JPH04287365A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04287365A
JPH04287365A JP3075858A JP7585891A JPH04287365A JP H04287365 A JPH04287365 A JP H04287365A JP 3075858 A JP3075858 A JP 3075858A JP 7585891 A JP7585891 A JP 7585891A JP H04287365 A JPH04287365 A JP H04287365A
Authority
JP
Japan
Prior art keywords
film
films
substrate
sin
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3075858A
Other languages
Japanese (ja)
Other versions
JP3419792B2 (en
Inventor
Masahiko Ito
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP07585891A priority Critical patent/JP3419792B2/en
Publication of JPH04287365A publication Critical patent/JPH04287365A/en
Application granted granted Critical
Publication of JP3419792B2 publication Critical patent/JP3419792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor device of high reliability with high yield. CONSTITUTION:When SiN films 13, 17, 33, 35 as the capacitor insulating film of a DRAM and the stopper at the time of wet etching and polycrystalline Si films 25, 31, 32, 34 being conductor films are formed by low pressure CVD, these films are deposited also on the rear side of an Si substrate 21. After these films on the rear side are eliminated by etching or grinding, annealing in a hydrogen atmosphere is performed in order to recover interface level.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本願の発明は、水素の侵入を阻止
する膜を半導体基板の素子形成面上に設ける半導体装置
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which a film for preventing hydrogen from entering is provided on the element formation surface of a semiconductor substrate.

【0002】0002

【従来の技術】図2は、製造過程にある折り返しビット
線構成の積み上げキャパシタ型DRAMを示している。 DRAMではトランジスタ11とキャパシタ12とでメ
モリセルが構成されているが、減圧CVDによって形成
したSiN膜13がキャパシタ絶縁膜として多く用いら
れている。
2. Description of the Related Art FIG. 2 shows a stacked capacitor type DRAM with a folded bit line configuration in the manufacturing process. In a DRAM, a memory cell is composed of a transistor 11 and a capacitor 12, and a SiN film 13 formed by low pressure CVD is often used as a capacitor insulating film.

【0003】また、図2に示す様に、メモリセル部14
では多層の導電膜を用いるが、周辺回路部15では導電
膜の層数が少ない。このため、周辺回路部15の段差を
緩和するために、BPSG膜16等の層間絶縁膜を周辺
回路部15においてのみウェットエッチングで除去する
。そして、この時のストッパとしても、減圧CVDによ
って形成したSiN膜17が用いられている。
Furthermore, as shown in FIG. 2, the memory cell section 14
Although a multilayer conductive film is used in this embodiment, the number of conductive film layers in the peripheral circuit section 15 is small. Therefore, in order to reduce the level difference in the peripheral circuit section 15, the interlayer insulating film such as the BPSG film 16 is removed only in the peripheral circuit section 15 by wet etching. The SiN film 17 formed by low pressure CVD is also used as a stopper at this time.

【0004】更に、減圧CVDによって形成したSiN
膜は、非常に緻密であるので、汚染防止膜としても用い
られる。
Furthermore, SiN formed by low pressure CVD
Since the membrane is very dense, it is also used as an anti-fouling membrane.

【0005】[0005]

【発明が解決しようとする課題】ところが、図2からも
明らかな様に、SiN膜13、17はSi基板21の略
全面を覆っている。しかも、SiN膜13、17は減圧
CVDによって形成するので、これらのSiN膜13、
17はSi基板21の裏面側をも覆っている。一方、減
圧CVDによって形成したSiN膜13、17は、既述
の様に非常に緻密であるので、水素の侵入をも阻止する
However, as is clear from FIG. 2, the SiN films 13 and 17 cover substantially the entire surface of the Si substrate 21. Moreover, since the SiN films 13 and 17 are formed by low pressure CVD, these SiN films 13,
17 also covers the back side of the Si substrate 21. On the other hand, the SiN films 13 and 17 formed by low-pressure CVD are very dense as described above, so they also prevent hydrogen from entering.

