WO2012046833A1 - 光学ガラス、プリフォーム材及び光学素子 - Google Patents

光学ガラス、プリフォーム材及び光学素子 Download PDF

Info

Publication number
WO2012046833A1
WO2012046833A1 PCT/JP2011/073183 JP2011073183W WO2012046833A1 WO 2012046833 A1 WO2012046833 A1 WO 2012046833A1 JP 2011073183 W JP2011073183 W JP 2011073183W WO 2012046833 A1 WO2012046833 A1 WO 2012046833A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
optical
total amount
optical glass
Prior art date
Application number
PCT/JP2011/073183
Other languages
English (en)
French (fr)
Inventor
浄行 桃野
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45927825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012046833(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN2011800485933A priority Critical patent/CN103168013A/zh
Publication of WO2012046833A1 publication Critical patent/WO2012046833A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, a preform material, and an optical element.
  • optical glasses for producing optical elements in particular, it has a refractive index (n d ) of 1.75 or more and an Abbe number of 30 or more and 50 or less (which can reduce the weight and size of the entire optical system).
  • n d refractive index
  • Abbe number Abbe number of 30 or more and 50 or less
  • the lenses used in the optical system include a spherical lens and an aspheric lens. If an aspheric lens is used, the number of optical elements can be reduced. In addition, various optical elements other than lenses are known which have a complicatedly shaped surface. However, in order to obtain an aspherical surface or a complicatedly shaped surface by conventional grinding and polishing processes, a high-cost and complicated work process is required. Therefore, a method of obtaining a shape of an optical element by directly press-molding a preform material obtained from a gob or a glass block with an ultra-precision processed mold, that is, a method of precision mold press molding is currently mainstream.
  • a glass molded body obtained by reheating and molding a gob or glass block formed from a glass material is ground and polished. Methods are also known.
  • a method of directly manufacturing from a molten glass by a dropping method, a reheat press of a glass block, or a grinding process into a ball shape is obtained.
  • in order to obtain an optical element by forming a molten glass into a desired shape it is required to reduce devitrification of the formed glass.
  • the raw material costs of the components constituting the optical glass are as low as possible.
  • the raw material has high meltability, that is, it is melted at a lower temperature.
  • the glass compositions described in Patent Documents 1 and 2 sufficiently satisfy these requirements.
  • the present invention has been made in view of the above problems, and its object is to provide resistance to devitrification while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges. It is to obtain a preform material having a high price at a lower cost.
  • the present inventors have conducted extensive test studies. As a result, in a glass containing a B 2 O 3 component and a La 2 O 3 component, the TiO 2 component, the WO 3 component, and the Nb 2 O It has been found that by containing at least one of the five components as an essential component, a desired optical constant can be obtained even if the Ta 2 O 5 component, which is expensive and has poor meltability, is reduced. It came to do. Specifically, the present invention provides the following.
  • the glass the total amount of substance of the oxide composition in terms of, B 2 O 3 component from 10.0 to 50.0% and La 2 O 3 component 5.0 containing ⁇ 30.0% by mole%
  • the optical glass according to any one of the Li 2 O content component is not more than 20.0% by mole% (1) to (6).
  • the molar sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) with respect to the total amount of glass in the oxide equivalent composition is 10.
  • Each component of Any one of (1) to (19), wherein the content of fluoride in which one or more of the metal elements are partially or entirely substituted with fluoride is 0 to 6.0%.
  • the glass containing B 2 O 3 component and La 2 O 3 component contains one or more selected from the group consisting of TiO 2 component, WO 3 component and Nb 2 O 5 component
  • the glass containing B 2 O 3 component and La 2 O 3 component contains one or more selected from the group consisting of TiO 2 component, WO 3 component and Nb 2 O 5 component
  • the B 2 O 3 component is 10.0-50.0% and the La 2 O 3 component is 5.0-30.
  • the molar sum (TiO 2 + WO 3 + Nb 2 O 5 ) is 0.1 to 30.0% with respect to the total amount of glass having an oxide equivalent composition.
  • the B 2 O 3 component and the La 2 O 3 component has a refractive index (n d ) of 1.75 or more and 1.95 or less and an Abbe number ( ⁇ d ) of 30 or more and 50 or less.
  • the liquidus temperature tends to be low. Therefore, an optical glass capable of obtaining a preform material having high devitrification resistance while the refractive index (n d ) and the Abbe number ( ⁇ d ) are within the desired ranges can be obtained at low cost. .
  • the optical glass of the present invention contains one or more selected from the group consisting of TiO 2 component, WO 3 component and Nb 2 O 5 component as essential components.
  • TiO 2 component, WO 3 component and Nb 2 O 5 component a glass containing at least a TiO 2 component and / or a Nb 2 O 5 component will be described as a first optical glass.
  • glass containing at least the WO 3 component among the TiO 2 component, the WO 3 component, and the Nb 2 O 5 component will be described as the second optical glass.
  • the optical glass of the present invention may contain both a TiO 2 component and / or an Nb 2 O 5 component and a WO 3 component.
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, unless otherwise specified, the content of each component is expressed in mol% with respect to the total amount of glass in the oxide conversion composition.
  • the “oxide equivalent composition” is based on the assumption that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides during melting. It is the composition which described each component contained in glass by making the total amount of substances of a production
  • the B 2 O 3 component is an essential component as a glass-forming oxide in the optical glass of the present invention containing a large amount of rare earth oxides.
  • the content of the B 2 O 3 component is preferably 10.0%, more preferably 15.0%, and most preferably 20.0%.
  • the content of the B 2 O 3 component is set to 50.0% or less, it is possible to easily obtain a larger refractive index and suppress deterioration of chemical durability.
  • the upper limit of the content of the B 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 50.0%, more preferably 48.0%, and most preferably 46.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • the La 2 O 3 component is a component that increases the refractive index of the glass and decreases the dispersion of the glass to increase the Abbe number of the glass.
  • the content of the La 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 5.0%, more preferably 8.0%, and most preferably 10.0%.
  • devitrification can be reduced by increasing the stability of the glass by setting the content of the La 2 O 3 component to 30.0% or less.
  • the La 2 O 3 component content is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, and most preferably 18.0% with respect to the total amount of glass in the oxide equivalent composition.
  • the upper limit is 0%.
  • the La 2 O 3 component can be contained in the glass using, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like as a raw material.
  • the molar sum of one or more selected from the group consisting of TiO 2 component, WO 3 component and Nb 2 O 5 component is 0.1% or more and 30.0% or less.
  • the molar sum is 0.1% or more, a desired optical constant can be obtained even if the Ta 2 O 5 component is reduced. Therefore, an optical glass having desired optical characteristics can be produced at a lower cost.
  • the molar sum is 30.0% or less, an increase in the liquidus temperature due to excessive inclusion of these components can be suppressed, so that the optical glass can be produced more stably.
  • the molar sum of these components with respect to the total amount of glass in the oxide conversion composition is preferably 0.1%, more preferably 1.0%, and most preferably 1.5%.
  • the molar sum of these components with respect to the total amount of glass in the oxide conversion composition is preferably 30.0%, more preferably 28.0%, still more preferably 26.0%, and most preferably 11 Less than 0%.
  • the molar sum of these components is preferably 20.0%, more preferably 18.0%, and even more preferably 15.0%. May be the upper limit.
  • the WO 3 component is a component that increases the refractive index of the glass and improves the devitrification resistance of the glass.
  • the WO 3 component is a component that increases the refractive index of the glass and improves the devitrification resistance of the glass.
  • the content of the WO 3 component is set to 20.0% or less, it is possible to form a glass having high refractive index and devitrification resistance while suppressing high dispersion.
  • the content of the WO 3 component 20.0% or less it is possible to make it difficult to reduce the transmittance particularly in the visible-short wavelength region (less than 500 nm).
  • the content of the WO 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and most preferably 7%. Less than 0%.
  • the content of the WO 3 component is preferably 4.0%, more preferably 3.0% as the upper limit, Most preferably, it may be less than 1.0%.
  • the optical glass of the present invention it is possible to obtain a glass having desired optical constants and devitrification resistance even without containing WO 3 components, by containing a WO 3 components, high refractive While obtaining the rate, the glass transition point can be further lowered. Therefore, the content of the WO 3 component is preferably 0.1%, more preferably 0.5%, and even more preferably 1.0% with respect to the total amount of glass in the oxide conversion composition, particularly in the second optical glass. Most preferably, the lower limit is 1.5%.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the TiO 2 component is a component that adjusts the refractive index and Abbe number of the glass to be high and improves devitrification resistance, and is an optional component in the optical glass of the present invention.
  • the upper limit of the content of the TiO 2 component with respect to the total amount of glass in the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 12.0%.
  • the content of the TiO 2 component is preferably 0.1%, more preferably 3.0%, and even more preferably 5.0% with respect to the total amount of glass in the oxide conversion composition. Is the lower limit, and may be more preferably more than 8.0%.
  • TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
  • Nb 2 O 5 component is a component to increase adjusting the refractive index and dispersion of the glass, an optional component of the optical glass of the present invention.
  • the content of the Nb 2 O 5 component is preferably 20.0%, more preferably 15.0%, still more preferably 10.0%, and most preferably 7.7% with respect to the total amount of glass in the oxide equivalent composition.
  • the upper limit is 0%.
  • the content of the Nb 2 O 5 component with respect to the total amount of the glass having an oxide conversion composition, particularly in the first optical glass is preferably 0.1% as a lower limit, more preferably more than 2.0%. More preferably, the lower limit is 5.0%, and most preferably more than 8.0%.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • the sum of the contents of the TiO 2 component and the Nb 2 O 5 component is preferably 2.0% or more and 30.0% or less.
  • the molar sum (TiO 2 + Nb 2 O 5 ) of the oxide equivalent composition in the first optical glass is preferably 2.0%, more preferably 5.0%, and even more preferably 8.0%.
  • the molar sum (TiO 2 + Nb 2 O 5 ) with respect to the total amount of glass in the oxide conversion composition is preferably 30.0%, more preferably 25.0%, and most preferably 20.0%. .
  • the first optical glass of the present invention is preferably TiO 2 component, Nb 2 O 5 component and a ratio of the WO 3 content components to the sum of WO 3 component is 0.600 or less.
  • a ratio of the WO 3 content components to the sum of WO 3 component is 0.600 or less.
  • the molar ratio WO 3 / (TiO 2 + Nb 2 O 5 + WO 3 ) of the oxide equivalent composition in the first optical glass is preferably 0.600, more preferably 0.500, and most preferably 0.370. Is the upper limit.
  • the lower limit of the molar ratio WO 3 / (TiO 2 + Nb 2 O 5 + WO 3 ) in the oxide equivalent composition may be zero.
