WO2012053595A1 - 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料 - Google Patents

共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料 Download PDF

Info

Publication number
WO2012053595A1
WO2012053595A1 PCT/JP2011/074165 JP2011074165W WO2012053595A1 WO 2012053595 A1 WO2012053595 A1 WO 2012053595A1 JP 2011074165 W JP2011074165 W JP 2011074165W WO 2012053595 A1 WO2012053595 A1 WO 2012053595A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
elements
group
alkaline earth
earth metal
Prior art date
Application number
PCT/JP2011/074165
Other languages
English (en)
French (fr)
Inventor
恭太 上田
木島 直人
直之 小室
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2012539762A priority Critical patent/JP5849961B2/ja
Publication of WO2012053595A1 publication Critical patent/WO2012053595A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides

Definitions

  • the present invention also relates to a method for producing a nitride phosphor, a nitride phosphor obtained by the method, and a raw material used therefor.
  • red phosphors have been added to this combination of blue LEDs and yellow phosphors, or blue LEDs, green phosphors, and red phosphors have been used.
  • a method using a blue phosphor, a green phosphor and a red phosphor has been proposed.
  • nitride or oxynitride phosphors (hereinafter referred to collectively as nitride-based phosphors) have been newly developed, and are phosphors with the highest possible efficiency and brightness. Is required.
  • red phosphors are weakly excited by near-ultraviolet light and absorb light from the other phosphors in the visible range, so that it is highly important to improve efficiency and luminance.
  • Patent Document 1 As phosphors currently developed as red phosphors for LEDs, so-called 258 phosphors (refer to Patent Document 1), CASN phosphors (refer to Patent Document 2 and the manufacturing method is described in detail in Patent Document 3). 1147 phosphor (see Patent Document 4) and the like are known. Many of these phosphors contain an alkaline earth metal element, silicon and nitrogen as main constituent elements, and are doped with an element serving as an activator. These elements are mixed in the form of nitrides or oxides, respectively, and are fired at a high temperature in a nitrogen atmosphere to form a phosphor.
  • nitrides and oxides are used as preferred to reduce oxygen contamination unless there is a substantial impact for a specific purpose or quantity. Further, instead of using nitrides as the respective constituent elements, there is a method in which all or part of these elements are alloyed and nitrided.
  • an object of the present invention is to provide a method for producing a nitride phosphor that is inexpensive and excellent in characteristics, and a high-luminance nitride phosphor obtained by the production method. Furthermore, another object of the present invention is to provide a raw material for coprecipitated nitride from which such a phosphor can be easily obtained.
  • the present inventors have obtained at least one alkaline earth metal element obtained by a coprecipitation method and at least one element acting as an activator when producing a nitride phosphor. It has been found that the brightness of the nitride phosphor can be improved by using a nitride containing as a raw material, and the present invention has been achieved.
  • the present invention has the following gist.
  • At least one alkaline earth obtained by using, as a raw material, a nitride containing at least one alkaline earth metal element and at least one element working as an activator obtained by a coprecipitation method
  • a method for producing a nitride phosphor A method for producing a nitride phosphor.
  • M4 is one or more elements selected from the group consisting of tetravalent metal elements
  • X is O
  • N is one or more elements selected from the group consisting of F
  • Z is selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb Or one or more elements.
  • nitride phosphor according to (4) wherein the nitride phosphor produced by the above method is represented by the following formula (2).
  • M2M3M4 4 X 7 Z (2)
  • M2 is at least one element selected from the group consisting of divalent metal elements other than Z element, including at least one alkaline earth metal element, and M3 is a trivalent metal.
  • M4 is one or more elements selected from the group consisting of tetravalent metal elements
  • X is O
  • N
  • Z is selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • M2 2 M4 5 X 8 Z (3)
  • M2 contains at least one alkaline earth metal element and is one or more elements selected from the group consisting of divalent metal elements other than Z element, and M4 is a tetravalent metal.
  • One or more elements selected from the group consisting of elements is one or more elements selected from the group consisting of O, N, and F, and Z is Mn, Ce, (It is one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.)
  • a method for producing a coprecipitated nitride of an alkaline earth metal and an activator element wherein the coprecipitated amide compound of the alkaline earth metal element and the activator element is thermally decomposed at 800 to 1300 ° C.
  • the greatest feature of the present invention is that at least one alkaline earth metal element obtained by a coprecipitation method and at least one element acting as an activator (hereinafter referred to as an activator) obtained by the coprecipitation method in the method for producing a nitride phosphor.
  • an activator an activator obtained by the coprecipitation method in the method for producing a nitride phosphor.
  • a nitride containing element is used as a raw material.
  • the coprecipitation method generally refers to a method of obtaining an extremely uniform mixture by dissolving two or more elements in some medium and precipitating them.
  • the alkaline earth metal element used here is not particularly limited, but Ca, Sr, and Ba are generally used, and Ca and / or Sr are preferable.
  • the element that acts as the activator used is not particularly limited, but is preferably selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • Mn, Ce, Eu, Tb, and Dy are particularly preferable, and Ce or Eu is most preferable.
  • the coprecipitated nitride containing at least one element acting as an activator and at least one alkaline earth metal element may be produced using any known method, but an example is given below. I will give you.
  • an alkaline earth metal element and an activator element are dissolved in a desired molar ratio in an ammonia liquid.
  • ammonia is evaporated to obtain a co-precipitated amide compound or imide compound.
  • the obtained amide compound or imide compound is heat-treated at about 500 to 1200 ° C. in a reducing or inert gas atmosphere to produce a nitride coprecipitation product containing at least an alkaline earth metal element and an activator element. I can do it.
  • the alkaline earth metal element and the activator element are weighed in accordance with the molar ratio of the desired coprecipitated nitride. These are reacted with ammonia to produce an amide compound. Usually, a weighed alkaline earth metal element and an activator element are put in a pressure vessel, preferably after evacuation, and then ammonia is added and reacted.
  • the amount of ammonia used is preferably 2 mol or more with respect to 1 mol of the alkaline earth metal element. Since ammonia also serves as a solvent, the more it is, the more preferable.
  • the reaction temperature of the alkaline earth metal element, activator element and ammonia may be appropriately determined depending on the combination of the elements, but is preferably -77 to 300 ° C, more preferably 20 to 200 ° C, and more preferably 50 to 100 ° C. Further preferred. Since alkaline earth metal elements, activator elements and ammonia form a liquid phase, these alkaline earth metals and activator elements are uniformly dispersed, and then contain alkaline earth metal element amides and activator element amides. Composition. Accordingly, the reaction time is the time until a liquid phase is formed, and is usually preferably 1 minute to 72 hours, particularly preferably about 1 hour to 3 hours.
