電気的に接続される。   First, as shown in FIG. 3, the light receiving substrate 100 and the processing substrate 200 are laminated to form a laminated substrate 300. In the illustrated example, the front and back of the light receiving substrate 100 are reversed with respect to the state shown in FIG. Thereby, the laminated substrate 300 having a thickness of 1550 μm or more is formed at this stage. In the multilayer substrate 300, the connection pads 160 of the light receiving substrate 100 and the connection pads 260 of the processing substrate 200 are in contact with each other and are electrically connected.

受光基板100および処理基板200は、接続パッド160、260の少なくとも一方をはんだバンプ、銅バンプ等にして圧接することにより貼り合わせてもよい。この場合、受光基板100および処理基板200はそれぞれ支持基板110、210を有しているので、十分な圧力を加えることができる。   The light receiving substrate 100 and the processing substrate 200 may be bonded together by pressing at least one of the connection pads 160 and 260 with solder bumps, copper bumps, or the like. In this case, since the light receiving substrate 100 and the processing substrate 200 have the support substrates 110 and 210, respectively, a sufficient pressure can be applied.

また、接続パッド160、260を含む受光基板100および処理基板200の端面を鏡面研磨して常温接合させてもよい。この場合も、受光基板100および処理基板200が支持基板110、210を有しているので、これら支持基板110、210を保持して受光基板100および処理基板200を研磨することができる。   Further, the end surfaces of the light receiving substrate 100 and the processing substrate 200 including the connection pads 160 and 260 may be mirror-polished and bonded at room temperature. Also in this case, since the light receiving substrate 100 and the processing substrate 200 have the supporting substrates 110 and 210, the light receiving substrate 100 and the processing substrate 200 can be polished while holding the supporting substrates 110 and 210.

受光基板100および処理基板200の位置合わせは、予め定めた数箇所の位置合わせ指標の位置ずれに基づいて全体の位置ずれが最小になる位置を算出するグローバルアライメント法により、積層基板300の歩留りを向上させることができる。更に、位置合わせ指標の位置に基づいて、オフセット補正、回転補正、直交度補正、スケーリング補正等を加えて、位置合わせ精度をより向上させることかできる。   For the alignment of the light receiving substrate 100 and the processing substrate 200, the yield of the multilayer substrate 300 is determined by a global alignment method that calculates the position where the total positional deviation is minimized based on the positional deviation of several predetermined alignment indices. Can be improved. Furthermore, the alignment accuracy can be further improved by adding offset correction, rotation correction, orthogonality correction, scaling correction, and the like based on the position of the alignment index.

位置合わせ指標として、接続パッド160、260そのものを利用してもよいし、受光基板100および処理基板200に形成された配線、基板等を利用してもよい。更に、位置合わせに利用する目的で受光基板100および処理基板200に設けたアライメントマークを利用してもよい。また、位置ずれを測定するために位置合わせ指標を観察する場合、受光基板100および処理基板200の接合面を直接に観察する方法の他に、基板を透過する赤外帯域で観察してもよい。   As the alignment index, the connection pads 160 and 260 themselves may be used, or wirings and substrates formed on the light receiving substrate 100 and the processing substrate 200 may be used. Further, alignment marks provided on the light receiving substrate 100 and the processing substrate 200 may be used for the purpose of use in alignment. In addition, when observing the alignment index for measuring the positional deviation, in addition to the method of directly observing the bonding surface of the light receiving substrate 100 and the processing substrate 200, the alignment index may be observed in the infrared band transmitting the substrate. .

次に、図4に示すように、積層基板300において、処理基板200の支持基板210を、例えば500μm程度まで薄化する。支持基板210は、例えば、化学機械研磨により薄化できる。これにより、支持基板210の図中下面には、貫通電極256の端部が露出する。   Next, as shown in FIG. 4, in the laminated substrate 300, the support substrate 210 of the processing substrate 200 is thinned to about 500 μm, for example. The support substrate 210 can be thinned by chemical mechanical polishing, for example. As a result, the end portion of the through electrode 256 is exposed on the lower surface of the support substrate 210 in the drawing.

なお、処理基板200の薄化に先立って、200℃から300℃の温度範囲で、30分から60分の処理時間で積層基板300をアニール処理してもよい。これにより、受光基板100および処理基板200の貼り合わせに伴い積層基板300に生じた内部応力が緩和されるので、薄化のために研磨等で生じる応力により受光基板100および処理基板200が剥離することが防止される。   Prior to thinning of the processing substrate 200, the laminated substrate 300 may be annealed in a temperature range of 200 ° C. to 300 ° C. for a processing time of 30 minutes to 60 minutes. As a result, the internal stress generated in the laminated substrate 300 due to the bonding of the light receiving substrate 100 and the processing substrate 200 is relieved, so that the light receiving substrate 100 and the processing substrate 200 are peeled off by the stress generated by polishing or the like for thinning. It is prevented.

また、処理基板200の薄化処理後にも積層基板300を、上記と同様の条件でアニール処理してもよい。薄化処理後の支持基板210は平坦性が高いので、積層基板300を全体に均一に加熱できる。よって、アニール処理により緩和される内部応力も、積層基板300全体で均一になる。   In addition, the laminated substrate 300 may be annealed under the same conditions as described above even after the processing substrate 200 is thinned. Since the support substrate 210 after the thinning process has high flatness, the multilayer substrate 300 can be uniformly heated as a whole. Therefore, the internal stress that is relaxed by the annealing process is also uniform throughout the multilayer substrate 300.

次に、図5に示すように、支持基板210の図中下面に露出した貫通電極256の端部にバンプ220を形成する。これにより、処理基板200の処理回路211を、積層基板300の図中下面から外部に接続できる状態になる。バンプ220は、例えば、溶融はんだにより接合するはんだバンプ、相互拡散により接合する銅バンプ等を適宜選択できる。   Next, as shown in FIG. 5, bumps 220 are formed on the end portions of the through electrodes 256 exposed on the lower surface of the support substrate 210 in the drawing. As a result, the processing circuit 211 of the processing substrate 200 can be connected to the outside from the lower surface of the multilayer substrate 300 in the drawing. As the bump 220, for example, a solder bump joined by molten solder, a copper bump joined by mutual diffusion, or the like can be appropriately selected.

