TW201236993A - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
TW201236993A
TW201236993A TW101102060A TW101102060A TW201236993A TW 201236993 A TW201236993 A TW 201236993A TW 101102060 A TW101102060 A TW 101102060A TW 101102060 A TW101102060 A TW 101102060A TW 201236993 A TW201236993 A TW 201236993A
Authority
TW
Taiwan
Prior art keywords
component
glass
mass
optical glass
optical
Prior art date
Application number
TW101102060A
Other languages
Chinese (zh)
Other versions
TWI545098B (en
Inventor
Hiroaki Tomoe
Kiyoyuki Momono
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201236993A publication Critical patent/TW201236993A/en
Application granted granted Critical
Publication of TWI545098B publication Critical patent/TWI545098B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided are an optical glass which has a refractive index (nd) and an Abbe number ( d) in respective desired ranges and, despite this, is suitable for use in correcting chromatic aberration and a lens preform obtained using the optical glass. The optical glass comprises, with respect to the total mass of the glass in terms of oxide composition in mass%, 1.0-31.0% B2O3 component, 40.0-65.0% Ln2O3 component, up to 30.0% TiO2 component, and up to 30.0% Nb2O5 component. The lens preform comprises this optical glass as the base material.

Description

201236993 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學玻璃、預製件及光學元件。 【先前技術】 數位相機或攝影機等光學系統中多少存在被稱為像差之 模糊。該像差分為單色像差與色像差,尤其是色像差主要 取決於光學系統中所使用之透鏡之材料特性。此處,為改 善色像差,期望高折射率低色散區域之光學玻璃中部分色 散比(0g,F)較小。 部分色散比(eg,f)係以下式(1)表示。 0g,F=(ng-nF)/(nF-nc)......(1)。 於光學玻璃中,表示短波長域之部分色散性之部分色散 比(eg,F)與阿貝數(vd)之間存在大致線性關係。關於表示 該關係之直線,於將部分色散比(eg,f)用作縱軸、將阿 貝數(Vd)用作橫軸之正交座標上,以連接描繪NSL7與 PBM2之部分色散比及阿貝數之兩點而成之直線來表示, 且該直線稱為正規線(normal line)(參照圖1)。成為正規線 之基準之正規玻璃(normal glass)雖然因各光學玻璃製造商 不同而有所不同,但各公司均以大致相同之斜率及截距進 行定義。(NSL7及PBM2為OHARA股份有限公司製造之光 學玻璃,PBM2之阿貝數(vd)為36.3,部分色散比(0g,F)為 0.5828,NSL7之阿貝數(vd)為60_5,部分色散比(0g,F)為 0_5436) ° 此處,作為具有1.80以上之較高之折射率(nd)及30以下 161736.doc 201236993 之較低之阿貝數(vd)的破璃’例如已知如專利文獻1〜6中所 示之較多地含有1^2〇3成分等稀土元素成分之光學玻璃。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開昭60-033229號公報 [專利文獻2]日本專利特開2005-179142號公報 [專利文獻3]日本專利特開昭6〇_ 13 1845號公報 [專利文獻4]曰本專利特開2006-137645號公報 [專利文獻5]日本專利特開2007-022846號公報 [專利文獻6]曰本專利特開2〇〇7_ 112697號公報 【發明内容】 [發明所欲解決之問題] 但是,專利文獻1〜6之光學玻璃係具有高折射率之玻璃 中之具有低色散者’另一方面部分色散比較大,不足以用 作修正上述一級光§普之透鏡。即,謀求一種具有較高之折 射率(nd)及較大之阿貝數(Vd)並且部分色散比(0g,F)較小 之光學玻璃。 本發明係鑒於上述問題而完成者,其目的在於··獲得折 射率(nd)及阿貝數(Vd)於所期望之範圍内、且可較佳地用於 色像差之修正的光學玻璃’及使用其之透鏡預製件。 [解決問題之技術手段] 本發明者等人為解決上述課題而反覆努力試驗研究,結 果發現:藉由於B2〇3成分及稀土元素成分(以Ln2〇3成分來 表示)中併用Ti〇2成分及Nb2〇s成分,可獲得具有高折射率 161736.doc 201236993 及低色散並且部分色散比較小、對可見光之透明性較高、 且液相溫度較低的玻璃,從而完成本發明。具體而言,本 發明提供如下者。 (1) 一種光學玻璃,其係相對於氧化物換算組成之玻璃 總質量,以質量%計,含有B2〇3成分1.0〜31.〇%及1^2〇3成 分18.0〜65.0%’且Ti02成分之含量為30.0%以下,Nb2〇5成 分之含量為30.0%以下者。 (2) 如上述(1)之光學玻璃’其中氧化物換算組成之質量 比Ln2〇3/Ti02為3.00以上(式中,Ln係選自由La、Gd、Y、201236993 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] There is a certain amount of ambiguity called aberration in an optical system such as a digital camera or a video camera. The image difference is monochromatic aberration and chromatic aberration, and especially chromatic aberration mainly depends on the material properties of the lens used in the optical system. Here, in order to improve chromatic aberration, it is desirable that the partial dispersion ratio (0g, F) of the optical glass having a high refractive index and low dispersion region is small. The partial dispersion ratio (eg, f) is expressed by the following formula (1). 0g, F=(ng-nF)/(nF-nc) (1). In the optical glass, there is a substantially linear relationship between the partial dispersion ratio (eg, F) and the Abbe number (vd) indicating a partial dispersion of the short wavelength region. Regarding the straight line indicating the relationship, the partial dispersion ratio (eg, f) is used as the vertical axis, and the Abbe number (Vd) is used as the orthogonal coordinate of the horizontal axis to connect and depict the partial dispersion ratio of NSL7 and PBM2. The two points of the Abbe number are represented by a straight line, and the line is called a normal line (refer to Figure 1). Normal glass, which is the basis for regular lines, varies from manufacturer to manufacturer of optical glass, but each company defines it with roughly the same slope and intercept. (NSL7 and PBM2 are optical glass manufactured by OHARA Co., Ltd., the Abbe number (vd) of PBM2 is 36.3, the partial dispersion ratio (0g, F) is 0.5828, and the Abbe number (vd) of NSL7 is 60_5, partial dispersion ratio (0g, F) is 0_5436) ° Here, as a glass having a higher refractive index (nd) of 1.80 or more and a lower Abbe number (vd) of 161736.doc 201236993 of 30 or less, for example, Optical glass having a rare earth element component such as a component of 1^2〇3 is contained in a large amount as shown in Patent Documents 1 to 6. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. 〇 13 13 1 1 1 1 1 1 1 1 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 _ _ _ _ _ _ _ _ _ _ [Invention] [Problems to be Solved by the Invention] However, the optical glass of Patent Documents 1 to 6 has a low dispersion in a glass having a high refractive index, and on the other hand, a partial dispersion is large, which is insufficient for use. Correct the above-mentioned first-order optical lens. Namely, an optical glass having a high refractive index (nd) and a large Abbe number (Vd) and a small partial dispersion ratio (0g, F) is sought. The present invention has been made in view of the above problems, and an object thereof is to obtain an optical glass which has a refractive index (nd) and an Abbe number (Vd) within a desired range and can be preferably used for correction of chromatic aberration. 'And use lens preforms. [Means for Solving the Problems] The inventors of the present invention have repeatedly tried their best to solve the above problems, and found that the Ti 2 component and the Ti 2 component are used in combination with the B 2 3 component and the rare earth component (indicated by the Ln 2 3 component). The Nb2〇s component can obtain a glass having a high refractive index 161736.doc 201236993 and a low dispersion and a relatively small partial dispersion, a high transparency to visible light, and a low liquidus temperature, thereby completing the present invention. Specifically, the present invention provides the following. (1) An optical glass containing, by mass%, a B2〇3 component of 1.0 to 31.% and 1^2〇3 of a composition of 18.0 to 65.0%' and a TiO2 composition. The content of the component is 30.0% or less, and the content of the Nb2〇5 component is 30.0% or less. (2) The optical glass of the above (1) wherein the mass ratio of the oxide conversion composition is Ln2 〇 3 / Ti02 is 3.00 or more (wherein Ln is selected from La, Gd, Y,

Yb、Lu所組成之群中之1種以上)。 (3) 如上述(1)或(2)之光學玻璃,其中相對於氧化物換算 組成之玻璃總質量,以質量%計含有La2〇3成分 18 ·0〜60·0% 〇 (4) 如上述(1)至(3)中任一項之光學玻璃,其中質量和 (TiOdNbaO5)相對於氧化物換算組成之玻璃總質量為8 〇% 以上35.0%以下。 (5) 如上述⑴至⑷中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量,以質量%計,One or more of the groups consisting of Yb and Lu). (3) The optical glass according to the above (1) or (2), wherein the total mass of the glass in terms of the oxide-converted composition is contained in mass% of La2〇3 component 18·0 to 60·0% 〇(4) The optical glass according to any one of the above (1) to (3), wherein the mass and (TiOdNbaO5) are from 8% by mass to 35.0% by mass based on the total mass of the glass of the oxide conversion composition. (5) The optical glass according to any one of (1) to (4) above, wherein the total mass of the glass relative to the oxide-converted composition is % by mass,

