WO2014035179A1 - 미토콘드리아 타겟팅 펩타이드 - Google Patents

미토콘드리아 타겟팅 펩타이드 Download PDF

Info

Publication number
WO2014035179A1
WO2014035179A1 PCT/KR2013/007809 KR2013007809W WO2014035179A1 WO 2014035179 A1 WO2014035179 A1 WO 2014035179A1 KR 2013007809 W KR2013007809 W KR 2013007809W WO 2014035179 A1 WO2014035179 A1 WO 2014035179A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
protein
fusion protein
antioxidant
mitochondria
Prior art date
Application number
PCT/KR2013/007809
Other languages
English (en)
French (fr)
Inventor
김영미
강영철
김용희
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to US14/424,762 priority Critical patent/US9540421B2/en
Priority to EP13832591.5A priority patent/EP2891661B1/en
Publication of WO2014035179A1 publication Critical patent/WO2014035179A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/825Metallothioneins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0089Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag

Definitions

  • the present invention is a mitochondrial targeting peptide, a fusion protein in which the peptide is bound to the carboxy terminus of a protein influx domain, the peptide is bonded to the carboxy terminus of a protein influx domain, and a fusion protein in which an antioxidant is bound to the carboxy terminus of the peptide, the antioxidant Antioxidant composition comprising a fusion protein to which it is bound and a composition for preventing or treating Parkinson's disease, a polynucleotide encoding a protein transduction domain, a polynucleotide encoding the peptide, and a poly encoding an antioxidant protein
  • the present invention relates to a recombinant polynucleotide to which nucleotides are sequentially linked, an expression vector comprising the polynucleotide, and a transformed host cell comprising the expression vector.
  • Mitochondria play a key role in many crucial intracellular processes, including metabolic metabolism in cells and metabolism of certain substances (eg, fatty acids, etc.).
  • mitochondria are directly involved in the formation and use of free radicals (hereinafter referred to as 'FR') and reactive oxygen species (hereinafter referred to as 'ROS'). Because of this, it has been reported that mitochondria play a key role in the process of programmed cell death in relation to the reactive moieties that can affect many processes in living cells.
  • ROS reactive oxygen species
  • Unsaturated fatty acids of phospholipids which are constituents of biological membranes, initiate peroxidation reactions by free radicals such as reactive oxygen species and proceed in a chain. Therefore, free radical peroxidation not only promotes cell membrane permeability but also results in overall cytotoxicity, which induces aging or pathology of various diseases and is involved in carcinogenesis.
  • Radical action has a significant effect on the progression of various chronic diseases such as atopic disease, cancer, hypertension, myocardial infarction, arteriosclerosis, rheumatism, cataract and Parkinson's disease, which are associated with oxidative stress (De Souza LC. Et al. , Bioorg.Med.Chehm. Lett., 14, pp5859-5861, 2004), may act as a factor that weakens immune system function (Pike J. et al., Int. J. Vitam. Nutr. Res., 65 , pp 117-120, 1995).
  • oxidative stress induced by the excessive occurrence of ROS acts as a cause of many degenerative diseases including neurodegenerative diseases.
  • Mitochondria are the major sites where ROS occur and are also intracellular organelles most easily damaged by ROS.
  • many diseases associated with increased FR and ROS formation are known to be involved in the dysfunction of mitochondria.
  • the present inventors have intensively studied how to effectively deliver substances that are difficult to pass through the cell membrane and mitochondrial membrane structure into cells, thereby preparing a novel mitochondrial targeting sequence, and combining the sequence with a protein inflow domain and / or an antioxidant. When connected, it was confirmed that the antioxidant is effectively delivered inside the mitochondria and completed the present invention.
  • One object of the present invention is to provide a mitochondrial targeting peptide represented by the amino acid sequence of the following general formula (1).
  • X 1 is absent or one hydrophobic amino acid
  • X 2 are two hydrophobic amino acids equal to each other;
  • X 3 is GPRLSRL, GPRLSRM, AA or AAL.
  • Another object of the present invention is to provide a fusion protein in which the peptide is bound to the carboxy terminus of the protein entry domain.
  • Another object of the present invention is to provide a fusion protein in which the peptide is bound to the carboxy terminus of a protein influx domain and an antioxidant is bound to the carboxy terminus of the peptide.
  • Another object of the present invention is to provide an antioxidant composition comprising the fusion protein to which the antioxidant is bound, or a composition for preventing or treating Parkinson's disease.
  • Another object of the present invention is a polynucleotide encoding a protein transduction domain, a polynucleotide encoding the peptide, and a recombinant polynucleotide in which the polynucleotide encoding the antioxidant protein is sequentially linked, the polynucleotide It is to provide an expression vector comprising and a transformed host cell comprising the expression vector.
  • Another object of the present invention is to provide a method for preventing or treating Parkinson's disease, comprising administering to a subject a pharmaceutical composition for preventing or treating Parkinson's disease comprising a fusion protein to which the antioxidant is bound.
  • Another object of the present invention is to provide a use of the fusion protein combined with the antioxidant in the manufacture of a medicament for the prevention or treatment of Parkinson's disease.
  • the mitochondrial targeting peptide according to the present invention is targeted to mitochondria with high efficiency when present alone, as well as to mitochondria with high efficiency even when the peptide is combined with protein influx domains and / or antioxidants.
  • the peptide is very suitable as a target directional carrier because of the small size (size), there is an advantage that can be stably delivered to the supported drug is processed (processing) when entering into the mitochondria.
  • FIG. 1 is an in silico design of a mitochondrial targeting sequence according to an embodiment of the present invention (FIG. 1A), and a predictability prediction graph using MitoProt II of various types of mitochondrial targeting sequences combined with a TAT sequence ( 1B) and a table showing the respective sequences and sizes (FIG. 1C).
  • FIG. 2 is a diagram showing a processing site of a TAT-MTS (FIG. 2A), a structure of a TAT-MTS predicted using a COOT program (FIG. 2B), and a helical will projection according to an embodiment of the present invention.
  • Fig. 2C shows the affinity of the used TAT-MTS.
  • FIG. 3 shows Western blot results of cells and mitochondrial lysates after treatment with TMhM (FIG. 3A) and laser scanning confocal microscopy after immunocytochemical staining (FIG. 3B) according to one embodiment of the present invention. .
  • FIG. 4 shows Coomassie staining results (left) and Western blot results (right) (FIG. 4A), Western blot results of cells and mitochondrial lysates after treatment with Zn-TMhM, according to one embodiment of the invention. 4B), and laser scanning confocal microscopy after immunocytochemical staining (FIG. 4B).
  • FIG. 5 is a Western blot result (FIG. 5A) and processing architecture (FIG. 5B) confirming the processing of Zn-TMhM, according to one embodiment of the invention.
  • FIG. 6 shows that Zn-TMhM has cytotoxicity, that is, the effect on cell viability (FIGS. 6A and 6B), the amount of ATP (FIG. 6C) and tyrosine hydroxylases, according to one embodiment of the invention.
  • FIG. 7 shows MTT test results (FIG. 7A), ATP amount (FIG. 7B), and Western blot results (FIG. 7C) according to Zn-TMhM treatment in MPP + -induced Parkinson cell model according to one embodiment of the present invention. And influence on tyrosine hydroxylase (TH) (FIG. 7D).
  • FIG. 8 is a Western blot result confirming the targeting effect of mitochondria in the mouse, according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing a schematic diagram of a comparative sequence according to a comparative example of the present invention.
  • 11 is a result of observing the expression (localization) of the comparative sequence according to the comparative example of the present invention with a laser confocal scanning microscope.
  • FIG. 12 is a diagram confirming that the Zn-TMhM protein used in the present invention by Maldi-TOF / Ms / Ms, confirming that the sequence is human MT1A.
  • Fig. 13 is a diagram confirming the time for which TAT-MTS activity in mitochondria is maintained.
  • FIG. 15 is a diagram confirming the therapeutic effect of Zn-TMhM in an animal model of MPTP-induced Parkinson's disease.
  • FIG. 15A is a diagram confirming the exercise ability in Rotarod (p ⁇ 0.01), and B to D of FIG. Figure showing the number or signal strength of TH-positive neuron (dopamine neurons) (* p ⁇ 0.05, *** p ⁇ 0.001).
  • the present invention relates to a novel peptide targeting the mitochondria represented by the following general formula (1):
  • X 1 is absent or one hydrophobic amino acid
  • X 2 are two hydrophobic amino acids equal to each other;
  • X 3 is GPRLSRL, GPRLSRM, AA or AAL.
  • Amino acid sequences used in the present invention are abbreviated as follows according to the IUPAC-IUB nomenclature.
  • peptide refers to a polymer consisting of amino acids linked by amide bonds (or peptide bonds).
  • the peptide of the general formula 1 means a peptide having targeting characteristics to the mitochondria.
  • the peptide of the present invention exhibits an effective targeting action to mitochondria by including fragments having a constant sequence including hydrophilic amino acids at the N-terminus and C-terminus.
  • the hydrophobic amino acid may be any hydrophobic amino acid, for example, may be methionine, alanine, valine or leucine, but is not limited thereto.
  • X 1 in the above formula may be absent, methionine, alanine or leucine, and X 2 may be alanine or leucine. More preferably, X 1 is leucine, and X 2 may be alanine.
  • novel peptide of the general formula 1 may be representatively any one of the following peptides 1 to 10:
  • SEQ ID NO: 4 LLRLLLRKAAL
  • SEQ ID NO: 7 ALRAALRKGPRLSRL;
  • the mitochondrial targeting peptide according to the present invention has an alpha-helical structure and exhibits amphipathy (Example 2).
  • the peptides of the present invention may also include additional amino acid sequences designed for specific purposes to increase the stability of the targeting sequence, tag, labeled residue, half-life or peptide.
  • the peptides of the present invention may be linked with coupling partners such as effectors, drugs, prodrugs, toxins, peptides, delivery molecules, and the like.
  • the peptide of the present invention can be obtained by various methods well known in the art.
  • the method may be prepared by genetic recombination and protein expression system, or may be synthesized in vitro through chemical synthesis such as peptide synthesis, cell-free protein synthesis, or the like.
  • Peptides of the invention can be prepared in the form of pharmaceutically acceptable salts.
  • salts can be formed by the addition of acids, for example inorganic acids (e.g. hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, etc.), organic carboxylic acids (e.g. acetic acid, trifluoroacetic acid) Acetic acid, propionic acid, maleic acid, succinic acid, malic acid, citric acid, tartaric acid, salicylic acid), and acidic sugars (glucuronic acid, galacturonic acid, gluconic acid, ascorbic acid), acidic polysaccharides (e.g.
  • hyaluronic acid, chondroitin sulfate, Salts can be formed by addition of organic sulfonic acids (e.g. methanesulfonic acid, p-toluene sulfonic acid), including sulfonic acid sugar esters such as arginine acid), chondroitin sulfate.
  • organic sulfonic acids e.g. methanesulfonic acid, p-toluene sulfonic acid
  • sulfonic acid sugar esters such as arginine acid
  • the peptides of the present invention may be linked to internalization sequences or protein entry domains or cell membrane permeable proteins to effectively enter the cell.
  • the present invention relates to a fusion protein in which the peptide of the general formula 1 is bound to the carboxy terminus of a protein transduction domain.
  • the protein influx domain and the peptide of Formula 1 may be chemically or biologically fused, and such methods may be fused using any known technique known in the art without limitation.
  • protein entry domain refers to a polypeptide, polynucleotide, carbohydrate or organic / inorganic that promotes passage through lipid bilayers, micelles, cell membranes, organelle membranes, vesicle membranes. Means a compound.
  • the protein entry domain comprises a small portion of the protein that can cross the cell membrane by receptor-independent mechanisms, and binds to other molecules to transport specific molecules from the extracellular space into the intracellular space or from the cytoplasm to the organelles. It can act to promote.
  • the protein transduction domain according to the present invention is a TAT (Trans Activator of Transcription) protein, polyarginine, penetratin (Penetratin), transcription regulator protein of HSV-1 structural protein VP22, PEP-1 peptide and PEP of HIV-1 virus. Or at least one selected from the group consisting of the -2 peptide, but is not limited thereto.
  • the protein entry domain is a polypeptide of SEQ ID NO: 11 or 12:
  • SEQ ID NO: 11 YGRKKRRQRRR
  • SEQ ID NO: 11 is composed of 11 amino acid sequence domains as the TAT protein transduction domain of HIV, and because of its low molecular weight, it is suitable for fusion with proteins to be delivered into cells.
  • the fusion protein according to the present invention has cell membrane permeability and at the same time has a targeting ability to be localized into the mitochondria, so it can be usefully used as a kind of cargo molecule or drug carrier. .
  • the present invention is a fusion protein wherein the peptide of Formula 1 is bonded to the carboxy terminus of the Protein Transduction Domain, and an antioxidant is further bound to the carboxy terminus of the peptide. It is about.
  • the fusion protein consisting of the mitochondrial targeting sequence and SEQ ID NO: 11 according to the present invention targets the mitochondria with a high score, and further targets the mitochondria even when carrying the GFP or hMT1A (Example 1 ).
  • the fusion protein consisting of the mitochondrial targeting sequence and SEQ ID NO: 11 and hMT1A according to the present invention was confirmed to be delivered to the mitochondria in Western blot and immunocytochemical staining (Examples 6 and 7). In addition, it was confirmed to maintain long-term activity in the mitochondria (Fig. 13).
  • the mitochondrial targeting sequence according to the present invention binds not only hMT1A but also cytoplasmic antioxidant proteins SOD1, catalase, EPX, GPX, PD-related proteins PARK2 or LRRK2 with TAT-MTS, and then mitochondria. Targeting potential was predicted. As a result, it was confirmed that all proteins were targeted to mitochondria with a probability close to 100% (Example 9).
  • novel peptide fusion protein associated with the protein entry domain according to the present invention can be combined with compounds, drugs, antibodies, and other substances to be delivered, thereby effectively delivering them into the mitochondria.
  • materials that bind to the fusion protein and any material that can bind to the fusion protein is possible.
  • the present invention relates to an antioxidant composition
  • a fusion protein comprising a novel mitochondrial targeting peptide, a protein entry domain and an antioxidant.
  • ROS active oxygen species
  • the antioxidant according to the present invention may be, for example, SOD1, catalase, EPX, GPX, PARK2, LRRK2 or metallothionein.
  • the antioxidant according to the present invention is a metallothionein. to be. More preferably, the metallothionein is human metallothionein.
  • metallothionein is a cysteine-rich low molecular weight (3.5-14 kDa) material, and the structure of cysteine-X-cysteine, cysteine-XX-cysteine, cysteine-cysteine Refers to a protein composed of 61 repeating amino acids and containing 20 cysteine residues which bind to divalent metal ions.
  • Metallothionein is overexpressed in stress environments such as heavy metals, starvation, fever or infection.
  • Metallothionein has been thought to be an important means of biological defense against metal toxicity and is also known to act as a defense against oxidative stress.
  • ROS reactive oxygen species
  • metallothionein has recently been able to protect cells and tissues from diabetes and diabetic complications in vitro and in vivo, which is an anti-apoptotic in metallothionein. ) And antioxidant activity (KG Danielson et al., Proc Natl Acad Sci US A. 79 (1982) 2301-04).
  • Overexpression of metallothionein in MT null diabetic mice has been reported to reduce diabetic cardiomyopathy and improve aggravated ischemic contraction of the heart (Q). Liang et al., Diabetes. 51 (2002) 174-181).
  • Zinc can also induce the expression of metallothionein and protect mice from diabetic damage caused by gradual damage of beta cells in hyperglycemia and type 2 diabetes. It is also known that zinc-metallothionein can block hydroxyl radicals in vitro and in vivo (C.G. Taylor et al., Biometals. 18 (2005) 305-312).
  • fusion protein comprising human metallothionein according to the present invention to the cells showed maintenance of cell viability, increased ATP production and recovery of activity of tyrosine hydroxylase (Example 10).
  • administration of a fusion protein containing human metallothionein to the Parkinson's cell model confirmed that mitochondrial activity was restored (Example 11, FIG. 7A and FIG. 7B).
  • dopamine neurons are recovered by brain tissue analysis, it has been confirmed that they can be used for the treatment of Parkinson's disease as well as the prevention of Parkinson's disease through preventing the cell damage. ( Figure 15 and Example 14).
  • the fusion protein comprising the antioxidant according to the present invention can be used as a prophylactic or therapeutic agent for any disease or disease caused by oxidative stress, and is particularly useful for brain diseases such as Parkinson's disease and diabetic diseases as described above. Can be used.
  • the present invention is oxidative by administering a pharmaceutical composition for the prevention or treatment of diseases caused by oxidative stress comprising a fusion protein comprising the antioxidant to a mammal including a human in need thereof.
  • the present invention relates to a method for preventing or treating a stress-induced disease (eg, brain diseases such as Parkinson's disease and diabetes diseases).
  • a method for preventing or treating Parkinson's disease comprising administering to a subject a pharmaceutical composition for the prevention or treatment of Parkinson's disease comprising a fusion protein comprising the antioxidant.
  • the term "individual” in the present invention includes without limitation mammalian animals, including rats, livestock, humans and the like.
  • the pharmaceutical compositions according to the invention can be administered via several routes.
  • Administration in the present invention means introducing any substance into the patient in any suitable manner and the route of administration of the conjugate may be administered via any general route as long as the drug can reach the target tissue.
  • intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, rectal administration but is not limited thereto.
  • intraperitoneal administration intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, rectal administration, but is not limited thereto.
  • the oral composition since the peptide is digested, it is desirable to formulate the oral composition to coat the active agent or to protect it from degradation in the stomach. It may preferably be administered in the form of an injection.
  • the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell.
  • the preferred dosage of the fusion protein comprising the antioxidant according to the present invention depends on the condition and weight of the mammal, including the human being in need thereof, the extent of the disease, the form of the drug, the route of administration and the duration, but is appropriate for the skilled person. Can be chosen. In addition, all modes of administration can be expected, for example, but not limited to oral, rectal, or intravenous, intramuscular, subcutaneous, intrauterine dural or cerebrovascular injections.
  • the fusion protein with or without the antioxidant according to the present invention may have a polyhistidine (poly-His) domain bound to the carboxy terminus.
  • the fusion protein comprising the antioxidant according to the present invention is characterized in that it is processed and then stably delivers the drug after delivery into the mitochondria.