【0006】このため、フィールド酸化膜であるSiO
2 膜22やゲート酸化膜であるSiO2 膜23等と
Si基板21との間の界面凖位を回復させるために、水
素雰囲気中でアニールを行っても、この回復が十分には
行われない。
For this reason, the field oxide film SiO
Even if annealing is performed in a hydrogen atmosphere to recover the interface level between the Si substrate 21 and the SiO2 film 22 or the gate oxide film 23, this recovery is not sufficient.

【0007】この結果、トランジスタ11のソース・ド
レインの一方であるN+ 拡散層24とP型のSi基板
21との間でPN接合が形成されているにも拘らず、S
iO2 膜22とSi基板21との間の界面凖位を介し
てN+ 拡散層24からSi基板21へリーク電流が流
れ、DRAMのデータ保持特性が悪化する。
As a result, although a PN junction is formed between the N+ diffusion layer 24, which is one of the source and drain of the transistor 11, and the P-type Si substrate 21, the S
A leakage current flows from the N+ diffusion layer 24 to the Si substrate 21 via the interface level between the iO2 film 22 and the Si substrate 21, deteriorating the data retention characteristics of the DRAM.

【0008】また、SiO2 膜23とSi基板21と
の間の界面凖位のために、VG −ID 特性等のトラ
ンジスタ11の特性が設計値から変動する。なお、以上
の様な現象は、DRAMに限らず、一般の半導体装置に
ついても生ずる。従って、従来の方法では、信頼性の高
い半導体装置を高い歩留りで製造することができなかっ
た。
Furthermore, due to the level of the interface between the SiO2 film 23 and the Si substrate 21, the characteristics of the transistor 11, such as the VG-ID characteristics, vary from the designed values. Note that the above phenomenon occurs not only in DRAMs but also in general semiconductor devices. Therefore, with conventional methods, it has been impossible to manufacture highly reliable semiconductor devices with a high yield.

【0009】[0009]

【課題を解決するための手段】請求項1の半導体装置の
製造方法は、水素の侵入を阻止する膜13、17、33
、35のうちで半導体基板21の素子11、12形成面
とは反対の面側に付着した前記膜13、17、33、3
5をエッチングで除去した後に水素雰囲気中で前記半導
体基板21をアニールする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to claim 1 provides that films 13, 17, 33 that prevent hydrogen from entering
, 35, the films 13, 17, 33, 3 attached to the side of the semiconductor substrate 21 opposite to the surface on which the elements 11, 12 are formed.
After removing the semiconductor substrate 21 by etching, the semiconductor substrate 21 is annealed in a hydrogen atmosphere.

【0010】請求項2の半導体装置の製造方法は、水素
の侵入を阻止する膜13、17、33、35のうちで半
導体基板21の素子11、12形成面とは反対の面側に
付着した前記膜13、17、33、35を研削で除去し
た後に水素雰囲気中で前記半導体基板21をアニールす
る。
[0010] In the method of manufacturing a semiconductor device according to claim 2, one of the films 13, 17, 33, and 35 for preventing hydrogen infiltration is attached to the surface of the semiconductor substrate 21 opposite to the surface on which the elements 11 and 12 are formed. After removing the films 13, 17, 33, and 35 by grinding, the semiconductor substrate 21 is annealed in a hydrogen atmosphere.

【0011】[0011]

【作用】請求項1及び2の何れの半導体装置の製造方法
でも、半導体基板21の素子11、12形成面とは反対
の面から水素が導入され、素子11、12の膜の構成を
何ら変更することなく界面凖位を十分に回復させること
ができる。
[Operation] In the method for manufacturing a semiconductor device according to any one of claims 1 and 2, hydrogen is introduced from the surface of the semiconductor substrate 21 opposite to the surface on which the elements 11 and 12 are formed, and the structure of the film of the elements 11 and 12 is not changed in any way. The interfacial position can be fully recovered without causing any damage.

【0012】請求項1の半導体装置の製造方法では、膜
13、17、33、35の除去もクリーンルーム内で行
うことができるので、半導体基板21の汚染が少ない。
In the method for manufacturing a semiconductor device according to the first aspect, since the films 13, 17, 33, and 35 can also be removed in a clean room, contamination of the semiconductor substrate 21 is reduced.

