WO2012050402A2 - 세포투과성 parkin 재조합 단백질 및 이를 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 - Google Patents
세포투과성 parkin 재조합 단백질 및 이를 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 Download PDFInfo
- Publication number
- WO2012050402A2 WO2012050402A2 PCT/KR2011/007682 KR2011007682W WO2012050402A2 WO 2012050402 A2 WO2012050402 A2 WO 2012050402A2 KR 2011007682 W KR2011007682 W KR 2011007682W WO 2012050402 A2 WO2012050402 A2 WO 2012050402A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parkin
- cell
- recombinant protein
- seq
- mtd
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/10—Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
Definitions
- the present invention is for the treatment of degenerative brain disease containing Parkin recombinant protein fused with macromolecule transduction domain (MTD) to the degenerative brain disease therapeutic protein Parkin, and the cell permeable Parkin recombinant protein as an active ingredient. It relates to a pharmaceutical composition and the like.
- MTD macromolecule transduction domain
- Parkinson's disease was first reported by British physician James Parkinson in 1817, and is the second most common degenerative brain disease after dementia. It is known to affect about%. As the population ages, the number of patients also increases, but there is insufficient development of effective treatments due to insufficient studies. Characteristic clinical symptoms include movements such as bradykinesia, rest tremor, rigidity, flexed posture, freezing of gait, and postural instability. Symptoms, non-motor symptoms such as demen-tia, depression, anxiety, psychotic symptoms, autonomic neuropathy, and sleep disorders, and are characterized by loss of dopaminergic neurons in the middle brain and Lewy body findings. Pathological findings.
- Parkinson's disease is reported to be caused by a combination of genetic and environmental factors.
- Parkinson's genetic factor is responsible for the high prevalence of Parkinson's genetic factors.
- the Parkin gene was first discovered and named in Japanese families with Autosomal Recessive Juvenile Parkinsonism (ARJP), and (Kitada. T., 1998) early-onset Parkinson's disease with autosomal recessive genetics. 50% of the diseases are known to be caused by Parkin gene mutations (Lucking CB, 2000). Normal Parkin functions as an E3 Ubiquitin Ligase, which is important for the ubiquitin-proteasome system, and removes damaged, oxidized, or abnormally structured proteins in the cell to reduce intracellular stress. It serves to reduce.
- Parkin Degeneration of Parkin is known to result in the loss of E3 ubiquitin zygotease function, resulting in the accumulation of intracellular inclusion bodies and abnormal proteins, leading to inhibition of dopamine secretion or death of dopamine neurons (Lam YA, 2000). ).
- Parkin is present in the mitochondrial matrix and is known to be involved in protecting mitochondrial degeneration. Parkin deficient mutant mice have been shown to be highly sensitive to mitochondrial degradation and increased oxidative stress (Greene JC, 2003). Palacino JJ J, 2004). In addition, Parkin gene overexpression has been reported to inhibit the activity of JNK and caspase3 in neurons by 6-OHDA and decrease the activation oxygen (Jiang et al., 2004). In a recent study using fruit flies, Parkin's function was identified, along with another cause of Parkinson's disease, PINK1. Parkinson's dysfunction was a decrease in dopamine secretion due to inactivation, rather than death of dopamine neurons.
- Parkin may be used as a therapeutic agent for Parkinson's disease.
- Parkin-lentivirus was administered to Parkinson's animal models in which neurons were damaged by alpha-synuclein mutations.
- 60% inhibition of dopamine-secreting neurons in black matter was suppressed (Bianco et al., 2004), and 50% inhibition of dopamine neuron death by Parkin-lentivirus in Parkinson's disease animal model using 6-OHDA.
- allergic disorders were alleviated (Vercammen et al., 2006).
- Parkin protein plays an important role in destroying inclusion bodies as key enzymes of the ubiquitin-proteasome pathway, maintaining mitochondrial function from oxidative stress, and inhibiting dopamine neuron death. It can be assumed that by inhibiting the dopamine neurons death caused by genetic causes and environmental toxic substances to prevent dopamine neurons degeneration and reactivation. Accordingly, the present inventors have made a thorough study because it is considered that Parkin is of sufficient value as a target material for the development of a therapeutic agent for Parkinson's disease known as degenerative brain disease.
- macromolecules such as proteins, peptides, antibodies, nucleic acids and the like cannot pass through the double lipid membrane structure or plasma membrane and cannot be transferred into cells.
- bioactive recombinant proteins, gene therapies, and monoclonal antibodies are unable to pass through the dilipid layer of the plasma membrane of the cell, but also through the blood-brain barrier, an important pathway to the brain.
- the present inventors have prepared a Parkin recombinant protein that has been imparted with cell permeability by fusion of a macromolecular delivery domain to Parkin, and the recombinant protein is effectively delivered into neurons not only in vitro but also in an in vivo environment, thereby causing a malfunction of a specific protein or It has been confirmed that the present invention can be used as a therapeutic agent for degenerative brain diseases due to deficiency, and thus has been completed.
- An object of the present invention is to impart cell permeability to the treatment factor for degenerative brain disease, and to introduce it into the cell with high efficiency, thereby inhibiting dopamine neuron death or increasing the release of dopamine. It is to provide a recombinant protein.
- the present invention provides a cell permeable parkin recombinant protein in which a macromolecular transduction domain (MTD) is fused with a parkin having an amino acid sequence of SEQ ID NO: 1 and an amino acid sequence selected from the group consisting of SEQ ID NOs: 3 to 195. to provide.
- MTD macromolecular transduction domain
- the recombinant protein is characterized in that it has an amino acid sequence selected from the group consisting of SEQ ID NO: 394 to SEQ ID NO: 403.
- the recombinant protein is characterized in that it is prepared using the primers described in the table below.
- the present invention also provides a polynucleotide encoding the cell permeable parkin recombinant protein.
- the polynucleotide is characterized in that it has a base sequence selected from the group consisting of SEQ ID NO: 409 to SEQ ID NO: 418.
- the present invention also provides a recombinant expression vector comprising the polynucleotide.
- the present invention is a fusion of His-parkin having an amino acid sequence of SEQ ID NO: 389 and macromolecular transduction domain (MTD) having an amino acid sequence selected from the group consisting of SEQ ID NO: 3, 15, 103 and 105 Provides a cell permeable His-parkin recombinant protein.
- MTD macromolecular transduction domain
- the recombinant protein is characterized in that it has an amino acid sequence selected from the group consisting of SEQ ID NO: 390 to SEQ ID NO: 393.
- the recombinant protein is characterized in that it is prepared using the primers described in the table below.
- the present invention also provides a polynucleotide encoding the cell-permeable His-parkin recombinant protein.
- the polynucleotide is characterized in that it has a base sequence selected from the group consisting of SEQ ID NO: 405 to SEQ ID NO: 408.
- the present invention also provides a recombinant expression vector comprising the polynucleotide.
- the present invention also provides a pharmaceutical composition for treating degenerative brain disease containing the cell permeable parkin recombinant protein as an active ingredient.
- the degenerative brain disease is characterized in that Parkinson's disease.
- Parkin recombination protein having a cell permeability of the present invention is a cell-permeable recombinant protein fused with a macromolecular transport domain to Parkin protein, a dopamine neuronal cell death inhibitory factor, in vitro or in vivo using the protein It can be used for the study of Parkinson's disease through the effect of inhibiting apoptosis by transferring into dopamine neurons in vivo) or increasing dopamine secretion, and is expected to be useful as a therapeutic agent for human degenerative brain diseases. .
- FIG. 1 shows a vector designed for expressing Histidine (His) -tag fusion Parkin recombinant protein.
- Figure 2 shows a schematic diagram of the combined MTD and His-tag fusion recombinant human full-length Parkin gene.
- Figure 3 shows the SDS-PAGE results of purified His-tag fusion Parkin recombinant protein.
- Figure 4 shows the flow cytometry of the His-tag fusion Parkin recombinant protein (HPM01 or HPM13) combined with JO-01 MTD or JO-13 MTD and His-tag fusion Parkin recombinant protein (HP) without MTD. Flow cytometry results are shown.
- Figure 6 shows the results of comparing the HPM13 and HP mouse blood brain barrier permeability (A. Tissue immunoassay results; B. Analysis using Western blotting).
- Figure 7 shows the results of TUNEL analysis showing the protective effect of HPM13 and HP on 6-OHDA induced apoptosis of mouse neurons.
- Figure 8 shows the results of quantifying the dopamine secretion effect of HPM13 and HP in mouse dopamine neurons by ELISA.
- FIG. 9 shows His-tag fusion Parkin with JO-10, JO-13, JO-29, JO-78 JO-85, JO-103, JO-130, JO-135, JO-151, JO-174 MTD Shown are vectors designed for expression of recombinant proteins (HPM10, HPM13, HPM29, HPM78, HPM85, HPM103, HPM130, HPM135, HPM151, HPM174).
- Figure 11 shows a vector designed for expression of His-tag non-fusion Parkin recombinant protein.
- FIG. 12 shows a schematic diagram of a combination of MTD and His-tag non-fusion recombinant human full-length Parkin gene.
- FIG. 13 shows Parkin recombinant protein HP, HPM13 or unbound PN (His-tag non-fusion Parkin) with JO-10, JO-13, JO-151, JO-174 MTD bound (PNM10, PNM13, PNM151, PNM174) The results of comparing the expression of recombinant proteins are shown.
- Figure 14 shows the results of SDS-PAGE analysis after purification of PNM10, PNM13, PNM151, PNM174.
- Figure 15 shows the results of comparing the E3 ligase activity of PNM10, PNM13, PNM151, PNM174 with His6-Parkin protein (control).
- Figure 16 shows the results of comparing the protective effect of PNM10 against 6-OHDA induced apoptosis of SH-SY5Y neurons.
- Figure 17 shows the mouse blood brain barrier permeability results of PNM10 (A. Tissue immunoassay results; B. Analysis using Western blotting).
- Figure 18 shows the neurotoxic effect of PNM10 in the MPTP-induced Parkinson's disease animal model (histoimmunochemical labeling results for A. Tyrosin hydroxylase (TH); B. dopamine quantified by ELISA).
- the present invention provides a cell permeability through the fusion of Parkin, a dopamine neuronal cell death suppressor, and a macromolecular transduction domain (MTD), thereby introducing a cell-permeable Parkin recombinant protein (CP-Parkin) which introduces Parkin into cells with high efficiency.
- CP-Parkin cell-permeable Parkin recombinant protein
- a feature of the present invention is to deliver Parkin into cells with high efficiency by converging specific macromolecular delivery domains (hereinafter abbreviated as "MTD") to Parkin, a macromolecule that is not readily introduced into cells. .
- MTD specific macromolecular delivery domains
- the macromolecular delivery domain may be fused only to one end of Parkin, a dopamine neuron cell death inhibitor, or to both ends thereof.
- a macromolecular delivery domain (MTD) that can be fused to Parkin
- a dopamine neuronal cell death inhibitor the Parkin recombinant protein having cell permeability by fusion of Parkin to each of the peptide domains that enables the delivery of macromolecules into cells Developed.
- cell permeable Parkin recombinant protein includes a macromolecular delivery domain and Parkin, a dopamine neuronal cell death inhibitor, and refers to a covalent complex formed by genetic fusion or chemical bonding thereof.
- genetic fusion is meant a linear covalent linkage formed through the genetic expression of a DNA sequence encoding a protein.
- a polypeptide having a cell permeability including an amino acid sequence selected from the group consisting of SEQ ID NOs: 3 to 195 may be used.
- the macromolecular delivery domain is a cell permeable polypeptide that can mediate the entry of a polypeptide, protein domain, or biologically active molecule comprising a full length protein into a cell through a cell membrane.
- the macromolecular delivery domain according to the present invention forms helices in signal peptides consisting of three parts of the N-terminal region, the hydrophobic region and the C-terminal secreted protein cleavage site. It is designed to have a hydrophobic region that confers targeting activity.
- the macromolecular delivery domains that can be fused to Parkin, a neuronal cell death inhibitor, according to the present invention are shown in Table 1 below.
- Parkin recombinant protein having cell permeability is a macromolecular delivery domain of 12 MTDs (JO-01, JO-10, JO-13, JO-29, JO-78, JO-85, JO- 101, JO-103, JO-130, JO-135, JO-151, and JO-174) are fused to one or both ends of the apoptosis inhibitor Parkin, and easily to one end of this fusion construct.
- the histidine-tag (His-Tag) affinity domain may be fused.
- the 12 types of MTD (JO-01, JO-10, JO-13, JO-29, JO-78, JO-85, JO-101, JO-103, JO-130, Full-length forms can be devised as Parkin recombinant proteins using any one of JO-135, JO-151 and JO-174.
- full length form refers to a form comprising an intact amino acid sequence that does not include the deletion, addition, insertion or substitution of one or more amino acid residues in the amino acid sequence set forth in SEQ ID NO: 1 of the apoptosis inhibitor Parkin. it means. However, not only full-length Parkin, but also Parkin derivatives containing various modifications by deletion, addition, insertion or substitution of one or more amino acid residues in its amino acid sequence within the range not impairing the killing inhibitory effect of Parkin's dopamine secreting cells It can be used in the present invention.
- control protein has an amino acid sequence of SEQ ID NO: 1, which may be encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 2.
- His-Parkin in which a histitin label is fused to one end of the cell permeable Parkin recombinant protein is not fused to MTD.
- the control protein has an amino acid sequence of SEQ ID NO: 389, which may be encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 404.
- the present invention also provides a recombinant expression vector comprising a polynucleotide encoding the cell-permeable Parkin recombinant protein.
- a "recombinant expression vector” refers to a gene construct that is capable of expressing a protein of interest or RNA of interest in a suitable host cell and comprises an essential regulatory element operably linked to express the gene insert.
- operably linked refers to a functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest to perform a general function.
- a promoter and a nucleic acid sequence encoding a protein or RNA may be operably linked to affect expression of the nucleic acid sequence encoding.
- Operative linkage with recombinant expression vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation uses enzymes commonly known in the art.
- Expression vectors usable in the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like. Suitable expression vectors include membrane targeting or in addition to expression control sequences such as promoters, operators, initiation codons, termination codons, polyadenylation signals, and enhancers. It may be prepared in various ways according to the purpose, including a signal sequence (leader sequence) or a signal sequence for secretion. The promoter of the expression vector may be constitutive or inducible.
- the expression vector includes a selection marker for selecting a host cell containing the vector, and in the case of an expression vector capable of replication, includes a replication origin.
- His-Tag is expressed by artificially including six histidine-tags in the N-terminal region of the cell-permeable Parkin recombinant protein for the purpose of facilitating purification of the protein.
- the nucleotide of the present invention can be cloned into a pET-28a (+) vector having a sequence (Novagen, USA).