次に、図6に示すように、受光基板100の支持基板110を薄化する。支持基板110は、例えば、処理基板200側に残る支持基板210を保持して化学機械研磨することにより薄化できる。ここで、図示の例では、支持基板110を全て除去せずに、絶縁層120が露出する直前で化学機械研磨を停止する。   Next, as shown in FIG. 6, the support substrate 110 of the light receiving substrate 100 is thinned. For example, the support substrate 110 can be thinned by holding the support substrate 210 remaining on the processing substrate 200 side and performing chemical mechanical polishing. Here, in the illustrated example, the chemical mechanical polishing is stopped immediately before the insulating layer 120 is exposed without removing all of the support substrate 110.

ここまでの段階においては、受光基板100の表面が受光基板100の支持基板210により覆われている。よって、処理基板200側にける支持基板210の研磨、バンプ220の形成等により生じた塵芥は、受光基板100側の支持基板110に付着していたとしても、支持基板110の薄化処理と共に除去される。   In the steps so far, the surface of the light receiving substrate 100 is covered with the support substrate 210 of the light receiving substrate 100. Therefore, dust generated by polishing of the support substrate 210 on the processing substrate 200 side, formation of the bumps 220, etc. is removed together with the thinning process of the support substrate 110 even if it adheres to the support substrate 110 on the light receiving substrate 100 side. Is done.

なお、上記のように受光基板100側の支持基板110を薄化する場合も、薄化処理の前後に、積層基板300をアニール処理してもよい。これにより、積層基板300の残留応力を緩和できる。また、薄化処理により生じた応力を開放できる。アニール処理は、200℃から300℃の温度範囲で、30分から60分の処理時間で有効になる。   Even when the support substrate 110 on the light receiving substrate 100 side is thinned as described above, the laminated substrate 300 may be annealed before and after the thinning process. Thereby, the residual stress of the multilayer substrate 300 can be relieved. Further, the stress generated by the thinning process can be released. The annealing process is effective in a temperature range of 200 ° C. to 300 ° C. and a processing time of 30 minutes to 60 minutes.

続いて、図7に示すように、絶縁層120の表面に残った支持基板110を化学エッチングにより除去する。エッチャントとして、支持基板110を食刻するが、絶縁層120とは反応しない選択性を有するものを用いる。これにより、積層基板300には、厚さ10μm程度の受光回路111が残る。これにより、支持基板110の除去後に形成される受光基板100の表面は、絶縁層120自体の平坦性を有する。このように、化学機械研磨で支持基板110を残し、エッチングにより支持基板110を除去することにより、化学機械研磨により生じがちな研磨量の偏りを防止できる。   Subsequently, as shown in FIG. 7, the support substrate 110 remaining on the surface of the insulating layer 120 is removed by chemical etching. As the etchant, a material having a selectivity that etches the support substrate 110 but does not react with the insulating layer 120 is used. As a result, the light receiving circuit 111 having a thickness of about 10 μm remains on the multilayer substrate 300. Thereby, the surface of the light receiving substrate 100 formed after the support substrate 110 is removed has the flatness of the insulating layer 120 itself. In this manner, by leaving the support substrate 110 by chemical mechanical polishing and removing the support substrate 110 by etching, it is possible to prevent unevenness in the polishing amount that tends to occur due to chemical mechanical polishing.

このように、上記の方法では、化学機械研磨をする場合に限って一時的に使用されるダミー基板を用いることなく薄化処理を実行して積層基板300を製造できる。よって、ダミー基板の着脱等の作業工数を省くことができ、積層基板の製造工程を簡略化できる。   Thus, in the above method, the laminated substrate 300 can be manufactured by executing the thinning process without using a dummy substrate that is temporarily used only when chemical mechanical polishing is performed. Therefore, the number of work steps such as attaching and detaching the dummy substrate can be omitted, and the manufacturing process of the laminated substrate can be simplified.

次に、図8に示すように、積層基板300における受光基板100側の表面に遮光層170を形成する。遮光層170は、受光基板100におけるフォトダイオード132の周囲に入射する入射光を遮断する。換言すれば、受光基板100において、フォトダイオード132が形成された領域に限って入射光を入射させる。   Next, as illustrated in FIG. 8, a light shielding layer 170 is formed on the surface of the laminated substrate 300 on the light receiving substrate 100 side. The light shielding layer 170 blocks incident light incident on the periphery of the photodiode 132 in the light receiving substrate 100. In other words, incident light is incident on the light receiving substrate 100 only in the region where the photodiode 132 is formed.

遮光層170は、例えばアルミニウム、タングステン等の金属材料を気相成長方により堆積させることにより形成できる。遮光層170の材料は、多層配線層150における配線材154と同じ材料であってもよい。ただし、遮光層170は、透過光を遮断できる厚さを有している。このように、フォトダイオード132に隣接して配することにより、遮光層170のパターン精度を向上させることができる。   The light shielding layer 170 can be formed, for example, by depositing a metal material such as aluminum or tungsten by vapor deposition. The material of the light shielding layer 170 may be the same material as the wiring material 154 in the multilayer wiring layer 150. However, the light shielding layer 170 has a thickness that can block transmitted light. As described above, the pattern accuracy of the light shielding layer 170 can be improved by arranging the photodiode 132 adjacently.

このように、積層基板300を用いた場合は、受光基板100において支持基板110があった側からフォトダイオード132に光を入射させる裏面照射型イメージセンサが製造される。よって、以降の製造過程には、支持基板110が除去された跡に、入射光を透過させる層を形成する段階が含まれる。   As described above, when the multilayer substrate 300 is used, a back-illuminated image sensor that makes light incident on the photodiode 132 from the side where the support substrate 110 is present in the light receiving substrate 100 is manufactured. Therefore, the subsequent manufacturing process includes a step of forming a layer that transmits incident light on the trace where the support substrate 110 is removed.