【0013】請求項2の半導体装置の製造方法では、半
導体基板21の素子11、12形成面とは反対の面側の
研削はパッケージングの前工程として一般に行われてい
るので、膜13、17、33、35の除去のために追加
的な工程を必要としない。しかも、研削によって半導体
基板21に生ずる損傷も、その後のアニールによって回
復させることができる。
In the method for manufacturing a semiconductor device according to the second aspect, since grinding of the surface of the semiconductor substrate 21 opposite to the surface on which the elements 11 and 12 are formed is generally performed as a pre-packaging process, the films 13 and 17 are , 33, 35 does not require any additional steps. Moreover, damage caused to the semiconductor substrate 21 by grinding can be recovered by subsequent annealing.

【0014】[0014]

【実施例】以下、折り返しビット線構成の積み上げキャ
パシタ型DRAMの製造に適用した本願の発明の第1及
び第2実施例を、図1を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention applied to the manufacture of a stacked capacitor type DRAM having a folded bit line configuration will be described below with reference to FIG.

【0015】第1実施例では、図1(a)に示す様に、
Si基板21の素子分離領域の表面にフィールド酸化膜
であるSiO2 膜22を形成し、活性領域の表面にゲ
ート酸化膜であるSiO2 膜23を形成する。
In the first embodiment, as shown in FIG. 1(a),
An SiO2 film 22, which is a field oxide film, is formed on the surface of the element isolation region of the Si substrate 21, and an SiO2 film 23, which is a gate oxide film, is formed on the surface of the active region.

【0016】そして、リンをドープした第1層目の多結
晶Si膜25によってワード線つまりトランジスタ11
のゲート電極を形成し、多結晶Si膜25の両側の活性
領域中にトランジスタ11のソース・ドレインであるN
+ 拡散層24、26を形成する。多結晶Si膜25は
、層間絶縁膜であるSiO2 膜27で覆う。
The first layer of polycrystalline Si film 25 doped with phosphorus is used to form word lines, that is, transistors 11
N gate electrodes, which are the source and drain of the transistor 11, are formed in the active region on both sides of the polycrystalline Si film 25.
+ Form diffusion layers 24 and 26. The polycrystalline Si film 25 is covered with a SiO2 film 27 which is an interlayer insulating film.

【0017】その後、リンをドープした第2層目の多結
晶Si膜31とSiN膜13とリンをドープした第3層
目の多結晶Si膜32とで、キャパシタ12の記憶ノー
ドとキャパシタ絶縁膜と対向電極とを夫々形成する。
After that, the storage node of the capacitor 12 and the capacitor insulating film are formed by the second layer of polycrystalline Si film 31 doped with phosphorus, the SiN film 13, and the third layer of polycrystalline Si film 32 doped with phosphorus. and a counter electrode, respectively.

【0018】次に、ウェットエッチングのストッパにな
るSiN膜17で多結晶Si膜32を覆い、層間絶縁膜
であるBPSG膜16をSiN膜17上に形成する。B
PSG膜16は、図2に示した様に、周辺回路部15で
はウェットエッチングによって除去する。
Next, the polycrystalline Si film 32 is covered with a SiN film 17 that serves as a wet etching stopper, and a BPSG film 16 that is an interlayer insulating film is formed on the SiN film 17. B
The PSG film 16 is removed by wet etching in the peripheral circuit section 15, as shown in FIG.

【0019】その後、BPSG膜16をSiN膜33で
覆い、リンをドープした第4層目の多結晶Si膜34に
よってビット線を形成する。そして更に、ウェットエッ
チングのストッパになるSiN膜35で多結晶Si膜3
4を覆い、層間絶縁膜であるBPSG膜36をSiN膜
35上に形成する。このBPSG膜36も、周辺回路部
15ではウェットエッチングによって除去する。
Thereafter, the BPSG film 16 is covered with a SiN film 33, and a bit line is formed using a fourth layer of polycrystalline Si film 34 doped with phosphorus. Furthermore, a polycrystalline Si film 3 is formed with an SiN film 35 that serves as a wet etching stopper.
A BPSG film 36, which is an interlayer insulating film, is formed on the SiN film 35 to cover the SiN film 4. This BPSG film 36 is also removed by wet etching in the peripheral circuit section 15.