  • the Li 2 O component is a component that lowers the glass transition point.
  • the upper limit of the content of the Li 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the glass is obtained having the desired properties without containing Li 2 O component, by containing Li 2 O component, since the effect of lowering the glass transition temperature increases, easy optical glass perform press molding Can be easily obtained. Therefore, the content of the Li 2 O component with respect to the total glass material amount of the oxide conversion composition is preferably 0.1%, more preferably 0.3%, and most preferably 0.5%.
  • the Gd 2 O 3 component is a component that increases the refractive index of the glass and increases the Abbe number, and is an optional component in the optical glass of the present invention.
  • the Gd 2 O 3 component content is preferably 30.0%, more preferably 20.0%, and most preferably 10.0% with respect to the total amount of glass in the oxide equivalent composition.
  • the content of the Gd 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably more than 0%, more preferably 2.0% as the lower limit, and even more preferably more than 5.0%.
  • the Gd 2 O 3 component can be contained in the glass using, for example, Gd 2 O 3 , GdF 3 or the like as a raw material.
  • the Y 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component are components that increase the refractive index of the glass and reduce the dispersion, and are optional components in the optical glass of the present invention.
  • the desired optical constant of the glass can be easily obtained by reducing the content of each of the Y 2 O 3 component, the Yb 2 O 3 component and / or the Lu 2 O 3 component to 10.0% or less.
  • the content of Y 2 O 3 may be 1.3% or less.
  • Each component of Y 2 O 3, Yb 2 O 3 and Lu 2 O 3 is to be contained in the glass by using, for example, Y 2 O 3 as a raw material, YF 3, Yb 2 O 3 , Lu 2 O 3 , etc. it can.
  • the molar sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is 10.0% or more and 40.0. % Or less is preferable.
  • Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu
  • the lower limit of the molar sum of the Ln 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 10.0%, more preferably 12.0%, and most preferably 15.0%.
  • the molar sum of the Ln 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 40.0%, more preferably 35.0%, even more preferably 30.0%, and most preferably 27.
  • the upper limit is 0%.
  • the optical glass of the present invention preferably contains two or more of the above-mentioned Ln 2 O 3 components. Thereby, since the liquidus temperature of glass becomes lower, glass with higher devitrification resistance can be formed.
  • the Ln 2 O 3 component which contains two or more components including La 2 O 3 component and Gd 2 O 3 component is preferable in that it can easily lower the liquidus temperature of the glass.
  • the Ta 2 O 5 component is a component that increases the refractive index of the glass and increases the devitrification resistance of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the Ta 2 O 5 component is preferably 20.0%, more preferably 10.0%, and most preferably 8.0% with respect to the total amount of glass in the oxide equivalent composition.
  • the content of the Ta 2 O 5 component may be 4.5% or less.
  • the refractive index of the glass can be obtained by containing the Ta 2 O 5 component. While improving the devitrification resistance, the liquidus temperature of the glass can be lowered. Therefore, the content of the Ta 2 O 5 component in the second optical glass is preferably more than 0%, more preferably 1.0%, most preferably 2. 0% is the lower limit.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the content ratio of the Ta 2 O 5 component to the content of the WO 3 component is preferably 1.0 or more.
  • the molar ratio Ta 2 O 5 / WO 3 of the oxide equivalent composition in the second optical glass is preferably 1.0, more preferably 2.0, still more preferably 2.1, and most preferably 2. 5 is the lower limit.
  • the upper limit of this ratio is not particularly limited, and may be infinite (that is, containing no WO 3 component).
  • the molar ratio Ta 2 O 5 / WO 3 of the oxide equivalent composition in the second optical glass is preferably 10.0, more preferably 7.0, and most preferably 4.0.
  • the SiO 2 component is a component that increases the viscosity of the molten glass and reduces devitrification (generation of crystals) which is undesirable as an optical glass by promoting stable glass formation, and is an optional component in the optical glass of the present invention. It is an ingredient.
  • the content of the SiO 2 component is 25.0% or less, an increase in the glass transition point (Tg) can be suppressed, and the high refractive index targeted by the present invention can be easily obtained.
  • the content of the SiO 2 component with respect to the total amount of glass in the oxide conversion composition is preferably 25.0%, more preferably 19.0%, still more preferably 17.5%, and most preferably 13.0%. Is the upper limit.
  • the content of the SiO 2 component with respect to the total amount of glass in the oxide conversion composition is preferably more than 0%, more preferably more than 1.0%, and most preferably more than 4.0%.
  • SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
  • the Na 2 O component and the K 2 O component are components that improve the meltability of the glass, lower the glass transition point, and increase the devitrification resistance of the glass, and are optional components in the optical glass of the present invention. .
  • the upper limit of the content of the Na 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.0%.
  • the content of the K 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the Na 2 O component and the K 2 O component use, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 , K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 as raw materials. It can be contained in glass.
  • the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is a component that improves the meltability of the glass and reduces the devitrification of the glass.
  • Rn is one or more selected from the group consisting of Li, Na, and K
  • the upper limit of the molar sum of the Rn 2 O component with respect to the total amount of glass in the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the MgO component, CaO component, SrO component, and BaO component are components that adjust the refractive index, meltability, and devitrification of the glass, and are optional components in the optical glass of the present invention.
  • the content of each of the MgO component, CaO component, SrO component and BaO component 10.0% or less, it becomes easy to obtain a desired refractive index, and loss of glass due to excessive inclusion of these components. The occurrence of see-through can be reduced. Therefore, the content of each of the MgO component, the CaO component, the SrO component, and the BaO component with respect to the total glass material amount of the oxide conversion composition is preferably 10.0%, more preferably 8.0%, and most preferably 5. The upper limit is 0%.
  • the MgO component is contained in the glass using, for example, MgCO 3 , MgF 2 , CaCO 3 , CaF 2 , Sr (NO 3 ) 2 , SrF 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2 and the like as raw materials. be able to.
  • the total content of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 11.0% or less.
  • R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba.
  • the molar sum of the RO component with respect to the total amount of glass in the oxide conversion composition is preferably 11.0%, more preferably 8.0%, and still more preferably 5.0%.
  • the GeO 2 component is a component having an effect of increasing the refractive index of the glass and improving the devitrification resistance, and is an optional component in the optical glass of the present invention.
  • the content of the GeO 2 component with respect to the total glass material amount of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • P 2 O 5 component is a component having an effect of improving resistance to devitrification and lower the liquidus temperature of the glass, an optional component of the optical glass of the present invention.
  • the content of the P 2 O 5 component is preferably 10.0%, more preferably 8.0%, and most preferably 5.0%.
  • the P 2 O 5 component can be contained in the glass using, for example, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like as a raw material. .
  • the ZrO 2 component is a component that contributes to the high refractive index and low dispersion of the glass and improves the devitrification resistance, and is an optional component in the optical glass of the present invention.
  • the content of the ZrO 2 component is preferably 15.0%, more preferably 12.0%, and still more preferably 10.0% with respect to the total amount of glass in the oxide equivalent composition.
  • the content of the ZrO 2 component is preferably more than 0%, more preferably 1.0%, most preferably 3. It is good also considering 0% as a minimum.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the ZnO component is a component that lowers the glass transition temperature (Tg) and improves chemical durability, and is an optional component in the optical glass of the present invention.
  • Tg glass transition temperature
  • the content of the ZnO component with respect to the total amount of glass having an oxide conversion composition is preferably 50.0%, more preferably 45.0%, and further preferably 40.0%.
  • the content of the ZnO component with respect to the total amount of glass in the oxide conversion composition may be 27.0% or less, and less than 24.0%. Also good.
  • the content of the ZnO component with respect to the total amount of glass in the oxide conversion composition is preferably more than 0%, more preferably 5.0%, and most preferably 10.0%.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the Bi 2 O 3 component is a component that increases the refractive index and decreases the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • Tg glass transition point
  • the content of the Bi 2 O 3 component with respect to the total amount of glass in the oxide conversion composition is preferably 15.0%, more preferably less than 10.0%, and most preferably less than 5.0%.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • the TeO 2 component is a component that increases the refractive index and decreases the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • TeO 2 has a problem that it can be alloyed with platinum when melting a glass raw material in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum.
  • the content of the TeO 2 component with respect to the total amount of glass in the oxide conversion composition is preferably 15.0%, more preferably less than 10.0%, and most preferably less than 5.0%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • the Al 2 O 3 component and the Ga 2 O 3 component are components that improve the chemical durability of the glass and improve the devitrification resistance of the molten glass, and are optional components in the optical glass of the present invention.
  • the content of each of Al 2 O 3 component and Ga 2 O 3 component can be weakened devitrification tendency of the glass by increasing the stability of the glass.
  • the content of each of the Al 2 O 3 component and the Ga 2 O 3 component with respect to the total amount of the glass having an oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.
  • the upper limit is 0%.
  • the Al 2 O 3 component and the Ga 2 O 3 component should be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3, etc. as raw materials. Can do.
  • the Sb 2 O 3 component is a component that defoams the molten glass and is an optional component in the optical glass of the present invention.
  • the Sb 2 O 3 component content is preferably 1.0%, more preferably 0.7%, and most preferably 0.5% with respect to the total amount of glass in the oxide equivalent composition.
  • the Sb 2 O 3 component can be contained in the glass using, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like as a raw material.
  • components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
  • the F component is a component that lowers the glass transition point (Tg) and improves the devitrification resistance while lowering the dispersion of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the F component that is, the total amount of F substituted for some or all of one or more oxides of each of the above metal elements exceeds 6.0%
  • the content of the F component with respect to the total amount of glass in the oxide conversion composition is preferably 6.0%, more preferably 5.0%, and most preferably 3.0%.