次に、図9に示すように、絶縁層120および遮光層170の表面に平坦化層172を形成する。平坦化層172は、プラズマCVD等の物理蒸着法により堆積したシリコン酸化膜により形成できる。   Next, as illustrated in FIG. 9, a planarization layer 172 is formed on the surfaces of the insulating layer 120 and the light shielding layer 170. The planarization layer 172 can be formed of a silicon oxide film deposited by physical vapor deposition such as plasma CVD.

次に、図10に示すように、平坦化層172の表面に、有機平坦化層174を形成する。有機平坦化層174は、例えば、ポリイミド樹脂等を塗布することにより形成できる。これにより、受光基板100の入射側端面の平坦性を向上させると共に、次に説明する他の樹脂層の接着性を向上させる。   Next, as shown in FIG. 10, an organic planarization layer 174 is formed on the surface of the planarization layer 172. The organic planarization layer 174 can be formed, for example, by applying a polyimide resin or the like. Thereby, the flatness of the incident side end face of the light receiving substrate 100 is improved, and the adhesiveness of another resin layer described below is improved.

なお、有機平坦化層174の耐熱温度は、他の層を形成するSi化合物等に比較すると低い。よって、有機平坦化層174を形成した後の段階では、高温のアニール処理はできない。   Note that the heat resistance temperature of the organic planarization layer 174 is lower than that of the Si compound or the like forming other layers. Therefore, high-temperature annealing cannot be performed at a stage after the organic planarization layer 174 is formed.

次に、図11に示すように、有機平坦化層174の表面に、オンチップカラーフィルタ180を形成する。オンチップカラーフィルタ180は、フォトダイオード132のそれぞれに対応して配される。また、オンチップカラーフィルタ180は、顔料を含むフォトレジスト材等により形成され、例えば赤、青および緑(原色系)またはシアン、マゼンタおよびイエロー(補色系)のいずれかに着色される。更に、オンチップカラーフィルタ180には、4色以上のフィルタが組み合わされる場合もある。   Next, as shown in FIG. 11, an on-chip color filter 180 is formed on the surface of the organic planarization layer 174. The on-chip color filter 180 is disposed corresponding to each of the photodiodes 132. The on-chip color filter 180 is formed of a photoresist material containing a pigment, and is colored, for example, red, blue and green (primary colors) or cyan, magenta and yellow (complementary colors). Furthermore, the on-chip color filter 180 may be combined with four or more color filters.

次に、図12に示すように、有機平坦化層174およびオンチップカラーフィルタ180の各表面を含む受光基板100の表面に、更に有機平坦化層182が形成される。これにより、オンチップカラーフィルタ180は、有機平坦化層174、182に埋設された状態になる。また、受光基板100の最表面は再び平坦化される。   Next, as shown in FIG. 12, an organic planarization layer 182 is further formed on the surface of the light receiving substrate 100 including the surfaces of the organic planarization layer 174 and the on-chip color filter 180. As a result, the on-chip color filter 180 is embedded in the organic planarization layers 174 and 182. Further, the outermost surface of the light receiving substrate 100 is flattened again.

次に、図13に示すように、有機平坦化層182の表面に、オンチップレンズ190が形成される。オンチップレンズ190は、有機樹脂により形成したレンズ材料層をエッチバック、リフロー等により加工してレンズ形状とすることにより形成される。オンチップレンズ190の各々は、中心が縁よりも厚い凸型レンズをなし、広い面積に入射した入射光をフォトダイオード132に集光する。尚、遮光層170、平坦化層172、有機平坦化層174、182、オンチップカラーフィルタ180、オンチップレンズ190は、これらの全てが必須なわけではなく、用途に応じて全部または一部を作成すればよい。   Next, as shown in FIG. 13, an on-chip lens 190 is formed on the surface of the organic planarization layer 182. The on-chip lens 190 is formed by processing a lens material layer formed of an organic resin into a lens shape by etching back, reflow, or the like. Each of the on-chip lenses 190 is a convex lens whose center is thicker than the edge, and condenses incident light incident on a wide area on the photodiode 132. The light shielding layer 170, the flattening layer 172, the organic flattening layers 174 and 182, the on-chip color filter 180, and the on-chip lens 190 are not all essential, and may be wholly or partially depending on the application. Create it.

こうして、図13に示した断面構造を有する積層半導体装置400が完成する。積層半導体装置400は、受光基板100において支持基板110があった側から入射光が入射する裏面照射型イメージセンサである。フォトダイオード132への入射光により発生した電荷は、電圧信号として処理回路211に受け渡され、更に、デジタル変換等の処理を経て、バンプ220から外部に出力される。   Thus, the laminated semiconductor device 400 having the cross-sectional structure shown in FIG. 13 is completed. The laminated semiconductor device 400 is a backside illuminated image sensor in which incident light enters from the side where the support substrate 110 is present in the light receiving substrate 100. The electric charge generated by the incident light on the photodiode 132 is transferred to the processing circuit 211 as a voltage signal, and further output from the bump 220 through processing such as digital conversion.

積層半導体装置400が形成された積層基板300は、ダイシングにより切り分けられて多数のダイとなる。こうして得られたダイのそれぞれは、受光基板100および処理基板200を積層して製造したことにより、高い歩留りと高い集積密度とを兼ね備える。   The laminated substrate 300 on which the laminated semiconductor device 400 is formed is cut into a large number of dies by dicing. Each of the dies thus obtained has a high yield and a high integration density because the light-receiving substrate 100 and the processing substrate 200 are laminated.

