WO2012056782A1 - 固体撮像装置 - Google Patents
固体撮像装置 Download PDFInfo
- Publication number
- WO2012056782A1 WO2012056782A1 PCT/JP2011/067540 JP2011067540W WO2012056782A1 WO 2012056782 A1 WO2012056782 A1 WO 2012056782A1 JP 2011067540 W JP2011067540 W JP 2011067540W WO 2012056782 A1 WO2012056782 A1 WO 2012056782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor
- region
- semiconductor region
- light
- solid
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims description 181
- 239000004065 semiconductor Substances 0.000 claims abstract description 627
- 239000004020 conductor Substances 0.000 claims abstract description 155
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 278
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 238000009825 accumulation Methods 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 29
- 230000035945 sensitivity Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 21
- 230000007423 decrease Effects 0.000 description 20
- 230000004048 modification Effects 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 18
- 238000009826 distribution Methods 0.000 description 18
- 230000002093 peripheral effect Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000012535 impurity Substances 0.000 description 10
- 230000031700 light absorption Effects 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- -1 P 12 Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14603—Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
- H01L27/14607—Geometry of the photosensitive area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
- H01L27/14612—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
- H01L27/14614—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
- H01L27/14612—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
- H01L27/14616—Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
Definitions
- the present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device capable of realizing high pixel density, high resolution, low color mixing, and high sensitivity.
- CCD and CMOS solid-state imaging devices are widely used for video cameras, still cameras, and the like. Further, there is a constant demand for improved performance such as higher pixel density, higher resolution, lower color mixing in color imaging, and higher sensitivity in solid-state imaging devices. On the other hand, technological innovations such as higher pixel density have been performed in order to achieve higher resolution of solid-state imaging devices.
- FIG. 12A shows a cross-sectional view of a solid-state imaging device according to a conventional example in which one pixel is formed in one island-like semiconductor 30 (see, for example, Patent Document 1).
- a signal line semiconductor N + region 31 (hereinafter referred to as “semiconductor N + region”) containing a lot of donor impurities on a substrate (not shown). Region).
- a semiconductor P region 32 (hereinafter, “semiconductor P region” is referred to as a semiconductor region containing an acceptor impurity) is formed on the signal line semiconductor N + region 31, and an insulating layer is formed on the outer periphery of the semiconductor P region 32. 33a and 33b are formed, and gate conductor layers 34a and 34b are formed with the insulating layers 33a and 33b interposed. Semiconductor N regions 35a and 35b (hereinafter, “semiconductor N region” is referred to as a semiconductor region containing donor impurities) are formed on the outer periphery of the semiconductor P region above the gate conductor layers 34a and 34b. Yes.
- a semiconductor P + region 36 (hereinafter referred to as “semiconductor P + region” is a semiconductor region containing many acceptor impurities) above the island-shaped semiconductor 30. Is formed.
- the semiconductor P + region 36 is connected to the pixel selection lines 37a and 37b.
- the insulating layers 33 a and 33 b described above are connected to each other in a state of surrounding the outer periphery of the island-shaped semiconductor 30.
- the gate conductor layers 34 a and 34 b and the semiconductor N regions 35 a and 35 b are connected to each other while surrounding the outer periphery of the island-shaped semiconductor 30.
- the island-shaped semiconductor 30 is irradiated with light, which is a kind of electromagnetic energy wave, from the semiconductor P + region 36 side on the top surface of the island-shaped semiconductor 30.
- a photodiode region composed of the semiconductor P region 32 and the semiconductor N regions 35a and 35b is formed.
- signal charges here, the photoelectric conversion region in the photodiode region.
- Free electrons This signal charge is accumulated in the semiconductor N regions 35a and 35b in the photodiode region.
- a junction transistor is configured with the semiconductor N regions 35 a and 35 b as gates, the semiconductor P + region 36 as a source, and the semiconductor P region 32 near the signal line semiconductor N + region 31 as a drain. ing. Then, the drain-source current (output signal) of the junction transistor changes in accordance with the signal charge amount accumulated in the semiconductor N regions 35a and 35b, and is extracted from the signal line semiconductor N + region 31 to the outside. Read out to the outside.
- the semiconductor N regions 35a and 35b in the photodiode region are the source
- the gate conductor layers 34a and 34b are the gate
- the signal line semiconductor N + region 31 is the drain
- the semiconductor N regions 35a and 35b are connected to the signal.
- a MOS transistor is formed in which the semiconductor P region 32 between the line semiconductor N + region 31 is a channel. The signal charges accumulated in the semiconductor N regions 35a and 35b are removed to the signal line semiconductor N + region 31 by applying a plus-on voltage to the gate conductor layers 34a and 34b of the MOS transistor.
- the imaging operation of the solid-state imaging device is incident from the upper surface of the island-shaped semiconductor 30 in a state where a ground voltage (0 V) is applied to the signal line semiconductor N + region 31, the gate conductor layers 34a and 34b, and the semiconductor P + region 36.
- the signal charge generated in the photoelectric conversion region (photodiode region) by the irradiated light is accumulated in the semiconductor N regions 35a and 35b, and the signal line semiconductor N + region 31 and the gate conductor layers 34a and 34b are grounded.
- the source / drain current of the junction transistor modulated by the potential of the semiconductor N regions 35a and 35b changed according to the accumulated signal charge amount a signal charge readout operation of reading a signal current, after this signal charge read operation, the semiconductor P + region 36 With lands voltage is applied, the gate conductor layer 34a, 34b and in a state where positive voltage is applied to the signal lines semiconductor N + region 31, the semiconductor N regions 35a, signal a signal charge accumulated in the 35b normal semiconductor N And a reset operation for removing the + region 31.
- the relationship of the light absorption intensity I with respect to the (silicon) depth ( ⁇ m) is shown.
- the normalized value I / I 0 decreases exponentially with respect to the light penetration depth.
- the photoelectric conversion region in the solid-state imaging device of FIG. 12A is a photodiode region formed by the semiconductor P region 32 and the semiconductor N regions 35a and 35b. For this reason, the height Ld of the photodiode region needs to be 2.5 to 3 ⁇ m for the reason described above.
- the pitch of the two-dimensionally arranged pixels is 1.4 ⁇ m at the smallest of commercialized solid-state imaging devices, and 0.9 ⁇ m is also announced (for example, non-patented). Reference 2). And further reduction in pixel pitch is required.
- reducing the distance between the island-shaped semiconductors 30 that are adjacent to each other and that constitute a pixel also improves the light receiving rate of effectively receiving light rays in the photodiode region, leading to an improvement in the sensitivity of the solid-state imaging device.
- a reduction in distance between adjacent island-shaped semiconductors 30 is also required.
- the design rule is 0.2 ⁇ m (200 nm)
- it is usually processed so that the distance between adjacent island-shaped semiconductors 30 is as close as possible to this 0.2 ⁇ m.
- the aspect ratio between island-shaped semiconductors is 12.5 to 15, or 15 or more.
- the gate conductor layers 34a and 34b of the MOS transistor in the groove formed between the narrow and deep island-shaped semiconductors 30.
- the signal line semiconductor N + region 31 must be formed at the bottom of the island-shaped semiconductor 30. This makes it difficult to manufacture the solid-state imaging device.
- the island-shaped semiconductor 30 constituting the solid-state imaging device requires a photodiode region having a height Ld of 2.5 to 3 ⁇ m. It has become difficult. For this reason, in the solid-state imaging device, a technique for reducing the height Ld of the photodiode region without causing a decrease in sensitivity is required.
- a light ray 38 incident on the island-shaped semiconductor 30 that is a pixel from an oblique direction is incident on the island-shaped semiconductor 30 adjacent to the island-shaped semiconductor 30 that constitutes the pixel. It also enters the photodiode region. Due to the decrease in the light collection rate within the pixel, signal charges that should originally be generated in the island-shaped semiconductor 30 that constitutes one pixel are dispersed and generated in the island-shaped semiconductor 30 that constitutes the surrounding pixels. . As a result, a reduction in resolution of the solid-state imaging device and color mixing in color imaging occur. Such inconvenience increases as the density of pixels increases.
- FIG. 13 there is a technique in which metal walls 39a and 39b are provided above the photodiode region 41 in a semiconductor device (see, for example, Patent Document 2). reference).
- a photodiode region 41 is formed in a semiconductor substrate 40, and an element isolation region 42 and source / drain regions 43a and 43b of MOS transistors are formed around the photodiode region 41.
- metal walls 39a and 39b surrounding the gate electrode 45, the contact hole 46a, and the photodiode region 41 of the MOS transistor are formed.
- a second interlayer insulating layer 47 is formed on the first interlayer insulating layer 44, and an SiO 2 film 48, an SiN film 49, and a microlens 50 are formed on the second interlayer insulating layer 47 in this order. Yes.
- Contact holes 46b and 46c for circuit wiring are formed in the second interlayer insulating layer 47, and metal wirings 51a, 51b, 51c and 51d are formed on the second interlayer insulating layer 47. .
- the light beams 52a, 52b, 52c, and 52d that have passed through the microlens 50 are reflected by the metal walls 39a and 39b and enter the photodiode region 41.
- the light collection rate at which the light beam incident from the microlens 50 enters the photodiode region 41 is improved.
- some of the light rays 53a, 53b, 53c, and 53d incident on the photodiode region 41 are incident on the pixels adjacent to the pixel. It will leak.
- a technique for improving the light collection rate in one pixel a technique of providing a metal wall in a color filter layer formed between a microlens and a photodiode region (see, for example, Patent Document 3), Alternatively, a technique for forming an optical waveguide on the upper part of the photodiode region (for example, see Patent Document 4) is known.
- incident light enters the surface of the photodiode region from an oblique direction, so that a part of the incident light on the photodiode region leaks to a pixel adjacent to the pixel.
- the solid-state imaging device illustrated in FIG. 12A is suitable for increasing the pixel density because one pixel is formed by one island-shaped semiconductor 30. Therefore, by applying the advanced microfabrication technology, it is possible to increase the pixel density of the pixel size on the plane viewed from the light irradiation surface.
- the height Ld of the photodiode region needs to be 2.5 to 3 ⁇ m. is there. The height Ld necessary for the photodiode region does not change even if the density of pixels is increased.
- the distance between the island-shaped semiconductors 30 is required to be reduced. For this reason, processing between island-shaped semiconductors having a high aspect ratio (ratio between the distance between the island-shaped semiconductors 30 and the height of the photodiode region) is required. Therefore, the gate conductor layers 34a and 34b of the MOS transistor are formed in the trench formed between the narrow and deep island semiconductors 30, and the signal line N + region 31 is formed at the bottom of the island semiconductor 30. Therefore, manufacturing difficulties arise. As described above, it is difficult to form a pixel structure using the island-shaped semiconductor 30, which makes it difficult to increase the pixel density and sensitivity of the solid-state imaging device. For this reason, in the solid-state imaging device, a technique for reducing the height Ld of the photodiode region without causing a decrease in sensitivity is required.
- the light ray 38 incident on the island-shaped semiconductor 30 constituting the pixel from an oblique direction enters the diode region of the island-shaped semiconductor 30 adjacent to the island-shaped semiconductor 30.
- the resolution of the solid-state imaging device is reduced, or color mixing in color imaging occurs. Since this color mixture lowers the image quality of the color reproduction image, it is required to reduce the color mixture.
- the pixel structure shown in FIG. 13 is a technique for increasing the light collection rate by providing metal walls 39a and 39b on the photodiode region 41.
- the light collection rate can be improved by reducing the light leakage to the pixel adjacent to the pixel above the photodiode region 41.
- a part of the light beam incident on the photodiode region 41 in an oblique direction is incident on a pixel adjacent to the pixel, a reduction in resolution of the solid-state imaging device or color mixture in color imaging cannot be avoided.
- Such a situation also applies to the conventional solid-state imaging devices disclosed in Patent Document 3 and Patent Document 4.
- This decrease in light collection rate increases as the pixel density is increased. For this reason, there is a need for a technique for improving the decrease in the light collection rate of light incident on the surface of the photodiode region 41.
- the present invention has been made in view of the above circumstances, and in particular, an object thereof is to realize a solid-state imaging device capable of high pixel density, high resolution, low color mixing, and high sensitivity.
- a solid-state imaging device includes: A solid-state imaging device in which a plurality of pixels are arranged two-dimensionally, A plurality of island-shaped semiconductors constituting the plurality of pixels are formed on a substrate, Each of the island-shaped semiconductors is A first semiconductor region formed under the island-shaped semiconductor; A second semiconductor region formed on the first semiconductor region and having a conductivity type or a specific semiconductor opposite to the first semiconductor region; A third semiconductor region formed in an upper side region of the second semiconductor region and having the same conductivity type as the first semiconductor region; A fourth semiconductor region formed on the outer periphery of the third semiconductor region and having a conductivity type opposite to the first semiconductor region; An insulating layer formed on an outer periphery of a lower side surface region of the fourth semiconductor region and the second semiconductor region; A conductor layer formed on the outer periphery of the insulating layer and functioning as a gate electrode for forming a channel in a lower region of the second semiconductor region; A reflective conduct
- the photoelectric conversion unit includes a photodiode region including the second semiconductor region and the third semiconductor region, and a signal charge is generated in the photoelectric conversion unit by an electromagnetic energy wave incident on the microlens.
- the signal charge storage unit is configured by the third semiconductor region, and stores the signal charge generated in the photoelectric conversion unit
- the signal charge read-out unit includes a junction transistor having the fifth semiconductor region, the lower region of the second semiconductor region as a drain or source, and the signal charge storage unit as a gate, and the signal charge storage A drain-source current flowing between the drain and source of the junction transistor, which changes according to the amount of signal charge accumulated in the unit, functions as an output signal;
- the accumulated signal charge removal unit is sandwiched between the first semiconductor region and the third semiconductor region, the drain of the first semiconductor region, the gate of the conductor layer, the source of the third semiconductor region, and the third semiconductor region.
- the imaging operation executed by the solid-state imaging device is A signal charge accumulating operation for accumulating signal charges generated in the photoelectric conversion unit in the third semiconductor region; A signal charge read operation for reading out the drain-source current of the junction transistor as an output signal according to the amount of signal charge accumulated in the third semiconductor region; An accumulated signal charge removing operation for removing the accumulated signal charge accumulated in the third semiconductor region to the first semiconductor region by applying a predetermined voltage to the conductor layer; Including In each of the signal charge accumulation operation, the signal charge read operation, and the accumulated signal charge removal operation, a charge having a polarity opposite to that of the signal charge is accumulated in the fourth semiconductor region. It is characterized by that.