  • the F component can be contained in the glass by using, for example, ZrF 4 , AlF 3 , NaF, CaF 2 or the like as a raw material.
  • each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or even if it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with high environmental loads, it is desirable that they are not substantially contained, that is, not contained at all except for inevitable mixing.
  • each component of Th, Cd, Tl, Os, Be, and Se has tended to be refrained from being used as a harmful chemical material in recent years, not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that these are not substantially contained.
  • the glass composition of the present invention is not expressed directly in terms of mass% because the composition is expressed in terms of mol% with respect to the total amount of glass in the oxide-converted composition, but is required in the present invention.
  • the composition represented by mass% of each component present in the glass composition satisfying the characteristics generally takes the following values in terms of oxide conversion.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, and 1100-1500 ° C. in an electric furnace depending on the difficulty of melting the glass composition. It is produced by melting for 2 to 5 hours in the above temperature range, homogenizing with stirring, lowering to an appropriate temperature, casting into a mold, and slow cooling.
  • the optical glass of the present invention has a high refractive index (n d ) and low dispersion.
  • the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.77, and most preferably 1.80, preferably 1.95, more preferably 1.95. 92, most preferably 1.91.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 30, more preferably 31, most preferably 32 as a lower limit, preferably 50, more preferably 45, and most preferably 40. .
  • the optical glass of this invention has little coloring.
  • the wavelength ( ⁇ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is 450 nm or less, more preferably 430 nm or less, and most preferably. Is 420 nm or less.
  • the wavelength ( ⁇ 5 ) exhibiting a spectral transmittance of 5% is 400 nm or less, more preferably 380 nm or less, and most preferably 370 nm or less.
  • the wavelength ( ⁇ 80 ) exhibiting a spectral transmittance of 80% is 550 nm or less, more preferably 520 nm or less, still more preferably 500 nm or less, and most preferably 480 nm or less.
  • this optical glass can be preferably used as a material for an optical element such as a lens.
  • the optical glass of the present invention preferably has high devitrification resistance.
  • the optical glass of the present invention preferably has a low liquidus temperature of 1200 ° C. or lower. More specifically, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1200 ° C, more preferably 1180 ° C, and most preferably 1160 ° C.
  • the crystallization of the produced glass is reduced, so that the devitrification resistance when the glass is formed from the molten state can be increased. The influence on the optical characteristics of the optical element can be reduced.
  • the preform material can be formed even when the melting temperature of the glass is lowered, and the energy consumed when forming the preform material can be suppressed.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is approximately 500 ° C. or higher, specifically 550 ° C. or higher, more specifically 600. Often above °C.
  • liquid phase temperature means that a 30 cc cullet-like glass sample is put into a platinum crucible in a platinum crucible having a capacity of 50 ml and completely melted at 1250 ° C., and the temperature is lowered to a predetermined temperature. Then, the glass surface and the presence or absence of crystals in the glass are observed immediately after taking out of the furnace and cooling to indicate the lowest temperature at which no crystals are observed.
  • the predetermined temperature represents a temperature set in increments of 10 ° C. from 1180 ° C. to 500 ° C.
  • the optical glass of the present invention has a glass transition point (Tg) of 680 ° C. or lower.
  • Tg glass transition point
  • the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 680 ° C., more preferably 650 ° C., and most preferably 630 ° C.
  • the lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited, but the glass transition point (Tg) of the glass obtained by the present invention is generally 100 ° C. or higher, specifically 150 ° C. or higher. More specifically, it is often 200 ° C. or higher.
  • the optical glass of the present invention preferably has a yield point (At) of 720 ° C. or lower.
  • the yield point (At) is one of indices indicating the softening property of glass, and is an index indicating a temperature close to the press molding temperature. Therefore, by using a glass having a yield point (At) of 720 ° C. or lower, press molding at a lower temperature becomes possible, so that press molding can be performed more easily.
  • the yield point (At) of the optical glass of the present invention is preferably 720 ° C, more preferably 700 ° C, and most preferably 680 ° C.
  • the lower limit of the yield point (At) of the optical glass of the present invention is not particularly limited, but the yield point (At) of the glass obtained by the present invention is generally 150 ° C. or higher, specifically 200 ° C. or higher, more specifically. Specifically, it is often 250 ° C. or higher.
  • the optical glass of the present invention preferably has a low partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) ⁇ with respect to the Abbe number ( ⁇ d ) ⁇ The relationship ( ⁇ g, F) ⁇ ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6971) is satisfied. Thereby, since an optical glass having a small partial dispersion ratio ( ⁇ g, F) is obtained, chromatic aberration of an optical element formed from the optical glass can be reduced.
  • ⁇ g, F partial dispersion ratio
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d). +0.6591), and most preferably (-2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6611) is the lower limit.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6971), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3).
  • ⁇ ⁇ d +0.6921) most preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6871) is set as the upper limit.
  • a glass molded body can be produced from the produced optical glass by means of mold press molding such as reheat press molding or precision press molding. That is, a preform for mold press molding was prepared from optical glass, and after performing reheat press molding on this preform, polishing was performed to prepare a glass molded body, or polishing was performed. It is possible to produce a glass molded body by performing precision press molding on a preform, or a preform molded by a known floating molding or the like. In addition, the means for producing the glass molded body is not limited to these means.
  • the optical glass of the present invention is useful for various optical elements and optical designs.
  • the glasses of Examples (No. 1 to No. 105) and Comparative Example (No. A) of the present invention are all oxides, hydroxides, carbonates, nitrates, fluorides corresponding to the raw materials of the respective components.
  • Select high-purity raw materials used in ordinary optical glass such as hydroxide, metaphosphate compound, etc., and weigh and mix evenly to the composition ratios of the examples shown in Table 1 to Table 14. After that, it is put into a platinum crucible, melted in an electric furnace for 2 to 5 hours in a temperature range of 1100 to 1500 ° C. according to the difficulty of melting the glass composition, homogenized with stirring, cast into a mold or the like, and slowly cooled. And produced.
  • the refractive index (n d ), Abbe number ( ⁇ d ), and partial dispersion ratio ( ⁇ g, F) were measured on glass obtained at a slow cooling rate of ⁇ 25 ° C./hr. Asked.
  • the glass transition point (Tg) and the yield point (At) of the glasses of the examples (No. 1 to No. 105) and the comparative example (No. A) should be measured using a horizontal expansion measuring instrument. I asked for it.
  • the sample used for the measurement was ⁇ 4.8 mm and a length of 50 to 55 mm, and the temperature elevation rate was 4 ° C./min.
  • the transmittances of the glass of Examples (No. 1 to No. 105) and Comparative Example (No. A) were measured according to Japan Optical Glass Industry Association Standard JOGIS02.
  • the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
  • a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 5 (wavelength at a transmittance of 5%), ⁇ 70 (transmittance).
  • the wavelength at 70%) and ⁇ 80 (wavelength at 80% transmittance) were determined.
  • liquid phase temperature of the glass of Examples (No. 1 to No. 105) and Comparative Example (No. A) is as follows: a 30 cc cullet-like glass sample is put in a platinum crucible in a platinum crucible having a capacity of 50 ml. The glass surface and the crystals in the glass are immediately melted at 1250 ° C, lowered to any temperature set in steps of 10 ° C from 1180 ° C to 1000 ° C, held for 12 hours, taken out of the furnace and cooled immediately. The lowest temperature at which no crystals were observed was determined.
  • the optical glasses of the examples of the present invention all had a liquidus temperature of 1200 ° C. or lower, more specifically 1160 ° C. or lower, and were within a desired range.
  • the glass of the comparative example (No. A) had a liquidus temperature higher than 1200 ° C.
  • the optical glass of the example of the present invention is at least one of the TiO 2 component, the WO 3 component, and the Nb 2 O 5 component. The point which contains is mentioned. For this reason, it became clear that the optical glass of the Example of this invention has a liquidus temperature lower than a comparative example (No.A).
  • each of ⁇ 70 (wavelength at 70% transmittance) was 450 nm or less, more specifically, 413 nm or less.
  • each of ⁇ 5 (wavelength at 5% transmittance) was 400 nm or less, more specifically 361 nm or less.
  • the optical glasses of the examples of the present invention all had a ⁇ 80 (wavelength at 80% transmittance) of 550 nm or less, more specifically 530 nm or less. For this reason, it became clear that the optical glass of the Example of this invention has the high transmittance
  • the optical glasses of the examples of the present invention all had a glass transition point (Tg) of 680 ° C. or lower, more specifically 630 ° C. or lower, and were within a desired range.
  • the optical glass of Example (No. 8) of the present invention had a yield point (At) of 720 ° C. or less, more specifically 680 ° C. or less, and was within a desired range.
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.75 or more, more specifically 1.85 or more, and this refractive index (n d ) is 1.95 or less. More specifically, it was 1.91 or less, and was within the desired range.
  • the optical glasses of the examples of the present invention all have an Abbe number ( ⁇ d ) of 30 or more, more specifically 31 or more, and the Abbe number ( ⁇ d ) of 50 or less, more specifically 41. And within the desired range.
  • the optical glasses of the examples of the present invention all have a partial dispersion ratio ( ⁇ g, F) of ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) or more, more specifically ( ⁇ 2.50). ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6672) or more.
  • the partial dispersion ratio of the optical glass of the embodiment of the present invention (- 2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6971) or less, and more (-2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6725) or less. Therefore, it was found that these partial dispersion ratios ( ⁇ g, F) are within a desired range.
  • the optical glass of the example of the present invention has a high transmittance at a visible short wavelength and a high devitrification resistance, while the refractive index (n d ) and the Abbe number ( ⁇ d ) are within the desired ranges. And it became clear that it is easy to perform press molding by heat softening.
  • the optical glass of the example of the present invention after performing reheat press molding, grinding and polishing were performed to form lenses and prisms. Further, a precision press-molding preform was formed using the optical glass of the example of the present invention, and the precision press-molding preform was precision press-molded into the shape of a lens and a prism. In either case, the glass after heat softening did not cause problems such as opacification and devitrification, and could be stably processed into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高いプリフォーム材を、より安価に得ることが可能な光学ガラスと、プリフォーム材及び光学素子を提供する。 光学ガラスは、酸化物換算組成のガラス全物質量に対して、モル%でB成分を10.0~50.0%及びLa成分を5.0~30.0%含有し、酸化物換算組成のガラス全物質量に対するモル和(TiO+WO+Nb)が0.1~30.0%である。