  • a trivalent metal element such as aluminum can be added as required for the target phosphor.
  • a preferred trivalent metal element is aluminum.
  • the temperature at which the amide compound containing such an alkaline earth metal and an activator element is thermally decomposed is preferably 500 ° C. or higher, more preferably 510 ° C. or higher, more preferably 800 ° C. or higher, and further preferably 1000 ° C. or higher.
  • the upper limit of the temperature is a temperature at which the alkaline earth metal element nitride and the activator element nitride are not decomposed, but it should be 1500 ° C. or less from the heat resistance of the thermal decomposition reactor and the economic efficiency when heating. Is preferred.
  • the temperature at which the alkaline earth metal amide is thermally decomposed is preferably 510 to 1500 ° C., more preferably 800 to 1300 ° C., and particularly preferably 1000 to 1200 ° C.
  • the thermal decomposition reaction is preferably performed under vacuum or in an inert gas atmosphere such as nitrogen gas or argon gas, particularly nitrogen gas or argon gas or the like. It is preferable to carry out under an inert gas.
  • the pressure does not have a restriction
  • the thermal decomposition may be a batch type or a continuous type, but in the case of mass production, a continuous type is preferable.
  • the pyrolysis reaction time may be appropriately determined depending on the apparatus, reaction temperature, amount of raw material used, etc., but is usually preferably 10 minutes to 48 hours, more preferably 1 hour to 24 hours, particularly 3 hours to 12 hours. Is preferred.
  • the pyrolysis reaction apparatus may be an apparatus that can withstand heat of about 1500 ° C., and for example, a tubular furnace, an electric furnace, a batch kiln, a rotary kiln, or the like may be used. After the pyrolysis reaction is completed, for example, in the case of a batch type, only the target coprecipitated nitride remains in the form of powder in the pyrolysis reactor, so that the recovery is very easy.
  • the coprecipitated nitride is easily recovered continuously.
  • the coprecipitated nitride obtained by this method has a high purity and high uniformity because the reaction easily proceeds to the inside by a thermal decomposition reaction, and the activator elements are very uniformly dispersed. Suitable for body production.
  • the coprecipitated nitride used in the present invention preferably contains calcium and / or strontium as the alkaline earth metal, and preferably contains europium and / or cerium as the activator element.
  • the amide compound obtained in the above-mentioned process can be used as a coprecipitated nitride containing at least an alkaline earth metal element and an activator element.
  • the same coprecipitation nitride can be obtained also via an imide compound.
  • the phosphor of the present invention can be produced using a known method.
  • M2M3M4X 3 Z (1)
  • M2 is at least one element selected from the group consisting of divalent metal elements other than Z element, including at least one alkaline earth metal element, and M3 is a trivalent metal.
  • M4 is one or more elements selected from the group consisting of tetravalent metal elements
  • X is O
  • N is one or more elements selected from the group consisting of F
  • Z is selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb
  • CASN phosphor a phosphor represented by the following formula (which may be abbreviated as CASN phosphor).
  • the phosphor is not limited to this.
  • a coprecipitated nitride containing at least M2 and Z is used as a raw material. If the composition ratio of M2 and Z at this time is not the composition ratio in the desired phosphor, the shortage can be compensated by using other raw materials other than the coprecipitated nitride of M2 and Z. For example, if Z is deficient, the deficiency may be compensated with Z nitride or oxide, or other M3 or M4 and Z coprecipitated nitrides may be used. It is also possible to obtain two or more coprecipitated nitrides having different composition ratios of M2 and Z and to mix them at an appropriate ratio to obtain a desired composition ratio of M2 and Z.
  • M3, B, Al, Ga, In, etc. are preferable.
  • a nitride of M3 is preferable, and specifically, AlN, GaN, BN, InN, and the like can be given, and AlN is particularly preferable.
  • an oxide such as Al 2 O 3 may be added as a part of the material.
  • at least a part of M3 can be coprecipitated in the coprecipitated nitride.
  • M4 1 type, or 2 or more types of elements chosen from Si, Ge, and Sn are preferable.
  • the raw material of the M4 is preferably such as Si 3 N 4, Ge 3 N 4, Sn 3 N 4, particularly preferably Si 3 N 4.
  • X is one or more elements selected from O, N and F, and particularly preferably O and / or N. These are taken from the M2 and Z nitride co-precipitate, the M3 raw material, and the M4 raw material.
  • the main source of F is a fluoride flux described later.
  • these raw materials are baked in the range of 1200 to 2200 ° C. to obtain a nitride phosphor.
  • an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature can be added to the mixture of these raw materials as a flux and fired.
  • examples of such inorganic compounds include fluorides, chlorides, iodides, bromides, and phosphates of one or more elements selected from Li, Na, K, Mg, Ca, Sr, and Ba.
  • One type or a mixture of two or more types can be mentioned.
  • the added inorganic compound generates a liquid phase at the firing temperature and wets the metal compound to promote the reaction.
  • the addition amount of the inorganic compound is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the mixture of these raw materials. When the amount is less than 0.1 parts by weight, the reaction promoting effect is small. If the amount is more than 10 parts by weight, the inorganic compound remains in the phosphor and lowers the luminance, which is not preferable. When there are many residences in a fluorescent substance, it is preferable to wash
  • a generally industrially used apparatus such as a ball mill, a vibration mill, a V-type mixer or a stirrer can be used.
  • the mixture of raw materials after the above mixing step has a form in which fine powder having a particle size of several ⁇ m is aggregated to a size of several hundred ⁇ m to several mm (hereinafter, abbreviated as powder aggregate).
  • the powder aggregate is fired in a state where the bulk density is maintained at a filling rate of 40% or less. That is, in the present invention, the powder powder aggregates having the same particle size without being mechanically applied to the powder or molded in advance using a mold or the like are used as they are.
  • the container is preferably a boron nitride sintered body because of its low reactivity with a mixture of these raw materials.
  • the powder aggregate can be granulated to an average particle size of 500 ⁇ m or less using a sieve or the like to control the particle size. Moreover, you may granulate directly in the shape of 500 micrometers or less using a spray dryer etc.
  • Firing with the bulk density kept at 40% or less is performed by firing M2M3M4X 3 , which is a product after firing, when the free space is kept around the powder of the mixture of these raw materials. : Because the phosphor represented by Z grows in a free space, the contact between the crystals decreases, so that a crystal with few surface defects can be synthesized. Thereby, a fluorescent substance with high brightness is obtained. If the bulk density exceeds 40%, partial densification occurs during firing, resulting in a dense sintered body that hinders crystal growth and lowers the brightness of the phosphor, or a fine powder of the phosphor. Cannot be obtained. Further, the size of the powder aggregate is particularly preferably 500 ⁇ m or less because of excellent grindability after firing.