- a sixth semiconductor region having the same conductivity type as the second semiconductor region or a ninth semiconductor region having a conductivity type opposite to the second semiconductor region, and the second semiconductor region A sixth semiconductor region having the same conductivity type as that of the semiconductor region and connected to the second semiconductor region; and an eighth semiconductor region having a conductivity type opposite to the second semiconductor region.
- the lower region of the second semiconductor region in the vicinity of the ninth semiconductor region are the drain and source of the junction transistor, respectively, and the eighth semiconductor region is the drain of the MOS transistor. , It is characterized by that.
- a reflective layer formed in a lower region of the island-shaped semiconductor It is characterized by that.
- a light transmissive insulating layer formed in a lower region of the island-shaped semiconductor, and a light absorbing layer formed in a lower region of the light transmissive insulating layer The reflectance of the light that has entered the microlens, reflected by the conductor layer and the reflective conductor layer, passed through the first to fourth semiconductor regions, and reached the light-transmissive insulating layer is green light.
- the thickness of the light transmission insulating layer is set so as to be relatively large and relatively small with red light, It is characterized by that.
- a light transmissive insulating layer formed in a lower region of the island-shaped semiconductor, and a light absorbing layer formed in a lower region of the light transmissive insulating layer The reflectance of light that has entered the microlens and has passed through the first to fourth semiconductor regions while being reflected by the conductor layer and the reflective conductor layer and reached the light-transmissive insulating layer is green light and The thickness of the light transmission insulating layer is set so as to be relatively large with red light, It is characterized by that.
- the focal point of the microlens is located inside the light transparent intermediate layer; It is characterized by that.
- a concave portion or a convex portion is formed in the central surface layer portion of the island-shaped semiconductor upper portion,
- the light refractive indices of two substance regions that are in contact with each other with the concave surface of the concave portion or the convex surface of the convex portion as a boundary surface are different from each other, It is characterized by that.
- a light transparent intermediate layer formed between the microlens and the island-shaped semiconductor Comprising a light transparent intermediate layer formed between the microlens and the island-shaped semiconductor;
- the plurality of pixels are arranged in a square lattice shape, a rectangular lattice shape, or a staggered shape, Among the plurality of pixels, the first semiconductor regions in the plurality of pixels arranged in the vertical direction are electrically connected to each other, and a plurality of conductor wirings extending in the vertical direction; Among the plurality of pixels, the conductor layers in the plurality of pixels arranged in the lateral direction are electrically connected to each other, and a plurality of conductor wirings extending in the lateral direction; The reflective conductor layers in the plurality of pixels arranged in the horizontal direction among the plurality of pixels are electrically connected to each other, and further include a plurality of reflective conductor wirings extending in the horizontal direction, The conductor wiring extending in the horizontal direction and the reflective conductor wiring are alternately arranged in the vertical direction without overlapping each other when viewed from the irradiation direction of the electromagnetic energy wave to the plurality of pixels. , It is characterized
- the reflective conductor layer in each of the plurality of pixels is electrically isolated from the fifth semiconductor region in the pixel, and all the reflective conductor layers in the plurality of pixels have the plurality of pixels. Connected to each other so as to cover the pixel region over the pixel region to be It is characterized by that.
- the present invention it is possible to provide a solid-state imaging device capable of realizing high pixel density, high resolution, low color mixing, and high sensitivity.
- FIG. 2 is a schematic three-dimensional structure diagram illustrating a three-dimensional structure of two adjacent pixels (island semiconductors) in the solid-state imaging device according to the first embodiment.
- FIG. 2B is a potential distribution diagram along the line AA ′ in FIG. 2A. It is sectional drawing which shows the pixel structure of the solid-state imaging device which concerns on the 2nd Embodiment of this invention.
- FIG. 2B is a potential distribution diagram along the line BB ′ in FIG. 2C.
- FIG. 2B is a potential distribution diagram along the line BB ′ in FIG. 2C. It is the model top view seen from the light-incidence surface side of the solid-state imaging device which concerns on 2nd Embodiment. It is sectional drawing which shows the pixel structure of the solid-state imaging device which concerns on the modification of 2nd Embodiment.
- FIG. 3B is a potential distribution diagram along line CC ′ in FIG. 3A. It is sectional drawing which shows the pixel structure of the solid-state imaging device which concerns on the modification of 2nd Embodiment.
- FIG. 4B is a potential distribution diagram along line DD ′ in FIG. 4A.
- Green light at the fourth optical transparent insulating layer of a solid-state imaging device according to an embodiment of the (SiO 2 layer) surface, the reflectance of red light, is a graph showing the calculation results of the film thickness dependency of the light transparent insulating layer .
- FIG. 20 is a schematic three-dimensional structure diagram illustrating a three-dimensional structure of two adjacent pixels (island semiconductors) in a solid-state imaging device according to an eighth embodiment.
- FIG. 25 is a schematic three-dimensional structure diagram illustrating a three-dimensional structure of two adjacent pixels (island semiconductors) in a solid-state imaging device according to a modification of the eighth embodiment. It is the model top view which looked at the solid-state imaging device concerning the modification of 8th Embodiment from the light-incidence surface side. It is sectional drawing which shows the pixel structure of the solid-state imaging device which concerns on the 9th Embodiment of this invention.
- FIG. 1A shows a cross-sectional structure of an island-shaped semiconductor 1a constituting a pixel of the solid-state imaging device according to the first embodiment of the present invention.
- a first semiconductor N + region 2 which is a signal line extending in the first scanning direction in the pixel region on the substrate, is formed in the entire lower part of the island-shaped semiconductor 1 a constituting each pixel.
- a second semiconductor P region 3 having a conductivity type opposite to that of the first semiconductor N + region 2 is formed.
- third semiconductor N regions 6 a and 6 b having the same conductivity type as the first semiconductor N + region 2 are formed.
- Insulating layers 4 a and 4 b are formed so as to surround the outer peripheral portions of the lower side surface regions of the third semiconductor N regions 6 a and 6 b and the second semiconductor P region 3.
- Gate conductor layers 5a and 5b are formed in the lower region of the second semiconductor P region 3 so as to surround the outer peripheral portions of the insulating layers 4a and 4b.
- the gate conductor layers 5a and 5b are formed using, for example, a metal material, and also function as a light reflection layer that reflects light (electromagnetic energy wave).
- the island-shaped semiconductor 1a constituting the pixel includes the third semiconductor N regions 6a and 6b as the source, the gate conductor layers 5a and 5b as the gate, the first semiconductor N + region 2 as the drain, and the third semiconductor N region 6a. , 6b and the first semiconductor N + region 2, a MOS transistor is formed using the second semiconductor P region 3 as a channel.
- a photodiode region 7 composed of the second semiconductor P region 3 and the third semiconductor N regions 6a and 6b is formed above the gate conductor layers 5a and 5b.
- fourth semiconductor P + regions 8 a and 8 b are formed.
- the fourth semiconductor P + regions 8a and 8b are formed in contact with the insulating layers 4a and 4b between the third semiconductor N regions 6a and 6b and the insulating layers 4a and 4b.
- Light reflecting conductor layers 9a and 9b that reflect electromagnetic energy waves such as light are formed on the outer peripheral portions of the fourth semiconductor P + regions 8a and 8b via the insulating layers 4a and 4b.
- the light reflecting conductor layers 9a and 9b are formed on the outer peripheral portions of the insulating layers 4a and 4b excluding the conductor layers 5a and 5b, that is, the outer peripheral portions of the third semiconductor N regions 6a and 6b.
- the light reflecting conductor layers 9a and 9b are formed using, for example, a metal material, and function as a conductor layer through which a current flows and a light reflecting layer that reflects light.
- a fifth semiconductor P having the same conductivity type as that of the second semiconductor P region 3 and electrically connected to the fourth semiconductor P + regions 8a and 8b.
- a + region 10 is formed.
- the fifth semiconductor P + region 10 is connected to the light reflecting conductor layers 9a and 9b.
- the light reflecting conductor layers 9a and 9b serve as pixel selection lines extending in a direction orthogonal to the first scanning direction (signal lines). Therefore, the light reflecting conductor layers 9a and 9b function as a light reflecting layer and a pixel selection line.
- the third semiconductor N regions 6a and 6b, the fourth semiconductor P + regions 8a and 8b, and the fifth semiconductor P + region 10 are preferably formed in the island-shaped semiconductor 1a.
- the photodiode region 7 composed of the second semiconductor P region 3 and the third semiconductor N regions 6a and 6b is a photoelectric conversion unit, and the third semiconductor in the photodiode region 7 is used.
- the N regions 6a and 6b are signal charge accumulation units that accumulate signal charges generated in the photoelectric conversion unit.
- the fifth semiconductor P + region 10 and the second semiconductor P region 3 in the vicinity of the first semiconductor N + region 2 are used as the source / drain, and the third semiconductor N region 6a
- the junction transistor 6b as a gate is a signal charge reading unit for reading from the first semiconductor N + region 2 as a signal current a source / drain current corresponding to the signal charge amount accumulated in the photodiode region 7.
- the third semiconductor N regions 6a and 6b are the source, the gate conductor layers 5a and 5b are the gate, the first semiconductor N + region 2 is the drain, the third semiconductor N regions 6a and 6b, and the first semiconductor N +.
- the MOS transistor using the second semiconductor P region 3 between the regions 2 as a channel is an accumulated signal for removing the signal charges accumulated in the third semiconductor N regions 6a and 6b in the first semiconductor N + region 2. It is a charge removal unit.
- a photoelectric conversion unit, a signal charge storage unit, a signal charge read unit, and a stored signal charge removal unit are formed in the island-shaped semiconductor 1a, and the photoelectric conversion unit is formed.
- the outer periphery of the island-like semiconductor 1a is covered with the light reflecting conductor layers 9a and 9b.
- the light transmission intermediate region 24 and the microlens 11 are made of, for example, a transparent resin material.
- the light rays 12a and 12b incident on the island-like semiconductor 1a other than the light perpendicularly incident on the central portion of the microlens 11 are light-reflecting conductor layers 9a that are pixel selection lines. 9b and the conductor layers 5a and 5b, propagates below the island-like semiconductor 1a, and is absorbed in the island-like semiconductor 1a to generate signal charges.
- the light propagation length in the photodiode region 7 which is the photosensitive region is longer than the height Ld of the photodiode region.
- the light propagation length in the photodiode region 7 that is the photosensitive region can be increased because the height Ld of the photodiode region is lowered as compared with the solid-state imaging device having the pixel structure of the conventional example shown in FIG. 12A. This means that the same sensitivity can be obtained.
- the aspect ratio of the island-shaped semiconductor 1a (ratio between the length of one upper side of the island-shaped semiconductor 1a and the height Ld of the photodiode region) can be reduced, so that the pixel including the island-shaped semiconductor constituting the pixel Processing of the structure becomes easy.
- the light rays 12a and 12b incident on the island-shaped semiconductor 1a constituting the pixel from an oblique direction are reflected by the light reflecting conductor layers 9a and 9b and the conductor layers 5a and 5b. Leakage to the island-shaped semiconductor constituting the pixel adjacent to the island-shaped semiconductor 1a is prevented. This prevents a decrease in resolution of the solid-state imaging device and color mixing in color imaging.
- the schematic plan view seen from the side is shown.
- the island-shaped semiconductors P 11 to P 33 constituting the pixel having the microlens on the upper surface are formed on the signal line semiconductors N + regions S 1 , S 2 , S 3 extending in the vertical direction in FIG. Is formed.
- the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 are island-shaped semiconductors P 11 to P 33 arranged in the row direction of the island-shaped semiconductors P 11 to P 33 arranged in a matrix. Is formed so as to surround.
- the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 are formed so as to overlap vertically.
- FIG. 1C shows a schematic three-dimensional structure diagram in a rectangular region surrounded by a one-dot chain line A in FIG. 1B.
- the island-shaped semiconductors P 11 and P 12 include first semiconductor N + regions 2a and 2b corresponding to the first semiconductor N + region 2 of the island-shaped semiconductor 1a illustrated in FIG. 1A. To do.
- the first semiconductor N + regions 2a and 2b are electrically connected to the band-like signal line N + regions 2aa and 2bb extending in the first scanning direction on the substrate.
- ring-shaped gate conductor layers 5aa and 5bb are formed so as to surround the outer peripheral portions of the island-shaped semiconductors P 11 and P 12 .
- Gate conductor layers 5aa and 5bb are electrically connected to MOS gate wiring 5ab (5ab1, 5ab2, 5ab3) extending in a direction orthogonal to strip-like signal line N + regions 2aa, 2bb.
- Ring-shaped light reflecting conductor layers 9aa and 9bb are formed so as to surround the outer periphery of the island-shaped semiconductors P 11 and P 12 .
- the light reflecting conductor layers 9aa and 9bb are electrically connected to a pixel selection line 9ab extending in a direction orthogonal to the strip signal line N + regions 2aa and 2bb.
- the light reflecting conductor layers 9aa and 9bb are electrically connected to fifth semiconductor P + regions 10a and 10b formed thereabove.
- Microlenses 11a and 11b are disposed on the fifth semiconductor P + regions 10a and 10b.
- the conductor layers 5aa, 5bb, the light reflective conductive layer 9aa is while propagating the island-like semiconductor P 11, P 12 reflected by 9bb, the island-shaped semiconductor P 11, by signal charge absorbed P 12 within the appear.
- the height of the island-shaped semiconductors P 11 and P 12 can be reduced, the workability of the pixel structure is improved, and a high pixel density is realized.
- the second semiconductor P region 3 (see FIG. 1A) is made of a P-type semiconductor.
- the second semiconductor P region 3 is used.
- 3 may be an intrinsic semiconductor.
- the intrinsic semiconductor is a semiconductor in which no impurities are contained in the matrix, and its Fermi rank is located near the center of the energy gap between the lower end of the conductor and the upper end of the valence band.
- the intrinsic semiconductor is a P ⁇ type if a trace amount of acceptor impurities is contained, an intrinsic type if it is a pure semiconductor that does not contain any acceptor impurities, and an N ⁇ type if a trace amount of donor impurities is contained.