【0020】次いで、BPSG膜36上にAl配線37
を形成し、プラズマCVDによって形成したSiN膜で
あるP−SiN膜38でAl配線37を覆う。従って、
このP−SiN膜38は表面保護膜になっている。
Next, Al wiring 37 is formed on the BPSG film 36.
The Al wiring 37 is covered with a P-SiN film 38 which is a SiN film formed by plasma CVD. Therefore,
This P-SiN film 38 serves as a surface protection film.

【0021】ところで、この第1実施例においても、多
結晶Si膜25、31、32、34やSiN膜13、1
7、33、35を減圧CVDによって形成した後は、図
1(a)に示す様に、Si基板21の裏面側にもこれら
の膜が堆積している。
By the way, also in this first embodiment, the polycrystalline Si films 25, 31, 32, 34 and the SiN films 13, 1
After forming the films 7, 33, and 35 by low pressure CVD, these films are also deposited on the back side of the Si substrate 21, as shown in FIG. 1(a).

【0022】そこで、この第1実施例では、Si基板2
1の表面側をレジスト(図示せず)で覆って保護した状
態で、Si基板21の裏面側をドライエッチングするこ
とによって、図1(b)に示す様に、Si基板21の裏
面側のSiN膜35、33、17、13と多結晶Si膜
34、32、31、25とを除去する。その後、水素雰
囲気中でアニールを行って、既述の界面凖位を回復させ
る。
Therefore, in this first embodiment, the Si substrate 2
By dry etching the back side of the Si substrate 21 while the front side of the Si substrate 1 is protected by covering it with a resist (not shown), SiN on the back side of the Si substrate 21 is removed, as shown in FIG. 1(b). Films 35, 33, 17, 13 and polycrystalline Si films 34, 32, 31, 25 are removed. Thereafter, annealing is performed in a hydrogen atmosphere to restore the above-mentioned interface position.

【0023】Si基板21の裏面側のドライエッチング
は、水素雰囲気中でのアニールの直前に行ってもよく、
夫々の膜を堆積させた直後に各々別個に行ってもよい。
Dry etching on the back side of the Si substrate 21 may be performed immediately before annealing in a hydrogen atmosphere.
Each may be performed separately immediately after each film is deposited.

【0024】なお、この第1実施例では、Si基板21
の裏面側において、水素の侵入を阻止するSiN膜35
、33、17、13のみならず、リンがドープされてい
る多結晶Si膜34、32、31、25をも除去してい
る。従って、これらの多結晶Si膜25、31、32、
34からSi基板21へのリンのオートドーピングを防
止することもできる。
Note that in this first embodiment, the Si substrate 21
SiN film 35 to prevent hydrogen from entering on the back side of the
, 33, 17, and 13, but also the polycrystalline Si films 34, 32, 31, and 25 doped with phosphorus are removed. Therefore, these polycrystalline Si films 25, 31, 32,
It is also possible to prevent autodoping of phosphorus from 34 into the Si substrate 21.

【0025】次に、第2実施例を説明する。第2実施例
も、図1(a)に示した状態までは上述の第1実施例と
同様の工程を実行して、DRAMを製造する。しかし、
この第2実施例では、Si基板21の裏面側のSiN膜
35、33、17、13と多結晶Si膜34、32、3
1、25との除去を、エッチングではなく研削によって
行う。
Next, a second embodiment will be explained. In the second embodiment, a DRAM is manufactured by performing the same steps as in the first embodiment up to the state shown in FIG. 1(a). but,
In this second embodiment, SiN films 35, 33, 17, 13 on the back side of the Si substrate 21 and polycrystalline Si films 34, 32, 3
1 and 25 are removed by grinding rather than etching.