Si〇2成分為0〜20.0%,及/或 Zr02成分為〇〜15.0%。 W如上述(5)之光學玻璃,其中相對於氧化物換 之玻璃總質量’以質量%計含有Si〇2成分i 以上。 ⑺如上述(5)或⑹之光學玻璃,其中相對於氧化物換算 組成之玻璃總質量,以質量%計含有Zr〇2成分3 以上 161736.doc 201236993 (8) 如上述(1)至(7)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量,以質量%計,The Si〇2 component is 0 to 20.0%, and/or the Zr02 component is 〇1 to 15.0%. The optical glass according to the above (5), wherein the total mass of the glass replaced with the oxide contains the Si 〇 2 component i or more in mass%. (7) The optical glass according to the above (5) or (6), which contains Zr〇2 component 3 or more in mass% with respect to the total mass of the oxide-converted composition. 161736.doc 201236993 (8) as described above (1) to (7) An optical glass according to any one of the present invention, wherein the total mass of the glass relative to the oxide conversion composition is % by mass,

Ge02成分為〇〜10.0%,及/或 Ta205成分為〇〜20.0%。 (9) 如上述(8)之光學玻璃,其中氧化物換算組成中之質 量比(Ge02+Ta205)/(Ti02+Nb205)為 1.00以下。 (10) 如上述(1)至(9)中任一項之光學玻璃,其中質量和 (Nh>2〇5+Ta2〇5)相對於氧化物換算組成之玻璃總質量為 3.0%以上30.0%以下。 (U)如上述(1)至(1〇)中任一項之光學玻璃,其中氧化物 換算組成中之質量比Ti〇2/(Nb205 + Ta205)為0.80以上。 (12) 如上述(1)至(11)中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總質量,以質量%計, W03成分為〇〜10 0%,及/或 Sn02成分為〇〜5.〇〇/0。 (13) 如上述(12)之光學玻璃,其中相對於氧化物換算組 成之玻璃總質量,含有W03成分多於0.5%。 (14) 如上述(1)至(13)中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總質量,以質量%計,The Ge02 component is 〇10.0%, and/or the Ta205 component is 〇20.0%. (9) The optical glass according to the above (8), wherein the mass ratio (Ge02 + Ta205) / (Ti02 + Nb205) in the oxide-converted composition is 1.00 or less. (10) The optical glass according to any one of (1) to (9) above, wherein the mass and (Nh>2〇5+Ta2〇5) are 3.0% or more and 30.0% based on the total mass of the oxide-converted composition. the following. (U) The optical glass according to any one of the above (1) to (1), wherein a mass ratio of Ti〇2/(Nb205 + Ta205) in the oxide-converted composition is 0.80 or more. (12) The optical glass according to any one of the above (1) to (11), wherein, in mass%, the W03 component is 〇~10 0%, and/or Sn02, relative to the total mass of the oxide-converted composition. The composition is 〇~5.〇〇/0. (13) The optical glass according to (12) above, which contains more than 0.5% of the W03 component with respect to the total mass of the glass in terms of oxide conversion. (14) The optical glass according to any one of (1) to (13) above, wherein the total mass of the glass relative to the oxide conversion composition is % by mass,

Gd2〇3成分為〇〜3〇.〇%,及/或 Υ2〇3成分為〇〜20.0%,及/或 Yb203成分為〇〜6 〇%,及/或 Lu2〇3成分為0〜6.0%。 (15) 如上述(1)至(14)中任一項之光學玻璃,其中相對於 161736.doc -6- 201236993 氧化物換算組成之玻璃總質量,以質量°/。計,The composition of Gd2〇3 is 〇~3〇.〇%, and/or Υ2〇3 is 〇20.0%, and/or Yb203 is 〇~6 〇%, and/or Lu2〇3 is 0~6.0% . (15) The optical glass according to any one of (1) to (14) above, wherein the total mass of the glass in terms of oxide composition is 161 736.doc -6 - 201236993, in mass ° /. meter,

MgO成分為〇〜15.0%,及/或 CaO成分為〇〜15.0%,及/或 SrO成分為〇〜15.0%,及/或 BaO成分為〇〜35.0°/。,及/或 ZnO成分為〇〜15.0%。 (16) 如上述(15)之光學玻璃,其中R〇成分(式中,R係選 自由Mg、Ca、Sr、Ba所組成之群中之1種以上)之質量和 相對於氧化物換算組成之玻璃總質量為35.0%以下。 (17) 如上述(^至。^中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總質量,以質量%計,The MgO component is 〇15.0%, and/or the CaO component is 〇15.0%, and/or the SrO component is 〇15.0%, and/or the BaO component is 〇35.0°/. The composition of ZnO and/or ZnO is 〇15.0%. (16) The optical glass according to the above (15), wherein the mass of the R〇 component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) and the composition of the oxide The total mass of the glass is 35.0% or less. (17) The optical glass according to any one of the above, wherein the total mass of the glass in terms of oxide conversion is in mass%,

Li2〇成分為〇〜15.0%,及/或 Na20成分為〇〜15.〇%,及/或 K20成分為〇〜15.0%。 (18) 如上述(17)之光學玻璃,其中Rn2〇成分(式中, 選自由Li、Na、K所組成之群中之1種以上)之質量和相對 於氧化物換算組成之玻璃總質量為10.0%以下。 (19) 如上述(1)至(18)中任一項之光學玻璃’其中相對於 氧化物換算組成之玻璃總質量,以質量%計, P2O5成分為〇〜10.0%,及/或 Bi2〇3成分為〇〜10.0%,及/或 Te02成分為〇〜10.〇〇/。,及/或 Al2〇3成分為0〜10.0%,及/或 Ga203成分為〇〜1〇.〇%,及/或 161736.doc 201236993The composition of Li2 is 〇15.0%, and/or the composition of Na20 is 〇~15.〇%, and/or the composition of K20 is 〇15.0%. (18) The optical glass according to the above (17), wherein the mass of the Rn2〇 component (in the formula, one or more of the groups consisting of Li, Na, and K) and the total mass of the glass in terms of oxide conversion composition It is 10.0% or less. (19) The optical glass of any one of the above (1) to (18), wherein the P2O5 component is 〇1% to 10.0%, and/or Bi2〇, based on the total mass of the glass in terms of oxide conversion composition. The composition of 3 is 〇10.0%, and/or the composition of Te02 is 〇~10.〇〇/. And/or Al2〇3 component is 0~10.0%, and/or Ga203 component is 〇~1〇.〇%, and/or 161736.doc 201236993