- the present invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising the cell permeable parkin recombinant protein as an active ingredient.
- the composition may further comprise a pharmaceutically acceptable carrier, such as a carrier for oral administration or a carrier for parenteral administration.
- Carriers for oral administration include lactose, starch, cellulose derivatives, magnesium stearate, stearic acid and the like.
- the recombinant protein according to the invention can be mixed with excipients and used in the form of intake tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups and wafers.
- carriers for parenteral administration include water, suitable oils, saline, aqueous glucose and glycols, and the like, and may further include stabilizers and preservatives.
- Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid.
- Suitable preservatives include benzalkonium chloride, methyl- or propyl-parabens and chlorobutanol.
- Other pharmaceutically acceptable carriers may be used by reference to those described in the following references (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
- compositions according to the invention can be formulated in a variety of parenteral or oral dosage forms.
- parenteral formulations are injectable formulations, preferably aqueous isotonic solutions or suspensions.
- injectable formulations may be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
- each component may be formulated for injection by dissolving in saline or buffer.
- oral dosage forms include, for example, tablets and capsules, which include diluents (e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine) and glidants (in addition to the active ingredients).
- diluents e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine
- glidants in addition to the active ingredients.
- the tablets may comprise binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and / or polyvinylpyrrolidine, optionally starch, agar, alginic acid or Disintegrants such as sodium salts, absorbents, colorants, flavors and / or sweeteners may be further included.
- binders such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and / or polyvinylpyrrolidine, optionally starch, agar, alginic acid or Disintegrants such as sodium salts, absorbents, colorants, flavors and / or sweeteners may be further included.
- the formulations may be prepared by conventional mixing, granulating or coating methods.
- compositions of the present invention may further comprise auxiliaries such as preservatives, hydrating agents, emulsifiers, salts for regulating osmotic pressure and / or buffers and other therapeutically useful substances, and may be formulated according to conventional methods.
- auxiliaries such as preservatives, hydrating agents, emulsifiers, salts for regulating osmotic pressure and / or buffers and other therapeutically useful substances, and may be formulated according to conventional methods.
- the route of administration of the composition according to the present invention may be administered to humans and animals orally or parenterally, such as intravenous, subcutaneous, intranasal or intraperitoneal.
- Oral administration also includes sublingual application.
- Parenteral administration includes injection and drip methods such as subcutaneous injection, intramuscular injection and intravenous injection.
- the total effective amount of the recombinant protein of the present invention may be administered to a patient in a single dose, and the fractionated treatment protocol in which multiple doses are administered for a long time. It may also be administered by.
- the composition of the present invention may vary the content of the active ingredient depending on the extent of the disease, but can be repeatedly administered several times a day at an effective dosage of 5 to 20 mg once a single administration based on adults.
- the effective dose of the recombinant protein may be determined in consideration of various factors such as the age, weight, health condition, sex, severity of the disease, diet and excretion rate, as well as the route and frequency of treatment of the drug. .
- composition according to the present invention is not particularly limited to the formulation, route of administration and method of administration as long as the effect of the present invention is shown.
- an expression vector was produced to produce cell-permeable Parkin recombinant protein fused with His-tag. 4 randomly selected JO-01, JO-13, JO-101, JO-103 (SEQ. ID. NO .: 3, 15, 103, 105) MTD at the full-length Parkin gene C-terminus Amplified the gene.
- SEQ. ID. NO .: 424 (forward) and SEQ. ID. NO .: 426 (reverse) primer pair was used for the human full-length Parkin-MTD 01 gene
- SEQ. ID. NO .: 424 (forward) and SEQ. ID. NO .: 427 (reverse) primer pair was used for the human full-length Parkin-MTD 13 gene
- SEQ. ID. NO .: 424 (forward) and SEQ. ID. NO .: 428 (reverse) primer pair was used for the full length Parkin-MTD 101 gene
- His-tag allows the MT-D gene to be fused at the C-terminus and ultimately His-Parkin-MTD 01 (HPM 1 ), His-Parkin-MTD 13 (HPM 13 ), His-Parkin-MTD 101 (HPM 101 ), His-Parkin-MTD 103 (HPM 103 ) Parkin recombinant protein was prepared to express, and the results are shown in Figures 1 and 2.
- CDNA base sequence for the protein expression is SEQ. ID. NO.:404 (His-Parkin), SEQ. ID. NO .: 405 (His-Parkin-MTD 01 ), SEQ. ID. NO .: 406 (His-Parkin-MTD 13 ), SEQ. ID.
- E. coli BL21 Codon Plus (DE3) (Invitrogen) with a LacI promoter was used to express the cell permeable Parkin recombinant protein, and after transformation, E. coli was 50 ug / mL kanamycine in 500 mL LB. After inoculation into the added culture, when E. coli reached 0.5 at A 600 , it was overexpressed with 0.5 mM IPTG (Isopropyl ⁇ -D-1-thiogalactopyranoside) for 2 hours. All four cell-permeable Parkin recombinant proteins were expressed as inclusion bodies.
- IPTG Isopropyl ⁇ -D-1-thiogalactopyranoside
- Parkin recombinant proteins HPM 1 , HPM 13
- JO-01 and JO-13 MTD were combined in consideration of their expression and physical properties. Purification was performed by selecting Parkin recombinant protein (HP) that did not bind MTD. To purify this, 8 M urea, a potent denaturant, was used to loosen the protein structure. First, the E. coli harvested by centrifugation of the culture was suspended in 20 mL lysis buffer (100 mM NaH 2 PO 4 , 10 mM Tris-HCl, 8 M urea, pH 8.0), which was then equipped with a microtip. E.
- lysis buffer 100 mM NaH 2 PO 4 , 10 mM Tris-HCl, 8 M urea, pH 8.0
- coli was crushed by repeating the 30 second-ON and 10 second-OFF conditions for 50 minutes on ice using an ultrasonic crusher. The supernatant was collected by centrifugation at 3,000 rpm at 4 ° C. for 25 minutes and combined with Ni 2+ -NTA agarose resin, followed by centrifugation at 1,000 rpm for 5 minutes at 4 ° C. Removed. To remove the nonspecific adsorbate, it was washed five times with 100 mM NaH 2 PO 4 , 10 mM Tris-HCl, 8 M urea, pH 6.3 buffer.
- Purified His-tag fusion cell permeable recombinant Parkin protein is denatured by urea to form a released structure and must be refolded.
- purified recombinant protein was refolded in buffer (0.55 M Guanidine-HCl, 0.44 M L-arginine, 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 100 mM NDSB, 2 mM oxidized glutathione, 0.2 mM reduction).
- Urea was removed by dialysis at 4 ° C. for 24 hours using glutathione), and cell permeability and in vitro functional tests were performed on stable water-soluble cell permeable Parkin recombinant protein (HPM 1 , HPM 13 , HP).
- DMEM Dulbecco's Modified Eagle Medium
- FITC fluorescent material
- 333 ug was used to bind the protein while shaking for 1 hour at room temperature with little light.
- Cell permeable recombinant Parkin protein labeled with FITC fluorescence was dialyzed in DMEM medium at 4 ° C. for 1 day to remove unlabeled FITC.
- the cell permeable Parkin recombinant protein (HPM 1 , HPM 13 ) in which JO-01 MTD and JO-13 MTD are combined is compared to the cell permeable Parkin recombinant protein (HP) without MTD binding. It can be seen that the permeability is high.
- HPM 1 , HPM13, HP Parkin recombinant protein was treated with NIH3T3 cells (Korea Cell Line Bank, Seoul, Korea) at a concentration of 10 uM and incubated at 37 ° C. for 1 hour. .
- NIH3T3 cells were cultured in DMEM medium containing 10% FBS, 5% penicillin and streptomycin. After incubation, in order to preserve the fluorescent label of the recombinant protein, 10 uL of mounting media was deposited on the slide, and after 15 minutes, it was observed under a confocal fluorescence microscope (Nikon).
- MTD-coupled cell permeable Parkin recombinant protein HPM 1 , HPM 13
- HP Parkin recombinant protein
- Example 5 Brain-blood barrier permeability test of His-tag fusion cell permeable Parkin protein
- HPM 13 Parkin recombinant protein with 200 ⁇ g MTD and Parkin recombinant protein with MTD was synthesized in 11-week-old Balb / c mice. 2 hours and 4 hours after subcutaneous injection of HP), the mouse brain was extracted. After fixing the tissue in 4% paraformaldehyde for more than 24 hours, the slide was prepared by frozen sectioning the tissue to 5 ⁇ m thickness. After fixing the sections for 10 minutes using cold acetone, the sections were washed with PBS buffer for 5 minutes and the frozen sections were reacted with 0.2% hydrogen peroxide for 30 minutes.
- Sections were washed in PBS buffer solution for 5 minutes, then blocked in PBS buffer solution containing 3% normal horse serum for 30 minutes, and then Anti-His mAb (1: 500) and Anti-Parkin mAb (1: 500) The reaction was reacted overnight at 4 ° C. After washing the sections in PBS buffer solution for 5 minutes, reacted with biotin fusion anti-mouse antibody (1: 200, Zymed) for 1 hour, followed by reaction for 30 minutes using ABC kit (Vectastain), Sections were washed in PBS buffer for 5 minutes. After color reaction with DAB (3,3'-Diaminobenzidine) solution, staining was observed under an optical microscope, and the results are shown in FIG. 6A.
- DAB 3,3'-Diaminobenzidine
- mice 8 weeks old, females were injected subcutaneously with 200 ⁇ g protein and brain was extracted 2 hours later. After removing residual blood flow with PBS buffer, brain with RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, protease inhibitor) was homogenized. After centrifugation at 13,000 rpm for 10 minutes at 4 ° C, the supernatant was taken, followed by 10% SDS-PAGE.
- RIPA buffer 50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, protease inhibitor
- ParkM antibody positive band was observed to be about twice as thick as HPM 13 compared with HP, indicating that MTD-coupled Parkin recombinant protein has blood-brain barrier permeability.
- TUNEL assay was performed to confirm the protective effect against neuronal cell death by the neurotoxin 6-hydroxydopamine (6-OHDA).
- CATHa a mouse dopamine producing neuron, was cultured in DMEM media containing 10% fetal bovine serum, 5% penicillin and streptomycin, and treated with 6-OHDA at a concentration of 50 uM for 30 minutes.
- JO-13 MTD-coupled Parkin recombinant protein (HPM 13 ) and MTD-coupled Parkin recombinant protein (HP) were each added 2.5 uM and incubated at 37 ° C. for 2 hours and 30 minutes.
- TUNEL terminal dUTP nick-end labeling
- the 6-OHDA-only group was observed to kill a large number of cells, whereas HPM 13 , a Parkin recombinant protein with JO-13 MTD, was observed to kill dopamine neurons by 6-OHDA.
- HPM 13 a Parkin recombinant protein with JO-13 MTD
- similar results to the group treated with 6-OHDA were observed by HP, a Parkin recombinant protein without MTD binding.
- mouse dopamine neurons CATHa (Korea Cell Line Bank, Seoul, South Korea) was used. CATHa cells were cultured in DMEM medium containing 10% FBS, 5% penicillin / streptomycin, and dopamine quantification was performed according to the method of GenWay from dopamine ELISA supplier. After 24 h of tyrosine treatment to CATHa cells, HPM 13 recombinant protein fused with JO-13 MTD and recombinant HP protein without MTD were administered to dopamine neuron culture at 2.5 uM, respectively.
- the dopamine concentration in the medium was quantified by ELISA (GenWay), and the results are shown in FIG. 8.
- the dopamine content was increased by 366% or more in the culture solution in which HPM 13 was administered compared to HP protein, and after 5 hours, HPM 13 was dopamine compared to Parkin protein without MTD fusion. The content was significantly increased. Therefore, it can be seen that the HPM 13 recombinant protein fused with MTD is transferred into dopamine neurons to increase dopamine secretion ability.
- the polymerase chain reaction product obtained above was cloned into the pGEM-Tease vector, and then subcloned into the BamHI and HindIII positions of the expression vector pET-28a (+) (Novagen). -At the end, each MTD gene was designed to be fused, which is shown in FIG. 9.
- the cDNA base sequence of the cloned gene is shown in SEQ. ID. NO .: 2 (Parkin), SEQ. ID. NO .: 409 (Parkin-MTD 10 ), SEQ. ID. NO .: 410 (Parkin-MTD 13 ), SEQ. ID. NO .: 411 (Parkin-MTD 29 ), SEQ. ID.
- Parkin-MTD 174 Ultimately Parkin-MTD 10 (HPM 10 ), Parkin-MTD 13 (HPM 13 ), Parkin-MTD 29 (HPM 29 ), Parkin-MTD 78 (HPM 78 ), Parkin-MTD 85 (HPM 85 ), Parkin-MTD 103 (HPM 103 ), Parkin-MTD 130 (HPM 130 ), Parkin-MTD 135 (HPM 135 ), Parkin-MTD 151 (HPM 151 ), Parkin-MTD 174 (HPM 174 ) recombinant proteins were prepared and expressed. The results are shown in FIG. As shown in FIG.
- an expression vector was prepared for the production of His-tag non-fusion cell-permeable Parkin recombinant protein in which JO-10, JO-13, JO-151, and JO-174 MTD were combined in E. coli .
- Codon Optimization Service was commissioned from GenScript (USA) to produce codon optimized genes cloned at the Nco I and Hind III positions in the pUC57 vector.
- parkin optimized cDNA (parkin optimized cDNA) is to facilitate the expression of Parkin in the expression system, and to increase the physical properties.
- pUC57 vector was treated with HindIII restriction enzyme with NcoI, and each of the optimized genes was subcloned into NcoI and HindIII positions of pET-28a (+) (Novagen), and His-tag was removed at the N-terminus, and C -At the end, each MTD gene is designed to be fused, and is shown in FIGS. 11 and 12.
- it was prepared to express Parkin-MTD 10 (PNM 10 ), Parkin-MTD 13 (PNM 13 ), Parkin-MTD 151 (PNM 151 ), Parkin-MTD 174 (PNM 174 ) recombinant proteins (FIGS. 11 and 12). Reference).
- the code optimized Parkin DNA was overexpressed in transformed BL21 codon plus (DE3) Escherichia coli, and the results are shown in FIG.
- the cDNA base sequence of the cloned gene is shown in SEQ. ID. NO .: 419 (PN), SEQ. ID. NO .: 420 (PNM 10 ), SEQ. ID. NO .: 421 (PNM 13 ), SEQ. ID. NO .: 422 (PNM 151 ), SEQ. ID. NO .: 423 (PNM 174 ).
- E. coli BL21 Codon Plus E. coli 50 ug / mL kanamycine, 500 uM in 500 mL LB
- overexpression was performed by adding 0.5 mM IPTG for 3 hours.