なお、図7に示した状態から後に、遮光層170、オンチップカラーフィルタ180およびオンチップレンズ190のように光学的な機能を有する要素を受光基板100の表面に形成する場合には、マスク等を受光基板100に対して位置合わせする。この場合、絶縁層120、平坦化層172、有機平坦化層174、182を通じて見えるフォトダイオード132を、位置合わせ指標として利用してもよい。また、絶縁層120に、予めアライメントマークを形成しておいてもよい。更に、受光基板100を赤外帯域の照明光により観察して、多層配線層150の構造物を位置合わせ指標として利用してもよい。   When elements having an optical function such as the light shielding layer 170, the on-chip color filter 180, and the on-chip lens 190 are formed on the surface of the light receiving substrate 100 after the state shown in FIG. Is aligned with respect to the light receiving substrate 100. In this case, the photodiode 132 visible through the insulating layer 120, the planarization layer 172, and the organic planarization layers 174 and 182 may be used as an alignment index. An alignment mark may be formed in advance on the insulating layer 120. Furthermore, the light receiving substrate 100 may be observed with infrared band illumination light, and the structure of the multilayer wiring layer 150 may be used as an alignment index.

図14は、他の積層基板301の断面図である。積層基板301は、図2に示した処理基板200と同じ構造を有する一対の処理基板201、202を、接続パッド260どうしが接合されるように積層して形成される。処理基板201、202の接合に係る位置合わせ指標、位置合わせ方法および接合方法については、図3を参照して説明した通りである。これにより、処理基板201の処理回路212と処理基板202の処理回路213とが相互に接続され、一体的な回路を形成する。   FIG. 14 is a cross-sectional view of another laminated substrate 301. The multilayer substrate 301 is formed by stacking a pair of processing substrates 201 and 202 having the same structure as the processing substrate 200 shown in FIG. 2 so that the connection pads 260 are joined to each other. The alignment index, alignment method, and bonding method related to the bonding of the processing substrates 201 and 202 are as described with reference to FIG. As a result, the processing circuit 212 of the processing substrate 201 and the processing circuit 213 of the processing substrate 202 are connected to each other to form an integrated circuit.

次に、図15に示すように、積層基板301における一方の処理基板202の支持基板210を薄化処理し、支持基板210の表面に露出した貫通電極256の端面にバンプ220を形成する。薄化処理の方法とバンプ220の形成方法は、図4および図5を参照して説明した通りである。   Next, as shown in FIG. 15, the support substrate 210 of one processing substrate 202 in the multilayer substrate 301 is thinned, and bumps 220 are formed on the end surfaces of the through electrodes 256 exposed on the surface of the support substrate 210. The thinning method and the bump 220 forming method are as described with reference to FIGS.

次に、図16に示すように、図15に示した状態の積層基板301と、図5に示した状態の積層基板300とを接合して、積層基板302を形成する。積層基板301のバンプ220と積層基板302のバンプ220とは、銅バンプの相互拡散、はんだバンプの溶融等により接合できる。   Next, as illustrated in FIG. 16, the multilayer substrate 301 in the state illustrated in FIG. 15 and the multilayer substrate 300 in the state illustrated in FIG. 5 are bonded to form the multilayer substrate 302. The bumps 220 of the multilayer substrate 301 and the bumps 220 of the multilayer substrate 302 can be joined by mutual diffusion of copper bumps, melting of solder bumps, or the like.

こうして、積層基板300に含まれる受光回路111および処理回路211と、積層基板301における処理回路212、213とが、バンプ220および貫通電極256を通じて相互に結合される。これにより、積層基板302全体では、積層基板300の3倍に及ぶ大規模処理回路が形成される。   Thus, the light receiving circuit 111 and the processing circuit 211 included in the multilayer substrate 300 and the processing circuits 212 and 213 in the multilayer substrate 301 are coupled to each other through the bump 220 and the through electrode 256. As a result, a large scale processing circuit that is three times as large as the multilayer substrate 300 is formed on the entire multilayer substrate 302.

次に、図17に示すように、積層基板302の図中下端に位置する処理基板201の支持基板210を薄化処理し、支持基板210の表面に露出した貫通電極256の端面にバンプ220を形成する。薄化処理の方法とバンプ220の形成方法は、図4および図5を参照して説明した場合と同様である。こうして、積層基板302に形成された大規模処理回路は、図中最下段の処理基板201のバンプ220を通じて外部に出力できる状態になる。   Next, as shown in FIG. 17, the support substrate 210 of the processing substrate 201 positioned at the lower end of the multilayer substrate 302 is thinned, and bumps 220 are formed on the end surfaces of the through electrodes 256 exposed on the surface of the support substrate 210. Form. The thinning process and the bump 220 are formed in the same manner as described with reference to FIGS. Thus, the large-scale processing circuit formed on the multilayer substrate 302 can be output to the outside through the bumps 220 of the lowermost processing substrate 201 in the drawing.

次に、図18に示すように、薄化およびエッチングにより、積層基板302における受光基板100の支持基板110を除去する。支持基板110の薄化および除去は、図6および図7を参照して説明した通りである。   Next, as shown in FIG. 18, the support substrate 110 of the light receiving substrate 100 in the laminated substrate 302 is removed by thinning and etching. The thinning and removal of the support substrate 110 are as described with reference to FIGS.

続いて、図19に示すように、受光基板100において露出した絶縁層120の上に、遮光層170、平坦化層172、有機平坦化層174、182、オンチップカラーフィルタ180およびオンチップレンズ190を順次形成して、積層半導体装置401を完成する。これら光学要素の形成過程は、図8から図13までを参照して説明した通りである。   Subsequently, as illustrated in FIG. 19, the light shielding layer 170, the planarization layer 172, the organic planarization layers 174 and 182, the on-chip color filter 180 and the on-chip lens 190 are formed on the insulating layer 120 exposed in the light receiving substrate 100. Are sequentially formed to complete the stacked semiconductor device 401. The formation process of these optical elements is as described with reference to FIGS.