Sb203成分為 0〜l.〇〇/0。 (20) 如上述(1)至(19)中任一項之光學玻璃,其具有1.80 以上之折射率(nd),且具有22以上30以下之阿貝數(Vd)。 (21) 如上述(1)至(20)中任一項之光學玻璃,其具有0.615 以下之部分色散比,F)。 (22) —種預製件材,其包含如上述(1)至(21)中任一項之 光學玻璃。 (23) —種光學元件,其係對如上述(22)之預製件材進行 擠壓成形而製成者》 (24) —種光學元件’其以如上述(丨)至(21)中任一項之光 學玻璃為母材。 (25) —種光學機器’其具備如上述(23)或(24)中任一項之 光學元件。 [發明之效果] 依據本發明,可獲得折射率(nd)及阿貝數(vd)於所期望之 範圍並且可較佳地用於色像差之修正、且耐失透性較高的 光學玻璃,及使用其之預製件及光學元件。 【實施方式】 本發明之光學玻璃中’相對於氧化物換算組成之玻璃總 質量’以質量%計,含有B2〇3成分1.0〜31.0%及[!12〇3成分 40.0〜65.0°/。,且Ti02成分之含量為30.0%以下,Nb205成分 之含量為30.0%以下。藉由於特定之含量之範圍内含有 B2〇3成分及稀土元素成分(Ln203成分),而玻璃之部分色散 比變小’且對可見光之透明性得以提高。又,即便於含有 161736.doc 201236993 具有增大色散之作用之Ti〇2成分及Nb2〇s成分之情形時, 亦可藉由含有使色散較小之作用較強之稀土元素成分而獲 得具有高折射率及低色散之光學玻璃,且玻璃之液相溫度 降低。因此’可獲得折射率(nd)及阿貝數(vd)於所期望之範 圍内並且可較佳地用於色像差之修正、且耐失透性較高的 光學玻璃’及使用其之預製件及光學元件。 以下’針對本發明之光學玻璃之實施形態進行詳細說 明。本發明並不受以下之實施形態之任何限定,可於本發 明之目標之範圍内加入適當之變更而實施。再者,於說明 重複之處有時適當省略說明,但並不限定發明之宗旨。 [玻璃成分] 於下文敍述構成本發明之光學玻璃之各成分之組成範 圍。於本說明書中,關於各成分之含量,尤其是於未預先 聲明之情形時’均認作以相對於氧化物換算組成之玻璃總 質量之質量%來表示。此處,所謂「氧化物換算組成」, 係指:於假定用作本發明之玻璃構成成分之原料之氧化 物、複合鹽、金屬氟化物等於熔融時全部分解而變成氧化 物之情形時,將該生成氧化物之總質量設為100質量%而 表記玻璃中所含之各成分的組成。 <關於必需成分、任意成分> B2〇3成分係於玻璃内部形成網狀結構而促進穩定之玻璃 形成的成分。尤其是’可藉由使Βζ〇3成分之含量為1 0%以 上’而使玻璃之液相溫度下降而不易失透,並易於獲得穩 定之玻璃。另一方面’藉由使B2〇3成分之含量為3 1 .〇%以 161736.doc 201236993 下,而折射率不易降低,因此可容易地獲得所期望之折射 率。因此,B2〇3成分之含量相對於氧化物換算組成之玻璃 總質量較佳為以1 .〇%為下限,更佳為以3 〇%為下限,最佳 為以5.〇%為下限,較佳為以31.0%為上限,更佳為以25.0% 為上限,進而較佳為以2〇 〇%為上限’最佳為以14 為上 限。B2〇3成分例如可使用h3B〇3 、Na2B407 、 Να2Β4〇7·1〇Η2〇、3?〇4等作為原料而包含於玻璃内。 本發明之光學玻璃中,Ln2〇3成分(式中,Ln係選自由 La、Gd、Y、Yb、Lu所組成之群中之i種以上)之含量之質 量和較佳為18.0%以上65.0%以下。此處,藉由使該質量和 為18.0%以上’可容易地獲得所期望之較高之折射率及較 低之部分色散比,且可使著色較少。另一方面,藉由使該 質量和為65.0°/。以下,可抑制玻璃之色散之降低,可減少 因過量含有該等成分而導致之玻璃之失透。因此,Ln2〇3 成分之含量之質量和相對於氧化物換算組成之玻璃總質量 較佳為以18_0°/〇為下限,更佳為以3〇 〇%為下限,進而較佳 為以40.0%為下限,最佳為以45 〇%為下限,較佳為以 65.0%、更佳為以62.0%、最佳為以6〇 〇%上限。 Τι〇2成分係提高玻璃之折射率及色散且提高玻璃之耐失 透性的成分。尤其是,可藉由使Ti〇2成分之含量為3〇 〇% 以下’而抑制玻璃之部分色散比之上升,且使可見短波長 (500 nm以下)之透光率不易惡化。因此,Ti〇2成分之含量 相對於氧化物換算組成之玻璃總質量較佳為以3 〇 〇%為上 限’更佳為以25.0°/。為上限,進而較佳為以22.0%為上限, 161736.doc •10- 201236993 最佳為以20.0%為上限。丁1〇2成分例如可使用Ti〇2等作為 原=而包含於玻璃内m藉由含有叫成分可 獲得所期望之光學常數及耐失透性。因此,Ti〇2成分之含 量相對於氧化物換算組成之玻璃總f量較佳為以5〇%為下 限’更佳為以6.6%為下限,s而較佳為以8〇%為下限,最 佳為以10.0%為下限。The composition of Sb203 is 0~l.〇〇/0. (20) The optical glass according to any one of (1) to (19) above which has a refractive index (nd) of 1.80 or more and an Abbe number (Vd) of 22 or more and 30 or less. (21) The optical glass according to any one of (1) to (20) above which has a partial dispersion ratio of 0.615 or less, F). (22) A preformed material comprising the optical glass according to any one of (1) to (21) above. (23) An optical element produced by extrusion molding a preform material as described in (22) above (24) - an optical element which is as described in (丨) to (21) above One of the optical glasses is a base material. (25) An optical device comprising the optical element according to any one of the above (23) or (24). [Effects of the Invention] According to the present invention, it is possible to obtain a refractive index (nd) and an Abbe number (vd) in a desired range and can be preferably used for correction of chromatic aberration and high devitrification resistance. Glass, and prefabricated parts and optical components using the same. [Embodiment] In the optical glass of the present invention, the total mass of the glass relative to the oxide-converted composition is, by mass%, 1.0 to 31.0% of the B2〇3 component and [!12〇3 component 40.0 to 65.0°/. Further, the content of the TiO 2 component is 30.0% or less, and the content of the Nb 205 component is 30.0% or less. When the B2〇3 component and the rare earth element component (Ln203 component) are contained in a specific content range, the partial dispersion ratio of the glass becomes small, and the transparency to visible light is improved. Further, even in the case of the Ti〇2 component and the Nb2〇s component which have the effect of increasing the dispersion of 161736.doc 201236993, it can be obtained by containing a rare earth element component having a relatively small dispersion effect. Optical glass with a refractive index and low dispersion, and the liquidus temperature of the glass is lowered. Therefore, 'a refractive index (nd) and an Abbe number (vd) can be obtained within a desired range and can be preferably used for correction of chromatic aberration and high optical resistance to devitrification, and use thereof Preforms and optical components. Hereinafter, the embodiment of the optical glass of the present invention will be described in detail. The present invention is not limited to the following embodiments, and may be implemented by adding appropriate modifications within the scope of the gist of the invention. In addition, the description may be appropriately omitted in the description of the repetition, but the purpose of the invention is not limited. [Glass component] The composition range of each component constituting the optical glass of the present invention is described below. In the present specification, the content of each component, particularly in the case where it is not previously stated, is considered to be expressed by mass% of the total mass of the glass in terms of oxide composition. Here, the term "oxide-converting composition" means that when the oxide, the composite salt, and the metal fluoride which are assumed to be used as the raw material of the glass constituent component of the present invention are all dissolved and become oxides upon melting, The total mass of the produced oxide was set to 100% by mass, and the composition of each component contained in the glass was expressed. <About required component, arbitrary component> The B2〇3 component is a component which forms a network structure inside the glass and promotes stable glass formation. In particular, the liquid phase temperature of the glass can be lowered by making the content of the cerium 3 component 10% or more, and it is easy to obtain a stable glass. On the other hand, by making the content of the B2〇3 component 3 1 .〇% to 161736.doc 201236993, the refractive index is not easily lowered, so that the desired refractive index can be easily obtained. Therefore, the content of the B2〇3 component is preferably 1. 〇% as the lower limit, more preferably 3 〇% as the lower limit, and most preferably 5. 〇% as the lower limit, relative to the total mass of the oxide-converted composition. Preferably, it is an upper limit of 31.0%, more preferably an upper limit of 25.0%, and further preferably an upper limit of 2% by weight. The B2〇3 component can be contained in the glass, for example, using h3B〇3, Na2B407, Να2Β4〇7·1〇Η2〇, 3?〇4 or the like as a raw material. In the optical glass of the present invention, the mass of the component of the Ln2〇3 component (wherein Ln is selected from the group consisting of La, Gd, Y, Yb, and Lu) is preferably 18.0% or more and 65.0. %the following. Here, the desired higher refractive index and lower partial dispersion ratio can be easily obtained by making the mass sum be 18.0% or more, and the coloring can be made less. On the other hand, by making the mass sum 65.0 ° /. Hereinafter, the decrease in the dispersion of the glass can be suppressed, and the devitrification of the glass due to the excessive inclusion of the components can be reduced. Therefore, the mass of the content of the Ln2〇3 component and the total mass of the glass relative to the oxide-converted composition are preferably 18_0°/〇 as the lower limit, more preferably 3〇〇% as the lower limit, and further preferably 40.0%. The lower limit is preferably 45 〇% as the lower limit, preferably 65.0%, more preferably 62.0%, and most preferably 6 〇〇% upper limit. The Τι〇2 component is a component which increases the refractive index and dispersion of the glass and improves the resistance of the glass to devitrification. In particular, by increasing the content of the Ti 2 component to 3 〇 以下 % or less, the partial dispersion ratio of the glass is suppressed, and the light transmittance at the visible short wavelength (below 500 nm) is not easily deteriorated. Therefore, the content of the Ti 2 component is preferably 3 〇 〇 % as the upper limit and more preferably 25.0 ° / or less. The upper limit, and further preferably the upper limit of 22.0%, 161736.doc •10-201236993 is preferably the upper limit of 20.0%. For example, Ti 2 may be used as the original = and it may be contained in the glass. The desired optical constant and devitrification resistance can be obtained by containing a component. Therefore, the content of the Ti〇2 component is preferably 5% by weight with respect to the total amount of the glass of the oxide-converted composition. The thickness is preferably 6.6% as the lower limit, and s is preferably the lower limit of 8%. The best is 10.0% as the lower limit.