  • the fusion protein according to the present invention was observed to be 7.6 kDa in the mature form in the mitochondria after being processed with the matrix metalloprotease, the mitochondrial matrix signal peptide processing enzyme. After processing, it was confirmed that hMT1A including His-tag and residual amino acid (AALGKL) (Example 8).
  • the present invention provides a recombinant polynucleotide in which a polynucleotide encoding a protein transduction domain, a polynucleotide encoding the mitochondrial targeting peptide, and a polynucleotide encoding an antioxidant protein are sequentially linked. It is about.
  • the recombinant polynucleotide can be prepared according to a conventional method from a protein import domain, novel peptides targeting mitochondria and known sequences encoding antioxidant proteins.
  • the recombinant polynucleotide of the present invention may comprise a nucleic acid sequence of SEQ ID NO: 13 or SEQ ID NO: 14.
  • the present invention relates to an expression vector comprising the polynucleotide.
  • expression vector refers to a gene construct that is capable of expressing a peptide of interest in a suitable host cell, and includes a gene construct containing essential regulatory elements operably linked to express a gene insert.
  • the expression vectors of the present invention include expression control elements such as promoters, operators, initiation codons as elements generally possessed by suitable expression vectors. Initiation and termination codons are generally considered to be part of a nucleotide sequence encoding a polypeptide and must be functional in the individual when the gene construct is administered and must be in frame with the coding sequence.
  • the promoter of the vector may be constitutive or inducible.
  • a signal sequence for the release of the fusion polypeptide to facilitate the separation of the protein from the cell culture.
  • Specific initiation signals may also be required for efficient translation of inserted nucleic acid sequences. These signals include ATG start codons and contiguous sequences. In some cases, an exogenous translational control signal must be provided that can include an ATG start codon. These exogenous translational control signals and initiation codons can be various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translation enhancing factors.
  • plasmid DNA As the expression vector, all conventional expression vectors can be used.
  • plasmid DNA phage DNA and the like can be used.
  • Specific examples of plasmid DNA include commercial plasmids such as pUC18, pIDTSAMRT-AMP.
  • Other examples of plasmids that may be used in the present invention include E. coli derived plasmids (pYG601BR322, pBR325, pUC118 and pUC119), Bacillus subtilis-derived plasmids (pUB110 and pTP5) and yeast-derived plasmids (YEp13, YEp24 and YCp50).
  • phage DNA examples include ⁇ -phage (Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11 and ⁇ ZAP).
  • animal viruses such as retroviruses, adenoviruses or vaccinia viruses, insect viruses such as baculoviruses can also be used. Since the expression vector and expression of the protein are different depending on the host cell, such expression vector may be selected and used to best suit the host cell.
  • the present invention relates to a host cell transformed with the expression vector.
  • transformation refers to the generation of a genetically stable inheritance such that the polynucleotide fragment can migrate into the genome of a host cell to express the desired peptide.
  • Fusion proteins comprising the antioxidant of the present invention can be prepared, for example, by the following methods:
  • a polynucleotide encoding an antioxidant protein is bound to the 3 'end of the polynucleotide encoding the mitochondrial targeting sequence represented by one amino acid sequence selected from the group consisting of SEQ ID NOs: 1-10.
  • transformation methods include CaCl 2 precipitation method, CaCl 2 method, Hanahan method, which improves efficiency by using DMSO (dimethyl sulfoxide), electroporation, calcium phosphate precipitation, plasma fusion method, silicon carbide Agitation with fibers, agrobacterial mediated transformation, transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
  • CaCl 2 precipitation method CaCl 2 method
  • Hanahan method which improves efficiency by using DMSO (dimethyl sulfoxide)
  • electroporation calcium phosphate precipitation
  • plasma fusion method silicon carbide Agitation with fibers
  • agrobacterial mediated transformation transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
  • the host cell is not particularly limited as long as it expresses the peptide of the present invention and may preferably be a microorganism.
  • microorganisms that can be used in the present invention include Bacillus genus Pseudomonas putida , such as Escherichia bacterium Bacillus subtilis , such as E. coli .
  • Yeast animal cells and insect cells such as the bacteria Pseudomonas Saccharomyces cerevisiae , Schizosaccharomyces pombe .
  • the present invention relates to the use of the fusion protein combined with the antioxidant in the manufacture of a medicament for the prevention or treatment of Parkinson's disease.
  • TAT mitochondria permeable protein influx domain
  • TAT + mitochondrial targeting sequence mitochondria targeting sequence
  • TAT + mitochondrial targeting sequence + protein to be targeted mitochondria targeting sequence
  • MTS according to the present invention were artificially prepared and their mitochondrial targeting potential was virtually predicted using the MiroProt II program.
  • the mitochondrial targeting sequence consisting of SEQ ID NO: 2 (LLRAALRKAAL) was used as a mitochondrial sequence according to the present invention, and as a comparative example, mitochondrial malate dehydrogenase (mMDH) and succinate dehydrogenase sub Sequences derived from unit alpha (SDHA), mitochondrial aldehyde dehydronase (ALDH2) were used.
  • Virtual TAT-MTS was prepared by combining each of these sequences with TAT, and mitochondrial targeting potential was calculated and shown in FIG. 1B.
  • a protein of green fluoroscence protein (GFP) or human metallothionein 1A (hMT1A) is added to the sequences prepared above. Connected.
  • the connection structure was prepared in the form of a structure of TAT-MTS-hMT1A as shown in FIG. 1A.
  • Mitochondrial targeting potential of TAT- and TAT-MTS-proteins was calculated using MitoProt II, and the results are shown in FIG. 1B.
  • TAT-mMDH-hMT1A when carrying the hMT1A, TAT-mMDH-hMT1A was 67.7%, TAT-SDHA-hMT1A 77.1% and TAT-ALDH2-hMT1A showed a target probability of 87.6%, it was confirmed that the mitochondrial targeting activity is significantly lowered.
  • TAT-aMTS-hMT1A showed a targeting probability of 100%, even when carrying a delivery protein other than GFP, it was confirmed that effectively retains mitochondrial targeting activity.
  • FIG. 1C A comparison of the sequence with the size of TAT, TAT-mMDH, TAT-SDHA and TAT-ALDH2 is shown in Figure 1C.
  • LLRAALRKAAL of SEQ ID NO: 2 showing a targeting score of 97% was composed of a total of 11 amino acids, it was confirmed that has a significantly smaller size than mMDH, SDHA or ALDH2.
  • the COOT program showed that the TAT-MTS peptide exhibited an alpha-helical structure (FIG. 2B).
  • helical wheel projection showed that the TAT-MTS peptide helix exhibited amphipathy (FIG. 2C).
  • the MitoProtII program predicted that there was a processing site between TAT-MTS and hMT1A (FIG. 2A).
  • the processing site is an underbard portion and corresponds to a processing portion that is cut when the TAT-MTS-hMT1A is transferred into the mitochondria. Based on the above structural analysis, the inventors determined that the novel TAT-MTS peptide according to the present invention had sufficient ability to deliver MT1A to mitochondria.
  • SK-Hep1 human hepatocellular carcinoma cells
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fetal bovine serum
  • antibiotics a mixture of 100 ⁇ g / ml penicillin / streptomycin.
  • SH-SY5Y human neuroblastoma cells
  • 'TAT-MTS-hMT1A' is referred to as the abbreviation 'TMhM'.
  • the synthetic gene of HindIII-TMhM-6xHis-BamHI was cloned into pcDNA 3.1 (Progmega) for mammalian expression.
  • the sequence of the synthetic gene is as follows (SEQ ID NO: 13):
  • AAG CTT ATG GGC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA TTG TTG CGC GCT GCC CTG CGC AAG GCT GCC CTG ATG GAC CCC AAC TGC TCC TGC GCC ACT GGT GGC TCC TGC ACC TGC ACT GGC TG TG AA TGAA ACC TCC TGC AAG AAG AGC TGC TGC TCC TGC TGC CCC ATG AGC TGT GCC AAG TGT GCC CAG GGC TGC ATC TGC AAA GGG GCA TCA GAG AAG TGC AGC TGC TGT GCC CAT CAT CAT CAT CAT TAG GGA TCC
  • Plasmids of pcDNA3-TMhM were transduced into SK-Hep cells with 70% confluent in 6-well plates using Superfect ® transduction reagent (QIAGEN, Valencia, Calif.). Stable cells were selected using G418 (1000 ⁇ g / ml) for 2 weeks. Plasmid pcDNA3.1-transduced cells were used as controls. Transduced cells were analyzed using immunochemistry or Western blot.
  • the synthetic gene of NcoI-TAT-aMTS-HindIII-hMT1A-XhoI was cloned into pET28a (+) (Clontech, CA, USA).
  • the sequence of the synthetic gene is as follows (SEQ ID NO: 14):
  • HindIII sites were inserted between aMTS and hMT1A for other carrier protein cloning.
  • IPTG Isopropyl-beta-D-thio-galactoside
  • Zn- was removed from the purified protein by dialysis using a membrane (Spectrum Laboratories, CA) with a cutoff value of 3,500 mw for phosphate buffered saline at pH 7.4 containing 20% glycerol and 1 mM PMSF.
  • TMhM protein was prepared.
  • Protease inhibitor cocktail (Roche, Switzerland) was added to the protein preparations before storage at 4 ° C.
  • the Zn-TMhM protein used in the present invention was identified as Maldi-TOF / Ms / Ms to confirm human MT1A (FIG. 12).
  • His-tag TMhM was overexpressed by plasmid transduction in SK-Hep1 cells. Specifically, cells grown on glass cover slips in 6-well plates were treated with 2 ⁇ M Zn-TMhM for 1 hour and confirmed by Western blot analysis and laser scanning confocal microscopy.
  • Mitochondria of SK-Hep1 cells were prepared by differential centrifugation. Specifically, cells were harvested and homogenized in 1 ml of mitochondrial isolation buffer (MIB, 0.25M sucrose, 0.025M Tris and 1 mM EDTA, pH 7.4). Cell homogenate was centrifuged at 3,000 rpm for 10 minutes and the supernatant was centrifuged at 9,500 rpm for 10 minutes. Mitochondrial pellets were redispersed with MIB and protein concentration was confirmed by BCA method (Pierce, Rockford, IL).
  • MIB mitochondrial isolation buffer
  • Total cell lysate (30 ⁇ g) or mitochondrial lysate (10 ⁇ g) was isolated by 15% SDS-PAGE and analyzed by Western blot and enhanced by chemiluminescence system (ECL, Amersham Bioscience, NJ).
  • Primary antibodies against 6 ⁇ His (1: 1000, Cell Signaling Technology, Beverly, Mass.), Primary antibodies against Hsp60 (1: 1000, Santa Cruz) were obtained commercially.
  • HRP-conjugated secondary antibodies were purchased from Cell Signaling Technology (Beverly, Mass.). Protein equivalent loading was confirmed with anti-beta-actin antibody (Sigma Co., St. Louis, Mo.) and the results are shown in FIG. 3A.
  • Nuclei were stained for 5 minutes with Hoechst (2 ⁇ g / ml Molecular Probes, Eugene, OR) in PBS at room temperature. The slides were then washed twice with PBS and increased with DAKO fluorescence mounting medium (DAKO corporation, Carpinteria, Calif.). Samples were observed using a laser scanning confocal microscope (Carl Zeiss, Germany) at 405 nm, 488 nm and 555 nm for Hoechst, 6xHis and MitoTracker, respectively, and the results are shown in FIG. 3B.
  • TMhM As a protein prodrug, Zn-TMhM was expressed in E. coli and purified by affinity chromatography. Specifically, TMhM protein was expressed in E. coli in the presence of ZnSO 4 and purified by Ni-NTA affinity column. The purity of the Zn-TMhM protein was shown in FIG. 4A by Coomassie blue staining and Western blot.
  • SK-Hep1 cells were incubated with recombinant Zn-TMhM (2 ⁇ M) for 1 hour, and localization of Zn-TMhM was analyzed and the results are shown in FIG. 4B.
  • DPBS-treated group was used as a control (CTL).
  • Ds-Red2-mito-SK-Hep1 cells incubated in a cover glass in a 35 mm plate were treated with Tat-aMTS-GFP (TM-GFP) protein (2 ⁇ M final concentration) for the time indicated in FIG. 13 (1 h-72 h). . After the treatment, the medium containing TM-GFP was removed, washed with PBS, and then cultured for 24 to 72 hours by adding a medium not containing TM-GFP protein. The cover glass was recovered at each treatment time, and the cells were fixed and observed with a confocal microscope.
  • TM-GFP Tat-aMTS-GFP
  • TM-GFP protein continued to exist in the mitochondria after 48 hours to 72 hours, and after removal of TM-GFP protein from the medium, it was present in the mitochondria until 48 hours but completely degraded after 72 hours. Observed disappearing.
  • the results demonstrate that the fusion protein including the Tat-aMTS peptide (TM) of the present invention retains activity for up to 72 hours and may be lost if removed from the system.
  • FIG. 5A clearly shows that the molecular weight of the TMhM protein in the mitochondria is 7.6 kDa.
  • the molecular weight of the Zn-TMhM precursor precursor
  • the mitochondrial matrix signal peptide processing enzyme After processing with the matrix metalloprotease, the mitochondrial matrix signal peptide processing enzyme, the mature form in the mitochondria becomes 7.6kDa.
  • FIG. 5B Such a change in structure (or length) is shown in FIG. 5B.
  • the arrow in FIG. 5B indicates the processing site and when Zn-TMhM is processed inside the mitochondria, it becomes hMT1A containing His-tag and residual amino acid (AALGKL).
  • the mitochondrial targeting sequence of the present invention has excellent mitochondrial targeting activity regardless of the substance to which the binding (or linking) material, and furthermore, it can be usefully used for delivery of various protein drugs.
  • the MTT test is a method of measuring the activity of mitochondrial dehydrogenase in living cells.
  • SH-SY5Y cells (1 ⁇ 10 5 cells / well) in a 96-well plate of DMEM-F12 containing 0.5% FBS yielded 1 mM 1-methyl-4-phenyl-2,3-dihydropyridinium ions (MPP + ) was treated for 24 hours.
  • Cells were then incubated with purified TMhM for 24 hours, and 0.2 mg / ml of 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide in PBS ( MTT, Sigma Co., St. Louis, MO) for 4 hours.
  • MTT formazan precipitate formed by living cells was dissolved in 100 ⁇ l of 0.04N HCL / isopropanol. Absorbance was measured at 540 nm with an ELISA microplate reader (Molecular Devices, Sunnyvale, Calif.).
  • Intracellular ATP concentrations were measured via luciferin-luciferase reaction using an ATP bioluminescent somatic cell assay kit (Sigma Co., St. Louis, MO). Specifically, 100 ⁇ l of cell lysate was mixed with 100 ⁇ l of luciferin-luciferase reaction buffer and incubated at 20 ° C. for 10 minutes. Fluorescence signals were measured with an LB 9501 Lumat luminometer (Berthold, Badwildbad, Germany). The background fluorescence values of the control wells containing the cell free media in the signal were subtracted and the ATP amount was normalized to protein concentration. All data were labeled as% control.
  • tyrosine hydroxylase a restriction enzyme of dopamine synthesis and a survival marker of dopamine neurons.
  • CTL control group
  • MPP + induced SH-SY5Y cells.
  • MPP + is useful for inducing mitochondrial damage in dopamine-based neurons to mimic Parkinson's disease. 1 mM MPP + was treated 24 hours prior to Zn-TMhM treatment and the extent of recovery from MPP + mediated damage was monitored.
  • Zn-TMhM restored MTT activity and ATP content in a dose-dependent manner.
  • TH expression was fully recovered at 4 ⁇ M Zn-TMhM. This means that Zn-TMhM effectively restores the activity of dopaminergic neurons, suggesting that Zn-TMhM is one of the very potent candidates for the treatment of Parkinson's disease.
  • Zn-TMhM protein When the Zn-TMhM protein was administered to the mouse, it was confirmed whether the target was actually distributed to tissues and mitochondria. Specifically, IP injection (intraperitoneal injection) of Zn-TMhM at a concentration of 2 mg / kg in C57 / BL6 mice was sacrificed 24 hours later, and mitochondria were separated by differential centrifugation from liver tissue. Liver lysate and mitochondrial fraction (Liver mito) were identified by SDS-PAGE and Western blot. The antibody used was His-Tag (6 ⁇ His). ⁇ -actin and TOM20 are loading controls of hepatic crush and mitochondrial fractions, respectively.
  • Mitochondrial targeting sequences were prepared using TAT, mouse metallothione (MT1), and MTS (ITMVSAL) as comparative examples.
  • the structural schematic diagram of the sequence is shown in FIG.
  • MT metalothionein
  • TMT TMT-metallothionein
  • TMM TAT-MTS-metallothionein
  • Zn-TMhM an isolated and purified protein, recovered the symptoms of Parkinson's disease by applying it to the MPTP-induced Parkinson's mouse model.
  • a PD mouse model acute model, 20 mg / kg / injection, 4 times intraperitoneal injections
  • Zn-TMhM was stereotaxic injected into the right black matter (Substantia nigra, SN).
  • a rotarod test was performed, and brain tissues were extracted to proceed with the experiment.
  • behavioral experiments and brain tissue related experiments were conducted as follows.
  • mice were divided into three groups: the first group (control), the second group (MPTP-control), and the third group (MPTP-Zn-TMhM-administered group), and 6 mice were allocated to each experimental group.
  • the first group was intraperitoneally injected with 10 ⁇ l of PBS
  • the second and third groups were MPTP (20 mg / kg / injection) four times at 2 hour intervals.
  • Zn-TMhM (3 ⁇ g / 2 ⁇ l PBS) was stereotaxic injected into the right black matter (Substantia nigra, SN) site.
  • behavioral experiments Rostarod experiments
  • Treatment conditions and the like of the animals of the experiment are shown in Table 2, and the time-series conditions are as shown in FIG.
  • the rotating mechanism consisted of five separate zones for testing the axis of rotation (7.3 cm in diameter) and five mice at once. After training the mouse twice a day for 2 days in a rotating instrument (rotational speed at day 4-4 rpm, day 2-20 rpm), the rotational speed was increased to 25 rpm in the actual experiment on day 3 I was. The duration of the mouse standing on the rotating rod was measured, and three measurements were made at intervals of 3 minutes for each mouse. The maximum measurement time was 300 seconds.
  • mice were anesthetized by intramuscular injection of 50 mg / kg Zoletil, and the brain tissue was extracted and the experiment was performed.
  • Brain tissues from three rats were dissectioned from striatum (ST) and SN to form protein lysates and Western blot expression of tyrosine hydroxylase (TH).
  • the remaining three for staining were percardially transfused through the heart with 4% paraformaldehyde (PBS) at the time of sacrifice and brains were extracted. It was fixed once again with 4% paraformaldehyde and then immersed in 4 ° C. 30% sucrose solution. Frozen brain tissue was sectioned into 30 ⁇ m coronal sections using cryostat microtome (CM3000: Leica, Wetzlar, Germany). Section tissues were soaked in stock solution (glycerine, ethylene glycol, PBS) for immunocytochemical analysis and stored at 4 ° C.
  • CM3000 Leica, Wetzlar, Germany
  • Brain sections were placed on coverslips, washed with PBS and then pretreated with 1% H 2 O 2 (PBS) for 15 minutes to remove peroxidase activity present in tissues.
  • Dehydrated brain sections were reacted overnight with a primary antibody, anti-tyrosine hydroxylase (anti-TH, Millipore, Rabbit 1: 2000), followed by a 90 minute reaction with a secondary antibody biotinylated anti-rabbit IgG. , 1 hour reaction with avitin-biotin complex solution (Vectastain ABC kit; Vector Laboratories, Burlingame, Calif.) And color development using Diaminobenzidine.
  • Dopamine cell protection was determined by measuring the optical density in the striatum (ST), and counting the number of TH positive cells in the substantia nigra (SN).
  • mice in each group do not cut the brain, but separate the brain tissue into the cerebral cortex (cortex), cerebellum (cerebellum), striatum (ST) and black matter (substantia nigra, SN) to Western blot Stored.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 미토콘드리아 타겟팅 펩타이드, 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합된 융합 단백질, 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합하고, 상기 펩타이드의 카르복시 말단에 항산화제가 결합된 융합 단백질, 상기 항산화제가 결합된 융합 단백질을 포함하는 항산화용 조성물 및 파킨슨 병의 예방 또는 치료용 조성물, 단백질 유입 도메인(Protein transduction domain)을 코딩하는 폴리뉴클레오티드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드, 및 항산화 단백질을 코딩하는 폴리뉴클레오티드가 순차적으로 결합되어 있는 재조합 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터, 및 상기 발현 벡터를 포함하는 형질전환된 숙주세포에 관한 것이다. 본 발명에 따른 미토콘드리아 타겟팅 펩타이드는 단독으로 존재할 경우 높은 효율로 미토콘드리아로 타겟팅되며, 뿐만아니라 상기 펩타이드가 단백질 유입 도메인 및/또는 항산화제와 결합되는 경우에도 높은 효율로 미토콘드리아로 타겟팅되는 효과가 있다. 또한, 상기 펩타이드는 사이즈(size)가 작아 표적 지향성 캐리어로서 매우 적합하며, 미토콘드리아 내부로 들어가게 되면 프로세싱(processing)되어 담지한 약물을 안정적으로 전달할 수 있는 장점이 있다.

