TW201223907A - Optical glass, preform material, and optical element - Google Patents

Optical glass, preform material, and optical element Download PDF

Info

Publication number
TW201223907A
TW201223907A TW100136335A TW100136335A TW201223907A TW 201223907 A TW201223907 A TW 201223907A TW 100136335 A TW100136335 A TW 100136335A TW 100136335 A TW100136335 A TW 100136335A TW 201223907 A TW201223907 A TW 201223907A
Authority
TW
Taiwan
Prior art keywords
glass
component
optical
optical glass
terms
Prior art date
Application number
TW100136335A
Other languages
Chinese (zh)
Other versions
TWI594966B (en
Inventor
Kiyoyuki Momono
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45927825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201223907(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201223907A publication Critical patent/TW201223907A/en
Application granted granted Critical
Publication of TWI594966B publication Critical patent/TWI594966B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Abstract

Provided are: an optical glass with which it is possible to inexpensively obtain a preform material having a high devitrification resistance and which has a refractive index (nd) and an Abbe number ( d) within a predetermined range; a preform material; and an optical element. An optical glass containing 10.0 to 50.0 mol % of a B2O3 component and 5.0 to 30.0 mol % of a La2O3 component relative to the total amount of the glass composition in terms of oxides, wherein the sum of (TiO2+WO3+Nb2O5) is 0.1 to 30.0 mol % relative to the total amount of the glass composition in terms of oxides.

Description

201223907 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種光學玻璃、預成形材及光學元件。 【先前技術】 近年來’使用光㈣統之機器之數位化或高精細化正得 到快速發展,於數位相機或攝影機等攝影機器、或者投影 儀或投影電視等圖像播放(投影)機器等各種光學機器之領 域中,業界正強烈要求削減光學系統所使用之透鏡或稜鏡 等光學元件之個數而使光學系統整體輕量化及小型化。 於製作光學兀件之光學玻璃中,尤其是可謀求光學系統 整體之輕量化及小型化的具有丨·75以上之折射率(nd)且具 有30以上50以下之阿貝數(Vd)之可精密模壓成形之高折射 率低色散玻璃之品求變付非常咼。作為此種高折射率低色 散玻璃’已知有如以專利文獻1〜2為代表之玻璃組合物。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2001-348244號公報 [專利文獻2]曰本專利特開2008-001551號公報 【發明内容】 [發明所欲解決之問題] 光學系統所使用之透鏡有球面透鏡與非球面透鏡,若利 用非球面透鏡,則可削減光學元件之個數。又,於除透鏡 以外之各種光學元件中,亦已知有具備形成複雜之形狀之 面者。然而,若欲利用先前之磨削、研磨步驟而獲得非球 159312.doc 201223907 面或形成複雜之形狀之面,則成本高且需要複雜之操作步 驟。因此’制經超精密加工之模具對由玻璃膏球或玻璃 磚所獲彳于之預成形材進行直接加壓成形而獲得光學元件之 形狀之方法、即精密模壓成形之方法目前為主流。 又,除對預成形材進行精密模壓成形之方法以外,亦已 知有對將由玻璃材料所形成之玻璃膏球或玻璃磚再加熱並 使其成形(再加熱加壓成形)而獲得之玻璃成形體進行磨削 及研磨之方法。 作為此種精密模壓成形或再加熱加壓成形所使用之預成 形材之製造方法,存在藉由滴下法而由熔融玻璃直接製造 之方法、或者對將玻璃磚再加熱加壓或磨削加工成球形而 獲得之加工品進行磨削研磨之方法。無論任一方法,為了 使溶融玻璃成形為所期望之形狀而獲得光學元件,均要求 降低所形成之玻璃之失透。 又,為了降低光學玻璃之材料成本,業界期望構成光學 玻璃之各成分之原料費用儘可能廉價。又,為了降低光學 玻璃之製造成本’業界期望原料之熔解性較高,即於更低 之溫度下熔解。然而’專利文獻1〜2所記載之玻璃組合物 並不可謂充分適合該等各種要求者》 本發明係鑒於上述問題點而成者,其目的在於更廉價地 獲得折射率(nd)及阿貝數(vd)於所期望之範圍内並且耐失透 性較高之預成形材。 [解決問題之技術手段] 本發明者尊人為了解決上述課題而反覆潛心地進行了試 159312.doc -4 - 201223907 驗研究’結果發現,藉由於含有B2〇3成分及La2〇3成分之 玻璃中含有Ti〇2成分、WO3成分及Nb205成分中之至少任 一者作為必需成分’而即便降低昂貴且溶融性較差之 TaA5成分’亦可獲得所期望之光學常數,從而完成本發 明。具體而言,本發明提供如下者。 (1) 一種光學玻璃,其相對於氧化物換算组成之玻璃總 質量’以莫耳%計含有B2〇3成分10.0〜50.0%及La2〇3成分 5.0~30.0°/〇,並且莫耳和(Ti〇2+W03+Nb2〇5)相對於氧化物 換算組成之玻璃總質量為0.1〜30.0%。 (2) 如上述(1)之光學玻璃,其中相對於氧化物換算組成 之玻璃總質量,WO3成分之含量以莫耳%計為2〇 〇%以下。 (3) 如上述(1)之光學玻璃,其中相對於氧化物換算組成 之玻璃總質量,W〇3成分之含量以莫耳%計為未達7 〇%。 (4) 如上述(1)至(3)中任一項之光學玻璃,其相對於氧化 物換算組成之玻璃總質量,以莫耳%計進而含有如下各成 分:201223907 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] In recent years, the digitalization or high definition of the machine using the light (four) system is rapidly developing, such as a digital camera or a camera, or a video playback device such as a projector or a projection television. In the field of optical equipment, the industry is strongly demanding to reduce the number of optical elements such as lenses or cymbals used in optical systems, and to reduce the weight and size of optical systems as a whole. In the optical glass for producing an optical element, in particular, it is possible to reduce the refractive index (nd) of 丨·75 or more and to have an Abbe number (Vd) of 30 or more and 50 or less in order to reduce the weight and size of the optical system as a whole. The precision-molded high-refractive-index, low-dispersion glass products are very expensive. As such a high refractive index low dispersion glass, a glass composition represented by Patent Documents 1 to 2 is known. [Prior Art Document] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2001-348244 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2008-001551 (Summary of the Invention) [Problems to be Solved by the Invention] The lenses used in the optical system include a spherical lens and an aspherical lens. When an aspherical lens is used, the number of optical elements can be reduced. Further, among various optical elements other than the lens, those having a complicated shape are also known. However, if a previous grinding or grinding step is to be used to obtain a non-spherical surface or form a complex shaped surface, it is costly and requires complicated operational steps. Therefore, a method of obtaining a shape of an optical element by direct press molding of a preform obtained by a glass paste ball or a glass brick by a super-precision-processed mold, that is, a method of precision press molding is currently in the mainstream. Further, in addition to the method of precision molding the preform, a glass molded body obtained by reheating and molding (reheating and press forming) a glass paste ball or a glass brick formed of a glass material is also known. Grinding and grinding methods. As a method for producing a preform for use in such precision press molding or reheat press molding, there is a method of directly producing from molten glass by a dropping method, or a method of reheating or grinding a glass brick into a spherical shape. The obtained processed product is subjected to grinding and grinding. Either way, in order to obtain the optical element in order to shape the molten glass into a desired shape, it is required to reduce the devitrification of the formed glass. Further, in order to reduce the material cost of the optical glass, it is expected that the raw material cost of each component constituting the optical glass is as inexpensive as possible. Further, in order to reduce the manufacturing cost of the optical glass, the industry expects that the melting property of the raw material is high, that is, it is melted at a lower temperature. However, the glass compositions described in Patent Documents 1 to 2 are not sufficiently suitable for these various requirements. The present invention has been made in view of the above problems, and an object thereof is to obtain a refractive index (nd) and Abbe at a lower cost. A preform having a number (vd) within a desired range and having high resistance to devitrification. [Technical means for solving the problem] The inventors of the present invention have tried to solve the above problems in a reversal of the test 159312.doc -4 - 201223907, and found that the glass containing the B2〇3 component and the La2〇3 component was found. The present invention can be completed by obtaining at least one of the Ti 2 component, the WO 3 component and the Nb 205 component as an essential component, and obtaining a desired optical constant even if the TaA 5 component which is expensive and has poor solubility is obtained. Specifically, the present invention provides the following. (1) An optical glass containing a B2〇3 component of 10.0 to 50.0% and a La2〇3 component of 5.0 to 30.0°/〇 in terms of mol% with respect to an oxide-converted composition, and Moh and ( Ti〇2+W03+Nb2〇5) The total mass of the glass relative to the oxide-converted composition is 0.1 to 30.0%. (2) The optical glass according to the above (1), wherein the content of the WO3 component is not more than 2% by mole based on the total mass of the glass of the oxide-converted composition. (3) The optical glass according to (1) above, wherein the content of the W 〇 3 component is less than 7 % by mol based on the total mass of the glass of the oxide conversion composition. (4) The optical glass according to any one of the above (1) to (3), which further comprises the following components in terms of mol% with respect to the total mass of the glass in the composition of the oxide:

Ti〇2成分0〜20.0%及/或 Nb205 成分 〇〜2〇.〇〇/0。 ⑺如上述⑷之光學玻璃’ #中莫耳和⑽2.2〇5)相 對於氧化物換算組成之玻璃總質量為2 〇%以上3〇 〇%以 下〇 如上述⑴i(5)中任一項之光學玻填,其中氧化物換 算組成之莫耳比W〇3/(Ti〇2+Nb2〇5+W〇3)4 〇 6〇〇以下。 ⑺如⑴至⑹中任—項之光學玻璃,其中相對於氧化物 1593 丨 2.doc 201223907 換算組成之玻璃總質量 20.0%以下。 ’ Li2〇成分之含量 以莫耳%計為 W如上述⑺之光學玻璃,其中相對於氧化物換算 之玻璃總質量,u2〇成分之含量以莫耳%計為G以以上成 ⑼如上述⑴至’任―項之光學玻璃,其相對於氧化 物換算組成之玻璃總質量,以莫耳%計進而含有如下各成Ti〇2 component 0~20.0% and/or Nb205 component 〇~2〇.〇〇/0. (7) The total mass of the glass of the optical glass of #4 (4) and (10)2.2〇5) with respect to the oxide-converted composition is 2% or more and 3% or less, as in any of the above (1) i (5). The optical glass is filled in which the molar ratio of the molar composition is W〇3/(Ti〇2+Nb2〇5+W〇3) 4 〇6〇〇 or less. (7) The optical glass according to any one of (1) to (6), wherein the total mass of the glass is 20.0% or less with respect to the oxide 1593 丨 2.doc 201223907. The content of the Li2 bismuth component is, in terms of mole %, the optical glass of the above (7), wherein the content of the u2 〇 component is expressed by G in terms of mol% with respect to the total mass of the glass in terms of oxide (9) as described above (1) The optical glass to the 'any' item, which is in terms of the total mass of the glass in terms of oxide conversion, and further contains the following

Gd203成分〇〜30.0%及/或 Y2O3成分0〜10.0%及/或 Yb203成分〇〜10.0%及/或 Lu203 成分 〇〜1〇.〇〇/0。 (10) 如上述⑴至(9)中任—項之光學玻璃,其中^处成 分(式中’ Ln為選自由La、Gd、γ、Yb、Lu所組成之群中 之一種以上)之莫耳和相對於氧化物換算組成之玻璃總質 量為10.0%以上40.0%以下。 (11) 如上述(1)至(10)中任一項之光學玻璃,其含有上述 Ln2〇3成分中之兩種以上之成分。 (12) 如上述(1)至(11)中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總質量,Ta2〇5成分之含量以莫耳% 計為20.0°/。以下。 (13) 如上述(12)之光學玻璃,其中氧化物換算組成之莫 耳比Ta205/W03為1·〇以上10.0以下。 (14) 如上述(1)至(13)中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總質量,Si02成分之含量以莫耳〇/0 159312.doc -6 - 201223907 計為25.0%以下。 (15)如上述(14)之光學玻璃’其中相對於氧化物換算組 成之玻璃總質量,Si〇2成分之含量以莫耳%計為Η 〇%以 下。 U6)如上述⑴至⑽中任-項之光學玻璃,其相對於氧 化物換算組成之玻璃總質量,以莫耳%計進而含有如下 成分:Gd203 component 〇~30.0% and/or Y2O3 component 0~10.0% and/or Yb203 component 〇~10.0% and/or Lu203 component 〇~1〇.〇〇/0. (10) The optical glass according to any one of (1) to (9) above, wherein the component (wherein Ln is one or more selected from the group consisting of La, Gd, γ, Yb, and Lu) The total mass of the ear and the composition of the oxide in terms of oxide is 10.0% or more and 40.0% or less. (11) The optical glass according to any one of the above (1) to (10), which contains two or more of the above-mentioned Ln2〇3 components. (12) The optical glass according to any one of the above (1) to (11), wherein the content of the Ta2〇5 component is 20.0°/% by mol% with respect to the total mass of the glass of the oxide conversion composition. the following. (13) The optical glass according to the above (12), wherein the molar ratio of the oxide-converted composition Ta205/W03 is 1·〇 or more and 10.0 or less. (14) The optical glass according to any one of the above (1) to (13), wherein the content of the SiO 2 component is 莫 〇 /0 159312.doc -6 - 201223907 with respect to the total mass of the glass in terms of oxide conversion composition It is 25.0% or less. (15) The optical glass of the above (14) wherein the content of the Si 〇 2 component is Η 〇 % or less based on the total mass of the glass in terms of oxide conversion. U6) The optical glass according to any one of the above (1) to (10), which further comprises the following components in terms of mol% with respect to the total mass of the glass of the oxide conversion composition:

Na20成分0〜15.0%及/或 K20 成分 0〜1〇.〇%。 (17) 如上述(16)之光學玻璃,其中成分(式中,為 選自由Li、Na、K所組成之群中之一種以上)之莫耳和相 11對 於氧化物換算組成之玻璃總質量為2〇 〇%以下。 (18) 如上述(1)至(17)中任一項之光學玻璃’其相對於氧 化物換算組成之玻璃總質量,以莫耳%計進而含有如' 成分: 各Na20 component 0~15.0% and/or K20 component 0~1〇.〇%. (17) The optical glass according to the above (16), wherein the composition of the composition (in the formula, one or more selected from the group consisting of Li, Na, and K) and the total mass of the glass of the phase 11 in terms of oxide conversion It is 2〇〇% or less. (18) The optical glass of any one of the above (1) to (17), which has a total mass of glass relative to the oxide conversion composition, and further contains, as a component,

MgO成分〇〜10.0%及/或 CaO成分〇〜ίο』%及/或 SrO成分〇〜10.0%及/或 BaO成分〇〜loo%。 (19) 如上述(18)之光學玻璃,其中R〇成分(式中,r為選 自由Mg、Ca、Sr、Ba所組成之群中之一種以上)之莫耳萍 相對於氧化物換算組成之玻璃總質量為11 .〇%以下。 (20) 如上述(1)至(19)中任一項之光學玻璃,其相對於氧 化物換算組成之玻璃總質量,以莫耳%計進而含有如下各 159312.doc 201223907 成分:MgO composition 〇~10.0% and/or CaO composition 〇~ίο』% and/or SrO composition 〇~10.0% and/or BaO composition 〇~loo%. (19) The optical glass according to (18) above, wherein the R 〇 component (wherein r is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is composed of methane in terms of oxides. The total mass of the glass is below 11%. (20) The optical glass according to any one of the above (1) to (19), which has a total mass of glass in terms of an oxide conversion composition, and further contains the following 159312.doc 201223907 components in terms of mol%:

Ge02成分0-10.0%及/或 P2〇5成分〇〜10.0%及/或 Zr02成分〇〜15.0%及/或 ZnO成分〇〜50.0%及/或 Bi2〇3成分〇〜15.0°/。及/或 Te02成分〇〜15.0%及/或 Al2〇3成分〇〜15.0%及/或 Ga203成分0〜15.0%及/或 Sb2〇3成分0〜1.0%,且 與上述各金屬元素之一種或兩種以上之氧化物之一部分或 全部置換之氟化物以F計之含量為〇〜6 〇〇/〇。 (21) 如上述(1)至(20)中任一項之光學玻璃,其具有1.75 以上1.95以下之折射率(nd),且具有3〇以上5〇以下之阿貝 數(vd)。 (22) 如上述(1)至(21)中任一項之光學玻璃,其具有68(TC 以下之玻璃轉移點(Tg)。 (23) 如上述(1)至(22)中任一項之光學玻璃’其具有 1250°C以下之液相溫度。 (24) —種預成形材,其包含如上述(1)至(23)中任一項之 光學玻璃。 (25) —種光學元件,其係對如上述(24)之預成形材進行 加壓成形而製作。 (26) —種光學元件,其係將如上述(1)至(23)中任一項之 159312.doc 201223907 光學玻璃設為母材。 (27)—種光學機器,其具備如上述(25)或(26)之光學元 件。 [發明之效果] 根據本發明’藉由對於含有b2〇3成分及[“仏成分之玻 璃含有選自由Ti〇2成分、w〇3成分及Nb2〇5成分所組成之 群中之一種以上,可以更廉價之成分獲得所期望之光學常 數。因此,可廉價地獲得可提供折射率(nd)及阿貝數(Vd)於 所期望之範圍内並且耐失透性較高之預成形材之光學玻 璃。 【實施方式】 本發明之光學玻係相對於氧化物換算組成之玻璃總質 里’以莫耳〇/〇計含有ΙΟ;成分1〇〇〜5〇〇%及1^2〇3成分 5.0〜30.0%,莫耳和(Ti〇2+w〇3+Nb2〇5)相對於氧化物換算 組成之玻璃總質量為〇.1〜30.0%。藉由含有選自由Ti〇2成 分、WO3成分及Nb2〇5成分所組成之群中之一種以上,而 即便降低昂貴且熔融性較差之Ta2〇5成分,亦可獲得所期 望之光學常數。與此同時’藉由將b2〇3成分及La2〇3成分 设為基底,而具有1.75以上1.95以下之折射率(nd)及30以上 50以下之阿貝數(Vd),並且液相溫度容易變低。因此,可 廉價地獲得可提供折射率(nd)及阿貝數(Vd)於所期望之範圍 内並且耐失透性較高之預成形材之光學玻璃。 本發明之光學玻璃含有選自由Ti〇2成分、w〇3成分及 Nb»2〇5成分所組成之群中之一種以上作為必需成分。將含 159312.doc 201223907 有該專Ti〇2成分、WO3成分及Nb2〇5成分中之至少Ti〇2成 分及/或Nb2〇5成分之玻璃作為第1光學玻璃進行說明。 又,將含有Ti〇2成分、w〇3成分及Nb>2〇5成分中之至少 WO3成分之玻璃作為第2光學玻璃進行說明。再者,本發 明之光學玻璃亦可含有Ti〇2成分及/或Nb2〇5成分與w〇3成 分兩者。 以下,對本發明之光學玻璃之實施形態進行詳細地說 明。本發明不受以下實施形態之任何限定,可於本發明之 目的之範圍内適當進行變更而實施。再者,對於重複說明 之處,有時適當省略說明,但並不限定發明之主旨。 [玻璃成分] 對構成本發明之光學玻璃之各成分之組成範圍進行以下 說明。於本說明書中,於未特別說明之情形時,各成分之 含量均設為以相對於氧化物換算組成之玻璃總質量之莫耳 %表示者。此處,「氧化物換算組成」係指於假設用作本 發明之玻璃構成成分之原料的氧化物、複合鹽、金屬氟化 物等於熔融時全部分解而轉變為氧化物之情形時,將該生 成氧化物之總質量設為100莫耳%而記載玻璃中所含有/之 各成分之組成。 <關於必需成分、任意成分> B2〇3成分於含有較多之稀土類氧化物之本發明之光學玻 璃令,為作為玻璃形成氧化物所必需之成分。尤其是藉由 將B2〇3成分之含量設為100%以上,可提高玻璃之耐失透 性’並且可減少玻璃之色散。因此,B2〇3成分之含量相對 1593I2.doc 201223907 於氧化物換算組成之玻璃總質量,較佳為將1〇〇%設為下 限,更佳為將b.O%設為下限,最佳為將2〇〇%設為下限。 另一方面,藉由將丑2〇3成分之含量設為50 0%以下,可容 易地獲得更大之折射率,並且可抑制化學耐久性之惡化。 因此’ Ha]成分之含量相對於氧化物換算組成之玻璃總質 量,較佳為將50.0%設為上限,更佳為將48 〇%設為上限, 最佳為將46.0。/。設為上限^心〇3成分可使用例如113;8〇3、 ν~Β4〇7、ν&2Β4〇7·10Η2〇、Bp〇4等作為原料而包含於玻 璃内。Ge02 component 0-10.0% and/or P2〇5 component 〇10.0% and/or Zr02 component 〇15.0% and/or ZnO component 〇~50.0% and/or Bi2〇3 component 〇15.0°/. And/or Te02 component 〇15.0% and/or Al2〇3 component 〇15.0% and/or Ga203 component 0~15.0% and/or Sb2〇3 component 0~1.0%, and one of the above metal elements or The fluoride partially or completely substituted by one or more of the two or more oxides is in an amount of 〇6 to 6 〇〇/〇. (21) The optical glass according to any one of the above (1) to (20) which has a refractive index (nd) of 1.75 or more and 1.95 or less and an Abbe number (vd) of 3 Å or more and 5 Å or less. (22) The optical glass according to any one of (1) to (21) above which has a glass transition point (Tg) of 68 or less. (23) Any one of the above (1) to (22) The optical glass has a liquidus temperature of 1250 ° C or lower. (24) A preform comprising the optical glass according to any one of the above (1) to (23). (25) An optical element It is produced by press-molding the preform according to the above (24). (26) An optical element which is 159312.doc 201223907 optical according to any one of the above (1) to (23) (27) An optical device comprising the optical element according to (25) or (26) above. [Effects of the Invention] According to the present invention, by using a component containing b2〇3 and ["仏The glass of the component contains one or more selected from the group consisting of a Ti〇2 component, a w〇3 component, and a Nb2〇5 component, and a desired optical constant can be obtained from a cheaper component. Therefore, it is possible to obtain a refractive index at low cost. An optical glass of a preform having a ratio (nd) and an Abbe number (Vd) within a desired range and having high resistance to devitrification. MODES OF THE INVENTION The optical glass system of the present invention contains ruthenium in the total mass of the glass in terms of oxide conversion composition; the composition is 1〇〇5〇〇% and the 1^2〇3 component is 5.0~30.0%. The total mass of the glass of the molar composition of Mo, and (Ti〇2+w〇3+Nb2〇5) relative to the oxide is 〇.1 to 30.0%. By containing a component selected from the group consisting of Ti〇2, WO3 and Nb2〇 One or more of the components consisting of 5 components, and even if the Ta2〇5 component which is expensive and less fusible is reduced, a desired optical constant can be obtained. At the same time, 'by b2〇3 component and La2〇3 component The base material has a refractive index (nd) of 1.75 or more and 1.95 or less and an Abbe number (Vd) of 30 or more and 50 or less, and the liquidus temperature tends to be low. Therefore, the refractive index (nd) can be obtained at low cost. And an optical glass of a preform having an Abbe number (Vd) within a desired range and having high devitrification resistance. The optical glass of the present invention contains an element selected from the group consisting of Ti〇2, w〇3, and Nb»2〇. One or more of the group consisting of 5 components is an essential component. It will contain 159312.doc 201223907. The glass of at least the Ti 2 component and/or the Nb 2 5 component of the WO3 component and the Nb2〇5 component will be described as the first optical glass. Further, the Ti〇2 component, the w〇3 component, and the Nb>2〇5 are contained. The glass of at least the WO3 component of the component is described as the second optical glass. Further, the optical glass of the present invention may contain both a Ti 2 component and/or a Nb 2 5 component and a w 3 component. The embodiment of the optical glass will be described in detail. The present invention is not limited to the following embodiments, and can be appropriately modified and implemented within the scope of the object of the present invention. Incidentally, the description of the overlapping description will be omitted as appropriate, but the gist of the invention is not limited. [Glass component] The composition range of each component constituting the optical glass of the present invention will be described below. In the present specification, the content of each component is expressed by mol% of the total mass of the glass in terms of oxide composition, unless otherwise specified. Here, the term "oxide-converting composition" means that when an oxide, a composite salt, or a metal fluoride which is used as a raw material of the glass constituent component of the present invention is equal to being completely decomposed and converted into an oxide at the time of melting, the formation is performed. The total mass of the oxide is set to 100 mol%, and the composition of each component contained in the glass is described. <Required component, optional component> The B2〇3 component is an essential component of the glass-forming oxide in the optical glass of the present invention containing a large amount of rare earth oxide. In particular, by setting the content of the B2〇3 component to 100% or more, the devitrification resistance of the glass can be improved and the dispersion of the glass can be reduced. Therefore, the content of the B2〇3 component is preferably 1〇〇% as the lower limit, more preferably the bO% is the lower limit, and the content is preferably 2, the ratio of 1593I2.doc 201223907 to the total mass of the glass in the oxide conversion composition. 〇〇% is set to the lower limit. On the other hand, by setting the content of the ugly 2 〇 3 component to 50% or less, a larger refractive index can be easily obtained, and deterioration of chemical durability can be suppressed. Therefore, the content of the 'Ha' component is preferably 50.0% as the upper limit, more preferably 48% by weight, and most preferably 46.0, based on the total mass of the glass of the oxide conversion composition. /. The upper limit ^heart 〇3 component can be contained in the glass by using, for example, 113; 8〇3, ν~Β4〇7, ν&2Β4〇7·10Η2〇, Bp〇4 or the like as a raw material.