- the intrinsic semiconductor is a high resistance body, and when a voltage is applied between the fifth semiconductor P + regions 10a and 10b and the strip-like signal line N + regions 2aa and 2bb, a potential gradient is generated inside. Then, the fifth semiconductor P + regions 10a in the bulk with the potential gradient, holes injected from 10b (holes) signal line N + regions 2aa, so flows toward the 2bb, consisting intrinsic semiconductor first
- the second semiconductor region 3 functions as a channel of the junction transistor.
- (Second Embodiment) 2A and 2B are a cross-sectional view and a potential distribution diagram of a conventional solid-state imaging device, respectively.
- 2C to 2F show a pixel structure, a potential distribution diagram, and a schematic plan view of a solid-state imaging device according to the second embodiment of the present invention.
- the solid-state imaging device according to the present embodiment like the solid-state imaging device according to the first embodiment, has a problem in the conventional solid-state imaging device (see FIG. 12A), which has high pixels, high sensitivity, and resolution. In addition to solving the problem of degradation and color mixing in color imaging, it also prevents the occurrence of dark current / dark current noise.
- the semiconductor N region 35a in the photodiode region is prevented in order to prevent a decrease in resolution and color mixing in color imaging that occur in the conventional solid-state imaging device shown in FIG. 12A.
- the light-shielding metal layers 55a and 55b for shielding light are provided through the insulating layers 33a and 33b so as to surround the outer periphery of 35b, and the fourth semiconductor P + is formed on the surface layer portion of the photodiode region. Since the pixel structure is the same as the pixel structure shown in FIG.
- the light shielding metal layers 55a and 55b reflect the incident light beam 38a, thereby preventing light leakage to the photodiode region of the adjacent pixel.
- FIG. 2B shows a potential distribution diagram along the line AA ′ in FIG. 2A during the signal charge accumulation operation of the solid-state imaging device according to the present embodiment.
- the potential distribution when the signal charge Qsig (here, free electrons) is not accumulated in the semiconductor N region 35a is indicated by a dotted line, and the potential distribution when the signal charge Qsig is accumulated is indicated by a solid line. Yes.
- the bottom of the potential distribution (the place where the voltage is highest) is inside the semiconductor N region 35a, and the potential at the bottom of the potential distribution is Vcm.
- the potential increases from the potential Vg of the light shielding metal layer 55a (55b) to the interface potential Vi of the insulating layer 33a and the semiconductor N region 35a.
- the potential becomes flat at the potential Vs of the signal charge accumulation portion, and then the potential decreases from Vs to Vp toward the semiconductor N region 35a and the semiconductor P region 32.
- the depletion layer length Ldw extending in the semiconductor P region 32 changes depending on the presence or absence of the signal charge Qsig.
- the interface potential between the insulating layer 33a and the semiconductor N region 35a is Vi (V) in the semiconductor N region 35a depending on the presence or absence of the signal charge Qsig, the potential is Vcm or Vs from the interface toward the semiconductor N region 35a. Change to deepen.
- the dark current electrons 56 generated at the interface with 35a move to the inside of the semiconductor N region 35a and are mixed into the signal charge Qsig. For this reason, when the light shielding metal layers 55a and 55b are provided in the pixel structure of the conventional example shown in FIG. 12A, the generation of dark current and dark current noise cannot be suppressed.
- FIG. 2C shows a pixel structure of the solid-state imaging device according to this embodiment.
- a first semiconductor N + region 2 serving as a signal line is formed in a lower portion of the island-shaped semiconductor 1a constituting the pixel.
- a first semiconductor N + region 2 and the second semiconductor P region 3 of opposite conductivity type is formed (the second semiconductor P region, P It may be formed of an intrinsic semiconductor instead of a type semiconductor).
- the second semiconductor P region, P It may be formed of an intrinsic semiconductor instead of a type semiconductor.
- third semiconductor N regions 6 a and 6 b having the same conductivity type as the first semiconductor N + region 2 are formed.
- Insulating layers 4 a and 4 b are formed so as to surround the outer peripheral portions of the lower side surface regions of the third semiconductor N regions 6 a and 6 b and the second semiconductor P region 3.
- Gate conductor layers 5a and 5b are formed in the lower region of the second semiconductor P region 3 so as to surround the outer peripheral portions of the insulating layers 4a and 4b.
- the gate conductor layers 5a and 5b are formed using, for example, a metal material, and also function as a light reflecting layer that reflects light rays (electromagnetic energy waves).
- the third semiconductor N regions 6a and 6b are sources, the gate conductor layers 5a and 5b are gates, the first semiconductor N + region 2 is a drain, and the first semiconductor N + region is A MOS transistor is formed using the second semiconductor P region 3 between the second and third semiconductor N regions 6a and 6b as a channel.
- a photodiode region 7 composed of the second semiconductor P region 3 and the third semiconductor N regions 6a and 6b is formed above the gate conductor layers 5a and 5b. In the surface layer portion of the photodiode region 7, fourth semiconductor P + regions 8 a and 8 b are formed.
- the fourth semiconductor P + regions 8a and 8b are formed in contact with the insulating layers 4a and 4b between the third semiconductor N regions 6a and 6b and the insulating layers 4a and 4b.
- Light reflecting conductor layers 99a and 99b that reflect electromagnetic energy waves such as light are formed on the outer periphery of the fourth semiconductor P + regions 8a and 8b via the insulating layers 4a and 4b.
- the light reflecting conductor layers 9a and 9b are formed on the outer peripheral portions of the insulating layers 4a and 4b excluding the conductor layers 5a and 5b, that is, the outer peripheral portions of the third semiconductor N regions 6a and 6b.
- the light reflecting conductor layers 99a and 99b are formed using, for example, a metal material, and function as a conductor layer through which a current flows and a light reflecting layer that reflects light.
- a fifth semiconductor P having the same conductivity type as that of the second semiconductor P region 3 and electrically connected to the fourth semiconductor P + regions 8a and 8b.
- a + region 10 is formed.
- the fifth semiconductor P + region 10 is electrically connected to the metal layers 10aa and 10bb.
- the metal layers 10aa and 10bb serve as pixel selection lines extending in a direction orthogonal to the first scanning direction (signal lines). Therefore, the metal layers 10aa and 10bb function as a light reflection layer and a pixel selection line.
- the light reflecting conductor layers 99a and 99b are electrically connected to the light reflecting conductor layers 99c and 99d located between the island-shaped semiconductors 1a constituting the pixels.
- the photoelectric conversion unit photodiode region 7
- the signal charge storage unit the signal charge readout unit, and the stored signal charge removal unit are the same as those of the island-shaped semiconductor 1a in the first embodiment shown in FIG. 1A. Therefore, the description thereof is omitted.
- the fifth semiconductor P + region 10 of the light transmitting intermediate region 24 made of a material that transmits light is formed, on the light transmitting intermediate region 24, near the upper surface of the fifth semiconductor P + region 10 of the A microlens 11 having a focal point is formed.
- the light transmission intermediate region 24 and the microlens 11 are made of, for example, a transparent resin material.
- the light rays 12 a and 12 b incident from the upper surface of the microlens 11 are collected at the focal point of the microlens 11 located near the upper surface of the fifth semiconductor P + region 10.
- the light rays 12a and 12b incident on the island-shaped semiconductor 1a other than the light rays perpendicularly incident on the central portion of the microlens 11 are light reflecting conductor layers 99a that are pixel selection lines. , 99b and the gate conductor layers 5a and 5b, propagate in the island-shaped semiconductor 1a, and are absorbed in the island-shaped semiconductor 1a to generate signal charges.
- the height of the island-shaped semiconductor 1a (the height Ld of the photodiode region 7) can be reduced.
- a solid-state imaging device that can improve the workability of the pixel structure including the island-shaped semiconductors that form the pixels, increase the pixel density, and prevent a reduction in resolution and color mixing in color imaging.
- FIG. 2D shows a potential distribution diagram along the line BB ′ in FIG. 2C during the signal charge accumulation operation of the solid-state imaging device according to the present embodiment.
- the fourth semiconductor P + region 8a is electrically connected to the fifth semiconductor P + region 10
- the potential Vs from the fourth semiconductor P + region 8a toward the third semiconductor N region 6a is a potential Vs having the signal charge Qsig.
- the constant potential Vs is held, and then decreases toward the second semiconductor P region 3 to the potential Vp of the second semiconductor P region 3.
- the fourth semiconductor P + region 8a has a large number of holes 56d supplied from the fifth semiconductor P + region 10. Therefore, when the electrons 56c existing at the energy level at the interface between the insulating layer 4a and the fourth semiconductor P + region 8a are thermally excited to the conduction band, the electrons 56c are converted into the fourth semiconductor P + region. Recombination with holes 56d existing in 8a disappears. Thereby, the excited electrons 56c are not mixed in the signal charge Qsig, and dark current and dark current noise are not generated.
- FIG. 2E shows a potential distribution diagram along the line BB ′ of FIG. 2C during the signal charge reading operation of the solid-state imaging device according to the present embodiment.
- a positive voltage VH (V) is applied to the fifth semiconductor P + region 10, and the light reflecting conductor layer 99a and the first semiconductor N which is a signal line are applied.
- the fourth semiconductor P + region 8a is electrically connected to the fifth semiconductor P + region 10, the potential of the fourth semiconductor P + region 8a becomes the positive voltage VH. It has become.
- the potential distribution diagram in this state rises from the potential Vg of the light reflecting conductor layer 99a to the potential Vs of the region where the signal charge Qsig is accumulated through the potential VH of the fourth semiconductor P + region 8a.
- a constant potential Vs is maintained and further decreases toward the second semiconductor P region 3 to the potential Vp of the second semiconductor P region 3.
- the fourth semiconductor P + region 8a has many holes supplied from the fifth semiconductor P + region 10. Therefore, similarly to the state shown in FIG.
- the potential of the fourth semiconductor P + region 8a is held at the potential of the fifth semiconductor P + region 10, so that the insulating layer 4a and the fourth Even if the electrons 56c existing at the energy level at the interface with the semiconductor P + region 8a are thermally excited to the conduction band, the electrons 56c recombine with the holes 56d in the fourth semiconductor P + region 8a. Then, it disappears, and a state in which dark current and dark current noise are not generated can be maintained.
- the fourth semiconductor P + region 8a since the fourth semiconductor P + region 8a is electrically connected to the fifth semiconductor P + region 10, the fourth semiconductor P + region 8a has only the signal charge accumulation time.
- the number of holes supplied from the fifth semiconductor P + region 10 is large in the fourth semiconductor P + region 8a even when the signal charge is read and the accumulated signal charge is removed. For this reason, the electrons 56c thermally excited to the conduction band from the interface between the insulating layer 4a and the fourth semiconductor P + region 8a are recombined with the holes 56d existing in the fourth semiconductor P + region 8a. Disappear. As a result, generation of dark current and dark current noise is prevented.
- FIG. 2F is a schematic plan view of the solid-state imaging device according to the present embodiment illustrated in FIG. 2C as viewed from the light incident surface side.
- the light reflecting conductor layers 99c and 99d connected to the light reflecting conductor layers 99a and 99b in FIG. 2C exist over the entire pixel region to form the light reflecting conductor connection layer 99.
- Pixel selection lines (metal layers) 9ab1, 9ab2, and 9ab3 are separated from the light reflecting conductor layers 99a and 99b and the light reflecting conductor layers 99c and 99d, and in a matrix form.
- the island-shaped semiconductors P 11 to P 33 are arranged so as to extend in the row direction.
- the MOS gate wirings 5ab1, 5ab2, 5ab3 and the signal line semiconductor N + regions S 1 , S 2 , S 3 are formed in the same state as in FIG. 1B.
- the light reflecting conductor connection layer 99 shields the pixel region from light except for the upper surfaces of the island-shaped semiconductors P 11 to P 33 constituting the pixel. For this reason, the incident light beam 100 that has entered the gaps G 1 to G 4 formed in the row direction of the island-shaped semiconductors P 11 to P 33 constituting the pixel surrounds the outer periphery of the island-shaped semiconductors P 11 to P 33.
- the light reflecting conductor connection layer 99 connected to the gap prevents the gap G 1 to G 4 from entering the inside of the structure, thereby preventing a decrease in resolution and color mixing in color imaging as in a conventional solid-state imaging device.
- FIG. 3A shows a pixel structure of a solid-state imaging device according to a modification of the present embodiment.
- the outer periphery of the third semiconductor N regions 6a and 6b and the fourth semiconductor P + regions 8a and 8b are separated from the gate conductor layers 5a and 5b and the metal layers (pixel selection lines) 10aa and 10bb.
- the light-reflecting conductor layers 99a and 99b thus formed were formed.
- the gate conductor layers 56a and 56b are formed to extend to the outer peripheral portions of the third semiconductor N regions 6a and 6b and the fourth semiconductor P + region 8a. . Since the other components are the same as the cross-sectional structure shown in FIG. 2C, the description of the portions denoted by the same reference numerals is omitted except for the case described below.
- FIG. 3B shows a potential distribution diagram along the line CC ′ in FIG. 3A during the signal charge accumulation operation of the solid-state imaging device according to the present embodiment.
- a voltage Vrg2 is applied.
- the potential distribution diagram when Vrg1 is applied to the gate conductor layer 56a is shown by a solid line
- the potential diagram at the insulating layer 4a when Vrg2 is applied to the gate conductor layer 56a is shown by a dotted line. Yes.
- FIG. 3B shows a potential distribution diagram along the line CC ′ in FIG. 3A during the signal charge accumulation operation of the solid-state imaging device according to the present embodiment.
- the fourth semiconductor P + region 8 is connected to the fifth semiconductor P + region 10. Therefore, it is fixed at Vp1. For this reason, in the fourth semiconductor P + region 8a, there are many holes 56d supplied from the fifth semiconductor P + region 10 which is an acceptor region. Similarly, during the signal charge read operation, the fourth semiconductor P + region 8 is connected to the fifth semiconductor P + region 10, and therefore the fourth semiconductor P + region 8 a includes the fifth semiconductor P + region 8 a. Many holes 56d supplied from the P + region 10 exist.
- FIG. 4A shows a pixel structure of a solid-state imaging device according to a modification of the present embodiment.