- the overexpressed E. coli was harvested by centrifugation, and then repeated 10 sec-on and 20 sec-OFF conditions on ice for 30 minutes, followed by centrifugation to harvest inclusion bodies, 50 mM Tris-HCl (pH 8.0), Washed three times with 100 mM NaCl, 0.1% Triton X-100 buffer. Unpack the suture with 50 mM Tris-HCl (pH 10.0), 8 M urea buffer, and then directly administer to 30 mM Sodium phosphate (pH 8.0), 0.02% Tween-20 buffer at 4 ° C. Stir for 48 hours and refold.
- the refolded Parkin protein was centrifuged at 9,000 rpm for 30 minutes, followed by Q-sepharose anion exchange resin column chromatography equipped with AKTA purifier for purification. 5 mM column volume was passed through 30 mM Sodium phosphate (pH 8.0) and 30 mM NaCl buffer to remove unbound proteins.
- PN, PNM 10 , PNM 13 , PNM 151 , and PNM 174 were all identified as a single band of 53 kDa on SDS-PAGE, indicating that they were purified by Q-sepharose chromatography.
- 1 ug of purified Parkin recombinant protein (PN, PNM 10 , PNM 13 , PNM 151 , PNM 174 ) and 1 ug His 6 -Parkin protein (Boston Biochem) were prepared using 1 uM E1, 50 uM E2, 1 from Boston Biochem.
- the mixture was mixed with mM His6-Ubiquitin, 10 mM Mg-ATP, and reaction buffer solution (50 mM HEPES, 0.5 M NaCl, 10 mM DTT) for 1 hour at 37 ° C. Nm23 protein purified as a negative control was used. After adding 4x sample buffer to boil to terminate the reaction, 10% SDS-PAGE was performed.
- Western blotting was performed using an ubiquitin antibody (Enzo life science) at 1: 1,000, and the Parkin recombinant protein to which ubiquitin was conjugated was confirmed, and the results are shown in FIG. 15.
- TUNEL was performed to confirm the protective effect against neuronal cell death by the neurotoxin 6-OHDA.
- Human brain cancer dopamine producing neurons SH-SY5Y cells (Korea Cell Line Bank, Seoul, Korea) were cultured in DMEM medium containing 10% fetal bovine serum, 5% penicillin and streptomycin, and 6-OHDA at 100 uM concentration. After 30 minutes of treatment, 2.5 uM of cell-permeable Parkin recombinant protein was added and incubated at 37 ° C. for 2 hours and 30 minutes.
- TUNEL terminal dUTP nick-end labeling
- PNM 10 cell permeable Parkin recombinant protein having the highest physical properties and E3 ligase activity was selected and subcutaneous injection to confirm blood brain barrier permeability after PNM 10 protein present in brain Immunohistochemical labeling and Western blotting were performed.
- the solution was perfused through the heart using a pump to remove blood.
- Mouse brains were extracted, and half of the brains were placed in 4% Paraformaldehyde solution and fixed at 4 ° C. for at least 24 hours, and immunohistochemical labeling was performed. The other half of the brains were prepared with Western blotting.
- a fixed brain tissue was put in the OCT compound to make a block, the tissue was frozen in 20 ⁇ m thickness section and stored in PBS buffer solution. After washing three times with PBS buffer 10 minutes each, 3% hydrogen peroxide solution was allowed to stand at room temperature for 30 minutes. After washing three times with PBS for 10 minutes, it was left in 4% normal goat serum and 4% BSA mixture for 1 hour. After removing the mixed solution, the MTD-10 antibody was diluted 1: 1,000 and reacted overnight at 4 ° C. After washing three times with PBS buffer for 10 minutes, the biotinylated anti-Rabbit was diluted 1: 500 and reacted at room temperature for 2 hours.
- the tissue was weighed and RIPA buffer (Sigma) was added at 0.1 g / mL, followed by crushing the tissue with a homogenizer and standing on ice for 30 minutes. Prepared. After centrifugation at 10,000 rpm for 10 minutes at 4 ° C, the supernatant was quantified using the Bradford quantitative method, and 100 ug of each protein sample was loaded on a 10% SDS-PAGE gel. After transferring the gel to the nitrocellulose membrane, it was blocked for 1 hour at room temperature with 5% skim milk. Parkin antibody (Millipore) and actin (Santacruz) were diluted 1: 1,000 and reacted at room temperature for 90 minutes.
- RIPA buffer Sigma
- Anti-mouse-HRP (Santacruz) secondary antibody was diluted 1: 1,000 and reacted at room temperature for 50 minutes.
- ECL (Amersham) solution was allowed to react with the membrane for 1 minute, followed by LAS-4000 (Fujifilm Life Science) image analyzer. was detected and the result is shown in FIG. 17B.
- PNM 10 human full-length cell permeable Parkin recombinant protein fused with MTD has blood-brain barrier permeability.
- Parkinson's disease animal models using MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) are well known and cause dopamine neuronal death in the brain and striatum of the brain. Therefore, to establish a Parkinson's disease animal model by intraperitoneal injection of MPTP in C57BL / 6 mice, to determine the effect of protecting the death of dopamine neurons by PNM 10 cell permeable Parkin recombinant protein, marker enzyme of dopamine neurons Dopamine in brain tissues was quantitatively analyzed by immunohistochemical labeling and ELISA using antibodies against tyrosine hydroxylase.
- MPTP was dissolved in 0.9% NaCl solution and injected at 15 mg / kg intraperitoneally three times per day for 2 days. After the last injection, anesthesia was performed with 2.5% avertin on day 7, and then PBS buffer containing 1 mM EDTA and 4 mM metabisulfite was perfused through the heart using a pump to remove blood, and then the brains of the mice were extracted. Half was fixed in 4% Paraformaldehyde solution for more than 24 hours at 4 °C, the other half was used for quantitative dopamine analysis.
- the immobilized brain tissue was placed in an OCT compound to make a block, and the tissue was frozen in 20 ⁇ m thickness and stored in PBS buffer. After washing three times with PBS buffer for 10 minutes each, 3% hydrogen peroxide solution was left at room temperature for 30 minutes. After washing three times with PBS for 10 minutes, it was left in 4% normal goat serum and 4% BSA mixture for 1 hour. After removing the mixture, the tyrosin hydroxylase antibody (Millipore) was diluted 1: 1,000 and reacted at 4 ° C. overnight. After washing three times with PBS buffer for 10 minutes, the biotinylated anti-Rabbit was diluted 1: 500 and reacted at room temperature for 2 hours.
- FIG. 18A a large number of dopamine neurons were observed in the melanoma and striatum of mice treated with PNM 10 recombinant protein, compared to the group administered with MPTP alone. It can be seen that there is a neuronal protective function transmitted by intracellular neurotoxic substances.
- the mouse brain striatum was isolated and quantitatively compared to the dopamine content according to the product manual using ELISA kit (LDN), the results are shown in Figure 18B.
- the dopamine content was increased by 40% in the PNM 10 cell permeable Parkin recombinant protein treated group compared to the MPTP treated group. Therefore, MTD-coupled cell-permeable Parkin recombinant protein increases dopamine secretion by penetrating the blood brain barrier and protecting dopamine neuron death by MPTP, a neurotoxic substance, through the blood brain barrier in the Parkinson's disease animal model. Able to know.
- MTD-bound His-tag fusion or non-fusion Parkin recombinant protein is expected to be very likely to develop new drugs as a drug that can treat degenerative brain diseases as well as Parkinson's disease.
- the cell-permeable Parkin recombination protein according to the present invention is designed to be transferred into cells, and the recombinant protein of the present invention can be used for the purpose of treating Parkinson's disease, and ultimately, can be useful for developing a therapeutic agent for degenerative brain disease in humans. It is expected to be.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Neurosurgery (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Neurology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
본 발명은 퇴행성 뇌질환 치료 단백질 Parkin 에 거대분자 전달 도메인(macromolecule transduction domain, MTD)이 융합된 세포투과성을 갖는 Parkin 재조합 단백질, 및 상기 세포투과성 Parkin 재조합 단백질을 유효성분으로 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 등에 관한 것이다. 본 발명의 세포투과성을 갖는 Parkin재조합 단백질은 도파민 신경세포 사멸 억제인자인 Parkin 단백질에 거대분자 전송 도메인을 융합시킨 세포투과성 재조합 단백질을 제조하고, 이를 세포 내로 전송 가능하게 함으로써, 이 단백질을 이용하여 시험관내 (in vitro) 또는 생체 내 (in vivo) 환경하에서 도파민 신경세포 내로 전달하여 세포사멸을 억제하거나, 도파민 분비 증가 효능을 통해 파킨슨병 치료목적 연구에 사용될 수 있으며, 인간의 퇴행성 뇌질환의 치료제로서 유용하게 사용될 수 있다.
Description
본 발명은 퇴행성 뇌질환 치료 단백질 Parkin 에 거대분자 전달 도메인(macromolecule transduction domain, MTD)이 융합된 세포투과성을 갖는 Parkin 재조합 단백질, 및 상기 세포투과성 Parkin 재조합 단백질을 유효성분으로 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 등에 관한 것이다.
파킨슨병 (Parkinson’s disease)은 1817년 영국의 내과의사 James Parkinson 에 의해 최초로 보고되었으며, 치매에 이어 두 번째로 빈번하게 발생하는 대표적인 퇴행성 뇌질환으로 65세 이상 인구의 1%, 85세 이상 인구에서는 5%정도 발병한다고 알려져 있다. 인구의 고령화와 함께 환자수도 크게 증가하고 있으나, 현재까지 충분한 연구가 진행되지 않아 효과적인 치료제의 개발이 미흡한 상황이다. 특징적인 임상적 증상으로는 서동(bradykinesia), 안정시 진전(rest tremor), 경직(rigidity), 구부정한 자세(flexed posture), 보행동결(freezing of gait), 자세반사 이상(postural instability) 등의 운동 증상과, 치매(demen-tia), 우울, 불안, 정신병적 증상, 자율신경장애, 수면장애 등과 같은 비운동 증상을 동반하며, 중뇌의 도파민성 신경세포의 소실과 루이체(Lewy body) 소견이 특징적인 병리 소견이다.
파킨슨병은 유전적 인자와 환경적 인자가 복합적으로 작용하여 발생하는 것으로 보고되고 있는데 특히, 파킨슨병의 유전적 인자 중 높은 유병률을 차지하는 것이 Parkin 유전자의 변성이다.
Parkin 유전자는 상염색체 열성 유년기 파킨슨병 (Autosomal Recessive Juvenile Parkinsonism: ARJP)을 가진 일본 가계에서 처음 발견되어 명명되었으며, (Kitada. T., 1998) 상염색체 열성유전을 보이는 조기 발병 (early-onset) 파킨슨병의 50%가 Parkin 유전자 돌연변이에 의한 것으로 알려져 있다 (Lucking C.B., 2000). 정상적인 Parkin은 유비퀴틴-프로테아좀 (Ubiquitin-Proteasome) 시스템에 중요한 E3 유비퀴틴 접합효소 (Ubiquitin Ligase)로 기능하며, 세포 내에서 손상되었거나, 산화된 단백질, 또는 비정상적 구조 이룬 단백질들을 제거하여 세포 내 스트레스를 감소시켜주는 역할을 한다. 이러한 Parkin에 변성이 일어날 경우 E3 유비퀴틴 접합효소 기능이 상실됨으로써 세포 내 봉입체 (Inclusion Body) 및 비정상적 단백질들이 축적되어 도파민 분비 저해 또는 도파민 (dopamine) 신경세포의 사멸을 일으키는 것으로 알려져 있다 (Lam Y.A., 2000).
또한, Parkin은 미토콘드리아 매트릭스 (matrix)에 존재하며 미토콘드리아 퇴화를 보호하는 기능과 연관이 있는 것으로 알려져 있는데, Parkin 결핍 돌연변이 생쥐는 미토콘드리아 분해와 증가된 산화적 스트레스에 매우 민감함을 보였고 (Greene J.C., 2003; Palacino J.J. J, 2004), Parkin 유전자를 과발현 시, 6-OHDA에 의한 신경세포 내 JNK, caspase3의 활성을 억제 및 활성화 산소를 감소시킨 연구도 보고되어 있다 (Jiang et al., 2004). 최근 초파리를 이용한 연구에서는 파킨슨병의 또다른 원인유전자인 PINK1과 더불어 Parkin의 기능이 규명되었는데, 파킨슨병의 운동기능상실은 도파민 신경세포의 사멸이 아닌 불활성화로 인한 도파민 분비 감소이며, Parkin에 의해 도파민 분비가 정상수준으로 회복되어 운동기능이 회복됨을 확인하였다 (Park J. et al. 2006). 또한, PINK1이 발현되지 않는 초파리에서 Parkin을 과발현 시 미토콘드리아 (Mitochondria) 이상, 도파민 신경세포의 퇴화, 근육세포의 사멸 등 PINK1에 의해 유발된 파킨슨병 관련 증상도 회복될 수 있음이 보고되어 있다 (Park et al., 2006; Yang et al., 2006; Clark et al., 2006).
Parkin이 파킨슨병의 치료제로써 이용가능성이 있음을 동물실험을 통한 많은 연구로 확인할 수 있는데, 알파-시뉴클레인 (α-synuclein) 돌연변이에 의해 신경세포가 손상된 파킨슨병 동물모델에 Parkin-lentivirus를 투여한 결과, 흑질 내 도파민 분비 신경세포의 사멸이 60% 억제되었고 (Bianco et al., 2004), 6-OHDA를 이용하여 제작된 파킨슨병 동물모델에서는 Parkin-lentivirus에 의해 도파민 신경세포 사멸이 50% 억제되고, 운동 장애도 완화된 결과가 확인되었다 (Vercammen et al., 2006).
이러한 발견에 근거하여, Parkin 단백질의 세포 내 다량 투여가 유비퀴틴-프로테아좀 경로의 주요 효소로 봉입체를 파괴하고, 산화적 스트레스로부터 미토콘드리아의 기능을 유지하고, 도파민 신경세포의 사멸을 저해하는데 중요한 역할을 담당함으로써, 유전적 원인과 환경독성물질로부터 유발된 도파민 신경세포의 사멸을 억제하여 도파민 신경세포의 퇴화를 막고, 재활성화 할 수 있음을 가정할 수 있다. 이에 본 발명자들은 Parkin 이 퇴행성 뇌질환으로 알려진 파킨슨병의 치료제 개발을 위한 표적 물질로서 가치가 충분하다고 사료되어 예의 연구 노력하였다.