  • a phosphor is prepared by firing the obtained mixture of these raw materials in a temperature range of 1200 ° C. to 2200 ° C. in an inert atmosphere containing nitrogen.
  • the furnace used for firing is a metal resistance heating method or a graphite resistance heating method because the firing temperature is a high temperature and the firing atmosphere is an inert atmosphere containing nitrogen, and carbon is used as the material of the high temperature part of the furnace.
  • An electric furnace is preferred.
  • a sintering method in which mechanical pressure is not applied from the outside such as an atmospheric pressure sintering method or a gas pressure sintering method, is preferable because firing is performed while maintaining a high bulk density.
  • the inert atmosphere containing nitrogen examples include nitrogen gas, a mixed gas of nitrogen and argon, a mixed gas of nitrogen and hydrogen, and ammonia gas.
  • nitrogen gas is used.
  • the gas pressure is preferably in the pressure range of 0.05 MPa or more and 100 MPa or less. If it is lower than 0.05 MPa, the raw material silicon nitride is decomposed, and if it is higher than 100 MPa, the cost is industrially increased.
  • a nitrogen atmosphere of 0.1 MPa to 1 MPa is excellent in productivity.
  • the firing temperature is lower than 1200 ° C., the reaction does not proceed sufficiently, and if it is 2200 ° C. or higher, grain growth becomes remarkable, which is not preferable.
  • the firing temperature is preferably 1500 ° C. or higher and 1900 ° C. or lower, and a phosphor having high luminance is obtained.
  • the powder aggregate obtained by firing is firmly fixed, it is pulverized by a pulverizer generally used in industry such as a ball mill and a jet mill.
  • a pulverizer generally used in industry such as a ball mill and a jet mill.
  • high brightness phosphors can be obtained by ball milling.
  • the balls and pots used at this time are preferably made of a silicon nitride sintered body or a sialon sintered body.
  • the pulverization is preferably performed until the average particle size becomes 20 ⁇ m or less.
  • the average particle size is particularly preferably 0.05 ⁇ m or more and 5 ⁇ m or less.
  • the average particle diameter exceeds 20 ⁇ m, the fluidity of the powder and the dispersibility in the resin are deteriorated, and the light emission intensity becomes uneven depending on the part when the light emitting device is formed in combination with the light emitting element.
  • the thickness is 0.05 ⁇ m or less, the amount of defects on the surface of the phosphor powder increases, so that the emission intensity decreases depending on the composition of the phosphor. If the desired particle size cannot be obtained only by grinding, classification can be combined. As a classification method, sieving, air classification, precipitation in a liquid, or the like can be used.
  • Acid treatment may be performed as one method of pulverization classification.
  • the powder aggregate obtained by firing is in a state where a single crystal of the phosphor represented by the above formula (1) is firmly fixed in a grain boundary phase mainly composed of a small amount of glass phase. Yes.
  • the grain boundary phase mainly composed of the glass phase is selectively dissolved, and the single crystal is separated.
  • each particle is obtained not as a single crystal aggregate but as a particle composed of one single crystal of the phosphor represented by the above formula (1). Since such particles are composed of a single crystal with few surface defects, the luminance of the phosphor is particularly high.
  • Examples of the acid effective for this treatment include hydrofluoric acid, sulfuric acid, hydrochloric acid, and a mixture of hydrofluoric acid and sulfuric acid. Among them, a mixture of hydrofluoric acid and sulfuric acid has a high glass phase removal effect.
  • heat treatment is effective for further improving the luminance.
  • the powder after firing or the powder whose particle size has been adjusted by pulverization or classification can be heat-treated at a temperature of 1000 ° C. or higher and lower than the firing temperature. At a temperature lower than 1000 ° C., the effect of removing surface defects is small. Above the firing temperature, the pulverized powders are fixed again, which is not preferable.
  • the atmosphere suitable for the heat treatment varies depending on the composition of the phosphor, but one or two or more mixed atmospheres selected from nitrogen, air, ammonia and hydrogen can be used. It is preferable because it is excellent.
  • the present invention has been described using the phosphor represented by Formula 1. However, the phosphors represented by Formula (2) and Formula (3) can also be manufactured by the same method.
  • a glow box filled with an inert gas the raw materials were weighed, ground and mixed, and filled into a BN crucible.
  • the resulting mixed raw material / BN crucible was well vacuum degassed, and then in a nitrogen gas atmosphere of 0.92 MPa at 1600 ° C. for 2 hours, further at 1800 ° C. for 2 hours.
  • the CASN phosphor was obtained by firing.
  • the Ca 3 N 2 / EuN coprecipitated nitride used at this time was prepared by the following procedure. Calcium and europium are prepared by adding 47 mol of ammonia to 1 mol of (Ca + Eu), adding 47 mol of ammonia to the desired molar ratio of metal Ca and metal Eu, and adding 1 mol of (Ca + Eu). A co-precipitated amide composition was obtained. This co-precipitated amide composition was heated at 1000 ° C. for 4 hours under a nitrogen atmosphere to obtain a Ca 3 N 2 / EuN co-precipitated nitride.
  • Example 1 (Comparative Example 1) Using commercially available Cerac Ca 3 N 2 and rare metallic Eu 2 O 3 in place of Taiheiyo Cement Co 3N2 / EuN co-precipitated products, except for combining the amounts of Eu and Ca with Example 1 Produced a CASN phosphor (CASN: Eu) having substantially the same composition as in Example 1 in the same manner as in Example 1.
  • CASN CASN phosphor
  • the top is the diffraction pattern of the CASN phosphor of Example 1
  • the bottom is the diffraction pattern of the CASN phosphor of Comparative Example 1. Comparing both, the diffraction pattern of the phosphor of Example 1 has a larger peak count. This difference is considered to represent a difference in crystallinity, and it can be understood that it is easier to obtain a phosphor with good crystallinity when the phosphor of Example 1, that is, a coprecipitated nitride, is used as a raw material. Subsequently, the emission spectrum, peak wavelength, peak height, and half width were measured. The results are shown in Table 1.
  • CIEx and [CIEy] mean the x-coordinate and y-coordinate of the chromaticity point on the CIExy chromaticity diagram determined by the International Commission on Illumination (CIE).
  • CIE International Commission on Illumination
  • FIG. 2 shows scanning electron micrographs of CASN phosphor powders of Comparative Example 1 and Example 1. It was observed that the phosphor powder of Example 1 had a crystal habit and that the crystal particle size was uniform.
  • the CASN phosphor is described as an example, but a nitride phosphor other than CASN can be expected to have the same effect as the present invention.
  • the phosphor represented by the formula (2) has a comparatively close composition because the general formula of the matrix corresponds to CASN + Si 3 N 4, and thus has excellent crystallinity and internal quantum efficiency like the CASN phosphor. It is presumed that a nitride phosphor having a high thickness can be obtained.
  • a nitride phosphor having excellent crystallinity and high internal quantum efficiency can be provided, and by using the nitride phosphor of the present invention, an LED with higher luminance can be provided.