LkO3成分為提高玻璃之折射率,並且減少玻璃之色 散增大玻璃之阿貝數之成分。尤其是藉由將La2〇3成分 之含篁设為5.0%以上,可提高玻璃之折射率。因此, La203成刀之3量相對於氧化物換算組成之玻璃總質量, 較佳為將5.0%設為下限,更佳為將8 〇%設為下限,最佳為 將1〇.〇%設為下限。另-方面’藉由將La2〇3成分之含量設 為30.0/。以下,可藉由提高玻璃之穩定性而降低失透。因 2 3成刀之含量相對於氧化物換算組成之玻璃總質 量’較佳為將30.0%設為上限,更佳為將25〇%設為上限, 進而較佳為將20.0%設為上限,最佳為將18〇%設為上限。 La2〇3成刀可使用例如、l<n〇3)3.XH2〇(x為任意之 整數)等作為原料而包含於玻璃内。 本發月之光學破璃較佳為選自由TiG2成分、W03成分及 2〇5成分所組成之群中之一種以上之莫耳和為〇ι%以上 3〇.〇/°以下。尤其是藉由該莫耳和為0.1%以上,而即便減 159312.doc • 11 · 201223907 少Taws成分,亦可獲得所期望之光學常數,故而可更廉 價地製作具有所期望之光學特性之光學玻璃。另一方面, 藉由該莫耳和為30.0%以下,可抑制因含有過剩之該等成 分而引起之液相溫度之上升,故而可更穩定地製作光學玻 璃。因此,該等成分之莫耳和相對於氧化物換算組成之玻 璃總質#,較佳為將0.1%設為ητ限,更佳為將1〇%設為下 限,最佳為將1.5。/。設為下限。另一方面,該等成分之莫耳 和相對於氧化物換算組成之玻璃總質量’較佳為將3〇.〇% 設為上限,更佳為將28.〇%設為上限,進而較佳為將% 〇% 設為上限,最佳為設為未達11〇%。尤其是於第2光學玻璃 中,就進一步提高折射率與耐失透性之觀點而言,該等成 分之莫耳和亦可較佳為將20.0%設為上限,更佳為將18.0% 設為上限’進而較佳為將15.0%設為上限。 WO3成分為提高玻璃之折射率並且提高玻璃之耐失透性 之成分。另一方面,藉由將w〇3成分之含量設為2〇 〇%以 下,可形成抑制高色散化,並且兼具較高之折射率與耐失 透性之玻璃。又,藉由將w〇3成分之含量設為2〇〇%以 下尤其疋可使可見光-短波長區域(未達500 nm)下之穿透 率難以降低。因此,w〇3成分之含量相對於氧化物換算組 成之玻璃總質量’較佳為將20.0%設為上限,更佳為將 15.0%設為上限,進而較佳為將1〇 〇%設為上限最佳為設 為未達7.0%。尤其是於第1光學玻璃中,就為難以提高玻 璃之折射率之成分之觀點而言,w〇3成分之含量亦可較佳 為將4.0%設為上限,更佳為將3 〇%設為上限,最佳為設為 159312.doc •12- 201223907 未達1 .〇%。再者,雖然本發明之光學玻璃即便不含w〇3成 分,亦可獲得具有所期望之光學常數及耐失透性之玻璃, 但藉由含有W〇3成分,可獲得較高之折射率,並且可進一 步降低玻璃轉移點。因此,尤其是第2光學玻璃中之 成分之含量相對於氧化物換算組成之玻璃總質量,較佳為 將0.1%設為下限,更佳為將05%設為下限,進而較佳為將 1.0%設為下限,最佳為將15%設為下限^ w〇3成分可使用 例如WO3專作為原料而包含於玻璃内。The LkO3 component is a component that increases the refractive index of the glass and reduces the dispersion of the glass to increase the Abbe number of the glass. In particular, by setting the yttrium content of the La2〇3 component to 5.0% or more, the refractive index of the glass can be increased. Therefore, the amount of the La203 forming knives is preferably 5.0% as the lower limit, and more preferably 8 〇% as the lower limit, and more preferably 1 〇.〇%. The lower limit. In another aspect, the content of the La2〇3 component is set to 30.0/. Hereinafter, devitrification can be reduced by increasing the stability of the glass. It is preferable that the total mass of the glass of the composition of 2 3 knives is set to 30.0% as the upper limit, more preferably 25 〇% as the upper limit, and further preferably 20.0% as the upper limit. The best is to set 18% to the upper limit. The La2〇3 forming knives can be contained in the glass using, for example, l<n〇3)3.XH2〇 (x is an arbitrary integer) as a raw material. The optical glass of the present month is preferably one or more selected from the group consisting of a TiG2 component, a W03 component, and a 2〇5 component, and is 〇ι% or more and 3〇.〇/° or less. In particular, by using the molar ratio of 0.1% or more, even if the Taws component is reduced by 159,312.doc • 11 · 201223907, the desired optical constant can be obtained, so that the optical having the desired optical characteristics can be produced more inexpensively. glass. On the other hand, when the molar amount is 30.0% or less, the increase in the liquidus temperature due to the excessive inclusion of the components can be suppressed, so that the optical glass can be produced more stably. Therefore, it is preferable that the molar amount of the components and the glass total composition of the oxide-converted composition are 0.1% as the ητ limit, more preferably 1%% as the lower limit, and most preferably 1.5. /. Set to the lower limit. On the other hand, the molar mass of the components and the total mass of the glass relative to the oxide-converted composition are preferably set to 3 〇.〇%, more preferably 28. 〇% as the upper limit, and further preferably To set % 〇% to the upper limit, it is best to set it to less than 11〇%. In particular, in the second optical glass, from the viewpoint of further increasing the refractive index and the resistance to devitrification, it is preferable that the molar ratio of the components is 20.0% as the upper limit, and more preferably 18.0%. It is preferable that the upper limit is further set to 15.0%. The WO3 component is a component which increases the refractive index of the glass and increases the resistance to devitrification of the glass. On the other hand, by setting the content of the w〇3 component to 2 〇% or less, it is possible to form a glass which suppresses high dispersion and which has both high refractive index and resistance to devitrification. Further, by setting the content of the w〇3 component to 2% by weight or less, it is difficult to reduce the transmittance in the visible light-short wavelength region (less than 500 nm). Therefore, the content of the w〇3 component is preferably 20.0% as the upper limit, more preferably 15.0% as the upper limit, and more preferably 1% by weight, based on the total mass of the glass of the oxide-converted composition. The upper limit is best set to less than 7.0%. In particular, in the first optical glass, it is preferable that the content of the w〇3 component is 4.0% as the upper limit, and more preferably 3%%, from the viewpoint of the component which is difficult to increase the refractive index of the glass. For the upper limit, the best is set to 159312.doc •12- 201223907 is less than 1. 〇%. Further, although the optical glass of the present invention can obtain a glass having a desired optical constant and devitrification resistance even if it does not contain the w〇3 component, a higher refractive index can be obtained by containing the W〇3 component. And can further reduce the glass transfer point. Therefore, in particular, the content of the component in the second optical glass is preferably 0.1% as the lower limit, more preferably 05%, and more preferably 1.0. % is set as the lower limit, and it is preferable to set 15% as the lower limit. The w3 component can be contained in the glass using, for example, WO3 as a raw material.

Ti〇2成分為將玻璃之折射率及阿貝數調整為較高並且改 善耐失透f生之成为,為本發明之光學玻璃甲之任意成分。 而若TiQ2過多,則耐失透性反而會變差,可見光短波 長(500 nm以下)下之玻璃之穿透率亦惡化。因此,成 分之含量相對於氧化物換算組成之玻璃總質4,較佳為將 20.0%設為上限,更佳為將15 ()%設為上限最佳為將 12.0%设為上限。再者,雖然即便不含Ti〇2成分亦可獲 仔具有所期望之特性之玻璃’但藉由含有Ti〇2成分,可不 降低玻璃之敎性而獲得較高之折射率q,亦可降低玻 璃之液相溫度而提高穩定性…匕,尤其是於第i光學玻 ^中’ Ti〇2成分之含量相對於氧化物換算組成之玻璃總質 量’亦可較佳為將0.1%設為下限,更佳為將3〇%設為下 限進而較佳為將5 0%設為下限,最佳為設為 多於8.0%。The Ti〇2 component is an optional component of the optical glass of the present invention in which the refractive index and the Abbe number of the glass are adjusted to be high and the resistance to devitrification is improved. On the other hand, if the amount of TiQ2 is too large, the devitrification resistance will be deteriorated, and the transmittance of the glass under the short wavelength of visible light (below 500 nm) is also deteriorated. Therefore, the content of the component is preferably 20.0% as the upper limit with respect to the total mass 4 of the oxide-converted composition, and more preferably 15 ()% is the upper limit and 12.0% is the upper limit. Furthermore, even if the Ti〇2 component is not contained, the glass having the desired characteristics can be obtained. However, by containing the Ti〇2 component, a higher refractive index q can be obtained without lowering the glass transition property, and the refractive index can be lowered. The liquid phase temperature of the glass improves the stability... 匕, especially in the i-th optical glass, the content of the 'Ti〇2 component relative to the total mass of the glass of the oxide conversion composition' may preferably be 0.1% as the lower limit. More preferably, 3〇% is set as the lower limit, and it is preferable to set 50% to the lower limit, and it is preferable to set it to more than 8.0%.

Ti〇2成分可使用例如Ti〇2等作為原料而包含於玻璃内。 叫〇5成分為將玻璃之折射率&色散調整為較高之成 分’為本發明之光學玻璃中之任意成分。尤其是藉由將 159312.doc •13· 201223907The Ti 2 component can be contained in the glass using, for example, Ti 2 as a raw material. The component of 〇5 is an ingredient which adjusts the refractive index & dispersion of glass to a higher component as the optional component in the optical glass of the present invention. Especially by putting 159312.doc •13· 201223907

NhO5成分之含量設為2〇 〇%以下,可抑制因含有過剩之 NhO5成分而引起之玻璃之耐失透性之惡化,並且可抑制 玻璃對於可見光之穿透率之降低。因此,Nth成分之含 量相對於氧化物換算組成之玻璃總質量,較佳為將2〇 〇〇/〇 設為上限,更佳為將15〇%設為上限,進而較佳為將1〇 〇〇/〇 設為上限,最佳為將7.〇%設為上限。再者,雖然即便不含 NhO5成分’亦可獲得具有所期望之特性之玻璃,但藉由 含有Nb2〇5成分,可不降低玻璃之穩定性而獲得較高之折 射率又’亦可降低玻璃之液相溫度而提高穩定性。因 此尤其疋第1光學玻璃中之Nb:2〇5成分之含量相對於氧化 物換算組成之玻璃總質量,亦可較佳為將〇1%設為下限, 更佳為設為多於2.0%,進而較佳為將5 〇%設為下限,最佳 為設為多於8.0〇/〇。Nb2〇5成分可使用例如Nb2〇5等作為原料 而包含於玻璃内。 於本發明之第1光學玻璃中,Ti〇2成分及1^1?2〇5成分之含 里之和較佳為2.0%以上30.0%以下。尤其是藉由將該和設 為2.0%以上,可降低玻璃之液相溫度,並且可獲得較高之 折射率。因此,第1光學玻璃中之氧化物換算組成之莫耳 和(Ti〇2+Nb2〇5)較佳為將2.0%設為下限,更佳為將5〇%設 為下限,進而較佳為將8.0%設為下限。另一方面,藉由將 該和設為30.0%以下,可抑制因含有過剩之該等成分而引 起之玻璃之耐失透性之惡化。因此,莫耳和(Ti〇2 + Nb2〇5) 相對於氧化物換算組成之玻璃總質量,較佳為將3〇〇%設 為上限,更佳為將25.0°/。設為上限,最佳為將2〇〇%設為上 159312.doc -14- 201223907 限0 又,於本發明之第!光學玻璃十,WO;成分之含量相對 於Τι02成” Nb2〇5成分及w〇3成分之和之比率較佳為 0.600以下。冑由縮小該比率,可確保玻璃所期望之阿貝 數’並且谷易提尚折射率,故而可容易地獲得具有所期望 之折射率及阿貝數之玻璃。χ,由於具有提高玻璃之折射 率與色散兩者之作用之Ti〇2成分、Nb2〇5成分及w〇3成分 之整體之需求量降低’故而可降低因含有過剩之該等成分 而引起之液相溫度之上升、即失透。因此’第丨光學玻璃 中之氧化物換算組成之莫耳比w〇3/(Ti〇2+Nb2〇5 + w〇3)較 佳為將0.600設為上限,更佳為將〇5〇〇設為上限最佳為 將〇·37〇設為上限。另一方s,氧化物換算組成中之莫耳 比 w〇3/(Ti〇2+Nb2〇5+w〇3)之下限亦可為 〇。When the content of the NhO5 component is 2% or less, the deterioration of the devitrification resistance of the glass due to the excessive NhO5 component can be suppressed, and the decrease in the transmittance of the glass to visible light can be suppressed. Therefore, the content of the Nth component is preferably 2 〇〇〇 / 〇 as the upper limit, more preferably 15 〇 % as the upper limit, and more preferably 1 相对. 〇/〇 is set as the upper limit, and it is best to set 7.〇% as the upper limit. Further, although the glass having the desired characteristics can be obtained even without the NhO5 component, by containing the Nb2〇5 component, a higher refractive index can be obtained without lowering the stability of the glass, and the glass can be lowered. The liquidus temperature increases stability. Therefore, in particular, the content of the Nb:2〇5 component in the first optical glass may be preferably 下限1% as the lower limit, more preferably more than 2.0%, based on the total mass of the glass in terms of oxide conversion composition. Further, it is preferable to set 5 〇% as the lower limit, and it is preferable to set it to more than 8.0 〇/〇. The Nb2〇5 component can be contained in the glass using, for example, Nb2〇5 as a raw material. In the first optical glass of the present invention, the sum of the contents of the Ti 2 component and the 1 ^ 1 2 2 component is preferably 2.0% or more and 30.0% or less. In particular, by setting the sum to 2.0% or more, the liquid phase temperature of the glass can be lowered, and a higher refractive index can be obtained. Therefore, it is preferable that the oxide-converted composition of the first optical glass and (Ti〇2+Nb2〇5) have a lower limit of 2.0%, more preferably a lower limit of 5〇%, and further preferably Set 8.0% to the lower limit. On the other hand, by setting the sum to 30.0% or less, it is possible to suppress the deterioration of the devitrification resistance of the glass caused by the excessive content of the components. Therefore, it is preferable that the molar mass of the molar composition (Ti〇2 + Nb2〇5) relative to the oxide-converted composition is set to 3上限% as the upper limit, more preferably 25.0°/. Set to the upper limit, it is best to set 2〇〇% to the upper 159312.doc -14- 201223907 Limit 0 Again, in the first part of the present invention! Optical glass ten, WO; the ratio of the content of the component to the sum of the components of Nb2〇5 and w〇3 is preferably 0.600 or less. By narrowing the ratio, the desired Abbe number of the glass is ensured. Because of the refractive index, it is easy to obtain a glass having a desired refractive index and Abbe number. χ, because of the effect of increasing the refractive index and dispersion of the glass, Ti 2 component, Nb 2 〇 5 component And the total amount of the component of the w〇3 component is reduced. Therefore, the increase in the liquidus temperature due to the excessive inclusion of the components, that is, the devitrification, can be reduced. Therefore, the oxide in the third optical glass is converted into a molar composition. The ratio w〇3/(Ti〇2+Nb2〇5 + w〇3) is preferably an upper limit of 0.600, and more preferably an upper limit of 〇5〇〇 is set to an upper limit of 〇·37〇. On the other hand, the lower limit of the molar ratio w〇3/(Ti〇2+Nb2〇5+w〇3) in the oxide-converted composition may be 〇.

LhO成分為降低玻璃轉移點之成分。尤其是藉由將U2〇 成分之含量設為20.0%以下,可降低玻璃之液相溫度而降 低失透。因此,Li"成分之含量相對於氧化物換算組成之 玻璃、,悤質里,較佳為將20.0%設為上限,更佳為將丨5 〇%設 為上限,最佳為將10.0%設為上限。再者,雖然即便不含The LhO component is a component that lowers the glass transition point. In particular, by setting the content of the U2〇 component to 20.0% or less, the liquidus temperature of the glass can be lowered to reduce devitrification. Therefore, the content of the Li" component is preferably 20.0% as the upper limit, more preferably 丨5 〇% as the upper limit, and most preferably 10.0% in the glass and the enamel composition. The upper limit. Furthermore, even if it does not contain

LhO成分,亦可獲得具有所期望之特性之玻璃,但藉由含 有1^〇成分而使降低玻璃轉移點之作用變大,故而可容易 地獲得易進行加壓成形之光學玻璃。因此,Li2〇成分之含 量相對於氧化物換算組成之玻璃總質量,較佳為將〇.丨%設 為下限,更佳為將〇 3°/。設為下限,最佳為將〇 設為下 限0 159312.doc -15- 201223907The LhO component can also obtain a glass having desired characteristics. However, since the effect of lowering the glass transition point is increased by containing the quinone component, an optical glass which is easily press-formed can be easily obtained. Therefore, the content of the Li2 bismuth component is preferably 〇.丨% as the lower limit, more preferably 〇3°/, based on the total mass of the glass in terms of the oxide conversion composition. Set to the lower limit, the best is to set 〇 to the lower limit 0 159312.doc -15- 201223907

GdA成分為提高玻璃之折射率並且提高阿貝數之成 分’為本發明之光學玻璃中之任意成分。尤其是藉由將 GchO3成分之含量設為3〇〇%以下,可容易地獲得具有所期 望之光學常數之玻璃,抑制因含有過剩之Gd2〇3成分而引 起之玻璃轉移點(Tg)之上升,並可提高玻璃之耐失透性。 因此,GhO3成分之含量相對於氧化物換算組成之玻璃總 質量,为別較佳為將30.0%設為上限,更佳為將2〇 〇%設為 上限,最佳為將1〇.〇%設為上限。再者,雖然即便不含 Gd2〇3成分,於技術上亦無不利,但藉由將La2〇3成分之一 部分置換為Gd2〇3成分,而與不含〇(12〇3成分之情形相比, 存在玻璃之液相溫度變低之情況,且存在可進一步提高耐 失透性之情況。因此,Gd2〇3成分之含量相對於氧化物換 算組成之玻璃總質量,較佳為設為多於〇%,更佳為將 2.0%設為下限,進而較佳為設為多於5 〇%。Gd2〇3成分可 使用例如Gd2〇3、GdF3等作為原料而包含於玻璃内。 Y2〇3成分、Yb2〇3成分、及LhO3成分為提高玻璃之折射 率並且減少色散之成分,為本發明之光學玻璃中之任意成 分。尤其是藉由將Y2〇3成分、Yb2〇3成分及/或Lu2〇3成分 之含量分別設為10.0%以下,可容易地獲得玻璃之所期望 之光學常數,並且可提高玻璃之耐失透性。因此,Y2〇3、 Yb2〇3及Lu2〇3之各成分之含量相對於氧化物換算組成之玻 璃總質量,分別較佳為將10.0%設為上限,更佳為將8 〇% 設為上限,最佳為將5.0%設為上限。尤其是就獲得玻璃轉 移點(Tg)較低之玻璃之觀點而言,亦可將Υ2〇3之含量設為 159312.doc -16- 201223907 1.3%以下。Υ203、Yb203及Lu2〇3之各成分可使用例如 Y2〇3、YF3、Yb203、Lu2〇3等作為原料而包含於玻璃内。 本發明之光學玻璃較佳為Lri2〇3成分(式中,£^為選自由 La、Gd、Y、Yb、Lu所組成之群中之一種以上)之莫耳和 為10.0%以上40_0。/。以下。尤其是藉由將Ln2〇3成分之莫耳 和設為10.0°/〇以上而使玻璃之折射率及阿貝數之任一者提 高,故而可容易地獲得具有所期望之折射率及阿貝數之玻 璃。因此,Ln2〇3成分之莫耳和相對於氧化物換算組成之 玻璃總質量’較佳為將10.0%設為下限,更佳為將12 〇%設 為下限,最佳為將15.0%設為下限。另一方面,藉由將 Ln2〇3成分之莫耳和設為40.0%以下而使玻璃之液相溫度變 低,故而可降低玻璃之失透。因此,Ln2〇3成分之莫耳和 相對於氧化物換算組成之玻璃總質量,較佳為將40.0%設 為上限’更佳為將35.0°/。設為上限,進而較佳為將go o%設 為上限,最佳為將27.0%設為上限。 本發明之光學玻璃較佳為含有上述之Ln2〇3成分中之兩 種以上之成分。藉此’玻璃之液相溫度進一步變低,故而 可形成耐失透性更高之玻璃。尤其是就可容易地降低玻璃 之液相溫度之方面而言’較佳為含有包含La2〇3成分與 Gd2〇3成分之兩種以上之成分作為£η2〇3成分。The GdA component is an ingredient which increases the refractive index of the glass and increases the Abbe number as an arbitrary component in the optical glass of the present invention. In particular, by setting the content of the GchO3 component to 3% by weight or less, a glass having a desired optical constant can be easily obtained, and an increase in the glass transition point (Tg) due to the excessive Gd2〇3 component can be suppressed. And can improve the resistance to devitrification of the glass. Therefore, the content of the GhO3 component is preferably set to 30.0% as the upper limit, more preferably 2%% as the upper limit, and most preferably 1%. Set to the upper limit. Further, although the Gd2〇3 component is not contained, it is technically not disadvantageous, but by replacing one of the La2〇3 components with the Gd2〇3 component, it is compared with the case where no ruthenium (12〇3 component is contained). There is a case where the temperature of the liquid phase of the glass becomes low, and there is a case where the devitrification resistance can be further improved. Therefore, the content of the Gd2〇3 component is preferably set to be larger than the total mass of the glass of the oxide conversion composition. More preferably, 〇% is 2.0%, and further preferably more than 5%. The Gd2〇3 component can be contained in the glass using, for example, Gd2〇3, GdF3 or the like as a raw material. Y2〇3 component The Yb2〇3 component and the LhO3 component are components for increasing the refractive index of the glass and reducing the dispersion, and are any component of the optical glass of the present invention, in particular, by using a Y2〇3 component, a Yb2〇3 component, and/or a Lu2 component. When the content of the 〇3 component is set to 10.0% or less, the desired optical constant of the glass can be easily obtained, and the devitrification resistance of the glass can be improved. Therefore, the components of Y2〇3, Yb2〇3, and Lu2〇3 are obtained. The content of the glass relative to the total mass of the oxide composition It is preferable to set 10.0% as the upper limit, more preferably 8 〇% as the upper limit, and most preferably 5.0% as the upper limit, especially in terms of obtaining a glass having a low glass transition point (Tg). The content of Υ2〇3 may be 159312.doc -16 - 201223907 1.3% or less. The components of Υ203, Yb203, and Lu2〇3 may be contained as raw materials using, for example, Y2〇3, YF3, Yb203, Lu2〇3, or the like. In the glass, the optical glass of the present invention is preferably a component of Lri 2 〇 3 (wherein, ^^ is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) and is 10.0%. In the above, 40_0% or less, in particular, by setting the molar ratio of the Ln2〇3 component to 10.0°/〇 or more, the refractive index of the glass and the Abbe number can be improved, so that it is easy to obtain The refractive index of the desired refractive index and the Abbe number. Therefore, the molar mass of the Ln2〇3 component and the total mass of the glass relative to the oxide conversion composition are preferably set to 10.0% as the lower limit, more preferably 12% to 5%. For the lower limit, it is preferable to set 15.0% as the lower limit. On the other hand, by setting the molar ratio of the Ln2〇3 component to 40.0% or less. Since the temperature of the liquid phase of the glass is lowered, the devitrification of the glass can be lowered. Therefore, it is preferable that the molar mass of the Ln2〇3 component and the total mass of the glass in terms of oxide conversion are 40.0% as the upper limit. 35.0°/. is set as the upper limit, and it is preferable to set the go o% as the upper limit, and it is preferable to set the upper limit to 27.0%. The optical glass of the present invention preferably contains two of the above-mentioned Ln2〇3 components. The above components, whereby the liquid phase temperature of the glass is further lowered, so that a glass having higher devitrification resistance can be formed. In particular, it is preferable to contain two or more components including a La2〇3 component and a Gd2〇3 component as the £η2〇3 component in terms of easily lowering the liquidus temperature of the glass.