こうして製造された積層半導体装置401は、処理回路211、212、213を含む大規模処理回路を備えるので、アナログ/デジタル変換器に加えて、バッファ回路、記憶回路、プロセッサ等を一体的に備えたイメージセンサとすることができる。また、処理基板200、201、202を積層する過程では、受光基板100の受光面が支持基板110に覆われた状態なので、処理基板200、201、202の支持基板210の薄化処理等により生じた塵芥が受光基板100の表面に残留してイメージセンサとしての性能に影響を与えることが防止される。   Since the stacked semiconductor device 401 manufactured in this way includes a large-scale processing circuit including processing circuits 211, 212, and 213, in addition to an analog / digital converter, a buffer circuit, a storage circuit, a processor, and the like are integrated. It can be an image sensor. Further, in the process of laminating the processing substrates 200, 201, and 202, the light receiving surface of the light receiving substrate 100 is covered with the support substrate 110, and thus occurs due to a thinning process of the support substrate 210 of the processing substrates 200, 201, and 202. This prevents dust from remaining on the surface of the light receiving substrate 100 from affecting the performance of the image sensor.

なお、積層半導体装置401の製造過程においても、処理基板201、202の積層段階、積層基板300,301の積層段階のそれぞれの前後にアニール処理をしてもよい。しかしながら、個々の積層基板300、301を積層する段階ではアニール処理なしに低温で接合し、全ての基板が積層された後に一括してアニール処理してもよい。これにより、初期に積層された基板が繰り返しアニール処理の熱にさらされることが防止される。   Also in the manufacturing process of the laminated semiconductor device 401, annealing may be performed before and after each of the lamination stage of the processing substrates 201 and 202 and the lamination stage of the lamination substrates 300 and 301. However, at the stage of laminating the individual laminated substrates 300 and 301, bonding may be performed at a low temperature without annealing, and annealing may be performed collectively after all the substrates have been laminated. This prevents the substrate laminated in the initial stage from being exposed to the heat of the annealing process repeatedly.

図20は、更に他の積層基板303の断面図である。積層基板303は、図5に示した状態の積層基板300に、複数の処理基板201を1枚ずつ順次積層して形成される。即ち、支持基板110を残した状態の積層基板300に対して、支持基板210を薄化する前の処理基板201を接合し、支持基板210を薄化し、バンプ220を形成する段階を繰り返すことにより、多層の積層基板303を形成できる。   FIG. 20 is a cross-sectional view of still another laminated substrate 303. The multilayer substrate 303 is formed by sequentially laminating a plurality of processing substrates 201 one by one on the multilayer substrate 300 in the state shown in FIG. That is, by repeating the steps of bonding the processing substrate 201 before thinning the support substrate 210 to the laminated substrate 300 with the support substrate 110 left, thinning the support substrate 210, and forming the bumps 220. A multilayer laminated substrate 303 can be formed.

上記のように、積層基板303の製造過程においては、処理基板201を1枚ずつ順次積層していくので、要求仕様に応じて任意の数の処理基板201を積層することができる。なお、図14から図16までに示したように予め作製した積層基板301を更に他の基板に積層する手順と、図20に示すように、処理基板201を一枚ずつ積層する手順とを混在させて、更に大規模な積層半導体装置を製造してもよい。   As described above, since the processing substrates 201 are sequentially stacked one by one in the manufacturing process of the multilayer substrate 303, any number of processing substrates 201 can be stacked according to the required specifications. 14 to 16, a procedure for stacking a prefabricated multilayer substrate 301 on another substrate and a procedure for stacking the processing substrates 201 one by one as shown in FIG. 20 are mixed. Thus, a larger scale semiconductor device may be manufactured.

また、この積層過程においては、受光基板100の受光面を支持基板110に覆った状態のまま、処理基板201の積層と薄化を繰り返すことができる。よって、処理基板201における支持基板210の薄化処理等により生じた塵芥が受光基板100の表面に残留してイメージセンサとしての性能に影響を与えることが防止される。   In this stacking process, the stacking and thinning of the processing substrate 201 can be repeated while the light receiving surface of the light receiving substrate 100 is covered with the support substrate 110. Therefore, dust generated by the thinning process of the support substrate 210 in the processing substrate 201 is prevented from remaining on the surface of the light receiving substrate 100 and affecting the performance as an image sensor.

これにより、研磨等の薄化処理で一時的に使用されるダミー基板を用いることなく、多層の積層半導体装置を製造できる。よって、積層半導体装置を製造する場合の工数を低減できると共に、破棄されるダミー基板の消費を抑制できる。   Thereby, a multilayer laminated semiconductor device can be manufactured without using a dummy substrate temporarily used in a thinning process such as polishing. Therefore, it is possible to reduce the man-hour when manufacturing the laminated semiconductor device and to suppress the consumption of the discarded dummy substrate.

なお、上記のような積層基板303を作製する場合も、個々の積層段階ではアニール処理なしに低温で接合し、全ての基板が積層された後に一括してアニール処理してもよい。これにより、初期に積層された基板が繰り返しアニール処理の熱にさらされることが防止される。   Even when the laminated substrate 303 as described above is manufactured, the individual layers may be bonded at a low temperature without annealing, and may be annealed collectively after all the substrates are laminated. This prevents the substrate laminated in the initial stage from being exposed to the heat of the annealing process repeatedly.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

100 受光基板、110 支持基板、111 受光回路、120 絶縁層、130、230 半導体ウェル、132 フォトダイオード、140、240 ゲート電極、150、250 多層配線層、152、252 層間絶縁材、154、254 配線材、160、260 接続パッド、170 遮光層、172 平坦化層、174、182 有機平坦化層、180 オンチップカラーフィルタ、190 オンチップレンズ、200、201、202 処理基板、210 支持基板、211、212、213 処理回路、220 バンプ、256 貫通電極、300、301、302、303 積層基板、400、401 積層半導体装置 100 light receiving substrate, 110 supporting substrate, 111 light receiving circuit, 120 insulating layer, 130, 230 semiconductor well, 132 photodiode, 140, 240 gate electrode, 150, 250 multilayer wiring layer, 152, 252 interlayer insulating material, 154, 254 wiring Material, 160, 260 connection pad, 170 light shielding layer, 172 planarization layer, 174, 182 organic planarization layer, 180 on-chip color filter, 190 on-chip lens, 200, 201, 202 processing substrate, 210 support substrate, 211, 212, 213 processing circuit, 220 bump, 256 through electrode, 300, 301, 302, 303 laminated substrate, 400, 401 laminated semiconductor device

