JP3419792B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3419792B2
JP3419792B2 JP07585891A JP7585891A JP3419792B2 JP 3419792 B2 JP3419792 B2 JP 3419792B2 JP 07585891 A JP07585891 A JP 07585891A JP 7585891 A JP7585891 A JP 7585891A JP 3419792 B2 JP3419792 B2 JP 3419792B2
Authority
JP
Japan
Prior art keywords
film
substrate
sin
films
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07585891A
Other languages
Japanese (ja)
Other versions
JPH04287365A (en
Inventor
政彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP07585891A priority Critical patent/JP3419792B2/en
Publication of JPH04287365A publication Critical patent/JPH04287365A/en
Application granted granted Critical
Publication of JP3419792B2 publication Critical patent/JP3419792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本願の発明は、水素の侵入を阻止
する膜を半導体基板の素子形成面上に設ける半導体装置
の製造方法に関するものである。 【0002】 【従来の技術】図2は、製造過程にある折り返しビット
線構成の積み上げキャパシタ型DRAMを示している。
DRAMではトランジスタ11とキャパシタ12とでメ
モリセルが構成されているが、減圧CVDによって形成
したSiN膜13がキャパシタ絶縁膜として多く用いら
れている。 【0003】また、図2に示す様に、メモリセル部14
では多層の導電膜を用いるが、周辺回路部15では導電
膜の層数が少ない。このため、周辺回路部15の段差を
緩和するために、BPSG膜16等の層間絶縁膜を周辺
回路部15においてのみウェットエッチングで除去す
る。そして、この時のストッパとしても、減圧CVDに
よって形成したSiN膜17が用いられている。 【0004】更に、減圧CVDによって形成したSiN
膜は、非常に緻密であるので、汚染防止膜としても用い
られる。 【0005】 【発明が解決しようとする課題】ところが、図2からも
明らかな様に、SiN膜13、17はSi基板21の略
全面を覆っている。しかも、SiN膜13、17は減圧
CVDによって形成するので、これらのSiN膜13、
17はSi基板21の裏面側をも覆っている。一方、減
圧CVDによって形成したSiN膜13、17は、既述
の様に非常に緻密であるので、水素の侵入をも阻止す
る。 【0006】このため、フィールド酸化膜であるSiO
2 膜22やゲート酸化膜であるSiO2 膜23等とSi
基板21との間の界面凖位を回復させるために、水素雰
囲気中でアニールを行っても、この回復が十分には行わ
れない。 【0007】この結果、トランジスタ11のソース・ド
レインの一方であるN+ 拡散層24とP型のSi基板2
1との間でPN接合が形成されているにも拘らず、Si
2 膜22とSi基板21との間の界面凖位を介してN
+ 拡散層24からSi基板21へリーク電流が流れ、D
RAMのデータ保持特性が悪化する。 【0008】また、SiO2 膜23とSi基板21との
間の界面凖位のために、VG −ID 特性等のトランジス
タ11の特性が設計値から変動する。なお、以上の様な
現象は、DRAMに限らず、一般の半導体装置について
も生ずる。従って、従来の方法では、信頼性の高い半導
体装置を高い歩留りで製造することができなかった。 【0009】 【課題を解決するための手段】請求項1の半導体装置の
製造方法は、半導体基板21のうちで素子11、12が
形成された素子11、12形成面上に水素の侵入を阻止
する膜13、17、33、35を設ける半導体装置の製
造方法において、前記素子11、12形成面とは反対の
面側に付着した前記膜13、17、33、35と前記半
導体基板21とをこの半導体基板21が所望の厚さにな
るまで研削で除去し、その後に水素雰囲気中で前記半導
体基板21をアニールする。 【0010】 【作用】請求項1の半導体装置の製造方法で、半導体
基板21の素子11、12形成面とは反対の面から水素
が導入され、素子11、12の膜の構成を何ら変更する
ことなく界面凖位を十分に回復させることができる。 【0011】また、半導体基板21が所望の厚さになる
までの半導体基板21の素子11、12形成面とは反対
の面側の研削はパッケージングの前工程として一般に行
われているので、膜13、17、33、35の除去のた
めに追加的な工程を必要としない。しかも、研削によっ
て半導体基板21に生ずる損傷も、その後のアニールに
よって回復させることができる。 【0012】 【実施例】以下、折り返しビット線構成の積み上げキャ