TaW5成分為提高玻璃之折射率並且提高玻璃之耐失透 性之成分,為本發明之光學玻璃中之任意成分。尤其是藉 由將Ta2〇5成分之含量設為2〇.〇〇/。以下,可降低因含有過剩 之Ta:5〇5成分而產生之失透。又,藉由減少Ta2〇5成分之含 159312.doc •17· 201223907 量’可降低昂貴之Ta2〇5成分之含量,並且可降低溶解原 料之溫度’故而可降低光學玻璃之原料及製造所花費之成 本。因此’ Ta2〇5成分之含量相對於氧化物換算組成之玻 璃總質量’較佳為將20.0%設為上限,更佳為將1 〇 〇%設為 上限’最佳為將8.0%設為上限。尤其是於第1光學玻璃 中’ Ta2〇5成分之含量亦可為4.5%以下。再者,雖然即便 不含Τα〇5成分,亦可獲得具有所期望之特性之玻璃,但 尤其疋於第2光學玻璃中,藉由含有τ&2〇5成分,可提高玻 璃之折射率,並且可藉由降低玻璃之液相溫度而提高耐失 透f生因此,第2光學玻璃中之Ta2〇5成分之含量相對於氧 化物換算組成之玻璃總質量較佳為設為多於〇%,更佳為 將1.0%設為下限,最佳為將2 〇%設為下限^ Ta2〇5成分可 使用例如Ta2〇5等作為原料而包含於玻璃内。 本發明之第2光學玻璃較佳為Ta2〇5成分之含量相對於 W〇3成刀之3量之比率為1〇以上。尤其是藉由將該比率設 為1.0以上,可維持玻璃之可見光穿透性,且可提高折射 率,並且可抑制玻璃之色散之上升。又,藉由玻璃之液相 溫度變低,可提高玻璃之耐失透性。因此,第2光學玻璃 中之氧化物換算組成之莫耳比Ta205/W03較佳為將丨0設為 下限,更佳為將2_0設為下限,進而較佳為將21設為下 限,最佳為將2.5設為下限。另一方面,該比率之上限並 無特別限^ ’亦可為無限大(即不含WQ3成分)。然而,藉 由將該比率設為10.0以下,可降低昂貴之仏…^成分之含 量’故而可降低光學玻璃之原#及製造所花費之成本。因 159312.doc 201223907 此’第2光學玻璃中之氧化物換算組成之莫耳比Ta2〇5/w〇3 較佳為將1〇·〇設為上限,更佳為將7,〇設為上限,最佳為將 4.0設為上限。The TaW5 component is a component which increases the refractive index of the glass and improves the resistance to devitrification of the glass, and is an optional component in the optical glass of the present invention. In particular, the content of the Ta2〇5 component is set to 2〇.〇〇/. Hereinafter, the devitrification caused by the excessive Ta:5〇5 component can be reduced. In addition, by reducing the amount of 159312.doc •17·201223907 in the Ta2〇5 component, the content of the expensive Ta2〇5 component can be reduced, and the temperature of the dissolved raw material can be lowered, thereby reducing the cost of the optical glass raw material and manufacturing. The cost. Therefore, it is preferable to set the content of the Ta2〇5 component to the total mass of the glass of the oxide-converted composition to 20.0% as the upper limit, and more preferably to set the upper limit of 1% to the upper limit. . In particular, the content of the 'Ta2〇5 component in the first optical glass may be 4.5% or less. Further, even if the Τα〇5 component is not contained, a glass having desired characteristics can be obtained, but in particular, in the second optical glass, the refractive index of the glass can be increased by including the τ & 2 〇 5 component. Further, it is possible to increase the resistance to devitrification by lowering the liquidus temperature of the glass. Therefore, the content of the Ta2〇5 component in the second optical glass is preferably set to be more than 〇% based on the total mass of the glass in terms of oxide conversion composition. More preferably, 1.0% is set as the lower limit, and it is preferable to set 2%% to the lower limit. The Ta2〇5 component can be contained in the glass using, for example, Ta2〇5 as a raw material. The second optical glass of the present invention preferably has a ratio of the content of the Ta 2 〇 5 component to the amount of the W 〇 3 knives of 1 〇 or more. In particular, by setting the ratio to 1.0 or more, the visible light transmittance of the glass can be maintained, the refractive index can be increased, and the increase in dispersion of the glass can be suppressed. Further, since the temperature of the liquid phase of the glass is lowered, the devitrification resistance of the glass can be improved. Therefore, it is preferable that the molar ratio Ta205/W03 of the oxide-converted composition in the second optical glass is 丨0 as the lower limit, more preferably 2_0 as the lower limit, and further preferably 21 as the lower limit. To set 2.5 to the lower limit. On the other hand, the upper limit of the ratio is not particularly limited, and may be infinite (i.e., does not contain the WQ3 component). However, by setting the ratio to 10.0 or less, the amount of the expensive component can be reduced, so that the cost of the optical glass and the cost of manufacturing can be reduced. 159312.doc 201223907 The Moir ratio Ta2〇5/w〇3 of the oxide conversion composition in the 'second optical glass is preferably 1 〇·〇 as the upper limit, and more preferably 7 〇 as the upper limit. The best is to set 4.0 as the upper limit.

SiCh成分係提高熔融玻璃之黏度,並且藉由促使穩定之 玻璃之形成而降低光學玻璃之欠佳之失透(結晶物之產生) 的成分,為本發明之光學玻璃中之任意成分。尤其是藉由 將Si〇2成分之含量設為25.0❶/。以下,可抑制玻璃轉移點 (Tg)之上升,並且可容易地獲得作為本發明之目標之高折 射率。因此,Si〇2成分之含量相對於氧化物換算組成之玻 璃總質量’較佳為將25.0。/。設為上限,更佳為將19 0%設為 上限’進而較佳為將17.5%設為上限,最佳為將13 〇%設為 上限。再者,雖然即便不含Si〇2成分,亦可獲得具有所期 望之特性之玻璃,但尤其是於第2光學玻璃中,藉由含有 Sl〇2成分而使玻璃之液相溫度變低,故而可降低玻璃之失 透。又,藉由提高熔融玻璃之黏性,可容易地進行玻璃之 成形。因此’ Si〇2成分之含量相對於氧化物換算組成之玻 璃總質量較佳為設為多於0% ’更佳為設為多於1 .〇%,最 佳為.設為多於4.0〇/〇。Si〇2成分可使用例如Si02、K2SiF6、 NazSiF6等作為原料而包含於玻璃内。The SiCh component is a component which is a component of the optical glass of the present invention which improves the viscosity of the molten glass and lowers the component of the optical glass which is less devitrified (the production of crystals) by promoting the formation of a stable glass. In particular, the content of the Si〇2 component was set to 25.0 Å/. In the following, the rise of the glass transition point (Tg) can be suppressed, and the high refractive index which is the object of the present invention can be easily obtained. Therefore, the content of the Si 2 component is preferably 25.0 with respect to the total glass mass of the oxide-converted composition. /. The upper limit is set, and it is more preferable to set 19% to the upper limit', and it is preferable to set the upper limit of 17.5%, and it is preferable to set 13% to the upper limit. Further, even if the Si 〇 2 component is not contained, a glass having desired characteristics can be obtained, but in particular, in the second optical glass, the liquid phase temperature of the glass is lowered by containing the S 〇 2 component. Therefore, the devitrification of the glass can be reduced. Further, by increasing the viscosity of the molten glass, the glass can be easily formed. Therefore, the content of the 'Si 2 component is preferably more than 0% with respect to the total mass of the oxide-converted composition. It is more preferably set to more than 1.%, and most preferably set to more than 4.0. /〇. The Si 2 component can be contained in the glass using, for example, SiO 2 , K 2 SiF 6 , NazSiF 6 or the like as a raw material.

NaaO成分及κ:2〇成分為改善玻璃之熔融性,降低玻璃轉 移點,並且提高玻璃之耐失透性之成分,為本發明之光學 玻璃中之任意成分。尤其是藉由將Na20成分之含量設為 15·〇%以下’及/或將κζ〇成分之含量設為lo o%以下,可使 玻璃之折射率難以降低’並且可提高玻璃之穩定性而降低 159312.doc -19- 201223907 失透等之產生。因此,Na2〇成分之含量相對於氧化物換算 組成之玻璃總質量,較佳為將15.0%設為上限,更佳為將 1〇·〇%設為上限’最佳為將5.0°/。設為上限。又,Κ2〇成分 之含量相對於氧化物換算組成之玻璃總質量較佳為將 10.0%設為上限,更佳為將8〇%設為上限,最佳為將5 設為上限。NaW成分及ho成分可使用例如Na2c〇3、The NaaO component and the κ:2〇 component are components which improve the meltability of the glass, lower the glass transition point, and improve the devitrification resistance of the glass, and are arbitrary components in the optical glass of the present invention. In particular, by setting the content of the Na20 component to 15% or less and/or setting the content of the κζ〇 component to be less than or equal to or less, the refractive index of the glass is hard to be lowered, and the stability of the glass can be improved. Reduced 159312.doc -19- 201223907 Devitrification and so on. Therefore, the content of the Na2 bismuth component is preferably 15.0% as the upper limit, more preferably 1 〇·〇% as the upper limit, and most preferably 5.0 °/%. Set to the upper limit. Further, it is preferable that the content of the Κ2 〇 component is 10.0% as the upper limit, and more preferably 8 〇% as the upper limit, and more preferably 5 as the upper limit. For the NaW component and the ho component, for example, Na2c〇3 can be used.

NaN03、NaF、Na2SiF6、K2C03、KN03、KF、ΚΗΙ?2、 K2SiF6卓作為原料而包含於玻璃内。NaN03, NaF, Na2SiF6, K2C03, KN03, KF, ΚΗΙ2, and K2SiF6 are contained in the glass as a raw material.

RhO成分(式中,Rn為選自由以、❿、κ所組成之群中 之一種以上)為改善玻璃之熔融性,並且降低玻璃之失透 之成分。此處,藉由將11112〇成分之含量設為2〇 〇%以下, 可使玻璃之折射率難以降低,並且可提高玻璃之穩定性而 降低失透等之產生。因此,RhO成分之莫耳和相對於氧化 物換算組成之玻璃總質量,較佳為將2〇〇%設為上限,更 佳為將15.0%設為上限,最佳為將1〇〇%設為上限。The RhO component (wherein Rn is one or more selected from the group consisting of ruthenium and osmium) is a component which improves the meltability of the glass and lowers the devitrification of the glass. Here, by setting the content of the 11112〇 component to 2 〇% or less, it is difficult to lower the refractive index of the glass, and the stability of the glass can be improved to reduce the occurrence of devitrification or the like. Therefore, it is preferable that the molar mass of the RhO component and the total mass of the glass in terms of the oxide conversion composition be 2%% as the upper limit, more preferably 15.0% as the upper limit, and most preferably 1%%. The upper limit.

MgO成分、Ca0成分、Sr〇成分及Ba〇成分為調整玻璃之 折射率或熔融性、失透性之成分,為本發明之光學玻璃中 之任意成分。尤其是藉由將Mg〇成分、Ca〇成分、Sr〇成 分及Ba〇成分各自之含量設為1〇 〇%以下可容易地獲得 所期望之折射率,並且可降低因含有過剩之該等成分而產 生之玻璃之失透。因此,Mg〇成分、Ca〇成分、以〇成分 及B a Ο成分各自之含量相對於氧化物換算組成之玻璃總質 里,較佳為將10.0%設為上限,更佳為將80%設為上限, 最佳為將5.0%設為上限。Mg0成分可使用例如MgC〇3、 159312.doc •20· 201223907The MgO component, the Ca0 component, the Sr〇 component, and the Ba〇 component are components which adjust the refractive index, meltability, and devitrification property of the glass, and are arbitrary components in the optical glass of the present invention. In particular, by setting the content of each of the Mg bismuth component, the Ca 〇 component, the Sr 〇 component, and the Ba 〇 component to 1% by mole or less, the desired refractive index can be easily obtained, and the excessive inclusion of the components can be reduced. The resulting glass is devitrified. Therefore, it is preferable that the content of each of the Mg 〇 component, the Ca 〇 component, the 〇 component, and the Ba Ο component is in the total amount of the glass in terms of the oxide conversion composition, and it is preferable to set the upper limit to be 10.0%, and more preferably to set the upper limit to 80%. For the upper limit, it is best to set 5.0% as the upper limit. For the Mg0 component, for example, MgC〇3, 159312.doc •20·201223907 can be used.

MgF2、CaC〇3、CaF2、心⑽ 3)2、SrF2、BaC〇3 ' Ba(N〇3)2、祕2等作為原料而包含於玻璃内。 本發明之光學玻璃較佳為R〇成分(式中,Μ選自由 Mg、Ca、Sr、Ba所組成之群中之一種以上)之含量之合計 為11.0/。以下。藉此,可容易地獲得所期望之折射率。因 此’ RO成I之莫耳和相對於氧化物換算組成t玻璃總質 量’較佳為將11.0%設為上限,更佳為將8 〇%設為上限, 進而較佳為將5.0%設為上限。MgF2, CaC〇3, CaF2, core (10) 3)2, SrF2, BaC〇3' Ba(N〇3) 2, and secret 2 are contained in the glass as a raw material. The optical glass of the present invention preferably has a total content of the R 〇 component (wherein Μ is selected from one or more of the group consisting of Mg, Ca, Sr, and Ba) is 11.0 /. the following. Thereby, the desired refractive index can be easily obtained. Therefore, it is preferable to set 11.0% as the upper limit, and more preferably 8 〇% as the upper limit, and it is preferable to set 5.0% as the upper limit of the composition of the RO to I and the total mass of the glass. Upper limit.

Ge〇2成刀為具有提向玻璃之折射率並且提高耐失透性之 效果之成分,為本發明之光學玻璃中之任意成分^然而, Ge02由於原料價格較高,故而若其量較多,則生產成本變 高,因此會削弱由降低TkO5成分所產生之效果。因此, 2成刀之3量相對於氧化物換算組成之玻璃總質量,較 佳為將10.0%設為上限,更佳為將50%設為上限,最佳為 將1 .〇/〇 -又為上限。Ge〇2成分例如可使用等作為原料 而包含於玻璃内。 P2〇5成分為具有降低玻璃之液相溫度而使耐失透性提高 之效果之成分,為本發明之光學玻璃中之任意成分。尤其 疋藉由將P2〇5成分之含量設為1〇〇%以下,可抑制玻璃之 化學耐久性、尤其是耐水性之降低。因此,P2〇5成分之含 置相對於氧化物換算組成之玻璃總質量,較佳為將10 0% 設為上限,更佳為將8 0%設為上限,最佳為將5 0%設為上 限。P205成分可使用例如 A1(P〇3)3、Ca(p〇3)2 ' Ba(p〇3)2、 BPO4、H3P〇4專作為原料而包含於玻璃内。 159312.doc •21- 201223907The Ge〇2 forming tool is a component having an effect of increasing the refractive index of the glass and improving the resistance to devitrification, and is an arbitrary component in the optical glass of the present invention. However, since Ge02 has a relatively high raw material price, if the amount thereof is large, , the production cost becomes higher, and thus the effect produced by lowering the TkO5 component is impaired. Therefore, it is preferable to set 10.0% as the upper limit, and more preferably 50% as the upper limit, and preferably 1 to 〇/〇- The upper limit. The Ge 2 component can be contained in the glass, for example, by using it as a raw material. The P2〇5 component is a component having an effect of lowering the liquidus temperature of the glass and improving the devitrification resistance, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the P2〇5 component to 1% by weight or less, the chemical durability of the glass, particularly the water resistance, can be suppressed. Therefore, it is preferable to set the content of the P2〇5 component to the total mass of the glass in terms of the oxide conversion composition, preferably to set the upper limit to 100%, and more preferably to set the upper limit to 80%, preferably to 50%. The upper limit. For the P205 component, for example, A1(P〇3)3, Ca(p〇3)2'Ba(p〇3)2, BPO4, and H3P〇4 can be used as a raw material and contained in the glass. 159312.doc •21- 201223907

Zr〇2成分為有助於玻璃之高折射率及低色散,並且提高 财失透性之成分’為本發明之光學玻璃中之任意成分。然 而’若Zr〇2量過多,則耐失透性反而惡化β因此,Zr〇2成 分之含量相對於氧化物換算組成之玻璃總質量,較佳為將 15.0°/。設為上限,更佳為將12 〇%設為上限,進而較佳為將 10.0%設為上限《再者,雖然即便不含汾〇2成分,亦可獲 得具有所期望之特性之玻璃,但藉由含有Zr〇2成分,可容 易地獲得高折射率低色散之性能,並且可容易地獲得提高 咐失透性之效果。因此,尤其是於第2光學玻璃中,Zr〇2 成分之含量相對於氧化物換算組成之玻璃總質量,較佳為 設為多於0% ^更佳為將1.0❶/。設為下限,最佳為將3.0%設 為下限。Zr02成分可使用例如Zr02、ZrF4等作為原料而包 含於玻璃内。The Zr〇2 component is a component which contributes to the high refractive index and low dispersion of the glass and improves the devitrification property of the glass. However, if the amount of Zr〇2 is too large, the resistance to devitrification deteriorates by β. Therefore, the content of the Zr〇2 component is preferably 15.0 °/% based on the total mass of the glass in terms of oxide conversion. It is preferable to set the upper limit to 12 〇%, and it is preferable to set the upper limit to 10.0%. Further, although the bismuth 2 component is not contained, a glass having desired characteristics can be obtained, but By containing the Zr〇2 component, the high refractive index and low dispersion property can be easily obtained, and the effect of improving the devitrification property can be easily obtained. Therefore, in particular, in the second optical glass, the content of the Zr〇2 component is preferably set to more than 0% by mass based on the total mass of the glass in terms of oxide composition, and more preferably 1.0%. Set to the lower limit, and it is best to set 3.0% as the lower limit. The ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.

ZnO成分為降低玻璃轉移溫度(Tg),並且改善化學耐久 性之成分,為本發明之光學玻璃中之任意成分。然而,若 含有較多之ZnO成分,則玻璃之耐失透性容易惡化。因 此,ZnO成分之含量相對於氧化物換算組成之玻璃總質 量,較佳為將50.0%設為上限,更佳為將45.0°/。設為上限, 進而較佳為將40.0%設為上限。尤其是就可提高玻璃之穩 定性而降低液相溫度之觀點而言,ZnO成分之含量相對於 氧化物換算組成之玻璃總質量可設為27.0%以下,亦可設 為未達24.0%。再者,雖然即便不含ZnO成分亦可獲得具 有所期望之特性之玻璃,但藉由含有ZnO成分而使玻璃轉 移點變低,故而可容易地獲得更易進行加壓成形之光學玻 159312.doc •22· 201223907 璃°因此’ ZnO成分之含量相對於氧化物換算組成之玻璃 總質量’較佳為多於〇%,更佳為將5 〇%設為下限,最佳 為將10.0%設為下限。Zn0成分可使用例如Zn〇、ZnF2等作 為原料而包含於玻璃内。The ZnO component is a component which lowers the glass transition temperature (Tg) and improves chemical durability, and is an optional component in the optical glass of the present invention. However, if a large amount of the ZnO component is contained, the devitrification resistance of the glass is likely to deteriorate. Therefore, the content of the ZnO component is preferably 50.0% as the upper limit, more preferably 45.0 °/, based on the total mass of the glass in terms of oxide conversion. The upper limit is set, and it is more preferable to set 40.0% as the upper limit. In particular, the content of the ZnO component can be 27.0% or less with respect to the total mass of the oxide-converted composition, and can be set to less than 24.0%, from the viewpoint of improving the stability of the glass and lowering the liquidus temperature. Further, although a glass having desired characteristics can be obtained without containing a ZnO component, the glass transition point is lowered by containing a ZnO component, so that an optical glass 159312.doc which is more easily formed by pressure can be easily obtained. •22·201223907 Glass° Therefore, it is preferable that the content of the ZnO component is more than 〇% with respect to the total composition of the oxide-converted composition, and it is more preferable to set 5 〇% as the lower limit, and it is preferable to set 10.0%. Lower limit. The Zn0 component can be contained in the glass using, for example, Zn〇, ZnF2 or the like as a raw material.

Bi2〇3成分為提高折射率,並且降低玻璃轉移點(Tg)之成 分,為本發明之光學玻璃中之任意成分。尤其是藉由將The Bi2〇3 component is a component which increases the refractive index and lowers the glass transition point (Tg) and is an arbitrary component in the optical glass of the present invention. Especially by

BiZ〇3成分之含量設為15.〇%以下,可抑制液相溫度之上 升,故而可抑制玻璃之耐失透性之降低。因此,Bi2〇3成 刀之3量相對於氧化物換算組成之玻璃總質量,較佳為將 15.0%設為上限’更佳為設為未達1〇 〇%,最佳為設為未達 5·〇%。Bi2〇3成分可使用例如則2〇3等作為原料而包含於玻 璃内。When the content of the BiZ〇3 component is set to 15.5% or less, the liquidus temperature can be suppressed from rising, so that the deterioration of the devitrification resistance of the glass can be suppressed. Therefore, the amount of the Bi2〇3 knives is preferably set to 15.0% as the upper limit of the total amount of the glass of the oxide conversion composition, and more preferably set to less than 1% by weight, and most preferably set to less than 5·〇%. The Bi2〇3 component can be contained in the glass by using, for example, 2〇3 or the like as a raw material.

Te〇2成分為提高折射率,並且降低玻璃轉移點之成 分,為本發明之光學玻璃中之任意成分。•然而,Te02於在 白金製坩㈤ '或與熔融玻璃相才妾之部/分由白金所形成之熔 融槽中使玻璃原料熔融時,存在可與白金合金化之問題。 ,此’ Te02成分之含量相對於氧化物換算組成之玻璃總質 S,較佳為將15.0%設為上限,更佳為設為未達1〇 〇%,最 佳為設為未達5·0%。Te〇2成分可使用例如抓等作為原料 而包含於玻璃内。The Te〇2 component is an ingredient which increases the refractive index and lowers the glass transition point and is an optional component in the optical glass of the present invention. • However, Te02 has a problem of alloying with platinum when the glass raw material is melted in a melting tank formed of platinum (5) or a molten glass. The content of the 'Te02 component is preferably 15.0% as the upper limit, more preferably less than 1%, and most preferably less than 5%, based on the total mass S of the oxide-converted composition. 0%. The Te〇2 component can be contained in the glass using, for example, scratching or the like as a raw material.