Abstract

 安価で高輝度、高効率な窒化物蛍光体の製造方法を提供すること。 共沈法により得られた、少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素と、を含有する窒化物を原料として用いることを特徴とする、少なくとも1種のアルカリ土類金属元素と賦活剤として働く少なくとも1種の元素を有する窒化物蛍光体の製造方法。

Description

共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料
 本発明は窒化物蛍光体の製造方法、その方法で得られる窒化物蛍光体、及びそれに使用される原料にも関する。
 近年白色LEDの開発により、LEDを用いたバックライトや、照明装置が登場し、そのエネルギー消費の少なさから、急速に従来の白熱電球や、蛍光灯との置き換わりが生じている。
 この白色LEDは、GaN系青色発光ダイオードの発する青色領域の可視光を吸収して黄色光を発光することから、蛍光体に吸収されなかったダイオードの青色光との混色により白色の発光が得られるものが多く用いられている。しかしながら、かかる黄色発光の蛍光体のみを使用する青色LEDと黄色蛍光体の白色発光素子は、演色性、あるいは色再現範囲の点では、不十分なものであった。
 このため、近年この青LEDと黄色蛍光体の組み合わせに、赤色蛍光体を加えたり、あるいは青LEDと緑蛍光体と赤色蛍光体を用いる方法、さらには使用するLEDを紫から近紫外線とし、これに青色蛍光体と緑蛍光体と赤色蛍光体を用いる方法などが提案されている。そしてこれらに使用される蛍光体としては、窒化物、あるいは酸窒化物蛍光体(以下両者合わせて窒化物系蛍光体という)が新たに開発され、できるだけ高効率、高輝度の蛍光体であることが求められている。
 特に赤色蛍光体に関しては、近紫外線での励起が弱く、他の蛍光体からの、可視範囲にある光を吸収して光るため、効率と輝度を向上させることの重要性は高い。
 現在LED用の赤色蛍光体として開発されている蛍光体としては、いわゆる258蛍光体(特許文献1参照)、CASN蛍光体(特許文献2参照、製造方法は、特許文献3などに詳しい記載があるので参照)、1147蛍光体(特許文献4参照)などが知られている。そしてこれら蛍光体の多くは、アルカリ土類金属元素と、ケイ素と窒素を主要構成元素として含み、ここに賦活剤となる元素がドープされている。これらの元素は、それぞれ窒化物または酸化物の形で混合され、窒素雰囲気下、高温で焼成することにより、蛍光体とされている。窒化物と酸化物とでは、特定の目的、あるいは量的に実質的に影響がほとんど無い限り、酸素の混入を減らすために窒化物が好ましいとして使用されている。また、それぞれの構成元素を窒化物とするのではなく、これらの全てあるいは一部を合金化し、これを窒化する方法も行われている。
国際公開第01/039574号パンフレット 日本特許第3837588号公報 日本特許第4362625号公報 日本特許第4228012号公報
 しかしながらかかる高効率、高輝度な蛍光体に関しては、常に更なる改良を要求されており、1%でも効率が高く、高輝度の蛍光体を得るべく、研究開発が進められている。
 また、製造方法としては、安価で効率のよい方法が望まれており、新たな、安価で高輝度、高効率な蛍光体の製造方法が待ち望まれている。
 すなわち本発明の目的は、安価で特性の優れた窒化物蛍光体の製造方法と、該製造方法により得られる高輝度な窒化物蛍光体を提供することである。
 さらに、本発明の別の目的は、このような蛍光体を容易に得ることのできる共沈窒化物の原料を提供することである。
 そこで本発明者らは、鋭意検討の結果、窒化物蛍光体の製造の際に、共沈法により得られた、少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素を含有する窒化物を原料として用いることにより、窒化物蛍光体の輝度を向上させることが出来ることを見いだし、本発明に到達した。
 すなわち本発明は、以下の要旨を有するものである。
(1)共沈法により得られた、少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素とを含有する窒化物を、原料として用いる、少なくとも1種のアルカリ土類金属元素と賦活剤として働く少なくとも1種の元素を有する窒化物蛍光体の製造方法。
(2)該窒化物が、アンモニア液中で少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素とを共沈させて得たものである上記(1)に記載の窒化物蛍光体の製造方法。
(3)該窒化物が、アミド化合物及び/またはイミド化合物である上記(1)または(2)に記載の窒化物蛍光体の製造方法。
(4)前述のいずれかの製造方法にて製造された少なくとも1種のアルカリ土類金属元素と賦活剤として働く少なくとも1種の元素を有する窒化物蛍光体。
(5)前記の方法で製造された窒化物蛍光体が、下記式(1)で表される上記(4)に記載の窒化物蛍光体。
 M2M3M4X:Z  (1)
(ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M3は、3価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素であり、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
(6)前記の方法で製造された窒化物蛍光体が、下記式(2)で表される上記(4)に記載の窒化物蛍光体。
 M2M3M4:Z   (2)
(ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M3は、3価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
(7)前記の方法で製造された窒化物蛍光体が、下記式(3)で表される上記(4)に記載の窒化物蛍光体。
 M2M4:Z   (3)
(ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素であり、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
(8)アルカリ土類金属元素と賦活剤元素の共沈アミド化合物を800~1300℃で熱分解することを特徴とする当該アルカリ土類金属と賦活剤元素の共沈窒化物の製造方法。
(9)アルカリ土類金属元素が、カルシウム又はストロンチウムである上記(8)に記載の共沈窒化物の製造方法。
(10)賦活剤元素が、ユーロピウム又はセリウムである上記(8)又は(9)に記載の共沈窒化物の製造方法。
(11)窒素ガス下、熱分解することを特徴とする上記(8)乃至(10)のいずれかに記載の共沈窒化物の製造方法。
 本発明により、従来より高輝度の窒化物系蛍光体を容易にかつ安価に製造することができる。
本発明の製法によるCASN蛍光体と、従来法によるCASN蛍光体のXRD(X線回折)チャートを比較した図である。 本発明の製法によるCASN蛍光体と、従来法によるCASN蛍光体の走査型電子顕微鏡による観察結果を示す図である。
 本発明の最大の特徴は、窒化物蛍光体の製造方法において、共沈法により得られた、少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素(以下、賦活剤元素と略記することがある。)を含有する窒化物を原料として用いることにある。
 共沈法とは、一般に2種以上の元素を、何らかの媒体中に溶解させ、それを析出させることにより、極めて均一な混合物を得る方法をいう。
 ここで用いられるアルカリ土類金属元素は、特に限定はされないが、一般的にCa、Sr、Baが用いられ、好ましくはCa及び/又はSrである。
 また、用いられる賦活剤として働く元素としては、特に限定はされないが、好ましくはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。このうち特に好ましくはMn、Ce、Eu、Tb、Dyであり、最も好ましくはCeまたはEuである。
 かかる賦活剤として働く少なくとも1種の元素と、少なくとも1種のアルカリ土類金属元素を含有する共沈窒化物は、公知のどのような方法を用いて製造してもよいが、下に一例を挙げる。
 まず、アンモニア液体中に所望のモル比でアルカリ土類金属元素と賦活剤元素を溶解させる。次にアンモニアを蒸発させ、共沈させたアミド化合物またはイミド化合物を得る。