그러나, 합성화합물 또는 천연물의 작은 분자들과는 달리, 단백질, 펩티드, 항체, 핵산등과 같은 거대분자들은 이중 지질막 구조 또는 원형질막을 통과할 수 없어, 세포 안으로 전송될 수 없다. 특히, 생리활성을 지닌 재조합단백질, 유전자 치료제, 단일클론 항체등은 세포의 원형질막의 이중지질 층을 통과할 수 없을 뿐만 아니라, 뇌로 전송되는데 중요한 길목인 혈뇌장벽 (blood-brain barrier)를 통과할 수 없다. Parkin도 이와 같은 바, 이를 극복하기 위한 방법으로, 기 개발된‘거대분자 세포 내 전송기술 (Macromolecule Intracellular Transduction Technology: MITT)’을 예의 적용하였다 (JO D.W., 2001).
이에 본 발명자들은 Parkin에 거대분자 전달 도메인을 융합시켜 세포투과성을 부여한 Parkin 재조합 단백질을 제조하고, 이 재조합 단백질이 in vitro 뿐만 아니라 in vivo 환경 하에서도 신경세포 내로 효과적으로 전달되어, 특정 단백질의 기능이상 또는 결핍으로 인한 퇴행성 뇌질환 치료제로 사용될 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.
본 발명의 목적은 퇴행성 뇌질환 치료인자Parkin에 세포투과성을 부여하여 이를 세포 내로 고효율로 도입함으로써 도파민 신경세포 사멸을 억제하거나, 도파민 분비 증가 등의 효과를 나타낼 수 있는 퇴행성 뇌질환 치료제로서 세포투과성 Parkin재조합 단백질을 제공하는 것이다.
본 발명은 서열번호 1의 아미노산 서열을 가지는 parkin 과 서열번호 3 내지 서열번호 195로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 거대분자 전달 도메인 (macromolecule transduction domain, MTD)이 융합되어 있는 세포투과성 parkin 재조합 단백질을 제공한다.
본 발명의 일 구현예에서, 상기 재조합 단백질은 서열번호 394 내지 서열번호 403 으로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 것을 특징으로 한다.
본 발명의 다른 구현예에서, 상기 재조합 단백질은 하기 표에 기재된 primer 를 사용하여 제조되는 것을 특징으로 한다.
또한, 본 발명은 상기 세포투과성 parkin 재조합 단백질을 코딩하는 폴리뉴클레오티드를 제공한다.
본 발명의 일 구현예에서, 상기 폴리뉴클레오티드가 서열번호 409 내지 서열번호 418 로 이루어진 군으로부터 선택된 염기 서열을 가지는 것을 특징으로 한다.
또한, 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다.
또한, 본 발명은 서열번호 389 의 아미노산 서열을 가지는 His-parkin 과 서열번호 3, 15, 103 및 105로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 거대분자 전달 도메인 (macromolecule transduction domain, MTD)이 융합되어 있는 세포투과성 His-parkin 재조합 단백질을 제공한다.
본 발명의 일 구현예에서, 상기 재조합 단백질은 서열번호 390 내지 서열번호 393 으로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 것을 특징으로 한다.
본 발명의 다른 구현예에서, 상기 재조합 단백질은 하기 표에 기재된 primer 를 사용하여 제조되는 것을 특징으로 한다.
또한 본 발명은 상기 세포투과성 His-parkin 재조합 단백질을 코딩하는 폴리뉴클레오티드를 제공한다.
본 발명의 일 구현예에서, 상기 폴리뉴클레오티드가 서열번호 405 내지 서열번호 408 로 이루어진 군으로부터 선택된 염기 서열을 가지는 것을 특징으로 한다.
또한 본 발명은 상기 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다.
또한, 본 발명은 상기 세포투과성 parkin 재조합 단백질을 유효성분으로 함유하는 퇴행성 뇌질환 치료용 약학적 조성물을 제공한다.
본 발명의 일 구현예에서, 상기 퇴행성 뇌질환은 파킨슨병인 것을 특징으로 한다.
본 발명의 세포투과성을 갖는 Parkin재조합 단백질은 도파민 신경세포 사멸 억제인자인 Parkin 단백질에 거대분자 전송 도메인을 융합시킨 세포투과성 재조합 단백질로, 상기 단백질을 이용하여 시험관내 (in vitro) 또는 생체 내 (in vivo) 환경하에서 도파민 신경세포 내로 전달하여 세포사멸을 억제하거나, 도파민 분비 증가 효능을 통해 파킨슨병 치료목적 연구에 사용될 수 있으며, 궁극적으로 인간의 퇴행성 뇌질환의 치료제로서 유용하게 사용될 수 있을 것으로 기대된다.
도 1 은 Histidine (His)-tag 융합 Parkin 재조합 단백질 발현을 위해 고안된 벡터를 나타낸 것이다.
도 2 는 MTD와 His-tag 융합 재조합 인간 전장 Parkin 유전자가 결합된 형태의 모식도를 나타낸 것이다.
도 3 은 His-tag 융합 Parkin 재조합 단백질을 정제한 SDS-PAGE 결과를 나타낸 것이다.
도 4 는 JO-01 MTD 또는 JO-13 MTD가 결합된 His-tag 융합 Parkin 재조합 단백질 (HPM01 또는 HPM13)과 MTD가 결합되지 않은 His-tag 융합 Parkin 재조합단백질 (HP)의 세포투과성을 유세포 분석기(flow cytometry)로 측정한 결과를 나타낸 것이다.
도 5 는 HPM01 또는 HPM13과 HP의 가시적 세포투과성을 동초점 형광현미경으로 관찰한 결과를 나타낸 것이다.
도 6 은 HPM13과 HP의 생쥐 혈뇌장벽 투과성을 비교한 결과를 나타낸 것이다 (A. 조직면역화학 표지법 분석결과; B. 웨스턴블랏팅 이용한 분석결과).
도 7 은 생쥐 신경세포의 6-OHDA 유도 세포사멸에 대한 HPM13과 HP의 보호효과를 보여주는 TUNEL 분석 결과를 나타낸 것이다.
도 8 은 생쥐의 도파민 신경세포에서 HPM13과 HP의 도파민 분비효과를 ELISA로 정량하여 비교한 결과를 나타낸 것이다.
도 9 는 JO-10, JO-13, JO-29, JO-78 JO-85, JO-103, JO-130, JO-135, JO-151, JO-174 MTD가 결합된 His-tag 융합 Parkin 재조합단백질 (HPM10, HPM13, HPM29, HPM78, HPM85, HPM103, HPM130, HPM135, HPM151, HPM174)의 발현을 위해 고안된 벡터를 나타낸 것이다.
도 10 은 JO-10, JO-13, JO-29, JO-78 JO-85, JO-103, JO-130, JO-135, JO-151, JO-174 MTD가 결합된 His-tag 융합 Parkin 재조합단백질 (HPM10, HPM13, HPM29, HPM78, HPM85, HPM103, HPM130, HPM135, HPM151, HPM174)의 발현을 SDS-PAGE로 비교 분석한 결과를 나타낸 것이다.
도 11 은 His-tag 비융합 Parkin 재조합단백질 발현을 위해 고안된 벡터를 나타낸 것이다.
도 12 는 MTD와 His-tag 비융합 재조합 인간 전장 Parkin 유전자가 결합된 형태를 모식도를 나타낸 것이다.
도 13 은 JO-10, JO-13, JO-151, JO-174 MTD가 결합된 (PNM10, PNM13, PNM151, PNM174) Parkin 재조합단백질 HP, HPM13 또는 결합되지 않은 PN (His-tag 비융합 Parkin) 재조합 단백질의 발현 양상을 비교한 결과를 나타낸 것이다.
도 14 는 PNM10, PNM13, PNM151, PNM174를 정제 후, SDS-PAGE로 분석한 결과를 나타낸 것이다.
도 15 는 PNM10, PNM13, PNM151, PNM174의 E3 ligase 활성을 His6-Parkin 단백질 (대조군)과 비교한 결과를 나타낸 것이다.
도 16은 SH-SY5Y 신경세포의 6-OHDA 유도 세포사멸에 대하여 PNM10의 보호효과를 비교한 결과를 나타낸 것이다.
도 17 은 PNM10의 생쥐 혈뇌장벽 투과성 결과를 나타낸 것이다 (A. 조직면역화학 표지법 분석결과; B. 웨스턴블랏팅 이용한 분석결과).
도 18 은 MPTP-유도 파킨슨병 동물모델에서 PNM10의 신경독성에 의한 보호효과를 나타낸 것이다 (A. Tyrosin hydroxylase (TH)에 대한 조직면역화학 표지법 결과; B. 도파민을 ELISA로 정량한 결과).
본 발명은 도파민 신경세포 사멸 억제인자인 Parkin 과 거대분자 전달 도메인(macromolecule transduction domain, MTD)의 융합으로 세포투과성이 부여되어 Parkin 을 세포 내로 고효율로 도입하는 세포투과성 Parkin 재조합 단백질(CP-Parkin) 및 이를 코딩하는 폴리뉴클레오티드를 제공한다.
본 발명의 특징은 세포 내로의 도입이 용이하지 않은 거대분자인 Parkin 에 특정한 거대분자 전달 도메인(이하, "MTD" 로 약칭함)을 융합시켜 세포투과성을 부여함으로써 Parkin 을 세포 내로 고효율로 전달하는 것이다. 이때 거대분자 전달 도메인은 도파민 신경세포 사멸 억제인자인 Parkin 의 한쪽 말단에만 융합되거나, 혹은 그의 양쪽 말단 모두에 융합될 수 있다.
본 발명에서는 도파민 신경세포 사멸 억제인자인 Parkin 에 융합될 수 있는 거대분자 전달 도메인(MTD)으로서 세포 내로 거대분자의 전달을 가능케 하는 펩티드 도메인 각각에 상기 Parkin 을 융합하여 세포투과성을 갖는 Parkin 재조합 단백질을 개발하였다.
본 발명에서 "세포투과성 Parkin 재조합 단백질" 이란 거대분자 전달 도메인과 도파민 신경세포 사멸 억제인자인 Parkin 을 포함하며, 이들의 유전적 융합이나 화학적 결합으로 형성된 공유결합 복합체를 의미한다. 여기서 "유전적 융합" 이란 단백질을 코딩하는 DNA 서열의 유전적 발현을 통해서 형성된 선형의 공유결합으로 이루어진 연결을 의미한다.
상기 신경세포 사멸 억제인자인 Parkin 에 융합될 수 있는 거대분자 전달 도메인으로는 서열번호 3 내지 195로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 세포투과성을 갖는 폴리펩타이드가 사용될 수 있다. 상기 거대분자 전달 도메인은 세포막을 관통하여 폴리펩타이드, 단백질 도메인, 또는 전장 단백질을 포함하는 생물학적 활성 분자의 세포 내로의 유입을 매개할 수 있는 세포투과성 폴리펩타이드이다. 본 발명에 따른 거대분자 전달 도메인은 N-말단 영역, 소수성 영역 및 C-말단의 분비 단백질 전달 부위(secreted protein cleavage site)의 3부분으로 이루어진 시그널 펩타이드(signal peptides)에서 헬릭스(helix)를 형성해 세포막 표적(targeting) 활성을 부여하는 소수성 영역을 갖도록 고안된 것이다. 이러한 거대분자 전달 도메인은 세포에 손상을 가하지 않으면서 직접 세포막을 투과함으로써 표적 단백질을 세포 내로 이동시켜 목적하는 기능을 발휘하게 할 수 있다.
본 발명에 따라 신경세포 사멸 억제인자인 Parkin 에 융합될 수 있는 상기 거대분자 전달 도메인을 하기 표 1 에 나타내었다.
[표 1] 거대분자 전달 도메인 (MTDs)
본 발명의 일 예로, 세포투과성을 갖는 Parkin 재조합 단백질은 거대분자 전달 도메인으로 12종의 MTD(JO-01, JO-10, JO-13, JO-29, JO-78, JO-85, JO-101, JO-103, JO-130, JO-135, JO-151, JO-174)의 어느 하나가 세포사멸 억제인자 Parkin의 한쪽 또는 양쪽 말단에 융합되고, 이 융합 컨스트럭트의 한쪽 말단에 용이한 정제를 위해 히스티딘-표지(histidine-tag, His-Tag) 친화성 도메인이 융합되어 있는 구조를 가질 수 있다.
본 발명의 일 실시형태에서는, 상기 12종의 MTD(JO-01, JO-10, JO-13, JO-29, JO-78, JO-85, JO-101, JO-103, JO-130, JO-135, JO-151, JO-174)중의 어느 하나를 이용한 Parkin 재조합 단백질로서 전장 형태(full-length forms)를 고안할 수 있다.
본 발명에서 용어 "전장 형태"는 세포사멸 억제인자 Parkin의 서열번호 1로 기재되는 아미노산 서열에서 하나 이상의 아미노산 잔기의 결실, 부가, 삽입 또는 치환을 포함하지 않는 온전한 형태의 아미노산 서열을 포함하는 형태를 의미한다. 그러나 전장 형태의 Parkin 뿐만 아니라, Parkin의 도파민 분비세포의 사멸억제 효과를 손상시키지 않은 범위 내에서 그의 아미노산 서열에 하나 이상의 아미노산 잔기의 결실, 부가, 삽입 또는 치환에 의한 다양한 변형을 포함하는 Parkin 유도체도 본 발명에 사용될 수 있다.
본 발명에서는 세포투과성 Parkin 재조합 단백질의 대조군으로 MTD가 융합되지 않은 Parkin(PN)을 사용할 수 있다. 상기 대조군 단백질은 서열번호 1의 아미노산 서열을 가지며, 이는 서열번호 2의 염기서열을 갖는 폴리뉴클레오티드에 의해 코딩될 수 있다.
또한, 본 발명에서는 세포투과성 Parkin 재조합 단백질의 대조군으로 MTD가 융합되지 않고 한쪽 말단에 히스티틴 표지가 융합된 His-Parkin(HP) 을 사용할 수 있다. 상기 대조군 단백질은 서열번호 389의 아미노산 서열을 가지며, 이는 서열번호 404의 염기서열을 갖는 폴리뉴클레오티드에 의해 코딩될 수 있다.
또한 본 발명은 상기 세포투과성 Parkin 재조합 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 발현벡터를 제공한다.
본 발명에서 "재조합 발현벡터"란 적당한 숙주세포에서 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 컨스트럭트를 말한다.
본 발명에서 용어, "작동가능하게 연결된(operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 발현벡터와의 작동적 연결은 당해 기술 분야에 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에 일반적으로 알려진 효소 등을 사용한다.