Claims (12)

受光素子を含む受光回路を有する受光基板と、前記受光回路から受けた信号を処理する処理回路を有する処理基板とを積層して積層半導体装置を製造する製造方法であって、
前記受光回路側の面と前記処理回路側の面とを向い合せて前記受光基板および前記処理基板を積層する異種基板積層段階と、
前記異種基板積層段階よりも後に前記受光基板を薄化する受光基板薄化段階と
を備える積層半導体装置製造方法。
A manufacturing method for manufacturing a laminated semiconductor device by laminating a light receiving substrate having a light receiving circuit including a light receiving element and a processing substrate having a processing circuit for processing a signal received from the light receiving circuit,
A heterogeneous substrate stacking step of stacking the light receiving substrate and the processing substrate with the light receiving circuit side surface facing the processing circuit side surface;
A method for manufacturing a laminated semiconductor device, comprising: a light receiving substrate thinning step of thinning the light receiving substrate after the dissimilar substrate stacking step.
前記受光基板薄化段階よりも前に、前記処理基板を薄化する処理基板薄化段階を更に有する請求項1に記載の積層半導体装置製造方法。   The method for manufacturing a laminated semiconductor device according to claim 1, further comprising a process substrate thinning step of thinning the processing substrate before the light receiving substrate thinning step. 前記処理基板薄化段階よりも後であって、前記受光基板薄化段階よりも前に、前記積層された前記受光基板および前記処理基板を一括してアニール処理する段階を更に備える請求項2に記載の積層半導体装置製造方法。   3. The method according to claim 2, further comprising a step of collectively annealing the stacked light receiving substrate and the processing substrate after the processing substrate thinning step and before the light receiving substrate thinning step. The laminated semiconductor device manufacturing method according to claim. 前記異種基板積層段階よりも前に、前記処理回路に接続される他の処理回路を有する他の処理基板を、前記処理回路を有する前記処理基板に積層する処理基板積層段階を更に含む請求項1から請求項3までのいずれか一項に記載の積層半導体装置製造方法。   The process substrate laminating step of laminating another processing substrate having another processing circuit connected to the processing circuit on the processing substrate having the processing circuit before the heterogeneous substrate laminating step. The method for manufacturing a laminated semiconductor device according to any one of claims 1 to 3. 前記処理基板積層段階よりも後であって、前記異種基板積層段階よりも前に、積層された前記処理基板を一括してアニール処理する段階を更に備える請求項4に記載の積層半導体装置製造方法。   5. The method of manufacturing a laminated semiconductor device according to claim 4, further comprising a step of collectively annealing the processed substrates that are stacked after the processing substrate stacking step and before the dissimilar substrate stacking step. . 前記受光基板薄化段階は、前記受光回路に隣接する絶縁層を支持する支持層を化学機械研磨する研磨段階を含む請求項1から請求項5までのいずれか一項に記載の積層半導体装置製造方法。   6. The laminated semiconductor device manufacturing according to claim 1, wherein the light receiving substrate thinning step includes a polishing step of chemically mechanically polishing a support layer that supports an insulating layer adjacent to the light receiving circuit. Method. 前記受光基板薄化段階は、前記研磨段階の後に、前記絶縁層に到達するまで前記支持層を食刻する食刻段階を含む請求項6に記載の積層半導体装置製造方法。   The method of manufacturing a laminated semiconductor device according to claim 6, wherein the thinning step of the light receiving substrate includes an etching step of etching the support layer until reaching the insulating layer after the polishing step. 前記積層段階の後であって前記受光基板薄化段階の前に、積層された前記受光基板および前記処理基板を一括してアニール処理する段階を更に備える請求項1から請求項7までのいずれか一項に記載の積層半導体装置製造方法。   8. The method according to claim 1, further comprising a step of collectively annealing the stacked light receiving substrate and the processing substrate after the stacking step and before the light receiving substrate thinning step. The method for manufacturing a laminated semiconductor device according to one item. 前記受光基板薄化段階よりも後に、前記積層された前記受光基板および前記処理基板を一括してアニール処理する段階を更に備える請求項1から請求項8までのいずれか一項に記載の積層半導体装置製造方法。   9. The stacked semiconductor according to claim 1, further comprising a step of collectively annealing the stacked light receiving substrate and the processing substrate after the light receiving substrate thinning step. 10. Device manufacturing method. 前記異種基板積層段階よりも前に、他の受光回路を有する他の受光基板を、前記受光基板に積層する受光基板積層段階を更に含む請求項1から請求項9までのいずれか一項に記載の積層半導体装置製造方法。   10. The light receiving substrate stacking step of further stacking another light receiving substrate having another light receiving circuit on the light receiving substrate before the different substrate stacking step. 10. A method for manufacturing a laminated semiconductor device. 前記受光基板積層段階よりも後であって、前記異種基板積層段階よりも前に、前記他の受光基板を薄化する段階を更に含む請求項10に記載の積層半導体装置製造方法。   The method of manufacturing a stacked semiconductor device according to claim 10, further comprising a step of thinning the other light receiving substrate after the light receiving substrate stacking step and before the heterogeneous substrate stacking step. 受光素子を含む受光回路を有する受光基板と、前記受光回路から受けた信号を処理する処理回路を有する処理基板とを積層して積層半導体装置を製造する装置であって、
受光素子を含む受光回路を有する受光基板における前記受光回路側の面と前記受光回路から受けた信号を処理する処理回路を有する処理基板における前記処理回路側の面とを向い合せて前記受光基板および前記処理基板を積層する異種基板積層部と、
異種基板積層部により前記処理基板に積層された前記受光基板において、前記受光基板を薄化する受光基板薄化部と
を備える積層半導体製造装置。
A device for manufacturing a laminated semiconductor device by laminating a light receiving substrate having a light receiving circuit including a light receiving element and a processing substrate having a processing circuit for processing a signal received from the light receiving circuit,
A light receiving substrate having a light receiving circuit including a light receiving element, and a surface on the light receiving circuit side facing a surface on the processing circuit side of a processing substrate having a processing circuit for processing a signal received from the light receiving circuit; A heterogeneous substrate stacking unit for stacking the processing substrates;
A laminated semiconductor manufacturing apparatus, comprising: a light receiving substrate thinned portion for thinning the light receiving substrate in the light receiving substrate laminated on the processing substrate by a heterogeneous substrate laminated portion.
JP2012260135A 2012-11-28 2012-11-28 Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus Pending JP2014107448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260135A JP2014107448A (en) 2012-11-28 2012-11-28 Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260135A JP2014107448A (en) 2012-11-28 2012-11-28 Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014107448A true JP2014107448A (en) 2014-06-09
JP2014107448A5 JP2014107448A5 (en) 2016-01-21