 得られたアミド化合物またはイミド化合物を還元性あるいは不活性ガス雰囲気中で500~1200℃程度で熱処理することにより、少なくともアルカリ土類金属元素と賦活剤元素とを含む窒化物共沈品を製造することが出来る。
 以下にこの共沈窒化物の製造方法についてより詳しく説明する。
 共沈窒化物を製造する方法は、公知の種々の方法が使用可能であるが、以下にその一例として、アミド化合物を経由する方法について説明する。
 アルカリ土類金属元素と賦活剤元素を、目的とする共沈窒化物のモル比に合わせ秤量する。
 これらを、アンモニアと反応させアミド化合物を製造する。
 通常は圧力容器内に秤量したアルカリ土類金属元素と賦活剤元素を入れ、好ましくは真空引きした後、アンモニアを入れ、反応させる。
 アンモニアの使用量は、アルカリ土類金属元素1モルに対して、2モル以上が好ましく、アンモニアは溶媒も兼ねているため、多ければ多いほど好ましい。また、アルカリ土類金属元素、賦活剤元素とアンモニアの反応温度は、元素の組合せによって適宜決定すればよいが、-77~300℃が好ましく、20~200℃がより好ましく、50~100℃が更に好ましい。アルカリ土類金属元素、賦活剤元素とアンモニアは液相を形成することから、これらアルカリ土類金属と賦活剤元素は均一に分散され、その後、アルカリ土類金属元素アミドと賦活剤元素アミドを含有する組成物となる。従って、反応時間は液相が形成されるまでの時間であり、通常1分~72時間が好ましく、特に1時間~3時間程度が好ましい。
 尚、液相を形成する際に、目的の蛍光体の必要に応じ、アルミニウム等の3価の金属元素等を加えることもできる。好ましい3価の金属元素としてはアルミニウムである。
 このようにして得られた少なくともアルカリ土類金属元素と賦活剤元素とを含むアミド化合物は焼成することにより共沈窒化物とすることができる。
 このようなアルカリ土類金属と賦活剤元素を含むアミド化合物を熱分解反応する温度は、500℃以上が好ましく、更に510℃以上が好ましく、800℃以上がより好ましく、1000℃以上がさらに好ましい。温度の上限値は、アルカリ土類金属元素窒化物と賦活剤元素窒化物が分解しない温度であるが、熱分解反応炉の耐熱性や加熱を行う際の経済性から、1500℃以下とすることが好ましい。従って、アルカリ土類金属アミドを熱分解反応する温度は、510~1500℃が好ましく、さらに好ましくは800~1300℃、特に好ましくは1000~1200℃である。
 出発原料の前記アミド化合物は、空気中で酸化しやすいので、熱分解反応は、真空下又は窒素ガス若しくはアルゴンガス等の不活性ガス雰囲気下で行うことが好ましく、特に窒素ガス又はアルゴンガス等の不活性ガス下で行うことが好ましい。また、不活性ガス雰囲気下で熱分解反応を行う場合、その圧力は特に制限はないが、常圧で行うのが経済的で好ましい。また、熱分解は、バッチ式でも連続式でもよいが、量産する場合は、連続式が好ましい。
 熱分解反応時間は、装置、反応温度、原料使用量などにより適宜決定すればよいが、通常10分~48時間とすることが好ましく、1時間~24時間がさらに好ましく、特に3時間~12時間が好ましい。
 熱分解反応装置は、1500℃程度の熱に耐えられる装置であればよく、例えば、管状炉、電気炉、バッチ式キルン、ロータリーキルンなどを用いればよい。
 熱分解反応終了後は、例えばバッチ式の場合には、熱分解反応装置内には目的とする共沈窒化物のみが粉体状で残存するので、回収は極めて容易である。
 一方、連続式の場合には、例えば、N2やArで内部が満たされたロータリーキルンを用いれば、容易に共沈窒化物が連続的に回収される。
 本方法により得られる共沈窒化物は、熱分解反応により容易に内部まで反応が進行すること、賦活剤元素が極めて均一に分散しているため、高純度、高均一性であり、窒化物蛍光体の製造に適している。
 特に本発明に用いられる共沈窒化物は、アルカリ土類金属としてカルシウム及び/又はストロンチウムを含有することが好ましく、賦活剤元素としてはユーロピウム及び/又はセリウムを含有することが好ましい。
 また、もちろん上述の途中で得られるアミド化合物を熱分解反応しない状態でも、少なくともアルカリ土類金属元素と賦活剤元素とを含む共沈窒化物として使用することができる。
 また、ここまでアミド化合物を用いて説明したが、イミド化合物を経由しても、同様の共沈窒化物を得ることができる。
 かかる上述の方法などにより得られた共沈品を使用する以外は、本発明の蛍光体は公知の手法を用いて製造することが出来る。
 以下では、本発明の製造方法を用いて好適に製造される蛍光体のうち、下記式(1)、
 M2M3M4X:Z  (1)
(ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M3は、3価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素であり、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)で表される蛍光体(以下CASN蛍光体と略記することがある。)を例にとって説明するが、もちろん本発明は、その要旨を超えない限り、本蛍光体に限定されるものではない。
 本発明においては、少なくともM2とZを含む共沈窒化物を原料として使用する。このときのM2とZの組成比が、所望の蛍光体中での組成比になっていない場合、M2とZの共沈窒化物以外の他の原料を用いて不足分を補うことができる。例えばZが不足するのであれば、Zの窒化物や酸化物で不足分を補ってもよいし、あるいは他のM3やM4とZの共沈窒化物を用いてもよい。また、M2とZの組成比を変えた共沈窒化物を2種以上用意しておいて、これらを適当な割合で混合することにより、所望のM2とZの組成比を得ることも出来る。
 また、M3としては、B、Al、Ga、Inなどが好ましい。
 M3の原料としては、M3の窒化物が好ましく、具体的には、AlN、GaN、BN、InNなどが挙げられ、特に好ましくはAlNである。
 もちろん、式1の蛍光体に、発光波長制御や耐久性向上などの目的で酸素を敢えて含有させたい場合には、一部の材料を酸化物、例えばAl23などを加えてもよい。また前述のように、M3の少なくとも一部を共沈窒化物中に共沈させることも可能である。
 また、M4としては、Si、Ge、及びSnから選ばれる1種または2種以上の元素が好ましい。
 このM4の原料としては、Si、Ge、Snなどが好ましく、特に好ましくはSiである。
 また、XはO、N、及びFから選ばれる1種又は2種以上の元素であるが、特に好ましくはO及び/又はNである。これらはM2とZの窒化物共沈品や、M3の原料、M4の原料から取り込まれる。Fの主な供給源は、後述のフッ化物のフラックスである。
 本発明の製造方法においては、これらの原料を、1200~2200℃の範囲で焼成し、窒化物蛍光体を得る。
 このとき、本発明では、必要に応じて、これらの原料の混合物に、焼成温度以下の温度で液相を生成する無機化合物をフラックスとして添加して焼成することができる。このような無機化合物としては、Li、Na、K、Mg、Ca、Sr、及びBaから選ばれる1種または2種以上の元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩の1種または2種以上の混合物を挙げることができる。添加した無機化合物は、焼成温度で液相を生成し、金属化合物をぬらして反応を促進する。なかでも、フッ化カルシウムは反応促進効果が高い。無機化合物の添加量は、これらの原料の混合物100重量部に対して、0.1重量部以上10重量部以下がよい。0.1重量部より少ないと、反応促進効果が少なく。10重量部より多いと無機化合物が蛍光体中に残留して輝度を低下させるので好ましくない。蛍光体中への在留が多い場合は、焼成後に無機化合物を溶解する溶剤で洗浄して、無機化合物の含有量を低減させることが好ましい。
 これらの原料の混合には、例えばボールミル、振動ミル、V型混合機、撹拌機等の通常工業的に用いられている装置を用いることが出来る。
 上記の混合工程を終えた原料の混合物は、粒径数μmの微粉末が数百μmから数mmの大きさに凝集した形態をなす(以下、粉体凝集体と略記することがある)。
 本発明では、粉体凝集体を嵩密度40%以下の充填率に保持した状態で焼成する。すなわち、本発明では、粉体に機械的な力を加えることなく、また予め金型などを用いて成形することなく、混合物の粉体凝集体の粒度をそろえたものを、そのままの状態で容器などに嵩密度40%以下の充填率で充填する。容器としては、これら原料の混合物との反応性が低いことから、窒化ホウ素焼結体が好ましい。必要に応じて、該粉体凝集体を、ふるいなどを用いて、平均粒径500μm以下に造粒して粒度制御することができる。また、スプレードライヤなどを用いて直接的に500μm以下の形状に造粒してもよい。