パシタ型DRAMの製造に適用した本願の発明の参考例
及び実施例を、図1を参照しながら説明する。 【0013】参考例では、図1(a)に示す様に、Si
基板21の素子分離領域の表面にフィールド酸化膜であ
るSiO2 膜22を形成し、活性領域の表面にゲート酸
化膜であるSiO2 膜23を形成する。 【0014】そして、リンをドープした第1層目の多結
晶Si膜25によってワード線つまりトランジスタ11
のゲート電極を形成し、多結晶Si膜25の両側の活性
領域中にトランジスタ11のソース・ドレインであるN
+ 拡散層24、26を形成する。多結晶Si膜25は、
層間絶縁膜であるSiO2 膜27で覆う。 【0015】その後、リンをドープした第2層目の多結
晶Si膜31とSiN膜13とリンをドープした第3層
目の多結晶Si膜32とで、キャパシタ12の記憶ノー
ドとキャパシタ絶縁膜と対向電極とを夫々形成する。 【0016】次に、ウェットエッチングのストッパにな
るSiN膜17で多結晶Si膜32を覆い、層間絶縁膜
であるBPSG膜16をSiN膜17上に形成する。B
PSG膜16は、図2に示した様に、周辺回路部15で
はウェットエッチングによって除去する。 【0017】その後、BPSG膜16をSiN膜33で
覆い、リンをドープした第4層目の多結晶Si膜34に
よってビット線を形成する。そして更に、ウェットエッ
チングのストッパになるSiN膜35で多結晶Si膜3
4を覆い、層間絶縁膜であるBPSG膜36をSiN膜
35上に形成する。このBPSG膜36も、周辺回路部
15ではウェットエッチングによって除去する。 【0018】次いで、BPSG膜36上にAl配線37
を形成し、プラズマCVDによって形成したSiN膜で
あるP−SiN膜38でAl配線37を覆う。従って、
このP−SiN膜38は表面保護膜になっている。 【0019】ところで、この参考例においても、多結晶
Si膜25、31、32、34やSiN膜13、17、
33、35を減圧CVDによって形成した後は、図1
(a)に示す様に、Si基板21の裏面側にもこれらの
膜が堆積している。 【0020】そこで、この参考例では、Si基板21の
表面側をレジスト(図示せず)で覆って保護した状態
で、Si基板21の裏面側をドライエッチングすること
によって、図1(b)に示す様に、Si基板21の裏面
側のSiN膜35、33、17、13と多結晶Si膜3
4、32、31、25とを除去する。その後、水素雰囲
気中でアニールを行って、既述の界面凖位を回復させ
る。 【0021】Si基板21の裏面側のドライエッチング
は、水素雰囲気中でのアニールの直前に行ってもよく、
夫々の膜を堆積させた直後に各々別個に行ってもよい。 【0022】なお、この参考例では、Si基板21の裏
面側において、水素の侵入を阻止するSiN膜35、3
3、17、13のみならず、リンがドープされている多
結晶Si膜34、32、31、25をも除去している。
従って、これらの多結晶Si膜25、31、32、34
からSi基板21へのリンのオートドーピングを防止す
ることもできる。 【0023】次に、実施例を説明する。この一実施例
も、図1(a)に示した状態までは上述の参考例と同様
の工程を実行して、DRAMを製造する。しかし、この
実施例では、Si基板21の裏面側のSiN膜35、
33、17、13と多結晶Si膜34、32、31、2
5との除去を、エッチングではなく研削によって行う。 【0024】但しこの研削は、実施例に追加的な工程
ではなく、パッケージングに際してSi基板21の厚さ
を調整するために一般に行われている工程と兼用してい
る。しかし、この実施例では、既述の界面凖位を回復
させるための水素雰囲気中でのアニールをこの研削後に
行う。 【0025】なお、以上の参考例及び実施例の何れに
おいても、減圧CVDによって形成したSiN膜13、
17、33、35が、水素の侵入を阻止する膜になって
いる。しかし、リンが高濃度にドープされている多結晶
Si膜も、水素に対するゲッタリング能力を有している
ので、水素の侵入を阻止する膜となり得る。 【0026】また、上述の参考例及び実施例の何れも
折り返しビット線構成の積み上げキャパシタ型DRAM
の製造に本発明を適用したものであるが、本発明は他の
型のDRAMや論理LSI等の製造にも適用することが
できる。 【0027】 【発明の効果】請求項1の半導体装置の製造方法では
子の膜の構成を何ら変更することなく界面凖位を十分
に回復させることができ、しかも研削によって半導体基
板に生ずる損傷も回復させることができ、更に膜の除去
のために追加的な工程を必要としないので、信頼性の高
い半導体装置を高い歩留りで且つ少ない工程で製造する
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device in which a film for preventing hydrogen from penetrating is provided on an element forming surface of a semiconductor substrate. 2. Description of the Related Art FIG. 2 shows a stacked capacitor type DRAM having a folded bit line configuration in a manufacturing process.