Nb2〇5成分係提高玻璃之折射率及色散且提高玻璃之耐 失透!·生的成仝。尤其疋,藉由使Nb205成分之含量為 以下,可抑制因過量含有Nb2〇5成分而導致之失透,且抑 制玻璃之部分色散比之上升。因此,Nth成分之含量相 對於氧化物換算組成之玻璃總質量較佳為以3〇 〇%為上 限,更佳為以25.0°/❶為上限,進而較佳為以2〇 〇Q/。為上限, 最佳為以1 5.0%為上限。另一方面,藉由含有Nb2〇5成分, 了獲付·所期望之光學常數及财失透性。因此,Nb2〇5成分 之含量相對於氧化物換算組成之玻璃總質量較佳為以1〇% 為下限,更佳為以2.0%為下限,進而較佳為以3·〇%為下 限,最佳為以3.8%為下限。Nb2〇5成分例如可使用Nb2〇5等 作為原料而包含於玻璃内。 於本發明之光學玻璃中’ Ln2〇3成分之含量相對於丁丨〇2 成分之含量的比例較佳為3.00以上。藉此,可維持較高之 折射率並且使玻璃之液相溫度下降而提高穩定性,且減少 玻璃著色。因此,氧化物換算組成之質量比Ln2〇3/Ti〇2較 佳為以3.00為下限’更佳為以3.20為下限,最佳為以3 4〇 為下限。另一方面’該質量比之上限多數情況下例如為 161736.doc 201236993 10.00以下,更具體而言為8 00以下,進而具體而言為6 〇〇 以下。The Nb2〇5 component increases the refractive index and dispersion of the glass and improves the resistance of the glass to devitrification! In particular, by setting the content of the Nb205 component to be lower, devitrification caused by excessive inclusion of the Nb2〇5 component can be suppressed, and an increase in the partial dispersion ratio of the glass can be suppressed. Therefore, the content of the Nth component is preferably an upper limit of 3 〇 〇% with respect to the total mass of the oxide-converted composition, more preferably 25.0 ° / ❶, and further preferably 2 〇 / Q /. For the upper limit, the best is the upper limit of 1 5.0%. On the other hand, by containing the Nb2〇5 component, the desired optical constant and financial devitrification are obtained. Therefore, the content of the Nb2〇5 component is preferably 1% by weight as the lower limit, more preferably 2.0% as the lower limit, and more preferably 3·〇% as the lower limit. Jia is at a lower limit of 3.8%. The Nb2〇5 component can be contained in the glass, for example, using Nb2〇5 or the like as a raw material. The ratio of the content of the 'Ln2〇3 component to the content of the butyl bismuth 2 component in the optical glass of the present invention is preferably 3.00 or more. Thereby, a higher refractive index can be maintained and the liquid phase temperature of the glass is lowered to improve the stability and to reduce the coloration of the glass. Therefore, the mass ratio of the oxide-converted composition Ln2 〇 3 / Ti 〇 2 is preferably 3.00 as the lower limit', more preferably 3.20 as the lower limit, and most preferably 3 4 〇 as the lower limit. On the other hand, the upper limit of the mass ratio is, for example, 161736.doc 201236993 10.00 or less, more specifically, 800 or less, and more specifically 6 〇〇 or less.

LazO3成分係提高玻璃之折射率並使色散較小的成分β 尤其是’藉由使La2〇3成分之含量為18 〇%以上,可容易地 獲得具有較高之折射率及較低之部分色散比且對可見光之 穿透率較高的玻璃。另一方面,藉由使La2〇3成分之含量 為60.0°/。以下’而可抑制必要以上之玻璃之色散之降低, 且可抑制因過量含有La2〇3成分而導致之液相溫度之上 升°因此’ La2〇3成分之含量相對於氧化物換算組成之玻 璃總質量較佳為以1 8.0°/。為下限,更佳為以25.〇。/。為下限, 進而較佳為以28.0%為下限,最佳為以3〗〇%為下限,較佳 為以60.0%為上限,更佳為以58 〇%為上限最佳為以 55.0%為上限。La2〇3成分例如可使用、La(N〇3)3 XH2〇(X為任意之整數)等作為原料而包含於玻璃内。 又,於本發明之光學玻璃中,Ti〇2成分與Nb2〇5成分之 質量和較佳為8.0%以上且35.〇%以下。尤其是,藉由使該 質量和為3.0%以上’可容易地獲得所期望之高折射率。另 一方面’可藉由使該質量和為35.〇%以下,而使因過量含 有該等成分而導致之色散之上升得到抑帝】,並且使玻璃之 穩定性之降低得到抑制,進一步提高玻璃之耐失透性。 又,由於玻璃之部分色散比之上升得到抑制,故可獲得具 有所期望之較低之部分色散比之破璃。因此,質量和 (Ti〇2+Nb2〇5)相對於氧化物換算組成之玻璃總質量較佳為 以8.0/。為下限,更佳為以115%為下限,最佳為以η 為 161736.doc 12- 201236993 下限,較佳為以35.0%為上限,更佳為以3〇〇%為上限,最 佳為以25.0%為上限。The LazO3 component is a component which increases the refractive index of the glass and makes the dispersion smaller, in particular, 'by having the content of the La2〇3 component of 18% or more, a higher refractive index and a lower partial dispersion can be easily obtained. A glass that has a higher transmittance than visible light. On the other hand, the content of the La2〇3 component is 60.0°/. In the following, it is possible to suppress the decrease in the dispersion of the glass more than necessary, and to suppress the increase in the liquidus temperature caused by the excessive inclusion of the La 2 〇 3 component. Therefore, the content of the component of the La 2 〇 3 component relative to the oxide conversion is The mass is preferably 1 8.0 ° /. The lower limit is more preferably 25. /. The lower limit is further preferably 28.0% as the lower limit, and most preferably 3 〇% as the lower limit, preferably 60.0% as the upper limit, more preferably 58 〇% as the upper limit, and most preferably 55.0% as the upper limit. . The La2〇3 component can be contained in the glass, for example, using La(N〇3)3XH2〇 (X is an arbitrary integer) as a raw material. Further, in the optical glass of the present invention, the mass of the Ti 2 component and the Nb 2 5 component is preferably 8.0% or more and 3.5 % by weight or less. In particular, the desired high refractive index can be easily obtained by making the mass sum 3.0% or more'. On the other hand, 'the mass can be reduced by 3.5% or less, and the increase in dispersion due to the excessive inclusion of the components can be suppressed, and the decrease in the stability of the glass can be suppressed and further improved. Glass resistance to devitrification. Further, since the partial dispersion ratio of the glass is suppressed, the glass having a desired lower partial dispersion ratio can be obtained. Therefore, the mass and the total mass of the glass of (Ti〇2+Nb2〇5) relative to the oxide-converted composition are preferably 8.0/. The lower limit is more preferably 115%, and most preferably η is 161736.doc 12-201236993 lower limit, preferably 35.0% upper limit, more preferably 3〇〇% upper limit, most preferably 25.0% is the upper limit.

Si〇2成分係提高熔融玻璃之黏度、且使玻璃之液相溫度 較低而抑制失透(晶體之產生)的成分,係本發明之光學玻 璃中之任意成分。尤其是,藉由使Si〇2成分之含量為 20.0%以下,可避免高溫下之熔解’且可抑制玻璃之折射 率之降低。因此,Si〇2成分之含量相對於氧化物換算組成 之玻璃總質畺較佳為以20.0%為上限,更佳為以丨4 〇%為上 限,進而較佳為以10·0%為上限,最佳為以7〇%為上限。 再者,亦可不含有Si〇2成分,但藉由含有si〇2成分,可提 高玻璃之耐失透性。因此,Si〇2成分之含量相對於氧化物 換算組成之玻璃總質量較佳為大於〇% ’更佳為以1〇%為 下限,進而較佳為以3.0%為下限,最佳為大於4 〇% ^ si〇2 成分例如可使用Si〇2、KJiF6 ' Na2SiF6等作為原料而包含 於玻璃内。The Si 2 component is a component which increases the viscosity of the molten glass and lowers the liquid phase temperature of the glass to suppress devitrification (production of crystals), and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Si 2 component to 20.0% or less, melting at a high temperature can be avoided and the decrease in the refractive index of the glass can be suppressed. Therefore, the content of the Si〇2 component is preferably 20.0% as the upper limit, more preferably 丨4 〇% as the upper limit, and even more preferably 100.0% as the upper limit. The best is the upper limit of 7〇%. Further, the Si 2 component may not be contained, but the resistance to devitrification of the glass can be improved by containing the Si 2 component. Therefore, the content of the Si〇2 component is preferably greater than 〇% with respect to the total mass of the oxide-converted composition. The thickness is preferably 1% by weight, more preferably 3.0%, and most preferably greater than 4. The 〇% ^ si〇2 component can be contained in the glass, for example, using Si〇2, KJiF6'Na2SiF6 or the like as a raw material.