- the fourth semiconductor P + regions 8a and 8b and the third semiconductor N regions 6a and 6b formed on the outer periphery of the third semiconductor N regions 6a and 6b are the same as the fifth semiconductor P + region 10.
- the fourth semiconductor P + regions 88a and 88b and the third semiconductor N regions 66a and 66b are electrically separated from the fifth semiconductor P + region 10. .
- the third semiconductor N regions 66a, 66b and the fourth semiconductor P + regions 88a, the outer peripheral portion of the 88b, the insulating layer 4a, via 4b light reflective conductive layer 9a, 9b are formed.
- the other components are the same as the cross-sectional structure shown in FIG.
- FIG. 4B shows a potential distribution diagram along the line DD ′ in FIG. 4A during the signal charge accumulation operation of the solid-state imaging device according to the present embodiment.
- the light-reflecting conductor is formed so that the fourth semiconductor P + regions 88a and 88b are in a hole accumulation state (a state where a lot of holes are supplied from the second semiconductor P region 3 and exist).
- the potential of the fourth semiconductor P + regions 88a and 88b is Vp2 ( ⁇ 0 V). As shown in FIG.
- holes are injected from the second semiconductor P region 3 into the fourth semiconductor P + regions 88a and 88b, and many holes exist. Therefore, as in the state shown in FIG. 3B, when the electrons 56c existing at the energy level at the interface between the insulating layer 4a and the fourth semiconductor P + region 88a (88b) are thermally excited to the conduction band, The electrons 56c recombine with the holes 56d in the fourth semiconductor P + region 88a (88b) and disappear. Thereby, the excited electrons 56c are not mixed in the signal charge Qsig, and dark current and dark current noise are not generated.
- the fourth semiconductor P + regions 8a, 8b, 88a, and the outer periphery of the third semiconductor N regions 6a, 6b, 66a, and 66b 88b and the light reflecting conductor layers 99a and 99b, the gate conductor layers 56a and 56b, and the light reflecting conductor layers 9a and 9b are formed via the insulating layers 4a and 4b, and the signal charge accumulation operation and the signal charge reading operation by the solid-state imaging device.
- the accumulated signal charge removal operation is performed, a state in which many holes exist in the fourth semiconductor P + regions 8a, 8b, 88a, and 88b has been a problem in the conventional solid-state imaging device.
- FIG. 5A and 5B show a pixel structure of a solid-state imaging device according to the third embodiment of the present invention and a pixel structure of a solid-state imaging device according to a modification example thereof.
- an insulating layer 13 is formed below the island-shaped semiconductor 1a in the solid-state imaging device of the first embodiment shown in FIG. 1A, and a metal is formed below the insulating layer 13.
- a light reflecting conductor layer 14a made of a conductor and reflecting light is formed. The light beam 12b incident from the upper surface of the microlens is reflected by the light reflecting conductor layers 9a and 9b and the gate conductor layers 5a and 5b, which are pixel selection lines, and propagates below the island-shaped semiconductor 1a.
- the solid-state imaging device of the present embodiment has the same sensitivity as that of the solid-state imaging device of the first embodiment.
- the height Ld of the photodiode region 7 can be further reduced as compared with the solid-state imaging device of the embodiment. This facilitates processing of the pixel structure and realizes a high pixel density of the solid-state imaging device.
- the solid-state imaging device of the present embodiment even if the height Ld of the photodiode region 7 is the same as that of the solid-state imaging device of the first embodiment, the light propagation length in the photodiode region 7 that is a photosensitive region. Therefore, the signal charge generated by the reflected light beam 12d from the light reflecting conductor layer 14a can contribute to the improvement of sensitivity.
- the light reflecting conductor layer 14b is formed directly below the island-like semiconductor 1a shown in FIG. 1A without interposing an insulating layer. Also in this pixel structure, the reflected light beam 12e reflected by the light reflecting conductor layer 14b is incident on the photodiode region 7 of the island-like semiconductor 1a constituting the pixel again to generate a signal charge. Thereby, the same effect as the solid-state imaging device of the second embodiment shown in FIG. 2A can be obtained. Thereby, according to 2nd Embodiment and its modification, the solid-state imaging device which can obtain high pixel density, high resolution, low color mixing, and high sensitivity is implement
- FIG. 6A shows a pixel structure of a solid-state imaging device according to the fourth embodiment of the present invention.
- the solid-state imaging device according to the present embodiment has a light transmission insulation such as a SiO 2 film below the island-like semiconductor 1a constituting the pixels of the solid-state imaging device according to the first embodiment shown in FIG. 1A.
- the first layer is formed except that a layer 15 is formed and a light absorption layer 16 made of Si (silicon) or the like that absorbs a part of incident light is formed below the light transmission insulating layer 15.
- the pixel structure is the same as that of the solid-state imaging device of the embodiment.
- the light beam 17 incident on the light transmission insulating layer 15 causes multiple reflection in the light transmission insulating layer 15, and reflected light beams 18a, 18b,... On the surface of the light absorption layer 16.
- the amount of light that is multiple-reflected in the light-transmitting insulating layer 15 and returns to the photodiode region 7 is the thickness of the light-transmitting insulating layer 15, the light absorption rate of Si and SiO 2 , the refractive index, the wavelength of incident light, the incident light It varies depending on the angle.
- the graph shows the calculation result of the film thickness dependence of the SiO 2 layer 15 of the reflectance when is reflected by the Si light absorption layer 16.
- blue light is absorbed by the photodiode region 7 in the vicinity of the surface of the island-shaped semiconductor 1a, such film thickness dependency is not observed.
- This reflectance indicates the ratio of the amount of light returning to the photodiode region 7 with respect to the amount of light incident on the light transmission insulating layer 15. As shown in FIG.
- the reflectance of green light and red light increases or decreases depending on the thickness of the SiO 2 layer 15. For example, when the SiO 2 film thickness is about 0.5 ⁇ m, the reflectance of both green light and red light can be relatively increased. On the other hand, for example, when the SiO 2 film thickness is about 0.2 ⁇ m, the reflectance of green light can be relatively increased and the reflectance of red light can be relatively decreased.
- the SiO 2 film thickness in a signal processing it is necessary to adjust the balance of the signal output of the blue, green and red light in the color imaging, the SiO 2 film thickness was approximately 0.2 [mu] m, the green light By increasing the sensitivity and decreasing the sensitivity of red light, it is possible to contribute to an improvement in the sensitivity of the color solid-state imaging device. Further, when the SiO 2 film thickness is set to about 0.5 ⁇ m and the reflectance of both green light and red light is increased, it is possible to contribute to improvement of sensitivity in monochrome imaging.
- the reflectance can be changed depending on the wavelength of light by changing the film thickness of the SiO 2 layer 15 because the change in the SiO 2 film thickness indicates the relationship between the wavelength of incident light and the sensitivity of the solid-state imaging device. This means that the sensitivity characteristic can be controlled.
- the light transmission insulating layer (SiO 2 layer) 15 In an actual solid-state imaging device, light is incident on the surface of the light transmission insulating layer (SiO 2 layer) 15 at various incident angles, and the characteristics shown in FIG. 6B change depending on the design of the microlens. Further, the required spectral sensitivity characteristics are different depending on color imaging and monochrome imaging. As described above, the technique of changing the thickness of the light transmission insulating layer (SiO 2 layer) 15 and changing the reflectance depending on the wavelength of light provides an effective method for obtaining a desired spectral sensitivity characteristic. .
- the solid-state imaging device according to the present embodiment includes the fifth semiconductor P + region 10 in the pixel (island semiconductor) 1a of the solid-state imaging device according to the first embodiment shown in FIG. 1A.
- the concave portion 20a or the convex portion 20b is formed in the central surface layer portion, and the optical refractive indexes of the two substance regions that are in contact with each other with the concave surface of the concave portion 20a or the convex surface of the convex portion 20b as a boundary surface are different from each other.
- the pixel structure is the same as that of the solid-state imaging device of the first embodiment.
- FIG. 7A shows an example in which a triangular pyramid-shaped recess 20a is formed in the central surface layer portion of the fifth semiconductor P + region 10 in the island-shaped semiconductor 1a constituting the pixel.
- the concave portion 20 a does not exist in the central surface layer portion of the fifth semiconductor P + region 10.
- the light rays 21a and 21b perpendicularly incident on the central portion of the microlens 11 are not reflected by the light reflecting conductor layers 9a and 9b, and enter the island-like semiconductor 1a constituting the pixel.
- the refracted light beam 22a is reflected by the light reflecting conductor layers 9a and 9b, the light propagation length in the photodiode region 7 is increased, and the sensitivity of the solid-state imaging device is improved.
- the refraction of the light beam in the recess 20a is caused by the difference between the refractive index of Si (silicon) that is the material of the fifth semiconductor P + region 10 and the refractive index of the transparent resin material that is the material of the light transmission intermediate region 24. .
- FIG. 7B shows an example in which a triangular pyramid-shaped convex portion 20 b is formed in the central surface layer portion of the fifth semiconductor P + region 10.
- a convex portion 20b may be formed in the central surface layer portion of the fifth semiconductor P + region 10 instead of the concave portion 20a shown in FIG. 7A.
- the light beam 21d incident perpendicularly to the fifth semiconductor P + region 10 from the center of the microlens 11 is emitted by the convex portion 20b.
- the light is refracted toward the reflective conductor layers 9a and 9b.
- the refracted light beam 22a is reflected by the light reflecting conductor layers 9a and 9b, the light propagation length in the photodiode region 7 is increased, and the sensitivity of the solid-state imaging device is improved.
- the light refractive indexes of the two substance regions that are in contact with each other with the concave surface of the concave portion 20a or the convex surface of the convex portion 20b as the boundary surface are made different from each other.
- the present invention is not limited to this, and the concave portion 20a or the convex portion 20b itself is formed of Si that is the material of the fifth semiconductor P + region 10 or a material having a refractive index different from that of the transparent resin material of the light transmission intermediate region 24. Also good.
- the light beam incident on the fifth semiconductor P + region 10 from the central portion of the microlens 11 is refracted toward the light reflecting conductor layers 9a and 9b by the concave portion 20a or the convex portion 20b. Then, the light propagation length in the photodiode region 7 that is the photosensitive region is increased, and the sensitivity of the solid-state imaging device is improved.
- the shape of the concave portion 20a and the convex portion 20b is a triangular pyramid.
- the present invention is not limited to this, and any other shape such as a conical shape or a square shape may be used as long as the light beam incident on the central portion of the microlens 11 is refracted by the concave portion 20a or the convex portion 20b and reflected by the light reflecting conductor layer. It may be a spindle shape or a semicircular shape.
- FIG. 8 shows a pixel structure of a solid-state imaging device according to the sixth embodiment of the present invention.
- the solid-state imaging device of the present embodiment has a fifth focal point 23 of the microlens 11 in the island-shaped semiconductor 1 a constituting the pixel of the solid-state imaging device in the first embodiment shown in FIG.
- the pixel structure is the same as that of the solid-state imaging device of the first embodiment except that the semiconductor P + region 10 is located in the light transmission intermediate region 24 above the upper surface of the semiconductor P + region 10.
- the focal point 23 of the microlenses 11 are formed in the upper portion of light transmitting the intermediate region 24 from the semiconductor P + region 10 in the fifth.
- the incident light beam 25b incident from the microlens 11 and condensed on the focal point 23 inside the light transmission intermediate region 24 is the fifth semiconductor.
- the light propagation length in the photodiode region 7 can be further increased in the incident light beam 25b according to the pixel structure of the present embodiment than in the incident light beam 25a in the pixel structure of the first embodiment. Therefore, according to the solid-state imaging device of the present embodiment, the sensitivity is further improved as compared with the solid-state imaging device of the first embodiment.
- the effect of increasing the light propagation length in the photodiode region 7 can be obtained for the light beams 21b and 21d incident on the central portion of the microlens 11 shown in FIGS. 7A and 7B. Absent.
- the configuration in the fifth embodiment described with reference to FIGS. 7A and 7B (the concave portion 20a or the convex portion 20b formed in the center of the fifth semiconductor P + region 10) is changed to the sixth embodiment. By applying this, the sensitivity of the solid-state imaging device can be further improved.
- FIG. 9 shows a pixel structure of a solid-state imaging device according to the seventh embodiment of the present invention.
- the solid-state imaging device according to the present embodiment has a point 26a on the outer peripheral portion of the microlens 11 in the island-shaped semiconductor 1a constituting the pixels of the solid-state imaging device according to the first embodiment shown in FIG. 1A. , 26b, and passes through the center line 27 of the microlens 11 to reach one point 28a, 28b on the outer periphery of the fifth semiconductor P + region 10, and the fifth semiconductor P +.
- An angle ⁇ i formed by a line perpendicular to the upper surface of the region 10 is smaller than the Brewster angle ⁇ b.
- the photodiode region is not completely surrounded by a material that reflects light
- the light beam 38 incident on the photodiode region at a large incident angle corresponds to the pixel. Leaks to adjacent pixels.
- the entire photodiode region 7 is formed of the conductor layers 5a and 5b and the light regardless of the angle at which the light beam enters the photodiode region 7. Since it is completely surrounded by the reflective conductor layers 9a and 9b, it is possible to eliminate light leakage to adjacent pixels.
- An angle ⁇ i perpendicular to the surface of the fifth semiconductor P + region 10 and the light rays 29a and 29b reaching the one point 28a and 28b on the outer peripheral portion are smaller than the Brewster angle ⁇ b.
- the Brewster angle ⁇ b is expressed by the following equation, where N 1 is the refractive index of the light transmission intermediate region 24 and N 2 is the refractive index of the fifth semiconductor P + region 10.
- FIG. 10A is a schematic three-dimensional view showing a state in which the incident light beam 100 is incident on the gap G 2 extending in the row direction between the island-shaped semiconductors P 11 to P 33 constituting the pixel in the first embodiment shown in FIG. 1B. A structural diagram is shown. As shown in FIG. 10A, incident light 100 that is incident from above is incident on the band-like signal line N + regions 2aa located below the island-like semiconductor P 11.
- Some of the incident light beam 100 has a band-like signal line N + regions 2aa sandwiched by two insulating layers having different refractive index, the strip signal line N + region 2bb (signal lines semiconductor N + region adjacent thereto S 1, S 2, S 3 ) multiple reflected light 101a in the results 101b, 101c, and 101d.