In a DRAM, a memory cell is composed of a transistor 11 and a capacitor 12, and a SiN film 13 formed by low-pressure CVD is often used as a capacitor insulating film. [0005] As shown in FIG.
Although a multilayer conductive film is used, the peripheral circuit portion 15 has a small number of conductive films. Therefore, in order to reduce the level difference in the peripheral circuit section 15, the interlayer insulating film such as the BPSG film 16 is removed by wet etching only in the peripheral circuit section 15. The SiN film 17 formed by low-pressure CVD is also used as a stopper at this time. Further, SiN formed by low pressure CVD
Since the film is very dense, it is also used as a pollution control film. [0007] However, as is apparent from FIG. 2, the SiN films 13 and 17 cover substantially the entire surface of the Si substrate 21. Moreover, since the SiN films 13 and 17 are formed by low pressure CVD, these SiN films 13 and 17
Reference numeral 17 also covers the back surface of the Si substrate 21. On the other hand, since the SiN films 13 and 17 formed by low-pressure CVD are very dense as described above, they also prevent intrusion of hydrogen. For this reason, the field oxide film of SiO
2 film 22 and SiO 2 film 23 as a gate oxide film
Even if annealing is performed in a hydrogen atmosphere in order to recover the interface state with the substrate 21, this recovery is not sufficiently performed. As a result, the N + diffusion layer 24, which is one of the source and the drain of the transistor 11, and the P-type Si substrate 2
Despite the fact that a PN junction is formed between
N through the interface level between the O 2 film 22 and the Si substrate 21
+ Leakage current flows from diffusion layer 24 to Si substrate 21 and D
The data retention characteristics of the RAM deteriorate. Further, because of the interface凖位between the SiO 2 film 23 and the Si substrate 21, the characteristics of V G -I D characteristic or the like of the transistor 11 varies from the design value. The above phenomenon occurs not only in DRAM but also in general semiconductor devices. Therefore, the conventional method cannot manufacture a highly reliable semiconductor device at a high yield. [0009] The method according to claim 1 Means for Solving the Problems] An element 11, 12 of the semiconductor substrate 21 is
Prevents intrusion of hydrogen on the formed surface of elements 11 and 12
Of semiconductor device provided with films 13, 17, 33, 35
In the fabrication method, the films 13, 17, 33, and 35 attached to the surface opposite to the surface on which the elements 11 and 12 are formed and the semiconductor substrate 21 are ground by grinding until the semiconductor substrate 21 has a desired thickness. Then, the semiconductor substrate 21 is annealed in a hydrogen atmosphere. In the method of manufacturing a semiconductor device according to the first aspect, hydrogen is introduced from the surface of the semiconductor substrate 21 opposite to the surface on which the elements 11 and 12 are formed, thereby changing the structure of the films of the elements 11 and 12 at all. The interface state can be sufficiently recovered without performing. The semiconductor substrate 21 has a desired thickness.
Since the grinding of the surface of the semiconductor substrate 21 opposite to the surface on which the elements 11 and 12 are formed is generally performed as a pre-process of packaging, additional grinding for removing the films 13, 17, 33 and 35 is performed. No process is required. In addition, damage caused to the semiconductor substrate 21 by grinding can be recovered by subsequent annealing. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a reference example and an embodiment of the present invention applied to the manufacture of a stacked capacitor type DRAM having a folded bit line configuration will be described with reference to FIG. In the reference example, as shown in FIG.
An SiO 2 film 22 as a field oxide film is formed on the surface of an element isolation region of the substrate 21, and an SiO 2 film 23 as a gate oxide film is formed on a surface of the active region. The word line, that is, the transistor 11 is formed by the first polycrystalline Si film 25 doped with phosphorus.
Is formed, and N and N, which are the source and drain of the transistor 11, are formed in the active regions on both sides of the polycrystalline Si film 25.