Zr〇2成分係提南玻璃之折射率、使玻璃之液相溫度降低 而提昇耐失透性的成分,係本發明之光學玻璃中之任意成 刀。尤其是藉由使Zr〇2成分之含量為丨5 〇%以下,可抑制 玻璃之阿貝數之降低,並且可避免玻璃之製造時之高溫下 之熔解,減少玻璃製造時之能量損失。因此,Zr〇2成分之 含量相對於氧化物換算組成之玻璃總質量較佳為以丨5 .〇0/〇 為上限,更佳為以10 〇%為上限,最佳為以8 〇%為上限。 再者’ Zr〇2成分之含量亦可為〇%,但藉由含有Zr〇2成 分’而玻璃之液相溫度變低,因此可容易地提高耐失透 161736.doc -13· 201236993 性。因此’ ζκ>2成分之含量相對於氧化物換算組成之破璃 總質量較佳為大於0%,更佳為以1〇%為下限,進而較佳 為以3.0%為下限’最佳為以42%為下限。Zr〇2成分例如可 使用Zr〇2、ZrF4等作為原料而包含於玻璃内。The Zr〇2 component is a component of the optical glass of the present invention, which is a composition which reduces the refractive index of the glass of the southern region and lowers the liquidus temperature of the glass to improve the devitrification resistance. In particular, by making the content of the Zr〇2 component 丨5 〇% or less, the decrease in the Abbe number of the glass can be suppressed, and the melting at a high temperature during the production of the glass can be avoided, and the energy loss at the time of glass production can be reduced. Therefore, the content of the Zr〇2 component is preferably 丨5 .〇0/〇 as the upper limit, more preferably 10 〇%, and most preferably 8 〇%, based on the total mass of the glass in terms of oxide conversion composition. Upper limit. Further, the content of the 'Zr〇2 component may be 〇%, but the liquid phase temperature of the glass is lowered by containing the Zr 〇 2 component, so that the devitrification resistance can be easily improved 161736.doc -13· 201236993. Therefore, the content of the ζκ>2 component is preferably greater than 0% based on the total composition of the oxide-converted composition, more preferably 1% by weight, and more preferably 3.0% as the lower limit. 42% is the lower limit. The Zr 2 component can be contained in the glass, for example, using Zr 〇 2, ZrF 4 or the like as a raw material.

GeOj分係具有提高玻璃之折射率、提昇耐失透性之效 果的成分,係本發明之光學玻璃中之任意成分。然而,由 於Ge〇2成分之原料價格較高,故若其量較多則材料成本變 高,因此所獲得玻璃變得不實用。因此,Ge〇2成分之含量 相對於氧化物換算組成之玻璃總質量較佳為以l〇 〇c/。為上 限,更佳為以5.0%為上限,進而較佳為以3〇%為上限,最 佳為以2.0%為上限。Ge〇2成分例如可使用以〇2等作為原 料而包含於玻璃内。The GeOj sub-system has a component which increases the refractive index of glass and enhances the effect of devitrification resistance, and is an optional component in the optical glass of the present invention. However, since the raw material of the Ge 〇 2 component is expensive, if the amount is large, the material cost becomes high, and thus the obtained glass becomes impractical. Therefore, the content of the Ge 〇 2 component is preferably l 〇 〇 c / with respect to the total mass of the glass of the oxide conversion composition. The upper limit is more preferably 5.0%, and further preferably 3%, and most preferably 2.0%. The Ge 2 component can be contained in the glass, for example, using ruthenium 2 or the like as a raw material.

Ta^5成分係提高玻璃之折射率、且使玻璃之液相溫度 下降而提尚耐失透性的成分,係本發明之光學玻璃中之任 意成分。尤其是,藉由使Τ&2〇5成分之含量為2〇 〇%以下, 可減少玻璃之材料成本,並且可避免高溫下之熔解而減少 玻璃製造時之能量損失。因此,Ta2〇5成分之含量相對於 氧化物換算組成之玻璃總質量較佳為以2〇.〇%為上限,更 佳為以15.0%為上限,進而較佳為以1〇 〇%為上限,最佳為 以5.0%為上限。Ta2〇5成分例如可使用Ta2〇5等作為原料而 包含於玻璃内。 又,較佳為,於本發明之光學玻璃中,Ge〇2成分與 Ta2〇s成分之質量和相對於Ti〇2成分與^匕仏成分之質量和 的比例為1.00以下。藉此,於提高折射率之成分中昂貴之 161736.doc S; 201236993The Ta 5 component is a component which increases the refractive index of the glass and lowers the liquid phase temperature of the glass to provide devitrification resistance, and is an optional component in the optical glass of the present invention. In particular, by making the content of the Τ & 2 〇 5 component 2 〇 〇 % or less, the material cost of the glass can be reduced, and the melting at a high temperature can be avoided to reduce the energy loss during the production of the glass. Therefore, the content of the Ta2〇5 component is preferably an upper limit of 2〇.〇% with respect to the total mass of the oxide-converted composition, more preferably an upper limit of 15.0%, and even more preferably an upper limit of 1%%. The best is 5.0%. The Ta2〇5 component can be contained in the glass, for example, using Ta2?5 or the like as a raw material. Further, in the optical glass of the present invention, the mass of the Ge 〇 2 component and the Ta 2 〇 s component and the ratio of the mass of the Ti 〇 2 component to the 匕仏 匕仏 component are preferably 1.00 or less. Thereby, it is expensive in increasing the refractive index component 161736.doc S; 201236993

GeCh成分及Ta2〇5成分之含量減少,因此可減少光學玻璃 之材料成本。因此,氧化物換算組成中之質量比 (Ge02+Ta205)/(Ti02+Nb205)較佳為以1·〇〇為上限,更佳為 以0.80為上限,最佳為以〇 5〇為上限。 又’較佳為,於本發明之光學玻璃中,Nb2〇5成分與 Ta2〇5成分之質量和為3 〇〇/。以上3〇 〇%以下。藉由使該等成 分之質量和於3.0%以上30.0%以下之範圍内,而玻璃之液 相溫度變低,因此可容易地獲得耐失透性更高之光學玻 璃。因此,質量和(Nb2〇5+Ta2〇5)相對於氧化物換算組成之 玻璃總質量較佳為以3.0%為下限,更佳為以3 5%為下限, 最佳為以3.8%為下限,較佳為以30.0%為上限,更佳為以 20.0%為上限,最佳為以ι5 〇%為上限。 又,較佳為,於本發明之光學玻璃中,Ti02成分之含量 相對於Nb2〇5成分與τ&2〇5成分之含量之和的比例為〇 8〇以 上。藉此,可提高玻璃之穩定性,並且可獲得更高之折射 率。因此’氧化物換算組成之質量比Ti〇2/(Nb2〇5 + Ta2〇5) 較佳為以0.80為下限,更佳為以丨2〇為下限,進而較佳為 以1.78為下限。尤其是’就可容易地實現116〇β(:以下之較 低之液相溫度方面而言,更進一步較佳為以2 〇5為下限。 另一方面’該質量比之上限多數情況例如為1 〇 〇〇以下, 更具體而言為8.00以下,進而具體而言為5 〇〇以下。 WO3成分係使玻璃之液相溫度下降而提高耐失透性的成 分’並且係提高玻璃之折射率及色散之成分,係本發明之 光學玻璃中之任意成分。尤其是,可藉由使W〇3成分之含 161736.doc 201236993 量為10·0%以下,而抑制玻璃之部分色散比之上升,且使 可見短波長(500 nm以下)之透光率不易惡化。因此,w〇3 成分之含量相對於氧化物換算組成之玻璃總質量較佳為以 10.0°/。為上限,更佳為以7.0%為上限’進而較佳為以5 〇% 為上限’最佳為以3.0%為上限。另一方面,w〇3成分之含 量相對於氧化物換算組成之玻璃總質量較佳為大於〇%, 更佳為以0.1 %為下限,進而較佳為以〇, 5 %為下限,最佳為 以0.6%為下限。WO3成分可使用例如冒…等作為原料而包 含於玻璃内》The content of the GeCh component and the Ta2〇5 component is reduced, so that the material cost of the optical glass can be reduced. Therefore, the mass ratio (Ge02 + Ta205) / (Ti02 + Nb205) in the oxide-converted composition is preferably an upper limit of 1·〇〇, more preferably an upper limit of 0.80, and most preferably an upper limit of 〇 5〇. Further, preferably, in the optical glass of the present invention, the mass of the Nb2〇5 component and the Ta2〇5 component is 3 〇〇/. The above 3〇 〇% or less. By setting the mass of the components to be in the range of 3.0% or more and 30.0% or less, the liquid phase temperature of the glass is lowered, so that optical glass having higher devitrification resistance can be easily obtained. Therefore, the mass and the total mass of the glass of (Nb2〇5+Ta2〇5) with respect to the oxide-converted composition are preferably 3.0% as the lower limit, more preferably 35% as the lower limit, and most preferably 3.8% as the lower limit. Preferably, it is an upper limit of 30.0%, more preferably an upper limit of 20.0%, and most preferably an upper limit of ι 5 〇%. Further, in the optical glass of the present invention, the ratio of the content of the TiO 2 component to the sum of the contents of the Nb 2 〇 5 component and the τ & 2 〇 5 component is preferably 〇 8 。 or more. Thereby, the stability of the glass can be improved and a higher refractive index can be obtained. Therefore, the mass ratio of the oxide-converted composition Ti〇2/(Nb2〇5 + Ta2〇5) is preferably 0.80 as the lower limit, more preferably 丨2〇 as the lower limit, and still more preferably 1.78 as the lower limit. In particular, '116 〇 β can be easily realized (in the case of the lower liquidus temperature below, it is more preferable to use 2 〇 5 as the lower limit. On the other hand, the upper limit of the mass ratio is, for example, 1 〇〇〇 or less, more specifically 8.00 or less, and more specifically 5 〇〇 or less. The WO3 component lowers the liquidus temperature of the glass to improve the devitrification-resistant component' and increases the refractive index of the glass. And the component of the dispersion is an arbitrary component in the optical glass of the present invention. In particular, the content of the chromatic dispersion ratio of the glass can be suppressed by making the amount of the 161736.doc 201236993 of the W〇3 component to be less than 10.0%. And the light transmittance of the visible short wavelength (below 500 nm) is not easily deteriorated. Therefore, the content of the w〇3 component is preferably 10.0 ° / or more, more preferably the upper limit of the glass composition of the oxide conversion composition. The upper limit of 7.0% and further preferably the upper limit of 5 〇% is preferably the upper limit of 3.0%. On the other hand, the content of the w 〇 3 component is preferably larger than the total mass of the glass of the oxide conversion composition. 〇%, more preferably 0.1% as the lower limit, Further, it is preferably 〇, 5%, the lower limit, and most preferably 0.6% as the lower limit. The WO3 component can be contained in the glass using, for example, a raw material, etc.