본 발명에 사용가능한 발현벡터는 플라스미드 벡터, 코스미드(cosmid) 벡터, 박테리오파아지 벡터, 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터(promoter), 오퍼레이터(operator), 개시코돈(initiation codon), 종결코돈(termination codon), 폴리아데닐화 신호(polyadenylation signal), 인핸서(enhancer)와 같은 발현 조절서열 외에도 막 표적화 또는 분비를 위한 신호서열(signal sequence) 또는 리더서열(leader sequence)을 포함하여 목적에 따라 다양하게 제조될 수 있다. 발현벡터의 프로모터는 구성적(constitutive) 또는 유도성(inducible)일 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주세포를 선택하기 위한 선택마커를 포함하고, 복제가 가능한 발현벡터인 경우 복제 기원을 포함한다.
본 발명의 일 실시예에서는, 단백질의 정제를 용이하게 할 목적으로 세포투과성 Parkin 재조합 단백질의 N-말단 부위에 인위적으로 6개의 히스티딘-표지(histidine-tag)를 포함시켜 발현시키기 위하여, His-Tag 서열을 가지고 있는 pET-28a(+) 벡터(Novagen, USA)에 본 발명의 뉴클레오티드를 클로닝할 수 있다.
또한, 본 발명은 상기 세포투과성 parkin 재조합 단백질을 유효성분으로 포함하는 약학적 조성물을 제공한다. 상기 조성물은 약학적으로 허용되는 담체, 예컨대 경구 투여용 담체 또는 비경구 투여용 담체를 추가로 포함할 수 있다. 경구 투여용 담체는 락토스, 전분, 셀룰로스 유도체, 마그네슘 스테아레이트, 스테아르산 등을 포함한다. 경구 투여용의 경우, 본 발명에 따른 재조합 단백질은 부형제와 혼합되어 섭취형 정제, 협측 정제, 트로키, 캡슐, 엘릭시르, 현탁액, 시럽 및 웨이퍼 등의 형태로 사용될 수 있다. 또한, 비경구 투여용 담체는 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등을 포함하며, 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 사용할 수 있다(Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
본 발명에 따른 조성물은 다양한 비경구 또는 경구 투여 형태로 제형화될 수 있다. 비경구 투여용 제형의 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화할 수 있다. 또한, 경구 투여용 제형으로는 예를 들면 정제, 캅셀제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예:락토스, 덱스트로스, 수크로스, 만니톨, 솔비톨, 셀룰로스 및/또는 글리신)와 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)를 포함할 수 있다. 상기 정제는 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로스, 나트륨 카복시메틸셀룰로스 및/또는 폴리비닐피롤리딘과 같은 결합제를 포함할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제 및/또는 감미제를 추가로 포함할 수 있다. 상기 제형은 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
본 발명의 조성물은 방부제, 수화제, 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제와 같은 보조제와 기타 치료적으로 유용한 물질을 추가로 포함할 수 있으며, 통상적인 방법에 따라 제제화될 수 있다.
또한, 본 발명에 따른 조성물의 투여 경로로는 경구적으로 또는 정맥내, 피하, 비강내 또는 복강내 등과 같은 비경구적으로 사람과 동물에게 투여될 수 있다. 경구 투여는 설하 적용도 포함한다. 비경구적 투여는 피하주사, 근육내 주사 및 정맥 주사와 같은 주사법 및 점적법을 포함한다.
본 발명의 조성물에 있어서, 본 발명의 재조합 단백질의 총 유효량은 단일 투여량(single dose)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple dose)이 장기간 투여되는 분할 치료 방법(fractionated treatment protocol)에 의해 투여될 수도 있다. 본 발명의 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 1회 투여 시 5 내지 20 ㎎의 유효 투여량으로 하루에 수차례 반복 투여될 수 있다. 그러나 상기 재조합 단백질의 농도는 약의 투여 경로 및 치료 횟수뿐만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정될 수 있다. 따라서 이러한 점을 고려할 때 당해 분야의 통상적인 지식을 가진 자라면 상기 재조합 단백질의 암 전이 억제제로서의 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있을 것이다. 본 발명에 따른 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여 방법에 특별히 제한되지 아니한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.
[실시예]
실시예 1. Histidine (His)-tag 융합 세포투과성 Parkin 재조합 단백질 발현벡터 제조
단백질 정제를 용이하게 수행하기 위해, 우선 His-tag이 융합된 세포투과성 Parkin 재조합단백질을 생산하기 위한 발현벡터를 제작하였다. 인간 전장(full length) Parkin 유전자 C-말단에 무작위로 선택된 4종의 JO-01, JO-13, JO-101, JO-103 (SEQ. ID. NO.: 3, 15, 103, 105) MTD가 결합된 유전자를 증폭하였다.
[표 2] primer set
상기 표 2에 기재되어 있는 SEQ. ID. NO.: 424 (정방향)과 SEQ. ID. NO.: 425 (역방향) primer 쌍을 이용하여 인간 전장 Parkin 유전자를, SEQ. ID. NO.: 424 (정방향)과 SEQ. ID. NO.: 426 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD01 유전자를, SEQ. ID. NO.: 424 (정방향)과 SEQ. ID. NO.: 427 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD13 유전자를, SEQ. ID. NO.: 424 (정방향)과 SEQ. ID. NO.: 428 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD101 유전자를, SEQ. ID. NO.: 424 (정방향)과 SEQ. ID. NO.: 429 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD103 유전자를 중합효소 연쇄반응 (Polymerization Chain Reaction, PCR) 방법을 이용하여 증폭하였다. 상기로부터 얻은 중합효소 연쇄반응산물을 pGEM-Tease벡터에 클로닝 한 후, His-tag 발현벡터인 PET-28(+)a (Novagen사)의 NdeI 위치에 서브클로닝 (subcloning)하여, N-말단에는 His-tag이, C-말단에는 각각의 MTD 유전자가 융합되도록 하여 궁극적으로 His-Parkin-MTD01 (HPM1), His-Parkin-MTD13 (HPM13), His-Parkin-MTD101 (HPM101), His-Parkin-MTD103 (HPM103) Parkin 재조합단백질이 발현되도록 제조하였고, 그 결과를 도 1 및 도 2에 나타내었다. 상기 단백질 발현을 위한 cDNA 염기서열은 SEQ. ID. NO.:404 (His-Parkin), SEQ. ID. NO.: 405 (His-Parkin-MTD01), SEQ. ID. NO.: 406 (His-Parkin-MTD13), SEQ. ID. NO.: 407 (His-Parkin-MTD101), SEQ. ID. NO.: 408 (His-Parkin-MTD103)에 기재하였으며, 발현된 His-tag Parkin 재조합단백질의 아미노산 서열은 SEQ. ID. NO.: 389 (His-Parkin), SEQ. ID. NO.: 390 (His-Parkin-MTD01), SEQ. ID. NO.: 391 (His-Parkin-MTD13), SEQ. ID. NO.: 392 (His-Parkin-MTD101), SEQ. ID. NO.: 393 (His-Parkin-MTD103) 에 기재하였다.
실시예 2. His-tag 융합 세포투과성 Parkin 재조합 단백질의 과발현 (overexpression) 및 정제
세포투과성 Parkin 재조합 단백질을 발현시키기 위해 LacI 프로모터 (promotor)를 갖는 대장균 BL21 Codon Plus (DE3) (Invitrogen 사)를 이용하였으며, 형질전환 (transformation) 시킨 후, 대장균을 500 mL LB에 50 ug/mL kanamycine이 첨가된 배양액에 접종한 후, 대장균이 A600에서 0.5에 도달하였을 때, 2시간 동안 0.5 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside)로 과발현시켰다. 4종의 세포투과성 Parkin 재조합 단백질은 모두 봉입체 (inclusion body)로 발현되었으며, 이들 중 발현 및 물성을 고려하여, JO-01과 JO-13 MTD가 결합된 Parkin 재조합 단백질 (HPM1, HPM13)과 MTD가 결합되지 않은 Parkin 재조합 단백질 (HP)을 선택하여 정제를 수행하였다. 이를 정제하기 위해 강력한 변성제인 8 M urea를 사용하여 단백질 구조가 풀리도록 했다. 먼저, 배양액을 원심분리하여 수확한 대장균을 20 mL 용해 완충액 (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 8.0)에 현탁한 후, 이를 마이크로팁 (microtip)이 장착된 초음파 파쇄기를 이용하여 얼음에서 30초-ON, 10초-OFF 조건을 50 분 동안 반복하여 대장균를 파쇄하였다. 25 분간 4℃ 3,000 rpm에서 원심분리하여 상층액을 모아 Ni2+-NTA 아가로즈(agarose) 레진(resin)과 결합시킨 후, 4℃, 1,000 rpm 에서 5분간 원심분리하여 결합하지 않은 용해물을 제거하였다. 비특이적 흡착물질을 제거하기 위해 100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 6.3 완충용액으로 5회 세척하였다. 마지막으로, 레진 2 배부피의 용출 완충액 (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 4.5)으로 재조합 Parkin 단백질을 포함하는 분획을 모아 10% SDS-PAGE로 정제여부를 확인하고, 그 결과를 도 3에 나타내었다. 도 3에 나타난 바와 같이, 세포투과성 Parkin 재조합단백질 HP, HPM1, HPM13 각각을 단일밴드로 정제되었음을 알 수 있으며, 최종 단백질의 정제량은 9 mg/L로 획득 가능하였다.
실시예 3. His-tag 융합 세포투과성 Parkin 재조합 단백질의 재접힘 (refolding)
정제된 His-tag 융합 세포투과성 재조합 Parkin 단백질은 urea에 의해 변성되어 풀어진 구조를 이루고 있기 때문에 재접힘단계를 거쳐야 한다. 따라서, 정제된 재조합 단백질을 재접힘 완충액 (0.55 M Guanidine-HCl, 0.44 M L-arginine, 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 100 mM NDSB, 2 mM 산화형 glutathione, 0.2 mM 환원형 glutathione)을 이용하여 4℃에서 24 시간 동안 투석하여 urea를 제거하고, 안정된 수용성 세포투과성 Parkin 재조합단백질 (HPM1, HPM13, HP)에 대하여 세포투과성 및 시험관내 기능성 검사를 수행하였다.
실시예 4. His-tag 융합 세포투과성 Parkin 단백질의 시험관 내 (
in vitro
) 세포투과성 검사
시험관 내 세포투과성을 확인하기 위해, 정제된 Parkin 재조합 단백질을 세포배양 배지인 Dulbecco’s Modified Eagle Medium (DMEM)에 4℃ 8 시간동안 투석한 후, 형광물질인 FITC (fluorescein-5-isothiocyanate, Molecular Probe) 333 ug 을 사용하여, 빛이 거의 없는 상태에서 상온 1 시간 동안 진탕하면서 단백질과 결합시켰다. FITC 형광으로 표지된 세포투과성 재조합 Parkin 단백질은 4℃에서 1 일간 DMEM배지에 투석하여 표지되지 않은 FITC를 제거하였다.
세포투과성 Parkin 재조합 단백질의 세포투과능을 확인하기 위해 생쥐의 섬유아세포 (fibroblast) 결합조직 세포에서 유래된 NIH3T3세포 (한국세포주은행, 서울, 대한민국)에 10 uM 농도의 HPM1, HPM13, HP 각각의 재조합 단백질을 처리하고, 1 시간 동안 배양 후, 유세포 분석기를 이용하였다. 배양 조건은 10% FBS (fetal bovine serum) 및 5% 페니실린/스트렙토마이신 (penicillin/streptomycin) 500 mg/mL을 함유하는 DMEM배지에서 배양하였다. 1 시간 경과 후, 유리 FITC를 제거하기 위해 트립신 (trypsin)을 처리하고, 저온의 PBS로 3 번 세척한 후, FACS Calibur (Beckton-Dickinson)의 CellQuesPro 소프트웨어를 장착한 유세포 분석기로 세포투과도를 측정하였고, 그 결과를 도 4에 나타내었다.
도 4에 나타난 바와 같이, JO-01 MTD와 JO-13 MTD가 결합된 세포투과성 Parkin 재조합단백질 (HPM1, HPM13)은 세포투과성이 MTD가 결합되지 않은 Parkin 재조합단백질 (HP)과 비교하여 세포투과성이 높음을 알 수 있다.
동초점 형광현미경으로 세포투과성을 관찰하기 위해, 정제된 HPM1, HPM13, HP Parkin 재조합 단백질을 NIH3T3 세포(한국세포주은행, 서울, 대한민국)에 10 uM 농도로 처리하고 37℃에서 1 시간 동안 배양하였다. NIH3T3 세포는 10% FBS, 5% 페니실린과 스트렙토마이신을 함유한 DMEM 배지에서 배양하였다. 배양 후, 재조합 단백질의 형광표지를 보존하기 위해, 10 uL의 mounting media를 슬라이드 위에 점적한 후, 15분 뒤에 동초점 형광 현미경 (Nikon 사)으로 관찰하였다. 상기 재조합 단백질이 처리된 세포는 MTD 융합 단백질의 세포 내 전달부위의 구별이 용이하도록 하기 위해 propidium idodide (PI) 으로 핵을 염색함으로써 세포질 (cytosol)내 단백질 투과성 여부를 구분하여 관찰할 수 있었으며, normaski filter를 이용하여 세포의 모양을 확인하고 그 결과를 도 5에 나타내었다. 도 5에 나타난 바와 같이, MTD가 결합된 세포투과성 Parkin 재조합단백질 (HPM1, HPM13)은 세포투과성이 MTD가 결합되지 않은 Parkin 재조합단백질 (HP)와 비교하여 현저히 높은 세포투과성이 있음을 알 수 있다.
실시예 5. His-tag 융합 세포투과성 Parkin 단백질의 혈뇌장벽 (Brain-blood barrier) 투과능 검사
면역조직화학표지법 (immunohistochemistry)을 이용하여, 혈뇌장벽 투과성을 확인하기 위하여, 11주령의 Balb/c 생쥐에 200㎍ 의 MTD가 결합된 Parkin 재조합 단백질 (HPM13)과 MTD가 결합된 Parkin 재조합 단백질 (HP)을 피하 주사하여 2시간과 4시간 경과 한 후, 생쥐 뇌를 적출하였다. 4% paraformaldehyde 에 24시간 이상 넣어 조직을 고정한 후, 5㎛ 두께로 조직을 냉동 절편하여 슬라이드를 제작하였다. 차가운 아세톤을 이용하여 10분간 절편을 고정한 후, 5분동안 PBS 완충용액으로 절편을 세척하고, 0.2% 과산화수소에 30분동안 냉동절편을 반응시켰다. 5분간 PBS완충용액에 절편을 세척한 후, 3% 정상 horse 혈청이 포함된 PBS완충용액에 30분간 blocking시킨 후, Anti-His mAb (1:500) 및 Anti-Parkin mAb (1:500)를 4℃에서 밤새 반응시켰다. 5분간 PBS완충용액에 절편을 세척한 후, 바이오틴 (biotin) 융합 항-생쥐항체 (1:200, Zymed) 에 1시간 반응시킨 후, 30분동안 ABC kit (Vectastain)을 이용하여 반응시킨 후, 5분간 PBS완충용액에 절편을 세척하였다. DAB (3,3'-Diaminobenzidine) 용액으로 발색반응 후, 광학현미경 하에서 염색여부를 관찰하였고, 그 결과를 도 6A에 나타내었다.