Description

미토콘드리아 타겟팅 펩타이드
본 발명은 미토콘드리아 타겟팅 펩타이드, 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합된 융합 단백질, 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합하고, 상기 펩타이드의 카르복시 말단에 항산화제가 결합된 융합 단백질, 상기 항산화제가 결합된 융합 단백질을 포함하는 항산화용 조성물 및 파킨슨 병의 예방 또는 치료용 조성물, 단백질 유입 도메인(Protein transduction domain)을 코딩하는 폴리뉴클레오티드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드, 및 항산화 단백질을 코딩하는 폴리뉴클레오티드가 순차적으로 결합되어 있는 재조합 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터, 및 상기 발현 벡터를 포함하는 형질전환된 숙주세포에 관한 것이다.
미토콘드리아는 세포 내에 물질대사(energetic metabolism), 특정 물질(예를 들면, 지방산 등)의 대사 등, 많은 결정적인 세포내 과정(intracellular processes)에서 핵심적인 역할을 한다. 특히, 미토콘드리아는 자유 라디칼(free radicals; 이하, 'FR'이라 한다) 및 활성 산소종(reactive oxygen species; 이하 'ROS'이라 한다)의 형성 및 이용에 직접적으로 관련되어 있다. 이러한 점 때문에 살아있는 세포 내에서 많은 과정에 영향을 미칠 수 있는 극단적인 반응 부분(reactive moieties)과 관련하여, 미토콘드리아가 세포예정사(programmed cell death)의 과정에서 핵심 역할을 하는 것이 보고되고 있다.
상기 활성산소종(ROS: reactive oxygen species)은 다양한 생물체의 산화·환원 반응에서 생성되며, 식용유지의 변질 또는 여러 생체물질(지질, 단백질, 핵산 및 탄수화물)에 산화적인 손상을 유발할 수 있으며 여러 단계를 거치게 되면서 결과적으로 세포에 손상을 유발할 수 있다(Yen GC. et al., J. Agric. Food Chem., 43, pp27-32, 1995). 생체막 구성성분인 인지질의 불포화지방산은 활성산소종과 같은 자유라디칼에 의해 과산화 반응이 개시되며 또한 연쇄적으로 진행된다. 그러므로 자유라디칼에 의한 과산화반응은 세포막의 투과성을 항진시킬 뿐 아니라 전반적인 세포독성을 초래하여 노화현상이나 이에 따른 여러 가지 질환의 병리현상을 유도하여 발암과정에도 관여한다. 라디칼 작용은 산화적 스트레스와 관련된 질환인 아토피성 질환, 암, 고혈압, 심근경색, 동맥경화, 류머티스, 백내장 및 파킨슨씨병 등 여러 가지 만성질환의 진행에 많은 영향을 주며(De Souza LC. et al., Bioorg. Med. Cehm. Lett.,14, pp5859-5861, 2004), 면역계 기능을 약화시키는 요인으로 작용될 수 있다(Pike J. et al., Int. J. Vitam.Nutr. Res., 65, pp117-120, 1995).
이 중 특히, ROS의 과다발생에 의해 유도되는 산화스트레스는 신경퇴화질환을 포함한 많은 퇴행성질환의 원인으로 작용한다. 미토콘드리아는 ROS가 발생되는 주요 장소이며 또한 ROS에 의해 가장 쉽게 손상 받는 세포내 소기관이다. 따라서, FR 및 ROS 형성의 증가와 관련하여 많은 질병은 미토콘드리아의 역기능(dysfunction)에 관련된 것으로 알려졌다.
이에, 미토콘드리아의 기능회복을 목적으로, 미토콘드리아를 타겟으로 하는 캐리어 및/또는 약물들이 제안되어 왔다. 이와 같은 접근은, 세포의 표적 구획 안으로 물질을 반복 축적하여 물질의 효과적인 농도를 얻을 수 있기 때문에 그 적용 효율을 증가시키고, 전체적인 투약(overall dosage)을 줄이고, 부작용의 가능성 및 강도를 줄일 수 있다는 강점이 있다.
현재 매우 한정된 수의 미토콘드리아-표적의 생물학적인 활성 물질이 알려져 있다. 예컨대, 미토비타민 E(Mitovitamin E; 이하 'MitoVitE'이라 함) 또는 유럽특허 1 534 720에 기재된 트리페닐포스포니움(triphenyl phosphonium)에 연관된 수퍼옥사이드 디스뮤타아제(superoxide dismutase) 및 글루타티온 퍼옥시다아제 변형체(glutathione peroxidase mimetics)가 그 예이다.
이에, 본 발명자들은 세포막, 미토콘드리아 막 구조를 통과하기 어려운 물질들을 세포 내로 효과적으로 전달하는 방법에 대해 예의 연구노력한 결과, 신규한 미토콘드리아 타겟팅 서열을 제조하고, 상기 서열을 단백질 유입 도메인 및/또는 항산화제와 연결할 경우, 상기 항산화제를 효과적으로 미토콘드리아 내부로 전달하는 것을 확인하고 본 발명을 완성하였다.
본 발명의 하나의 목적은 하기 일반식 (1)의 아미노산 서열로 표시되는 미토콘드리아 타겟팅 펩타이드를 제공하기 위한 것이다.
[일반식 (1)]
[N-말단-X1-LR-X2-LRK-X3-C-말단]
상기 식에서,
X1은 부재하거나 또는 하나의 소수성 아미노산이고;
X2는 서로 같은 두 개의 소수성 아미노산이고;
X3는 GPRLSRL, GPRLSRM, AA 또는 AAL이다.
본 발명의 다른 목적은 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합된 융합 단백질을 제공하는 것이다.
본 발명의 다른 목적은 단백질 유입 도메인의 카르복시 말단에 상기 펩타이드가 결합하고, 상기 펩타이드의 카르복시 말단에 항산화제가 결합된 융합 단백질을 제공하는 것이다.
본 발명의 다른 목적은 상기 항산화제가 결합된 융합 단백질을 포함하는 항산화용 조성물, 또는 파킨슨 병의 예방 또는 치료용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 단백질 유입 도메인(Protein transduction domain)을 코딩하는 폴리뉴클레오티드, 상기 펩타이드를 코딩하는 폴리뉴클레오티드, 및 항산화 단백질을 코딩하는 폴리뉴클레오티드가 순차적으로 결합되어 있는 재조합 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터를 포함하는 형질전환된 숙주세포를 제공하는 것이다.
본 발명의 다른 목적은 상기 항산화제가 결합된 융합 단백질을 포함하는 파킨슨병의 예방 또는 치료용 약학적 조성물을 개체에 투여하는 단계를 포함하는 파킨슨병의 예방 또는 치료 방법을 제공하는 것이다.
본 발명의 다른 목적은 파킨슨 병의 예방 또는 치료용 약제를 제조하는데 상기 항산화제가 결합된 융합 단백질의 용도를 제공하는 것이다.
본 발명에 따른 미토콘드리아 타겟팅 펩타이드는 단독으로 존재할 경우 높은 효율로 미토콘드리아로 타겟팅되며, 뿐만아니라 상기 펩타이드가 단백질 유입 도메인 및/또는 항산화제와 결합되는 경우에도 높은 효율로 미토콘드리아로 타겟팅되는 효과가 있다.
또한, 상기 펩타이드는 사이즈(size)가 작아 표적 지향성 캐리어로서 매우 적합하며, 미토콘드리아 내부로 들어가게 되면 프로세싱(processing)되어 담지한 약물을 안정적으로 전달할 수 있는 장점이 있다.
도 1은, 본 발명의 일 실시예에 따른, 미토콘드리아 타겟팅 서열의 인 실리코(In silico) 디자인(도 1A), TAT 서열과 결합한 여러 가지 종류의 미토콘드리아 타겟팅 서열들의 MitoProt Ⅱ를 이용한 타겟팅 가능성 예측 그래프(도 1B) 및 각각의 서열들과 사이즈를 나타낸 표(도 1C)이다.
도 2는, 본 발명의 일 실시예에 따른, TAT-MTS의 프로세싱 사이트를 나타낸 그림(도 2A), COOT 프로그램을 이용하여 예측한 TAT-MTS의 구조(도 2B), 및 헬리칼 윌 프로젝션을 이용한 TAT-MTS의 양친성을 나타낸 그림(도 2C)이다.
도 3은, 본 발명의 일 실시예에 따른, TMhM을 처리한 후 세포 및 미토콘드리아 파쇄물의 웨스턴 블롯 결과(도 3A) 및 면역세포화학 염색 후 레이저 주사 공초점 현미경으로 관찰한 결과(도 3B)이다.
도 4는, 본 발명의 일 실시예에 따른, Zn-TMhM을 처리한 후, 쿠마시 염색 결과(좌측) 및 웨스턴 블롯 결과(우측)(도 4A), 세포 및 미토콘드리아 파쇄물의 웨스턴 블롯 결과(도 4B), 및 면역세포화학 염색 후 레이저 주사 공초점 현미경으로 관찰한 결과(도 4B)이다.
도 5는, 본 발명의 일 실시예에 따른, Zn-TMhM의 프로세싱을 확인한 웨스턴 블롯 결과(도 5A) 및 프로세싱 구조도(도 5B)이다.
도 6은, 본 발명의 일 실시예에 따른, Zn-TMhM이 세포 독성을 가지는 지, 즉 세포 생존력에 대한 영향(도 6A 및 6B), ATP 량에 대한 영향(도 6C) 및 티로신 하이드록실레이즈(TH)에 대한 영향을 확인한 웨스턴 블롯 결과(도 6D)이다.
도 7은, 본 발명의 일 실시예에 따른, MPP+로 유도한 파킨슨 세포 모델에서 Zn-TMhM의 처리에 따른 MTT 시험 결과(도 7A), ATP 량(도 7B), 웨스턴 블롯 결과(도 7C) 및 티로신 하이드록실레이즈(TH)에 대한 영향(도 7D)이다.
도 8은, 본 발명의 일 실시예에 따른, 마우스에서 미토콘드리아의 타겟팅 효과를 확인한 웨스턴 블롯 결과이다.
도 9는, 본 발명의 일 실시예에 따른, 미토콘드리아 타겟팅 서열의 ROS 효과를 확인한 실험 결과에 관한 것이다.
도 10은, 본 발명의 비교 실시예에 따른, 비교 서열의 모식도를 나타낸 그림이다.
도 11은, 본 발명의 비교 실시예에 따른, 비교 서열의 발현(로컬리제이션)을 레이저 공초점 주사 현미경으로 관찰한 결과이다.
도 12는, 본 발명에서 사용된 Zn-TMhM 단백질을 Maldi-TOF/Ms/Ms로 확인하여, 서열을 확인하여 인간 MT1A임을 확인한 도면이다.
도 13은, TAT-MTS의 미토콘드리아에서의 활성이 유지되는 시간을 확인한 도면이다.
도 14는, Zn-TMhM의 MPTP-유도 파킨슨병 마우스 모델에서 치료 효과를 확인하기 위한 모델 제조 및 실험 조건을 시계열적으로 정리한 도면이다.
도 15는, Zn-TMhM의 MPTP-유도 파킨슨병 동물 모델에서의 치료 효과 확인한 도면으로, 도 15의 A는 Rotarod에서의 운동능력을 확인한 도면이고(p<0.01), 도 15의 B 내지 D는 TH-positive neuron (도파민 신경세포)의 숫자 또는 신호 강도를 확인한 도면이다(*p<0.05, ***p<0.001).
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 하기 서열 일반식 1로 표시되는 미토콘드리아를 타겟팅하는 신규 펩타이드에 관한 것이다:
[일반식 (1)]
[N-말단-X1-LR-X2-LRK-X3-C-말단]
상기 식에서,
X1은 부재하거나 또는 하나의 소수성 아미노산이고;
X2는 서로 같은 두 개의 소수성 아미노산이고;
X3는 GPRLSRL, GPRLSRM, AA 또는 AAL이다.
본 발명에서 사용된 아미노산 서열은 IUPAC-IUB 명명법에 따라 다음과 같이 약어로 기재하였다.
알라닌        A   아르기닌      R
아스파라긴    N   아스파르트산  D
시스테인      C   글루탐산      E
히스티딘      H   이소루신      I
루신          L   리신           K
메티오닌      M   페닐알라닌    F
프롤린        P   세린           S
트레오닌      T   트립토판      W
티로신        Y   발린          V
글루타민      Q   글라이신      G
본 발명에서 사용된 용어, "펩타이드"란 아미드 결합(또는 펩타이드 결합)으로 연결된 아미노산으로 이루어진 폴리머를 의미한다. 본 발명의 목적상, 상기 일반식 1의 펩타이드는 미토콘드리아로의 타겟팅 특징을 보유한 펩타이드를 의미한다.
본 발명에 의한 펩타이드는 N-말단과 C-말단 쪽에 소수성 아미노산(hydrophilic amino acid)을 포함하는 일정한 서열을 갖는 단편을 포함함으로써, 미토콘드리아로의 효과적인 타겟팅 작용을 나타낸다. 이때, 소수성 아미노산은 모든 소수성 아미노산이 가능하며, 예컨대 메티오닌, 알라닌, 발린 또는 류신일 수 있으며, 이에 제한되는 것은 아니다.
바람직하게, 상기 서열식에서 X1은 부재하거나, 메티오닌, 알라닌 또는 류신일 수 있고, 상기 X2는 알라닌 또는 류신일 수 있다. 보다 바람직하게는 상기 X1은 류신이고, 상기 X2는 알라닌일 수 있다.
본 발명에 따른 상기 일반식 1의 신규 펩타이드는 대표적으로 다음 1 내지 10중 어느 하나의 펩타이드일 수 있다:
서열번호 1: LLRAALRKAA;
서열번호 2: LLRAALRKAAL;
서열번호 3: LLRLLLRKAA;
서열번호 4: LLRLLLRKAAL;
서열번호 5: MLRAALRKGPRLSRL;
서열번호 6: LRAALRKGPRLSRL;
서열번호 7: ALRAALRKGPRLSRL;
서열번호 8: MLRAALRKGPRLSRM;
서열번호 9: LLRAALRKGPRLSRM; 및
서열번호 10: ALRAALRKGPRLSRM.
구체적인 일 실시예에서, 본 발명에 따른 미토콘드리아 타겟팅 펩타이드는, 알파-헬리칼 구조를 가지고, 양친성을 나타냄을 확인하였다(실시예 2).
본 발명의 펩타이드는 표적화 서열, 태그(tag), 표지된 잔기, 반감기 또는 펩타이드의 안정성을 증가시키기 위한 특정 목적으로 고안된 추가의 아미노산 서열도 포함할 수 있다. 또한, 본 발명의 펩타이드는 이펙터(effectors), 약물, 프로드럭, 독소, 펩타이드, 전달 분자 등의 커플링 파트너와 연결될 수 있다.