Description

光学ガラス、プリフォーム材及び光学素子
 本発明は、光学ガラス、プリフォーム材及び光学素子に関する。
 近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。
 光学素子を作製する光学ガラスの中でも特に、光学系全体の軽量化及び小型化を図ることが可能な、1.75以上の屈折率(n)を有し、30以上50以下のアッベ数(ν)を有する精密モールドプレス成形可能な高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとして、特許文献1~2に代表されるようなガラス組成物が知られている。
特開2001-348244号公報 特開2008-001551号公報
 光学系で用いられるレンズには球面レンズと非球面レンズがあり、非球面レンズを利用すれば光学素子の枚数を削減することができる。また、レンズ以外の各種光学素子にも複雑な形状をした面を備えたものが知られている。しかしながら、従来の研削、研磨工程で非球面や複雑な形状をした面を得ようとすると、高コストで且つ複雑な作業工程が必要であった。そこで、ゴブ又はガラスブロックから得られたプリフォーム材を、超精密加工された金型で直接プレス成形して光学素子の形状を得る方法、すなわち精密モールドプレス成形する方法が現在主流である。
 また、プリフォーム材を精密モールドプレス成形する方法の他に、ガラス材料から形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法も知られている。
 こうした精密モールドプレス成形やリヒートプレス成形に用いられるプリフォーム材の製造方法としては、滴下法によって熔融ガラスから直接製造する方法や、ガラスブロックをリヒートプレスし、或いはボール形状に研削加工して得られた加工品を研削研磨する方法がある。いずれの方法であっても、熔融ガラスを所望の形状に成形して光学素子を得るためには、形成されるガラスの失透を低減することが求められる。
 また、光学ガラスの材料コストを低減するために、光学ガラスを構成する諸成分の原料費は、なるべく安価であることが望まれる。また、光学ガラスの製造コストを低減するために、原料の熔解性が高いこと、すなわちより低い温度で熔解することが望まれる。ところが、特許文献1~2に記載されたガラス組成物は、これらの諸要求に十分応えるものとは言い難い。
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐失透性が高いプリフォーム材を、より安価に得ることにある。
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、B成分及びLa成分を含有するガラスにおいて、TiO成分、WO成分及びNb成分のうち少なくともいずれかを必須成分として含有することにより、高価であり且つ溶融性の悪いTa成分を低減しても所望の光学恒数が得られることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。
 (1) 酸化物換算組成のガラス全物質量に対して、モル%でB成分を10.0~50.0%及びLa成分を5.0~30.0%含有し、酸化物換算組成のガラス全物質量に対するモル和(TiO+WO+Nb)が0.1~30.0%である光学ガラス。
 (2) 酸化物換算組成のガラス全物質量に対して、モル%でWO成分の含有量が20.0%以下である(1)記載の光学ガラス。
 (3) 酸化物換算組成のガラス全物質量に対して、モル%でWO成分の含有量が7.0%未満である(1)記載の光学ガラス。
 (4) 酸化物換算組成のガラス全物質量に対して、モル%で
TiO成分 0~20.0%及び/又は
Nb成分 0~20.0%
の各成分をさらに含有する(1)から(3)のいずれか記載の光学ガラス。
 (5) 酸化物換算組成のガラス全物質量に対するモル和(TiO+Nb)が2.0%以上30.0%以下である(4)記載の光学ガラス。
 (6) 酸化物換算組成のモル比WO/(TiO+Nb+WO)が0.600以下である(1)から(5)のいずれか記載の光学ガラス。
 (7) 酸化物換算組成のガラス全物質量に対して、モル%でLiO成分の含有量が20.0%以下である(1)から(6)のいずれか記載の光学ガラス。
 (8) 酸化物換算組成のガラス全物質量に対して、モル%でLiO成分の含有量が0.1%以上である(7)記載の光学ガラス。
 (9) 酸化物換算組成のガラス全物質量に対して、モル%で
Gd成分 0~30.0%及び/又は
成分 0~10.0%及び/又は
Yb成分 0~10.0%及び/又は
Lu成分 0~10.0%
の各成分をさらに含有する(1)から(8)のいずれか記載の光学ガラス。
 (10) 酸化物換算組成のガラス全物質量に対するLn成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)のモル和が10.0%以上40.0%以下である(1)から(9)のいずれか記載の光学ガラス。
 (11) 前記Ln成分のうち、2種以上の成分を含有する(1)から(10)のいずれか記載の光学ガラス。
 (12) 酸化物換算組成のガラス全物質量に対して、モル%でTa成分の含有量が20.0%以下である(1)から(11)のいずれか記載の光学ガラス。
 (13) 酸化物換算組成のモル比Ta/WOが1.0以上10.0以下である(12)記載の光学ガラス。
 (14) 酸化物換算組成のガラス全物質量に対して、モル%でSiO成分の含有量が25.0%以下である(1)から(13)のいずれか記載の光学ガラス。
 (15) 酸化物換算組成のガラス全物質量に対して、モル%でSiO成分の含有量が19.0%以下である(14)記載の光学ガラス。
 (16) 酸化物換算組成のガラス全物質量に対して、モル%で
NaO成分 0~15.0%及び/又は
O成分 0~10.0%
の各成分をさらに含有する(1)から(15)いずれか記載の光学ガラス。
 (17) 酸化物換算組成のガラス全物質量に対するRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)のモル和が20.0%以下である(16)記載の光学ガラス。
 (18) 酸化物換算組成のガラス全物質量に対して、モル%で
MgO成分 0~10.0%及び/又は
CaO成分 0~10.0%及び/又は
SrO成分 0~10.0%及び/又は
BaO成分 0~10.0%
の各成分をさらに含有する(1)から(17)のいずれか記載の光学ガラス。
 (19) 酸化物換算組成のガラス全物質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)のモル和が11.0%以下である(18)記載の光学ガラス。
 (20) 酸化物換算組成のガラス全物質量に対して、モル%で
GeO成分 0~10.0%及び/又は
成分 0~10.0%及び/又は
ZrO成分 0~15.0%及び/又は
ZnO成分 0~50.0%及び/又は
Bi成分 0~15.0%及び/又は
TeO成分 0~15.0%及び/又は
Al成分 0~15.0%及び/又は
Ga成分 0~15.0%及び/又は
Sb成分 0~1.0%
の各成分をさらに含有し、
上記各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~6.0%である(1)から(19)のいずれか記載の光学ガラス。
 (21) 1.75以上1.95以下の屈折率(n)を有し、30以上50以下のアッベ数(ν)を有する(1)から(20)のいずれか記載の光学ガラス。
 (22) 680℃以下のガラス転移点(Tg)を有する(1)から(21)のいずれか記載の光学ガラス。
 (23) 1250℃以下の液相温度を有する(1)から(22)のいずれか記載の光学ガラス。
 (24) (1)から(23)のいずれか記載の光学ガラスからなるプリフォーム材。
 (25) (24)記載のプリフォーム材をプレス成形して作製する光学素子。
 (26) (1)から(23)のいずれか記載の光学ガラスを母材とする光学素子。
 (27) (25)又は(26)のいずれか記載の光学素子を備える光学機器。
 本発明によれば、B成分及びLa成分を含有するガラスに対して、TiO成分、WO成分及びNb成分からなる群より選択される1種以上を含有することにより、より安価な成分で所望の光学恒数を得ることが可能になる。このため、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながらも、耐失透性が高いプリフォーム材を得ることが可能な光学ガラスを安価に得ることができる。
 本発明の光学ガラスは、酸化物換算組成のガラス全物質量に対して、モル%でB成分を10.0~50.0%及びLa成分を5.0~30.0%含有し、酸化物換算組成のガラス全物質量に対するモル和(TiO+WO+Nb)が0.1~30.0%である。TiO成分、WO成分及びNb成分からなる群より選択される1種以上を含有することにより、高価であり且つ溶融性の悪いTa成分を低減しても所望の光学恒数が得られる。それとともに、B成分及びLa成分をベースとすることにより、1.75以上1.95以下の屈折率(n)及び30以上50以下のアッベ数(ν)を有しながらも、液相温度が低くなり易くなる。このため、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながらも、耐失透性が高いプリフォーム材を得ることが可能な光学ガラスを安価に得ることができる。
 本発明の光学ガラスは、TiO成分、WO成分及びNb成分からなる群より選択される1種以上を必須成分として含有する。これらTiO成分、WO成分及びNb成分のうち、少なくともTiO成分及び/又はNb成分を含有するガラスを第1の光学ガラスとして説明する。また、TiO成分、WO成分及びNb成分のうち、少なくともWO成分を含有するガラスを第2の光学ガラスとして説明する。なお、本発明の光学ガラスは、TiO成分及び/又はNb成分と、WO成分の両方を含有するものであってもよい。
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成のガラス全物質量に対するモル%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総物質量を100モル%として、ガラス中に含有される各成分を表記した組成である。
<必須成分、任意成分について>
 B成分は、希土類酸化物を多く含む本発明の光学ガラスでは、ガラス形成酸化物として必須の成分である。特に、B成分の含有量を10.0%以上にすることで、ガラスの耐失透性を高め、且つガラスの分散を小さくすることができる。従って、酸化物換算組成のガラス全物質量に対するB成分の含有量は、好ましくは10.0%、より好ましくは15.0%、最も好ましくは20.0%を下限とする。一方、B成分の含有量を50.0%以下にすることで、より大きな屈折率を得易くし、且つ化学的耐久性の悪化を抑えることができる。従って、酸化物換算組成のガラス全物質量に対するB成分の含有量は、好ましくは50.0%、より好ましくは48.0%、最も好ましくは46.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。
 La成分は、ガラスの屈折率を高め、且つガラスの分散を小さくしてガラスのアッベ数を大きくする成分である。特に、La成分の含有量を5.0%以上にすることで、ガラスの屈折率を高めることができる。従って、酸化物換算組成のガラス全物質量に対するLa成分の含有量は、好ましくは5.0%、より好ましくは8.0%、最も好ましくは10.0%を下限とする。一方、La成分の含有量を30.0%以下にすることで、ガラスの安定性を高めることで失透を低減できる。従って、酸化物換算組成のガラス全物質量に対するLa成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、最も好ましくは18.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、TiO成分、WO成分及びNb成分からなる群より選択される1種以上のモル和が0.1%以上30.0%以下であることが好ましい。特にこのモル和が0.1%以上であることにより、Ta成分を低減しても所望の光学恒数が得られるため、所望の光学特性を有する光学ガラスをより安価に作製できる。一方で、このモル和が30.0%以下であることにより、これら成分の過剰な含有による液相温度の上昇が抑えられるため、光学ガラスをより安定的に作製できる。従って、酸化物換算組成のガラス全物質量に対するこれら成分のモル和は、好ましくは0.1%、より好ましくは1.0%、最も好ましくは1.5%を下限とする。一方で、酸化物換算組成のガラス全物質量に対するこれら成分のモル和は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは26.0%を上限とし、最も好ましくは11.0%未満とする。特に第2の光学ガラスでは、屈折率と耐失透性をより高める観点から、これら成分のモル和を、好ましくは20.0%、より好ましくは18.0%、さらに好ましくは15.0%を上限としてもよい。
 WO成分は、ガラスの屈折率を高め、且つガラスの耐失透性を向上する成分である。一方で、WO成分の含有量を20.0%以下にすることで、高分散化を抑えつつ、高い屈折率と耐失透性を兼ね備えたガラスを形成できる。また、WO成分の含有量を20.0%以下にすることで、特に可視-短波長領域(500nm未満)における透過率を低下し難くすることができる。従って、酸化物換算組成のガラス全物質量に対するWO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%を上限し、最も好ましくは7.0%未満とする。特に第1の光学ガラスにおいては、ガラスの屈折率を高めることが難しい成分である観点から、WO成分の含有量を、好ましくは4.0%、より好ましくは3.0%を上限とし、最も好ましくは1.0%未満としてもよい。なお、本発明の光学ガラスは、WO成分を含有しなくとも所望の光学恒数及び耐失透性を有するガラスを得ることが可能であるが、WO成分を含有することで、高い屈折率を得ながらも、ガラス転移点をより低くすることができる。従って、特に第2の光学ガラスにおける、酸化物換算組成のガラス全物質量に対するWO成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1.0%、最も好ましくは1.5%を下限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。
 TiO成分は、ガラスの屈折率及びアッベ数を高く調整し、且つ耐失透性を改善する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、TiOが多すぎると逆に耐失透性が悪くなり、可視短波長(500nm以下)におけるガラスの透過率も悪化する。従って、酸化物換算組成のガラス全物質量に対するTiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは12.0%を上限とする。なお、TiO成分を含有しなくとも所望の特性を有するガラスは得られるが、TiO成分を含有することで、ガラスの安定性を下げることなく、高い屈折率を得ることが可能になる。また、ガラスの液相温度を下げて安定性を高めることもできる。従って、特に第1の光学ガラスでは、酸化物換算組成のガラス全物質量に対するTiO成分の含有量を、好ましくは0.1%、より好ましくは3.0%、さらに好ましくは5.0%を下限とし、最も好ましくは8.0%より多くしてもよい。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。
 Nb成分は、ガラスの屈折率及び分散を高く調整する成分であり、本発明の光学ガラス中の任意成分である。特に、Nb成分の含有量を20.0%以下にすることで、Nb成分の過剰な含有によるガラスの耐失透性の悪化を抑え、且つ、ガラスの可視光に対する透過率の低下を抑えることができる。従って、酸化物換算組成のガラス全物質量に対するNb成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%、最も好ましくは7.0%を上限とする。なお、Nb成分を含有しなくとも所望の特性を有するガラスは得られるが、Nb成分を含有することで、ガラスの安定性を下げることなく、高い屈折率を得ることが可能になる。また、ガラスの液相温度を下げて安定性を高めることもできる。従って、特に第1の光学ガラスにおける、酸化物換算組成のガラス全物質量に対するNb成分の含有量を、好ましくは0.1%を下限とし、より好ましくは2.0%より多くし、さらに好ましくは5.0%を下限とし、最も好ましくは8.0%より多くしてもよい。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。