도 6A에 나타난 바와 같이, JO-13 MTD가 융합된 Parkin 재조합 단백질 HPM13투여한 생쥐 뇌에서 양성 면역염색이 관찰된 반면, MTD가 결합되지 않은 Parkin 재조합단백질인 HP를 투여한 생쥐 뇌에서는 관찰되지 않았다. 상기로부터, MTD가 결합된 Parkin 재조합 단백질은 혈뇌장벽 투과성이 있음을 알 수 있다.
다음으로, 뇌 파쇄액을 이용한 웨스턴 블랏팅 (western blotting)을 수행하여 혈뇌장벽 투과성을 확인하였다. Balb/c 생쥐 (8주령, 암컷)에 200 ㎍ 단백질을 피하주사하고 2시간 후에 뇌를 적출하였다. PBS 완충용액으로 잔여 혈류를 제거한 후, RIPA buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25 % sodium deoxycholate, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, protease inhibitor)로 뇌를 균질화하였다. 4 ℃에서 10분간 13,000 rpm으로 원심분리한 후, 상등액을 취한 후, 10% SDS-PAGE를 수행하였다. 웨스턴 블롯팅 분석을 위하여, Parkin 항체 (mouse mAb Parkin, 1/2000)와 GAPDH (mouse monoclonal GAPDH, 1/5000)을 일차항체로 사용하였고, Goat-anti-mouse IgG-HRP)를 이차항체로 사용하였다. 5% skim milk로 4℃ 1시간동안 블로킹 (blocking) 한 후, 일차항체를 첨가하고, 4 ℃ 밤새 반응시켰다. TBS-T (10 mM Tris-HCl, pH 8.0, 50 mM NaCl, 0.05 % tween-20)로 세척 후, 2차 항체를 1시간동안 처리하고, TBS-T로 세척 한 후, 화학발광 검출용 ECL (Enhanced Chemiluminescence)을 이용하여 관찰 분석하였고, 그 결과를 도 6B에 나타내었다.
도 6B에 나타난 바와 같이, HPM13이 HP와 비교하여 Parkin 항체 양성밴드가 약 2배 정도 진하게 관찰된 것을 볼 수 있으며, 이는 MTD가 결합된 Parkin 재조합 단백질이 혈뇌장벽 투과성이 있음을 알 수 있다.
실시예 6. His-tag 융합 세포투과성 Parkin 단백질의 시험관내 (
in vitro
) 신경세포 사멸 (Apoptosis) 보호효능 검사
세포투과성이 입증된 Parkin 재조합 단백질의 시험관내 기능을 확인하기 위해 신경독소인 6-hydroxydopamine (6-OHDA)에 의한 신경세포 사멸에 대한 보호효과를 확인하기 위해 TUNEL assay를 수행하였다. 생쥐 도파민 생성 신경세포인 CATHa (한국 세포주은행, 서울, 대한민국)를 10% 우태아 혈청, 5% 페니실린과 스트렙토마이신을 함유한 DMEM media에서 배양하였고, 50 uM 농도로 6-OHDA를 처리하고 30 분 후, JO-13 MTD가 결합된 Parkin 재조합 단백질 (HPM13)과 MTD가 결합된 Parkin 재조합 단백질 (HP)을 각각 2.5 uM씩 첨가하여 37℃에서 2시간 30분 배양하였다. 배양액을 제거한 후, In situ cell death detection kit (Roche 사)를 사용하여 TUNEL (terminal dUTP nick-end labeling) 분석을 수행한 후, 동초점 형광현미경 (Nikon)으로 관찰하였으며, Glomax (Amersham 사) 기기로 형광세기를 측정하여, 그 결과를 도 7에 나타내었다.
도 7에 나타난 바와 같이, 6-OHDA만 처리한 그룹은 많은 수의 세포가 사멸되는 것이 관찰 된 반면, JO-13 MTD가 결합된 Parkin 재조합단백질인 HPM13 은 6-OHDA에 의한 도파민 신경세포 사멸을 85% 억제하였으며, 형광현미경 관찰결과에서도 유사하게 매우 적은 수의 세포사멸이 관찰되었다. 반면, MTD가 결합되지 않은 Parkin 재조합 단백질인 HP에 의해서는 6-OHDA만 처리한 그룹과 유사한 결과가 관찰되었다.
상기로부터, MTD가 결합된 세포투과성 Parkin 재조합단백질이 도파민 신경세포 내로 전송되어 도파민 신경세포 보호효과를 나타낸 것임을 알 수 있다.
실시예 7. His-tag 융합 세포투과성 Parkin 단백질의 시험관내 도파민 분비능 검사
세포투과성 Parkin 재조합 단백질의 시험관내 도파민 분비효과를 확인하기 위해, 생쥐 도파민 신경세포인 CATHa (한국 세포주은행, 서울, 대한민국) 사용하였다. CATHa 세포는 10% FBS, 5% 페니실린/스트렙토마이신을 함유하는 DMEM 배지에서 배양하였으며, 도파민 정량방법은 도파민 ELISA 공급업체 GenWay사의 방법을 따라 수행하였다. CATHa 세포에 티로신 (tyrosine)을 80 uM 처리하고 24 시간 후, JO-13 MTD가 융합된 HPM13 재조합 단백질과 MTD가 결합되어 있지 않은 재조합 HP 단백질을 각각 도파민 신경세포 배양액에 2.5 uM 농도로 투여하고, 1, 3, 5 시간 후 배지 내 도파민 농도를 ELISA (GenWay)로 정량하였고, 그 결과를 도 8에 나타내었다. 도 8에 나타난 바와 같이, 3 시간 경과 후, HP 단백질에 비해 HPM13을 투여한 배양액에서 366 % 이상 도파민 함량이 증가되었으며, 5 시간 경과 후에도, MTD가 융합되지 않은 Parkin 단백질에 비해 HPM13가 도파민 함량이 유의성 있게 증가되었다. 따라서, MTD가 융합된 HPM13 재조합단백질이 도파민 신경세포 내로 전송되어 도파민 분비능을 증가시킴을 알 수 있다.
실시예 8. 최적 MTD 선정을 위한 발현벡터 제조
Parkin 재조합 단백질의 세포투과성과 물성의 상관관계를 사전 조사하여 비임상 시험을 진행하기 위한 최적 MTD를 선정하고자, 10종류의 후보 MTD (JO-10, JO-13, JO-29, JO-78, JO-85, JO-103, JO-130, JO-135, JO-151, JO-174) (SEQ. ID. NO.: 205, 208, 224, 273, 280, 298, 325, 330, 346, 369)를 인간 전장 Parkin 유전자와 융합된 재조합 단백질 발현벡터를 제작하였다.
[표 3] Primer set
상기 표 3에 기재되어 있는 SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 431 (역방향) primer 쌍을 이용하여 인간 전장 Parkin 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 441 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD10 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 444 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD13 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 460 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD29 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 509 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD78 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 516 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD85 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 534 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD103 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 561 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD130 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 566 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD135 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 582 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD151 유전자를, SEQ. ID. NO.: 430 (정방향)과 SEQ. ID. NO.: 605 (역방향) primer 쌍을 이용하여 인간 전장 Parkin-MTD174 유전자를 중합효소 연쇄반응 (Polymerization Chain Reaction, PCR) 방법을 이용하여 증폭하였다. 상기로부터 얻은 중합효소 연쇄반응산물을 pGEM-Tease벡터에 클로닝 한 후, 발현벡터인 pET-28a(+) (Novagen)의 BamHI과 HindIII 위치에 서브클로닝하여, N-말단에는 His-tag이, C-말단에는 각각의 MTD 유전자가 융합되도록 디자인하였고, 이를 도 9에 나타내었다. 클로닝된 유전자의 cDNA 염기서열을 SEQ. ID. NO.: 2 (Parkin), SEQ. ID. NO.: 409 (Parkin-MTD10), SEQ. ID. NO.: 410 (Parkin-MTD13), SEQ. ID. NO.: 411 (Parkin-MTD29), SEQ. ID. NO.: 412 (Parkin-MTD78), SEQ. ID. NO.: 413 (Parkin-MTD85), SEQ. ID. NO.: 414 (Parkin-MTD103), SEQ. ID. NO.: 415 (Parkin-MTD130), SEQ. ID. NO.: 416 (Parkin-MTD135), SEQ. ID. NO.: 417 (Parkin-MTD151), SEQ. ID. NO.: 418 (Parkin-MTD174)에 기재하였으며, 발현된 Parkin 재조합단백질의 아미노산 서열은 SEQ. ID. NO.: 1 (Parkin), SEQ. ID. NO.: 394 (Parkin-MTD10), SEQ. ID. NO.: 395 (Parkin-MTD13), SEQ. ID. NO.: 396 (Parkin-MTD29), SEQ. ID. NO.: 397 (Parkin-MTD78), SEQ. ID. NO.: 398 (Parkin-MTD85), SEQ. ID. NO.: 399 (Parkin-MTD103), SEQ. ID. NO.: 400 (Parkin-MTD130), SEQ. ID. NO.: 401 (Parkin-MTD135), SEQ. ID. NO.: 402 (Parkin-MTD151), SEQ. ID. NO.: 403 (Parkin-MTD174), 에 기재하였다. 궁극적으로 Parkin-MTD10 (HPM10), Parkin-MTD13 (HPM13), Parkin-MTD29 (HPM29), Parkin-MTD78 (HPM78), Parkin-MTD85 (HPM85), Parkin-MTD103 (HPM103), Parkin-MTD130 (HPM130), Parkin-MTD135 (HPM135), Parkin-MTD151 (HPM151), Parkin-MTD174 (HPM174) 재조합단백질이 발현되도록 제조하였고, 그 결과를 도 10 에 나타내었다. 도 10에 나타난 바와 같이 JO-10, JO-13, JO-151, JO-174 MTD가 결합된 Parkin 재조합 단백질 (HPM10, HPM13, HPM151, HPM174)의 물성 (soluble yield)이 높았으며, 사전조사를 통해 세포투과성이 높게 평가되어, 상기 4종의 MTD를 최적 MTD로 선정하였다.
실시예 9. 코돈 최적화 (Codon optimization) 및 His-tag 비융합 세포투과성 Parkin 재조합 단백질 발현벡터 제조
비임상 시험 진행을 위해, 우선 E.coli에서 JO-10, JO-13, JO-151, JO-174 MTD가 결합된 His-tag 비융합 세포투과성 Parkin 재조합 단백질 생산을 위한 발현벡터를 제조하였다. GenScript사 (미국)에 코돈 최적화 서비스를 의뢰하여 pUC57 vector에 Nco I과 Hind III 위치에 코돈 최적화된 유전자가 클로닝되도록 제작하였다. 최적화된 parkin cDNA(parkin optimized cDNA)를 사용하는 이유는 Parkin이 발현시스템에서 발현이 용이하도록 하며, 물성을 증가시키기 위함이다.
구체적으로, pUC57 vector를 NcoI로 HindIII 제한효소를 처리하여 최적화된 각각 유전자를 pET-28a(+) (Novagen)의 NcoI과 HindIII 위치에 서브클로닝하여, N-말단에는 His-tag을 제거하였고, C-말단에는 각각의 MTD 유전자가 융합되도록 디자인하여, 도 11 및 도 12에 나타내었다. 궁극적으로 Parkin-MTD10 (PNM10), Parkin-MTD13 (PNM13), Parkin-MTD151 (PNM151), Parkin-MTD174 (PNM174) 재조합 단백질이 발현되도록 제조하였다 (도 11 및 도 12 참조). 이를 확인하기 위해, 암호 최적화된 Parkin DNA가 형질전환된 BL21 codon plus (DE3) 대장균에서 과발현시켰으며, 그 결과를 도 13 에 나타내었다.
도 13에 나타난 바와 같이 His-tag Parkin 재조합 단백질인 HP, HPM13에 비해 코돈 최적화된 Parkin 재조합 단백질의 발현량이 4~10 배 증가됨을 알 수 있다.
클로닝된 유전자의 cDNA 염기서열을 SEQ. ID. NO.: 419 (PN), SEQ. ID. NO.: 420 (PNM10), SEQ. ID. NO.: 421 (PNM13), SEQ. ID. NO.: 422 (PNM151), SEQ. ID. NO.: 423 (PNM174)에 기재하였다.
실시예 10. Histidine-tag 비융합 세포투과성 Parkin 재조합 단백질의 정제
세포투과성 Parkin 재조합 단백질을 발현하는 최적 E.coli 균주를 선택하기 위해 LacI 프로모터를 갖는 대장균 BL21 Codon Plus (DE3)를 이용하여 형질전환 시킨 후, 대장균을 500 mL LB에 50 ug/mL kanamycine, 500 uM ZnCl2를 첨가한 배양액에 접종하여 A600에서 0.5~0.6에 도달하였을 때, 3시간 동안 0.5 mM IPTG를 첨가하여 과발현시켰다.
과발현된 대장균을 원심분리하여 수확한 후, 얼음에서 10 초-ON, 20 초-OFF 조건을 30 분 동안 반복수행 한 후, 원심분리하여 봉입체를 수확하여, 50 mM Tris-HCl (pH 8.0), 100 mM NaCl, 0.1% Triton X-100 완충용액으로 3회 세척하였다. 50 mM Tris-HCl (pH 10.0), 8 M urea 완충용액으로 봉합체를 풀림한 후, 30 mM Sodium phosphate (pH 8.0), 0.02% Tween-20 완충용액에 직접 투여하는 방식을 이용하여 4℃에서 48 시간 동안 교반하여 재접힘시켰다.
재접힘된 Parkin 단백질을 9,000 rpm에서 30분간 원심분리 한 후, 정제를 위해 AKTA purifier 에 장치된 Q-sepharose 음이온 교환수지 컬럼 크로마토그래피를 수행하였다. 5 배의 컬럼부피로 30 mM Sodium phosphate (pH 8.0), 30 mM NaCl 완충용액을 흘려주어 컬럼에 결합하지 않은 단백질을 제거하였다.
30 mM Sodium phosphate (pH 8.0), 1 M NaCl pH 8.0 완충용액으로 농도기울기를 주었고, 20 배의 컬럼부피로 흘려주어 Parkin 재조합단백질을 용출하였고, 그 결과를 도 14에 나타내었다.
도 14에 나타난 바와 같이 PN, PNM10, PNM13, PNM151, PNM174 모두 SDS-PAGE 상에서 53 kDa의 단일밴드로 확인되어, Q-sepharose 크로마토그래피로 정제되었음을 알 수 있다.