본 발명의 펩타이드는 당 분야에 널리 공지된 다양한 방법으로 획득할 수 있다. 상세하게는 유전자 재조합과 단백질 발현 시스템을 이용하여 제조하거나 펩타이드 합성과 같은 화학적 합성을 통하여 시험관 내에서 합성하는 방법, 및 무세포 단백질 합성법 등으로 제조될 수 있다.
본 발명의 펩타이드는 약학적으로 허용 가능한 염의 형태로 제조될 수 있다. 구체적으로 산을 첨가함으로써 염을 형성할 수 있고, 예를 들어 무기산(예: 염산, 히드로브롬산, 인산, 질산, 황산 등), 유기 카르복실산(예: 아세트산, 트리플루오로아세트산과 같은 할로 아세트산, 프로피온산, 말레산, 숙신산, 말산, 시트르산, 타르타르산, 살리실산), 및 산성 당(글루쿠론산, 갈락투론산, 글루콘산, 아스코르브산), 산성 폴리사카리드(예: 히알루론산, 콘드로이틴 설페이트, 아르기닌산), 콘드로이틴 설페이트와 같은 술폰산 당 에스테르를 포함하는 유기 술폰산(예: 메탄술폰산, p-톨루엔 술폰산) 등을 첨가하여 염을 형성할 수 있다.
본 발명의 펩타이드는 세포 내로 효과적으로 들어가기 위해서 내재화 서열 혹은 단백질 유입 도메인 혹은 세포막 투과 단백질에 연결될 수 있다.
따라서 다른 하나의 양태로서, 본 발명은 단백질 유입 도메인(Protein Transduction Domain)의 카르복시 말단에 상기 일반식 1의 펩타이드가 결합된 융합 단백질에 관한 것이다.
상기 단백질 유입 도메인과 일반식 1의 펩타이드는 화학적 또는 생물학적으로 융합될 수 있으며, 이러한 방법은 당 업계에 널리 알려진 공지기술을 제한 없이 이용하여 융합할 수 있다.
본 발명에서 사용된 용어, "단백질 유입 도메인"이란 지질 이중층, 마이셀(micelle), 세포막, 세포소기관막, 수포 멤브레인(vesicle membrane)을 통과하는 것을 촉진하는 폴리펩타이드, 폴리뉴클레오티드, 탄수화물 또는 유기/무기 화합물을 의미한다. 상기 단백질 유입 도메인은 수용체 비의존적 기전으로 세포막을 통과할 수 있는 단백질의 작은 부분을 포함하며, 다른 분자들과 결합하여 특정 분자를 세포외 공간에서 세포내 공간으로 또는 세포질에서 세포소기관 내로의 이동을 촉진하는 작용을 할 수 있다.
본 발명에 따른 상기 단백질 유입 도메인은 HIV-1 바이러스의 TAT (Trans Activator of Transcription) 단백질, 폴리아르기닌, 페너트라틴(Penetratin), HSV-1 구조단백질 VP22의 전사조절 단백질, PEP-1 펩타이드 및 PEP-2 펩타이드로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며 이에 제한되지 않는다. 바람직하게 상기 단백질 유입 도메인은 하기 서열번호 11 또는 12의 폴리펩타이드이다:
서열번호 11: YGRKKRRQRRR
서열번호 12: YARAAARQARA
상기 서열번호 11은 HIV의 TAT 단백질 유입 도메인으로서 11개의 아미노산 서열 도메인으로 구성되며, 분자량이 작기 때문에 세포 내부로 전달하고 싶은 단백질과의 융합에 적합하다.
본 발명에 따른 상기 융합 단백질은 세포막 투과능을 보유함과 동시에 미토콘드리아 내부로 국소화(localization)될 수 있는 타겟팅능을 보유하고 있으므로, 일종의 카르고(cargo) 분자, 또는 약물 전달체로서 유용하게 사용될 수 있다.
이러한 점에서 다른 하나의 양태로서, 본 발명은 단백질 유입 도메인(Protein Transduction Domain)의 카르복시 말단에 상기 일반식 1의 펩타이드가 결합되고, 상기 펩타이드의 카르복시 말단에 추가로 항산화제가 결합된 것인 융합 단백질에 관한 것이다.
구체적인 일 실시예에서 본 발명에 따른 미토콘드리아 타겟팅 서열과 서열번호 11로 구성된 융합 단백질은 높은 스코어로 미토콘드리아를 타겟팅하였으며, 추가로 GFP 또는 hMT1A를 담지하는 경우에도, 효율적으로 미토콘드리아를 타겟팅하였다(실시예 1).
또한, 구체적인 다른 실시예에서, 본 발명에 따른 미토콘드리아 타겟팅 서열과 서열번호 11 및 hMT1A로 구성된 융합 단백질은 웨스턴 블롯 및 면역세포화학 염색법에서 미토콘드리아로 전달되는 것을 확인하였다(실시예 6 및 7). 또한, 미토콘드리아에서 장기간 활성을 유지하는 것을 확인하였다(도 13).
또한, 구체적인 다른 실시예에서, 본 발명에 따른 미토콘드리아 타겟팅 서열은 hMT1A 뿐만 아니라, 세포질 항산화 단백질인 SOD1, 카탈레이즈, EPX, GPX, PD-관련 단백질인 PARK2 또는 LRRK2를 TAT-MTS와 결합한 후, 미토콘드리아 타겟팅 가능성을 예측하였다. 그 결과, 모든 단백질들은 거의 100%에 가까운 확률로 미토콘드리아로 타겟팅되는 것을 확인하였다(실시예 9).
따라서, 본 발명에 따른 단백질 유입 도메인과 결합된 신규 펩타이드 융합 단백질은 전달하고자 하는 화합물, 약물, 항체, 기타 물질들과 결합되어, 이들을 미토콘드리아 내부로 효과적으로 전달할 수 있다. 상기 융합 단백질에 결합하는 물질들에 특별한 제한은 없으며, 융합 단백질에 결합할 수 있는 물질이라면 어느 것이든 가능하다.
다른 하나의 양태로서, 본 발명은 신규 미토콘드리아 타겟팅 펩타이드, 단백질 유입 도메인 및 항산화제를 포함하는 융합 단백질을 포함하는 항산화용 조성물에 관한 것이다.
활성 산소종(ROS)는 대부분 미토콘드리아에서 생성되기 때문에, 항산화제가 결합된 본 발명에 따른 융합 단백질이 미토콘드리아 내로 전달되면 상기 항산화제의 효과를 극대화시킬 수 있는 장점이 있다.
본 발명에 따른 상기 항산화제는 예컨대 SOD1, 카탈레이즈, EPX, GPX, PARK2, LRRK2 또는 메탈로티오네인(metallothionein)일 수 있으며, 바람직하게 본 발명에 따른 상기 항산화제는 메탈로티오네인(metallothionein)이다. 보다 바람직하게, 상기 메탈로티오네인은 인간 메탈로티오네인이다.
본 발명에서 사용된 용어, "메탈로티오네인(Metallothionein, MT)"은 시스테인이 풍부한 저분자(3.5~14 kDa) 물질로서, 시스테인-X-시스테인, 시스테인-X-X-시스테인, 시스테인-시스테인의 구조가 반복되는 61개의 아미노산으로 구성되어 있으며, 2가 금속이온과 결합하는 20개의 시스테인 잔기를 포함하는 단백질을 의미한다. 메탈로티오네인은 중금속, 기아, 열 또는 감염과 같은 스트레스 환경에서 과발현된다. 메탈로티오네인은 금속 독성에 대한 생체 방어의 중요한 수단으로 생각되어져 왔으며, 또한 산화성 스트레스에 대한 방어 작용도 하는 것으로도 알려져 있다. 흔히 ROS의 산화성 손상에 대한 생물학적 방어는 ROS를 제거하는 단백질들, 금속이온을 격리시키는 분자들 및 손상된 세포 구성성분을 복구하는 효소들로 구성되어 있다. 이중 MT는 지금까지 많은 연구를 통해 산화성 스트레스에 대한 세포반응에서 항산화제 역할을 한다는 것이 증명되어 왔다.
또한, 최근 메탈로티오네인이 생체외(in vitro)와 생체내(in vivo)에서 세포와 조직을 당뇨병과 당뇨 합병증으로부터 보호할 수 있고, 이는 메탈로티오네인이 갖는 항-아포토시스(anti-apoptotic) 및 항산화능 때문인 것으로 보고되었다(K.G. Danielson et al., Proc Natl Acad Sci U S A. 79 (1982) 2301-04). 메탈로티오네인이 제거된 당뇨성 마우스(MT null diabetic mice)에 메탈로티오네인을 과발현시킨 결과, 당뇨성 심근병증은 감소되고, 심장의 악화된 허혈성 수축이 개선되었음이 보고된 바 있다(Q. Liang et al., Diabetes. 51 (2002) 174-181). 아연 또한 메탈로티오네인의 발현을 유도하고, 고혈당과 제2형 당뇨병에서 베타세포의 점진적 손상에 의해 유발된 당뇨성 손상으로부터 마우스를 보호할 수 있다. 또한 아연-메탈로티오네인은 생체외(in vitro)와 생체내(in vivo)에서 하이드록실 라디칼을 차단할 수 있음이 알려져 있다(C.G. Taylor et al., Biometals. 18 (2005) 305-312).
구체적인 일 실시예에서, 본 발명에 따른 인간 메탈로티오네인을 포함하는 융합 단백질을 세포에 투여한 결과, 세포 생존력 유지, ATP 생성 증가 및 티로신 하이드록실레이즈의 활성 회복을 나타내었다(실시예 10). 또한, 인간 메탈로티오네인을 포함하는 융합 단백질을 파킨슨 세포 모델에 투여한 결과, 미토콘드리아의 활성이 회복되는 것을 확인하였다(실시예 11, 도 7A 및 도 7B).
또한, 구체적인 다른 실시예에서, 본 발명에 따른 항산화제를 포함하는 융합 단백질을 마우스에 투여한 결과, 간의 미토콘드리아로 타겟팅(또는 표적) 전달되는 것을 확인하였으며(실시예 12), ROS의 제거 효과도 확인하였다(실시예 13).
또한, 구체적인 다른 실시예에서, 본 발명에 따른 항산화제를 포함하는 융합 단백질을 MPTP에 의해 유도된 파킨슨 병 동물 모델인 마우스에 투여한 결과, 행동학적으로는 정상에 유사한 수준으로 회복되는 것을 확인하였다. 또한, 뇌조직 분석에 의해서도 도파민 신경세포가 회복되는 것을 확인함으로써, 세포의 손상을 방지하는 것을 통한 파킨슨 병의 예방뿐 아니라 세포의 손상을 회복하는 것을 통해 파킨슨 병의 치료에도 사용될 수 있음을 확인하였다(도 15 및 실시예 14).
따라서, 본 발명에 따른 항산화제를 포함하는 융합 단백질은 산화적 스트레스로 유발되는 어떠한 질환, 또는 질병에도 예방 또는 치료제로 사용될 수 있으며, 특히, 상기 설명한 파킨슨 병과 같은 뇌질환과, 당뇨성 질환에 유용하게 사용될 수 있다.
다른 하나의 양태로서, 본 발명은 상기 항산화제를 포함하는 융합 단백질을 포함하는 산화적 스트레스로 유발되는 질환의 예방 또는 치료용 약학적 조성물을 이를 필요로 하는 인간을 포함하는 포유류에게 투여하여 산화적 스트레스로 유발되는 질환(예컨대 파킨슨 병과 같은 뇌질환과 당뇨성 질환 등)을 예방 또는 치료하는 방법에 관한 것이다. 특히, 본 발명은 상기 항산화제를 포함하는 융합 단백질을 포함하는 파킨슨병의 예방 또는 치료용 약학적 조성물을 개체에 투여하는 단계를 포함하는 파킨슨병의 예방 또는 치료하는 방법에 관한 것이다.
본 발명에서 용어 "개체"란 쥐, 가축, 인간 등을 포함하는 포유류 동물을 제한 없이 포함한다.
또한, 본 발명에 따른 약학적 조성물은 여러 경로를 통해 투여될 수 있다. 본 발명에서 투여는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며 상기 결합체의 투여 경로는 약물이 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 구체적으로, 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여 될 수 있으나, 이에 제한되지는 않는다. 그러나 경구 투여시, 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화하는 것이 바람직하다. 바람직하게는 주사제 형태로 투여될 수 있다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
본 발명에 따른 상기 항산화제를 포함하는 융합 단백질의 바람직한 투여량은 이를 필요로 하는 인간을 포함하는 포유류의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 또한, 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장, 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관 내 주사에 의하여 투여될 수 있으며 이에 한정되는 것은 아니다.
본 발명에 따른 항산화제를 포함하거나 또는 포함하지 않는 상기 융합 단백질은 카르복시 말단에 폴리히스티딘(poly-His) 도메인이 결합될 수 있다.
본 발명에 따른 항산화제를 포함하는 융합 단백질은, 미토콘드리아 내부로 전달된 이후에는 프로세싱되어 안정적으로 약물을 전달하는 특징이 있다.
구체적인 일 실시예에서, 본 발명에 따른 상기 융합 단백질은 미토콘드리아 매트릭스 신호 펩타이드 프로세싱 효소인 매트릭스 메탈로프로테아제로 프로세싱된 후에 미토콘드리아 내의 성숙한(mature) 형태인 7.6kDa으로 관찰되었다. 프로세싱 후에는 His-tag와 잔여 아미노산(AALGKL)을 포함하는 hMT1A이 되는 것을 확인하였다(실시예 8).
다른 하나의 양태로서, 본 발명은 단백질 유입 도메인(Protein transduction domain)을 코딩하는 폴리뉴클레오티드, 상기 미토콘드리아 타겟팅 펩타이드를 코딩하는 폴리뉴클레오티드, 및 항산화 단백질을 코딩하는 폴리뉴클레오티드가 순차적으로 결합되어 있는 재조합 폴리뉴클레오티드에 관한 것이다. 상기 재조합 폴리뉴클레오티드는 단백질 유입 도메인, 미토콘드리아를 타겟팅하는 신규 펩타이드 및 항산화 단백질을 코딩하는 공지 서열로부터 통상의 방법에 따라 제조할 수 있다. 특히, 본 발명의 재조합 폴리뉴클레오티드는 서열번호 13 또는 서열번호 14의 핵산 서열을 포함하는 것일 수 있다.
다른 하나의 양태로서, 본 발명은 상기 폴리뉴클레오티드를 포함하는 발현 벡터에 관한 것이다.
본 발명에서 사용된 용어, "발현벡터"란 적당한 숙주세포에서 목적 펩타이드를 발현할 수있는 재조합 벡터로서, 유전자 삽입물이 발현되도록 작동하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 의미한다. 본 발명의 발현벡터는 적합한 발현벡터가 일반적으로 가지고 있는 요소로서 프로모터, 오퍼레이터, 개시코돈 같은 발현조절 요소들을 포함한다. 개시 코돈 및 종결 코돈은 일반적으로 폴리펩타이드를 암호화하는 뉴클레오티드 서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다.