- Multiple reflected light 101a, 101b, 101c, 101d is an island-shaped semiconductor P 11 is incident on the photodiode region 7 of the island-like semiconductor P 12 constituting the pixels adjacent (see FIG. 1A) to the signal charge in the pixel appear. This light leakage to an adjacent island-like semiconductor P 12 constituting the pixel to generates color mixture decreases and color imaging resolution of the solid-state imaging device.
- FIG. 10B is a schematic plan view of the solid-state imaging device according to the present embodiment as viewed from the light incident surface side.
- the island-shaped semiconductors P 11 to P 33 constituting the pixel are arranged in a square lattice shape or a rectangular lattice shape.
- the pixel selection lines 9ab1, 9ab2, 9ab3 formed extending in the horizontal direction of the drawing and the MOS gate wirings 5ab1, 5ab2, 5ab3 are arranged so as not to overlap each other when viewed from the upper surface of the drawing.
- Pixel selection line 9ab1,9ab2,9ab3 are wired to the MOS gate wiring gap formed between 5ab1,5ab2,5ab3 G 1, G 2, G 3, the G 4.
- FIG. 10C shows a schematic three-dimensional structure diagram in a region surrounded by an alternate long and short dash line B in FIG. 10B.
- a pixel selection line 9ab1 connected to the light reflecting conductor layers 9aa and 9bb formed on the outer periphery of the island-shaped semiconductors P 11 and P 12 is formed.
- the pixel selection line 9ab1 is formed so as to extend in the horizontal direction in a region gap G 2 is formed.
- Others are the same as those of the pixel structure shown in FIG.
- the regions other than the island-shaped semiconductors P 11 and P 12 where the photoelectric conversion portions exist are almost covered with the pixel selection line 9ab1 and the MOS gate wiring 5ab. As in the pixel structure shown in FIG. 2, no leakage occurs inside the adjacent island-shaped semiconductor.
- FIG. 10D shows a schematic three-dimensional structure of the state in which the MOS gate wiring 55ab1 provided in the region of the gap G 2 extending in between the island-like semiconductor constituting the pixels in the row direction. Except for the provision of the MOS gate wiring 55ab1, it is the same as the schematic three-dimensional structure shown in FIGS. 10D, similarly to the structure shown in FIG. 10C, when viewed from the light incident surface side, regions other than the island-shaped semiconductors P 11 and P 12 where the photoelectric conversion portions exist are the pixel selection lines 9ab and the MOS gates. Since it is almost covered with the wiring 55ab1, the incident light ray 100 does not leak into the adjacent island-like semiconductor as in the pixel structure shown in FIG. 10A.
- FIG. 10E shows a plan view of a solid-state imaging device according to a modification of the present embodiment.
- the island-shaped semiconductors P 11 to P 33 constituting the pixel are not arranged in a line in the vertical direction, but are arranged in a staggered manner.
- the signal line semiconductor N + regions S 1 , S 2 and S 3 meander in a zigzag manner in the vertical direction.
- the island-shaped semiconductors P 11 to P 33 are connected. Similar to FIG.
- the pixel selection line 9ab1,9ab2,9ab3 are wired in MOS gap G 1 of the gate line 5ab1,5ab2,5ab3, G 2, G 3, the G 4.
- the signal line semiconductor N + region S 1 in which the incident light beam directly causes multiple reflection by the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3. Reaching S 2 and S 3 is prevented.
- the resolution fall and the color mixing in color imaging are prevented.
- a minute gap is formed between the pixel selection lines 9ab1, 9ab2, and 9ab3 and the MOS gate wirings 5ab1, 5ab2, and 5ab3 when viewed from the light incident surface.
- the pixel selection lines 9ab1, 9ab2, 9ab3 and the MOS gate wirings 5ab1, 5ab2, 5ab3 can be formed to overlap each other. Thereby, in the entire pixel region of the solid-state imaging device, the incident light beam reaches the signal line semiconductor N + regions S 1 , S 2 , and S 3 that directly cause multiple reflection by the pixel selection lines 9ab1, 9ab2, and 9ab3. Is more reliably prevented. Thereby, according to the solid-state imaging device of this modification, the resolution fall and the color mixing in color imaging are prevented.
- FIG. 11A shows a cross-sectional view of the solid-state imaging device according to the present embodiment.
- the first semiconductor N + region 2 is formed in the entire lower portion of the MOS transistor.
- the region where the first semiconductor N + region 2 is formed in the first embodiment is the sixth semiconductor P + region 2c and the second semiconductor P + region 2c.
- the sixth semiconductor P + region 2c serves as the drain of the junction transistor functioning as a signal charge reading unit for reading the signal charge accumulated in the photodiode region 7, and the eighth semiconductor N + region 2d.
- the sixth semiconductor P + region 2 c and the eighth semiconductor N + region 2 d are separated from each other by a seventh semiconductor P region 3 b connected to the second semiconductor P region 3.
- the current path can be made different between the signal charge read operation and the accumulated signal charge removal operation.
- the high-speed shutter timing can be performed at the signal charge readout timing and the accumulated signal charge removal timing independent of the time transition, and an advantage in the imaging operation can be obtained.
- the sixth semiconductor P + region 2c of the junction transistor is replaced with the ninth semiconductor N + region 2ca like the pixel structure of the solid-state imaging device according to the modification of the present embodiment illustrated in FIG. 11B. Even if the replacement is performed, a similar imaging operation is realized. In this case, the lower region of the second semiconductor P + region 2 in the vicinity of the ninth semiconductor N + region 2ca becomes the source of the junction transistor that functions as the signal charge reading portion.
- the present invention is not limited to this, and the technical idea of the present invention can be applied to a solid-state imaging device in which a plurality of other pixels are arranged one-dimensionally or two-dimensionally in the pixel region.
- the photodiode region 7 which is a photoelectric conversion unit
- the third semiconductor N regions 6a and 6b which are signal charge storage units
- the junction transistor which is a signal charge reading unit
- the stored signal charge
- the pixel structure has a MOS transistor as a removal portion
- the island-like semiconductor has a photoelectric change portion, a signal charge accumulation portion, a signal charge readout portion, and an accumulated signal charge removal portion by other configurations.
- the structure of the island-like semiconductor 1a, P 11 ⁇ P 33 constituting the pixels are all were of cylindrical shape.
- the shape is not limited to this, and may be a quadrangular prism shape or a polygonal column shape.
- the first semiconductor N + region 2 and the third semiconductor N regions 6a and 6b are of the N-type conductivity type
- the second semiconductor P region 3 is of the P-type conductivity type
- the fourth semiconductor The P + regions 8a and 8b and the fifth semiconductor P + region 10 were P-type conductivity type.
- the present invention is not limited to this, and the first semiconductor region 2 and the third semiconductor regions 6a and 6b are P-type conductivity type, the second semiconductor region 3 is N-type conductivity type, and the fourth semiconductor regions 8a, The 8b and the fifth semiconductor region 10 may be N + type conductivity type.
- the channel of the MOS transistor is formed in the second semiconductor P region 3 by an electric field (enhancement type).
- the channel of the MOS transistor can be formed by a depletion type in which impurities are implanted into the second semiconductor P region 3 by ion implantation or the like, or a buried channel.
- the light transmission intermediate region 24 has a single-layer structure, but the light transmission intermediate region may be formed of a plurality of layers, and further, the light transmission intermediate region 24 includes a color filter layer. May be.
- the conductor layers 5a, 5b and the light reflecting conductor layers 9a, 9b, 99a, 99b are formed from a single-layer metal film, but may be formed from a plurality of metal films.