 本発明の第1の光学ガラスは、TiO成分及びNb成分の含有量の和が2.0%以上30.0%以下であることが好ましい。特に、この和を2.0%以上にすることにより、ガラスの液相温度を低くしつつ、高い屈折率を得ることが可能になる。従って、第1の光学ガラスにおける、酸化物換算組成のモル和(TiO+Nb)は、好ましくは2.0%、より好ましくは5.0%、さらに好ましくは8.0%を下限とする。一方、この和を30.0%以下にすることで、これらの成分の過剰な含有によるガラスの耐失透性の悪化を抑えることができる。従って、酸化物換算組成のガラス全物質量に対するモル和(TiO+Nb)は、好ましくは30.0%、より好ましくは25.0%、最も好ましくは20.0%を上限とする。
 また、本発明の第1の光学ガラスは、TiO成分、Nb成分及びWO成分の和に対するWO成分の含有量の比率が0.600以下であることが好ましい。この比率を小さくすることにより、ガラスの所望のアッベ数が確保されつつ、屈折率が高められ易くなるため、所望の屈折率及びアッベ数を有するガラスを得易くできる。また、ガラスの屈折率と分散の双方を高める作用を有するTiO成分、Nb成分及びWO成分の全体の所要量が低減されるため、これらの過剰な含有による液相温度の上昇、すなわち失透を低減できる。従って、第1の光学ガラスにおける、酸化物換算組成のモル比WO/(TiO+Nb+WO)は、好ましくは0.600、より好ましくは0.500、最も好ましくは0.370を上限とする。一方、酸化物換算組成におけるモル比WO/(TiO+Nb+WO)の下限は、0であってもよい。
 LiO成分は、ガラス転移点を下げる成分である。特に、LiO成分の含有量を20.0%以下にすることで、ガラスの液相温度を下げて失透を低減できる。従って、酸化物換算組成のガラス全物質量に対するLiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、LiO成分を含有しなくとも所望の特性を有するガラスは得られるが、LiO成分を含有することにより、ガラス転移点を下げる作用が大きくなるため、プレス成形を行い易い光学ガラスを得易くできる。従って、酸化物換算組成のガラス全物質量に対するLiO成分の含有量は、好ましくは0.1%、より好ましくは0.3%、最も好ましくは0.5%を下限とする。
 Gd成分は、ガラスの屈折率を高め、且つアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有量を30.0%以下にすることで、所望の光学恒数を有するガラスを得易くでき、Gd成分の過剰な含有によるガラス転移点(Tg)の上昇を抑え、且つガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全物質量に対するGd成分の含有量は、それぞれ好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。なお、Gd成分を含有しなくとも技術的に不利益はないが、La成分の一部をGd成分に置き換えることで、Gd成分を含有しない場合に比べてガラスの液相温度が低くなることがあり、耐失透性をより高められることがある。従って、酸化物換算組成のガラス全物質量に対するGd成分の含有量は、好ましくは0%より多くし、より好ましくは2.0%を下限とし、さらに好ましくは5.0%より多くする。Gd成分は、原料として例えばGd、GdF等を用いてガラス内に含有することができる。
 Y成分、Yb成分、及びLu成分は、ガラスの屈折率を高め、且つ分散を小さくする成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分、Yb成分及び/又はLu成分の含有量をそれぞれ10.0%以下にすることで、ガラスの所望の光学恒数が得易くなり、且つガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全物質量に対するY、Yb及びLuの各成分の含有量は、それぞれ好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。特に、ガラス転移点(Tg)の低いガラスを得られる観点では、Yの含有量を1.3%以下にしてもよい。Y、Yb及びLuの各成分は、原料として例えばY、YF、Yb、Lu等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)のモル和が10.0%以上40.0%以下であることが好ましい。特に、Ln成分のモル和を10.0%以上にすることで、ガラスの屈折率及びアッベ数がいずれも高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、酸化物換算組成のガラス全物質量に対するLn成分のモル和は、好ましくは10.0%、より好ましくは12.0%、最も好ましくは15.0%を下限とする。一方、Ln成分のモル和を40.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。従って、酸化物換算組成のガラス全物質量に対するLn成分のモル和は、好ましくは40.0%、より好ましくは35.0%、さらに好ましくは30.0%、最も好ましくは27.0%を上限とする。
 本発明の光学ガラスは、上述のLn成分のうち2種以上の成分を含有することが好ましい。これにより、ガラスの液相温度がより低くなるため、より耐失透性の高いガラスを形成できる。特に、Ln成分として、La成分とGd成分を含む2種以上の成分を含有することが、ガラスの液相温度を低くし易くできる点で好ましい。
 Ta成分は、ガラスの屈折率を高め、且つガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を20.0%以下にすることで、Ta成分の過剰な含有による失透を低減できる。また、Ta成分の含有量を少なくすることで、高価なTa成分の含有が低減され、且つ原料を熔解する温度を下げることが可能になるため、光学ガラスの原料及び製造に掛かるコストを低減できる。従って、酸化物換算組成のガラス全物質量に対するTa成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは8.0%を上限とする。特に、第1の光学ガラスでは、Ta成分の含有量が4.5%以下であってもよい。なお、Ta成分を含有しなくとも所望の特性を有するガラスを得ることは可能であるが、特に第2の光学ガラスでは、Ta成分を含有することで、ガラスの屈折率を高めながらも、ガラスの液相温度を下げることで耐失透性を高めることができる。従って、第2の光学ガラスにおける、酸化物換算組成のガラス全物質量に対するTa成分の含有量は、好ましくは0%より多くし、より好ましくは1.0%、最も好ましくは2.0%を下限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。
 本発明の第2の光学ガラスは、WO成分の含有量に対するTa成分の含有量の比率が1.0以上であることが好ましい。特に、この比率を1.0以上にすることで、ガラスの可視光透過性を維持し、且つ屈折率を高めながらも、ガラスの分散の上昇を抑えることができる。また、ガラスの液相温度が低くなることで、ガラスの耐失透性を向上できる。従って、第2の光学ガラスにおける、酸化物換算組成のモル比Ta/WOは、好ましくは1.0、より好ましくは2.0、さらに好ましくは2.1、最も好ましくは2.5を下限とする。一方、この比率の上限は特に限定されず、無限大(すなわちWO成分を含有しない)であってもよい。しかしながら、この比率を10.0以下にすることで、高価なTa成分の含有が低減されるため、光学ガラスの原料及び製造に掛かるコストを低減できる。従って、第2の光学ガラスにおける、酸化物換算組成のモル比Ta/WOは、好ましくは10.0、より好ましくは7.0、最も好ましくは4.0を上限とする。
 SiO成分は、熔融ガラスの粘度を高め、且つ、安定なガラス形成を促すことで光学ガラスとして好ましくない失透(結晶物の発生)を低減する成分であり、本発明の光学ガラス中の任意成分である。特に、SiO成分の含有量を25.0%以下にすることで、ガラス転移点(Tg)の上昇を抑え、且つ、本発明が目的とする高屈折率を得易くすることができる。従って、酸化物換算組成のガラス全物質量に対するSiO成分の含有量は、好ましくは25.0%、より好ましくは19.0%、さらに好ましくは17.5%、最も好ましくは13.0%を上限とする。なお、SiO成分を含有しなくとも所望の特性を有するガラスを得ることは可能であるが、特に第2の光学ガラスでは、SiO成分を含有することで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。また、溶融ガラスの粘性を高めることで、ガラスの成形を行い易くすることができる。従って、酸化物換算組成のガラス全物質量に対するSiO成分の含有量は、好ましくは0%より多くし、より好ましくは1.0%より多くし、最も好ましくは4.0%より多くする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。
 NaO成分及びKO成分は、ガラスの熔融性を改善し、ガラス転移点を低くし、且つガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、NaO成分の含有量を15.0%以下にし、及び/又は、KO成分の含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの安定性を高めて失透等の発生を低減することができる。従って、酸化物換算組成のガラス全物質量に対するNaO成分の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。また、酸化物換算組成のガラス全物質量に対するKO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。NaO成分及びKO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF、KCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有することができる。
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)は、ガラスの熔融性を改善するとともに、ガラスの失透を低減する成分である。ここで、RnO成分の含有量を20.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの安定性を高めて失透等の発生を低減することができる。従って、酸化物換算組成のガラス全物質量に対するRnO成分のモル和は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。
 MgO成分、CaO成分、SrO成分及びBaO成分は、ガラスの屈折率や熔融性、失透性を調整する成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分、CaO成分、SrO成分及びBaO成分の各々の含有量を10.0%以下にすることで、所望の屈折率を得易くし、且つこれらの成分の過剰な含有によるガラスの失透の発生を低減することができる。従って、酸化物換算組成のガラス全物質量に対するMgO成分、CaO成分、SrO成分及びBaO成分の各々の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。MgO成分は、原料として例えばMgCO、MgF、CaCO、CaF、Sr(NO、SrF、BaCO、Ba(NO、BaF等を用いてガラス内に含有することができる。
 本発明の光学ガラスは、RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の合計が11.0%以下であることが好ましい。これにより、所望の屈折率を得易くすることができる。従って、酸化物換算組成のガラス全物質量に対するRO成分のモル和は、好ましくは11.0%、より好ましくは8.0%、さらに好ましくは5.0%を上限とする。
 GeO成分は、ガラスの屈折率を高め、且つ耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、GeOは原料価格が高いため、その量が多いと生産コストが高くなることで、Ta成分を低減することによる効果が減殺される。従って、酸化物換算組成のガラス全物質量に対するGeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。
 P成分は、ガラスの液相温度を下げて耐失透性を向上させる効果を有する成分であり、本発明の光学ガラス中の任意成分である。特に、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えることができる。従って、酸化物換算組成のガラス全物質量に対するP成分の含有量は、好ましくは10.0%、より好ましくは8.0%、最も好ましくは5.0%を上限とする。P成分は、原料として例えばAl(PO、Ca(PO、Ba(PO、BPO、HPO等を用いてガラス内に含有することができる。
 ZrO成分は、ガラスの高屈折率及び低分散に寄与し、且つ耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、ZrO量が多すぎると、逆に耐失透性が悪化する。従って、酸化物換算組成のガラス全物質量に対するZrO成分の含有量は、好ましくは15.0%、より好ましくは12.0%、さらに好ましくは10.0%を上限とする。なお、ZrO成分を含有しなくても所望の特性を有するガラスを得ることは可能であるが、ZrO成分を含有することで、高屈折率低分散の性能を得易くでき、且つ耐失透性を高める効果を得易くできる。従って、特に第2の光学ガラスにおいては、酸化物換算組成のガラス全物質量に対するZrO成分の含有量を、好ましくは0%より多くし、より好ましくは1.0%、最も好ましくは3.0%を下限としてもよい。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。
 ZnO成分は、ガラス転移温度(Tg)を低くし、且つ化学的耐久性を改善する成分であり、本発明の光学ガラス中の任意成分である。しかしながら、ZnO成分を多く含有するとガラスの耐失透性を悪化し易い。従って、酸化物換算組成のガラス全物質量に対するZnO成分の含有量は、好ましくは50.0%、より好ましくは45.0%、さらに好ましくは40.0%を上限とする。特に、ガラスの安定性を高めて液相温度を低くできる観点では、酸化物換算組成のガラス全物質量に対するZnO成分の含有量は、27.0%以下としてもよく、24.0%未満としてもよい。なお、ZnO成分を含有しなくても所望の特性を有するガラスを得ることは可能であるが、ZnO成分を含有することにより、ガラス転移点が低くなるため、よりプレス成形を行い易い光学ガラスを得易くできる。従って、酸化物換算組成のガラス全物質量に対するZnO成分の含有量は、好ましくは0%より多く、より好ましくは5.0%、最も好ましくは10.0%を下限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。
 Bi成分は、屈折率を高め、且つガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を15.0%以下にすることで、液相温度の上昇が抑えられるため、ガラスの耐失透性の低下を抑えることができる。従って、酸化物換算組成のガラス全物質量に対するBi成分の含有量は、好ましくは15.0%を上限とし、より好ましくは10.0%未満とし、最も好ましくは5.0%未満とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。
 TeO成分は、屈折率を高め、且つガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。しかしながら、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、酸化物換算組成のガラス全物質量に対するTeO成分の含有量は、好ましくは15.0%を上限とし、より好ましくは10.0%未満とし、最も好ましくは5.0%未満とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。