또한, 세포 배양액으로부터 단백질의 분리를 촉진하기 위하여 융합 폴리펩타이드의 배출을 위한 시그널 서열을 포함할 수 있다. 특이적인 개시 시그널은 또한 삽입된 핵산 서열의 효율적인 번역에 필요할 수도 있다. 이들 시그널은 ATG 개시코돈 및 인접한 서열들을 포함한다. 어떤 경우에는, ATG 개시 코돈을 포함할 수 있는 외인성 번역 조절 시그널이 제공되어야 한다. 이들 외인성 번역 조절 시그널들 및 개시 코돈들은 다양한 천연 및 합성 공급원일 수 있다. 발현 효율은 적당한 전사 또는 번역 강화 인자의 도입에 의하여 증가될 수 있다.
발현벡터는 통상의 모든 발현벡터를 사용할 수 있다. 예를 들어, 플라스미드 DNA, 파아지 DNA 등이 사용될 수 있다. 플라스미드 DNA의 구체적인 예로는 pUC18, pIDTSAMRT-AMP 같은 상업적인 플라스미드를 포함한다. 본 발명에 사용될 수 있는 플라스미드의 다른 예로는 대장균 유래 플라스미드(pYG601BR322, pBR325, pUC118 및 pUC119), 바실러스 서브틸리스(Bacillus subtilis)-유래 플라스미드(pUB110 및 pTP5) 및 효모-유래 플라스미드(YEp13, YEp24 및 YCp50)가 있다. 파아지 DNA의 구체적인 예로는 λ-파아지(Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11 및 λZAP)가 있다. 또한, 리트로바이러스(retrovirus), 아데노바이러스(adenovirus) 또는 백시니아 바이러스(vaccinia virus)와 같은 동물 바이러스, 배큘로바이러스(baculovirus)와 같은 곤충 바이러스가 또한 사용될 수 있다. 이러한 발현벡터는 숙주 세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용하면 된다.
다른 하나의 양태로서, 본 발명은 상기 발현 벡터로 형질전환된 숙주세포에 관한 것이다.
본 발명에서 사용된 용어, "형질전환"은 상기 폴리뉴클레오티드 절편이 숙주세포의 게놈 안으로 이동하여 목적하는 펩타이드를 발현할 수 있도록, 유전적으로 안정한 유전을 일으키는 것을 말한다.
본 발명의 항산화제를 포함하는 융합 단백질은 예컨대 다음과 같은 방법으로 제조할 수 있다:
(1) 서열번호 1 내지 10으로 이루어진 군에서 선택된 1종의 아미노산 서열로 표시되는 미토콘드리아 타겟팅 서열을 코딩하는 폴리뉴클레오티드 5' 말단에 서열번호 11 또는 서열번호 12의 아미노산 서열로 표시되는 단백질 유입 도메인을 코딩하는 폴리뉴클레오티드가 결합되어 있고, 상기 서열번호 1 내지 10으로 이루어진 군에서 선택된 1종의 아미노산 서열로 표시되는 미토콘드리아 타겟팅 서열을 코딩하는 폴리뉴클레오티드의 3' 말단에는 항산화 단백질을 코딩하는 폴리뉴클레오티드가 결합되어 있는 재조합 폴리뉴클레오티드를 포함하는 재조합 발현 벡터로 숙주세포를 형질전환하는 단계;
(2) 상기 형질전환된 숙주세포를 배양하여 항산화 융합 단백질을 발현하는 단계; 및
(3) 발현된 항산화 융합 단백질을 정제하는 단계.
본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 있다.
상기 숙주세포는 본 발명의 펩타이드를 발현하도록 하는 한 특별히 제한되지는 않으며 바람직하게는 미생물일 수 있다. 본 발명에 사용될 수 있는 미생물의 특정한 예로는 대장균(E. coli)과 같은 에스케리키아(Escherichia)속 세균 바실러스 서브틸리스(Bacillus subtilis)같은 바실러스(Bacillus)속 세균 슈도모나스 푸티다(Pseudomonas putida)같은 슈도모나스(Pseudomonas)속 세균 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe)같은 효모 동물세포 및 곤충 세포가 있다.
다른 하나의 양태로서, 본 발명은 파킨슨 병의 예방 또는 치료용 약제를 제조하는데 상기 항산화제가 결합된 융합 단백질의 용도에 관한 것이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의하여 본 발명의 내용이 한정되는 것은 아니다.
실시예 1: 미토콘드리아 타겟팅 신규 서열(MTS, Mitochondria Targeting Sequence)의 제조
미토콘드리아로의 타겟팅 가능성을 시험하기 위하여, 세포막 투과성의 단백질 유입 도메인인 TAT 단독과, (TAT + 미토콘드리아 타겟팅 서열) 및 (TAT + 미토콘드리아 타겟팅 서열 + 타겟팅 하고자 하는 단백질)로 구분하여 각각을 제조하였다. 이하에서, 미토콘드리아 타겟팅 서열(Mitochondria targeting sequence)은 약어 'MTS'로 기재하였다.
본 발명에 따른 MTS는 인공적으로 제조하였으며, 이들의 미토콘드리아 타겟팅 가능성은 MiroProt Ⅱ 프로그램을 사용하여 가상으로 예측하였다. 구체적으로 본 발명에 따른 미토콘드리아 서열로는 서열번호 2(LLRAALRKAAL)로 구성된 미토콘드리아 타겟팅 서열(aMTS)을 사용하였고, 비교예로는 미토콘드리아 말레이트 디하이드로게나제(mMDH), 숙시네이트 디하이드로게나제 서브유닛 알파(SDHA), 미토콘드리아 알데히드 디하이드로나제(ALDH2)로부터 유래한 서열들을 사용하였다. 이들 서열 각각과 TAT를 결합하여 가상의 TAT-MTS를 제조하였고, 미토콘드리아 타겟팅 가능성을 계산하여 도 1B에 나타내었다.
또한, 상기 TAT-MTS 뿐만 아니라, 단백질을 담지한 경우에도 미토콘드리아 타겟팅능이 보유되는 지 확인하기 위하여, 상기에서 제조한 서열들에 추가로 GFP(green fluoroscence protein) 또는 hMT1A(human metallothionein 1A)의 단백질을 연결하였다. 연결구조는 도 1A에서와 같이 TAT-MTS-hMT1A의 구조 형식으로 제조하였다. TAT-단백질과 TAT-MTS-단백질의 미토콘드리아 타겟팅 가능성은 MitoProt Ⅱ를 사용하여 계산하였고, 그 결과는 도 1B에 나타내었다.
도 1B에서 확인할 수 있듯이, 단백질을 연결하지 않은 TAT-mMDH, TAT-SDHA, TAT-ALDH2 및 TAT-aMTS는 모두 100%에 가까운 확률로 미토콘드리아를 타겟팅하였다. 그리고 GFP를 담지한 경우, TAT의 미토콘드리아 타겟팅 가능성은 56.8%로 현저하게 낮아졌으나, TAT-mMDH, TAT-SDHA, TAT-ALDH와 같이 MTS와 연결한 경우는 98% 이상 미토콘드리아로 타겟팅하는 것으로 예측되었다. 한편 hMT1A를 담지한 경우, TAT-mMDH-hMT1A는 67.7%, TAT-SDHA-hMT1A는 77.1% 및 TAT-ALDH2-hMT1A는 87.6%의 타겟팅 확률을 나타내어 미토콘드리아 타겟팅 활성이 현저하게 낮아지는 것을 확인하였다. 한편, TAT-aMTS-hMT1A 는 100%의 타겟팅 확률을 나타내어, GFP가 아닌 전달 단백질을 담지하는 경우에도, 미토콘드리아 타겟팅 활성을 효과적으로 보유하는 것을 확인할 수 있었다.
상기 서열과 TAT, TAT-mMDH, TAT-SDHA 및 TAT-ALDH2와의 사이즈의 비교는 도 1C에 나타내었다. 도 1C에 나타나듯이, 97%의 타겟팅 스코어를 나타낸 서열번호 2의 LLRAALRKAAL는 총 11개의 아미노산으로 구성되어 있으며, mMDH, SDHA 또는 ALDH2 보다 현저히 작은 사이즈를 가지는 것을 확인할 수 있었다.
실시예 2: 미토콘드리아 타겟팅 서열(MTS)의 구조 예측
TAT-MTS가 미토콘드리아로 전달되는지를 확인하기 위하여 인 실리코 상에서 TAT-MTS 펩타이드의 이차 구조를 예측하였고 그 결과를 도 2에 나타내었다.
그 결과, COOT 프로그램은 TAT-MTS 펩타이드가 알파-헬리칼 구조를 나타내는 것을 보여주었다(도 2B). 또한, 헬리칼 윌 프로젝션(Helical wheel projection)은 TAT-MTS 펩타이드 헬릭스가 양친성을 나타냄을 보여주었다(도 2C). 또한, MitoProtⅡ 프로그램은 TAT-MTS와 hMT1A간에 프로세싱 사이트(processing site)가 있다는 것을 예측하였다(도 2A). 상기 프로세싱 사이트는 밑줄(underbar)로 표시된 부분이며, TAT-MTS-hMT1A가 미토콘드리아 내부로 전달되면, 잘리게 되는 처리 부분에 해당한다. 상기 구조 분석 결과를 통하여, 본 발명자들은 본 발명에 따른 신규 TAT-MTS 펩타이드가 MT1A를 미토콘드리아로 전달하기 충분한 능력을 가진다고 판단하였다.
실시예 3: 세포 배양
SK-Hep1(인간 간세포 암종 세포)는 10% 우태아 혈청(FBS), 항생제(100㎍/㎖ 페니실린/스트렙토마이신의 혼합물)로 보충된 고 글루코스(4.5g/L) Dulbecco's Modified Eagle's Medium (DMEM)에서, 5%의 CO2, 37℃의 가습 대기에서 배양하였다. SH-SY5Y(인간 신경아세포종 세포)는 10% FBS와 항생제로 보충된 DMEM/F12에서, 5%의 CO2, 37℃에서 배양하였다.
실시예 4: 형질도입(Transduction)
이하에서, 'TAT-MTS-hMT1A'는 약어 'TMhM'로 기재하였다.
HindⅢ-TMhM-6xHis-BamHⅠ(바이오니어, 대한민국)의 합성 유전자는 포유류 발현용 pcDNA 3.1 (Progmega)로 클로닝하였다. 합성 유전자의 서열은 다음과 같다(서열번호 13):
AAG CTT ATG GGC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA CGA TTG TTG CGC GCT GCC CTG CGC AAG GCT GCC CTG ATG GAC CCC AAC TGC TCC TGC GCC ACT GGT GGC TCC TGC ACC TGC ACT GGC TCC TGC AAA TGC AAA GAG TGC AAA TGC ACC TCC TGC AAG AAG AGC TGC TGC TCC TGC TGC CCC ATG AGC TGT GCC AAG TGT GCC CAG GGC TGC ATC TGC AAA GGG GCA TCA GAG AAG TGC AGC TGC TGT GCC CAT CAT CAT CAT CAT CAT TAG GGA TCC
pcDNA3-TMhM의 플라스미드는 Superfect® 형질도입 시약(QIAGEN, Valencia, CA) 사용하여 6-웰 플레이트에서 70%의 컨플루언트로 SK-Hep 세포에 형질도입시켰다. 2주 동안 G418 (1000㎍/㎖)을 사용하여 안정적인 세포들을 선별하였다. 플라스미드 pcDNA3.1-형질도입된 세포들은 대조군으로 사용하였다. 형질도입된 세포들은 면역화학법 또는 웨스턴 블롯을 사용하여 분석하였다.
실시예 5: Zn-TMhM 단백질의 제조
NcoⅠ-TAT-aMTS-HindⅢ-hMT1A-XhoⅠ (바이오니어, 대한민국)의 합성 유전자는 pET28a(+) (Clontech, CA, USA)로 클로닝하였다. 합성 유전자의 서열은 다음과 같다(서열번호 14):
CC ATG G GC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA CGA TTG TTG CGC GCT GCC CTG CGC AAG GCT GCC CTG GGC AAG CTT ATG GAC CCC AAC TGC TCC TGC GCC ACT GGT GGC TCC TGC ACC TGC ACT GGC TCC TGC AAA TGC AAA GAG TGC AAA TGC ACC TCC TGC AAG AAG AGC TGC TGC TCC TGC TGC CCC ATG AGC TGT GCC AAG TGT GCC CAG GGC TGC ATC TGC AAA GGG GCA TCA GAG AAG TGC AGC TGC TGT GCC CTC GAG .
다른 운반 단백질 클로닝을 위하여 HindⅢ 위치는 aMTS와 hMT1A의 사이에 삽입하였다. pET28a-TMhM 플라스미드는 E.coli 주 BL21 (DE)pLysS (Novagen, Madison, WI)으로 형질도입시켰고, LB 배지에서 OD600nm = 0.4~0.6이 될 때까지 4시간동안 37℃에서 50㎍/㎖의 암피실린과 함께 배양하였다. 단백질 발현을 유도하기 위하여 배지에 이소프로필-베타-D-티오-갈락토사이드(IPTG, 1mM)를 가하였고, 세포들은 26℃에서 하룻밤동안 배양하였다. MT1A의 안정성을 증가시키기 위하여 유도 중에 1mM의 ZnSO4 (Sigma, St Louis, MO)를 가하였다. 세포 펠렛은 원심분리로 수집하여 100mM의 페닐메틸술포닐 플로라이드(PMSF)의 존재 하에 용해 버퍼에서 분산시켰다. 이어서, 30초씩 8번 초음파처리하였다. 상청액은 0.45㎛ 필터로 여과하였고, FPLC (Bio-Rad, Hercules, CA)와 함께 Ni-NTA 수지 컬럼을 사용한 고정화 금속 친화 크로마토그래피(Immobilized Metal Affinity Chromatography)로 정제하였다. 20% 글리세롤과 1mM PMSF를 함유한 pH 7.4의 인산 완충 식염수에 대하여 3,500mw의 컷오프(cutoff) 값을 갖는 멤브레인(Spectrum Laboratories, CA)을 사용하여 투석을 통하여 정제된 단백질로부터 염을 제거하여 Zn-TMhM 단백질을 제조하였다. 4℃에서 보관하기 전에 상기 단백질 제제에 프로테아제 인히비터 칵테일(Roche, Switzerland)를 가하였다.