Al2〇3成分及Ga2〇3成分為提高玻璃之化學耐久性,並且 提高熔融玻璃之耐失透性之成分,為本發明之光學玻璃中 之任意成分。尤其是藉由將从〇3成分及〜2〇3成分各自之 含量設為·以下’可藉由提高玻璃之穩定性而減弱玻 159312.doc •23- 201223907 璃之失透傾向。因此,Ah〇3成分及(^2〇3成分各自之含量 相對於氧化物換算組成之玻璃總質量,較佳為將150%設 為上限,更佳為將10.0。/。設為上限,最佳為將5 〇%設為上 限。Al2〇3成分及Ga2〇3成分可使用例如Al2〇3、a1(〇h)3、 A1F3、Ga2〇3、Ga(OH)3等作為原料而包含於玻璃内。 st&gt;2〇3成分為使熔融玻璃消泡之成分,為本發明之光學 玻璃中之任意成分。若Sb»2〇3量過多,則可見光區域之短 波長區域下之穿透率變差。因此,Sb2〇3成分之含量相對 於氧化物換算組成之玻璃總質量,較佳為將1〇%設為上 限,更佳為將0.7%設為上限,最佳為將〇 5%設為上限。 叫03 成分可使用例如 sb203、Sb2〇5、Na2H2Sb207.5H20 等 作為原料而包含於玻璃内。 再者’使玻璃澄清並消泡之成分並不限定於上述sb2〇3 成分,可使用玻璃製造之領域中之公知之澄清劑、消泡劑 或該等之組合。 F成分為降低玻璃之色散,並且降低玻璃轉移點(Tg), 提高耐失透性之成分,為本發明之光學玻璃中之任意成 分。然而,若F成分之含量、即與上述各金屬元素之一種 或兩種以上之氧化物之一部分或全部置換之氟化物以F計 之合計量超過6.0。/。,則F成分之揮發量變多,故而難以獲 得穩疋之光學常數,難以獲得均質之玻璃。因此,F成分 之含量相對於氧化物換算組成之玻璃總質量,較佳為將 6.0%設為上限,更佳為將5.〇%設為上限,最佳為將3 〇%設 為上限。F成分可藉由使用例如ZrF4、A1F3、NaF、CaF2等 159312.doc ·24· 201223907 作為原料而包含於玻璃内。 &lt;關於不應該含有之成分&gt; 繼而,對不應該包含於本發明之光學玻璃中之成分、及 較佳為不含有之成分進行說明。 可於不損害本申請案發明之玻璃之特性之範園内視需要 添加其他成分。其中,由於除Ti、Zr、Nb、W、La、Gd、 Y、Yb、Lu以外,V、Cr、Μη、Fe、Co、Ni、Cu、Ag及The Al2〇3 component and the Ga2〇3 component are components which improve the chemical durability of the glass and improve the devitrification resistance of the molten glass, and are arbitrary components in the optical glass of the present invention. In particular, by setting the content of each of the 〇3 component and the 〜2〇3 component to be lower than hereinafter, it is possible to reduce the devitrification tendency of the glass by improving the stability of the glass. Therefore, the content of each of the Ah 〇 3 component and the (^ 2 〇 3 component is preferably 150% as the upper limit, and more preferably 10.0% as the upper limit, the total mass of the glass in terms of the oxide conversion composition. It is preferable to set 5 〇% as the upper limit. The Al2〇3 component and the Ga2〇3 component can be contained as raw materials using, for example, Al2〇3, a1(〇h)3, A1F3, Ga2〇3, Ga(OH)3 or the like. In the glass, the component of St 2 is a component which defoams the molten glass, and is an arbitrary component in the optical glass of the present invention. If the amount of Sb»2〇3 is too large, the transmittance in the short-wavelength region of the visible light region Therefore, the content of the Sb2〇3 component is preferably an upper limit of 1% by weight, more preferably 0.7% of the upper limit, and most preferably 〇5%, based on the total mass of the glass of the oxide conversion composition. The upper limit is sb203, Sb2〇5, Na2H2Sb207.5H20, etc., and is contained in the glass as a raw material. Further, the component for clarifying and defoaming the glass is not limited to the above sb2〇3 component. A well-known clarifying agent, antifoaming agent or a combination of these in the field of glass manufacturing is used. The dispersion of the glass, and the reduction of the glass transition point (Tg), and the component for improving the devitrification resistance, are arbitrary components in the optical glass of the present invention. However, if the content of the F component is one or both of the above metal elements, When the total amount of fluoride in some or all of the above-mentioned oxides is more than 6.0 in terms of F, the amount of volatilization of the F component increases, so that it is difficult to obtain a stable optical constant, and it is difficult to obtain a homogeneous glass. The content of the F component is preferably 6.0% as the upper limit, more preferably 5. 〇% as the upper limit, and most preferably 3 〇% as the upper limit. It can be contained in glass by using, for example, ZrF4, A1F3, NaF, CaF2, etc., 159312.doc.24·201223907 as a raw material. <About the component which should not be contained> Then, the optical glass which should not be included in the present invention The components and the components which are preferably not contained are described. Other components may be added as needed in the process of not impairing the characteristics of the glass of the invention of the present application, in addition to Ti, Zr, Nb, W, La, Gd Than Y, Yb, Lu, V, Cr, Μη, Fe, Co, Ni, Cu, Ag and

Mo等各種過渡金屬成分即便於分別單獨含有或複合含有 少量之情形時,亦具有玻璃著色且於可見光範圍之特定波 長下產生吸收之性質,故而尤其是於使用可見光區域之波 長之光學玻璃中,較佳為實質上不含有。 又,由於PbO等鉛化合物及As2〇3等砷化合物為環境負荷 較高之成分,故而較理想為實質上不含有,即,除不可避 免之混入以外完全不含有。 進而,Th、Cd、Tl、Os、Be及Se各成分近年來有作為 有害之化學物資而控制使用之傾向,認為不僅於玻璃之製 造步驟,而且直至加工步驟及製品化後之處理為止均需要 裱境對策上之措施。因此,於重視環境上之影響之 時’較佳為實質上不含有該等。 曰 ^ 本發明之玻璃組合物由於其組成以相對於氧化物換算矣 成之玻璃總質量之莫耳%表示’故而並非直接以質量 記载表示,但於本發明中,存在於滿足所要求之各種特°卜 之玻璃組合物中之各成分以質量%表示之組成藉由㈣: 換舁組成而獲得大致以下值: 159312.doc -25- 201223907 B2〇3成分5.0〜25.0質量%、及 La203成分10.0〜55.0質量%、 W03成分0〜30.0質量%及/或 Ti02成分0~10.0質量%及/或 Nb205成分0〜3 5.0質量%及/或 Li20成分0〜5.0質量%及/或 Gd203成分0〜5 5.0質量%及/或 Y2〇3成分〇〜20.0質量%及/或 Yb203成分0〜25.0質量%及/或 Lu203成分0〜20.0質量%及/或 Ta205成分0〜30.0質量%及/或 Si02成分0〜10.0質量%及/或 Na20成分0〜8.0質量%及/或 K20成分0〜8.0質量%及/或 MgO成分0〜3.0質量%及/或 CaO成分0〜5.0質量°/〇及/或 SrO成分0〜8.0質量%及/或 BaO成分0〜10.0質量%及/或 Ge02成分0〜7.0質量%及/或 P2〇5成分〇〜1〇.〇質量%及/或 Zr02成分0〜12.0質量%及/或 ZnO成分0〜30.0質量%及/或 Bi203成分0〜40.0質量°/〇及/或 Te02成分0-15.0質量%及/或 -26- 159312.doc 201223907Various transition metal components such as Mo, even when they are contained alone or in a small amount, have the property of being colored by glass and absorbing at a specific wavelength in the visible light range, and therefore, especially in an optical glass using a wavelength of a visible light region, It is preferably substantially not contained. Further, since a lead compound such as PbO or an arsenic compound such as As2〇3 is a component having a high environmental load, it is preferably substantially not contained, i.e., it is not contained at all except for inevitable mixing. Further, each of Th, Cd, Tl, Os, Be, and Se has a tendency to be controlled and used as a harmful chemical substance in recent years, and it is considered that it is required not only in the glass production step but also in the processing step and the post-product processing. Measures on the countermeasures against the environment. Therefore, when it is important to pay attention to the influence of the environment, it is preferable that the content is not substantially contained.曰^ The glass composition of the present invention is represented by the % of the total mass of the glass converted in terms of oxides, and thus is not directly represented by the quality, but in the present invention, it exists to satisfy the requirements. The composition of each of the various compositions in the glass composition is expressed by mass% by (4): the following values are obtained by changing the composition: 159312.doc -25- 201223907 B2〇3 composition 5.0 to 25.0% by mass, and La203 Component: 10.0 to 55.0% by mass, W03 component 0 to 30.0% by mass, and/or TiO 2 component 0 to 10.0% by mass and/or Nb205 component 0 to 3 5.0% by mass and/or Li20 component 0 to 5.0% by mass and/or Gd203 component 0 to 5 5.0% by mass and/or Y2〇3 component 〇~20.0% by mass and/or Yb203 component 0 to 25.0% by mass and/or Lu203 component 0 to 20.0% by mass and/or Ta205 component 0 to 30.0% by mass and/or Or SiO 2 component 0 to 10.0% by mass and/or Na20 component 0 to 8.0% by mass and/or K20 component 0 to 8.0% by mass and/or MgO component 0 to 3.0% by mass and/or CaO component 0 to 5.0% by mass/〇 And/or SrO component 0 to 8.0% by mass and/or BaO component 0 to 10.0% by mass and/or Ge0 2 components 0 to 7.0% by mass and/or P2〇5 component 〇~1〇.〇% by mass and/or Zr02 component 0 to 12.0% by mass and/or ZnO component 0 to 30.0% by mass and/or Bi203 component 0 to 40.0 Mass ° / 〇 and / or Te02 composition 0-15.0% by mass and / or -26- 159312.doc 201223907

Al2〇3成分〇〜12 〇質量。/。及/或Al2〇3 composition 〇~12 〇 mass. /. And/or

GaW3成分0〜20 0質量%及/或 Sb203成分〇〜3 〇質量%、以及 部分或 與上述各金屬&amp;素之一種或兩種以上之氧化物之一 全部置換之氟化物以F計之合計量〇〜3〇質量%。 [製造方法] 本發明之光學玻璃例如可以如下方式製作。即,藉由以 各成分成為特定之含量之範圍内之方式均句地混合 料並將所製作之混合物投入白金掛禍中,根據玻璃組成之 炫融度制電爐於贈〜15Gn:之溫度範圍⑽融Μ 小時並使錢拌均質化後,降低至適當之溫度,其後洗鱗 於模具中並緩緩冷卻,而製作。 [物性] 本發明之光學玻璃具有較高之折射率(nd)及較低之色 散。尤其是本發明之光學玻璃之折射率(nd)較佳為將175 設為下限,更佳為將L77設為下限,最佳為將18〇設為下 限,較佳為將1.95設為上限,更佳為將192設為上限,最 佳為將1.91設為上限。又,本發明之光學玻璃之阿貝數 (vd)較佳為將30設為下限,更佳為將31設為下限,最佳為 將32設為下限,較佳為將5〇設為上限,更佳為將45設為上 限,最佳為將40設為上限,藉此,可擴大光學設計之自由 度,進而即便謀求元件之薄型化,亦可獲得較大之光之折 射量。 又,本發明之光學玻璃較佳為著色較少。尤其是若本發 159312.doc -27- 201223907 明之光學玻璃以玻璃之穿透率表示,則於厚度為1〇 mm2 樣本中顯不70%之分光穿透率的波長(λ7❶)為45〇 nm以下, 更佳為430 nm以下,最佳為42〇 nm以下。又顯示5%之 分光穿透率之波長(λ5)為400 nm以下,更佳為38〇 nmw 下,最佳為370 nm以下。又,顯示8〇%之分光穿透率之波 長(kc)為550 nm以下,更佳為52〇 nm以下,進而較佳為 500 nm以下,最佳為480 nm以下。藉此,由於玻璃之吸收 極限位於紫外線區域附近,可見光範圍之玻璃之透明性提 间,故而可將該光學玻璃較佳地用作透鏡等光學元件之材 料。 又,本發明之光學玻璃較佳為耐失透性較高。尤其是本 發明之光學玻璃較佳為具有120(rc以下之較低之液相溫 度。更具體而言,本發明之光學玻璃之液相溫度較佳為將 1200°C設為上限,更佳為將U8〇〇c設為上限,最佳為將 1160 C設為上限。藉此,即便以更低之溫度流出熔融玻 璃,所製作之玻璃之結晶化亦降低,故而可提高自熔融狀 態形成玻螭時之耐失透性,可降低對使用玻璃之光學元件 之光學特性的影響。又,由於可穩定生產預成形材之溫度 之範圍變廣,故而即便降低玻璃之熔解溫度,亦可形成預 成形材’可抑制預成形材之形成時所消耗之能量。另一方 面’本發明之光學玻璃之液相溫度之下限並無特別限定, 但藉由本發明所獲得之玻璃之液相溫度大多情況下大致為 500°C以上,具體而言為55(rc以上,更具體而言為6〇〇&lt;t 以上。再者,本說明書中之「液相溫度」係表示,於5〇 159312.docThe GaW3 component is 0 to 20% by mass and/or the Sb203 component is 〇3 to 3% by mass, and the fluoride which is partially or completely substituted with one or more of the above-mentioned metals &amp; The total amount is 〇~3〇% by mass. [Production Method] The optical glass of the present invention can be produced, for example, in the following manner. That is, by uniformly mixing the ingredients in a range in which the respective components are within a specific content, and putting the produced mixture into a platinum smash, the temperature range of the ~15Gn: is given according to the glaze of the glass composition. (10) After the smelting hours and homogenization of the money, the temperature is lowered to an appropriate temperature, and then the scale is washed in a mold and slowly cooled to be produced. [Physical Properties] The optical glass of the present invention has a high refractive index (nd) and a low dispersion. In particular, the refractive index (nd) of the optical glass of the present invention is preferably 175 as the lower limit, more preferably L77 as the lower limit, and most preferably 18 〇 as the lower limit, preferably 1.95 as the upper limit. More preferably, 192 is set as an upper limit, and it is preferable to set 1.91 as an upper limit. Further, the Abbe number (vd) of the optical glass of the present invention is preferably such that 30 is the lower limit, more preferably 31 is the lower limit, and most preferably 32 is the lower limit, and preferably 5 is set as the upper limit. More preferably, 45 is set as an upper limit, and it is preferable to set 40 as an upper limit, whereby the degree of freedom in optical design can be increased, and even if the element is made thinner, a large amount of light can be obtained. Further, the optical glass of the present invention preferably has less coloration. In particular, if the optical glass disclosed in Japanese Patent Publication No. 159312.doc -27-201223907 is expressed by the glass transmittance, the wavelength (λ7❶) of the light transmittance of 70% in the sample having a thickness of 1 mm 2 is 45 〇 nm. Hereinafter, it is more preferably 430 nm or less, and most preferably 42 〇 nm or less. It is also shown that the wavelength (λ5) of the 5% light transmittance is 400 nm or less, more preferably 38 〇 nmw, and most preferably 370 nm or less. Further, the wavelength (kc) of the spectral transmittance of 8〇% is 550 nm or less, more preferably 52 Å or less, further preferably 500 nm or less, and most preferably 480 nm or less. Thereby, since the absorption limit of the glass is in the vicinity of the ultraviolet ray region and the transparency of the glass in the visible light range is increased, the optical glass can be preferably used as a material of an optical element such as a lens. Further, the optical glass of the present invention preferably has high resistance to devitrification. In particular, the optical glass of the present invention preferably has a lower liquidus temperature of 120 (rc or less. More specifically, the liquidus temperature of the optical glass of the present invention is preferably 1200 ° C as an upper limit, more preferably In order to set U8〇〇c as the upper limit, it is preferable to set 1160 C as the upper limit. Therefore, even if the molten glass flows out at a lower temperature, the crystallization of the produced glass is lowered, so that the self-melting state can be formed. The resistance to devitrification in the glass raft can reduce the influence on the optical characteristics of the optical element using glass. Moreover, since the temperature range of the stable production of the preform material is widened, even if the melting temperature of the glass is lowered, it can be formed. The preform material 'suppresses the energy consumed in the formation of the preform. On the other hand, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquid phase temperature of the glass obtained by the present invention is mostly In this case, it is approximately 500 ° C or more, specifically 55 (rc or more, more specifically 6 〇〇 &lt; t or more. Further, the "liquidus temperature" in the present specification is expressed at 5 〇 159312. .doc