 Al成分及びGa成分は、ガラスの化学的耐久性を向上し、且つ熔融ガラスの耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。特に、Al成分及びGa成分の各々の含有量を15.0%以下にすることで、ガラスの安定性を高めることでガラスの失透傾向を弱めることができる。従って、酸化物換算組成のガラス全物質量に対するAl成分及びGa成分の各々の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Al成分及びGa成分は、原料として例えばAl、Al(OH)、AlF、Ga、Ga(OH)等を用いてガラス内に含有することができる。
 Sb成分は、熔融ガラスを脱泡する成分であり、本発明の光学ガラス中の任意成分である。Sb量が多すぎると可視光領域の短波長領域における透過率が悪くなる。従って、酸化物換算組成のガラス全物質量に対するSb成分の含有量は、好ましくは1.0%、より好ましくは0.7%、最も好ましくは0.5%を上限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いてガラス内に含有することができる。
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
 F成分は、ガラスの分散を低くしつつ、ガラス転移点(Tg)を低下させ、耐失透性を向上する成分であり、本発明の光学ガラス中の任意成分である。しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が6.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。従って、酸化物換算組成のガラス全物質量に対するF成分の含有量は、好ましくは6.0%、より好ましくは5.0%、最も好ましくは3.0%を上限とする。F成分は、原料として例えばZrF、AlF、NaF、CaF等を用いることで、ガラス内に含有することができる。
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
 本発明のガラス組成物は、その組成が酸化物換算組成のガラス全物質量に対するモル%で表されているため直接的に質量%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分の質量%表示による組成は、酸化物換算組成で概ね以下の値をとる。
成分 5.0~25.0質量%、及び
La成分 10.0~55.0質量%、
WO成分 0~30.0質量%及び/又は
TiO成分 0~10.0質量%及び/又は
Nb成分 0~35.0質量%及び/又は
LiO成分 0~5.0質量%及び/又は
Gd成分 0~55.0質量%及び/又は
成分 0~20.0質量%及び/又は
Yb成分 0~25.0質量%及び/又は
Lu成分 0~20.0質量%及び/又は
Ta成分 0~30.0質量%及び/又は
SiO成分 0~10.0質量%及び/又は
NaO成分 0~8.0質量%及び/又は
O成分 0~8.0質量%及び/又は
MgO成分 0~3.0質量%及び/又は
CaO成分 0~5.0質量%及び/又は
SrO成分 0~8.0質量%及び/又は
BaO成分 0~10.0質量%及び/又は
GeO成分 0~7.0質量%及び/又は
成分 0~10.0質量%及び/又は
ZrO成分 0~12.0質量%及び/又は
ZnO成分 0~30.0質量%及び/又は
Bi成分 0~40.0質量%及び/又は
TeO成分 0~15.0質量%及び/又は
Al成分 0~12.0質量%及び/又は
Ga成分 0~20.0質量%及び/又は
Sb成分 0~3.0質量%
並びに、上記各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量 0~3.0質量%
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔融して攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[物性]
 本発明の光学ガラスは、高い屈折率(n)及び低い分散を有する。特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.75、より好ましくは1.77、最も好ましくは1.80を下限とし、好ましくは1.95、より好ましくは1.92、最も好ましくは1.91を上限とする。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは30、より好ましくは31、最も好ましくは32を下限とし、好ましくは50、より好ましくは45、最も好ましくは40を上限とする。これらにより、光学設計の自由度が広がり、さらに素子の薄型化を図っても大きな光の屈折量を得ることができる。
 また、本発明の光学ガラスは、着色が少ないことが好ましい。特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)が450nm以下であり、より好ましくは430nm以下であり、最も好ましくは420nm以下である。また、分光透過率5%を示す波長(λ)が400nm以下であり、より好ましくは380nm以下であり、最も好ましくは370nm以下である。また、分光透過率80%を示す波長(λ80)が550nm以下であり、より好ましくは520nm以下であり、さらに好ましくは500nm以下であり、最も好ましくは480nm以下である。これにより、ガラスの吸収端が紫外領域の近傍に位置するようになり、可視域におけるガラスの透明性が高められるため、この光学ガラスをレンズ等の光学素子の材料として好ましく用いることができる。
 また、本発明の光学ガラスは、耐失透性が高いことが好ましい。特に、本発明の光学ガラスは、1200℃以下の低い液相温度を有することが好ましい。より具体的には、本発明の光学ガラスの液相温度は、好ましくは1200℃、より好ましくは1180℃、最も好ましくは1160℃を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、熔融状態からガラスを形成したときの耐失透性を高めることができ、ガラスを用いた光学素子の光学特性への影響を低減することができる。また、プリフォーム材を安定生産できる温度の範囲が広くなるため、ガラスの熔解温度を低くしてもプリフォーム材を形成でき、プリフォーム材の形成時に消費するエネルギーを抑えることができる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね500℃以上、具体的には550℃以上、さらに具体的には600℃以上であることが多い。なお、本明細書中における「液相温度」とは、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1250℃で完全に熔融状態にし、所定の温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を表す。ここで所定の温度とは、1180℃~500℃まで10℃刻みで設定した温度を表わす。
 また、本発明の光学ガラスは、680℃以下のガラス転移点(Tg)を有する。これにより、ガラスがより低い温度で軟化するため、より低い温度でガラスをプレス成形し易くできる。また、プレス成形に用いる金型の酸化を低減して金型の長寿命化を図ることもできる。従って、本発明の光学ガラスのガラス転移点(Tg)は、好ましくは680℃、より好ましくは650℃、最も好ましくは630℃を上限とする。なお、本発明の光学ガラスのガラス転移点(Tg)の下限は特に限定されないが、本発明によって得られるガラスのガラス転移点(Tg)は、概ね100℃以上、具体的には150℃以上、さらに具体的には200℃以上であることが多い。
 また、本発明の光学ガラスは、720℃以下の屈伏点(At)を有することが好ましい。屈伏点(At)は、ガラス転移点(Tg)と同様にガラスの軟化性を示す指標の一つであり、プレス成形温度に近い温度を示す指標である。そのため、屈伏点(At)が720℃以下のガラスを用いることにより、より低い温度でのプレス成形が可能になるため、より容易にプレス成形を行うことができる。従って、本発明の光学ガラスの屈伏点(At)は、好ましくは720℃、より好ましくは700℃、最も好ましくは680℃を上限とする。なお、本発明の光学ガラスの屈伏点(At)の下限は特に限定されないが、本発明によって得られるガラスの屈伏点(At)は、概ね150℃以上、具体的には200℃以上、さらに具体的には250℃以上であることが多い。
 また、本発明の光学ガラスは、低い部分分散比(θg,F)を有することが好ましい。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-2.50×10-3×ν+0.6971)の関係を満たす。これにより、部分分散比(θg,F)の小さい光学ガラスが得られるため、この光学ガラスから形成される光学素子の色収差を低減できる。本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×ν+0.6571)、より好ましくは(-2.50×10-3×ν+0.6591)、最も好ましくは(-2.50×10-3×ν+0.6611)を下限とする。一方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×ν+0.6971)、より好ましくは(-2.50×10-3×ν+0.6921)、最も好ましくは(-2.50×10-3×ν+0.6871)を上限とする。
[プリフォーム材及び光学素子]
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
 このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォーム材を形成し、このプリフォーム材を用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォーム材の形成が可能になるため、光学素子の大型化を図りながらも、カメラやプロジェクタ等の光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。
 本発明の実施例(No.1~No.105)及び比較例(No.A)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、部分分散比(θg,F)、ガラス転移点(Tg)、屈伏点(At)、液相温度、分光透過率が5%、70%及び80%を示す波長(λ、λ70及びλ80)の結果を表1~表14に示す。なお、実施例(No.1~No.12)は第1の光学ガラスに関する実施例であり、実施例(No.1~No.2、No.13~No.105)は第2の光学ガラスに関する実施例である。また、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。
 本発明の実施例(No.1~No.105)及び比較例(No.A)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表1~表14に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔融した後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。
 ここで、実施例(No.1~No.105)及び比較例(No.A)のガラスの、屈折率(n)、アッベ数(ν)及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。そして、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、関係式(θg,F)=-a×ν+bにおける、傾きaが0.0025のときの切片bを求めた。ここで、屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、徐冷降温速度を-25℃/hrにして得られたガラスについて測定を行うことで求めた。
 また、実施例(No.1~No.105)及び比較例(No.A)のガラスの、ガラス転移点(Tg)及び屈伏点(At)は、横型膨張測定器を用いた測定を行うことで求めた。ここで、測定を行う際のサンプルはφ4.8mm、長さ50~55mmのものを使用し、昇温速度を4℃/minとした。
 また、実施例(No.1~No.105)及び比較例(No.A)のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ(透過率5%時の波長)、λ70(透過率70%時の波長)及びλ80(透過率80%時の波長)を求めた。
 また、実施例(No.1~No.105)及び比較例(No.A)のガラスの液相温度は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1250℃で完全に熔融状態にし、1180℃~1000℃まで10℃刻みで設定したいずれかの温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表1~表14に表されるように、本発明の実施例の光学ガラスは、いずれも液相温度が1200℃以下、より詳細には1160℃以下であり、所望の範囲内であった。一方、比較例(No.A)のガラスは、液相温度が1200℃よりも高かった。このように液相温度が相違する理由として、本発明の実施例の光学ガラスは、比較例(No.A)とは異なり、TiO成分、WO成分及びNb成分のうち少なくともいずれかを含有している点が挙げられる。このため、本発明の実施例の光学ガラスは、比較例(No.A)よりも液相温度が低いことが明らかになった。
 また、本発明の実施例の光学ガラスは、λ70(透過率70%時の波長)がいずれも450nm以下、より詳細には413nm以下であった。また、本発明の実施例の光学ガラスは、λ(透過率5%時の波長)がいずれも400nm以下、より詳細には361nm以下であった。また、本発明の実施例の光学ガラスは、λ80(透過率80%時の波長)がいずれも550nm以下、より詳細には530nm以下であった。このため、本発明の実施例の光学ガラスは、可視短波長における透過率が高く、着色し難いことが明らかになった。
 また、本発明の実施例の光学ガラスは、いずれもガラス転移点(Tg)が680℃以下、より詳細には630℃以下であり、所望の範囲内であった。また、本発明の実施例(No.8)の光学ガラスは、屈伏点(At)が720℃以下、より詳細には680℃以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.75以上、より詳細には1.85以上であるとともに、この屈折率(n)は1.95以下、より詳細には1.91以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30以上、より詳細には31以上であるとともに、このアッベ数(ν)は50以下、より詳細には41以下であり、所望の範囲内であった。
 また、本発明の実施例の光学ガラスは、いずれも部分分散比(θg,F)が(-2.50×10-3×ν+0.6571)以上、より詳細には(-2.50×10-3×ν+0.6672)以上であった。その反面で、本発明の実施例の光学ガラスの部分分散比は、(-2.50×10-3×ν+0.6971)以下、より詳細には(-2.50×10-3×ν+0.6725)以下であった。そのため、これらの部分分散比(θg,F)が所望の範囲内にあることがわかった。
 従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながらも、可視短波長における透過率が高く、耐失透性が高く、且つ、加熱軟化によるプレス成形を行い易いことが明らかになった。
 さらに、本発明の実施例の光学ガラスを用いて、リヒートプレス成形を行った後で研削及び研磨を行い、レンズ及びプリズムの形状に加工した。また、本発明の実施例の光学ガラスを用いて、精密プレス成形用プリフォームを形成し、精密プレス成形用プリフォームをレンズ及びプリズムの形状に精密プレス成形加工した。いずれの場合も、加熱軟化後のガラスには乳白化及び失透等の問題は生じず、安定に様々なレンズ及びプリズムの形状に加工することができた。
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。