실시예 11. His-tag 비융합 Parkin 재조합 단백질의 생화학적 기능성 (E3 접합효소 활성) 검사
정제된 His-tag 비융합 Parkin 재조합 단백질의 시험관 내 생화학적 기능성을 확인하기 위해 E3 접합효소인 Parkin 단백질의 자가 유비퀴틴화 반응물을 확인하였다.
1 ug의 정제된 Parkin 재조합 단백질 (PN, PNM10, PNM13, PNM151, PNM174)와 1 ug His6-Parkin 단백질 (Boston Biochem 사)을 Boston Biochem 회사의 1 uM E1, 50 uM E2, 1 mM His6-Ubiquitin, 10 mM Mg-ATP, 반응완충용액 (50 mM HEPES, 0.5 M NaCl, 10 mM DTT)과 섞어 만든 혼합액과 37℃ 에서 1 시간 동안 반응시켰다. 음성대조군으로 정제된 Nm23 단백질을 사용하였다. 4x sample buffer를 넣고 끓여 반응을 종료 한 후, 10% SDS-PAGE를 수행하였다. 유비퀴틴 항체 (Enzo life science)를 1:1,000으로 사용하여 웨스턴 블랏팅을 행하였으며, 유비퀴틴이 접합된 Parkin 재조합단백질을 확인하였고, 그 결과를 도 15에 나타내었다.
도 15에 나타난 바와 같이 JO-10, JO-13, JO-151, JO-174 MTD가 결합된 4종의 Parkin 재조합단백질 모두 E3 접합효소 활성을 보였으며, 활성정도를 비교한 결과, PN이 대조군 (His6-Parkin)과 유사한 활성을 보였으며, PNM10은 다유비퀴틴 접합 (polyubiquitination)이 많이 일어나 대부분 큰 분자량의 단백질이 검출되어 높은 E3 ligase 활성을 보인 것으로 관찰되었다. 반면, PNM13, PNM15, PNM174의 경우 상대적으로 PNM10 보다 적은 유비퀴틴 접합 Parkin 단백질이 관찰되었다. 따라서 PNM10이 물성과 구조가 가장 안정된 형태로 재접힘되어 고유의 E3 ligase 활성을 가졌으며, 내재 Parkin 단백질과 유사한 구조를 이루고 있음을 알 수 있다.
실시예 12. His-tag 비융합 Parkin 재조합 단백질의 시험관 내 신경세포 사멸 (apoptosis) 보호능 검사
세포투과성 Parkin 재조합 단백질의 시험관내 기능을 확인하기 위해 신경독소인 6-OHDA에 의한 신경세포 사멸에 대한 보호효과를 확인하기 위해 TUNEL을 수행하였다. 인간 뇌암 도파민 생성 신경세포인 SH-SY5Y 세포 (한국세포주은행, 서울, 대한민국)를 10% 우태아 혈청, 5% 페니실린과 스트렙토마이신을 함유한 DMEM 배양액에서 배양하였고, 100 uM 농도로 6-OHDA를 처리하고 30분 후, 세포투과성 Parkin 재조합 단백질 2.5 uM 을 첨가하여 37℃에서 2 시간 30 분 배양하였다. 배양액을 제거한 후, In situ cell death detection kit (Roche 사)를 사용하여 TUNEL (terminal dUTP nick-end labeling) 분석을 수행한 후, 동초점 형광현미경 (Nikon)으로 관찰하였으며, Glomax (Amersham 사) 기기로 형광세기를 측정하고, 그 결과를 도 16에 나타내었다.
도 16에 나타난 바와 같이, 6-OHDA에 처리에 의해 SH-SY5Y 세포가 사멸하여 38%의 생존율을 보인 반면, PNM10 재조합단백질을 동시에 투여할 경우, 세포 생존율이 72%로 증가하였다. 상기로부터, MTD 결합 세포투과성 Parkin 재조합단백질이 세포 내로 전송되어 6-OHDA에 의한 세포사멸로부터 세포 보호효과가 있음을 알 수 있다.
실시예 13. His-tag 비융합 Parkin 재조합 단백질의 혈뇌장벽 (Brain-blood barrier) 투과능 검사
면역조직화학 표지법으로 혈뇌장벽 투과성을 확인하기 위하여, 물성과 E3 ligase 활성이 가장 높은 PNM10 세포투과성 Parkin 재조합 단백질을 선정하여 혈뇌장벽 투과능을 확인하기 위해 피하주사 후, 뇌에 존재하는 PNM10 단백질에 대한 면역조직화학표지법과 웨스턴 블랏팅을 수행하였다. 8주령의 C57BL/6 생쥐 (오리엔트 바이오 사)의 등쪽 피하에 200 ㎍ 의 PNM10 재조합 단백질을 2시간 간격으로 3번 주사하였고, 마지막 주사 후, 2 시간 뒤에 2.5% avertin으로 마취한 후, PBS 완충용액을 펌프를 이용하여 심장을 통해 관류 (perfusion)시켜 혈액을 제거하였다. 생쥐 뇌를 적출하여, 뇌의 반쪽은 4% Paraformaldehyde 용액에 넣어 4℃에서 24 시간 이상 고정하여 면역조직화학 표지법을 수행하였고, 나머지 반쪽은 뇌 파쇄액을 제조하여 웨스턴 블랏팅을 수행하였다.
구체적으로, 고정된 뇌조직을 OCT compound에 넣어 block을 만들어, 20㎛ 두께로 조직을 냉동 절편하여 PBS 완충용액에 보관하였다. PBS 완충용액로 10 분씩 3 회 세척한 후, 상온에서 30분동안 3% 과산화수소 용액 방치 하였다. PBS로 10 분씩 3 회 세척한 후, 4% 정상 goat 혈청과 4% BSA 혼합액에 1 시간 동안 방치하였다. 혼합액을 제거한 후, MTD-10 항체를 1:1,000으로 희석하여 4℃에서 밤새 반응시켰다. PBS 완충용액으로 10 분씩 3 회 세척한 후, biotinylated anti-Rabbit 을 1:500으로 희석하여 상온에서 2 시간동안 반응시켰다. 1xPBS 완충용액으로 10분씩 3회 세척한 후 Avidin-Biotin Complex (vector)와 상온에서 1시간동안 반응시켰다. PBS 완충용액으로 10 분씩 3 회 세척한 후, DAB (3,3'-Diaminobenzidine) 용액으로 발색반응 후, 현미경 하에서 관찰하였고, 그 결과를 도 17A에 나타내었다.
도 17A에 나타난 바와 같이, PNM10 세포투과성 Parkin 재조합 단백질을 주사한 생쥐의 뇌에서 MTD-10 항체에 대한 면역조직화학 염색된 신경세포가 관찰되었다. 상기로부터, MTD가 결합된 세포투과성 Parkin 재조합단백질이 혈뇌장벽을 투과하여 뇌 신경세포 내로 전송된 것임을 알 수 있다.
다음으로, 웨스턴 블랏팅 분석을 수행하기 위해, 조직의 무게를 측정하여 0.1 g/mL로 RIPA buffer (Sigma 사)를 첨가한 후, homogenizer로 조직을 파쇄하여 얼음에서 30 분동안 방치하여 파쇄액을 제조하였다. 4℃에서 10,000 rpm으로 10 분 동안 원심분리 한 후, 상등액을 Bradford 정량방법을 이용하여 단백질을 정량한 후, 각각의 단백질 sample 100 ug을 10% SDS-PAGE gel에 loading하였다. Gel을 nitrocellulose membrane에 transfer한 후, 5% skim milk로 상온에서 1 시간 blocking 하였다. Parkin 항체 (Millipore 사)와 actin (Santacruz 사) 항체를 각각 1:1,000으로 희석하여 상온에서 90 분간 반응시켰다. TBS-T 완충용액으로 10 분간 3 회 세척한 후, Anti-mouse-HRP (Santacruz 사) 2차 항체를 1:1,000으로 희석하여 상온에서 50 분간 반응시켰다. TBS-T 완충용액으로 10 분간 3 회 세척한 후, ECL (Amersham 사) 용액을 membrane에 1 분간 반응시킨 후, LAS-4000 (Fujifilm Life Science 사) 영상분석기를 이용하여 Parkin 단백질의 밴드 (band)를 검출하였고, 그 결과를 도 17B에 나타내었다.
도 17B에 나타난 바와 같이 뇌 조직 파쇄액에서 내재 Parkin 단백질 (52 kDa)과 더불어 분자량이 큰 PNM10 (약 53 kDa) 단백질이 검출되었다. 상기로부터, MTD가 융합된 인간 전장 세포투과성 Parkin 재조합 단백질 (PNM10)이 혈뇌장벽 투과성이 있음을 알 수 있다.
실시예 14. 파킨슨병 동물모델을 이용한
in vivo
효능 검사
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)를 이용한 파킨슨병 동물모델은 잘 알려져 있으며, 뇌의 흑질과 선조체 (striatum)내 도파민 신경세포 사멸을 일으킨다. 따라서 C57BL/6 생쥐에 MPTP를 복강주사하여 파킨슨병 동물모델을 확립 한 후, 이를 이용하여 PNM10 세포투과성 Parkin 재조합 단백질에 의한 도파민 신경세포의 사멸 보호 효능을 확인하기 위해, 도파민 신경세포의 marker 효소인 tyrosine hydroxylase에 대한 항체를 이용한 면역조직화학 표지법과 ELISA 방법으로 뇌 조직 내 도파민을 정량분석 실험을 수행하였다.
우선 파킨슨병 동물모델을 확립하기 위해 MPTP를 0.9% NaCl용액에 녹여 15 mg/kg으로 하루에 2 시간 간격으로 3 번 복강주사방식으로 총 2 일동안 주사하였다. 마지막 주사 후, 7 일째 2.5 % avertin으로 마취한 후, 1 mM EDTA와 4 mM metabisulfite가 첨가된 PBS 완충용액을 펌프를 이용하여 심장을 통해 관류시켜 혈액을 제거한 후, 생쥐 뇌를 적출하여, 뇌의 반쪽은 4% Paraformaldehyde 용액에 넣어 4℃에서 24 시간 이상 고정하였고, 나머지 반쪽은 도파민 정량분석에 사용하였다.
고정된 뇌조직을 OCT compound에 넣어 블록 (block)을 만들어, 20 ㎛ 두께로 조직을 냉동 절편하여 PBS 완충용액에 보관하였다. PBS 완충용액로 10 분씩 3 회 세척한 후, 상온에서 30 분동안 3% 과산화수소 용액 방치하였다. PBS로 10 분씩 3 회 세척한 후, 4% 정상 goat 혈청과 4% BSA 혼합액에 1 시간 동안 방치하였다. 혼합액을 제거한 후, tyrosin hydroxylase 항체 (Millipore 사)를 1:1,000으로 희석하여 4℃에서 밤새 반응시켰다. PBS 완충용액으로 10 분씩 3회 세척한 후, biotinylated anti-Rabbit 을 1:500으로 희석하여 상온에서 2 시간동안 반응시켰다. PBS 완충용액으로 10 분씩 3 회 세척한 후 Avidin-Biotin Complex (Vector 사)와 상온에서 1시간동안 반응시켰다. PBS 완충용액으로 10 분씩 3 회 세척한 후, DAB (3,3'-Diaminobenzidine) 용액으로 발색반응 후, 광학현미경으로 관찰하였고 그 결과를 도 18에 나타내었다.
도 18A 나타난 바와 같이, MPTP만 투여한 그룹에 비해 PNM10 재조합 단백질을 투여한 생쥐의 흑질과 선조체지역에 많은 수의 도파민 신경세포가 관찰되어, MTD가 결합된 세포투과성 Parkin 재조합 단백질은 뇌 도파민 신경세포내로 전송되어 신경독성물질에 의한 신경세포 보호기능이 있음을 알 수 있다. 또한 생쥐 뇌 선조체를 분리하여 ELISA kit (LDN 사)를 사용하여 도파민 함량을 제품 메뉴얼에 따라 수행하여 정량 비교하였으며, 그 결과를 도 18B에 나타내었다.
도 18B에 나타난 바와 같이, MPTP만 처리한 그룹에 비해 PNM10 세포투과성 Parkin 재조합 단백질을 처리한 그룹에서 도파민 함량이 40% 증가하였다. 따라서, MTD가 결합된 세포투과성 Parkin 재조합 단백질은 파킨슨병 동물모델에서 혈뇌장벽을 투과하여 흑질과 선조체의 도파민 신경세포를 신경독성 물질인 MPTP에 의한 도파민 신경세포 사멸을 보호하여 도파민 분비를 증가시킴을 알 수 있다.
상기로부터, MTD가 결합된 His-tag 융합 또는 비융합 Parkin 재조합 단백질은 파킨슨병 뿐만 아니라 퇴행성 뇌질환을 치료할 수 있는 약제로서 신약개발 가능성이 매우 높을 것으로 기대된다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.
본 발명에 따른 세포투과성 Parkin재조합 단백질은 세포 내로 전송이 가능하도록 고안된 것으로, 본 발명의 재조합 단백질은 파킨슨병 치료목적 연구에 사용될 수 있으며, 궁극적으로 인간의 퇴행성 뇌질환의 치료제 개발에 유용하게 사용될 수 있을 것으로 기대된다.
Claims (14)
- 서열번호 1의 아미노산 서열을 가지는 parkin 과 서열번호 3 내지 서열번호 195로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 거대분자 전달 도메인 (macromolecule transduction domain, MTD)이 융합되어 있는 세포투과성 parkin 재조합 단백질.
- 제 1항에 있어서, 상기 재조합 단백질은 서열번호 394 내지 서열번호 403 으로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 것을 특징으로 하는 세포투과성 parkin 재조합 단백질.
- 제 2항의 세포투과성 parkin 재조합 단백질을 코딩하는 폴리뉴클레오티드.
- 제 4항에 있어서, 상기 폴리뉴클레오티드가 서열번호 409 내지 서열번호 418 로 이루어진 군으로부터 선택된 염기 서열을 가지는 것을 특징으로 하는 폴리뉴클레오티드.
- 제 4항의 폴리뉴클레오티드를 포함하는 재조합 발현벡터.
- 서열번호 389 의 아미노산 서열을 가지는 His-parkin 과 서열번호 3, 15, 103 및 105로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 거대분자 전달 도메인 (macromolecule transduction domain, MTD)이 융합되어 있는 세포투과성 His-parkin 재조합 단백질.
- 제 7항에 있어서, 상기 재조합 단백질은 서열번호 390 내지 서열번호 393 으로 이루어진 군으로부터 선택된 아미노산 서열을 가지는 것을 특징으로 하는 세포투과성 His-parkin 재조합 단백질.
- 제 8항의 세포투과성 His-parkin 재조합 단백질을 코딩하는 폴리뉴클레오티드.