• 28· 201223907 ml之容量之白金製坩堝中,將3〇 cc之玻璃屑狀之玻璃試 樣放入白金坩堝中,使其於1250°C下完全成為熔融狀態, 降溫至特定之溫度並保持12小時’取出至爐外並冷卻後立 刻觀察玻璃表面及玻璃中之結晶的有無,未觀察到結晶之 最低之溫度。此處’所謂特定之溫度,係表示自丨丨8〇t&gt;c至 500°C為止以每10°C設定之溫度。 又’本發明之光學玻璃具有680 °C以下之玻璃轉移點 (Tg)。藉此’由於玻璃於更低之溫度下軟化,故而可於更 低之溫度下容易地對玻璃進行加壓成形。又,亦可減少加 壓成形所使用之模具之氧化而謀求模具之長壽命化。因 此’本發明之光學玻璃之玻璃轉移點(Tg)較佳為將68〇t: 設為上限,更佳為將650°C設為上限,最佳為將630。(:設為 上限。再者,本發明之光學玻璃之玻璃轉移點(Tg)之下限 並無特別限定’藉由本發明所獲得之玻璃之玻璃轉移點 (Tg)大多情況下大致為100〇C以上,具體而言為ι5〇β(:以 上,更具體而言為200。(:以上。 又’本發明之光學玻璃較佳為具有720°C以下之變形點 (At) °變形點(At)為與玻璃轉移點(Tg)同樣地表示玻璃之 軟化性之指標之一,為表示接近加壓成形溫度之溫度之指 標。因此,藉由使用變形點(At)為72〇°c以下之玻璃,可於 更低之溫度下進行加壓成形,故而可更容易地進行加壓成 形。因此,本發明之光學玻璃之變形點(At)較佳為將72〇〇c 設為上限,更佳為將7〇(rc設為上限,最佳為將68〇〇c設為 上限。再者,本發明之光學玻璃之變形點(At)之下限並無 159312.doc •29· 201223907 特別限定’藉由本發明所獲得之玻璃之變形點(At)大多情 況下大致為150°C以上,具體而言為200°c以上,更具體而 言為250°C以上。 又’本發明之光學玻璃較佳為具有較低之部分色散比 (0g ’ F) °更具體而言,本發明之光學玻璃之部分色散比 (eg ’ f)與阿貝數(Vd)之間滿足(_2 5〇xlo-3xVd+〇 6571) $(98,?)$(-2.50&gt;&lt;1〇\、+〇.6971)之關係。藉此,可獲得 部分色散比(eg ’ F)較小之光學玻璃,故而可降低由該光學 玻璃所形成之光學元件之色差。本發明之光學玻璃之部分 色散比(0g,F)較佳為將(_2.50xl(T3xvd+0.6571)設為下限, 更佳為將(-2.5〇xl〇-3XVd+0.6591)s為下限,最佳為將 (•2,5〇xl(T3xvd+〇.6611)設為下限。另一方面,本發明之光 學玻璃之部分色散比(eg,F)較佳為將(_2 5〇xl〇-3XVd+ 0.697 1)設為上限’更佳為將(_2 5〇xl〇-3XVd+〇 6921)設為上 限’最佳為將(-2.5〇xl〇-3xVd+〇.6871)設為上限。 [預成形材及光學元件] 可利用所製作之光學玻璃使用例如再加熱加壓成形或精 密加壓成形等模壓成形之手段而製作玻璃成形體,即,可 利用光學玻璃製作模壓成形用預成形物,對該預成形物進 行再加熱加壓成形後進行研磨加工而製作玻璃成形體,或 者對進行研磨加工所製作之預成形物或藉由公知之浮起成 形等所成形之預成形物進行精密加壓成形而製作玻璃成形 體。再者,製作玻璃成形體之手段並不限定於該等手段。 如此,本發明之光學玻璃可用於各種光學元件及光學設 159312.doc •30· 201223907 計中。其中尤佳為利用本發明之光學玻璃形成預成形材, 使用該預成形材進行再加熱加壓成形或精密加壓成形等而 製作透鏡或稜鏡等光學元件。藉此,由於可形成直徑較大 之預成形材’故而可謀求光學元件之大型化,並且於用於 相機或投影儀等光學機器時,可實現高精細且高精度之成 像特性及投影特性。 [實施例] 將本發明之實施例(No. 1〜No· 105)及比較例(No· A)之組 成、以及該等玻璃之折射率(nd)、阿貝數(Vd)、部分色散比 (0g,F)、玻璃轉移點(Tg)、變形點(At)、液相溫度、分光 穿透率顯示5%、70%及80%之波長%、λ7〇及λ80)之結果示 於表1〜表14。再者,實施例(No. 1〜Νο_ 12)係關於第1光學 玻璃之實施例’實施例(Νο· 1~Νο· 2、No· 13〜No. 105)係 關於第2光學玻璃之實施例。又,以下之實施例僅為例示 之目的’並非僅限定於該等實施例。 本發明之貝施例(N 〇. 1〜N〇. 10 5 )及比較例(No. A)之玻璃 係藉由如下方式而製作:均選定各自適合之氧化物、氫氧 化物、碳酸鹽、硝酸鹽、氟化物、氫氧化物、偏磷酸化合 物等通常之光學玻璃所使用之高純度原料作為各成分之原 料’以成為表1〜表14所示之各實施例之組成之比例之方式 稱量並均勻地混合後,投入至白金坩禍中,根據玻璃組成 之熔融難易度利用電爐於1丨⑽〜丨5〇〇°c之溫度範圍中熔融 2〜5小時後使其攪拌均質化,其後澆鑄至模具等中並緩緩 冷卻。 159312.doc •31- 201223907 此處’實施例(No. 1〜No. 105)及比較例(No. A)之玻璃之 折射率(nd)、阿貝數(vd)及部分色散比(0g,F)係基於曰本 光學硝子工業會規格JOGIS01-2003而測定。並且,對於所 求得之阿貝數(vd)及部分色散比,F)之值,求出關係式 (eg ’ F)=-axvd+b中之斜率a為0.0025時之截距b。此處,折 射率(nd)、阿貝數(vd)、及部分色散比(Qg,F)係藉由對將 緩冷降溫速度設為-25°C /hr而獲得之玻璃進行測定而求 出。 又,實施例(No. 1〜No. 105)及比較例(No. A)之玻璃之玻 璃轉移點(Tg)及變形點(At)係藉由使用橫置式膨脹測定器 進行測定而求出。此處’進行測定時之樣本係使用多4.8 mm、長度為50〜55 mm者,將升溫速度設為4。(:/min。 又,實施例(No. 1〜No. 105)及比較例(No. A)之玻璃之穿 透率係基於日本光學硝子工業會規格J〇GiS〇2而測定。再 者’於本發明中,藉由測定玻璃之穿透率而求出玻璃之著 色之有無與程度。具體而言,對厚度為10±0.1 mm之面面 平行研磨品’基於JISZ8722測定200〜800 nm之分光穿透 率’求出λ5(穿透率為5%時之波長)、λ70(穿透率為70%時之 波長)及λ8〇(穿透率為80%時之波長)。 又,實施例(No. 1〜No. 105)及比較例(Ν〇· Α)之玻璃之液 相溫度係於50 ml之容量之白金製坩堝中,將3〇 cc之玻璃 屑狀之玻璃試樣放入白金时渦中並使其於1250 °c下完全成 為熔融狀態,降溫至118〇·&gt;(:〜1000^中以每⑺它設定之任 一溫度為止並保持12小時’取出至爐外並冷卻後,立刻觀 I59312.doc •32· 201223907 察玻璃表面及玻璃中之結晶之有無,求出未觀察到結晶之 最低之溫度。 [表1] 實施例 1 2 3 4 5 6 7 S B2〇3 33.680 43.931 44.931 44.931 31.773 31.268 39.996 26.222 La2〇3 15309 16.676 16.676 16.676 14.783 11.984 16.499 14.617 W03 2.987 3.473 7.785 6.941 15.498 Ti02 5.103 8.300 10.770 8.300 10.260 Nb2〇5 2.470 9.407 8.210 10.499 4.414 Li20 2.056 2.056 2.056 0.767 0.755 3.498 Gd2〇3 10.206 5.411 5.411 5.411 2.304 2.297 Y203 0.364 Yb2〇3 Lll2〇3 Ta2〇5 3.062 3.830 3.830 3.830 Si02 10.206 4.709 4.634 11.601 Na20 K20 MgO CaO SrO BaO Ge〇2 P2〇5 Zr02 4.082 4.956 4.956 4.956 3.615 6.992 ZnO 15.309 11.309 11.309 11.309 30.767 30.278 13.999 23.233 A1203 Sb2〇3 0.056 0.059 0.059 0.059 0.010 0.010 0.011 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 8.090 11.773 10,770 10.770 17.192 15.152 25.998 14.674 Ti+Nb 5.103 8.300 10.770 10.770 9.407 8.210 10.499 14.674 W/(Ti+Nb+W) 0.369 0.295 0.000 0.000 0.453 0.458 0.596 0.000 La+Gd+Y+Yb+Lu 25.515 22.087 22.087 22.087 14.783 14.288 16.499 17.278 含Ln數 2 2 2 2 1 2 1 3 Ta/W 1.025 1.103 - - 0.000 0.000 0.000 - Li+Na+K 0.000 2.056 2.056 2.056 0.767 0.755 3.498 0.000 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87183 1.87664 1.8734 1.88250 1.89469 1.89234 1.90221 1.90425 vd 39.1 36.9 37.4 36.6 32.7 33.2 31 35.6 部分色散比(eg,f) 0.57348 0.57817 0.57870 0.57919 0.59000 0.58607 0.59450 截距 b(a=0.00250) 0.67123 0.67042 0.67220 0.67069 0,67175 0.66907 0.67200 Tg(°C) 621 At(°C) 664 λ8〇[ηηι] 441.5 464.5 447 452 452 493 489.5 λ7〇[ηπι] 396 406 402 402 393.5 412.5 401.5 λ5[ηηι] 351 357.5 354 353 353.5 361 353 液相溫度(°c) 1120 1060 1080 1080 1160 -33- 159312.doc 201223907 [表2] 實施例 比較例 9 10 11 12 13 14 15 16 A B2〇3 38.80 30.27 27.98 28.944 29.23 29.00 30.90 28.94 33.560 L32〇3 16.50 11.87 10.64 10.291 15.11 16.00 15.97 14.96 21.330 W〇3 3.51 3.12 3.140 2.65 1.90 1.79 1.74 Ti〇2 10.19 6.03 7.33 7.337 Nb205 2.444 Li20 2.034 1.047 1.062 1.065 0.794 0.794 Gd2〇3 7.332 7.325 9.968 11.216 4.613 5.000 4.877 4.567 7.952 Y203 1.771 Yb2〇3 Lu2〇3 0.018 Τ^2〇5 3.789 2.813 6.852 5.150 4.762 4.347 8.574 Si02 7.649 6.905 7.335 7.356 7.876 8.810 8.327 7.798 16.714 Na20 K20 MgO CaO SrO BaO Ge02 P205 Zr02 4.487 4.646 4.659 4.225 4.189 4.466 4.183 10.100 ZnO 11.188 25.701 27.894 25.966 29.388 29.900 28.066 32.625 AI2O3 Sb2〇3 0.058 0.024 0.023 0.026 0.058 0.054 0.051 0.054 合計 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 12.634 9.537 10.445 10.478 2.650 1.900 1.786 1.738 0.000 Ti+Nb 12.634 6.031 7.326 7.337 0.000 0.000 0.000 0.000 0.000 W/(Ti+Nb+W) 0.000 0.368 0.299 0.300 1.000 1.000 1.000 1.000 - La+Gd+Y+Yb+Lu 23.830 19.211 20.609 21.507 19.719 21.000 20.847 19.523 31.053 含Ln數 2 3 2 2 2 2 2 2 3 Ta/W - 0.802 0.000 0.000 2.586 2.711 2.667 2.501 - Li+Na+K 2.034 1.047 1.062 1.065 0.000 0.000 0.794 0.794 0.000 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87574 1.87336 1.87306 1.87822 1.86728 1.85905 1.85873 1.88737 vd 37.1 37.6 37.8 38.7 40.1 40.8 40.5 40.4 部分色散比(eg,f) 0.57766 0.57849 0.57792 0.57212 0.56872 0.56770 0.56866 0.56655 截距 b(a=0.00250) 0.67041 0.67249 0.67242 0.66887 0.66897 0.66970 0.66991 0.66755 Tg(°C) AtCt) X^〇[nm] 447 429 411.5 410.5 405.5 456 λ7〇[ηπι] 393.5 382.5 375 371 369.5 378 ^5[nm] 351 342.5 338.5 336 336 321 液相溫度(°c) 1260 •34- 159312.doc 201223907 [表3] 實施例 17 18 19 20 21 22 23 24 B2〇3 32.952 32.343 31.597 32.909 32.952 32.995 30.950 33.691 L&amp;2〇3 14.052 13.639 13.657 15.323 14.052 12.777 15.037 14.363 W〇3 Ti02 8.617 9.707 8.861 8.606 8.617 8.628 4.127 Nb2〇5 2.772 4.266 Li20 0.985 0.963 0.964 0.984 0.985 0.987 1.155 1.104 Gd2〇3 4.058 3.740 3.745 2.894 4.058 5.225 4.342 4.153 Yi〇3 Yb203 LU2O3 Τ&amp;2〇5 4.658 4.294 4.300 4.652 4.658 4.664 4.985 3.108 Si02 6.348 5.851 5.859 6.339 6.348 6.356 6.793 6.490 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.155 4.752 4.758 5.148 5.155 5.162 5.516 5.038 ZnO 23.175 24.711 26.260 23.145 23.175 23.206 28.450 23.660 〇3·2〇3 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 8.617 9.707 8.861 8.606 8.617 8.628 2.772 8.393 Ti+Nb 8.617 9.707 8.861 8,606 8.617 8.628 2.772 8,393 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+G d+Y+Yb+Lu 18.110 17.380 17.402 18.217 18.110 18.003 19.379 18.516 含Ln數 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li+Na+K 0.985 0.963 0.964 0.984 0.985 0.987 1.155 1.104 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87882 1.88154 1.88028 1.87995 1.88067 1.87797 1.87268 1.88245 vd 36.7 36.1 36.4 36.7 36.7 36.7 39.0 36.4 部分色散比(9g,F) 0.57822 0.5S078 0.57899 0.57923 0.57875 0.57871 0.57098 0.57927 截距 b(a=0.00250) 0.66997 0.67103 0.66999 0.67098 0.67050 0.67046 0.66848 0.67027 Tgfc) 616 AtfC) 655 λ8〇[ηιτι] 464.5 472 479.5 477.5 490.5 452.5 475.5 432 λ7〇[ηιη] 384 389 387 384.5 384 385.5 376.5 381 λ5[ηηι] 348 349.5 348 347.5 347 348.5 317.5 342.5 液相溫度(°c) 1,100 1,100 1,100 1,110 1,120 1,120 1,160 1,140 35- 159312.doc 201223907 [表4] 實施例 25 26 27 28 29 30 31 32 B203 33.723 33.768 33.814 33.723 33.768 33.814 33.973 32.426 La2〇3 17.680 16.381 15.078 17.680 16.381 15.078 14.199 15.730 W03 1.334 Ti02 4.131 4.137 4.142 4.131 4.137 4.142 5.699 Nb2〇5 3.191 3.195 3.199 3.191 3.195 3.199 4.465 2.549 Li20 1.105 1.106 1.108 1.105 1.106 1.108 1.113 1.062 Gd2〇3 1.188 2.378 3.572 1.188 2.378 3.572 2.393 2.284 y2〇3 Yb203 LU2O3 Ta205 3.761 3.766 3.771 3.761 3.766 3.771 4.116 2.991 Si02 6.496 6.505 6.514 6.496 6.505 6.514 4.138 6.247 Na20 K20 MgO CaO SrO BaO P2O5 Zr02 5.043 5.050 5.056 5.043 5.050 5,056 5.080 4.849 ZnO 23.683 23.714 23.746 23.683 23.714 23.746 29.188 26.163 G&amp;2〇3 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.322 7.332 7.341 7.322 7.332 7.341 5.800 8.248 Ti+Nb 7.322 7.332 7.341 7.322 7.332 7.341 4.465 8.248 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.230 0.000 La+Gd+Y+Yb+Lu 18.868 18.759 18.650 18.868 18.759 18.650 16.592 18.013 含Ln數 2 2 2 2 2 2 2 2 Ta/W - - - - - - 3 - Li+Na+K 1.105 1.106 1.108 1.105 1.106 L108 1.113 1.062 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88090 1.87969 1.87900 1.88104 1.87996 1.87935 1.87792 1.87864 vd 37.0 37.0 37.0 37.0 37.0 37.0 36.9 36.8 部分色散比(eg,f) 0.57623 0.57678 0.57618 0.57665 0.57738 0.57780 0.57587 0.57782 截距 b(a=0.00250) 0.66873 0.66928 0.66868 0.66915 0.66988 0.67030 0.66812 0.66982 Tg(°C) 611 AtfC) 658 λ8〇[ηηι] 503.5 425.5 439.5 449.5 435.5 425.5 441 λ7〇[ηηι] 383 382 379 382 386.5 382.5 377 382.5 λ5[ηηι] 343 343.5 343.5 343 343.5 343.5 337.5 345.5 液相溫度(°c) 1,080 1,080 1,100 1,080 1,120 1,100 1,120 1,080 -36- 159312.doc 201223907 [表5] 實施例 33 34 35 36 37 38 39 40 B2O3 34.950 32.807 33.997 31.394 30.148 33.795 31.438 31.482 La2〇3 18.083 17.407 17.824 17.469 14.083 16.835 16.117 14.760 W〇3 Ti02 4.165 4.585 1.800 Nb205 4.327 4.033 2.128 2.253 4.442 2.256 2.259 Li20 1.166 1.145 1.114 1.047 1.143 1,107 1.049 1.050 Gd2〇3 1.357 2.051 1.197 1.274 5.374 1.190 2.513 3.756 y2〇3 Yb2〇3 Lll2〇3 T&amp;2〇5 4.916 4.233 4.446 5.680 5.155 3.769 5.688 5.696 Si02 5.508 6.731 5.104 7.102 6.121 6.510 7.112 7.122 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.440 5.225 5.084 6.628 6.095 5.054 6.637 6.646 ZnO 24.255 26.367 24.942 27.152 27.297 25.500 27.190 27.228 Ga2〇3 Sb203 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 4.327 4.033 6.293 2.253 4.585 6.242 2.256 2.259 Ti+Nb 4.327 4.033 6.293 2.253 4.585 6.242 2.256 2.259 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+G d+Y+Yb+Lu 19.439 19.458 19.021 18.743 19.456 18.025 18.630 18.517 含Ln數 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li+Na+K 1.166 1.145 1.114 1.047 1.143 1.107 1.049 1.050 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88089 1.87684 1.87927 1.87746 1.88105 1.87840 1.87649 1.87600 vd 37.9 38.3 37.5 38.7 38.3 37.1 38.7 38.7 部分色散比(eg,f) 0.57370 0.57255 0.57509 0.57061 0.57298 0.57590 0.57067 0.57048 截距 b(a=0.00250) 0.66845 0.66830 0.66884 0.66736 0.66873 0.66865 0.66742 0.66723 TgCC) At(°C) λ8〇[ηηι] 436 440 527.5 458 447.5 439.5 442 439 λ7〇[ητη] 375 377 384 379 383 3S0 374.5 374.5 λ5[ηηι] 323.5 322 342 318 341 337 318 318.5 液相溫度(°c) 1,120 1,140 1,120 1,140 1,150 1,110 1,110 1,110 37- 159312.doc 201223907 [表6] 實施例 41 42 43 44 45 46 47 48 B203 39.683 33.465 31.692 34.137 33.676 33.447 33.491 32.283 L^2〇3 17.839 17.545 17.053 18.957 18.953 17.535 16.246 17.682 W03 Ti02 4.168 2.115 3.649 4.126 4.125 5.879 5.886 5.928 Nb2〇5 3.219 2.829 1.103 3.144 3.175 1.558 1.560 Li20 1.114 1.096 1.022 1.103 1.103 1.096 1.097 1.105 Gd2〇3 1.198 1.179 1.244 1.178 2.359 1.188 y2〇3 Yb203 Lu2〇3 0.018 0.018 Χ3·2〇5 3.794 5.717 5.545 3.756 3.755 4.374 4.380 5.356 Si02 6.447 5.720 5.916 6.487' 6.443 6.452 6.497 Na20 K20 MgO CaO SrO BaO P2O5 0.020 Zr02 5.088 5.004 6.470 5.037 5.036 5.002 5.008 5.043 ZnO 23.895 24.604 26.504 23.796 23.650 23.489 23.520 24.919 Ga2〇3 0.010 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.387 4.943 4.751 7.270 7.301 7.437 7.447 5.928 Ti+Nb 7.387 4.943 4.751 7.270 7.301 7.437 7.447 5.928 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+Gd+Y+Yb+Lu 19.037 18.723 18.296 18.975 18.971 18.713 18.605 18.869 含Ln數 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li+Na+K 1.114 1.096 1.022 1.103 1.103 1.096 1.097 1.105 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88111 1.88185 1.88334 1.88134 1.87826 1.87683 vd 37.1 37.4 37.7 37.1 37.1 37.8 部分色散比(eg,f) 0.57684 0.57513 0.57441 0.57653 0.57710 0.57482 截距 b(a=0.00250) 0.66959 0.66863 0.66866 0.66928 0.66985 0.66932 Tg(°C) AtfC) λ8〇[ηηι] 442.5 451.5 448 435.5 431.5 442.5 450.5 444.5 λ7〇[ηπι] 382.5 380.5 382 382.5 381.5 382 384.5 382.5 X5[nm] 343 337 340 343 343 345 346 344 液相溫度(°c) 1,120 1,120 1,120 1,100 1,150 1,110 1,100 1,080 159312.doc 38 s 201223907 [表7] 實施例 49 50 51 52 53 54 55 56 B2〇3 32.326 33.725 33.491 33.376 33.695 33.710 33.740 33.280 L&amp;2〇3 16.382 17.659 16.246 17.498 18.523 18.091 17.226 17.609 W〇3 0.926 Ti02 5.936 4.131 5.886 5.866 4.128 4.129 4.133 4.120 Nb2〇5 3.180 1.560 2.089 3.177 3.179 3.181 2.902 Li20 1.106 1.105 1.097 1.093 1.104 1.104 1.105 1.102 Gd2〇3 2.379 1.188 2.359 1.175 0.396 0.791 1.584 1.184 γ2〇3 Yb203 Lu2〇3 0.018 0.018 0.018 0.018 0.018 Ta2〇5 5.363 3.761 4.380 4.043 3.757 3.759 3.763 3.426 Si02 6.506 6.497 6.452 6.429 6.491 6.494 6.500 6.478 NazO K20 MgO CaO SrO BaO p2〇5 Zr02 5.050 5.043 5.008 4.991 5.039 5.041 5.045 5.029 ZnO 24.953 23.684 23.520 23.439 23.663 23.673 23.694 23.916 Ga2〇3 0.010 0.010 0.010 0.010 0.010 Sb203 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 5.936 7.311 7.447 7.955 7.305 7.308 7.315 7.947 Ti+Nb 5.936 7.311 7.447 7.955 7.305 7.308 7.315 7.021 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.117 La+Gd+Y+Yb+Lu 18.761 18.865 18.605 18.673 18.937 18.901 18.828 18.811 含Ln數 2 3 2 2 3 3 3 3 TaAV - - - - - - - 4 Li+Na+K 1.106 1.105 1.097 1.093 1.104 1.104 1.105 1.102 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87615 1.88051 1.87815 1.88124 1.88106 1.88101 1.88035 1.87946 vd 37.8 37.0 37.1 36.8 37.0 37.0 37.0 36.9 部分色散比(eg,f) 0.57574 0.57671 0.57735 0.57769 0.57647 0.57647 0.57671 0.57791 截距 b(a=0.00250) 0.67024 0.66921 0.67010 0.66969 0.66897 0.66897 0.66921 0.67016 Tg(°C) At(°C) λ8〇[ηπι] 453 437 438 438.5 431 434.5 436 430.5 λ7〇[ηηι] 383.5 384.5 383 383 383 384 384.5 383.5 λ5[ηιτι] 344.5 343.5 345.5 346 343 343 343.5 345 液相溫度(°c) 1,080 1,080 1,080 1,090 1,090 1,080 1,080 1,080 39- 159312.doc 201223907 [表8] 實施例 57 58 59 60 61 62 63 64 B2O3 33.725 33.138 33.148 33.631 33.203 33.236 33.170 33.577 La2〇3 17.659 17.731 17.984 18.051 17.645 18.902 17.748 17.977 W〇3 1.000 0.963 1.261 1.076 0.990 0.925 0.821 1.153 Ti02 2.531 4.148 2.506 1.469 4.128 4.114 4.152 2.523 Nb2〇5 3.780 2.547 3.239 4.078 2.692 2.898 2.691 3.232 Li20 1.105 1.109 1.125 1.129 1.104 1.100 1.110 1.125 Gd2〇3 1.188 1.193 1.008 0.688 1.187 1.194 1.008 y2〇3 Yb203 L112O3 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 Ta2〇5 3.761 3.776 3.830 3.844 3.531 3.422 3.780 3.829 Si02 6.497 6.523 6.616 6.641 6.014 6.470 6.434 6.103 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.043 5.064 5.136 5.155 5.039 5.022 5.069 5.336 ZnO 23.684 23.780 24.119 24.210 24.440 23.884 23.803 24.110 Ga2〇3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.311 7.659 7.005 6.623 7.809 7.937 7.665 6.908 Ti+Nb 6.311 6.695 5.745 5.547 6.820 7.012 6.844 5.755 W/(Ti+Nb+W) 0.137 0.126 0.180 0.162 0.127 0.117 0.107 0.167 La+Gd+Y+Yb+Lu 18.865 18.941 19.010 18.757 18.849 18.920 18.960 19.003 含Ln數 3 3 3 3 3 2 3 3 Ta/W 4 4 3 4 4 4 5 3 Li+Na+K 1.105 1.109 1.125 1.129 1.104 1.100 1.110 1.125 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88076 1.87953 1.87984 1.87935 1.88051 1.87994 1.87957 1.88022 vd 36.9 37.1 37.2 37.2 37.0 37.0 37.0 37.2 部分色散比(0g,F) 0.57676 0.57733 0.57632 0.57590 0.57647 0.57762 0.57780 0.57657 截距 b(a=0.00250) 0.66901 0.67008 0.66932 0.66890 0.66897 0.67012 0.67030 0.66957 Tg(0C) At(°C) λ8〇[ηηι] 430.5 429.5 436 431 445.5 448 453.5 418.5 λ7〇[ηηι] 380 381 381 379 386 388 388.5 377 λ5[ηηι] 342.5 344.5 343 340 345 345.5 345.5 342.5 液相溫度(°c) 1,100 1,080 1,080 1,120 1,080 1,080 1,080 1,080 •40- 159312.doc 201223907 [表9] 實施例 65 66 67 68 69 70 71 72 B2〇3 33.164 33.248 32.180 30.609 32.841 33.258 33.131 32.513 La2〇3 19.065 17.992 18.539 18.196 18.399 18.036 18.003 18.582 W〇3 1.151 0.996 2.788 2.520 2.257 1.264 0.944 1.465 Ti02 2.519 2.507 2.513 2.503 Nb2〇5 3.226 3.471 3.338 3.236 4.084 3.247 3.235 3.330 Li20 1.123 1.125 1.160 1.124 1.151 1.128 1.124 1.157 Gd2〇3 1.008 1.039 0.619 1.059 1.063 0.958 Y203 Yb2〇3 L1I2O3 0.018 0.018 0.019 0.018 0.019 0.018 0.018 0.019 T&amp;2〇5 3.822 3.832 3.948 3.827 3.919 3.840 3.826 4.405 Si02 6.505 6.522 6.820 6.612 6.769 6.292 6.025 6.054 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.326 5.138 5.294 5.132 5.255 5.150 5.130 5.282 ZnO 24.069 24.131 24.864 28.716 24.677 24.184 24.988 26.226 Ga2〇3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 6.897 6.975 6.126 5.756 6.341 7.024 6.682 4.796 Ti+Nb 5.745 5.978 3.338 3.236 4.084 5.760 5.738 3.330 W/(Ti+Nb+W) 0.167 0.143 0.455 0.438 0.356 0.180 0.141 0.306 La+Gd+Y+Yb+Lu 19.084 19.019 19.597 18.214 19.037 19.114 19.084 19.558 含Ln數 2 3 3 2 3 3 3 3 Ta/W 3 4 1 2 2 3 4 3 Li+Na+K 1.123 1.125 1.160 1.124 1.151 1.128 1.124 1.157 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.88064 1.88091 1.88152 1.88062 1.88184 1.88133 1.88108 1.88055 vd 37.2 37.1 37.5 37.4 37.3 37.1 37.2 37.9 部分色散比(eg,f) 0.57608 0.57631 0.57429 0.57647 0.57583 0.57576 0.57608 0.57426 截距 b(a=0.00250) 0.66908 0.66906 0.66804 0.66997 0.66908 0.66851 0.66908 0.66901 TgCC) ACC) λ8〇[ηηι] 433 423.5 428.5 424.5 424 433 438.5 427 λ7〇[ηηι] 378.5 377 377.5 377 377 382.5 381.5 376 λ5[ηηι] 342.5 342 341.5 340.5 340 343 342 336.5 液相溫度(°c) 1,080 1,100 1,100 1,100 1,100 1,080 1,100 1,100 • 41 · 159312.doc 201223907 [表 ι〇] 實施例 73 74 75 76 77 78 79 80 B2〇3 33,206 32.890 31.722 30.781 31.712 32.378 32.149 32.152 L^2〇3 18.010 18.284 18.857 17.758 18.395 18.405 18.600 18.730 W〇3 1.153 2.564 2.801 2.522 2.627 2.581 2.637 2.642 Ti02 2.522 Nb2〇5 3.230 3.572 3.293 3.239 3.292 3.314 3.304 3.311 Li20 1.124 1.144 1.144 1.125 1.144 1.151 1.148 1.150 Gd203 0.870 Y2〇3 Yb203 Lll2〇3 0.018 0.019 0.019 0.018 0.019 0.019 0.019 0.019 Ta2〇5 3.910 4.355 3.979 4.161 4.314 4.647 4.329 4.338 Si02 6.514 6.727 6.728 6.617 6.726 6.771 6.750 6.764 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.333 5.222 5.223 5.137 5.546 5.305 5.567 5.433 ZnO 24.100 25.215 26.225 28.632 26.216 25.419 25.487 25.449 Ga2〇3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb203 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 6.905 6.136 6.094 5.761 5.919 5.895 5.941 5.953 Ti+Nb 5.753 3.572 3.293 3.239 3.292 3.314 3.304 3.311 W/(Ti+Nb+W) 0.167 0.418 0.460 0.438 0.444 0.438 0.444 0.444 La+Gd+Y+Yb+Lu 18.898 18.302 18.876 17.776 18.414 18.423 18.618 18.749 含Ln數 3 2 2 2 2 2 2 2 Ta/W 3 2 1 2 2 2 2 2 Li+Na+K 1.124 1.144 1.144 1.125 1.144 1.151 1.148 1.150 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88128 1.87948 1.88103 1.87983 1.88151 1.88045 1.88201 1.88221 vd 37.1 37.3 37.4 37.3 37.3 37.3 37.3 37.4 部分色散比(eg,f) 0.57600 0.57560 0.57513 0.57567 0.57487 0.57560 0.57621 0.57621 截距 b(a=0.00250) 0.66875 0.66885 0.66863 0.66892 0.66812 0.66885 0.66946 0.66971 Tg(°C) 607 606 At(°C) 657 654 λ8〇[ηιη] 439 433 428.5 436.5 436.5 432 432.5 429 λ7〇[ηιη] 382 379.5 379 381 381.5 380 379.5 379 λ5[ηιη] 343 341.5 341.5 341 341.5 341.5 341.5 341.5 液相溫度(°c) 1,080 1,080 1,100 1,100 1,100 1,080 1,100 1,100 159312.doc -42-• 28·201223907 ml of white gold crucible, put 3 cc glass-like glass sample into platinum crucible, completely melted at 1250 ° C, cool down to a specific temperature and keep After 12 hours of taking out to the outside of the furnace and cooling, the presence of crystals in the glass surface and the glass was observed immediately, and the lowest temperature of crystallization was not observed. Here, the term "specific temperature" means a temperature set at 10 ° C from 丨丨 8 〇 t &gt; c to 500 ° C. Further, the optical glass of the present invention has a glass transition point (Tg) of 680 ° C or lower. Thereby, since the glass is softened at a lower temperature, the glass can be easily press-formed at a lower temperature. Further, it is possible to reduce the oxidation of the mold used for the press forming and to increase the life of the mold. Therefore, the glass transition point (Tg) of the optical glass of the present invention preferably has an upper limit of 68 〇 t:, more preferably 650 ° C as an upper limit, and most preferably 630. Further, the lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited. The glass transition point (Tg) of the glass obtained by the present invention is, in most cases, approximately 100 〇C. The above is specifically ι5 〇β (: above, more specifically 200. (: above. Further, the optical glass of the present invention preferably has a deformation point of 720 ° C or lower (At) ° deformation point (At In the same manner as the glass transition point (Tg), one of the indexes indicating the softening property of the glass is an index indicating the temperature close to the press molding temperature. Therefore, the deformation point (At) is 72 〇 ° or less. The glass can be press-formed at a lower temperature, so that press forming can be performed more easily. Therefore, the deformation point (At) of the optical glass of the present invention preferably has 72 〇〇c as an upper limit, and It is preferable to set 7 〇 (rc as the upper limit, and it is preferable to set 68 〇〇c as the upper limit. Furthermore, the lower limit of the deformation point (At) of the optical glass of the present invention is not 159312.doc •29·201223907 'The deformation point (At) of the glass obtained by the present invention is mostly large It is 150 ° C or more, specifically 200 ° C or more, more specifically 250 ° C or more. Further, the optical glass of the present invention preferably has a lower partial dispersion ratio (0 g ' F ) ° more specific In contrast, the partial dispersion ratio (eg 'f) and the Abbe number (Vd) of the optical glass of the present invention satisfy (_2 5〇xlo-3xVd+〇6571) $(98,?)