- the conductor layers 5a and 5b and the light reflecting conductor layers 9a, 9b, 99a, and 99b are not limited to metals, and a material layer that reflects long wavelength light such as impurity-doped polycrystalline Si or silicide is made of metal. It may be formed by being included in a part, or may be formed only by impurity-doped polycrystalline Si or silicide.
- S 1 , S 2 , and S 3 constituting the signal line are semiconductor N + regions.
- the present invention is not limited to this, and as shown in FIG. 5B, in the case where the light reflecting conductor layer 14 b made of metal is formed directly below the first semiconductor N + region 2 without going through the insulating layer, Since the resistances of the lines S 1 , S 2 , S 3 are lowered by the light reflecting conductor layer 14b, the signal lines S 1 , S 2 , S 3 may not be the semiconductor N + region.
- the incident light beam 100 that has entered the gaps G 1 , G 2 , G 3 , and G 4 shown in FIG. 2F is reflected by the light reflecting conductor layer 14b, and a part thereof is the pixel (island semiconductor 1a). Leakage to the photodiode region 7 of the pixel (island semiconductor) adjacent to is prevented.
- the light reflecting conductor layers 14a and 14b reflect electromagnetic energy waves such as light, which is a kind of electromagnetic wave.
- the light reflecting conductor layers may be other in accordance with the purpose of use of the solid-state imaging device. It may be an electromagnetic wave reflecting conductor layer that also functions as a reflector for reflecting electromagnetic energy waves such as infrared rays, visible rays, ultraviolet rays, X-rays, gamma rays, and electron beams.
- the present invention can be applied to a semiconductor device including a transistor in which a channel region is formed in a semiconductor having a columnar structure.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
図12Aには、従来例に係る、1個の島状半導体30に1個の画素が構成されている固体撮像装置の断面図を示す(例えば、特許文献1を参照)。図12Aに示すように、この画素を構成する島状半導体30においては、図示しない基板上に、信号線半導体N+領域31(以下、「半導体N+領域」をドナー不純物が多く含まれた半導体領域とする。)が形成されている。この信号線半導体N+領域31上に半導体P領域32(以下、「半導体P領域」をアクセプタ不純物が含まれた半導体領域とする。)が形成され、この半導体P領域32の外周部に絶縁層33a,33bが形成され、この絶縁層33a,33bを介在させてゲート導体層34a,34bが形成されている。このゲート導体層34a,34bの上方部位における半導体P領域の外周部に、半導体N領域35a,35b(以下、「半導体N領域」をドナー不純物が含まれた半導体領域とする。)が形成されている。この半導体N領域35a,35b及び半導体P領域32上において、島状半導体30の上部に半導体P+領域36(以下、「半導体P+領域」をアクセプタ不純物が多く含まれた半導体領域とする。)が形成されている。この半導体P+領域36は、画素選択線37a,37bに接続されている。上述した絶縁層33a,33bは、島状半導体30の外周部を囲んだ状態で互いに繋がっている。同様に、ゲート導体層34a,34b、半導体N領域35a,35bも、島状半導体30の外周部を囲んだ状態で互いに繋がっている。
複数の画素が2次元状に配列された固体撮像装置であって、
基板上に前記複数の画素を構成する複数の島状半導体が形成され、
前記各島状半導体は、それぞれ、
当該島状半導体の下部に形成された第1の半導体領域と、
前記第1の半導体領域上に形成され、前記第1の半導体領域と反対の導電型又は固有半導体である第2の半導体領域と、
前記第2の半導体領域の上部側面領域に形成され、前記第1の半導体領域と同じ導電型である第3の半導体領域と、
前記第3の半導体領域の外周部に形成され、前記第1の半導体領域と反対の導電型である第4の半導体領域と、
前記第4の半導体領域及び前記第2の半導体領域の下部側面領域の外周部に形成された絶縁層と、
前記絶縁層の外周部に形成され、前記第2の半導体領域の下部領域にチャネルを形成するゲート電極として機能する導体層と、
前記第3の半導体領域、前記第4の半導体領域及び前記絶縁層の外周部に形成され、電磁エネルギー波を反射する反射導体層と、
前記第2の半導体領域及び前記第3の半導体領域の上部領域に形成され、前記第4の半導体領域と同じ導電型である第5の半導体領域と、
前記第5の半導体領域上に形成され、当該第5の半導体領域の上表面近傍に焦点が位置するマイクロレンズと、を備え、
前記島状半導体が、光電変換部として機能する部位と、信号電荷蓄積部として機能する部位と、信号電荷読み出し部として機能する部位と、蓄積信号電荷除去部として機能する部位と、を含んでおり、
前記光電変換部が、前記第2の半導体領域及び前記第3の半導体領域から構成されたフォトダイオード領域から構成され、前記マイクロレンズに入射した電磁エネルギー波により、前記光電変換部に信号電荷が発生し、
前記信号電荷蓄積部が、前記第3の半導体領域から構成され、前記光電変換部において発生した信号電荷を蓄積するものであり、
前記信号電荷読み出し部が、前記第5の半導体領域、前記第2の半導体領域の下部領域をドレイン又はソースとし、前記信号電荷蓄積部をゲートとした接合トランジスタから構成されるとともに、前記信号電荷蓄積部に蓄積された信号電荷の量に応じて変化する前記接合トランジスタのドレインとソースとの間に流れるドレイン・ソース間電流を出力信号として読み出すように機能し、
前記蓄積信号電荷除去部が、前記第1の半導体領域をドレイン、前記導体層をゲート、前記第3の半導体領域をソース、前記第1の半導体領域と前記第3の半導体領域とにより挟まれた前記第2の半導体領域をチャネルとしたMOSトランジスタから構成され、前記導体層に所定の電圧を印加することにより前記信号電荷蓄積部に蓄積された信号電荷を、前記第1の半導体領域に除去するように機能するものである、
ことを特徴とする。
前記固体撮像装置において、
当該固体撮像装置により実行される撮像動作が、
前記光電変換部で発生した信号電荷を、前記第3の半導体領域に蓄積する信号電荷蓄積動作と、
前記第3の半導体領域に蓄積された信号電荷の量に応じて、前記接合トランジスタの前記ドレイン・ソース間電流を出力信号として読み出す信号電荷読み出し動作と、
前記第3の半導体領域に蓄積した蓄積信号電荷を、前記導体層に所定の電圧を印加して、前記第1の半導体領域に除去する蓄積信号電荷除去動作と、
を含み、
前記信号電荷蓄積動作、前記信号電荷読み出し動作及び前記蓄積信号電荷除去動作の各動作時において、前記第4の半導体領域に、前記信号電荷と反対の極性の電荷が蓄積されている、
ことを特徴とする。
前記第1の半導体領域に代えて、前記第2の半導体領域と同じ導電型の第6の半導体領域又は前記第2の半導体領域と反対の導電型の第9の半導体領域と、前記第2の半導体領域と同じ導電型であって、前記第2の半導体領域に繋がった第7の半導体領域と、前記第2の半導体領域と反対の導電型の第8の半導体領域とを備え、前記第6の半導体領域、前記第9の半導体領域の近傍の前記第2の半導体領域の下部領域が、それぞれ前記接合トランジスタのドレイン、ソースであり、前記第8の半導体領域が、前記MOSトランジスタのドレインである、
ことを特徴とする。
前記島状半導体の下方領域に形成された反射層を備える、
ことを特徴とする。
前記島状半導体の下方領域に形成された光透過絶縁層と、該光透過絶縁層の下方領域に形成された光吸収層と、をさらに備え、
前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1乃至第4の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光で相対的に大きくなるとともに赤色光で相対的に小さくなるように、前記光透過絶縁層の厚さが設定されている、
ことを特徴とする。
前記島状半導体の下方領域に形成された光透過絶縁層と、該光透過絶縁層の下方領域に形成された光吸収層と、をさらに備え、
前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1乃至第4の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光及び赤色光で相対的に大きくなるように、前記光透過絶縁層の厚さが設定されている、
ことを特徴とする。
前記マイクロレンズと前記島状半導体との間に形成された光透明中間層を備え、
前記マイクロレンズの焦点が、前記光透明中間層の内部に位置する、
ことを特徴とする。
前記島状半導体上部の中央表層部に、凹部又は凸部が形成され、
前記凹部の凹状の面又は前記凸部の凸状の面を境界面として互いに接する2つの物質領域の光屈折率が互いに異なる、
ことを特徴とする。
前記マイクロレンズと前記島状半導体との間に形成された光透明中間層を備え、
前記マイクロレンズの外周部の1点から入射し、該マイクロレンズの中心線及び前記光透明中間層を通過して、前記島状半導体上部の外周部の1点に到達する光線と、前記第5の半導体領域の上表面と直交する線とがなす角度θiが、ブリュースター角θb(=tan-1(N1/N2);ここで、N1:前記光透明中間層の屈折率、N2:前記第5の半導体領域の屈折率)よりも小さい、
ことを特徴とする。
前記複数の画素が正方格子状、矩形格子状、又は千鳥状に配列されており、
前記複数の画素の内、縦方向に配列されている複数の画素における前記第1の半導体領域を互いに電気的に接続するとともに、縦方向に延びる複数の導体配線と、
前記複数の画素の内、横方向に配列されている複数の画素における前記導体層を互いに電気的に接続するとともに、横方向に延びる複数の導体配線と、
前記複数の画素の内、横方向に配列されている複数の画素における前記反射導体層を互いに電気的に接続するとともに、横方向に延びる複数の反射導体配線と、をさらに備え、
前記横方向に延びる導体配線と、前記反射導体配線とが、前記複数の画素への電磁エネルギー波の照射方向から見て、互いに上下に重なることなく、かつ、縦方向に交互に配列されている、
ことを特徴とする。
前記複数の画素のそれぞれにおける前記反射導体層は、当該画素における前記第5の半導体領域と電気的に分離されており、前記複数の画素における全ての前記反射導体層は、前記複数の画素が存在する画素領域に亘って、当該画素領域を覆うように互いに繋がっている、
ことを特徴とする。
図1Aに、本発明の第1の実施形態に係る固体撮像装置の画素を構成する島状半導体1aの断面構造を示す。
図1Aに示すように、各画素を構成する島状半導体1aの下方部位の全体に、基板上の画素領域で第1の走査方向に延びる信号線である第1の半導体N+領域2が形成されている。第1の半導体N+領域2上には、第1の半導体N+領域2と反対の導電型である第2の半導体P領域3が形成されている。第2の半導体P領域3の上部側面領域には、第1の半導体N+領域2と同じ導電型である第3の半導体N領域6a,6bが形成されている。
このため、感光領域であるフォトダイオード領域7での光伝播長は、フォトダイオード領域の高さLdより長くなる。このように、感光領域であるフォトダイオード領域7での光伝播長を長くできることは、図12Aに示す従来例の画素構造の固体撮像装置と比較して、フォトダイオード領域の高さLdを低くしながら同じ感度が得られることを意味している。
図1Bに示すように、マイクロレンズを上面に有する画素を構成する島状半導体P11~P33は、同図上で垂直方向に延びる信号線半導体N+領域S1,S2,S3上に形成されている。そして、画素選択線9ab1,9ab2,9ab3及びMOSゲート配線5ab1,5ab2,5ab3が、マトリクス状に配置された島状半導体P11~P33の行方向に配列された島状半導体P11~P33を囲むように形成されている。画素選択線9ab1,9ab2,9ab3と、MOSゲート配線5ab1,5ab2,5ab3とは、上下に重なるように形成されている。そして、信号線半導体N+領域S1,S2,S3、MOSゲート配線5ab1,5ab2,5ab3、画素選択線9ab1,9ab2,9ab3は、画素領域の周辺に設けられた駆動・出力回路(図示せず)に接続されている。
図2A、図2Bに、従来例の固体撮像装置の断面図、電位分布図をそれぞれ示す。また、図2C~図2Fに、本発明の第2の実施形態に係る固体撮像装置の画素構造、電位分布図、模式平面図を示す。
本実施形態に係る固体撮像装置は、第1の実施形態に係る固体撮像装置のように、従来例の固体撮像装置(図12A参照)において課題となる、高画素化・高感度化、解像度の低下及びカラー撮像での混色の問題を解決するだけでなく、さらに、暗電流・暗電流ノイズの発生を防止するものである。
図2Bに、本実施形態による固体撮像装置の信号電荷蓄積動作時における、図2AのA-A´線に沿った電位分布図を示す。図2Bに示すように、光遮蔽金属層55a(55b)にプラス電圧Vg(V)が印加されており、半導体P領域32の電圧Vp(V)はグランド電圧Vp(=0V)になっている。
図2Bでは、半導体N領域35aに信号電荷Qsig(ここでは、自由電子)が蓄積されてないときの電位分布を点線で示し、信号電荷Qsigが蓄積されているときの電位分布を実線で示している。信号電荷の蓄積がない場合の電位分布の底(電圧の最も高い場所)は半導体N領域35aの内部にあり、その電位分布の底における電位はVcmである。
信号電荷Qsigが半導体N領域35aに蓄積された場合では、光遮蔽金属層55a(55b)の電位Vgから絶縁層33a、半導体N領域35aの界面電位Viへと電位が深くなる。そして、信号電荷Qsigが蓄積された領域では、信号電荷蓄積部の電位Vsで平坦となり、それから半導体N領域35a、半導体P領域32に向かって電位がVsからVpへと浅くなる。
このように信号電荷Qsigの有無によって、半導体P領域32に広がる空乏層長Ldwが変化する。また、信号電荷Qsigの有無によって、半導体N領域35aにおいて、絶縁層33aと半導体N領域35aの界面電位をVi(V)とすると、この界面から半導体N領域35a内部に向かって電位がVcmまたはVsまで深くなるように変化する。この状態で、絶縁層33aと半導体N領域35aとの界面におけるエネルギー順位に存在する電子56が熱的に導電帯(Conduction band)に励起されると、この電子56は、半導体N領域35aにおいて、より深い電位にある信号電荷Qsigに混入する。この混入される電子56は暗電流と呼ばれ、画素間での暗電流ばらつきが原因の暗電流むらを生じる。また、暗電流自身がノイズ(不要な信号)になり、S/N(信号・ノイズ比)を低下させる原因になる。図2Bでは、光遮蔽金属層55a,55bの電圧Vgを、グランド電圧(0V)などに変化させても、VsがViより深くなることには変化がないので、常に絶縁層33aと半導体N領域35aとの界面で発生した暗電流の電子56は半導体N領域35aの内部に移動し、信号電荷Qsigに混入するようになる。このため、図12Aに示す従来例の画素構造において光遮蔽金属層55a,55bを設けた場合では、暗電流及び暗電流ノイズの発生を抑制できない。
第3の半導体N領域6a,6b及び第2の半導体P領域3の下部側面領域の外周部を囲むように絶縁層4a,4bが形成されている。この絶縁層4a,4bの外周部を囲むように、第2の半導体P領域3の下部領域にゲート導体層5a,5bが形成されている。このゲート導体層5a,5bは、例えば金属材料を用いて形成され、光線(電磁エネルギー波)を反射する光反射層としても機能する。
フォトダイオード領域7の表層部には、第4の半導体P+領域8a,8bが形成されている。第4の半導体P+領域8a,8bは、第3の半導体N領域6a,6bと絶縁層4a,4bとの間において、絶縁層4a,4bに接した状態で形成されている。第4の半導体P+領域8a,8bの外周部には、絶縁層4a,4bを介して、光などの電磁エネルギー波を反射する光反射導体層99a,99bが形成されている。光反射導体層9a,9bは、導体層5a,5bを除く絶縁層4a,4bの外周部、即ち、第3の半導体N領域6a,6bの外周部に形成されている。光反射導体層99a,99bは、例えば金属材料を用いて形成され、電流を流す導体層及び光を反射する光反射層として機能する。
なお、本実施形態において、光電変換部(フォトダイオード領域7)、信号電荷蓄積部、信号電荷読み出し部、蓄積信号電荷除去部は、図1Aに示す第1の実施形態における島状半導体1aと同様であるので、その説明を省略する。
そして、第5の半導体P+領域10上に、光を透過する材料からなる光透過中間領域24が形成され、この光透過中間領域24上に、第5の半導体P+領域10の上表面近傍に焦点が位置するマイクロレンズ11が形成されている。この光透過中間領域24、及びマイクロレンズ11は、例えば、透明樹脂材料で形成されている。
この島状半導体1aにおいて、マイクロレンズ11の上面より入射した光線12a,12bは、第5の半導体P+領域10の上表面近傍に位置するマイクロレンズ11の焦点に集光される。この集光された光線12a,12bの内、マイクロレンズ11の中心部に垂直に入射した光線以外の、島状半導体1aに入射した光線12a,12bは、画素選択線である光反射導体層99a,99b及びゲート導体層5a,5bにより反射され、島状半導体1a内を伝播し、当該島状半導体1a内で吸収されて信号電荷を発生する。これにより、第1の実施形態の固体撮像装置と同様に、島状半導体1aの高さ(フォトダイオード領域7の高さLd)を低くすることができる。この結果、画素を構成する島状半導体を含む画素構造の加工性が高められ、高画素密度化が実現されるとともに、解像度の低下、カラー撮像での混色が防止できる固体撮像装置が提供できる。