Sn〇2成分係減少熔融玻璃之氧化而使熔融玻璃澄清之成 分’係本發明之光學玻璃中之任意成分。尤其是,可藉由 使Sn〇2成分之含量為5.0%以下,而不易產生因熔融玻璃之 還原而導致之玻璃之著色或玻璃之失透。又,由於Sn〇2成 分與熔解設備(尤其是Pt等貴金屬)之合金化減少,故可謀 求熔解設備之長壽命化。因此,Sn〇2成分之含量相對於氧 化物換算組成之玻璃總質量較佳為以5.0%為上限,更佳為 以3.0%為上限,最佳為以丨5%為上限。再者,“ο〗成分之 含量亦可為〇%,但可藉由含有Sn〇2成分0.1%以上,而使 玻璃對可見光之穿透率不易惡化。因此,Sn〇2成分之含量 相對於氧化物換算組成之玻璃總質量較佳為以〇為下 限,更佳為以0.3。/。為下限,進而較佳為含量亦可多於 〇_5%。Sn02成分例如可使用Sn〇、Sn〇2、SnF2、等作 為原料而包含於玻璃内。 於本發明之光學玻璃中,w〇3成分之含量相對於Sn〇2成 161736.doc 201236993 分之含量的比例較佳為0.1以上3.0以下。藉由使該比例於 特定之範圍内’可獲得較低之玻璃之液相溫度’並且抑制 玻璃之著色而提高可見光之穿透性。因此,氧化物換算組 成中之質量比WOVSnOdi佳為以〇.1為下限,更佳為以0.3 為下限,最佳為以〇.5為下限,較佳為以3 ·0為上限,更佳 為以2.5為上限’最佳為以2.〇為上限。The Sn 2 component is an element which reduces the oxidation of the molten glass and clarifies the molten glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Sn 2 component to 5.0% or less, it is not easy to cause coloring of the glass or devitrification of the glass due to reduction of the molten glass. Further, since the alloying of the Sn 〇 2 component and the melting equipment (especially a noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the content of the Sn 〇 2 component is preferably 5.0% as the upper limit, more preferably 3.0%, and most preferably 丨 5% as the upper limit of the total mass of the glass in terms of the oxide conversion composition. Further, the content of the "ο" component may be 〇%, but the transmittance of the glass to visible light is not easily deteriorated by containing 0.1% or more of the Sn 〇 2 component. Therefore, the content of the Sn 〇 2 component is relatively small. The total mass of the glass of the oxide-converted composition is preferably 〇 as the lower limit, more preferably 0.3% as the lower limit, and further preferably the content may be more than 〇 5%. For the Sn02 component, for example, Sn 〇, Sn may be used. 〇2, SnF2, and the like are contained in the glass as a raw material. In the optical glass of the present invention, the ratio of the content of the w〇3 component to the content of Sn 〇 2 of 161736.doc 201236993 is preferably 0.1 or more and 3.0 or less. By making the ratio 'a lower liquid phase temperature of the glass' within a specific range and suppressing the coloration of the glass, the transmittance of visible light is improved. Therefore, the mass in the oxide-converted composition is better than WOVSnOdi. 〇.1 is the lower limit, more preferably 0.3 is the lower limit, and most preferably 〇.5 is the lower limit, preferably 3·0 is the upper limit, more preferably 2.5 is the upper limit, and the best is 2. Upper limit.

Gd2〇3成分係提高玻璃之折射率並使色散較小之成分。 尤其是’可藉由使Gd2〇3成分之含量為30.0%以下,而抑制 玻璃之分相,且於製作玻璃時使玻璃不易失透。因此, Gd2〇3成分之含量相對於氧化物換算組成之玻璃總質量較 佳為以30.0%為上限,更佳為以28 〇%為上限,最佳為以 25.0。/。為上限。0(12〇3成分可使用例如Gd2〇3、GdF3等作為 原料而包含於玻璃内。 Y2〇3成分、Yb2〇3成分及Lu2〇3成分係提高玻璃之折射率 並使分散較小之成分。此處,可藉由使γ2〇3成分之含量為 20.0%以下,或藉由使Yb2〇3成分或者^〜…成分之含量為 6.0%以下,而使玻璃不易失透。因此,γ2〇3成分之含量相 對於氧化物換算組成之玻璃總質量較佳為以2〇 〇%為上 限,更佳為以15.0%為上限,進而較佳為以1〇 〇%為上限, 進而較佳為以9.0%為上限,進而較佳為以8 〇%為上限,進 而較佳為以4.0%為上限,最佳為設為未達2 〇%。又, Yb2〇3成分及Lu2〇3成分之含量相對於氧化物換算組成之玻 璃總質量分別較佳為以6.0%為上限,更佳為以2 〇%為上 限,進而較佳為以丨.5%為上限’最佳為以1〇%為上限。 161736.doc •17- 201236993 Υ2〇3成分、Yb203成分及Lu2〇3成分例如可使用Υ2〇3、 YF3、Yt>2〇3、Lu2〇3等作為原料而包含於玻璃内。The Gd2〇3 component is a component that increases the refractive index of the glass and makes the dispersion smaller. In particular, by allowing the content of the Gd2〇3 component to be 30.0% or less, the phase separation of the glass is suppressed, and the glass is less likely to devitrify when the glass is produced. Therefore, the content of the Gd2〇3 component is preferably 30.0% as the upper limit, more preferably 28% by weight, and most preferably 25.0, based on the total mass of the oxide-converted composition. /. The upper limit. 0 (12〇3 component can be contained in glass, for example, Gd2〇3, GdF3, etc. as a raw material. Y2〇3 component, Yb2〇3 component, and Lu2〇3 component are components which raise the refractive index of glass, and make dispersion small. Here, the content of the γ2〇3 component is 20.0% or less, or the content of the Yb2〇3 component or the component of the component is 6.0% or less, so that the glass is not easily devitrified. Therefore, γ2〇 The content of the three components is preferably an upper limit of 2% by weight based on the total mass of the oxide-converted composition, more preferably an upper limit of 15.0%, still more preferably an upper limit of 1% by weight, and further preferably The upper limit is 9.0%, and the upper limit is preferably 8 〇%, more preferably 4.0%, and most preferably less than 2%. Further, the Yb2〇3 component and the Lu2〇3 component are used. The total mass of the glass relative to the oxide-converted composition is preferably an upper limit of 6.0%, more preferably an upper limit of 2% by weight, and further preferably an upper limit of 丨.5% 'best is 1%%. The upper limit is 161736.doc •17- 201236993 Υ2〇3 component, Yb203 component and Lu2〇3 component, for example, Υ2〇3, YF3, Yt>2〇 3. Lu2〇3 or the like is contained in the glass as a raw material.