+ Diffusion layers 24 and 26 are formed. The polycrystalline Si film 25
It is covered with a SiO 2 film 27 as an interlayer insulating film. Thereafter, the storage node of the capacitor 12 and the capacitor insulating film are formed by the phosphorus-doped second polycrystalline Si film 31, the SiN film 13, and the phosphorus-doped third polycrystalline Si film 32. And a counter electrode are respectively formed. Next, the polycrystalline Si film 32 is covered with a SiN film 17 serving as a wet etching stopper, and a BPSG film 16 as an interlayer insulating film is formed on the SiN film 17. B
The PSG film 16 is removed by wet etching in the peripheral circuit section 15 as shown in FIG. Thereafter, the BPSG film 16 is covered with a SiN film 33, and a bit line is formed by a fourth polycrystalline Si film 34 doped with phosphorus. Further, the polycrystalline Si film 3 is formed by the SiN film 35 serving as a wet etching stopper.
4 and a BPSG film 36 as an interlayer insulating film is formed on the SiN film 35. The BPSG film 36 is also removed in the peripheral circuit section 15 by wet etching. Next, an Al wiring 37 is formed on the BPSG film 36.
And the Al wiring 37 is covered with a P-SiN film 38 which is a SiN film formed by plasma CVD. Therefore,
This P-SiN film 38 is a surface protection film. Incidentally, also in this reference example, the polycrystalline Si films 25, 31, 32, 34 and the SiN films 13, 17,
After forming 33 and 35 by low pressure CVD, FIG.
As shown in (a), these films are also deposited on the back side of the Si substrate 21. Therefore, in this reference example, while the front side of the Si substrate 21 is protected by being covered with a resist (not shown), the back side of the Si substrate 21 is dry-etched, as shown in FIG. As shown, the SiN films 35, 33, 17, 13 on the back side of the Si substrate 21 and the polycrystalline Si film 3
4, 32, 31, and 25 are removed. After that, annealing is performed in a hydrogen atmosphere to recover the above-described interface state. The dry etching on the back surface side of the Si substrate 21 may be performed immediately before annealing in a hydrogen atmosphere.
Immediately after depositing the respective films, they may be performed separately. In this reference example, the SiN films 35, 3 for preventing the intrusion of hydrogen are provided on the back side of the Si substrate 21.
Not only 3, 17, and 13, but also the phosphorus-doped polycrystalline Si films 34, 32, 31, and 25 are removed.
Therefore, these polycrystalline Si films 25, 31, 32, 34
Can also prevent the auto-doping of phosphorus into the Si substrate 21. Next, an embodiment will be described. Also in this embodiment, up to the state shown in FIG. 1A, the same steps as in the above-described reference example are executed to manufacture a DRAM. But this
In one embodiment, the SiN film 35 on the back side of the Si substrate 21
33, 17, 13 and polycrystalline Si films 34, 32, 31, 2
5 is removed not by etching but by grinding. [0024] However, this grinding is not a additional process to one embodiment, be combined with a process that is generally performed in order to adjust the thickness of the Si substrate 21 during packaging. However, in this embodiment, annealing is performed in a hydrogen atmosphere for recovering the aforementioned interface凖位after the grinding. In each of the above-described reference example and one embodiment, the SiN film 13 formed by low-pressure CVD,
17, 33, and 35 are films that prevent the intrusion of hydrogen. However, a polycrystalline Si film that is heavily doped with phosphorus also has a gettering ability for hydrogen, and thus can be a film that blocks intrusion of hydrogen. In each of the above-mentioned reference example and one embodiment, a stacked capacitor type DRAM having a folded bit line structure is used.
Although the present invention is applied to the manufacture of a semiconductor device, the present invention can also be applied to the manufacture of other types of DRAMs and logic LSIs. According to the semiconductor device manufacturing method of the first aspect ,
Interface凖位without changing any of the configuration of the membrane element can be sufficiently recover, yet damage caused to the semiconductor substrate by grinding can also be recovered, further additional steps for the removal of film Is not required, and a highly reliable semiconductor device can be manufactured with a high yield and with a small number of steps.