본 발명에서 사용된 Zn-TMhM 단백질을 Maldi-TOF/Ms/Ms로 확인하여 human MT1A임을 확인하였다(도 12).
실시예 6: 미토콘드리아로의 로컬리제이션(Localization) 확인
TAT-MTS가 hMT1A를 미토콘드리아로 전달하는지 시험하기 위하여, SK-Hep1 세포에서 플라스미드 형질도입으로 His-tag한 TMhM를 과발현시켰다. 구체적으로 6-웰 플레이트에서 유리 커버 슬립상에 자란 세포들은 2μM Zn-TMhM로 1시간 동안 처리하고, 웨스턴 블롯 분석 및 레이저 주사 공초점 현미경으로 결과를 확인하였다.
미토콘드리아의 분리
SK-Hep1 세포의 미토콘드리아는 분별 원심분리(differential centrifugation)로 준비하였다. 구체적으로, 세포를 수확하고 미토콘드리아 분리 완충액(MIB, 0.25M 수크로오스, 0.025M 트리스 및 1mM EDTA, pH 7.4) 1㎖에서 균질화하였다. 세포 파쇄액(cell homogenate)은 10분 동안 3,000rpm으로 원심분리하였고, 상청액을 10분 동안 9,500rpm으로 원심분리하였다. 미토콘드리아 펠렛은 MIB로 재분산시켰고 단백질 농도는 BCA 방법(Pierce, Rockford, IL)으로 확인하였다.
웨스턴 블롯 분석
전체 세포 파쇄물(30㎍) 또는 미토콘드리아 파쇄물(10㎍)은 15% SDS-PAGE로 분리하여 웨스턴 블롯으로 분석하였고, 화학발광 시스템(ECL, Amersham Bioscience, NJ)으로 증강시켰다. 6xHis에 대한 일차 항체(1:1000, Cell Signaling Technology, Beverly, MA), Hsp60에 대한 일차 항체(1:1000, Santa Cruz)는 상업적으로 입수하였다. HRP-컨쥬게이티드 이차 항체는 Cell Signaling Technology (Beverly, MA)에서 구입하였다. 단백질 등가 로딩은 항-베타-액틴 항체(Sigma Co., St. Louis, MO)에서 확인하였고, 그 결과를 도 3A에 나타내었다.
그 결과, 도 3A에 나타나듯이 형질도입된 세포로부터 분리된 미토콘드리아 분획은 웨스턴 블롯 상에서 MT1A-6xHis의 선명한 밴드를 확인할 수 있었다.
레이저 주사 공초점 현미경 관찰
2μM Zn-TMhM로 1시간 동안 처리한 세포를 DPBS로 세척 후에 10% FBS를 함유하는 완전 배지에서 20분동안 최종 농도 300nM가 될 때까지 MitoTracker Orange (Molecular Proves, Eugene, OR)로 염색하였다. 세포들을 4%의 얼음처럼 차가운 파라포름알데히드를 사용하여 10분동안 고정시키고, 0.1%의 트리톤 X-100으로 침투(permeability)시켰다. 세포들은 실온에서 1시간 동안 트리스-완충 식염수 중의 5% BSA로 커버하였고, 이어서 토끼 다클론 6xHis 항체(Cell Signaling Technology, Beverly, MA, USA; 1:500)와 함께 배양하였다. 세척 후에, Alexa Fluor 488 (1:1000, Molecular Probes)에 컨쥬게이티드된 적당한 이차 항체로 검출하였다. 핵은 실온에서 PBS 중의 Hoechst (2㎍/㎖ Molecular Probes, Eugene, OR)로 5분동안 염색하였다. 그 후 슬라이드를 PBS로 두 번 세척하고, DAKO 형광 증가(mounting) 배지(DAKO corporation, Carpinteria, CA)로 증가시켰다. 표본들은 Hoechst, 6xHis 및 MitoTracker 각각에 대하여 405nm, 488nm 및 555nm에서 레이저 주사 공초점 현미경(Carl Zeiss, Germany)을 사용해서 관찰하였고 그 결과를 도 3B에 나타내었다.
그 결과, 도 3B에 나타나듯이, 면역화학적 염색도 과발현된 TMhM-6xhis의 미토콘드리아 로컬리제이션(lacalization, 국소화)을 증명하였다. 이로부터, 인공 TAT-MTS는 신규한 미토콘드리아 타겟팅 서열로서 작용할 수 있으며, TMhM가 미토콘드리아로 타겟팅되는 능력을 보유하는 것을 확인하였다.
실시예 7: E.coli 에서 발현 및 정제한 Zn-TMhM의 확인
Zn-TMhM의 E.coli 에서 발현 및 정제
TMhM의 단백질 전구약물로서의 가능성을 확인하기 위하여, Zn-TMhM을 E.coli에서 발현시키고, 친화 크로마토그래피로 정제하였다. 구체적으로 ZnSO4의 존재 하에 E.coli에서 TMhM 단백질을 발현시키고, Ni-NTA 친화 컬럼으로 정제하였다. Zn-TMhM 단백질의 순도는 쿠마시 블루(Coomassie blue) 염색과 웨스턴 블롯으로 확인하여 도 4A에 나타내었다.
그 결과, 도 4A에 나타나듯이, 쿠마시 블루 염색 및 웨스턴 블롯 모두 Zn-TMhM의 존재 및 이의 순도를 확인할 수 있었다.
Zn-TMhM의 로컬리제이션 확인
다음으로, SK-Hep1 세포를 재조합 Zn-TMhM (2μM)과 1시간 동안 배양하였고, Zn-TMhM의 로컬리제이션을 분석하여 그 결과를 도 4B에 나타내었다. 대조군(CTL)으로 DPBS-처리군을 사용하였다.
그 결과, 도 4B에 나타나듯이, His-tag 항체를 사용한 웨스턴 블롯에서 두 가지 다른 사이즈(10.1과 7.6kDa)의 Zn-TMhM 단백질들이 전세포 파쇄물에 존재하고, 반면 미토콘드리아에서는 7.6kDa의 Zn-TMhM만이 존재하는 것을 확인하였다.
또한, 정제한 단백질들이 두 가지 다른 세포 타입(SK-Hep1, SH-SY5Y)에서도 여전히 미토콘드리아 내의 로컬리제이션을 유지하는지 확인하기 위하여 Mitotracker 염색 후에, His-tag된 단백질 Zn-TMhM의 면역세포화학염색을 수행하고 레이저 주사 공초점 현미경으로 관찰하였다(×400, Scale bar = 10㎛).
그 결과, 도 4C에 나타나듯이, 공초점 이미지들은 SK-Hep1, SH-SY5Y 모두에서 Zn-TMhM이 미토콘드리아로 로컬리제이션 되는 것을 증명하였다. 이는, 불과 1시간의 짧은 배양시간 동안, 외인성 Zn-TMhM이 MT1A를 미토콘드리아 내부로 전달한다는 것을 의미하며, 또한 TAT-MTS가 단백질 약물을 세포와 미토콘드리아 막을 효과적으로 투과시킨다는 것을 의미한다.
TAT-MTS의 미토콘드리아에서의 활성 유지
SK-Hep1 세포를 dsRed2-mito 플라스미드로 형질감염한 stable cell 을 준비하였다(dsRed2-mito-SK-Hep1). 이 세포는 다른 처리 없이 미토콘드리아를 관찰할 수 있다. 35mm 플레이트 내 커버 글라스에서 배양한 ds-Red2-mito-SK-Hep1 세포를 Tat-aMTS-GFP (TM-GFP) 단백질 (2μM 최종농도)로 도 13에 표시한 시간 (1h~72h) 동안 처리하였다. 처리한 후에는 TM-GFP를 포함한 배지를 제거하고 PBS로 씻은 다음, TM-GFP 단백질이 포함되어 있지 않은 배지를 가하여 다시 24 ~ 72시간 동안 배양하였다. 각 처리시간 별로 커버 글라스를 회수하여, 세포를 고정시킨 다음 공초점 현미경(confocal microscope)으로 관찰하였다.
그 결과, 도 13에서 확인할 수 있듯이 TM-GFP 단백질은 48시간 이후부터 72시간까지 미토콘드리아에 계속 존재하였으며, 배지에서 TM-GFP 단백질을 제거한 다음 48시간까지는 미토콘드리아에 존재하지만 72시간이 지나면 완전히 분해되어 사라지는 것을 관찰하였다. 결과는 본 발명의 Tat-aMTS peptide (TM)을 포함한 융합단백질이 72시간까지 활성을 보유하고, 시스템에서 제거하면 소실될 수 있음을 증명한다.
실시예 8: 세포 내 프로세싱의 확인
대부분의 MTS들이 미토콘드리아로의 전달 후, 그들의 전구체 단백질로부터 제거되기 때문에 도 4B에서 예측되는 바와 같이(두 가지 사이즈의 10.1과 7.6kDa 발견) TAT-MTS가 미토콘드리아 내부에서 TMhM으로부터 제거(프로세싱)될 가능성이 높다. 따라서, 이를 확인하기 위하여 미토콘드리아에서 형질도입된 MT1A의 분자량을 확인하였다.
그 결과, 도 5A는 미토콘드리아 내에서 TMhM 단백질의 분자량이 7.6kDa인 것을 명확하게 나타내었다. 즉, Zn-TMhM 전구체(precursor)의 분자량은 10.1kDa로 예측되는데, 미토콘드리아 매트릭스 신호 펩타이드 프로세싱 효소인 매트릭스 메탈로프로테아제로 프로세싱된 후에는 미토콘드리아 내의 성숙한(mature) 형태는 7.6kDa가 되는 것이다. 이와 같은 구조(또는 길이)상의 변화를 도 5B에 나타내었다. 도 5B의 화살표는 프로세싱 사이트를 의미하는 것이고, 미토콘드리아 내부에서 Zn-TMhM이 프로세싱되면 His-tag와 잔여 아미노산(AALGKL)을 포함하는 hMT1A이 된다.
실시예 9: 여러가지 단백질들의 미토콘드리아 타겟팅 확인
TAT-MTS가 다른 단백질과 융합되는 경우에도, 세포 투과성과 미토콘드리아 로컬리제이션 능력을 보유하는지 확인하기 위하여, 인 실리코 분석을 수행하였다. 후보 단백질 약물로는 세포질 항산화 단백질인 SOD1, 카탈레이즈, EPX, GPX와 PD-관련 단백질인 PARK2 및 LRRK2를 TAT-MTS와 가상으로 컨쥬게이트시키고, 미토콘드리아 타겟팅 점수를 MitoProtⅡ으로 계산하였다.
표 1
Figure PCTKR2013007809-appb-T000001
그 결과, 상기 표 1에 나타나듯이, 모든 후보자 단백질들은 거의 100%에 가까운 미토콘드리아 타겟팅 가능성을 보여주었다. 이로부터, 본 발명의 미토콘드리아 타겟팅 서열이 결합(또는 연결)되는 물질에 상관없이 우수한 미토콘드리아 타겟닝 활성을 보유하고 있으며, 나아가 여러가지 단백질 약물의 전달에 유용하게 사용될 수 있음을 알 수 있었다.
실시예 10: 세포 생존력 및 티로신 하이드록실레이즈에 대한 영향 확인
세포 생존력 평가(MTT assay)
MTT 시험은 살아있는 세포에서 미토콘드리아 디하이드로게나아제의 활성을 측정하는 방법이다. 0.5% FBS를 함유한 DMEM-F12의 96-웰 플레이트에 있는 SH-SY5Y 세포(1×105 세포/웰)는 1mM의 1-메틸-4-페닐-2,3-디하이드로피리디니움 이온(MPP+)를 24시간 동안 처리하였다. 그 후, 세포들을 정제된 TMhM과 함께 24시간 동안 배양하였고, PBS 중의 0.2㎎/㎖의 3-(4,5-디메틸티아졸-2-일)-2,5-디페닐-테트라졸리움 브로마이드(MTT, Sigma Co., St. Louis, MO)와 4시간 동안 배양하였다. 살아있는 세포에 의해 형성된 MTT 포르마잔 침전물은 100㎕의 0.04N HCL/이소프로판올에 용해시켰다. 흡광도를 540nm로 하여 ELISA 마이크로플레이트 리더기(Molecular Devices, Sunnyvale, CA)로 측정하였다.
그 결과, 도 6에서 나타나듯이, SH-SY5Y 세포들에서, Zn-TNhM의 24시간 처리는 미토콘드리아 NADH 디하이드로게나제의 활성(MTT)를 용량 의존적으로 증가시켰다(도 6A 및 6B). 48시간 및 72시간 이상의 더 긴 처리는 MTT 활성을 변화시키지 않았으며, 이는 Zn-TNhM가 48시간 후에도 그 생리학적 활성을 충분히 보유하고 있는 것을 의미한다.
세포내 ATP 측정
ATP 생물발광 체세포 시험 키트(bioluminescent somatic cell assay kit, Sigma Co., St. Louis, MO)를 사용하여 루시페린-루시퍼라아제 반응을 통해 세포내 ATP 농도를 측정하였다. 구체적으로, 100㎕의 세포 파쇄물을 100㎕의 루시페린-루시퍼라아제 반응 완충액과 혼합하고, 10분동안 20℃에서 배양하였다. LB 9501 Lumat luminometer (Berthold, Badwildbad, Germany)로 형광 신호를 측정하였다. 신호에서 세포가 없는 배지를 포함하는 대조군 웰의 배경 형광 값은 빼고 계산하였고, ATP 양은 단백질 농도로 정규화하였다. 모든 데이타는 대조군 %로서 표지하였다.
그 결과, 도 6C에 나타나듯이 Zn-TMhM의 처리는 용량 의존적으로 세포내 ATP의 함량을 증가시키는 것을 확인할 수 있었다.
티로신 하이드록실레이즈(TH)의 발현 양상 확인
도파민 합성의 제한효소이면서, 동시에 도파민성 신경의 생존 마커인 티로신 하이드록실레이즈(TH)의 발현은 웨스턴 블롯으로 확인하였다. 대조군(CTL)은 DPBS-처리군을 사용하였다.
그 결과, 도 6D에 나타나듯이, 6xHis와 β-액틴은 Zn-TMhM과 로딩 대조군의 존재를 보여주었고, 이로써 티로신 하이드록실레이즈의 발현이 Zn-TNhM에 의해서 변화하지 않았다는 것을 확인할 수 있었다.
실시예 11: 파킨슨 세포 모델에서 미토콘드리아의 활성 회복 확인
Zn-TMhM의 치료학적 효능은 MPP+ 유도 SH-SY5Y 세포를 사용하여 시험하였다. MPP+는 파킨슨병을 모방하기 위해 도파민계 신경 세포에서 미토콘드리아 손상을 유도하는데 유용하다. Zn-TMhM 처리 24시간 전에 1mM의 MPP+를 처리하였고, MPP+ 매개 손상으로부터 회복 정도를 모니터링하였다.
그 결과, 도 7A와 7B에 나타나듯이, Zn-TMhM는 용량 의존적으로 MTT의 활성과 ATP 함량을 회복시켰다. 흥미롭게도, 도 7D에 나타나듯이, TH 발현은 4μM의 Zn-TMhM에서 완전히 회복되었다. 이는 Zn-TMhM이 도파민성 신경의 활성을 효과적으로 회복시키는 것을 의미하는 것이며, 상기 Zn-TMhM이 파킨슨병의 치료에 매우 강력한 후보물질 중 하나라는 점을 시사한다.
실시예 12: 마우스에서 미토콘드리아 타겟팅 효과 확인