MgO成分、CaO成分、SrO成分及Ba〇成分係改善玻璃之 熔融性而提高耐失透性的成分,係本發明之光學玻璃中之 任意成分。尤其是,可藉由使Mg〇成分、CaO成分或者 SrO成分中之1種以上之含量分別為15 〇%以下,及/或藉由 使BaO成分之含量為35.0%以下,而使玻璃之折射率不易 降低’且使玻璃之液相溫度不易上升。因此,Mg〇成分、 CaO成分及SrO成分之含量相對於氧化物換算組成之玻璃 總質量分別較佳為以15.0%為上限,更佳為以1〇 〇%為上 限,最佳為以6.0%為上限。又,Ba〇成分之含量相對於氧 化物換算組成之玻璃總質量較佳為以3 5 〇%為上限,更佳 為以20.0%為上限,進而較佳為以丨〇 〇%為上限,最佳為以 6.0%為上限。MgO成分、CaO成分、SrO成分及BaO成分例 如可使用 MgC03、MgF2、CaC03、CaF2、Sr(N03)2、The MgO component, the CaO component, the SrO component, and the Ba〇 component are components which improve the meltability of the glass and improve the devitrification resistance, and are optional components in the optical glass of the present invention. In particular, the refractive index of the glass can be made by setting the content of one or more of the Mg bismuth component, the CaO component, or the SrO component to 15% by weight or less, and/or by setting the content of the BaO component to 35.0% or less. The rate is not easily lowered' and the liquidus temperature of the glass is not easily increased. Therefore, the content of the Mg bismuth component, the CaO component, and the SrO component is preferably an upper limit of 15.0%, more preferably an upper limit of 1% by weight, and most preferably 6.0%, based on the total mass of the glass of the oxide conversion composition. The upper limit. Further, the content of the Ba〇 component is preferably an upper limit of 35 % by weight based on the total mass of the oxide-converted composition, more preferably an upper limit of 20.0%, and still more preferably an upper limit of 丨〇〇%. Jia is limited to 6.0%. For the MgO component, the CaO component, the SrO component, and the BaO component, for example, MgC03, MgF2, CaC03, CaF2, Sr(N03)2 can be used.

SrF2、BaC03、Ba(N03)2等作為原料而包含於玻璃内。SrF2, BaC03, Ba(N03)2 and the like are contained in the glass as a raw material.

ZnO成刀係改善玻璃之化學穩定性、降低玻璃轉移點、 且易於形成穩定之玻璃的成分,係本發明之光學玻璃中之 任意成分。尤其是,藉由使Zn0成分之含量為15 〇%以 下’可抑制玻璃之液相溫度之上升而提高耐失透性。因 此’ ZnO成分之含量相對於氧化物換算組成之玻璃總質量 較佳為以15.0%為上限,更佳為以10.0%為上限,進而較佳 為以5.5°/❶為上限。尤其是,於將光學玻璃之光彈性常數抑 制為較低而欲獲得用於光學元件時之顯色性較高之玻璃的 161736.doc •18· 201236993 情形時,Zn〇成分之含量相對於氧化物換算組成之玻璃總 質量亦可為0.08%以p Zn〇成分例如可使用Ζη〇、邱等 作為原料而包含於玻璃内。 較佳為,於本發明之光學玻璃中,R〇成分(式中,_ 選自由叫…^及〜所組成之群中之旧以幻之 含量之質量和為35.0%以下。藉此,可減少因過量含有⑽ 成分而導致之玻璃之失透,且可使玻璃之折射率不易降 低0因此,R〇成分之会晋之暂旦i上丨丨 取刀里之質里和相對於氧化物換算組 成之玻璃總質量較佳為以35.G%為上限,更佳為以Μ 〇%為 上限’進而較佳為以15.0%為±限,進而較佳為以8〇%為 上限’最佳為以4.7%為上限。The ZnO-forming knives are components which improve the chemical stability of the glass, lower the glass transition point, and easily form a stable glass, and are optional components in the optical glass of the present invention. In particular, the devitrification resistance can be improved by suppressing the increase in the liquidus temperature of the glass by setting the content of the Zn0 component to 15% or less. Therefore, the content of the ZnO component is preferably 15.0% as the upper limit, more preferably 10.0%, and even more preferably 5.5 °/❶ as the upper limit of the total mass of the glass. In particular, when the photoelastic constant of the optical glass is suppressed to be low and the color rendering property for the optical element is high, 161736.doc •18·201236993 is used, and the content of the Zn〇 component is relative to oxidation. The total mass of the glass of the composition of the composition may be 0.08%. The p Zn 〇 component may be contained in the glass, for example, by using Ζη〇, 邱, or the like as a raw material. Preferably, in the optical glass of the present invention, the mass of the R 〇 component (wherein _ is selected from the group consisting of ... ^ and 〜 is a mass ratio of 35.0% or less. Reducing the devitrification of the glass caused by the excessive content of (10), and making the refractive index of the glass difficult to reduce. Therefore, the R 〇 component will be added to the stencil and relative to the oxide. The total mass of the glass of the converted composition is preferably 35.G% as the upper limit, more preferably Μ 〇% is the upper limit', and more preferably 15.0% is the limit, and further preferably 8 〇% is the upper limit. Jia is capped at 4.7%.

Lis〇成分係使玻璃之部分色散比較低之成分,並且係改 善玻璃之熔融性、且使玻璃轉移點下降之成分,係本發明 之光學玻璃中之任意成分。尤其是,可藉由使u2〇成分之 含量為15篇以下,而抑制玻璃之折射率之降低且不易 產生因過量含有U2C)成分而導致之失透等H 成 分之含量相對於氧化物換算組成之玻璃總質量較佳為以 15.0。/。為上限,更佳為以5 〇%為上限,進而較佳為以3 為上限,it而較佳為以2·〇%為上限。U2〇成分例如可使用 U/O3、LiN〇3、UF等作為原料而包含於玻璃内。The Lis(R) component is a component which lowers the partial dispersion of the glass and which is a component which improves the meltability of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention. In particular, when the content of the u2 bismuth component is 15 or less, the decrease in the refractive index of the glass is suppressed, and the content of the H component such as devitrification caused by excessive inclusion of the U2C) component is less likely to be formed with respect to the oxide conversion composition. The total mass of the glass is preferably 15.0. /. The upper limit is more preferably 5 〇%, and further preferably 3 is the upper limit, and it is preferably 2 〇%. The U2 〇 component can be contained in the glass, for example, using U/O3, LiN〇3, UF or the like as a raw material.

Nae成分係改善玻璃之熔融性、且使玻璃轉移點下降之 成分,係本發明之光學玻璃中之任意成分。尤其是,可藉 由使Na2〇成刀之含量為15〇%以下,而使玻璃之折射率不 易降低,且提高玻璃之穩定性而不易產生失透等。因此, 161736.doc •19- 201236993The Nae component is a component which improves the meltability of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention. In particular, the content of the Na2 crucible can be made 15% or less, so that the refractive index of the glass is not easily lowered, and the stability of the glass is improved, and devitrification or the like is less likely to occur. Therefore, 161736.doc •19- 201236993