$(-2.50&gt;&lt; The relationship between 1〇\, +〇.6971), whereby an optical glass having a small partial dispersion ratio (eg 'F) can be obtained, so that the chromatic aberration of the optical element formed by the optical glass can be reduced. The partial dispersion ratio (0g, F) of the optical glass is preferably such that (_2.50xl (T3xvd+0.6571) is the lower limit, and more preferably (-2.5〇xl〇-3XVd+0.6591)s is the lower limit, and the best is (•2,5〇xl(T3xvd+〇.6611) is set as the lower limit. On the other hand, the partial dispersion ratio (eg, F) of the optical glass of the present invention is preferably (_2 5〇xl〇-3XVd+ 0.697 1 It is better to set the upper limit to (_2 5〇xl〇-3XVd+〇6921) as the upper limit. The best is to set (-2.5〇xl〇-3xVd+〇.6871) to the upper limit. [Preform and optical Component] can be made using In the optical glass, a glass molded body is produced by a press molding method such as reheat press molding or precision press molding, that is, a preform for press molding can be produced by using optical glass, and the preform can be reheated and pressed. Thereafter, a glass molded body is produced by polishing, or a preform formed of the polishing process or a preform molded by a known floating molding or the like is subjected to precision press molding to produce a glass molded body. Furthermore, the means for producing the glass molded body is not limited to these means. Thus, the optical glass of the present invention can be used in various optical components and optical devices 159312.doc • 30·201223907. In particular, it is preferable to form a preform by using the optical glass of the present invention, and to perform an optical element such as a lens or a crucible by reheating or press molding or precision press molding using the preform. As a result, an optical element can be increased in size by forming a preform having a large diameter. When used in an optical device such as a camera or a projector, high-definition and high-precision imaging characteristics and projection characteristics can be realized. [Examples] The compositions of the examples (No. 1 to No. 105) and the comparative examples (No. A) of the present invention, and the refractive index (nd), Abbe number (Vd), and partial dispersion of the glasses. The results of the ratio (0g, F), glass transition point (Tg), deformation point (At), liquid phase temperature, spectral transmittance showing 5%, 70% and 80% of wavelength %, λ7 〇 and λ80) are shown in Table 1 to Table 14. Further, the examples (No. 1 to Νο_ 12) are examples of the first optical glass. The examples (Νο· 1~Νο· 2, No. 13 to No. 105) are related to the implementation of the second optical glass. example. Further, the following examples are for illustrative purposes only and are not limited to the embodiments. The glass of the shell examples (N 〇. 1 to N 〇 10 5 ) and the comparative example (No. A) of the present invention are produced by selecting respective suitable oxides, hydroxides, carbonates And a high-purity raw material used for a usual optical glass such as a nitrate, a fluoride, a hydroxide, or a metaphosphoric acid compound, as a raw material of each component, in such a manner as to be a ratio of the components of the respective examples shown in Tables 1 to 14. Weighing and evenly mixing, and then putting it into platinum, and melting it in the temperature range of 1丨(10)~丨5〇〇°c for 2 to 5 hours according to the melting difficulty of the glass composition, and then homogenizing and stirring. Then, it is cast into a mold or the like and slowly cooled. 159312.doc •31- 201223907 Here, the refractive index (nd), Abbe's number (vd) and partial dispersion ratio (0g) of the glass of 'Examples (No. 1 to No. 105) and Comparative Example (No. A) , F) is measured based on the Sakamoto Optical Glass Industry Association specification JOGIS01-2003. Further, with respect to the obtained Abbe's number (vd) and partial dispersion ratio, and the value of F), the intercept b when the slope a in the relational expression (eg ‘ F) = -axvd + b is 0.0025 is obtained. Here, the refractive index (nd), the Abbe number (vd), and the partial dispersion ratio (Qg, F) are determined by measuring the glass obtained by setting the slow cooling rate to -25 ° C /hr. Out. Further, the glass transition point (Tg) and the deformation point (At) of the glass of the examples (No. 1 to No. 105) and the comparative example (No. A) were determined by measurement using a transverse expansion type measuring device. . Here, the sample used for the measurement was used with a length of 4.8 mm and a length of 50 to 55 mm, and the temperature increase rate was set to 4. (:/min. The glass transmittance of the examples (No. 1 to No. 105) and the comparative example (No. A) was measured based on the Japanese Optical Glass Industrial Association specification J〇GiS〇2. In the present invention, the presence or absence of the color of the glass is determined by measuring the transmittance of the glass. Specifically, the face-parallel grinding product having a thickness of 10 ± 0.1 mm is measured based on JIS Z8722 200 to 800 nm. The split light transmittance 'determines λ5 (wavelength at a transmittance of 5%), λ70 (wavelength at a transmittance of 70%), and λ8〇 (wavelength at a transmittance of 80%). The liquidus temperature of the glass of the examples (No. 1 to No. 105) and the comparative example (Ν〇·Α) was in a platinum crucible of a volume of 50 ml, and a glass crumb-like glass sample of 3 cc was used. Put the platinum into the vortex and let it completely melt at 1250 °c, and cool down to 118 〇·&gt; (:~1000^ at any temperature set by (7) for 12 hours' After cooling, immediately observe I59312.doc •32· 201223907 Check the presence or absence of crystals on the glass surface and glass, and find the lowest temperature at which no crystallization is observed. [Table 1] Example 1 2 3 4 5 6 7 S B2〇3 33.680 43.931 44.931 44.931 31.773 31.268 39.996 26.222 La2〇3 15309 16.676 16.676 16.676 14.783 11.984 16.499 14.617 W03 2.987 3.473 7.785 6.941 15.498 Ti02 5.103 8.300 10.770 8.300 10.260 Nb2〇 5 2.470 9.407 8.210 10.499 4.414 Li20 2.056 2.056 2.056 0.767 0.755 3.498 Gd2〇3 10.206 5.411 5.411 5.411 2.304 2.297 Y203 0.364 Yb2〇3 Lll2〇3 Ta2〇5 3.062 3.830 3.830 3.830 Si02 10.206 4.709 4.634 11.601 Na20 K20 MgO CaO SrO BaO Ge〇 2 P2〇5 Zr02 4.082 4.956 4.956 4.956 3.615 6.992 ZnO 15.309 11.309 11.309 11.309 30.767 30.278 13.999 23.233 A1203 Sb2〇3 0.056 0.059 0.059 0.059 0.010 0.010 0.011 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 8.090 11.773 10,770 10.770 17.192 15.152 25.998 14.674 Ti+Nb 5.103 8.300 10.770 10.770 9.407 8.210 10.499 14.674 W/(Ti+Nb+W) 0.369 0.295 0.000 0.000 0.453 0.458 0.596 0.000 La+Gd+Y+Yb+Lu 25.515 22.087 22.087 22.087 14.783 14.288 16.499 17.278 Ln number 2 2 2 2 1 2 1 3 Ta/W 1.025 1.103 - - 0.000 0.000 0.000 - Li+Na+K 0.000 2.056 2.056 2.056 0.767 0.755 3.498 0.000 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87183 1.87664 1.8734 1.88250 1.89469 1.89234 1.90221 1.90425 vd 39.1 36.9 37.4 36.6 32.7 33.2 31 35.6 Partial dispersion ratio (eg, f) 0.57348 0.57817 0.57870 0.57919 0.59000 0.58607 0.59450 Intercept b (a=0.00250) 0.67123 0.67042 0.67220 0.67069 0,67175 0.66907 0.67200 Tg(°C) 621 At(°C) 664 λ8〇[ηηι] 441.5 464.5 447 452 452 493 489.5 λ7〇[ Ηπι] 396 406 402 402 393.5 412.5 401.5 λ5[ηηι] 351 357.5 354 353 353.5 361 353 Liquid phase temperature (°c) 1120 1060 1080 1080 1160 -33- 159312.doc 201223907 [Table 2] Example Comparative Example 9 10 11 12 13 14 15 16 A B2〇3 38.80 30.27 27.98 28.944 29.23 29.00 30.90 28.94 33.560 L32〇3 16.50 11.87 10.64 10.291 15.11 16.00 15.97 14.96 21 .330 W〇3 3.51 3.12 3.140 2.65 1.90 1.79 1.74 Ti〇2 10.19 6.03 7.33 7.337 Nb205 2.444 Li20 2.034 1.047 1.062 1.065 0.794 0.794 Gd2〇3 7.332 7.325 9.968 11.216 4.613 5.000 4.877 4.567 7.952 Y203 1.771 Yb2〇3 Lu2〇3 0.018 Τ ^2〇5 3.789 2.813 6.852 5.150 4.762 4.347 8.574 Si02 7.649 6.905 7.335 7.356 7.876 8.810 8.327 7.798 16.714 Na20 K20 MgO CaO SrO BaO Ge02 P205 Zr02 4.487 4.646 4.659 4.225 4.189 4.466 4.183 10.100 ZnO 11.188 25.701 27.894 25.966 29.388 29.900 28.066 32.625 AI2O3 Sb2〇 3 0.058 0.024 0.023 0.026 0.058 0.054 0.051 0.054 Total 99.98 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 12.634 9.537 10.445 10.478 2.650 1.900 1.786 1.738 0.000 Ti+Nb 12.634 6.031 7.326 7.337 0.000 0.000 0.000 0.000 0.000 W/(Ti+ Nb+W) 0.000 0.368 0.299 0.300 1.000 1.000 1.000 1.000 - La+Gd+Y+Yb+Lu 23.830 19.211 20.609 21.50 7 19.719 21.000 20.847 19.523 31.053 Ln number 2 3 2 2 2 2 2 2 3 Ta/W - 0.802 0.000 0.000 2.586 2.711 2.667 2.501 - Li+Na+K 2.034 1.047 1.062 1.065 0.000 0.000 0.794 0.794 0.000 Mg+Ca+Sr+ Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87574 1.87336 1.87306 1.87822 1.86728 1.85905 1.85873 1.88737 vd 37.1 37.6 37.8 38.7 40.1 40.8 40.5 40.4 Partial dispersion ratio (eg,f) 0.57766 0.57849 0.57792 0.57212 0.56872 0.56770 0.56866 0.56655 Intercept b (a= 0.00250) 0.67041 0.67249 0.67242 0.66887 0.66897 0.66970 0.66991 0.66755 Tg(°C) AtCt) X^〇[nm] 447 429 411.5 410.5 405.5 456 λ7〇[ηπι] 393.5 382.5 375 371 369.5 378 ^5[nm] 351 342.5 338.5 336 336 321 Liquidus temperature (°c) 1260 • 34- 159312.doc 201223907 [Table 3] Example 17 18 19 20 21 22 23 24 B2〇3 32.952 32.343 31.597 32.909 32.952 32.995 30.950 33.691 L&amp;2〇3 14.052 13.639 13.657 15.323 14.052 12.777 15.037 14.363 W〇3 Ti02 8.617 9.707 8.861 8.606 8.617 8.628 4.12 7 Nb2〇5 2.772 4.266 Li20 0.985 0.963 0.964 0.984 0.985 0.987 1.155 1.104 Gd2〇3 4.058 3.740 3.745 2.894 4.058 5.225 4.342 4.153 Yi〇3 Yb203 LU2O3 Τ&amp;2〇5 4.658 4.294 4.300 4.652 4.658 4.664 4.985 3.108 Si02 6.348 5.851 5.859 6.339 6.348 6.356 6.793 6.490 6.490 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.155 4.752 4.758 5.148 5.155 5.162 5.516 5.038 ZnO 23.175 24.711 26.260 23.145 23.175 23.206 28.450 23.660 〇3·2〇3 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+ Nb+W 8.617 9.707 8.861 8.606 8.617 8.628 2.772 8.393 Ti+Nb 8.617 9.707 8.861 8,606 8.617 8.628 2.772 8,393 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+G d+Y+Yb+Lu 18.110 17.380 17.402 18.217 18.110 18.003 19.379 18.516 Ln number 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li+Na+K 0.985 0.963 0.964 0.984 0.985 0.987 1.155 1.104 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87882 1.88154 1.88028 1.87995 1.88067 1.87797 1.87268 1.88245 vd 36.7 36.1 36.4 36.7 36.7 36.7 39.0 36.4 Partial dispersion ratio (9g, F) 0.57822 0.5S078 0.57899 0.57923 0.57875 0.57871 0.57098 0.57927 Intercept b (a=0.00250) 0.66997 0.67103 0.66999 0.67098 0.67050 0.67046 0.66848 0.67027 Tgfc) 616 AtfC) 655 λ8〇[ηιτι] 464.5 472 479.5 477.5 490.5 452.5 475.5 432 λ7〇[ηιη] 384 389 387 384.5 384 385.5 376.5 381 λ5[ηηι] 348 349.5 348 347.5 347 348.5 317.5 342.5 Phase temperature (°c) 1,100 1,100 1,100 1,110 1,120 1,120 1,160 1,140 35- 159312.doc 201223907 [Table 4] Example 25 26 27 28 29 30 31 32 B203 33.723 33.768 33.814 33.723 33.768 33.814 33.973 32.426 La2〇3 17.680 16.381 15.078 17.680 16.381 15.078 14.199 15.730 W03 1.334 Ti02 4.131 4.137 4.142 4.131 4.137 4.142 5.699 Nb2〇5 3.191 3.195 3.199 3.191 3.195 3.199 4.465 2.549 Li20 1.105 1.106 1.108 1.105 1.106 1.108 1.113 1.062 Gd2〇3 1.188 2.378 3.572 1.188 2.378 3.57 2 2.393 2.284 y2〇3 Yb203 LU2O3 Ta205 3.761 3.766 3.771 3.761 3.766 3.771 4.116 2.991 Si02 6.496 6.505 6.514 6.496 6.505 6.514 4.138 6.247 Na20 K20 MgO CaO SrO BaO P2O5 Zr02 5.043 5.050 5.056 5.043 5.050 5,056 5.080 4.849 ZnO 23.683 23.714 23.746 23.683 23.714 23.746 29.188 26.163 G&amp;2〇3 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.322 7.332 7.341 7.322 7.332 7.341 5.800 8.248 Ti+Nb 7.322 7.332 7.341 7.322 7.332 7.341 4.465 8.248 W/(Ti+Nb+W ) 0.000 0.000 0.000 0.000 0.000 0.000 0.230 0.000 La+Gd+Y+Yb+Lu 18.868 18.759 18.650 18.868 18.759 18.650 16.592 18.013 Ln number 2 2 2 2 2 2 2 2 Ta/W - - - - - - 3 - Li+ Na+K 1.105 1.106 1.108 1.105 1.106 L108 1.113 1.062 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88090 1.87969 1.87900 1.88104 1.87996 1.87935 1.87792 1.87864 vd 37.0 37.0 37.0 37.0 37.0 37.0 36.9 36.8 Partial dispersion ratio (eg,f) 0.57623 0.57678 0.57618 0.57665 0.57738 0.57780 0.57587 0.57782 Intercept b (a=0.00250) 0.66873 0.66928 0.66868 0.66915 0.66988 0.67030 0.66812 0.66982 Tg(°C) 611 AtfC) 658 λ8〇[ηηι] 503.5 425.5 439.5 449.5 435.5 425.5 441 λ7〇[ηηι] 383 382 379 382 386.5 382.5 377 382.5 λ5[ηηι] 343 343.5 343.5 343 343.5 343.5 337.5 345.5 Liquidus temperature (°c) 1,080 1,080 1,100 1,080 1,120 1,100 1,120 1,080 -36- 159312. Doc 201223907 [Table 5] Example 33 34 35 36 37 38 39 40 B2O3 34.950 32.807 33.997 31.394 30.148 33.795 31.438 31.482 La2〇3 18.083 17.407 17.824 17.469 14.083 16.835 16.117 14.760 W〇3 Ti02 4.165 4.585 1.800 Nb205 4.327 4.033 2.128 2.253 4.442 2.256 2.259 Li20 1.166 1.145 1.114 1.047 1.143 1,107 1.049 1.050 Gd2〇3 1.357 2.051 1.197 1.274 5.374 1.190 2.513 3.756 y2〇3 Yb2〇3 Lll2〇3 T&amp;2〇5 4.916 4.233 4.446 5.680 5.155 3.769 5.688 5.696 Si02 5.508 6.731 5.104 7.102 6.121 6.5 10 7.112 7.122 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.440 5.225 5.084 6.628 6.095 5.054 6.637 6.646 ZnO 24.255 26.367 24.942 27.152 27.297 25.500 27.190 27.228 Ga2〇3 Sb203 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 4.327 4.033 6.293 2.253 4.585 6.242 2.256 2.259 Ti+Nb 4.327 4.033 6.293 2.253 4.585 6.242 2.256 2.259 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+G d+Y+Yb+Lu 19.439 19.458 19.021 18.743 19.456 18.025 18.630 18.517 Ln number 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li + Na + K 1.166 1.145 1.114 1.047 1.143 1.107 1.049 1.050 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88089 1.87684 1.87927 1.87746 1.88105 1.87840 1.87649 1.87600 vd 37.9 38.3 37.5 38.7 38.3 37.1 38.7 38.7 Partial dispersion ratio (eg,f) 0.57370 0.57255 0.57509 0.57061 0.57298 0.57590 0.57067 0.57048 Intercept b (a=0.00250) 0.66845 0.66830 0.66884 0.66736 0.66873 0.6686 5 0.66742 0.66723 TgCC) At(°C) λ8〇[ηηι] 436 440 527.5 458 447.5 439.5 442 439 λ7〇[ητη] 375 377 384 379 383 3S0 374.5 374.5 λ5[ηηι] 323.5 322 342 318 341 337 318 318.5 Liquid phase Temperature (°c) 1,120 1,140 1,120 1,140 1,150 1,110 1,110 1,110 37- 159312.doc 201223907 [Table 6] Example 41 42 43 44 45 46 47 48 B203 39.683 33.465 31.692 34.137 33.676 33.447 33.491 32.283 L^2〇3 17.839 17.545 17.053 18.957 18.953 17.535 16.246 17.682 W03 Ti02 4.168 2.115 3.649 4.126 4.125 5.879 5.886 5.928 Nb2〇5 3.219 2.829 1.103 3.144 3.175 1.558 1.560 Li20 1.114 1.096 1.022 1.103 1.103 1.096 1.097 1.105 Gd2〇3 1.198 1.179 1.244 1.178 2.359 1.188 y2〇3 Yb203 Lu2〇3 0.018 0.018 Χ3·2〇5 3.794 5.717 5.545 3.756 3.755 4.374 4.380 5.356 Si02 6.447 5.720 5.916 6.487' 6.443 6.452 6.49 Na20 K20 MgO CaO SrO BaO P2O5 0.020 Zr02 5.088 5.004 6.470 5.037 5.036 5.002 5.008 5.043 ZnO 23.895 24.604 26.504 23.796 23.650 23.489 23.520 24.919 Ga2〇3 0.010 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.387 4.943 4.751 7.270 7.301 7.437 7.447 5.928 Ti+Nb 7.387 4.943 4.751 7.270 7.301 7.437 7.447 5.928 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 La+Gd+Y+Yb+Lu 19.037 18.723 18.296 18.975 18.971 18.713 18.605 18.869 Ln number 2 2 2 2 2 2 2 2 Ta/W - - - - - - - - Li+Na+K 1.114 1.096 1.022 1.103 1.103 1.096 1.097 1.105 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88111 1.88185 1.88334 1.88134 1.87826 1.87683 vd 37.1 37.4 37.7 37.1 37.1 37.8 Partial dispersion Ratio (eg,f) 0.57684 0.57513 0.57441 0.57653 0.57710 0.57482 Intercept b(a=0.00250) 0.66959 0.66863 0.66866 0.66928 0.66985 0.66932 Tg(°C) AtfC) λ8〇[ηηι] 442.5 451.5 448 435.5 431.5 442.5 450.5 444.5 λ7〇[ηπι ] 382.5 380.5 382 382.5 381.5 382 384.5 382.5 X5[nm] 343 337 340 343 343 34 5 346 344 Liquidus temperature (°c) 1,120 1,120 1,120 1,100 1,150 1,110 1,100 1,080 159312.doc 38 s 201223907 [Table 7] Example 49 50 51 52 53 54 55 56 B2〇3 32.326 33.725 33.491 33.376 33.695 33.710 33.740 33.280 L&amp ;2〇3 16.382 17.659 16.246 17.498 18.523 18.091 17.226 17.609 W〇3 0.926 Ti02 5.936 4.131 5.886 5.866 4.128 4.129 4.133 4.120 Nb2〇5 3.180 1.560 2.089 3.177 3.179 3.181 2.902 Li20 1.106 1.105 1.097 1.093 1.104 1.104 1.105 1.102 Gd2〇3 2.379 1.188 2.359 1.175 0.396 0.791 1.584 1.184 γ2〇3 Yb203 Lu2〇3 0.018 0.018 0.018 0.018 0.018 Ta2〇5 5.363 3.761 4.380 4.043 3.757 3.759 3.763 3.426 Si02 6.506 6.497 6.452 6.429 6.491 6.494 6.500 6.478 NazO K20 MgO CaO SrO BaO p2〇5 Zr02 5.050 5.043 5.008 4.991 5.039 5.041 5.045 5.029 ZnO 24.953 23.684 23.520 23.439 23.663 23.673 23.694 23.916 Ga2〇3 0.010 0.010 0.010 0.010 0.010 Sb203 Total 100.00 100.00 100.00 100. 00 100.00 100.00 100.00 100.00 Ti+Nb+W 5.936 7.311 7.447 7.955 7.305 7.308 7.315 7.947 Ti+Nb 5.936 7.311 7.447 7.955 7.305 7.308 7.315 7.021 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.117 La+Gd+ Y+Yb+Lu 18.761 18.865 18.605 18.673 18.937 18.901 18.828 18.811 Ln number 2 3 2 2 3 3 3 3 TaAV - - - - - - - 4 Li+Na+K 1.106 1.105 1.097 1.093 1.104 1.104 1.105 1.102 Mg+Ca+ Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.87615 1.88051 1.87815 1.88124 1.88106 1.88101 1.88035 1.87946 vd 37.8 37.0 37.1 36.8 37.0 37.0 37.0 36.9 Partial dispersion ratio (eg,f) 0.57574 0.57671 0.57735 0.57769 0.57647 0.57647 0.57671 0.57791 Intercept b(a =0.00250) 0.67024 0.66921 0.67010 0.66969 0.66897 0.66897 0.66921 0.67016 Tg(°C) At(°C) λ8〇[ηπι] 453 437 438 438.5 431 434.5 436 430.5 λ7〇[ηηι] 383.5 384.5 383 383 383 384 384.5 383.5 λ5[ηιτι ] 344.5 343.5 345.5 346 343 343 343.5 345 Liquidus temperature (°c) 1,080 1,080 1,080 1,090 1,090 1,080 1,080 1,080 39- 159 312.doc 201223907 [Table 8] Example 57 58 59 60 61 62 63 64 B2O3 33.725 33.138 33.148 33.631 33.203 33.236 33.170 33.577 La2〇3 17.659 17.731 17.984 18.051 17.645 18.902 17.748 17.977 W〇3 1.000 0.963 1.261 1.076 0.990 0.925 0.821 1.153 Ti02 2.531 4.148 2.506 1.469 4.128 4.114 4.152 2.523 Nb2〇5 3.780 2.547 3.239 4.078 2.692 2.898 2.691 3.232 Li20 1.105 1.109 1.125 1.129 1.104 1.100 1.110 1.125 Gd2〇3 1.188 1.193 1.008 0.688 1.187 1.194 1.008 y2〇3 Yb203 L112O3 0.018 0.018 0.018 0.018 0.018 0.018 0.018 Ta2〇5 3.761 3.776 3.830 3.844 3.531 3.422 3.780 3.829 Si02 6.497 6.523 6.616 6.641 6.014 6.470 6.434 6.103 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.043 5.064 5.136 5.155 5.039 5.022 5.069 5.336 ZnO 23.684 23.780 24.119 24.210 24.440 23.884 23.803 24.110 Ga2〇 3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10 0.00 Ti+Nb+W 7.311 7.659 7.005 6.623 7.809 7.937 7.665 6.908 Ti+Nb 6.311 6.695 5.745 5.547 6.820 7.012 6.844 5.755 W/(Ti+Nb+W) 0.137 0.126 0.180 0.162 0.127 0.117 0.107 0.167 La+Gd+Y+Yb+ Lu 18.865 18.941 19.010 18.757 18.849 18.920 18.960 19.003 Ln number 3 3 3 3 3 2 3 3 Ta/W 4 4 3 4 4 4 5 3 Li+Na+K 1.105 1.109 1.125 1.129 1.104 1.100 1.110 1.125 Mg+Ca+Sr+ Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88076 1.87953 1.87984 1.87935 1.88051 1.87994 1.87957 1.88022 vd 36.9 37.1 37.2 37.2 37.0 37.0 37.0 37.2 Partial dispersion ratio (0g, F) 0.57676 0.57733 0.57632 0.57590 0.57647 0.57762 0.57780 0.57657 Intercept b (a=0.00250 0.66901 0.67008 0.66932 0.66890 0.66897 0.67012 0.67030 0.66957 Tg(0C) At(°C) λ8〇[ηηι] 430.5 429.5 436 431 445.5 448 453.5 418.5 λ7〇[ηηι] 380 381 381 379 386 388 388.5 377 λ5[ηηι] 342.5 344.5 343 340 345 345.5 345.5 342.5 Liquidus temperature (°c) 1,100 1,080 1,080 1,120 1,080 1,080 1,080 1,080 •40- 159312.doc 201223907 [Table 9] Example 65 66 67 68 69 70 71 72 B2〇3 33.164 33.248 32.180 30.609 32.841 33.258 33.131 32.513 La2〇3 19.065 17.992 18.539 18.196 18.399 18.036 18.003 18.582 W〇3 1.151 0.996 2.788 2.520 2.257 1.264 0.944 1.465 Ti02 2.519 2.507 2.513 2.503 Nb2〇 5 3.226 3.471 3.338 3.236 4.084 3.247 3.235 3.330 Li20 1.123 1.125 1.160 1.124 1.151 1.128 1.124 1.157 Gd2〇3 1.008 1.039 0.619 1.059 1.063 0.958 Y203 Yb2〇3 L1I2O3 0.018 0.018 0.019 0.018 0.019 0.018 0.018 0.019 T&amp;2〇5 3.822 3.832 3.948 3.827 3.919 3.840 3.826 4.405 Si02 6.505 6.522 6.820 6.612 6.769 6.292 6.025 6.054 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.326 5.138 5.294 5.132 5.255 5.150 5.130 5.282 ZnO 24.069 24.131 24.864 28.716 24.677 24.184 24.988 26.226 Ga2〇3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 6.897 6.975 6.126 5.756 6.341 7 .024 6.682 4.796 Ti+Nb 5.745 5.978 3.338 3.236 4.084 5.760 5.738 3.330 W/(Ti+Nb+W) 0.167 0.143 0.455 0.438 0.356 0.180 0.141 0.306 La+Gd+Y+Yb+Lu 19.084 19.019 19.597 18.214 19.037 19.114 19.084 19.558 Ln number 2 3 3 2 3 3 3 3 Ta/W 3 4 1 2 2 3 4 3 Li+Na+K 1.123 1.125 1.160 1.124 1.151 1.128 1.124 1.157 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.88064 1.88091 1.88152 1.88062 1.88184 1.88133 1.88108 1.88055 vd 37.2 37.1 37.5 37.4 37.3 37.1 37.2 37.9 Partial dispersion ratio (eg,f) 0.57608 0.57631 0.57429 0.57647 0.57583 0.57576 0.57608 0.57426 Intercept b (a=0.00250) 0.66908 0.66906 0.66804 0.66997 0.66908 0.66851 0.66908 0.66901 TgCC) ACC) λ8〇[ηηι] 433 423.5 428.5 424.5 424 433 438.5 427 λ7〇[ηηι] 378.5 377 377.5 377 377 382.5 381.5 376 λ5[ηηι] 342.5 342 341.5 340.5 340 343 342 336.5 Liquidus temperature (°c) 1,080 1,100 1,100 1,100 1,100 1,080 1,100 1,100 • 41 · 159312.doc 201223907 [Table 〇] Example 73 74 75 76 77 78 79 80 B2〇3 33,206 32.890 31.722 30.781 31.712 32.378 32.149 32.152 L^2〇3 18.010 18.284 18.857 17.758 18.395 18.405 18.600 18.730 W〇3 1.153 2.564 2.801 2.522 2.627 2.581 2.637 2.642 Ti02 2.522 Nb2〇5 3.230 3.572 3.293 3.239 3.292 3.314 3.304 3.311 Li20 1.124 1.144 1.144 1.125 1.144 1.151 1.148 1.150 1.150 Gd203 0.870 Y2〇3 Yb203 Lll2〇3 0.018 0.019 0.019 0.018 0.019 0.019 0.019 0.019 Ta2〇5 3.910 4.355 3.979 4.161 4.314 4.647 4.329 4.338 Si02 6.514 6.727 6.728 6.617 6.726 6.771 6.750 6.764 Na20 K20 MgO CaO SrO BaO p2〇5 Zr02 5.333 5.222 5.223 5.137 5.546 5.305 5.567 5.433 ZnO 24.100 25.215 26.225 28.632 26.216 25.419 25.487 25.449 Ga2〇3 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Sb203 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 6.905 6.136 6.094 5.761 5.919 5.895 5.941 5.953 Ti+Nb 5.753 3.572 3.293 3.239 3.292 3.314 3.304 3.311 W/(Ti+Nb+W) 0. 167 0.418 0.460 0.438 0.444 0.438 0.444 0.444 La+Gd+Y+Yb+Lu 18.898 18.302 18.876 17.776 18.414 18.423 18.618 18.749 Ln number 3 2 2 2 2 2 2 2 Ta/W 3 2 1 2 2 2 2 2 Li+Na +K 1.124 1.144 1.144 1.125 1.144 1.151 1.148 1.150 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88128 1.87948 1.88103 1.87983 1.88151 1.88045 1.88201 1.88221 vd 37.1 37.3 37.4 37.3 37.3 37.3 37.3 37.4 Partial dispersion ratio (eg, f 0.57600 0.57560 0.57513 0.57567 0.57487 0.57560 0.57621 0.57621 Intercept b (a=0.00250) 0.66875 0.66885 0.66863 0.66892 0.66812 0.66885 0.66946 0.66971 Tg(°C) 607 606 At(°C) 657 654 λ8〇[ηιη] 439 433 428.5 436.5 436.5 432 432.5 429 λ7〇[ηιη] 382 379.5 379 381 381.5 380 379.5 379 λ5[ηιη] 343 341.5 341.5 341 341.5 341.5 341.5 341.5 Liquidus temperature (°c) 1,080 1,080 1,100 1,100 1,100 1,080 1,100 1,100 159312.doc -42-