Zn-TMhM 단백질을 마우스에 투여하였을 경우, 실제로 조직과 미토콘드리아로 분포, 타겟팅되는 지를 확인하였다. 구체적으로, C57/BL6 마우스에 Zn-TMhM를2mg/kg 농도로 IP 주사(복강주사)하고, 24시간 후에 희생하여 간 조직에서 분별 원심분리(differential centrifugation) 방법으로 미토콘드리아를 분리하였다. 간 전체 조직 파쇄물(liver lysate)과 미토콘드리아 분획 (Liver mito)은 SDS-PAGE 및 웨스턴 블롯으로 확인하였다. 사용한 항체는 His-Tag(6xHis)였다. β-액틴과 TOM20 은 각각 간 파쇄물과 미토콘드리아 분획물의 로딩 대조군이다.
그 결과, 도 8에 나타나듯이, 투여한 Zn-TMhM이 간 및 간의 미토콘드리아에 존재하는 것이 확인되었다. 이로써, Zn-TMhM을 투여시, 조직으로 효과적으로 전달되고, 나아가 약물을 미토콘드리아 내부로 타겟팅하여 전달하는 것을 확인할 수 있었다.
실시예 13: 미토콘드리아 타겟팅 서열의 ROS 효과 확인
Zn-TMhM 단백질이 미토콘드리아 기능을 회복시키는지 확인하기 위하여 miR-24를 과발현시켜 미토콘드리아의 기능을 저하시킨 신경세포를 대상으로 실험을 수행하였다. 상기 신경세포에 Zn-TMhM (0, 1 및 2μM)을 24시간 동안 처리하고, 1μM DCF-DA 와 0.5μM Hoechst 33342을 사용하여 37℃에서 1시간 동안 염색하였다. DCF-DA는 형광 세기를 485nm/535nm, Hoechst 33342는 355nm/460nm에서 측정하였고, 그 후 DCF-DA/Hoechst의 비율로 ROS 양을 정량하였다.
그 결과, 도 9에 나타나듯이 Zn-TMhM이 대조군에 비해 약 36% 가량 증가한 ROS를 15% 이상 감소시키는 것을 확인하였다.
비교 실시예 1:
비교 실시예로서 TAT, 마우스 metallothione (MT1), MTS(ITMVSAL)을 사용하여, 미토콘드리아 타겟팅 서열을 제조하였다. 상기 서열의 구조 모식도는 도 10에 나타내었다.
E.coli에서 생산한 각각의 MT (metallothionein), TMT (TAT-metallothionein), TMM (TAT-MTS-metallothionein)을 세포(Ds-Red2-mito-transfected cell)에 4시간(도 10A), 24시간(도 10B) 동안 처리한 후, His-Tag 항체로 염색하여 레이저 공초점 주사 현미경으로 관찰하였다.
그 결과, 도 11에서 확인할 수 있듯이 MT, TMT, TMM 의 발현 위치의 변화가 거의 없었으며, 모두 세포질(cytoplasm)에서 발견되었을 뿐, 24시간이 경과한 이후에는 오히려 핵 (nucleus)에서 주로 분포하는 것을 확인할 수 있었다.
실시예 14: 파킨슨 병 동물 모델에서의 치료 효과 확인
마우스 사육
8주령의 C57BL/6 수컷 마우스(19-22 g)를 분양받아 경희대학교 약학대학의 동물 사육실에서 1 주일 이상 사육하여 적응시켜 사용하였으며, 물과 사료는 자유롭게 섭취하도록 하였고, 사육 조건은 온도(22±2 ℃), 습도(53±3 %)로 유지하였다. 한편, 명암주기(12 시간)는 자동적으로 조절되도록 하였다.
MPTP에 의해 유도된 파킨슨병 동물 모델 도파민 신경세포 회복
분리 정제한 단백질인 Zn-TMhM 이 파킨슨병의 증상을 회복하는지를 MPTP-유도 파킨슨병 마우스 모델에 적용하여 확인하였다. 구체적으로, 마우스(8주령, n=6)에 MPTP를 복강에 주사하여 만든 PD 마우스 모델 (acute model, 20mg/kg/injection, 2시간 간격 4회 복강주사)을 준비하였다. 주사한지 1주일 후 Zn-TMhM 3ug 을 오른쪽 흑질 (Substantia nigra, SN)부위에 stereotaxic injection 하였다. Zn-TMhM 주입 후 3일 후에 행동실험 (rotarod test)를 실시하고, 뇌조직을 적출하여 실험을 진행하였다. 자세하게는, 행동실험과 뇌조직 관련 실험은 하기와 같이 실시하였다.
MPTP 투여에 의한 파킨슨병 동물 모델에서 Zn-TMhM의 치료 효능
마우스를 제1군(대조군), 제2군(MPTP-대조군), 제3군 (MPTP-Zn-TMhM 투여군)의 세 개의 군으로 나누었으며, 각 실험군 당 6마리씩 배분하였다. 실험 시작 2일 전 Rotarod 행동 실험의 전-훈련(pre-training)을 실시하였다. 실험일(7D, Day 7)에 제1군은 PBS 10 ㎕, 2군과 3군은 MPTP(20 mg/kg/injection)을 2시간 간격으로 4회 복강주사하였다. 주사한지 1주일 후 Zn-TMhM(3 ㎍/2 ㎕ PBS)을 오른쪽 흑질(Substantia nigra, SN) 부위에 Stereotaxic 주입하였다. 다시 3일 후에 행동실험(Rotarod 실험)을 진행하였다. 실험의 동물들의 처리 조건 등은 하기 표 2와 같고, 시계열적인 조건은 도 14에 나타난 바와 같다.
표 2
Figure PCTKR2013007809-appb-T000002
상기 표 2에 기재한 대로 처리하고, 도 14의 실험을 거쳐 행동학적 데이터를 수집한 다음 16일째 되는 날(D16) 마우스를 희생하여 조직을 채집하였다.
파킨슨병 동물모델의 행동 실험
파킨슨병 동물 모델에서 감각운동의 협조능력(Sensorimotor coordination)을 측정하여, 운동저하(hypokinesia)를 모니터하기 위하여, Rotarod test를 진행하였다.
회전기구는 회전축(지름 7.3 cm)과 5 마리의 마우스를 한번에 테스트하기 위하여 5개의 각각의 구역으로 이루어져 있었다. 마우스를 회전기구에서 하루에 두번씩 2일에 걸쳐 훈련시킨 후(훈련 시 회전 속도 1일째-4 rpm, 2일째-20 rpm), 3일째에 해당하는 실전 실험시에는 회전 속도를 25 rpm으로 증가시켰다. 회전막대 위에서 마우스가 버티는 시간을 측정하였으며, 각 마우스 별로 3분의 간격을 두고 3번의 측정하였다. 최대 측정 시간은 300초로 진행하였다.
뇌조직 샘플 제작 및 면역 세포화학 분석
Rotarod test를 진행한 후, 마우스를 50 mg/kg의 Zoletil을 근육주사하여 마취하고, 뇌조직을 적출하여 실험을 진행하였다.
3마리에서 적출한 뇌조직은 striatum (ST)과 SN을 dissection 하여 단백질 용해물(lysate)을 만들고 tyrosine hydroxylase (TH)의 발현을 웨스턴 블랏으로 확인하였다.
아울러, 염색을 위한 나머지 3마리는 희생시 4% 파라포름알데하이드(PBS)로 심장을 통해 관류한 다음(transcardially), 뇌를 적출하였다. 4% 파라포름알데하이드로 다시 한번 고정한 다음, 4℃ 30% 수크로즈 용액에 가라앉을 때까지 담가두었다. 냉동된 뇌조직은 cryostat microtome(CM3000: Leica, Wetzlar, 독일)을 사용하여 30 μm 관상 절편으로 절편하였다. 절편 조직들은 면역 세포화학 분석을 위해 저장용액(글리세린, 에틸렌 글리콜, PBS)에 담가 4 ℃에 보관하였다. 뇌 절편들을 커버슬립에 올리고, PBS로 세척한 다음 조직에 존재하는 퍼옥시다제 활성을 제거하기 위해, 1% H2O2(PBS)로 15분간 전처리하였다. 탈수된 뇌 절편은 1차 항체인 항-티로신 히드록실라제(항-TH, 밀리포어, Rabbit 1 : 2000)를 하룻밤 반응시킨 후, 2차 항체 비오틴화 항-래빗 IgG로 90분간 반응시킨 다음, 아비틴-비오틴 복합 용액(Vectastain ABC 키트; Vector Laboratories, Burlingame, CA)으로 1시간 반응, 그리고 디아미노벤지딘(Diaminobenzidine)을 이용하여 발색시켰다. 도파민 세포 보호효과는 선조체(striatum, ST)에서는 광학밀도(optical density)를 측정하고, 흑질(substantia nigra, SN)에서 TH 양성 세포 숫자를 세어 확인하고 정량하였다.
한편, 각군의 마우스 중 일부는 뇌를 자르지 않고, 뇌 조직을 대뇌 피질(cortex), 소뇌(cerebellum), 선조체(striatum, ST) 및 흑질(substantia nigra, SN)로 각각 분리하여 웨스턴 블랏을 하기 위해 보관하였다.
파킨슨 병 동물 모델에서의 치료 효과 확인
상기 실험들의 결과, Zn-TMhM의 주입은 MPTP 복강주사로 이미 소실된 운동능력을 거의 정상수준 이상으로 회복시켰으며 (p<0.01), SN과 ST 조직의 TH 발현을 웨스턴 블랏으로 확인하였을 때, 모두 MPTP에 의해 감소된 TH의 발현이 거의 정상수준으로 회복되었다(도 15의 A)(*p<0.05, ***p<0.001).
뇌조직의 웨스턴 블랏 및 면역염색을 통해서는 SN 과 ST에서 MPTP에 의해 소실되었던 TH-positive neuron (도파민 신경세포)의 숫자가 Zn-TMhM 주입으로 인해 90% 이상 회복됨을 보여주었다. 이는 Zn-TMhM이 전처리에 의한 신경세포 보호 뿐만 아니라, 이미 손상된 도파민 신경세포를 회복할 수 있는 효능이 있음을 증명하는 것으로, 진행중인 파킨슨병을 치료할 수 있는 효능을 가짐을 보여준다(도 15의 B 내지 D).
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있음을 이해할 수 있다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 제한적인 것이 아닌 것으로 이해하여야 한다. 본 발명의 범위는 전술한 상세한 설명보다는 후술되는 특허 청구범위의 의미 및 범위, 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 하기 일반식 1의 아미노산 서열로 표시되는 미토콘드리아 타겟팅 펩타이드:
    [일반식 1]
    [N-말단-X1-LR-X2-LRK-X3-C-말단]
    상기 식에서,
    X1은 부재하거나 또는 하나의 소수성 아미노산이고;
    X2는 서로 같은 두 개의 소수성 아미노산이고;
    X3는 GPRLSRL, GPRLSRM, AA 또는 AAL이다.
  2. 제1항에 있어서, 상기 X1은 부재하거나, 메티오닌, 알라닌 또는 류신인 펩타이드.
  3. 제1항에 있어서, 상기 X2는 서로 같은 두 개의, 알라닌 또는 류신인 펩타이드.
  4. 제1항에 있어서, 상기 X1은 류신이고, 상기 X2는 서로 같은 두 개의 알라닌인 펩타이드.
  5. 제1항에 있어서, 상기 펩타이드는 서열번호 1 내지 10 중 어느 하나인 것인 펩타이드.
  6. 단백질 유입 도메인(Protein Transduction Domain)의 카르복시 말단에 제1항 내지 제5항 중 어느 한 항에 따른 펩타이드가 결합된 융합 단백질.
  7. 제6항에 있어서, 상기 단백질 유입 도메인은 HIV-1 바이러스의 TAT (Trans Activator of Transcription) 단백질, 폴리아르기닌, 페너트라틴(Penetratin), HSV-1 구조단백질 VP22의 전사조절 단백질, PEP-1 펩타이드 및 PEP-2 펩타이드로 이루어진 군에서 선택된 어느 하나 이상인 것인 융합 단백질.
  8. 제7항에 있어서, 상기 단백질 유입 도메인은 서열번호 11 또는 12인 것인 융합 단백질.
  9. 제6항에 있어서, 상기 펩타이드의 카르복시 말단에 추가로 항산화제가 결합된 것인 융합 단백질.
  10. 제6항 또는 제9항에 있어서, 상기 융합 단백질의 카르복시 말단에 폴리히스티딘(poly-His) 도메인이 결합된 것인 융합 단백질.
  11. 제9항에 있어서, 상기 항산화제는 SOD1, 카탈레이즈, EPX, GPX, PARK2, LRRK2 또는 메탈로티오네인(metallothionein)인 융합 단백질.
  12. 제11항에 있어서, 상기 메탈로티오네인은 인간 메탈로티오네인인 것인 융합 단백질.
  13. 제9항에 따른 융합 단백질을 포함하는 항산화용 조성물.
  14. 제9항에 따른 융합 단백질을 포함하는 파킨슨병의 예방 또는 치료용 약학적 조성물.
  15. 단백질 유입 도메인(Protein transduction domain)을 코딩하는 폴리뉴클레오티드, 제1항 내지 제5항 중 어느 한 항에 따른 펩타이드를 코딩하는 폴리뉴클레오티드, 및 항산화 단백질을 코딩하는 폴리뉴클레오티드가 순차적으로 결합되어 있는 재조합 폴리뉴클레오티드.
  16. 제15항에 있어서, 상기 재조합 폴리뉴클레오티드는 서열번호 13 또는 서열번호 14의 핵산 서열을 포함하는 것인, 재조합 폴리뉴클레오티드.
  17. 제15항의 폴리뉴클레오티드를 포함하는 발현 벡터.
  18. 제17항의 발현 벡터로 형질전환된 숙주세포.
  19. 제14항에 따른 파킨슨병의 예방 또는 치료용 약학적 조성물을 개체에 투여하는 단계를 포함하는 파킨슨병의 예방 또는 치료하는 방법.
  20. 파킨슨병의 예방 또는 치료용 약제를 제조하는데 제9항에 따른 융합 단백질의 용도.
PCT/KR2013/007809 2012-08-31 2013-08-30 미토콘드리아 타겟팅 펩타이드 WO2014035179A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/424,762 US9540421B2 (en) 2012-08-31 2013-08-30 Mitochondria targeting peptide
EP13832591.5A EP2891661B1 (en) 2012-08-31 2013-08-30 Mitochondrial targeting peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120096446 2012-08-31
KR10-2012-0096446 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014035179A1 true WO2014035179A1 (ko) 2014-03-06