【0026】但しこの研削は、第2実施例に追加的な工
程ではなく、パッケージングに際してSi基板21の厚
さを調整するために一般に行われている工程と兼用して
いる。しかし、この第2実施例では、既述の界面凖位を
回復させるための水素雰囲気中でのアニールをこの研削
後に行う。
However, this grinding is not an additional process to the second embodiment, but is also used as a process generally performed to adjust the thickness of the Si substrate 21 during packaging. However, in this second embodiment, annealing in a hydrogen atmosphere is performed after this grinding in order to restore the above-mentioned interface position.

【0027】なお、以上の第1及び第2実施例の何れに
おいても、減圧CVDによって形成したSiN膜13、
17、33、35が、水素の侵入を阻止する膜になって
いる。しかし、リンが高濃度にドープされている多結晶
Si膜も、水素に対するゲッタリング能力を有している
ので、水素の侵入を阻止する膜となり得る。
Note that in both the first and second embodiments described above, the SiN film 13 formed by low pressure CVD,
17, 33, and 35 are films that prevent hydrogen from entering. However, a polycrystalline Si film doped with phosphorus at a high concentration also has a gettering ability for hydrogen, so it can be used as a film that prevents hydrogen from entering.

【0028】また、上述の第1及び第2実施例の何れも
折り返しビット線構成の積み上げキャパシタ型DRAM
の製造に本発明を適用したものであるが、本発明は他の
型のDRAMや論理LSI等の製造にも適用することが
できる。
Furthermore, both of the first and second embodiments described above are stacked capacitor type DRAMs having a folded bit line configuration.
The present invention is applied to the manufacture of other types of DRAMs, logic LSIs, etc.

【0029】[0029]

【発明の効果】請求項1の半導体装置の製造方法では、
素子の膜の構成を何ら変更することなく界面凖位を十分
に回復させることができ、しかも半導体基板の汚染が少
ないので、信頼性の高い半導体装置を高い歩留りで製造
することができる。
Effects of the Invention In the method for manufacturing a semiconductor device according to claim 1,
Since the interface level can be sufficiently restored without changing the structure of the film of the element, and there is little contamination of the semiconductor substrate, highly reliable semiconductor devices can be manufactured at a high yield.

【0030】請求項2の半導体装置の製造方法では、素
子の膜の構成を何ら変更することなく界面凖位を十分に
回復させることができ、しかも研削によって半導体基板
に生ずる損傷も回復させることができ、更に膜の除去の
ために追加的な工程を必要としないので、信頼性の高い
半導体装置を高い歩留りで且つ少ない工程で製造するこ
とができる。
In the method for manufacturing a semiconductor device according to claim 2, the interface level can be sufficiently recovered without changing the structure of the film of the element, and damage caused to the semiconductor substrate by grinding can also be recovered. Furthermore, since no additional process is required for film removal, highly reliable semiconductor devices can be manufactured with a high yield and with a small number of processes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本願の発明の第1及び第2実施例を順次に示す
側断面図である。
FIG. 1 is a side sectional view sequentially showing a first and second embodiment of the invention of the present application.

【図2】本願の発明の前提条件を示す側断面図である。FIG. 2 is a side sectional view showing the prerequisites for the invention of the present application.

【符号の説明】[Explanation of symbols]

11    トランジスタ 12    キャパシタ 13    SiN膜 17    SiN膜 21    Si基板 33    SiN膜 35    SiN膜 11 Transistor 12 Capacitor 13 SiN film 17 SiN film 21 Si substrate 33 SiN film 35 SiN film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素の侵入を阻止する膜を半導体基板の素
子形成面上に設ける半導体装置の製造方法において、前
記素子形成面とは反対の面側に付着した前記膜をエッチ
ングで除去した後に水素雰囲気中で前記半導体基板をア
ニールする半導体装置の製造方法。
1. A method for manufacturing a semiconductor device in which a film for preventing hydrogen from entering is provided on an element formation surface of a semiconductor substrate, after the film attached to the surface opposite to the element formation surface is removed by etching. A method for manufacturing a semiconductor device, comprising annealing the semiconductor substrate in a hydrogen atmosphere.
【請求項2】水素の侵入を阻止する膜を半導体基板の素
子形成面上に設ける半導体装置の製造方法において、前
記素子形成面とは反対の面側に付着した前記膜を研削で
除去した後に水素雰囲気中で前記半導体基板をアニール
する半導体装置の製造方法。
2. A method for manufacturing a semiconductor device in which a film that prevents hydrogen from entering is provided on an element formation surface of a semiconductor substrate, after the film attached to the surface opposite to the element formation surface is removed by grinding. A method for manufacturing a semiconductor device, comprising annealing the semiconductor substrate in a hydrogen atmosphere.
JP07585891A 1991-03-15 1991-03-15 Method for manufacturing semiconductor device Expired - Lifetime JP3419792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07585891A JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07585891A JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04287365A true JPH04287365A (en) 1992-10-12
JP3419792B2 JP3419792B2 (en) 2003-06-23