【図面の簡単な説明】 【図1】本願の発明の参考例及び実施例を順次に示す
側断面図である。 【図2】本願の発明の前提条件を示す側断面図である。 【符号の説明】 11 トランジスタ 12 キャパシタ 13 SiN膜 17 SiN膜 21 Si基板 33 SiN膜 35 SiN膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view sequentially showing a reference example and an embodiment of the present invention. FIG. 2 is a side sectional view showing a precondition of the present invention. [Description of Signs] 11 Transistor 12 Capacitor 13 SiN film 17 SiN film 21 Si substrate 33 SiN film 35 SiN film

フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 27/04 H01L 29/78 301N 27/108 29/78 (56)参考文献 特開 平2−111034(JP,A) 特開 平1−122157(JP,A) 特開 昭61−156819(JP,A) 特開 昭57−95631(JP,A) 特開 平1−246837(JP,A)Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01L 27/04 H01L 29/78 301N 27/108 29/78 (56) References JP-A-2-111034 (JP, A) JP-A-1 JP-A-122157 (JP, A) JP-A-61-156819 (JP, A) JP-A-57-96331 (JP, A) JP-A-1-246837 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 半導体基板のうちで素子が形成された素
子形成面上に水素の侵入を阻止する膜を設ける半導体装
置の製造方法において、 前記素子形成面とは反対の面側に付着した前記膜と前記
半導体基板とをこの半導体基板が所望の厚さになるまで
研削で除去し、 その後に水素雰囲気中で前記半導体基板をアニールする
半導体装置の製造方法。
(57) In a method for manufacturing a semiconductor device, a film for preventing intrusion of hydrogen is provided on an element formation surface of a semiconductor substrate on which an element is formed, wherein: Is a method for manufacturing a semiconductor device in which the film and the semiconductor substrate adhered to opposite surfaces are removed by grinding until the semiconductor substrate has a desired thickness, and thereafter the semiconductor substrate is annealed in a hydrogen atmosphere.
JP07585891A 1991-03-15 1991-03-15 Method for manufacturing semiconductor device Expired - Lifetime JP3419792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07585891A JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07585891A JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04287365A JPH04287365A (en) 1992-10-12
JP3419792B2 true JP3419792B2 (en) 2003-06-23

Family

ID=13588360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07585891A Expired - Lifetime JP3419792B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3419792B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204216B2 (en) 1998-06-24 2001-09-04 日本電気株式会社 Solid-state imaging device and method of manufacturing the same
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
KR100319168B1 (en) * 1999-12-30 2002-01-04 박종섭 A method for fabricating a semiconductor device
JP2002313968A (en) 2001-02-08 2002-10-25 Seiko Epson Corp Semiconductor device and its manufacturing method
JP4727138B2 (en) * 2003-10-30 2011-07-20 セイコーNpc株式会社 Manufacturing method of semiconductor device
JP2014107448A (en) * 2012-11-28 2014-06-09 Nikon Corp Laminated semiconductor device manufacturing method and laminated semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JPH04287365A (en) 1992-10-12

Similar Documents

Publication Publication Date Title
US6204112B1 (en) Process for forming a high density semiconductor device
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
US5518947A (en) Method of forming a semiconductor memory device having silicon nitride overlying only in peripheral circuit area
US4760034A (en) Method of forming edge-sealed multi-layer structure while protecting adjacent region by screen oxide layer
US5114873A (en) Method for manufacturing a stacked capacitor DRAM cell
JP3068568B2 (en) Method of forming an integrated circuit
JP3419792B2 (en) Method for manufacturing semiconductor device
US20080251824A1 (en) Semiconductor memory device and manufacturing method thereof
US6667218B2 (en) Enhancing semiconductor structure surface area using HSG and etching
JP3077454B2 (en) Method for manufacturing semiconductor device
JP3277103B2 (en) Semiconductor device and manufacturing method thereof
JP3250617B2 (en) Method for manufacturing semiconductor device
KR100653983B1 (en) Method for forming the storage node contact
JPH1098166A (en) Semiconductor memory device and manufacture thereof
JPH09246492A (en) Semiconductor memory device and method of manufacture
JP3203776B2 (en) Method for manufacturing semiconductor device
JPH08203872A (en) Formation of contact hole and semiconductor device
JP3592870B2 (en) Method for manufacturing semiconductor device
JP3085831B2 (en) Method for manufacturing semiconductor device
KR100240249B1 (en) A fabricating method of semiconductor device having different gate oxides and gate electrode
JPH01273347A (en) Semiconductor device
JP2987882B2 (en) Method for manufacturing semiconductor memory
JP3172229B2 (en) Method for manufacturing semiconductor device
JP3201991B2 (en) Semiconductor device and manufacturing method thereof
JPH07176606A (en) Semiconductor device and fabrication thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

EXPY Cancellation because of completion of term