Family

ID=51028670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260135A Pending JP2014107448A (en) 2012-11-28 2012-11-28 Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2014107448A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022207A (en) * 2015-07-08 2017-01-26 キヤノン株式会社 Laminated solid-state imaging device
WO2017141103A1 (en) * 2016-02-16 2017-08-24 G-Ray Switzerland Sa Structures, systems and methods for electrical charge transport across bonded interfaces
JP2018006561A (en) * 2016-06-30 2018-01-11 キヤノン株式会社 Photoelectric conversion device and camera
JP2019068049A (en) * 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensing device and manufacturing method thereof
JP2019140237A (en) * 2018-02-09 2019-08-22 キヤノン株式会社 Photoelectric conversion device and imaging system
WO2019208359A1 (en) * 2018-04-27 2019-10-31 東京エレクトロン株式会社 Substrate processing system and substrate processing method
WO2020022015A1 (en) * 2018-07-25 2020-01-30 株式会社ニコン Joining method and joining device
JP2020065072A (en) * 2016-03-31 2020-04-23 株式会社ニコン Imaging element and imaging apparatus
WO2020121415A1 (en) * 2018-12-11 2020-06-18 ウルトラメモリ株式会社 Method for manufacturing semiconductor module
JP2021184476A (en) * 2014-07-31 2021-12-02 株式会社半導体エネルギー研究所 Imaging device
WO2022158379A1 (en) * 2021-01-22 2022-07-28 キヤノン株式会社 Photoelectric conversion device, photoelectric conversion system, and mobile body
WO2023131994A1 (en) * 2022-01-05 2023-07-13 キヤノン株式会社 Photoelectric conversion device, photoelectric conversion system, and mobile body

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287365A (en) * 1991-03-15 1992-10-12 Sony Corp Manufacture of semiconductor device
JP2001339057A (en) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi Method of manufacturing three-dimensional image processor
JP2004168622A (en) * 2002-11-22 2004-06-17 Kyocera Corp Single crystal sapphire substrate and its manufacturing method
JP2005353996A (en) * 2004-06-14 2005-12-22 Sony Corp Solid-state imaging element and its manufacturing method, and semiconductor device and its manufacturing method
JP2006191081A (en) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Image sensor in which light receiving region is extended and method of manufacturing the same
JP2007228460A (en) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi Stacked semiconductor device with integrated sensor mounted thereon
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
WO2009123261A1 (en) * 2008-04-01 2009-10-08 信越化学工業株式会社 Method for producing soi substrate
US20110115004A1 (en) * 2009-11-16 2011-05-19 International Business Machines Corporation Embedded photodetector apparatus in a 3d cmos chip stack
JP2011523779A (en) * 2008-09-02 2011-08-18 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ Mixed trimming method
JP2012506206A (en) * 2008-10-16 2012-03-08 オムニヴィジョン テクノロジーズ インコーポレイテッド Image sensor having a plurality of sensor layers, and operation and manufacturing method thereof
WO2012155152A1 (en) * 2011-05-12 2012-11-15 Olive Medical Corporation Improved image sensor for endoscopic use

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287365A (en) * 1991-03-15 1992-10-12 Sony Corp Manufacture of semiconductor device
JP2001339057A (en) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi Method of manufacturing three-dimensional image processor
JP2004168622A (en) * 2002-11-22 2004-06-17 Kyocera Corp Single crystal sapphire substrate and its manufacturing method
JP2005353996A (en) * 2004-06-14 2005-12-22 Sony Corp Solid-state imaging element and its manufacturing method, and semiconductor device and its manufacturing method
JP2006191081A (en) * 2004-12-30 2006-07-20 Magnachip Semiconductor Ltd Image sensor in which light receiving region is extended and method of manufacturing the same
JP2007228460A (en) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi Stacked semiconductor device with integrated sensor mounted thereon
JP2009049081A (en) * 2007-08-15 2009-03-05 Nikon Corp Bonding apparatus
WO2009123261A1 (en) * 2008-04-01 2009-10-08 信越化学工業株式会社 Method for producing soi substrate
JP2011523779A (en) * 2008-09-02 2011-08-18 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ Mixed trimming method
JP2012506206A (en) * 2008-10-16 2012-03-08 オムニヴィジョン テクノロジーズ インコーポレイテッド Image sensor having a plurality of sensor layers, and operation and manufacturing method thereof
US20110115004A1 (en) * 2009-11-16 2011-05-19 International Business Machines Corporation Embedded photodetector apparatus in a 3d cmos chip stack
WO2012155152A1 (en) * 2011-05-12 2012-11-15 Olive Medical Corporation Improved image sensor for endoscopic use