 嵩密度を40%以下の状態に保持したまま焼成するのは、これら原料の混合物の粉末の周りに、自由な空間が保持されたままの状態で焼成すると、焼成後の生成物であるM2M3M4X:Zで表される蛍光体が自由な空間に結晶成長することにより結晶同士の接触が少なくなるため、表面欠陥が少ない結晶を合成することが出来るためである。これにより、輝度が高い蛍光体が得られる。嵩密度が40%を超えると焼成中に部分的に緻密化が起こって、緻密な焼結体となってしまい結晶成長の妨げとなり蛍光体の輝度が低下したり、蛍光体の微細な粉体が得られない。また、粉体凝集体の大きさは500μm以下が、焼成後の粉砕性に優れるため特に好ましい。
 次に、得られたこれらの原料の混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成することにより蛍光体を調製する。焼成に用いる炉は、焼成温度が高温であり焼成雰囲気が窒素を含有する不活性雰囲気であることから、金属抵抗加熱方式または黒鉛抵抗加熱方式であり、炉の高温部の材料として炭素を用いた電気炉が好適である。焼成の手法は、常圧焼結法やガス圧焼結法などの外部から機械的な加圧を施さない焼結手法が、嵩密度を高く保ったまま焼成するために好ましい。
 窒素を含有する不活性雰囲気として、窒素ガス、窒素とアルゴンの混合ガス、窒素と水素の混合ガス、アンモニアガスなどを挙げることができるが、通常は、窒素ガスが用いられる。ガスの圧力は、0.05MPa以上100MPa以下の圧力範囲が好ましい。0.05MPaより低いと原料の窒化ケイ素が分解し、100MPaより高いと工業的にコストが増大する。好ましくは、0.1MPa以上1MPa以下の窒素雰囲気が、生産性に優れる。焼成温度が、1200℃より低いと反応が十分には進まず、2200℃以上では粒成長が著しくなるため好ましくない。焼成温度は、好ましくは、1500℃以上1900℃以下であり、輝度が高い蛍光体が得られる。
 焼成して得られた粉体凝集体が固く固着している場合は、例えばボールミル、ジェットミル等の工業的に通常用いられる粉砕機により粉砕する。なかでも、ボールミル粉砕によれば高輝度の蛍光体が得られる。このとき使用するボールおよびポットは、窒化ケイ素焼結体またはサイアロン焼結体製が好ましい。粉砕は平均粒径20μm以下となるまで施すことが好ましい。特に好ましくは平均粒径0.05μm以上5μm以下である。平均粒径が20μmを超えると粉体の流動性と樹脂への分散性が悪くなり、発光素子と組み合わせて発光装置を形成する際に部位により発光強度が不均一になる。0.05μm以下となると、蛍光体粉体表面の欠陥量が多くなるため蛍光体の組成によっては発光強度が低下する。
 粉砕だけで目的の粒径が得られない場合は、分級を組み合わせることができる。分級の手法としては、篩い分け、風力分級、液体中での沈殿法などを用いることができる。
 粉砕分級の一方法として酸処理を行ってもよい。焼成して得られた粉体凝集体は、多くの場合、上記式(1)で表される蛍光体の単結晶が微量のガラス相を主体とする粒界相で固く固着した状態となっている。この場合、特定の組成の酸に浸すとガラス相を主体とする粒界相が選択的に溶解して、単結晶が分離する。これにより、それぞれの粒子が単結晶の凝集体ではなく、上記式(1)で表される蛍光体の単結晶1個からなる粒子として得られる。このような粒子は、表面欠陥が少ない単結晶から構成されるため、蛍光体の輝度が特に高くなる。
 この処理に有効な酸として、フッ化水素酸、硫酸、塩酸、フッ化水素酸と硫酸の混合物を挙げることができる。中でも、フッ化水素酸と硫酸の混合物はガラス相の除去効果が高い。
 以上の工程により微細な蛍光体粉末が得られるが、輝度をさらに向上させるには熱処理が効果的である。この場合は、焼成後の粉末、あるいは粉砕や分級により粒度調整された後の粉末を、1000℃以上で焼成温度以下の温度で熱処理することができる。1000℃より低い温度では、表面の欠陥除去の効果が少ない。焼成温度以上では粉砕した粉体同志が再度固着するため好ましくない。熱処理に適した雰囲気は、蛍光体の組成により異なるが、窒素、空気、アンモニア、及び水素から選ばれる1種又は2種以上の混合雰囲気中を使用することができ、特に窒素雰囲気が欠陥除去効果に優れるため好ましい。
 以上、本発明を式1で表される蛍光体を用いて説明したが、同様の手法により、式(2)、式(3)で示される蛍光体も製造することが出来る。
 以下、本発明を、実施例を用いて説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではない。
 太平洋セメント社製Ca3N2/EuN共沈窒化物と、宇部興産社製Si3N4、トクヤマ社製AlNを原料とし、これらをCa+Eu:Al:Si=1:1:1(モル比)になるよう、不活性ガスを満たしたグローボックスで、原料を秤量し、粉砕・混合しBN坩堝に充填した。グローボックス内を真空脱気することにより、得られた混合原料/BN坩堝をよく真空脱気した後、0.92MPaの窒素ガス雰囲気下、1600℃、2時間、さらに、1800℃、2時間で焼成してCASN蛍光体を得た。
 このとき用いたCa3N2/EuN共沈窒化物は、以下のような手順で作成した。金属Caと金属Euを所望のモル比とし、その約150倍の体積のある反応容器に入れ、(Ca+Eu)1モルに対し、47モルのアンモニアを加え、100℃2時間反応させ、カルシウムとユーロピウムの共沈したアミド組成物を得た。この共沈したアミド組成物を窒素雰囲気下、1000℃で4時間加熱し、Ca3N2/EuN共沈窒化物を得た。
 (比較例1)
 太平洋セメント社製Ca3N2/EuN共沈品の代わりに、市販のCerac社製Ca3N2とレアメタリック社製Eu2O3を使用して、EuとCaの量を実施例1とあわせた以外は、実施例1同様にして、実施例1と実質的に同じ組成のCASN蛍光体(CASN:Eu)を作製した。
 (評価)
 実施例1と比較例1の蛍光体の内部量子効率を測定したところ、実施例1のCASN蛍光体の内部量子効率は、93.4%であり、一方比較例1のCASN蛍光体は89.9%であった。また、実施例1の蛍光体と比較例1の蛍光体の外観を比較すると、比較例の蛍光体の方が、くすんだ感じであった。
 比較例1と比較して内部量子効率は実施例1が高かった。これはCASN蛍光体粉末の体色を比較して、実施例1に‘くすみ’が認められなかった結果とよく一致した。
 また、Cu-Kα線によるX線回折パターンを測定した結果を、図1に示す。
 図1において、上が実施例1のCASN蛍光体の回折パターンであり、下が比較例1のCASN蛍光体の回折パターンである。両者を比べると、実施例1の蛍光体の回折パターンの方が、ピークのカウント数が大きい。この差は、結晶性の差を表していると考えられ、実施例1の蛍光体、すなわち共沈窒化物を原料として使用した方が、結晶性のよい蛍光体を得やすいことが判る。
 続いて、発光スペクトルと、ピーク波長、ピーク高さ、及び半値幅について測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の、「CIEx」,[CIEy]とは、国際照明委員会(CIE)が定めるCIExy色度図上における色度点のx座標とy座標を意味する。
 表1の結果からも分かるように比較例1と実施例1との間において発光スペクトル形状の差を認めることはできなかった。
 また、図2として、比較例1と実施例1のCASN蛍光体粉末の走査型電子顕微鏡写真を示す。
 実施例1の蛍光体粉末は晶癖が確認でき、また、結晶粒子サイズが揃っていることが観察された。
 尚、本実施例では、CASN蛍光体を例にとって説明したが、CASN以外の窒化物蛍光体でも本発明と同様の効果が期待できる。特に式(2)で表される蛍光体は、その母体の一般式がCASN+Siに相当し、比較的近い組成を有することから、CASN蛍光体同様に、結晶性に優れ、内部量子効率の高い窒化物蛍光体を得ることができると推察される。
 本発明により、結晶性に優れ、内部量子効率の高い窒化物蛍光体を提供することができ、本発明の窒化物蛍光体を用いることにより、より高い輝度のLEDを提供することが出来る。
 尚、2010年10月20日に出願された日本特許出願2010-235942号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として取り入れるものである。