201223907 [表 11] 實施例 81 82 83 B2〇3 32.376 31.897 33.293 La2〇3 18.312 18.204 18.866 W〇3 2.645 2.621 1.149 Ti02 2.515 Nb2〇5 3.314 3.402 3.221 Li2〇 1.151 1.141 1.121 Gd2〇3 Y2〇3 Yb2〇3 Lli2〇3 0.019 0.019 0.018 Ta205 4.681 4.304 3.898 Si02 6.771 6.711 6.567 Na2〇 K20 MgO CaO SrO BaO P2〇5 Zr02 5.304 5.534 5.317 ZnO 25.418 26.158 24.027 Ga2〇3 0.010 0.010 0.010 Sb2〇3 合計 100.00 100.00 100.00 Ti+Nb+W 5.959 6.023 6.884 Ti+Nb 3.314 3.402 5.735 W/(Ti+Nb+W) 0.444 0.435 0.167 La+Gd+Y+Yb+Lu 18.330 18.222 18.885 含Ln數 2 2 2 Ta/W 2 2 3 Li+Na+K 1.151 1.141 1.121 Mg+Ca+Sr+Ba 0.000 0.000 0.000 nd 1.88108 1.88186 1.88157 Vd 37.2 37.2 37.2 部分色散比(eg,f) 0.57541 0.57546 0.57564 截距 b(a=0.00250) 0.66841 0.66846 0.66864 Tg(°C) At(°C) λ8〇[ηιτι] 426.5 435 429 λ7〇[ηΓη] 379.5 381 379 λ5[ηπι] 342 342 341.5 液相溫度(°c) 1,080 1,080 1,080 -43- 159312.doc 201223907 [表 12] 實施例 84 85 86 87 88 89 90 91 B2〇3 32.802 34.526 34.649 33.534 33.650 33.745 33.120 34.514 L&amp;2〇3 18.482 19.454 18.166 18.895 17.642 19.014 18.662 17.130 W〇3 1.356 Ti02 8.578 4.108 4.122 3.235 5.821 Nb2〇5 5.643 5.664 4.247 4.261 4.543 3.664 5.641 Li20 0.981 1.131 1.135 1.098 1.102 1.105 1.085 1.130 Gd203 Y2〇3 Yb203 Lll2〇3 Ta2〇5 4.637 3.185 4.198 3.094 4.077 3.113 3.056 4.181 Si02 6.319 6.651 6.675 6.460 6.482 6.501 6.380 6.649 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.132 5.163 5.181 5.015 5.032 5.046 4.953 5.161 ZnO 23.070 24.247 24.333 23.550 23.631 23.698 23.259 24.238 Ga2〇3 Sb203 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 8.578 5.643 5.664 8.354 8.383 7.778 9.485 6.997 Ti+Nb 8.578 5.643 5,664 8,354 8.383 7.778 9.485 5.641 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.194 La+Gd+Y+Yb+Lu 18.482 19.454 18.166 18.895 17.642 19.014 18.662 17.130 含Ln數 1 1 1 1 1 1 1 1 Ta/W - - - - - - - 3.084 Li+Na+K 0.981 1.131 1.135 1.098 1.102 1.105 1.085 1.130 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88190 1.87849 1.88124 1.88585 1.88809 1.88450 1.88875 1.88179 vd 36.7 37.7 37.0 36.4 35.8 36.6 35.9 36.3 部分色散比(eg,f) 0.57844 0.57523 0.57550 0.57789 0.57920 0.57746 0.58003 0.57743 截距 b(a=0.00250) 0.67019 0.66948 0.66800 0.66889 0.66870 0.66896 0.66978 0.66818 Tg(0C) ACC) λ8〇[ηηι] 472 519.5 500.5 528 448 430.5 431 415.5 λ70[ηηι] 386 389 372 393 385 376.5 379.5 372 X5[nm] 347 324.5 325.5 342 343.5 339.5 344.5 337 液相溫度(°c) 1,120 1,160 1,120 1,080 1,080 1,110 1,080 1,100 44- 159312.doc 201223907 [表 13] 實施例 92 93 94 95 96 97 98 99 B2〇3 34.514 33.678 34.494 33.201 32.717 33.332 32,343 33.882 La2〇3 17.130 18.976 19.435 18.707 18.434 18.781 18.224 16.816 W〇3 1.331 Ti02 1.360 4.126 4.225 4.067 7.493 5.858 5.685 Nb2〇5 5.641 3.186 4.368 3.141 3.095 2.086 2.542 4.453 Li20 1.130 1.103 1.130 1.087 1.072 1.092 1.059 1.110 Gd2〇3 Y2〇3 Yb2〇3 L\l2〇3 Ta2〇5 4.181 3.756 4.288 3.383 3.018 4.038 2.984 4.105 Si02 6.649 6.488 6.645 6.396 6.303 6.421 6.231 4.127 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.161 5.036 1.191 4.965 4.892 4.984 4.837 5.067 ZnO 24.238 23.651 24.224 25.052 22.976 23.408 26.096 29.109 Ga2〇3 Sb2〇3 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.001 7.312 8.593 7.208 10.588 7.945 8.227 5.784 Ti+Nb 7.001 7.312 8.593 7.208 10.588 7.945 8.227 4.453 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.230 La+Gd+Y+Yb+Lu 17.130 18.976 19.435 18.707 18.434 18.781 18.224 16.816 含Ln數 1 1 1 1 1 1 1 1 Ta/W - - - - _ - - 3.084 Li+Na+K 1.130 1.103 1.130 1.087 1.072 1.092 1.059 1.110 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88400 1.88131 1.88299 1.87958 1.89146 1.88197 1.88016 1.87970 vd 36.1 37.0 36.3 37.2 35.5 36.8 36.8 36.9 部分色散比(eg,f) 0.57721 0.57671 0.57864 0.57668 0.57853 0.57776 0.57665 截距 b(a=0.00250) 0.66746 0.66921 0.66939 0.66968 0.67053 0.66976 0.66890 Tg(°C) A(C) λ8〇[ηηι] 418 432 443 431 437.5 432 431 423 λ7〇[ηιη] 372.5 378.5 382 376.5 383.5 379.5 380 377 λ5[ηηι] 336 342 344 341.5 348 345 344.5 337 液相溫度(°c) 1,100 1,080 1,100 1,080 1,080 1,080 1,100 3,100 -45- 159312.doc 201223907 [表 14] 實施例 100 101 102 103 104 105 B2O3 33.996 31.349 33.226 33.403 33.291 32.376 La2〇3 19.568 18.860 18.495 18.821 18.888 18.427 W〇3 1.149 2.580 Ti02 8.234 5.871 2.514 Nb205 3.865 2.250 1.556 3.220 3.314 Li20 1.157 1.046 0.982 1.094 1.121 1.151 Gd2〇3 Y2〇3 Yb203 Lll2〇3 Ta2〇5 4.909 5.672 4.640 4.368 3.897 4.647 Si〇2 6.690 7.092 5.858 6.435 6.566 6.771 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.433 6.618 5.135 4.995 5.317 5.304 ZnO 24.382 27.113 23.429 23.458 24.026 25.418 Ga2〇3 Sb203 0.010 0.010 合計 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 3.865 2.250 8.234 7.427 6.884 5.895 Ti+Nb 3.865 2.250 8.234 7.427 5.735 3.314 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.167 0.438 La+Gd+Y+Yb+Lu 19.568 18.860 18.495 18.821 18.888 18.427 含Ln數 1 1 1 1 1 1 Ta/W - - - - 3.392 1.801 Li+Na+K 1.157 1.046 0.982 1.094 1.121 1.151 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 na 1.87841 1.87790 1.87976 1.88144 1.88177 vd 38.2 38.7 37.2 37.2 37.3 部分色散比(0g,F) 0.57224 0.57055 0.57710 0.57637 0.57608 截距 b(a=0.00250) 0.66774 0.66730 0.67010 0.66937 0.66933 Tg(°C) At(°C) λ8〇[ηΓη] 446 465.5 452 440 429.5 λ7〇[ηπι] 386 388 397.5 386 383.5 381.5 λ5[ΠΓΠ] 322.5 318.5 348 345 343 342 液相溫度(°c) 1,100 1,110 1,100 1,120 1,080 1,080 159312.doc -46- 201223907 如表1〜表14所示’本發明之實施例之光學玻璃係液相溫 度均為1200°C以下’更詳細而言為1160°C以下,於所期望 之範圍内。另—方面,比較例(No. A)之玻璃之液相溫度高 於1200C。作為如上述般液相溫度不同之原因,可列舉: 本發明之實施例之光學玻璃與比較例(No. A)不同,含有 Ti〇2成分、W〇3成分及Ν|^〇5成分中之至少一者之方面。 因此’可知本發明之實施例之光學玻璃與比較例(N〇 A)相 比,液相溫度較低。 又,本發明之實施例之光學玻璃係穿透率為7〇%時 之波長)均為45 0 nm以下,更詳細而言為4 13 nm以下。 又’本發明之實施例之光學玻璃係穿透率為5%時之波 長)均為400 nm以下,更詳細而言為361 nm以下。又,本 發明之實施例之光學玻璃係(穿透率為80%時之波長)均 為550 nm以下’更詳細而言為530 nm以下。因此,可知本 發明之實施例之光學玻璃於可見光短波長下之穿透率較 高,難以著色。 又,本發明之實施例之光學玻璃係玻璃轉移點(Tg)均為 680°C以下’更詳細而言為630。(:以下,於所期望之範圍 内。又,本發明之實施例(No. 8)之光學玻璃係變形點(At) 為720 C以下’更詳細而言為080°C以下,於所期望之範圍 内。 又,本發明之實施例之光學玻璃係折射率(nd)均為175 以上,更詳細而言為1.85以上,並且該折射率(nd)為195以 下,更詳細而言為1.91以下,於所期望之範圍内。 159312.doc -47· 201223907 又’本發明之實施例之光學玻璃係阿貝數(Vd)均為30以 上,更詳細而言為31以上,並且該阿貝數卜“為5〇以下, 更詳細而§為41以下’於所期望之範圍内。 又’本發明之實施例之光學玻璃係部分色散比(0g,F)均 為(-2.50&gt;&lt;103父乂()+0.6571)以上,更詳細而言為(_2.50&gt;&lt;10.3乂 vd+0.6672)以上。另一方面’本發明之實施例之光學玻璃 之部分色散比為(-2.5〇xl〇.3xVd+〇.6971)以下,更詳細而言 為(-2.5〇xl(T3xvd+〇.6725)以下。因此,可知該等之部分色 散比(0g ’ F)於所期望之範圍内。 因此’可知本發明之實施例之光學玻璃之折射率(nd)及 阿貝數(vd)於所斯望之範圍内,並且可見光短波長下之穿 透率較尚’耐失透性較高,且容易利用加熱軟化進行加壓 成形® 進而’使用本發明之實施例之光學玻璃進行再加熱加壓 成形後,進行磨削及研磨,加工成透鏡及稜鏡之形狀。 又’使用本發明之實施例之光學玻璃形成精密加壓成形用 預成形物’將精密加壓成形用預成形物精密加壓成形加工 成透鏡及稜鏡之形狀。於任一情形時’加熱軟化後之玻璃 上均不產生乳白化及失透等問題’並且可穩定地加工成各 種透鏡及稜鏡之形狀。 以上’以例示之目的詳細地說明本發明,但業者瞭解, 本實施例僅為例示之目的,可於不脫離本發明之思想及範 圍内進行多種變更。 -48- 1593I2.doc201223907 [Table 11] Example 81 82 83 B2〇3 32.376 31.897 33.293 La2〇3 18.312 18.204 18.866 W〇3 2.645 2.621 1.149 Ti02 2.515 Nb2〇5 3.314 3.402 3.221 Li2〇1.151 1.141 1.121 Gd2〇3 Y2〇3 Yb2〇3 Lli2〇3 0.019 0.019 0.018 Ta205 4.681 4.304 3.898 Si02 6.771 6.711 6.567 Na2〇K20 MgO CaO SrO BaO P2〇5 Zr02 5.304 5.534 5.317 ZnO 25.418 26.158 24.027 Ga2〇3 0.010 0.010 0.010 Sb2〇3 Total 100.00 100.00 100.00 Ti+Nb+W 5.959 6.023 6.884 Ti+Nb 3.314 3.402 5.735 W/(Ti+Nb+W) 0.444 0.435 0.167 La+Gd+Y+Yb+Lu 18.330 18.222 18.885 Ln number 2 2 2 Ta/W 2 2 3 Li+Na+K 1.151 1.141 1.121 Mg+Ca+Sr+Ba 0.000 0.000 0.000 nd 1.88108 1.88186 1.88157 Vd 37.2 37.2 37.2 Partial dispersion ratio (eg,f) 0.57541 0.57546 0.57564 Intercept b(a=0.00250) 0.66841 0.66846 0.66864 Tg(°C) At( °C) λ8〇[ηιτι] 426.5 435 429 λ7〇[ηΓη] 379.5 381 379 λ5[ηπι] 342 342 341.5 Liquidus temperature (°c) 1,080 1,080 1,080 -43- 159312.doc 201223 907 [Table 12] Example 84 85 86 87 88 89 90 91 B2〇3 32.802 34.526 34.649 33.534 33.650 33.745 33.120 34.514 L&amp;2〇3 18.482 19.454 18.166 18.895 17.642 19.014 18.662 17.130 W〇3 1.356 Ti02 8.578 4.108 4.122 3.235 5.821 Nb2 〇5 5.643 5.664 4.247 4.261 4.543 3.664 5.641 Li20 0.981 1.131 1.135 1.098 1.102 1.105 1.085 1.130 Gd203 Y2〇3 Yb203 Lll2〇3 Ta2〇5 4.637 3.185 4.198 3.094 4.077 3.113 3.056 4.181 Si02 6.319 6.651 6.675 6.460 6.482 6.501 6.380 6.649 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.132 5.163 5.181 5.015 5.032 5.046 4.953 5.161 ZnO 23.070 24.247 24.333 23.550 23.631 23.698 23.259 24.238 Ga2〇3 Sb203 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 8.578 5.643 5.664 8.354 8.383 7.778 9.485 6.997 Ti +Nb 8.578 5.643 5,664 8,354 8.383 7.778 9.485 5.641 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.194 La+Gd+Y+Yb+Lu 18.482 19.454 18.166 18.895 17.642 19.014 18.662 17.130 with Ln number 1 1 1 1 1 1 1 1 Ta/W - - - - - - - 3.084 Li+Na+K 0.981 1.131 1.135 1.098 1.102 1.105 1.085 1.130 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88190 1.87849 1.88124 1.88585 1.88809 1.88450 1.88875 1.88179 vd 36.7 37.7 37.0 36.4 35.8 36.6 35.9 36.3 Partial dispersion ratio (eg,f) 0.57844 0.57523 0.57550 0.57789 0.57920 0.57746 0.58003 0.57743 Intercept b (a=0.00250) 0.67019 0.66948 0.66800 0.66889 0.66870 0.66896 0.66978 0.66818 Tg(0C) ACC) λ8〇[ηηι] 472 519.5 500.5 528 448 430.5 431 415.5 λ70[ηηι] 386 389 372 393 385 376.5 379.5 372 X5[ Nm] 347 324.5 325.5 342 343.5 339.5 344.5 337 Liquidus temperature (°c) 1,120 1,160 1,120 1,080 1,080 1,110 1,080 1,100 44- 159312.doc 201223907 [Table 13] Example 92 93 94 95 96 97 98 99 B2〇3 34.514 33.678 34.494 33.201 32.717 33.332 32,343 33.882 La2〇3 17.130 18.976 19.435 18.707 18.434 18.781 18.224 16.816 W〇3 1.331 T I02 1.360 4.126 4.225 4.067 7.493 5.858 5.685 Nb2〇5 5.641 3.186 4.368 3.141 3.095 2.086 2.542 4.453 Li20 1.130 1.103 1.130 1.087 1.072 1.092 1.059 1.110 Gd2〇3 Y2〇3 Yb2〇3 L\l2〇3 Ta2〇5 4.181 3.756 4.288 3.383 3.018 4.038 2.984 4.105 Si02 6.649 6.488 6.645 6.396 6.303 6.421 6.231 4.127 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.161 5.036 1.191 4.965 4.892 4.984 4.837 5.067 ZnO 24.238 23.651 24.224 25.052 22.976 23.408 26.096 29.109 Ga2〇3 Sb2〇3 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 7.001 7.312 8.593 7.208 10.588 7.945 8.227 5.784 Ti+Nb 7.001 7.312 8.593 7.208 10.588 7.945 8.227 4.453 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.230 La+Gd+Y +Yb+Lu 17.130 18.976 19.435 18.707 18.434 18.781 18.224 16.816 Ln number 1 1 1 1 1 1 1 1 Ta/W - - - - _ - - 3.084 Li+Na+K 1.130 1.103 1.130 1.087 1.072 1.092 1.059 1.110 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 nd 1.88400 1.88131 1.88299 1.87958 1.89146 1.88197 1.88016 1.87970 vd 36.1 37.0 36.3 37.2 35.5 36.8 36.8 36.9 Partial dispersion ratio (eg,f) 0.57721 0.57671 0.57864 0.57668 0.57853 0.57776 0.57665 Intercept b(a=0.00250) 0.66746 0.66921 0.66939 0.66968 0.67053 0.66976 0.66890 Tg(°C) A(C) λ8〇[ηηι] 418 432 443 431 437.5 432 431 423 λ7〇[ηιη] 372.5 378.5 382 376.5 383.5 379.5 380 377 λ5[ Ηηι] 336 342 344 341.5 348 345 344.5 337 Liquidus temperature (°c) 1,100 1,080 1,100 1,080 1,080 1,080 1,100 3,100 -45- 159312.doc 201223907 [Table 14] Example 100 101 102 103 104 105 B2O3 33.996 31.349 33.226 33.403 33.291 32.376 La2〇3 19.568 18.860 18.495 18.821 18.888 18.427 W〇3 1.149 2.580 Ti02 8.234 5.871 2.514 Nb205 3.865 2.250 1.556 3.220 3.314 Li20 1.157 1.046 0.982 1.094 1.121 1.151 Gd2〇3 Y2〇3 Yb203 Lll2〇3 Ta2〇5 4.909 5.672 4.640 4.368 3.897 4.647 Si〇2 6. 690 7.092 5.858 6.435 6.566 6.771 Na20 K20 MgO CaO SrO BaO P2〇5 Zr02 5.433 6.618 5.135 4.995 5.317 5.304 ZnO 24.382 27.113 23.429 23.458 24.026 25.418 Ga2〇3 Sb203 0.010 0.010 Total 100.00 100.00 100.00 100.00 100.00 100.00 Ti+Nb+W 3.865 2.250 8.234 7.427 6.884 5.895 Ti+Nb 3.865 2.250 8.234 7.427 5.735 3.314 W/(Ti+Nb+W) 0.000 0.000 0.000 0.000 0.167 0.438 La+Gd+Y+Yb+Lu 19.568 18.860 18.495 18.821 18.888 18.427 with Ln number 1 1 1 1 1 1 Ta/W - - - - 3.392 1.801 Li+Na+K 1.157 1.046 0.982 1.094 1.121 1.151 Mg+Ca+Sr+Ba 0.000 0.000 0.000 0.000 0.000 0.000 na 1.87841 1.87790 1.87976 1.88144 1.88177 vd 38.2 38.7 37.2 37.2 37.3 Partial dispersion ratio ( 0g,F) 0.57224 0.57055 0.57710 0.57637 0.57608 Intercept b(a=0.00250) 0.66774 0.66730 0.67010 0.66937 0.66933 Tg(°C) At(°C) λ8〇[ηΓη] 446 465.5 452 440 429.5 λ7〇[ηπι] 386 388 397.5 386 383.5 381.5 λ5[ΠΓΠ] 322.5 318.5 348 345 343 342 Liquid temperature (°c) 1,100 1,110 1,100 1,120 1,080 1,080 159312.doc -46- 201223907 As shown in Tables 1 to 14, 'the optical glass of the embodiment of the present invention has a liquidus temperature of 1200 ° C or less', in more detail Below 1160 ° C, within the desired range. On the other hand, the liquid phase temperature of the glass of Comparative Example (No. A) was higher than 1200C. The reason why the liquidus temperature is different as described above is that the optical glass of the embodiment of the present invention is different from the comparative example (No. A) and contains a Ti 2 component, a W 3 component, and a Ν 〇 5 component. At least one aspect of it. Therefore, it is understood that the optical glass of the embodiment of the present invention has a lower liquidus temperature than the comparative example (N〇 A). Further, the optical glass having a transmittance of 7〇% in the embodiment of the present invention is 45 nm or less, and more specifically 4 13 nm or less. Further, the wavelength of the optical glass system according to the embodiment of the present invention is 5% or less, and more specifically 361 nm or less. Further, the optical glass system (wavelength at a transmittance of 80%) of the embodiment of the present invention is 550 nm or less', and more specifically 530 nm or less. Therefore, it is understood that the optical glass of the embodiment of the present invention has a high transmittance at a short wavelength of visible light and is difficult to color. Further, the optical glass-based glass transition point (Tg) of the examples of the present invention is 680 ° C or lower, and more specifically 630. (The following is within the desired range. Further, the optical glass-based deformation point (At) of the embodiment (No. 8) of the present invention is 720 C or less, and more specifically 080 ° C or less, as expected. Further, the optical glass of the embodiment of the present invention has a refractive index (nd) of 175 or more, more specifically 1.85 or more, and the refractive index (nd) is 195 or less, and more specifically 1.91. In the following, it is within the range of the desired range. 159312.doc -47·201223907 Further, the optical glass of the embodiment of the present invention has an Abbe number (Vd) of 30 or more, more specifically 31 or more, and the Abbe The number "is less than 5 inches, more detailed and § is below 41" is within the desired range. Further, the optical glass system partial dispersion ratio (0g, F) of the embodiment of the present invention is (-2.50&gt;&lt; 103 parent 乂()+0.6571) or more, more specifically (_2.50&gt;&lt;10.3乂vd+0.6672) or more. On the other hand, the partial dispersion ratio of the optical glass of the embodiment of the present invention is (- 2.5〇xl〇.3xVd+〇.6971) Hereinafter, in more detail, it is (-2.5〇xl (T3xvd+〇.6725) or less. Therefore, it is known that The partial dispersion ratio (0g 'F) is within the desired range. Therefore, it can be seen that the refractive index (nd) and the Abbe number (vd) of the optical glass of the embodiment of the present invention are within the range of the desired range, and visible light The transmittance at a short wavelength is higher than that of the 'devitrification resistance, and it is easy to use pressure softening by heat softening.> Further, after reheating and press forming using the optical glass of the embodiment of the present invention, grinding and grinding are performed. Grinding and processing into a shape of a lens and a crucible. Further, the optical preform of the embodiment of the present invention is used to form a preform for precision press molding, and the preform for precision press molding is subjected to precision press forming into a lens and a rib. The shape of the mirror. In either case, the problem of 'whitening and devitrification does not occur on the glass after heating and softening' and can be stably processed into various lenses and shapes of the crucible. The above is explained in detail for the purpose of illustration. The present invention is intended to be illustrative only, and various modifications may be made without departing from the spirit and scope of the invention. -48- 1593I2.doc