図2Cでは、第4の半導体P+領域8aは第5の半導体P+領域10に電気的に接続されているので、第4の半導体P+領域8aの電位は、グランド電圧Vg(=0V)になっている。
信号電荷Qsigが第3の半導体N領域6aに蓄積されている状態において、第4の半導体P+領域8aから第3の半導体N領域6aに向かって、電位はVgから信号電荷Qsigのある電位Vsまで深くなり、信号電荷Qsigが蓄積された領域において、一定の電位Vsが保持され、それから第2の半導体P領域3に向かって、この第2の半導体P領域3の電位Vpまで低下する。この状態において、第4の半導体P+領域8aには、第5の半導体P+領域10から供給された正孔(ホール)56dが多く存在している。このため、絶縁層4aと第4の半導体P+領域8aとの界面におけるエネルギー順位に存在する電子56cが熱的に導電帯に励起されると、この電子56cは、第4の半導体P+領域8aに存在する正孔56dと再結合して消滅する。これにより、励起された電子56cは、信号電荷Qsigに混入することはなく、暗電流及び暗電流ノイズは発生しない。
この状態での電位分布図は、光反射導体層99aの電位Vgから、第4の半導体P+領域8aの電位VHを経て、信号電荷Qsigが蓄積された領域の電位Vsまで上昇する。そして、信号電荷Qsigが蓄積された領域において、一定の電位Vsが保持され、さらに第2の半導体P領域3に向かって、この第2の半導体P領域3の電位Vpまで浅くなる。
この状態において、第4の半導体P+領域8aには、第5の半導体P+領域10から供給された正孔(ホール)が多く存在している。このため、図2Dに示す状態と同様に、絶縁層4aと第4の半導体P+領域8aとの界面におけるエネルギー順位に存在する電子56cが熱的に導電帯に励起されると、この電子56cは、第4の半導体P+領域8aに存在する正孔56dと再結合して消滅する。これにより、励起された電子56cは、信号電荷Qsigに混入することはなく、暗電流及び暗電流ノイズは発生しない。
このように、本実施形態の固体撮像装置によれば、第4の半導体P+領域8aの電位を変化させても、電子56cは正孔56dとの再結合によって消滅するので、暗電流及び暗電流ノイズを発生しない状態を維持できる。また、光反射導体層99aの電位が変化しても、第4の半導体P+領域8aの電位は、第5の半導体P+領域10の電位に保持されるので、絶縁層4aと第4の半導体P+領域8aとの界面にあるエネルギー順位に存在する電子56cが熱的に導電帯に励起されても、この電子56cは、第4の半導体P+領域8aにある正孔56dと再結合して消滅し、暗電流及び暗電流ノイズが発生しない状態を維持できる。
図3Aに本実施形態の変形例に係る固体撮像装置の画素構造を示す。図2Cでは、第3の半導体N領域6a,6b及び第4の半導体P+領域8a,8bの外周部に、ゲート導体層5a,5b及び金属層(画素選択線)10aa,10bbに対して分離された光反射導体層99a,99bが形成されていた。しかし、図3Aに示す変形例の画素構造では、ゲート導体層56a,56bが、第3の半導体N領域6a,6b及び第4の半導体P+領域8aの外周部まで延びるように形成されている。その他の構成部位は、図2Cに示す断面構造と同じであるので、以下に説明する場合を除いて同一の符号を付した部位の説明を省略する。
図3Aに示すように、第4の半導体P+領域8aは,第5の半導体P+領域10に電気的に接続されているので、第4の半導体P+領域8aの電位Vp1は第5の半導体P+領域10と同電位である。このため、ゲート導体層56aの電位は、蓄積信号電荷除去動作時にVrg1からVrg2(>Vrg1)に変化しても、第4の半導体P+領域8は第5の半導体P+領域10に接続されているため、Vp1に固定されている。このため、第4の半導体P+領域8aには、アクセプタ領域である第5の半導体P+領域10から供給された正孔(ホール)56dが多く存在している。同様に、信号電荷読出し動作時においても、第4の半導体P+領域8は第5の半導体P+領域10に接続されているため、第4の半導体P+領域8aには、第5の半導体P+領域10から供給された正孔(ホール)56dが多く存在している。このため、図2D、図2Eに示す状態と同様に、絶縁層4aと第4の半導体P+領域8aとの界面にあるエネルギー順位に存在する電子56cが熱的に導電帯に励起されると、この電子56cは、第4の半導体P+領域8aにある正孔56dと再結合して消滅する。これにより、励起された電子56cは、信号電荷Qsigに混入することはなく、暗電流及び暗電流ノイズは発生しない。このように、本実施形態の固体撮像装置によれば、ゲート導体層56aの電位が変化しても、暗電流及び暗電流ノイズを発生しない状態を維持できる。
図4Aに本実施形態の変形例に係る固体撮像装置の画素構造を示す。図2Cでは、第3の半導体N領域6a,6bの外周部に形成された第4の半導体P+領域8a,8b及び第3の半導体N領域6a,6bは、第5の半導体P+領域10に電気的に接続されていた。これに対し、本変形例の画素構造では、第4の半導体P+領域88a,88b及び第3の半導体N領域66a,66bは、第5の半導体P+領域10と電気的に分離している。第3の半導体N領域66a,66b及び第4の半導体P+領域88a、88bの外周部に、絶縁層4a,4bを介して光反射導体層9a,9bが形成されている。その他の構成部分は、図2Cに示す断面構造と同じであるので、以下に説明する場合を除いて同一の符号を付した部位の説明を省略する。
図4Aに示す画素構造では、第4の半導体P+領域88a,88bは、第5の半導体P+領域10と電気的に分離されているので、第4の半導体P+領域88a,88bの電位は、第5の半導体P+領域10の電位とは必ずしも同電位ではない。
この場合、第4の半導体P+領域88a,88bには、第2の半導体P領域3より正孔が注入され、多くの正孔が存在している。このため、図3Bに示す状態と同様に、絶縁層4aと第4の半導体P+領域88a(88b)の界面におけるエネルギー順位に存在する電子56cが熱的に導電帯に励起されると、この電子56cは、第4の半導体P+領域88a(88b)にある正孔56dと再結合して消滅する。これにより、励起された電子56cは、信号電荷Qsigに混入することはなく、暗電流及び暗電流ノイズは発生しない。
図5A、図5Bに、本発明の第3の実施形態に係る固体撮像装置の画素構造、その変形例に係る固体撮像装置の画素構造をそれぞれ示す。
これにより、第2の実施形態及びその変形例によれば、高画素密度、高解像度、低混色、高感度が得られる固体撮像装置が実現される。
図6Aに本発明の第4の実施形態に係る固体撮像装置の画素構造を示す。図6Aに示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素を構成する島状半導体1aの下方に、SiO2膜などの光透過絶縁層15が形成されるとともに、この光透過絶縁層15の下に、Si(シリコン)などからなる、入射光線の一部を吸収する光吸収層16が形成されている点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
図7A、図7Bに本発明の第5の実施形態に係る固体撮像装置の画素構造を示す。
図7A、図7Bに示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態の固体撮像装置の画素(島状半導体)1aにおける第5の半導体P+領域10の中央表層部に凹部20a又は凸部20bを形成するとともに、凹部20aの凹状の面又は凸部20bの凸状の面を境界面として互いに接する2つの物質領域の光屈折率を互いに異ならせた点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
図1Aに示す第1の実施形態における画素構造では、第5の半導体P+領域10の中央表層部に凹部20aが存在しない。このため、マイクロレンズ11の中央部に垂直に入射した光線21a,21bは、そのまま、光反射導体層9a,9bで反射されることなく、画素を構成する島状半導体1aの内部に入射する。このため、マイクロレンズ11の中央部に垂直に入射する光線21a,21bに対しては、光反射導体層9a,9bの反射によるフォトダイオード領域7での光伝播長を長くする効果を得ることができない。
これに対し、図7Aに示す画素構造では、マイクロレンズ11の中心線に沿って入射する光線21aを除いて、マイクロレンズ11の中央部に垂直に第5の半導体P+領域10に入射する光線21bは、凹部20aによって光反射導体層9a,9b側に屈折する。これにより、この屈折された光線22aが光反射導体層9a,9bで反射され、フォトダイオード領域7での光伝播長が長くなり、固体撮像装置の感度が向上する。この凹部20aにおける光線の屈折は、第5の半導体P+領域10の材料であるSi(シリコン)の屈折率と、光透過中間領域24の材料である透明樹脂材料の屈折率との差異により生じる。
図7Bに示すように、第5の半導体P+領域10の中央表層部には、図7Aに示す凹部20aの代わりに凸部20bを形成してもよい。この場合も、マイクロレンズ11の中心線に沿って入射する光線21cを除いて、マイクロレンズ11の中央部から第5の半導体P+領域10に垂直に入射する光線21dは、凸部20bによって光反射導体層9a,9b側に屈折する。これにより、この屈折された光線22aが光反射導体層9a,9bで反射され、フォトダイオード領域7での光伝播長が長くなり、固体撮像装置の感度が向上する。
図8に本発明の第6の実施形態に係る固体撮像装置の画素構造を示す。図8に示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態における固体撮像装置の画素を構成する島状半導体1aにおいて、マイクロレンズ11の焦点23が第5の半導体P+領域10の上表面よりも上方側の光透過中間領域24内に位置する点以外は、第1の実施形態の固体撮像装置と同様な画素構造を有している。
本実施形態の固体撮像装置では、このような画素構造を有することで、マイクロレンズ11から入射し、光透過中間領域24の内部の焦点23に集光される入射光線25bは、第5の半導体P+領域10の上表面に焦点が位置する場合(第1の実施形態の画素構造の場合)の入射光線25aよりも、最初に光反射導体層9a,9bに到達する位置が、第5の半導体P+領域10の上表面にさらに接近する。これは、本実施形態の画素構造による入射光線25bの方が、第1の実施形態の画素構造における入射光線25aよりもフォトダイオード領域7での光伝播長がさらに長くできることを意味する。したがって、本実施形態の固体撮像装置によれば、第1の実施形態の固体撮像装置と比べ、感度がさらに向上するようになる。
図9に本発明の第7の実施形態に係る固体撮像装置の画素構造を示す。図9に示すように、本実施形態の固体撮像装置は、図1Aに示す第1の実施形態における固体撮像装置の画素を構成する島状半導体1aにおいて、マイクロレンズ11の外周部の1点26a,26bから入射し、マイクロレンズ11の中心線27を通過して、第5の半導体P+領域10の外周部の1点28a,28bに到達する光線29a,29bと、第5の半導体P+領域10の上表面と直交する線とがなす角度θiが、ブリュースター(Brewster)角θbより小さいことを特徴としている。
θb=tan-1(N1/N2)
上述した角度θiが、ブリュースター角θbより大きいと、マイクロレンズ11から入射し、光透過中間領域24を通過した入射光線は、第5の半導体P+領域10の表面で全反射され、第5の半導体P+領域10内に進入しない。このように、角度θiをブリュースター角θbよりも小さくすることにより、マイクロレンズ11に入射し、光透過中間領域24を通過した全ての光線がフォトダイオード領域7に有効に導かれるようになる。ここで、光線を有効に導くとは、第5の半導体P+領域10の表面に入射した光線は全反射することなく第5の半導体P+領域10内に入射することを意味する。これにより、固体撮像装置の感度向上が実現できる。
以下、図10A~図10Eを参照しながら、本発明の第8の実施形態に係る固体撮像装置について説明する。
図10Aに示すように、上方から入射する入射光線100は島状半導体P11の下方に位置する帯状信号線N+領域2aaに入射する。この入射光線100の内の一部は、屈折率の異なる2つの絶縁層によって挟まれている帯状信号線N+領域2aaと、それに隣接する帯状信号線N+領域2bb(信号線半導体N+領域S1,S2,S3)内で多重反射光101a,101b,101c,101dを生じる。多重反射光101a,101b,101c,101dは、画素を構成する島状半導体P11に隣接する画素を構成する島状半導体P12のフォトダイオード領域7(図1A参照)に入射して信号電荷を発生する。この隣接する画素を構成する島状半導体P12への光漏洩は、固体撮像装置の解像度の低下とカラー撮像における混色を発生する。
以下、図11A、図11Bを参照しながら、本発明の第9の実施形態に係る固体撮像装置について説明する。
図11Aに本実施形態に係る固体撮像装置の断面図を示す。図1Aで示される第1の実施形態では、第1の半導体N+領域2は、MOSトランジスタの下方部位の全体に形成されている。これに対し、図11Aに示すとおり、本実施形態では、第1の実施形態において第1の半導体N+領域2が形成されていた領域は、第6の半導体P+領域2cと、第2の半導体P領域3と繋がった第7の半導体P領域3bと、この第7の半導体P領域3bによって第6の半導体P+領域2cから分離された第8の半導体N+領域2dとから構成されている。本画素構造では、第6の半導体P+領域2cが、フォトダイオード領域7に蓄積された信号電荷を読み出すための信号電荷読み出し部として機能する接合トランジスタのドレインとなり、第8の半導体N+領域2dが、フォトダイオード領域7に蓄積された信号電荷を除去するための蓄積信号電荷除去部として機能するMOSトランジスタのドレインとなっている。この画素構造では、第6の半導体P+領域2cと、第8の半導体N+領域2dとは、第2の半導体P領域3と繋がった第7の半導体P領域3bによって互いに分離されている。これによって、信号電荷読み出し動作と、蓄積信号電荷除去動作とにおいて、電流の経路を異ならせることができる。この結果、例えば、高速シャッタタイミングを、時間推移で独立した信号電荷読み出しタイミングと、蓄積信号電荷除去タイミングで行え、高速シャッタ動作が可能となるといった撮像動作上の利点が得られる。
また、図11Aにおいて、接合トランジスタの第6の半導体P+領域2cは、図11Bに示す本実施形態の変形例に係る固体撮像装置の画素構造のように、第9の半導体N+領域2caに置換しても同様な撮像動作が実現される。この場合は、第9の半導体N+領域2caの近傍の第2の半導体P+領域2の下部領域が、信号電荷読み出し部として機能する接合トランジスタのソースとなる。
2,2a,2b 第1の半導体N+領域
2c 第6の半導体P+領域
2ca 第9の半導体N+領域
2d 第8の半導体N+領域
2aa,2bb 帯状信号線N+領域
3 第2の半導体P領域
3a 第2の半導体領域(固有半導体領域)
3b 第7の半導体P領域
4a,4b 絶縁層
5a,5b,5aa,5bb ゲート導体層(MOSトランジスタのゲート導体層)
5ab,5ab1,5ab2,5ab3,55ab1 MOSゲート配線(MOSトランジスタのゲート配線;導体配線)
6a,6b、66a,66b 第3の半導体N領域
7 フォトダイオード領域
8a,8b、88a,88b 第4の半導体P+領域
9a,9b,9aa,9bb 光反射導体層
9ab,9ab1,9ab2,9ab3 画素選択線(光反射導体配線)
10,10a,10b 第5の半導体P+領域
10aa,10bb 金属層(画素選択線)
11,11a,11b マイクロレンズ
12a,12b 光線(第5の半導体P+領域の上表面近傍の焦点に集光される光)
12c 光線
12d,12e 反射光線
13 絶縁層
14a,14b 光反射導体層
15 光透過絶縁層
16 光吸収層
17 光線(SiO2膜への入射光線)
18a,18b 反射光線(Si層による反射光)
19a,19b 入射光線(Si層への入射光)
20a 凹部(P+領域の凹部)
20b 凸部(P+領域の凸部)
21a,21c 光線(マイクロレンズの中心線に沿って入射する光)
21b,21d 光線(マイクロレンズの中央部に垂直に入射する光)
22a 光線(凹部での屈折光)
22b 光線(凸部での屈折光)
23 マイクロレンズの焦点
24 光透過中間領域
25a,25b 第5の半導体P+領域への入射光線
26 マイクロレンズの外周部の1点
27 マイクロレンズの中心線
28a,28b 第5の半導体P+領域の外周部の1点
29a,29b 光線(マイクロレンズの中心線及び光透過中間領域を通過した光)
30 島状半導体
31 信号線半導体N+領域
32 半導体P領域
33a,33b 絶縁層
34a,34b ゲート導体層
35a,35b 半導体N領域
36 半導体P+領域
37a,37b 画素選択線
38a 光線(島状半導体に斜め方向から入射する光)
39a,39b 金属壁
40 半導体基板
41 フォトダイオード領域
42 素子分離領域
43a,43b MOSトランジスタのソース・ドレイン領域
44 第1の層間絶縁層
45 MOSトランジスタのゲート電極
46a,46b,46c コンタクトホール
47 第2の層間絶縁層
48 SiO2膜
49 SiN膜
50 マイクロレンズ
51a,51b,51c,51d 金属配線
52a,52b,52c,52d,100 光線
53a,53b,53c,53d,102 フォトダイオードへの入射光線
55a,55b 光遮蔽金属層
56,56c 電子
56a,56b ゲート導体層
56d 正孔(ホール)
99 光反射導体接続層
99a,99b、99c,99d 光反射導体層
100 入射光線
101a,101b,101c,101d 信号線N+領域内での多重反射光
G1,G2,G3,G4 間隙
Ld フォトダイオード領域の高さ
Ldw 半導体P領域に広がる空乏層長
Qsig 信号電荷
S1,S2,S3 信号線半導体N+領域
φ(V) 電位方向
Vs,Vp,Vg,Vpg,Vrg1,Vrg2,Vp1,Vp2,VH 電位(電圧)
Claims (11)
- 複数の画素が2次元状に配列された固体撮像装置であって、
基板上に前記複数の画素を構成する複数の島状半導体が形成され、
前記各島状半導体は、それぞれ、
当該島状半導体の下部に形成された第1の半導体領域と、
前記第1の半導体領域上に形成され、前記第1の半導体領域と反対の導電型又は固有半導体である第2の半導体領域と、
前記第2の半導体領域の上部側面領域に形成され、前記第1の半導体領域と同じ導電型である第3の半導体領域と、
前記第3の半導体領域の外周部に形成され、前記第1の半導体領域と反対の導電型である第4の半導体領域と、
前記第4の半導体領域及び前記第2の半導体領域の下部側面領域の外周部に形成された絶縁層と、
前記絶縁層の外周部に形成され、前記第2の半導体領域の下部領域にチャネルを形成するゲート電極として機能する導体層と、
前記第3の半導体領域、前記第4の半導体領域及び前記絶縁層の外周部に形成され、電磁エネルギー波を反射する反射導体層と、