Family

ID=50183908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007809 WO2014035179A1 (ko) 2012-08-31 2013-08-30 미토콘드리아 타겟팅 펩타이드

Country Status (4)

Country Link
US (1) US9540421B2 (ko)
EP (1) EP2891661B1 (ko)
KR (1) KR101503152B1 (ko)
WO (1) WO2014035179A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777807A (zh) * 2018-12-11 2019-05-21 福建农林大学 一种在线粒体中定位表达外源蛋白的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287331B2 (en) 2013-04-15 2019-05-14 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Mitochondrial proteins constructs and uses thereof
WO2017134661A1 (en) * 2016-02-04 2017-08-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Methods for disrupting biofilms
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
CN106834247A (zh) * 2017-03-20 2017-06-13 吉林农业科技学院 一种兼具细胞膜穿透效应和双抗氧化物酶活性的76肽及其制备方法
EP3786177A4 (en) * 2018-04-26 2022-01-26 Paean Biotechnology Inc. MODIFIED MITOCHONDRIA AND USE THEREOF
KR20210149251A (ko) 2019-03-08 2021-12-08 옵시디안 테라퓨틱스, 인크. 조율가능한 조절을 위한 인간 탄산 무수화효소 2 조성물 및 방법
US20220267398A1 (en) 2019-06-12 2022-08-25 Obsidian Therapeutics, Inc. Ca2 compositions and methods for tunable regulation
BR112021025022A2 (pt) 2019-06-12 2022-02-22 Obsidian Therapeutics Inc Composições de ca2 e métodos para regulação ajustáveis
EP3925961A4 (en) * 2019-10-30 2022-05-11 Fusion Biotechnology Co., Ltd. MITOCHONDRIAL TARGETED COMPOUND AND COMPOSITION THEREOF FOR THE TREATMENT OR PREVENTION OF AGE-RELATED DISEASES
KR102527406B1 (ko) * 2021-01-15 2023-04-28 아주대학교산학협력단 미토콘드리아 기능 장애 관련 질환 예방 또는 치료용 조성물
WO2021145743A1 (ko) * 2020-01-16 2021-07-22 아주대학교산학협력단 미토콘드리아 표적 단백질 및 이의 용도
KR102557375B1 (ko) * 2020-12-16 2023-07-20 동국대학교 와이즈캠퍼스 산학협력단 미토콘드리아 전구서열 유래 펩타이드 및 그 용도
KR20240040435A (ko) * 2022-09-21 2024-03-28 울산과학기술원 미토콘드리아 표적 화합물을 유효성분으로 포함하는 망막 변성 치료용 약학적 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534720A1 (en) 2002-08-12 2005-06-01 Medical Research Council Mitochondrially targeted antioxidants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355559A1 (de) 2003-11-21 2005-06-23 Orthogen Ag Transskin
GB0526449D0 (en) 2005-12-23 2006-02-08 Medical Res Council Polypeptide targeting
KR101065806B1 (ko) * 2009-01-22 2011-09-19 충남대학교산학협력단 미토콘드리아 표적 도메인 단백질 및 이를 암호화하는 유전자
KR101249334B1 (ko) * 2009-11-24 2013-04-01 한양대학교 산학협력단 항산화 융합 단백질 및 이의 용도

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534720A1 (en) 2002-08-12 2005-06-01 Medical Research Council Mitochondrially targeted antioxidants

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A. LIANG ET AL., DIABETES, vol. 51, 2002, pages 174 - 181
C.G. TAYLOR ET AL., BIOMETALS, vol. 18, 2005, pages 305 - 312
DE SOUZA LC. ET AL., BIOORG. MED. CHEM. LETT., vol. 14, 2004, pages 5859 - 5861
K.G. DANIELSON ET AL., PROC NATL ACAD SCI USA, vol. 79, 1982, pages 2301 - 04
KLONER, ROBERT A. ET AL.: "Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide", JOURNAL OF THE AMERICAN HEART ASSOCIATION, vol. 1, no. E00164, 15 June 2012 (2012-06-15), pages 1 - 13 *
PIKE J. ET AL., INT. J. VITAM. NUTR. RES., vol. 65, 1995, pages 117 - 120
PODKOWINSKI, JAN ET AL.: "Acetyl-coenzyme A carboxylase-an attractive enzyme for biotechnology", BIOTECHNOLOGIA: JOURNAL OF BIOTECHNOLOGY, COMPUTATIONAL BIOLOGY AND BIONANOTECHNOLOGY, vol. 92, no. 4, 2011, pages 321 - 335, XP055303418, DOI: doi:10.5114/bta.2011.46549 *
REDDY, P. HEMACHANDRA ET AL.: "Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1822, no. 5, 19 October 2011 (2011-10-19), pages 639 - 649 *
SNOW, BARRY J. ET AL.: "A double-blind, placebo-controlled study to assess the mitochondria-targeted anitoxidant MitoQ as a disease-modifying therapy in Parkinson's disease", MOVEMENT DISORDERS, vol. 25, no. 11, 2010, pages 1670 - 1674 *
SUGIMOTO, TOMOKO ET AL.: "Caenorhabditis elegans par2.1/mtssb-l is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response", EXPERIMENTAL CELL RESEARCH, vol. 314, no. 1, 2008, pages 103 - 114, XP022372874, DOI: doi:10.1016/j.yexcr.2007.08.015 *
YEN GC. ET AL., J. AGRIC. FOOD CHEM., vol. 43, 1995, pages 27 - 32

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777807A (zh) * 2018-12-11 2019-05-21 福建农林大学 一种在线粒体中定位表达外源蛋白的方法
CN109777807B (zh) * 2018-12-11 2020-09-15 福建农林大学 一种在线粒体中定位表达外源蛋白的方法

Also Published As

Publication number Publication date
EP2891661A4 (en) 2016-02-17
KR20140032896A (ko) 2014-03-17
EP2891661B1 (en) 2019-01-16
KR101503152B1 (ko) 2015-03-17
US9540421B2 (en) 2017-01-10
EP2891661A1 (en) 2015-07-08
US20150361140A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2014035179A1 (ko) 미토콘드리아 타겟팅 펩타이드
AU2016346870B2 (en) Dual function proteins and pharmaceutical composition comprising same
WO2017078440A1 (ko) 신경세포 손실 예방 및 재생 효능을 가지는 펩티드 및 이를 포함하는 조성물
WO2017034349A1 (en) Improved cell-permeable (icp)-socs3 recombinant protein and uses thereof
EP3497215A2 (en) Cell-permeable (cp)-cas9 recombinant protein and uses thereof
WO2012050402A2 (ko) 세포투과성 parkin 재조합 단백질 및 이를 함유하는 퇴행성 뇌질환 치료용 약학적 조성물
WO2017116204A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체
WO2017030292A1 (ko) P62 zz 도메인에 결합하는 리간드 또는 아르기닌화된 bip에 의해 매개되는 오토파지 활성을 통한 신경변성 질환 예방 및 치료
WO2016028036A1 (en) Advanced macromolecule transduction domain (amtd) sequences for improvement of cell-permeability, polynucleotides encoding the same, method to identify the unique features of amtds comprising the same, method to develop the amtd sequences comprising the same
WO2018056764A1 (ko) 인슐린 수용체와의 결합력이 감소된, 인슐린 아날로그 및 이의 용도
WO2018208011A2 (ko) β-아밀로이드 단백질의 응집을 억제하는 생체친화적 펩타이드
WO2017018787A1 (en) Improved cell-permeable (icp) parkin recombinant protein and use thereof
WO2013077680A1 (ko) 세포 투과능을 개선한 개량형 신규 거대 분자 전달 도메인 개발 및 이의 이용방법
WO2017030323A1 (en) Cell-permeable (cp)-δsocs3 recombinant protein and uses thereof
WO2019066570A1 (ko) 지속형 단쇄 인슐린 아날로그 및 이의 결합체
EP1756156B1 (en) Selective vpac2 receptor peptide agonists
WO2014010985A1 (ko) 세포내 단백질의 고효율 도입 및 유지용 펩타이드
WO2021107519A1 (en) Biotin moiety-conjugated polypeptide and pharmaceutical composition for oral administration comprising the same
WO2018038539A2 (ko) Eprs 단백질 또는 이의 단편을 포함하는 항rna-바이러스용 조성물
WO2024019603A1 (ko) 뇌신경계 질환의 예방 또는 치료용 단백질 및 이를 포함하는 약학적 조성물
WO2023063759A1 (ko) 나노몰 농도에서 세포 내 전달 가능한 미토콘드리아 특이적 펩타이드 및 이의 용도
WO2023239213A1 (ko) 염증세포에서 특이적으로 작동하는 융합단백질
WO2022098078A1 (ko) 프리온-fc 영역 융합 단백질 및 그 용도
WO2019035672A1 (ko) 아실화 옥신토모듈린 펩타이드 유사체
WO2022245136A1 (ko) 뉴클레오린-결합 펩타이드를 포함하는 항바이러스 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013832591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14424762

Country of ref document: US