Claims (11)

  1.  共沈法により得られた、少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素とを含有する窒化物を、原料として用いる、少なくとも1種のアルカリ土類金属元素と賦活剤として働く少なくとも1種の元素を有する窒化物蛍光体の製造方法。
  2.  該窒化物が、アンモニア液中で少なくとも1種のアルカリ土類金属元素と、賦活剤として働く少なくとも1種の元素とを共沈させて得たものである請求項1に記載の窒化物蛍光体の製造方法。
  3.  該窒化物が、アミド化合物及び/またはイミド化合物である請求項1または2に記載の窒化物蛍光体の製造方法。
  4.  請求項1乃至3のいずれかに記載の製造方法にて製造された、少なくとも1種のアルカリ土類金属元素と賦活剤として働く少なくとも1種の元素を有する窒化物蛍光体。
  5.  前記の方法で製造された窒化物蛍光体が、下記式(1)で表される請求項4に記載の窒化物蛍光体。
     M2M3M4X:Z  (1)
    (ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M3は、3価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素であり、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
  6.  前記の方法で製造された窒化物蛍光体が、下記式(2)で表される請求項4に記載の窒化物蛍光体。
     M2M3M4:Z   (2)
    (ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M3は、3価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
  7.  前記の方法で製造された窒化物蛍光体が、下記式(3)で表される請求項4に記載の窒化物蛍光体。
     M2M4:Z   (3)
    (ただしM2は、少なくとも1種のアルカリ土類金属元素を含み、Z元素以外の2価の金属元素からなる群から選ばれる1種または2種以上の元素であり、M4は、4価の金属元素からなる群から選ばれる1種または2種以上の元素であり、Xは、O、N、及びFからなる群から選ばれる1種または2種以上の元素であり、ZはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選ばれる1種または2種以上の元素である。)
  8.  アルカリ土類金属元素と賦活剤元素の共沈アミド化合物を800~1300℃で熱分解することを特徴とする当該アルカリ土類金属と賦活剤元素の共沈窒化物の製造方法。
  9.  アルカリ土類金属元素が、カルシウム又はストロンチウムである請求項8に記載の共沈窒化物の製造方法。
  10.  賦活剤元素が、ユーロピウム又はセリウムである請求項8又は9に記載の共沈窒化物の製造方法。
  11.  窒素ガス下、熱分解することを特徴とする請求項8乃至10のいずれか一項に記載の共沈窒化物の製造方法。
PCT/JP2011/074165 2010-10-20 2011-10-20 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料 WO2012053595A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539762A JP5849961B2 (ja) 2010-10-20 2011-10-20 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-235942 2010-10-20
JP2010235942 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012053595A1 true WO2012053595A1 (ja) 2012-04-26