- 제 10항에 있어서, 상기 폴리뉴클레오티드가 서열번호 405 내지 서열번호 408 로 이루어진 군으로부터 선택된 염기 서열을 가지는 것을 특징으로 하는 폴리뉴클레오티드.
- 제 10항의 폴리뉴클레오티드를 포함하는 재조합 발현벡터.
- 제 1항의 세포투과성 parkin 재조합 단백질을 유효성분으로 함유하는 퇴행성 뇌질환 치료용 약학적 조성물.
- 제 13항에 있어서, 상기 퇴행성 뇌질환은 파킨슨병인 것을 특징으로 하는 약학적 조성물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39316510P | 2010-10-14 | 2010-10-14 | |
US61/393,165 | 2010-10-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012050402A2 true WO2012050402A2 (ko) | 2012-04-19 |
WO2012050402A3 WO2012050402A3 (ko) | 2012-07-26 |
Family
ID=45938829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/007682 WO2012050402A2 (ko) | 2010-10-14 | 2011-10-14 | 세포투과성 parkin 재조합 단백질 및 이를 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012050402A2 (ko) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016028036A1 (en) * | 2014-08-17 | 2016-02-25 | Cellivery Therapeutics, Inc. | Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same |
WO2017018787A1 (en) | 2015-07-27 | 2017-02-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp) parkin recombinant protein and use thereof |
WO2017034330A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Cell-permeable bone morphogenetic protein (cp-bmp) recombinant protein and use thereof |
EP3337815A4 (en) * | 2015-08-18 | 2018-11-07 | Cellivery Therapeutics, Inc. | Cell-permeable (cp)- socs3 recombinant protein and uses thereof |
US10508265B2 (en) | 2015-08-10 | 2019-12-17 | Cellivery Therapeutics, Inc. | Cell-permeable reprogramming factor (iCP-RF) recombinant protein and use thereof |
US10669531B2 (en) | 2015-08-10 | 2020-06-02 | Cellivery Therapeutics, Inc. | Cell-permeable Cre (iCP-Cre) recombinant protein and use thereof |
WO2021195597A3 (en) * | 2020-03-26 | 2021-11-04 | Larimar Therapeutics, Inc. | Molecules for organelle-specific protein delivery |
WO2022050778A1 (en) * | 2020-09-04 | 2022-03-10 | Cellivery Therapeutics, Inc. | Improved cell-permeable modified parkin recombinant protein for treatment of neurodegenerative diseases and use thereof |
WO2024019489A1 (ko) * | 2022-07-22 | 2024-01-25 | 주식회사 셀리버리 | Aav 벡터와 세포투과성 펩티드 융합 플랫폼 및 이를 포함하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물 |
EP4153614A4 (en) * | 2020-05-20 | 2024-06-26 | Spacecraft Seven, LLC | MODIFIED PARKIN AND RELATED USES |
-
2011
- 2011-10-14 WO PCT/KR2011/007682 patent/WO2012050402A2/ko active Application Filing
Non-Patent Citations (4)
Title |
---|
HIGASHI, Y. ET AL.: 'Parkin attenuates manganese-induced dopaminergic cell death.' JOURNAL OF NEUROCHEMISTRY. vol. 89, no. 6, June 2004, pages 1490 - 1497 * |
LIMAN, J. ET AL.: 'Cell-penetrating fragments of the Cdk5 regulatory subunit are protective in models for neurodegeneration.' PHARMACEUTICALS. vol. 3, 2010, pages 1232 - 1240 * |
MANFREDSSON, F. P. ET AL.: 'rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease.' EXPERIMENTAL NEUROLOGY. vol. 207, no. 2, October 2007, pages 289 - 301 * |
SATO, A. ET AL.: 'Parkin potentiates ATP-induced currents due to activation ofP2X receptors in PC12 cells.' JOURNAL OF CELLULAR PHYSIOLOGY vol. 209, no. 1, October 2006, pages 172 - 182 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170031243A (ko) * | 2014-08-17 | 2017-03-20 | (주)셀리버리 | 세포 투과성의 향상을 위한 개선된 거대분자 전달 도메인(aMTD) 서열, 이를 코딩하는 폴리뉴클레오타이드, 이를 포함하는 aMTD의 독특한 특징을 확인하는 방법, 이를 포함하는 aMTD 서열을 개발하는 방법 |
WO2016028036A1 (en) * | 2014-08-17 | 2016-02-25 | Cellivery Therapeutics, Inc. | Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same |
US10323063B2 (en) | 2014-08-17 | 2019-06-18 | Cellivery Therapeutics, Inc. | Advanced macromolecule transduction domain (aMTD) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of aMTDs comprising the same, method to develop the aMTD sequences comprising the same |
KR101971021B1 (ko) | 2014-08-17 | 2019-04-23 | (주)셀리버리 | 세포 투과성의 향상을 위한 개선된 거대분자 전달 도메인(aMTD) 서열, 이를 코딩하는 폴리뉴클레오타이드, 이를 포함하는 aMTD의 독특한 특징을 확인하는 방법, 이를 포함하는 aMTD 서열을 개발하는 방법 |
JP2017527280A (ja) * | 2014-08-17 | 2017-09-21 | セリベリー セラピューティクス,インコーポレーテッド | 細胞透過性の改善のための進化型巨大分子伝達ドメイン(advanced macromolecule transduction domain)(AMTD)配列、それをコードするポリヌクレオチド、それを含むAMTDの固有の特性を同定する方法、それを含むAMTD配列を開発する方法 |
EP3180352A1 (en) | 2014-08-17 | 2017-06-21 | Cellivery Therapeutics Inc. | Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same |
US10961292B2 (en) | 2014-08-27 | 2021-03-30 | Cellivery Therapeutics, Inc. | Cell-permeable (ICP)-SOCS3 recombinant protein and uses thereof |
US10385103B2 (en) | 2014-08-27 | 2019-08-20 | Cellivery Therapeutics, Inc. | Cell-permeable (ICP)-SOCS3 recombinant protein and uses thereof |
WO2017034347A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
WO2017034344A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
WO2017034349A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
US11279743B2 (en) | 2014-08-27 | 2022-03-22 | Cellivery Therapeutics, Inc. | Cell-permeable bone morphogenetic protein (CPBMP) recombinant protein and use thereof |
US10975132B2 (en) | 2014-08-27 | 2021-04-13 | Cellivery Therapeutics, Inc. | Cell-permeable (ICP)-SOCS3 recombinant protein and uses thereof |
US10787492B2 (en) | 2014-08-27 | 2020-09-29 | Cellivery Therapeutics, Inc. | Cell-permeable (iCP)-SOCS3 recombinant protein and uses thereof |
EP3341395A4 (en) * | 2014-08-27 | 2018-08-08 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
WO2017034333A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
US10781241B2 (en) | 2014-08-27 | 2020-09-22 | Cellivery Therapeutics, Inc. | Cell-permeable (iCP)-SOCS3 recombinant protein and uses thereof |
WO2017034335A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof |
US10774123B2 (en) | 2014-08-27 | 2020-09-15 | Cellivery Therapeutics, Inc. | Cell-permeable bone morphogenetic protein (CP-BMP) recombinant protein and use thereof |
WO2017034330A1 (en) * | 2014-08-27 | 2017-03-02 | Cellivery Therapeutics, Inc. | Cell-permeable bone morphogenetic protein (cp-bmp) recombinant protein and use thereof |
JP2018524994A (ja) * | 2015-07-27 | 2018-09-06 | セリベリー セラピューティクス,インコーポレーテッド | 細胞透過性が改善された(iCP)パーキン組換えタンパク質及びその使用 |
CN108138150A (zh) * | 2015-07-27 | 2018-06-08 | 塞里维瑞疗法公司 | 细胞透性改善的(iCP)帕金重组蛋白及其用途 |
CN108138150B (zh) * | 2015-07-27 | 2022-07-26 | 塞里维瑞疗法公司 | 细胞透性改善的(iCP)帕金重组蛋白及其用途 |
US10662419B2 (en) | 2015-07-27 | 2020-05-26 | Cellivery Therapeutics, Inc. | Cell-permeable (ICP) parkin recombinant protein and use thereof |
KR20180026565A (ko) * | 2015-07-27 | 2018-03-12 | (주)셀리버리 | 향상된 세포 투과성(icp) 파킨 재조합 단백질 및 이의 용도 |
AU2016299468B2 (en) * | 2015-07-27 | 2019-07-25 | Cellivery Therapeutics, Inc. | Improved cell-permeable (ICP) parkin recombinant protein and use thereof |
KR102132311B1 (ko) * | 2015-07-27 | 2020-07-13 | (주)셀리버리 | 향상된 세포 투과성(icp) 파킨 재조합 단백질 및 이의 용도 |
WO2017018787A1 (en) | 2015-07-27 | 2017-02-02 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp) parkin recombinant protein and use thereof |
EP3328996A4 (en) * | 2015-07-27 | 2018-08-01 | Cellivery Therapeutics, Inc. | Improved cell-permeable (icp) parkin recombinant protein and use thereof |
US10669531B2 (en) | 2015-08-10 | 2020-06-02 | Cellivery Therapeutics, Inc. | Cell-permeable Cre (iCP-Cre) recombinant protein and use thereof |
US10508265B2 (en) | 2015-08-10 | 2019-12-17 | Cellivery Therapeutics, Inc. | Cell-permeable reprogramming factor (iCP-RF) recombinant protein and use thereof |
US10323072B2 (en) | 2015-08-18 | 2019-06-18 | Cellivery Therapeutics, Inc. | Cell-permeable (CP)-Δ SOCS3 recombinant protein and uses thereof |
US10689424B2 (en) | 2015-08-18 | 2020-06-23 | Cellivery Therapeutics, Inc. | Cell-permeable (CP)-Δ SOCS3 recombinant protein and uses thereof |
EP3337815A4 (en) * | 2015-08-18 | 2018-11-07 | Cellivery Therapeutics, Inc. | Cell-permeable (cp)- socs3 recombinant protein and uses thereof |
WO2021195597A3 (en) * | 2020-03-26 | 2021-11-04 | Larimar Therapeutics, Inc. | Molecules for organelle-specific protein delivery |
US11891420B2 (en) | 2020-03-26 | 2024-02-06 | Larimar Therapeutics, Inc. | Molecules for organelle-specific protein delivery |
US12091437B2 (en) | 2020-03-26 | 2024-09-17 | Larimar Therapeutics, Inc. | Molecules for organelle-specific protein delivery |
EP4153614A4 (en) * | 2020-05-20 | 2024-06-26 | Spacecraft Seven, LLC | MODIFIED PARKIN AND RELATED USES |
WO2022050778A1 (en) * | 2020-09-04 | 2022-03-10 | Cellivery Therapeutics, Inc. | Improved cell-permeable modified parkin recombinant protein for treatment of neurodegenerative diseases and use thereof |
JP2023520116A (ja) * | 2020-09-04 | 2023-05-16 | セリベリー セラピューティクス,インコーポレーテッド | 神経変性疾患治療用の改善された細胞透過性を有する変形パーキン組換えタンパク質及びその用途 |
JP7496997B2 (ja) | 2020-09-04 | 2024-06-10 | セリベリー セラピューティクス,インコーポレーテッド | 神経変性疾患治療用の改善された細胞透過性を有する変形パーキン組換えタンパク質及びその用途 |
WO2024019489A1 (ko) * | 2022-07-22 | 2024-01-25 | 주식회사 셀리버리 | Aav 벡터와 세포투과성 펩티드 융합 플랫폼 및 이를 포함하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물 |
Also Published As
Publication number | Publication date |
---|---|
WO2012050402A3 (ko) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012050402A2 (ko) | 세포투과성 parkin 재조합 단백질 및 이를 함유하는 퇴행성 뇌질환 치료용 약학적 조성물 | |
US20230293644A1 (en) | Anti-inflammatory peptides and composition comprising the same | |
WO2017078440A1 (ko) | 신경세포 손실 예방 및 재생 효능을 가지는 펩티드 및 이를 포함하는 조성물 | |
WO2013169077A1 (ko) | 악액질 예방 또는 치료용 조성물 | |
WO2014046478A1 (ko) | 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물 | |
WO2015156649A1 (ko) | 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물 | |
WO2014046490A1 (ko) | 세포 투과성 펩티드, 그를 포함한 컨쥬게이트 및 그를 포함한 조성물 | |
WO2014035179A1 (ko) | 미토콘드리아 타겟팅 펩타이드 | |
KR20090033868A (ko) | 신경 세포 nmda 수용체와 nmda 수용체 상호작용성 단백질 사이 상호작용을 억제하는 융합 펩티드 | |
WO2017142367A1 (ko) | 중간엽 줄기세포 또는 xcl1을 포함하는 근육질환의 예방 또는 치료용 약학적 조성물 | |
KR20090111320A (ko) | 항종양 활성을 갖는 신규한 폴리펩티드 | |
WO2017018787A1 (en) | Improved cell-permeable (icp) parkin recombinant protein and use thereof | |
WO2018169282A2 (ko) | Atpif1을 함유하는 당뇨 치료용 약학조성물 | |
WO2017030323A1 (en) | Cell-permeable (cp)-δsocs3 recombinant protein and uses thereof | |
JP2571197B2 (ja) | アゲレノプシス・アペルタ由来のカルシウムチャンネル阻害ポリペプチド | |
WO2016006963A1 (en) | Insulin analogue | |
WO2022215946A1 (ko) | 세포 투과성 펩타이드 변이체 및 이의 용도 | |
AU2015372767B2 (en) | Glucagon derivatives | |
WO2021235876A1 (ko) | 신규한 폴리펩타이드, 융합 폴리펩타이드, 및 이를 포함하는 그람음성균에 대한 항생제 | |
JP2008508363A (ja) | δプロテインキナーゼCの調節のためのペプチド配列 | |
WO2021177518A1 (ko) | 혈중 콜레스테롤 저하용, 심혈관 대사질환의 예방 또는 치료용 및 항염용 약학적 조성물 | |
WO2013129852A1 (ko) | 신규한 인터루킨-6에 대한 리피바디 및 그 용도 | |
WO2020032324A1 (ko) | 폐렴구균의 독소-항독소 체계를 표적으로 하는 항생 펩타이드 및 이의 용도 | |
WO2018021778A1 (ko) | Lrg1 당단백질을 포함하는 융합 단백질을 함유하는 발기부전, 허혈성 질환 또는 말초 신경질환의 예방 또는 치료용 조성물 | |
KR101645654B1 (ko) | Rage로부터 유래된 폴리펩티드 및 이를 유효성분으로 포함하는 뇌혈관질환의 예방 또는 치료용 약학적 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832789 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832789 Country of ref document: EP Kind code of ref document: A2 |