Family

ID=13588360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07585891A Expired - Lifetime JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3419792B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
KR100319168B1 (en) * 1999-12-30 2002-01-04 박종섭 A method for fabricating a semiconductor device
US6468826B1 (en) 1998-06-24 2002-10-22 Nec Corporation Solid state image sensor using an intermediate refractive index antireflection film and method for fabricating the same
JP2005136149A (en) * 2003-10-30 2005-05-26 Nippon Precision Circuits Inc Method for manufacturing semiconductor device
US6921964B2 (en) 2001-02-08 2005-07-26 Seiko Epson Corporation Semiconductor device having a non-volatile memory transistor formed on a semiconductor
JP2014107448A (en) * 2012-11-28 2014-06-09 Nikon Corp Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468826B1 (en) 1998-06-24 2002-10-22 Nec Corporation Solid state image sensor using an intermediate refractive index antireflection film and method for fabricating the same
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
KR100319168B1 (en) * 1999-12-30 2002-01-04 박종섭 A method for fabricating a semiconductor device
US6921964B2 (en) 2001-02-08 2005-07-26 Seiko Epson Corporation Semiconductor device having a non-volatile memory transistor formed on a semiconductor
JP2005136149A (en) * 2003-10-30 2005-05-26 Nippon Precision Circuits Inc Method for manufacturing semiconductor device
JP2014107448A (en) * 2012-11-28 2014-06-09 Nikon Corp Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP3419792B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
JP3098474B2 (en) Method for manufacturing semiconductor device
US5518947A (en) Method of forming a semiconductor memory device having silicon nitride overlying only in peripheral circuit area
US4760034A (en) Method of forming edge-sealed multi-layer structure while protecting adjacent region by screen oxide layer
JP3068568B2 (en) Method of forming an integrated circuit
KR100754442B1 (en) Semiconductor device and fabricating method thereof
US20080251824A1 (en) Semiconductor memory device and manufacturing method thereof
JP2002141482A (en) Semiconductor device and manufacturing method thereof
JP3419792B2 (en) Method for manufacturing semiconductor device
JP4099442B2 (en) Improved contacts for memory cells
JP4053702B2 (en) Semiconductor memory device and manufacturing method thereof
JP2001284534A (en) Circuit manufacturing method and circuit device
US20020037638A1 (en) Semiconductor device and method for forming the same
JPWO2005117120A1 (en) Semiconductor device and manufacturing method thereof
JP3592870B2 (en) Method for manufacturing semiconductor device
JP2008205237A (en) Method of manufacturing semiconductor device, semiconductor device, and semiconductor wafer structure
JPH08203872A (en) Formation of contact hole and semiconductor device
JP4798979B2 (en) Manufacturing method of ferroelectric memory
JPH1197647A (en) Capacitor and manufacture of the same
JPH09246492A (en) Semiconductor memory device and method of manufacture
KR100240249B1 (en) A fabricating method of semiconductor device having different gate oxides and gate electrode
JP3201991B2 (en) Semiconductor device and manufacturing method thereof
JPS61129872A (en) Manufacture of semiconductor device
JPH07176606A (en) Semiconductor device and fabrication thereof
JPH05109983A (en) Semiconductor device and its manufacture
JP4787152B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

EXPY Cancellation because of completion of term