Family

ID=45975305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074165 WO2012053595A1 (ja) 2010-10-20 2011-10-20 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料

Country Status (2)

Country Link
JP (1) JP5849961B2 (ja)
WO (1) WO2012053595A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122068A (ja) * 2010-12-03 2012-06-28 Samsung Led Co Ltd 蛍光体の製造方法、蛍光体、及び発光装置
KR20160010311A (ko) * 2014-07-18 2016-01-27 삼성전자주식회사 형광체 및 그 제조 방법
JPWO2016021705A1 (ja) * 2014-08-07 2017-07-13 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
US9856418B2 (en) 2014-07-18 2018-01-02 Samsung Electronics Co., Ltd. Semiconductor package with improved signal stability and method of manufacturing the same
WO2019073864A1 (ja) * 2017-10-10 2019-04-18 デンカ株式会社 赤色蛍光体及び発光装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS63291878A (ja) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd 窒化アルミニウム焼結体の製造方法
JP2003515665A (ja) * 1999-11-30 2003-05-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 昼光の蛍光を有する顔料
JP2003301174A (ja) * 2002-04-09 2003-10-21 Nichia Chem Ind Ltd 窒化ガリウム蛍光体とその製造方法およびこの蛍光体を使用してなるディスプレイデバイス
JP3837588B2 (ja) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4228012B2 (ja) * 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2009161576A (ja) * 2007-12-28 2009-07-23 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置
JP4362625B2 (ja) * 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 蛍光体の製造方法
JP2010196049A (ja) * 2009-01-30 2010-09-09 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2010222213A (ja) * 2009-03-25 2010-10-07 Taiheiyo Cement Corp 金属アミドの製造方法および金属アミド製造装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS63291878A (ja) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd 窒化アルミニウム焼結体の製造方法
JP2003515665A (ja) * 1999-11-30 2003-05-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 昼光の蛍光を有する顔料
JP2003301174A (ja) * 2002-04-09 2003-10-21 Nichia Chem Ind Ltd 窒化ガリウム蛍光体とその製造方法およびこの蛍光体を使用してなるディスプレイデバイス
JP3837588B2 (ja) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4362625B2 (ja) * 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 蛍光体の製造方法
JP4228012B2 (ja) * 2006-12-20 2009-02-25 Necライティング株式会社 赤色発光窒化物蛍光体およびそれを用いた白色発光素子
JP2009161576A (ja) * 2007-12-28 2009-07-23 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置
JP2010196049A (ja) * 2009-01-30 2010-09-09 Mitsubishi Chemicals Corp 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP2010222213A (ja) * 2009-03-25 2010-10-07 Taiheiyo Cement Corp 金属アミドの製造方法および金属アミド製造装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122068A (ja) * 2010-12-03 2012-06-28 Samsung Led Co Ltd 蛍光体の製造方法、蛍光体、及び発光装置
KR20160010311A (ko) * 2014-07-18 2016-01-27 삼성전자주식회사 형광체 및 그 제조 방법
JP2016023217A (ja) * 2014-07-18 2016-02-08 サムスン エレクトロニクス カンパニー リミテッド 蛍光体およびその製造方法
US9856418B2 (en) 2014-07-18 2018-01-02 Samsung Electronics Co., Ltd. Semiconductor package with improved signal stability and method of manufacturing the same
KR102473675B1 (ko) * 2014-07-18 2022-12-01 삼성전자주식회사 형광체 및 그 제조 방법
JPWO2016021705A1 (ja) * 2014-08-07 2017-07-13 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
WO2019073864A1 (ja) * 2017-10-10 2019-04-18 デンカ株式会社 赤色蛍光体及び発光装置
KR20200066337A (ko) * 2017-10-10 2020-06-09 덴카 주식회사 적색 형광체 및 발광 장치
JPWO2019073864A1 (ja) * 2017-10-10 2020-11-05 デンカ株式会社 赤色蛍光体及び発光装置
US11380822B2 (en) 2017-10-10 2022-07-05 Denka Company Limited Red phosphor and light emission device
JP7217709B2 (ja) 2017-10-10 2023-02-03 デンカ株式会社 赤色蛍光体及び発光装置
KR102620016B1 (ko) 2017-10-10 2024-01-03 덴카 주식회사 적색 형광체 및 발광 장치

Also Published As

Publication number Publication date
JP5849961B2 (ja) 2016-02-03
JPWO2012053595A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
TWI391470B (zh) A phosphor and a method for manufacturing the same, and a light source
JP5354588B2 (ja) β−サイアロン蛍光体の製造方法。
JP5549969B2 (ja) 窒化物系または酸窒化物系の蛍光体原料混合物及びEuを含むSr2Si5N8、CaAlSiN3又はSrAlSiN3蛍光体の製造方法
JP6610739B2 (ja) 酸窒化物蛍光体粉末およびそれを用いた発光装置
TWI599637B (zh) 氮化物螢光體及其製造方法與發光裝置
TW201713750A (zh) 螢光體及其用途
JP2012017454A (ja) 蛍光粒子及び発光ダイオード並びにこれらを用いた照明装置及び液晶パネル用バックライト装置
JP5854051B2 (ja) 酸窒化物蛍光体粉末及びその製造方法
JP2011140664A (ja) 蛍光体の製造方法
JP5741177B2 (ja) Ca含有α型サイアロン蛍光体およびその製造方法
JP5954425B2 (ja) 波長変換部材及びそれを用いた発光装置
TWI601805B (zh) Process for producing nitride phosphors, silicon nitride phosphors for nitride phosphors, and nitride phosphors
JP5849961B2 (ja) 共沈原料を用いた窒化物蛍光体の製造方法、窒化物蛍光体、及びその原料
JP6036987B2 (ja) 酸窒化物蛍光体粉末およびその製造方法
CN106574181B (zh) 荧光体、发光装置、图像显示装置及照明装置
JP5470911B2 (ja) Li含有α−サイアロン系酸窒化物蛍光体粉末およびその製造方法
JP5187817B2 (ja) 蛍光体と発光器具
JP2011052099A (ja) 窒化物蛍光体の製造方法
JP2017186459A (ja) 窒化物蛍光体粉末およびその製造方法
JP6035978B2 (ja) 赤色蛍光体およびその製造方法
JP7318924B2 (ja) 蛍光体及びこれを用いた発光装置
JP2016079213A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016060891A (ja) 蛍光体、蛍光体の製造方法、およびそれを用いた発光装置
TW201716544A (zh) 螢光體及其製造方法以及發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834434

Country of ref document: EP

Kind code of ref document: A1