Claims (27)

  1.  酸化物換算組成のガラス全物質量に対して、モル%でB成分を10.0~50.0%及びLa成分を5.0~30.0%含有し、酸化物換算組成のガラス全物質量に対するモル和(TiO+WO+Nb)が0.1~30.0%である光学ガラス。
  2.  酸化物換算組成のガラス全物質量に対して、モル%でWO成分の含有量が20.0%以下である請求項1記載の光学ガラス。
  3.  酸化物換算組成のガラス全物質量に対して、モル%でWO成分の含有量が7.0%未満である請求項1記載の光学ガラス。
  4.  酸化物換算組成のガラス全物質量に対して、モル%で
    TiO成分 0~20.0%及び/又は
    Nb成分 0~20.0%
    の各成分をさらに含有する請求項1から3のいずれか記載の光学ガラス。
  5.  酸化物換算組成のガラス全物質量に対するモル和(TiO+Nb)が2.0%以上30.0%以下である請求項4記載の光学ガラス。
  6.  酸化物換算組成のモル比WO/(TiO+Nb+WO)が0.600以下である請求項1から5のいずれか記載の光学ガラス。
  7.  酸化物換算組成のガラス全物質量に対して、モル%でLiO成分の含有量が20.0%以下である請求項1から6のいずれか記載の光学ガラス。
  8.  酸化物換算組成のガラス全物質量に対して、モル%でLiO成分の含有量が0.1%以上である請求項7記載の光学ガラス。
  9.  酸化物換算組成のガラス全物質量に対して、モル%で
    Gd成分 0~30.0%及び/又は
    成分 0~10.0%及び/又は
    Yb成分 0~10.0%及び/又は
    Lu成分 0~10.0%
    の各成分をさらに含有する請求項1から8のいずれか記載の光学ガラス。
  10.  酸化物換算組成のガラス全物質量に対するLn成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)のモル和が10.0%以上40.0%以下である請求項1から9のいずれか記載の光学ガラス。
  11.  前記Ln成分のうち、2種以上の成分を含有する請求項1から10のいずれか記載の光学ガラス。
  12.  酸化物換算組成のガラス全物質量に対して、モル%でTa成分の含有量が20.0%以下である請求項1から11のいずれか記載の光学ガラス。
  13.  酸化物換算組成のモル比Ta/WOが1.0以上10.0以下である請求項12記載の光学ガラス。
  14.  酸化物換算組成のガラス全物質量に対して、モル%でSiO成分の含有量が25.0%以下である請求項1から13のいずれか記載の光学ガラス。
  15.  酸化物換算組成のガラス全物質量に対して、モル%でSiO成分の含有量が19.0%以下である請求項14記載の光学ガラス。
  16.  酸化物換算組成のガラス全物質量に対して、モル%で
    NaO成分 0~15.0%及び/又は
    O成分 0~10.0%
    の各成分をさらに含有する請求項1から15いずれか記載の光学ガラス。
  17.  酸化物換算組成のガラス全物質量に対するRnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)のモル和が20.0%以下である請求項16記載の光学ガラス。
  18.  酸化物換算組成のガラス全物質量に対して、モル%で
    MgO成分 0~10.0%及び/又は
    CaO成分 0~10.0%及び/又は
    SrO成分 0~10.0%及び/又は
    BaO成分 0~10.0%
    の各成分をさらに含有する請求項1から17のいずれか記載の光学ガラス。
  19.  酸化物換算組成のガラス全物質量に対するRO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)のモル和が11.0%以下である請求項18記載の光学ガラス。
  20.  酸化物換算組成のガラス全物質量に対して、モル%で
    GeO成分 0~10.0%及び/又は
    成分 0~10.0%及び/又は
    ZrO成分 0~15.0%及び/又は
    ZnO成分 0~50.0%及び/又は
    Bi成分 0~15.0%及び/又は
    TeO成分 0~15.0%及び/又は
    Al成分 0~15.0%及び/又は
    Ga成分 0~15.0%及び/又は
    Sb成分 0~1.0%
    の各成分をさらに含有し、
    上記各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~6.0%である請求項1から19のいずれか記載の光学ガラス。
  21.  1.75以上1.95以下の屈折率(n)を有し、30以上50以下のアッベ数(ν)を有する請求項1から20のいずれか記載の光学ガラス。
  22.  680℃以下のガラス転移点(Tg)を有する請求項1から21のいずれか記載の光学ガラス。
  23.  1250℃以下の液相温度を有する請求項1から22のいずれか記載の光学ガラス。
  24.  請求項1から23のいずれか記載の光学ガラスからなるプリフォーム材。
  25.  請求項24記載のプリフォーム材をプレス成形して作製する光学素子。
  26.  請求項1から23のいずれか記載の光学ガラスを母材とする光学素子。
  27.  請求項25又は26のいずれか記載の光学素子を備える光学機器。
PCT/JP2011/073183 2010-10-08 2011-10-07 光学ガラス、プリフォーム材及び光学素子 WO2012046833A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800485933A CN103168013A (zh) 2010-10-08 2011-10-07 光学玻璃、预成型体材料及光学元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-229077 2010-10-08
JP2010229077 2010-10-08
JP2011-107572 2011-05-12
JP2011107572 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012046833A1 true WO2012046833A1 (ja) 2012-04-12

Family

ID=45927825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073183 WO2012046833A1 (ja) 2010-10-08 2011-10-07 光学ガラス、プリフォーム材及び光学素子

Country Status (4)

Country Link
JP (3) JP2012250900A (ja)
CN (2) CN103168013A (ja)
TW (1) TWI594966B (ja)
WO (1) WO2012046833A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098267A (zh) * 2013-04-05 2014-10-15 株式会社小原 光学玻璃、预成型材料及光学元件
JPWO2018037797A1 (ja) * 2016-08-26 2019-06-20 国立大学法人 東京大学 光学ガラス、光学ガラスからなる光学素子、及び光学装置
CN112159102A (zh) * 2020-10-16 2021-01-01 内蒙古科技大学 一种高释放量的负离子玻璃空气净化材料
CN113788614A (zh) * 2013-04-05 2021-12-14 株式会社小原 光学玻璃、预成型材料及光学元件