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184476A (en) * 2014-07-31 2021-12-02 株式会社半導体エネルギー研究所 Imaging device
JP2017022207A (en) * 2015-07-08 2017-01-26 キヤノン株式会社 Laminated solid-state imaging device
WO2017141103A1 (en) * 2016-02-16 2017-08-24 G-Ray Switzerland Sa Structures, systems and methods for electrical charge transport across bonded interfaces
TWI730053B (en) * 2016-02-16 2021-06-11 瑞士商G射線瑞士公司 Structures, systems and methods for electrical charge transport across bonded interfaces
US20190043914A1 (en) * 2016-02-16 2019-02-07 G-Ray Switzerland Sa Structures, systems and methods for electrical charge transport across bonded interfaces
JP2019511834A (en) * 2016-02-16 2019-04-25 ジーレイ スイッツァーランド エスアー Structures, systems and methods for charge transport across junction interfaces
US10985204B2 (en) 2016-02-16 2021-04-20 G-Ray Switzerland Sa Structures, systems and methods for electrical charge transport across bonded interfaces
US11177312B2 (en) 2016-03-31 2021-11-16 Nikon Corporation Image sensor and image capture device
US11682690B2 (en) 2016-03-31 2023-06-20 Nikon Corporation Image sensor and image capture device
JP2020065072A (en) * 2016-03-31 2020-04-23 株式会社ニコン Imaging element and imaging apparatus
JP2022046686A (en) * 2016-03-31 2022-03-23 株式会社ニコン Imaging element and imaging apparatus
US20200258934A1 (en) 2016-03-31 2020-08-13 Nikon Corporation Image sensor and image capture device
JP7191145B2 (en) 2016-06-30 2022-12-16 キヤノン株式会社 Photoelectric conversion device, lamination substrate and camera
US10778920B2 (en) 2016-06-30 2020-09-15 Canon Kabushiki Kaisha Photoelectric conversion apparatus and camera
JP2021108377A (en) * 2016-06-30 2021-07-29 キヤノン株式会社 Photoelectric conversion device, substrate for lamination, and camera
US11637981B2 (en) 2016-06-30 2023-04-25 Canon Kabushiki Kaisha Photoelectric conversion apparatus and camera
JP2018006561A (en) * 2016-06-30 2018-01-11 キヤノン株式会社 Photoelectric conversion device and camera
US11482564B2 (en) 2017-09-29 2022-10-25 Samsung Electronics Co., Ltd. Image sensing apparatus
JP2019068049A (en) * 2017-09-29 2019-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensing device and manufacturing method thereof
JP2019140237A (en) * 2018-02-09 2019-08-22 キヤノン株式会社 Photoelectric conversion device and imaging system
US11450523B2 (en) 2018-04-27 2022-09-20 Tokyo Electron Limited Substrate processing system with eccentricity detection device and substrate processing method
JPWO2019208359A1 (en) * 2018-04-27 2021-05-13 東京エレクトロン株式会社 Board processing system and board processing method
CN112005341B (en) * 2018-04-27 2024-01-09 东京毅力科创株式会社 Substrate processing system and substrate processing method
JP7109537B2 (en) 2018-04-27 2022-07-29 東京エレクトロン株式会社 Substrate processing system and substrate processing method
WO2019208359A1 (en) * 2018-04-27 2019-10-31 東京エレクトロン株式会社 Substrate processing system and substrate processing method
CN112005341A (en) * 2018-04-27 2020-11-27 东京毅力科创株式会社 Substrate processing system and substrate processing method
KR102478503B1 (en) 2018-07-25 2022-12-19 가부시키가이샤 니콘 Bonding method and bonding device
JPWO2020022015A1 (en) * 2018-07-25 2021-06-10 株式会社ニコン Joining method and joining device
KR20210024078A (en) * 2018-07-25 2021-03-04 가부시키가이샤 니콘 Splicing method and splicing device
JP7147847B2 (en) 2018-07-25 2022-10-05 株式会社ニコン Joining method and joining apparatus
WO2020022015A1 (en) * 2018-07-25 2020-01-30 株式会社ニコン Joining method and joining device
JPWO2020121415A1 (en) * 2018-12-11 2021-02-15 ウルトラメモリ株式会社 Manufacturing method of semiconductor module
WO2020121415A1 (en) * 2018-12-11 2020-06-18 ウルトラメモリ株式会社 Method for manufacturing semiconductor module
CN113272938A (en) * 2018-12-11 2021-08-17 超极存储器股份有限公司 Method for manufacturing semiconductor module
WO2022158379A1 (en) * 2021-01-22 2022-07-28 キヤノン株式会社 Photoelectric conversion device, photoelectric conversion system, and mobile body
WO2023131994A1 (en) * 2022-01-05 2023-07-13 キヤノン株式会社 Photoelectric conversion device, photoelectric conversion system, and mobile body

Similar Documents

Publication Publication Date Title
JP2014107448A (en) Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus
KR101351145B1 (en) Cfa alignment mark formation in image sensors
TWI508235B (en) Chip package and method for forming the same
TWI499047B (en) Methods for forming a semiconductor device and imaging apparatus
WO2013137049A1 (en) Semiconductor device, semiconductor-device manufacturing method, semiconductor wafer, and electronic apparatus
JP4915107B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP2010118397A (en) Camera module and process of manufacturing the same
CN102856336A (en) Chip package and method for forming the same
JP2011035399A (en) CMOS IMAGE SENSOR BIG VIA BONDING PAD APPLICATION FOR AlCu PROCESS
JP2011146486A (en) Optical device, method for manufacturing the same, and electronic apparatus
US8829635B2 (en) Solid-state imaging device, manufacturing method thereof, electronic apparatus, and semiconductor device
TWI620284B (en) Chip package and method for forming the same
JP2012169489A (en) Solid-state imaging device and method of manufacturing the same and electronic apparatus
US9893116B2 (en) Manufacturing method of electronic device and manufacturing method of semiconductor device
CN102903763A (en) Chip package and method for forming the same
TWI442535B (en) Electronics device package and fabrication method thereof
CN104620385B (en) Semiconductor device, the manufacturing method of semiconductor device and electronic device
US8772136B2 (en) Method for fabricating semiconductor device
JP2015095517A (en) Laminate type integrated circuit, and method for manufacturing the same
JP2004063782A (en) Solid-state image sensing device and its manufacturing method
JP2011009389A (en) Solid-state image pickup device and manufacturing method thereof
JP2007059755A (en) Solid-state imaging device and its manufacturing method
US8318579B1 (en) Method for fabricating semiconductor device
JP6300662B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2022120579A (en) Laminated semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170823

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171102