Claims (1)

201223907 七、申請專利範圍: 1 · 一種光學玻璃,其相對於氧化物換算組成之玻璃總質 量’以莫耳%計含有B2〇3成分10.0〜50.0%及La203成分 5,0〜3〇.〇%’並且莫耳和(丁丨〇2+貨〇3+灿2〇5)相對於氧化 物換算組成之玻璃總質量為〇. 1〜3〇.〇〇/。。 2.如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量’ WO3成分之含量以莫耳%計為20.0%以下。 3*如請求項1之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量,w〇3成分之含量以莫耳%計為未達70%。 4. 如凊求項1之光學玻璃,其相對於氧化物換算組成之玻 璃總質量,以莫耳%計進而含有如下各成分: Ti〇2成分〇〜20.0%及/或 Nb2〇5 成分 〇~20.0%。 5. 如請求項4之光學玻璃,其中莫耳和(Ti〇2+Nb2〇5)相對於 氧化物換算組成之玻璃總質量為2.0%以上30.0%以下。 6. 如請求項丨之光學玻璃,其中氧化物換算組成之莫耳比 w〇3/(Ti〇2+Nb2〇5 + w〇3)為 0.600 以下。 7. 如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,LhO成分之含量以莫耳%計為2〇 〇%以下。 8. 如請求項7之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,Li20成分之含量以莫耳%計為Q 1%以上。 9·如請求項學玻㉟,其相對於氧化物換算組成之玻 璃總質量,以莫耳%計進而含有如下各成分: Gd2〇3成分〇〜30.0%及/或 159312.doc 201223907 Y2〇3成分〇〜1〇 〇%及/或 Yb2〇3成分〇〜1〇·〇%及/或 Lu2〇3 成分 〇〜1〇.〇〇/〇。 ίο. 11. 12. 13. 14. 15. 16. 17. 如請求们之光學玻璃,其中Ln2〇3成分(式中, 自由La、Gd、γ、Yb、Lu所組成之群中之 望且44· 種以上)之 莫耳和相對於氧化物換算組成之麵總質量為1〇 〇%以 上40.0%以下。 如請求们之光學玻璃,其含有上述卜〇3成分令之兩種 以上之成分。 如請求们之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量’ Ta205成分之含量以莫耳%計為2〇〇%以 下。 如請求項12之光學玻璃,其中氧化物換算組成之莫耳比 Ta205/W〇3為 1.〇以上 ι〇·〇以下。 如請求们之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量,Si02成分之含量以莫耳%計為25 〇%以下。 如請求们4之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,Si〇2成分之含量以莫耳%計為19〇%以下。 如請求項1之光學玻璃,其相對於氧化物換算組成之玻 璃總質量,以莫耳%計進而含有如下各成分. Na20成分〇〜15.〇%及/或 K2〇 成分 〇〜1〇.〇%。 如請求項16之光學玻璃’其中RnW成分(式中,Rn為選 自由U、Na、K所組成之群中之—種以上)之莫耳和相對 159312.doc -2- 201223907 於氧化物換算組成之玻璃總質量為20 0%以下。 18·如請求項丨之光學玻璃,其相對於氧化物換算組成之玻 璃總質量,以莫耳%計進而含有如下各成分: MgO成分〇〜ι〇·〇%及/或 4 CaO成分〇〜10.〇%及/或 SrO成分〇〜10.0%及/或 s BaO 成分 〇〜1〇.〇〇/0。 19·如請求項18之光學玻璃,其中R〇成分(式中,r為選自由 Mg、Ca、Sr、Ba所組成之群中之一種以上)之莫耳和相 對於氧化物換算組成之玻璃總質量為11〇%以下。 20. 如請求項丨之光學玻璃,其相對於氧化物換算組成之玻 璃總質量,以莫耳%計進而含有如下各成分: Ge02成分〇〜10.0%及/或 P2〇5成分〇〜10.0%及/或 Zr02成分0〜150。/。及/或 ZnO成分0〜5〇〇%及/或 Bi2〇3成分〇〜15.0%及/或 Te02成分〇〜15〇%及/或 ^ A12〇3成分〇〜15.0%及/或 Ga203成分0〜15.0%及/或 sb2〇3成分〇〜1.0% ;且 與上述各金屬元素之一種或兩種以上之氧化物之一部分 或全部置換之氟化物以F計之含量為〇〜6.〇%。 21. 如請求項丨之光學玻璃,其具有丨75以上丨%以下之折射 159312.doc 201223907 率(nd),且具有30以上50以下之阿貝數(vd)。 22. 如請求項1之光學玻璃,其具有680°C以下之玻璃轉移點 (Tg)。 23. 如請求項1之光學玻璃,其具有1250°C以下之液相溫 度。 24. —種預成形材,其包含如請求項1至23中任一項之光學 玻璃。 25. —種光學元件,其係對如請求項24之預成形材進行加壓 成形而製作。 26. —種光學元件,其將如請求項1至23中任一項之光學玻 璃設為母材。 27. —種光學機器,其具備如請求項25之光學元件。 28. —種光學機器,其具備如請求項26之光學元件。 159312.doc 201223907 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 159312.doc201223907 VII. Patent application scope: 1 · An optical glass whose total mass of glass in terms of oxide conversion composition contains B2〇3 component 10.0~50.0% and La203 component 5,0~3〇.〇 %' and Moer and (Ding 丨〇 2+ 〇 3+ 灿 2 〇 5) The total mass of the glass relative to the oxide conversion composition is 〇. 1~3〇.〇〇/. . 2. The optical glass of claim 1, wherein the content of the total mass of the glass relative to the oxide-converted composition, the content of the WO3 component, is 20.0% or less in terms of mol%. 3* The optical glass of claim 1 wherein the content of the w〇3 component is less than 70% in terms of mol% relative to the total mass of the glass in terms of oxide conversion. 4. The optical glass of claim 1, which further comprises the following components in terms of mol% of the total mass of the glass in terms of oxide conversion: Ti〇2 component 〇20.0% and/or Nb2〇5 component 〇 ~20.0%. 5. The optical glass of claim 4, wherein the molar mass of the molar and (Ti〇2+Nb2〇5) relative to the oxide-converted composition is 2.0% or more and 30.0% or less. 6. The optical glass of claim ,, wherein the molar ratio of the molar ratio w〇3/(Ti〇2+Nb2〇5 + w〇3) is 0.600 or less. 7. The optical glass of the claim ,, wherein the content of the LhO component is 2 〇% or less in terms of mol% with respect to the total mass of the glass in terms of oxide conversion. 8. The optical glass of claim 7, wherein the content of the Li20 component is Q 1% or more in terms of mol% with respect to the total mass of the glass of the oxide conversion composition. 9. In the case of the claim item Xuebo 35, the total mass of the glass relative to the oxide-converted composition further includes the following components in terms of mol%: Gd2〇3 composition 〇~30.0% and/or 159312.doc 201223907 Y2〇3 Ingredient 〇~1〇〇% and/or Yb2〇3 component 〇~1〇·〇% and/or Lu2〇3 component 〇~1〇.〇〇/〇. Ίο. 11. 12. 13. 14. 15. 16. 17. As requested by the optical glass, where the composition of Ln2〇3 (in the formula, free La, Gd, γ, Yb, Lu) The total mass of the surface of the composition of 44% or more and the composition of the oxide is from 1% by mass to 40.0%. For example, the optical glass of the requester contains two or more components of the above-mentioned composition. The content of the Ta205 component of the optical glass of the request, which is the composition of the optical glass in terms of oxide conversion, is 2% or less in terms of mol%. The optical glass of claim 12, wherein the molar ratio Ta205/W〇3 of the oxide conversion composition is 1.〇 or more and ι〇·〇 or less. The SiO2 component is contained in an amount of 25 % by mole or less based on the total mass of the glass of the optical glass of the request. The optical glass of claim 4, wherein the content of the Si 2 component is 19% by mole or less based on the total mass of the glass in terms of oxide conversion composition. The optical glass of claim 1, which comprises the following components in terms of mol% of the total mass of the glass in terms of oxide conversion. Na20 component 〇~15.〇% and/or K2〇 component 〇~1〇. 〇%. The optical glass of claim 16 wherein the RnW component (wherein Rn is selected from the group consisting of U, Na, and K) and the relative 159312.doc -2- 201223907 are converted into oxides. The total mass of the composed glass is below 20%. 18. The optical glass according to the claim ,, which further contains the following components in terms of mole % of the glass in terms of oxide conversion: MgO component 〇~ι〇·〇% and/or 4 CaO component 〇~ 10. 〇% and/or SrO composition 〇~10.0% and/or s BaO composition 〇~1〇.〇〇/0. The optical glass of claim 18, wherein the R 〇 component (where r is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) and the glass in terms of oxides The total mass is below 11%. 20. The optical glass of claim ,, further comprising the following components in terms of mol% of the total weight of the glass in terms of oxide conversion: Ge02 component 〇10.0% and/or P2〇5 component 〇10.0% And / or Zr02 ingredients 0 ~ 150. /. And/or ZnO component 0~5〇〇% and/or Bi2〇3 component 〇~15.0% and/or Te02 component 〇~15〇% and/or ^A12〇3 component 〇15.0% and/or Ga203 component 0 ~15.0% and/or sb2〇3 component 〇~1.0%; and the fluoride which is partially or completely replaced with one or more of the above metal elements is in the range of F 66.〇% . 21. The optical glass of claim ,, having a refractive index of 15975 or more 丨% or less 159312.doc 201223907 rate (nd), and having an Abbe number (vd) of 30 or more and 50 or less. 22. The optical glass of claim 1 which has a glass transition point (Tg) of 680 ° C or less. 23. The optical glass of claim 1 which has a liquid phase temperature of 1250 ° C or less. A pre-formed material comprising the optical glass of any one of claims 1 to 23. 25. An optical element produced by press forming a preform of claim 24. 26. An optical element which is an optical glass according to any one of claims 1 to 23 as a base material. 27. An optical machine having the optical component of claim 25. 28. An optical machine having the optical component of claim 26. 159312.doc 201223907 IV. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbolic symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please reveal the best indication of the characteristics of the invention. Chemical formula: (none) 159312.doc
TW100136335A 2010-10-08 2011-10-06 Optical glass, preform and optical element TWI594966B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010229077 2010-10-08
JP2011107572 2011-05-12

Publications (2)

Publication Number Publication Date
TW201223907A true TW201223907A (en) 2012-06-16
TWI594966B TWI594966B (en) 2017-08-11

Family

ID=45927825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100136335A TWI594966B (en) 2010-10-08 2011-10-06 Optical glass, preform and optical element

Country Status (4)

Country Link
JP (3) JP2012250900A (en)
CN (2) CN103168013A (en)
TW (1) TWI594966B (en)
WO (1) WO2012046833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743061B (en) * 2015-11-06 2021-10-21 日商小原股份有限公司 Optical glass, preforms and optical components

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987364B2 (en) * 2011-03-09 2016-09-07 日本電気硝子株式会社 Optical glass
JP2014162708A (en) * 2013-02-27 2014-09-08 Ohara Inc Optical glass and optical element
JP6091251B2 (en) * 2013-02-27 2017-03-08 株式会社オハラ Optical glass and optical element
JP5875572B2 (en) * 2013-04-05 2016-03-02 株式会社オハラ Optical glass, preform material and optical element
CN107721160A (en) * 2013-04-05 2018-02-23 株式会社小原 Optical glass, preforming material and optical element
TWI659004B (en) * 2013-04-05 2019-05-11 日商小原股份有限公司 Optical glass, preforms and optical components
JP6014573B2 (en) * 2013-04-05 2016-10-25 株式会社オハラ Optical glass, preform material and optical element
CN104341101A (en) * 2013-07-31 2015-02-11 株式会社小原 Optical glass, preform material and optical element
JP6611410B2 (en) * 2013-11-08 2019-11-27 株式会社オハラ Optical glass, preform material and optical element
JP6771811B2 (en) * 2014-10-29 2020-10-21 株式会社オハラ Optical glass, preforms and optics
CN117486484A (en) * 2014-12-24 2024-02-02 株式会社小原 Optical glass, prefabricated member and optical element
JP6866012B2 (en) * 2015-11-06 2021-04-28 株式会社オハラ Optical glass, preform materials and optical elements
JP6903373B2 (en) * 2015-11-06 2021-07-14 株式会社オハラ Optical glass, preform materials and optical elements
EP3505499B1 (en) * 2016-08-26 2023-12-13 The University Of Tokyo Optical glass, optical element formed of optical glass, and optical device
TWI795418B (en) * 2017-07-21 2023-03-11 日商小原股份有限公司 Optical glass, preforms and optical components
JPWO2020045417A1 (en) * 2018-08-31 2021-09-09 Agc株式会社 Optical glass and optics
EP3915952B1 (en) * 2019-08-26 2022-12-28 AGC Inc. Optical glass
CN112159102A (en) * 2020-10-16 2021-01-01 内蒙古科技大学 High-release-amount negative ion glass air purification material
CN115700228A (en) * 2022-11-21 2023-02-07 深圳市微思腾新材料科技有限公司 Optical glass composition and optical glass

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490218A (en) * 1977-12-28 1979-07-17 Minolta Camera Kk Optical glass
JPS54103411A (en) * 1978-02-02 1979-08-14 Fuji Photo Film Co Ltd High refractive index optical glass
DE3138137C2 (en) * 1981-09-25 1985-05-15 Schott Glaswerke, 6500 Mainz ThO? 2? - and Ta? 2? O? 5? -free optical glasses with refractive indices of 1.87 - 1.93 and Abbe numbers of 30 - 35
DE3138138C2 (en) * 1981-09-25 1983-10-27 Schott Glaswerke, 6500 Mainz Th0 2 - and Cd0-free optical glass with refractive indices 1.73 - 1.88 and Abbe numbers of 35 - 52
DE3343418A1 (en) * 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz OPTICAL GLASS WITH REFRACTION VALUES> = 1.90, PAYBACK> = 25 AND WITH HIGH CHEMICAL RESISTANCE
JPS62100449A (en) * 1985-10-24 1987-05-09 Ohara Inc Optical glass
JP2875709B2 (en) * 1993-04-22 1999-03-31 株式会社オハラ Optical glass
JP3113591B2 (en) * 1996-02-13 2000-12-04 株式会社オハラ High refractive index optical glass
JP4017832B2 (en) * 2001-03-27 2007-12-05 Hoya株式会社 Optical glass and optical components
JP3912774B2 (en) * 2002-03-18 2007-05-09 Hoya株式会社 Optical glass for precision press molding, preform for precision press molding and manufacturing method thereof
CN100351193C (en) * 2002-08-20 2007-11-28 Hoya株式会社 Optical glass, prefabricated piece and making method optical element and making method thereof
JP2004099428A (en) * 2002-08-20 2004-04-02 Hoya Corp Optical glass, preform for precision press forming, production method therefor, optical element and production method therefor
EP1574486A4 (en) * 2002-12-17 2008-09-03 Ohara Kk Optical glass
JP4286652B2 (en) * 2002-12-27 2009-07-01 Hoya株式会社 Optical glass, glass gob for press molding, and optical element
JP4562041B2 (en) * 2002-12-27 2010-10-13 Hoya株式会社 Optical glass, glass gob for press molding, and optical element
EP1468974A3 (en) * 2003-04-17 2004-12-01 Hoya Corporation Optical glass; press-molding preform and method of manufacturing same; and optical element and method of manufacturing same
JP4140850B2 (en) * 2004-03-05 2008-08-27 Hoya株式会社 Precision press molding preform manufacturing method and optical element manufacturing method
JP4166172B2 (en) * 2004-03-01 2008-10-15 Hoya株式会社 Precision press molding preform manufacturing method and optical element manufacturing method
JP4124749B2 (en) * 2004-03-02 2008-07-23 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof
JP4218804B2 (en) * 2004-03-19 2009-02-04 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4471751B2 (en) * 2004-07-05 2010-06-02 Hoya株式会社 Manufacturing method of glass optical element
JP2006131450A (en) * 2004-11-05 2006-05-25 Asahi Glass Co Ltd Optical glass and lens
JP4756554B2 (en) * 2006-03-23 2011-08-24 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP5160042B2 (en) * 2006-03-31 2013-03-13 Hoya株式会社 Manufacturing method of glass optical element
JP5336035B2 (en) * 2006-06-21 2013-11-06 Hoya株式会社 OPTICAL GLASS, GLASS MOLDED ARTICLE, OPTICAL ELEMENT AND METHOD FOR PRODUCING THEM
CN1935717B (en) * 2006-10-17 2010-10-06 成都光明光电股份有限公司 Optical glass for high-refractivity low dispersion precision die mould
JP5358888B2 (en) * 2007-02-22 2013-12-04 コニカミノルタ株式会社 Optical glass and optical element
JP5601557B2 (en) * 2007-02-28 2014-10-08 日本電気硝子株式会社 Optical glass
JP5174368B2 (en) * 2007-04-03 2013-04-03 株式会社オハラ Optical glass
US7897532B2 (en) * 2007-04-24 2011-03-01 Panasonic Corproation Optical glass composition, preform and optical element
JP2009173520A (en) * 2007-10-30 2009-08-06 Nippon Electric Glass Co Ltd Optical glass for mold press forming
JP5545917B2 (en) * 2008-01-31 2014-07-09 株式会社オハラ Optical glass
JP2009269770A (en) * 2008-04-30 2009-11-19 Ohara Inc Optical glass, preform for precision press molding and optical element
JP2009286674A (en) * 2008-05-30 2009-12-10 Ohara Inc Optical glass, preform for precision press molding, and optical element
JP5619422B2 (en) * 2008-05-30 2014-11-05 Hoya株式会社 Optical glass, precision press-molding preform, optical element and manufacturing method thereof, and imaging apparatus
JP5696350B2 (en) * 2009-01-20 2015-04-08 日本電気硝子株式会社 Method for producing glass molded body
JP5427460B2 (en) * 2009-04-14 2014-02-26 富士フイルム株式会社 Optical glass
CN102428048B (en) * 2009-05-15 2014-02-26 Hoya株式会社 Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
WO2010134546A1 (en) * 2009-05-20 2010-11-25 Hoya株式会社 Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
JP5917791B2 (en) * 2009-06-30 2016-05-18 株式会社オハラ Optical glass, preform material and optical element
WO2011019016A1 (en) * 2009-08-11 2011-02-17 日本山村硝子株式会社 Optical glass
JP5669256B2 (en) * 2009-09-30 2015-02-12 Hoya株式会社 Optical glass, precision press-molding preform, optical element and manufacturing method thereof
JP4831842B2 (en) * 2009-10-28 2011-12-07 三菱重工業株式会社 Joining device control device and multilayer joining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743061B (en) * 2015-11-06 2021-10-21 日商小原股份有限公司 Optical glass, preforms and optical components

Also Published As

Publication number Publication date
JP2016193828A (en) 2016-11-17
TWI594966B (en) 2017-08-11
JP2016188173A (en) 2016-11-04
JP2012250900A (en) 2012-12-20
WO2012046833A1 (en) 2012-04-12
CN103168013A (en) 2013-06-19
JP6033486B2 (en) 2016-11-30
CN106630595A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
TW201223907A (en) Optical glass, preform material, and optical element
TWI300061B (en) Optical glass
TWI359120B (en)
JP5917791B2 (en) Optical glass, preform material and optical element
TW201219333A (en) having a refractivity (nd) greater than 1.80 and an Abbe number (vd) ranging from 35 to 50
TW201038502A (en) Optical glass
TW201236993A (en) Optical glass, preform, and optical element
TW200944485A (en) Optical glass
JP2010105902A (en) Optical glass and method for suppressing deterioration of spectral transmittance
JP5946237B2 (en) Optical glass, preform material and optical element
JP6188553B2 (en) Optical glass, preform material and optical element
TW201245078A (en) Optical glass, preform, and optical element
TW201139319A (en) Optical glass, preform and optical element
JP6396622B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6280284B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2017036210A (en) Optical glass, preform and optical element
TW201731785A (en) Optical glass, preform material and optical element
JP5865579B2 (en) Optical glass, preform material and optical element
JPWO2016068125A1 (en) Optical glass, optical element and optical glass material
JP5770973B2 (en) Optical glass and optical element
JP6062613B2 (en) Optical glass, preform material and optical element
TW201441174A (en) Optical glass, preform material and optical element
TW201249769A (en) Optical glass, preform and optical element
JP2013087047A (en) Optical glass, optical element, and preform
JP6086941B2 (en) Optical glass and method for suppressing deterioration of spectral transmittance