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987364B2 (ja) * 2011-03-09 2016-09-07 日本電気硝子株式会社 光学ガラス
JP2014162708A (ja) * 2013-02-27 2014-09-08 Ohara Inc 光学ガラス及び光学素子
JP6091251B2 (ja) * 2013-02-27 2017-03-08 株式会社オハラ 光学ガラス及び光学素子
JP6014573B2 (ja) * 2013-04-05 2016-10-25 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP5875572B2 (ja) * 2013-04-05 2016-03-02 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
CN104341101A (zh) * 2013-07-31 2015-02-11 株式会社小原 光学玻璃、预成型体材料及光学元件
JP6611410B2 (ja) * 2013-11-08 2019-11-27 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP6771811B2 (ja) * 2014-10-29 2020-10-21 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN117486484A (zh) * 2014-12-24 2024-02-02 株式会社小原 一种光学玻璃、预制件以及光学元件
JP6866012B2 (ja) * 2015-11-06 2021-04-28 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JP6903373B2 (ja) * 2015-11-06 2021-07-14 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
CN117865468A (zh) * 2015-11-06 2024-04-12 株式会社小原 一种光学玻璃、预制件以及光学元件
TWI795418B (zh) * 2017-07-21 2023-03-11 日商小原股份有限公司 光學玻璃、預成形體及光學元件
CN116655237A (zh) * 2018-08-31 2023-08-29 Agc株式会社 光学玻璃和光学部件
CN112714753B (zh) * 2019-08-26 2022-05-03 Agc株式会社 光学玻璃
CN115700228A (zh) * 2022-11-21 2023-02-07 深圳市微思腾新材料科技有限公司 一种光学玻璃组合物及光学玻璃

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281124A (ja) * 2004-03-05 2005-10-13 Hoya Corp 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2006131450A (ja) * 2004-11-05 2006-05-25 Asahi Glass Co Ltd 光学ガラスおよびレンズ

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490218A (en) * 1977-12-28 1979-07-17 Minolta Camera Kk Optical glass
JPS54103411A (en) * 1978-02-02 1979-08-14 Fuji Photo Film Co Ltd High refractive index optical glass
DE3138137C2 (de) * 1981-09-25 1985-05-15 Schott Glaswerke, 6500 Mainz ThO↓2↓ - und Ta↓2↓O↓5↓-freie optische Gläser mit Brechwerten von 1.87 - 1.93 und Abbezahlen von 30 - 35
DE3138138C2 (de) * 1981-09-25 1983-10-27 Schott Glaswerke, 6500 Mainz Th0↓2↓- und Cd0-freies optisches Glas mit Brechwerten 1.73 - 1.88 und Abbezahlen von 35 - 52
DE3343418A1 (de) * 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit
JPS62100449A (ja) * 1985-10-24 1987-05-09 Ohara Inc 光学ガラス
JP2875709B2 (ja) * 1993-04-22 1999-03-31 株式会社オハラ 光学ガラス
JP3113591B2 (ja) * 1996-02-13 2000-12-04 株式会社オハラ 高屈折率光学ガラス
JP4017832B2 (ja) * 2001-03-27 2007-12-05 Hoya株式会社 光学ガラスおよび光学部品
JP3912774B2 (ja) * 2002-03-18 2007-05-09 Hoya株式会社 精密プレス成形用光学ガラス、精密プレス成形用プリフォームおよびその製造方法
US7232779B2 (en) * 2002-08-20 2007-06-19 Hoya Corporation Optical glass, precision press molding preform and method of manufacturing the same, optical element and method of manufacturing the same
JP2004099428A (ja) * 2002-08-20 2004-04-02 Hoya Corp 光学ガラス、精密プレス成形用プリフォーム及びその製造方法、光学素子及びその製造方法
JP3762421B2 (ja) * 2002-12-17 2006-04-05 株式会社オハラ 光学ガラス
JP4286652B2 (ja) * 2002-12-27 2009-07-01 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP4562041B2 (ja) * 2002-12-27 2010-10-13 Hoya株式会社 光学ガラス、プレス成形用ガラスゴブおよび光学素子
CN1298651C (zh) * 2003-04-17 2007-02-07 Hoya株式会社 光学玻璃、压制成形用预制件及其制造方法、光学元件及其制造方法
JP4166172B2 (ja) * 2004-03-01 2008-10-15 Hoya株式会社 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP4124749B2 (ja) * 2004-03-02 2008-07-23 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームおよびその製造方法、光学素子およびその製造方法
JP4218804B2 (ja) * 2004-03-19 2009-02-04 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法
JP4471751B2 (ja) * 2004-07-05 2010-06-02 Hoya株式会社 ガラス光学素子の製造方法
JP4756554B2 (ja) * 2006-03-23 2011-08-24 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームとその製造方法、および光学素子とその製造方法
JP5160042B2 (ja) * 2006-03-31 2013-03-13 Hoya株式会社 ガラス光学素子の製造方法
JP5336035B2 (ja) * 2006-06-21 2013-11-06 Hoya株式会社 光学ガラス、ガラス成形体、光学素子およびそれらの製造方法
CN1935717B (zh) * 2006-10-17 2010-10-06 成都光明光电股份有限公司 高折射率低色散精密压型用光学玻璃
JP5358888B2 (ja) * 2007-02-22 2013-12-04 コニカミノルタ株式会社 光学ガラス及び光学素子
JP5601557B2 (ja) * 2007-02-28 2014-10-08 日本電気硝子株式会社 光学ガラス
JP5174368B2 (ja) * 2007-04-03 2013-04-03 株式会社オハラ 光学ガラス
US7897532B2 (en) * 2007-04-24 2011-03-01 Panasonic Corproation Optical glass composition, preform and optical element
JP2009173520A (ja) * 2007-10-30 2009-08-06 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP5545917B2 (ja) * 2008-01-31 2014-07-09 株式会社オハラ 光学ガラス
JP2009269770A (ja) * 2008-04-30 2009-11-19 Ohara Inc 光学ガラス、精密プレス成形用プリフォーム及び光学素子
KR101591532B1 (ko) * 2008-05-30 2016-02-03 호야 가부시키가이샤 광학 유리, 정밀 프레스 성형용 프리폼, 광학 소자와 이들의 제조 방법, 및 촬상 장치
JP2009286674A (ja) * 2008-05-30 2009-12-10 Ohara Inc 光学ガラス、精密プレス成形用プリフォーム及び光学素子
JP5696350B2 (ja) * 2009-01-20 2015-04-08 日本電気硝子株式会社 ガラス成形体の製造方法
JP5427460B2 (ja) * 2009-04-14 2014-02-26 富士フイルム株式会社 光学ガラス
WO2010131741A1 (ja) * 2009-05-15 2010-11-18 Hoya株式会社 プレス成形用ガラス素材、該ガラス素材を用いたガラス光学素子の製造方法、及びガラス光学素子
CN102428045B (zh) * 2009-05-20 2014-02-26 Hoya株式会社 压制成型用玻璃材料、以及使用该玻璃材料的玻璃光学元件的制造方法、以及玻璃光学元件
JP5917791B2 (ja) * 2009-06-30 2016-05-18 株式会社オハラ 光学ガラス、プリフォーム材及び光学素子
JPWO2011019016A1 (ja) * 2009-08-11 2013-01-17 日本山村硝子株式会社 光学ガラス
JP5669256B2 (ja) * 2009-09-30 2015-02-12 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法
JP4831842B2 (ja) * 2009-10-28 2011-12-07 三菱重工業株式会社 接合装置制御装置および多層接合方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281124A (ja) * 2004-03-05 2005-10-13 Hoya Corp 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2006131450A (ja) * 2004-11-05 2006-05-25 Asahi Glass Co Ltd 光学ガラスおよびレンズ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098267A (zh) * 2013-04-05 2014-10-15 株式会社小原 光学玻璃、预成型材料及光学元件
CN107721160A (zh) * 2013-04-05 2018-02-23 株式会社小原 光学玻璃、预成型材料及光学元件
CN113788614A (zh) * 2013-04-05 2021-12-14 株式会社小原 光学玻璃、预成型材料及光学元件
JPWO2018037797A1 (ja) * 2016-08-26 2019-06-20 国立大学法人 東京大学 光学ガラス、光学ガラスからなる光学素子、及び光学装置
EP3505499A4 (en) * 2016-08-26 2020-04-15 The University Of Tokyo OPTICAL GLASS, OPTICAL ELEMENT FORMED OF OPTICAL GLASS, AND OPTICAL DEVICE
US11236009B2 (en) 2016-08-26 2022-02-01 The University Of Tokyo Optical glass, optical element including optical glass, and optical apparatus
JP7142572B2 (ja) 2016-08-26 2022-09-27 国立大学法人 東京大学 光学ガラス、光学ガラスからなる光学素子、レンズ鏡筒、対物レンズ、及び光学装置
CN112159102A (zh) * 2020-10-16 2021-01-01 内蒙古科技大学 一种高释放量的负离子玻璃空气净化材料

Also Published As

Publication number Publication date
JP2012250900A (ja) 2012-12-20
TW201223907A (en) 2012-06-16
TWI594966B (zh) 2017-08-11
CN106630595A (zh) 2017-05-10
JP2016188173A (ja) 2016-11-04
CN103168013A (zh) 2013-06-19
JP2016193828A (ja) 2016-11-17
JP6033486B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033486B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP5827067B2 (ja) 光学ガラス及び光学素子
JP6560650B2 (ja) 光学ガラス及び光学素子
JP6409039B2 (ja) 光学ガラス及び光学素子
JP5917791B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP6560651B2 (ja) 光学ガラス及び光学素子
WO2013094619A1 (ja) 光学ガラス及び光学素子
JP2012229148A (ja) 光学ガラス及び光学素子
JP5946237B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP6188553B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP6363141B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP5875572B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP5865579B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP6062613B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP2013087047A (ja) 光学ガラス、光学素子及びプリフォーム
JP2012166962A (ja) 光学ガラス、プリフォーム材及び光学素子
JP6049591B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP6091251B2 (ja) 光学ガラス及び光学素子
JP2017057121A (ja) 光学ガラス、プリフォーム及び光学素子
JP2012166960A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2012166961A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2012082100A (ja) 光学ガラス、プリフォーム材及び光学素子
JP2014162708A (ja) 光学ガラス及び光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830764

Country of ref document: EP

Kind code of ref document: A1