前記第2の半導体領域及び前記第3の半導体領域の上部領域に形成され、前記第4の半導体領域と同じ導電型である第5の半導体領域と、
前記第5の半導体領域上に形成され、当該第5の半導体領域の上表面近傍に焦点が位置するマイクロレンズと、を備え、
前記島状半導体が、光電変換部として機能する部位と、信号電荷蓄積部として機能する部位と、信号電荷読み出し部として機能する部位と、蓄積信号電荷除去部として機能する部位と、を含んでおり、
前記光電変換部が、前記第2の半導体領域及び前記第3の半導体領域から構成されたフォトダイオード領域から構成され、前記マイクロレンズに入射した電磁エネルギー波により、前記光電変換部に信号電荷が発生し、
前記信号電荷蓄積部が、前記第3の半導体領域から構成され、前記光電変換部において発生した信号電荷を蓄積するものであり、
前記信号電荷読み出し部が、前記第5の半導体領域、前記第2の半導体領域の下部領域をドレイン又はソースとし、前記信号電荷蓄積部をゲートとした接合トランジスタから構成されるとともに、前記信号電荷蓄積部に蓄積された信号電荷の量に応じて変化する前記接合トランジスタのドレインとソースとの間に流れるドレイン・ソース間電流を出力信号として読み出すように機能し、
前記蓄積信号電荷除去部が、前記第1の半導体領域をドレイン、前記導体層をゲート、前記第3の半導体領域をソース、前記第1の半導体領域と前記第3の半導体領域とにより挟まれた前記第2の半導体領域をチャネルとしたMOSトランジスタから構成され、前記導体層に所定の電圧を印加することにより前記信号電荷蓄積部に蓄積された信号電荷を、前記第1の半導体領域に除去するように機能するものである、
ことを特徴とする固体撮像装置。 - 前記固体撮像装置において、
当該固体撮像装置により実行される撮像動作が、
前記光電変換部で発生した信号電荷を、前記第3の半導体領域に蓄積する信号電荷蓄積動作と、
前記第3の半導体領域に蓄積された信号電荷の量に応じて、前記接合トランジスタの前記ドレイン・ソース間電流を出力信号として読み出す信号電荷読み出し動作と、
前記第3の半導体領域に蓄積した蓄積信号電荷を、前記導体層に所定の電圧を印加して、前記第1の半導体領域に除去する蓄積信号電荷除去動作と、
を含み、
前記信号電荷蓄積動作、前記信号電荷読み出し動作及び前記蓄積信号電荷除去動作の各動作時において、前記第4の半導体領域に、前記信号電荷と反対の極性の電荷が蓄積されている、
ことを特徴とする請求項1に記載の固体撮像装置。 - 前記第1の半導体領域に代えて、前記第2の半導体領域と同じ導電型の第6の半導体領域又は前記第2の半導体領域と反対の導電型の第9の半導体領域と、前記第2の半導体領域と同じ導電型であって、前記第2の半導体領域に繋がった第7の半導体領域と、前記第2の半導体領域と反対の導電型の第8の半導体領域とを備え、前記第6の半導体領域、前記第9の半導体領域の近傍の前記第2の半導体領域の下部領域が、それぞれ前記接合トランジスタのドレイン、ソースであり、前記第8の半導体領域が、前記MOSトランジスタのドレインであることを特徴とする請求項1又は2に記載の固体撮像装置。
- 前記島状半導体の下方領域に形成された反射層を備えることを特徴とする請求項1又は2に記載の固体撮像装置。
- 前記島状半導体の下方領域に形成された光透過絶縁層と、該光透過絶縁層の下方領域に形成された光吸収層と、をさらに備え、
前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1乃至第4の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光で相対的に大きくなるとともに赤色光で相対的に小さくなるように、前記光透過絶縁層の厚さが設定されていることを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記島状半導体の下方領域に形成された光透過絶縁層と、該光透過絶縁層の下方領域に形成された光吸収層と、をさらに備え、
前記マイクロレンズから入射し、前記導体層及び前記反射導体層で反射されつつ、前記第1乃至第4の半導体領域を通過し、前記光透過絶縁層に到達した光の反射率が、緑色光及び赤色光で相対的に大きくなるように、前記光透過絶縁層の厚さが設定されていることを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記マイクロレンズと前記島状半導体との間に形成された光透明中間層を備え、
前記マイクロレンズの焦点が、前記光透明中間層の内部に位置することを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記島状半導体上部の中央表層部に、凹部又は凸部が形成され、
前記凹部の凹状の面又は前記凸部の凸状の面を境界面として互いに接する2つの物質領域の光屈折率が互いに異なることを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記マイクロレンズと前記島状半導体との間に形成された光透明中間層を備え、
前記マイクロレンズの外周部の1点から入射し、該マイクロレンズの中心線及び前記光透明中間層を通過して、前記島状半導体上部の外周部の1点に到達する光線と、前記第5の半導体領域の上表面と直交する線とがなす角度θiが、ブリュースター角θb(=tan-1(N1/N2);ここで、N1:前記光透明中間層の屈折率、N2:前記第5の半導体領域の屈折率)よりも小さいことを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記複数の画素が正方格子状、矩形格子状、又は千鳥状に配列されており、
前記複数の画素の内、縦方向に配列されている複数の画素における前記第1の半導体領域を互いに電気的に接続するとともに、縦方向に延びる複数の導体配線と、
前記複数の画素の内、横方向に配列されている複数の画素における前記導体層を互いに電気的に接続するとともに、横方向に延びる複数の導体配線と、
前記複数の画素の内、横方向に配列されている複数の画素における前記反射導体層を互いに電気的に接続するとともに、横方向に延びる複数の反射導体配線と、をさらに備え、
前記横方向に延びる導体配線と、前記反射導体配線とが、前記複数の画素への電磁エネルギー波の照射方向から見て、互いに上下に重なることなく、かつ、縦方向に交互に配列されていることを特徴とする請求項1又は2に記載の固体撮像装置。 - 前記複数の画素のそれぞれにおける前記反射導体層は、当該画素における前記第5の半導体領域と電気的に分離されており、前記複数の画素における全ての前記反射導体層は、前記複数の画素が存在する画素領域に亘って、当該画素領域を覆うように互いに繋がっていることを特徴とする請求項1又は2に記載の固体撮像装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127011946A KR20120125600A (ko) | 2010-10-29 | 2011-07-29 | 고체 촬상 장치 |
CN2011800045670A CN102668084A (zh) | 2010-10-29 | 2011-07-29 | 固体摄像器件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2010/069384 | 2010-10-29 | ||
PCT/JP2010/069384 WO2012056586A1 (ja) | 2010-10-29 | 2010-10-29 | 固体撮像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012056782A1 true WO2012056782A1 (ja) | 2012-05-03 |
Family
ID=44693610
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069384 WO2012056586A1 (ja) | 2010-10-29 | 2010-10-29 | 固体撮像装置 |
PCT/JP2011/067540 WO2012056782A1 (ja) | 2010-10-29 | 2011-07-29 | 固体撮像装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069384 WO2012056586A1 (ja) | 2010-10-29 | 2010-10-29 | 固体撮像装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4769911B1 (ja) |
KR (1) | KR20120125600A (ja) |
CN (1) | CN102668084A (ja) |
TW (1) | TW201218364A (ja) |
WO (2) | WO2012056586A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061100A1 (ja) * | 2012-10-16 | 2014-04-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | 固体撮像装置 |
US8921905B2 (en) | 2012-10-16 | 2014-12-30 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5054182B2 (ja) * | 2010-03-12 | 2012-10-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | 固体撮像装置 |
JP2014127545A (ja) * | 2012-12-26 | 2014-07-07 | Sony Corp | 固体撮像素子およびこれを備えた固体撮像装置 |
JP6368894B1 (ja) * | 2017-07-04 | 2018-08-01 | 雫石 誠 | 光電変換素子及び光学測定装置 |
CN111294493A (zh) * | 2020-02-25 | 2020-06-16 | Oppo广东移动通信有限公司 | 图像传感器、摄像头组件及移动终端 |
TWI725827B (zh) * | 2020-04-24 | 2021-04-21 | 力晶積成電子製造股份有限公司 | 影像感測模組 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100796A (ja) * | 2000-07-18 | 2002-04-05 | Nippon Sheet Glass Co Ltd | 受光素子アレイ |
WO2009034623A1 (ja) * | 2007-09-12 | 2009-03-19 | Unisantis Electronics (Japan) Ltd. | 固体撮像素子 |
JP2009188316A (ja) * | 2008-02-08 | 2009-08-20 | Denso Corp | 受光素子 |
WO2009133957A1 (ja) * | 2008-05-02 | 2009-11-05 | 日本ユニサンティスエレクトロニクス株式会社 | 固体撮像素子 |
JP2010056167A (ja) * | 2008-08-26 | 2010-03-11 | Sony Corp | 固体撮像素子及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393174A (ja) * | 1986-10-07 | 1988-04-23 | Nec Corp | フオトダイオ−ド |
JP3008163B2 (ja) * | 1995-08-24 | 2000-02-14 | エルジイ・セミコン・カンパニイ・リミテッド | 固体撮像素子及びその製造方法 |
JP3713418B2 (ja) * | 2000-05-30 | 2005-11-09 | 光正 小柳 | 3次元画像処理装置の製造方法 |
JP3762673B2 (ja) * | 2001-08-29 | 2006-04-05 | シャープ株式会社 | 固体撮像素子およびその製造方法 |
JP2003258220A (ja) * | 2002-02-28 | 2003-09-12 | Canon Inc | 撮像素子及び撮像装置 |
JP2008112831A (ja) * | 2006-10-30 | 2008-05-15 | Fujifilm Corp | 固体撮像素子及びこれを備えた撮像装置 |
JP5369441B2 (ja) * | 2008-01-24 | 2013-12-18 | ソニー株式会社 | 固体撮像素子 |
-
2010
- 2010-10-29 WO PCT/JP2010/069384 patent/WO2012056586A1/ja active Application Filing
- 2010-10-29 JP JP2011503695A patent/JP4769911B1/ja active Active
-
2011
- 2011-07-29 WO PCT/JP2011/067540 patent/WO2012056782A1/ja active Application Filing
- 2011-07-29 KR KR1020127011946A patent/KR20120125600A/ko not_active Application Discontinuation
- 2011-07-29 CN CN2011800045670A patent/CN102668084A/zh active Pending
- 2011-08-02 TW TW100127348A patent/TW201218364A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100796A (ja) * | 2000-07-18 | 2002-04-05 | Nippon Sheet Glass Co Ltd | 受光素子アレイ |
WO2009034623A1 (ja) * | 2007-09-12 | 2009-03-19 | Unisantis Electronics (Japan) Ltd. | 固体撮像素子 |
WO2009034731A1 (ja) * | 2007-09-12 | 2009-03-19 | Unisantis Electronics (Japan) Ltd. | 固体撮像素子 |
JP2009188316A (ja) * | 2008-02-08 | 2009-08-20 | Denso Corp | 受光素子 |
WO2009133957A1 (ja) * | 2008-05-02 | 2009-11-05 | 日本ユニサンティスエレクトロニクス株式会社 | 固体撮像素子 |
JP2010056167A (ja) * | 2008-08-26 | 2010-03-11 | Sony Corp | 固体撮像素子及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061100A1 (ja) * | 2012-10-16 | 2014-04-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | 固体撮像装置 |
JP5563179B1 (ja) * | 2012-10-16 | 2014-07-30 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | 固体撮像装置 |
US8921905B2 (en) | 2012-10-16 | 2014-12-30 | Unisantis Electronics Singapore Pte. Ltd. | Solid-state imaging device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012056586A1 (ja) | 2014-03-20 |
JP4769911B1 (ja) | 2011-09-07 |
CN102668084A (zh) | 2012-09-12 |
KR20120125600A (ko) | 2012-11-16 |
TW201218364A (en) | 2012-05-01 |
WO2012056586A1 (ja) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8378400B2 (en) | Solid state imaging device | |
WO2012056782A1 (ja) | 固体撮像装置 | |
JP6274567B2 (ja) | 固体撮像装置及び撮像システム | |
US10608031B2 (en) | Image sensor | |
US10074682B2 (en) | Phase difference detection in pixels | |
JP5478043B2 (ja) | 固体撮像素子及び撮像装置 | |
US9263487B2 (en) | Photoelectric conversion apparatus | |
US20140339606A1 (en) | Bsi cmos image sensor | |
KR20180006623A (ko) | 고체 촬상 장치 및 전자 기기 | |
US9443891B2 (en) | Solid-state image sensor and imaging device | |
US20090250777A1 (en) | Image sensor and image sensor manufacturing method | |
JP2012169530A (ja) | 固体撮像装置、および、その製造方法、電子機器 | |
JP2023017991A (ja) | 撮像素子 | |
TWI588981B (zh) | 影像感測器 | |
JP2010067827A (ja) | 固体撮像素子及び撮像装置 | |
JP2003197897A (ja) | 半導体光電変換装置 | |
KR102225297B1 (ko) | 촬상 소자 및 촬상 장치 | |
TW201143061A (en) | Solid-state imaging device, method of manufacturing thereof, and electronic apparatus | |
JP5535261B2 (ja) | 固体撮像装置 | |
JP2012009652A (ja) | 固体撮像装置およびその製造方法 | |
JP2010067829A (ja) | 固体撮像素子及び撮像装置 | |
JP4751803B2 (ja) | 裏面照射型撮像素子 | |
JP4769910B1 (ja) | 固体撮像装置 | |
US11652125B2 (en) | Image sensor | |
CN116936586A (zh) | 影像感测器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20127011946 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11835923 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11835923 Country of ref document: EP Kind code of ref document: A1 |