NkO成分之含量相對於氧化物換算組成之玻璃總質量較佳 為以15.0〇/〇為上限’更佳為以5〇%為上限,冑而較佳為以 3.0%為上限,最佳為以2 〇%為上限^ Ν&2〇成分例如可使 用Na2C03、NaN03、NaF、Na2SiF6等作為原料而包含於玻 璃内。 K2〇成分係改善玻璃之熔融性、且使玻璃轉移點下降之 成分,係本發明之光學玻璃中之任意成分。尤其是可藉 由使Κ2〇成分之含量為15 0%,而抑制玻璃之部分色散比 之上升。又,可藉由使Κ2〇成分之含量為15 〇%以下而 使玻璃之折射率不易降低,且提高玻璃之穩定性而不易產 生失透等。因此,Κ2〇成分之含量相對於氧化物換算組成 之玻璃總質量較佳為以15.0%為上限,更佳為以5 為上 限,進而較佳為以3 〇%為上限,最佳為以2 為上限。 Κ20成分例如可使用〖2(:03、ΚΝ〇3、KF、KHF2、K2SiFe 作為原料而包含於玻璃内。 於本發明之光學玻璃中,可藉由使RhO成分(式中,Rn 係選自由Li、Na、K所組成之群中之〖種以上)之合計含量 為10.0%以下,而使玻璃之折射率不易降低,提高玻璃之 穩定性而減少失透等之產生。因此,Rn2〇成分之f量和相 對於氧化物換算組成之玻璃總質量較佳為以1〇 〇%為上 限,更佳為以5.0%為上限,最佳為以3 〇%為上限。 又,較佳為,於本發明之光學玻璃中,b2〇3成分、以〇 成分、W〇3成分及Lie成分之質量和為3〇%以上3〇〇%以 下。藉由使該等之質量和為3.0%以上,而玻璃轉移點變 161736.doc -20· 201236993 低,因此可獲得易於進行擠壓成形之玻璃。另一方面,藉 由使該質量和為30.0%以下’而玻璃之液相溫度之上升得 到抑制,因此可容易地獲得耐失透性更高之玻璃。因此, 質量和(BWs+ZnO+WCb+Li2。)相對於氧化物換算組成之玻 璃總質量較佳為以3.0%為下限,更佳為以5 〇%為下限,最 佳為以7.0%為下限,較佳為以3〇 〇%為上限,更佳為以 20.0%為上限,最佳為以18.0%為上限。 又’於本發明之光學玻璃中,ΙΑ成分、Zn0成分、 W〇3成分及Li2〇成分之質量和相對於Si〇2成分、Ge〇2成 分、Ta2〇5成分及Nt>2〇5成分之質量和的比例較佳為〇 5〇以 上5.00以下。藉由使該比例為〇.5以上,而相對於提高玻璃 轉移點之成分增加降低玻璃轉移點之成分的含量,因此可 容易地獲得玻璃轉移點更低之玻璃。另一方面,藉由使該 比例為5.00以下’而可容易地提高玻璃之耐失透性。因 此,氧化物換算組成中之質量比(B2〇3+ZnO+W〇3+Li2〇>/ (Si〇2+Ge〇2+Ta205+Nb205)較佳為以0.50為下限,更佳為以 0.55為下限’最佳為以〇.6〇為下限,較佳為以5 〇〇為上 限,更佳為以4_00為上限,進而較佳為以3.00為上限,最 佳為以2.00為上限。 P2〇5成分係具有降低玻璃之液相溫度而提高耐失透性之 效果的成分,係本發明之光學玻璃中之任意成分。尤其 是’可藉由使Ρζ〇5成分之含量為10.0%以下,而抑制玻璃 之化學穩定性之降低,尤其是耐水性。因此,P2〇5成分之 含量相對於氧化物換算組成之玻璃總質量較佳為以丨〇 〇% 161736.doc -21 - 201236993 為上限,更佳為以Μ)»/。為上限,最佳為以5 〇%為上限。 Ρ2〇5 成分例如可使用 Α1(Ρ〇3)3、Ca(P〇3)2、Ba(p〇3)2、 BPO4、HsPO4等作為原料而包含於玻璃内。The content of the NkO component is preferably an upper limit of 15.0 〇 / 相对 with respect to the total mass of the oxide-converted composition. More preferably, the upper limit is 5 %, and the upper limit is preferably 3.0%. 2 〇% is the upper limit ^ Ν & 2 〇 component can be contained in glass, for example, using Na2C03, NaN03, NaF, Na2SiF6, etc. as a raw material. The component K2 is a component which improves the meltability of the glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention. In particular, it is possible to suppress an increase in the partial dispersion ratio of the glass by making the content of the Κ2〇 component 150%. Further, by setting the content of the ruthenium 2 〇 component to 15 〇% or less, the refractive index of the glass is not easily lowered, and the stability of the glass is improved, and devitrification or the like is less likely to occur. Therefore, the content of the Κ2〇 component is preferably 15.0% as the upper limit, more preferably 5, and more preferably 3 〇%, and most preferably 2, based on the total mass of the oxide-converted composition. The upper limit. The Κ20 component can be contained, for example, in the glass using 2 (:03, ΚΝ〇3, KF, KHF2, and K2SiFe as a raw material. In the optical glass of the present invention, the RhO component can be used (wherein Rn is selected from The total content of the above-mentioned species of the group consisting of Li, Na, and K is 10.0% or less, and the refractive index of the glass is not easily lowered, and the stability of the glass is improved to reduce the occurrence of devitrification, etc. Therefore, the Rn2 component is obtained. The amount of f and the total mass of the glass relative to the oxide-converted composition are preferably an upper limit of 1% by weight, more preferably an upper limit of 5.0%, and most preferably an upper limit of 3 % by weight. In the optical glass of the present invention, the mass ratio of the b2〇3 component, the bismuth component, the W〇3 component, and the Lie component is 3% or more and 3% or less. By making the mass sum of 3.0% or more. , and the glass transfer point is changed to 161736.doc -20·201236993, so that the glass which is easy to be extruded can be obtained. On the other hand, the temperature of the liquid phase of the glass is increased by making the mass and 30.0% or less' Inhibition, so that glass with higher devitrification resistance can be easily obtained. Therefore, The total amount of the glass and the (BWs+ZnO+WCb+Li2.) relative to the oxide-converted composition is preferably 3.0% as the lower limit, more preferably 5 〇% as the lower limit, and most preferably 7.0% as the lower limit. Preferably, the upper limit is 3〇〇%, more preferably 20.0%, and the upper limit is 18.0%. Further, in the optical glass of the present invention, the bismuth component, the Zn0 component, and the W〇3 component are The mass of the Li2〇 component and the mass ratio of the Si〇2 component, the Ge〇2 component, the Ta2〇5 component, and the Nt>2〇5 component are preferably 〇5〇 or more and 5.00 or less. 〇.5 or more, and the content of the component which lowers the glass transition point is increased with respect to the component for increasing the glass transition point, so that the glass having a lower glass transition point can be easily obtained. On the other hand, by making the ratio 5.00 or less' However, the devitrification resistance of the glass can be easily improved. Therefore, the mass ratio in the oxide-converted composition (B2〇3+ZnO+W〇3+Li2〇>/(Si〇2+Ge〇2+Ta205+Nb205) It is preferable to use 0.50 as the lower limit, more preferably 0.55 as the lower limit, and the optimum is 〇.6〇 as the lower limit, preferably 5 〇〇 as the upper limit. More preferably, the upper limit is 4_00, and the upper limit is preferably 3.00, and the upper limit is 2.00. The P2〇5 component is a component having an effect of lowering the liquidus temperature of the glass and improving the resistance to devitrification. Any component of the optical glass of the invention, in particular, can reduce the chemical stability of the glass, especially the water resistance, by making the content of the cerium 5 component 10.0% or less. Therefore, the content of the P2〇5 component is The total mass of the glass relative to the oxide-converted composition is preferably 丨〇〇% 161736.doc -21 - 201236993 as the upper limit, more preferably Μ)»/. For the upper limit, the best is the upper limit of 5 〇%. The Ρ2〇5 component can be contained in the glass, for example, using Α1(Ρ〇3)3, Ca(P〇3)2, Ba(p〇3)2, BPO4, HsPO4 or the like as a raw material.

BhCb成分係提高玻璃之折射率、且降低玻璃轉移點之 成分,係本發明之光學玻璃中之任意成分。尤其是,可藉 由使Bi2〇3成刀之含量為1 〇 〇%以下,而抑制玻璃之耐失透 性之惡化或抑制部分色散比之上升,且使可見短波長(5〇〇 nm以下)之透光率不易惡化。因此,則2〇3成分之含量相對 於氧化物換算組成之玻璃總質量較佳為以1〇 〇%為上限, 更佳為以5.0%為上限’最佳為以3 〇%為上限。則2〇3成分 例如可使用BhO3等作為原料而包含於玻璃内。The BhCb component is an optional component in the optical glass of the present invention which increases the refractive index of the glass and lowers the composition of the glass transition point. In particular, by reducing the content of Bi2〇3 into a knives of 1% or less, it is possible to suppress the deterioration of the devitrification resistance of the glass or to suppress the increase in the partial dispersion ratio, and to make the visible short wavelength (5 〇〇 nm or less). The light transmittance is not easily deteriorated. Therefore, the content of the 2〇3 component is preferably an upper limit of 1〇 〇% with respect to the total mass of the oxide-converted composition, and more preferably an upper limit of 5.0% ‘optimally 3 〇% is the upper limit. Then, the 2〇3 component can be contained in the glass, for example, using BhO3 or the like as a raw material.

Te〇2成分係提高折射率之成分,係本發明之光學玻璃中 之任意成分。然而,在於鉑製之坩堝或與熔融玻璃相接之 部分為由鉑所形成的熔融槽中使玻璃原料熔融時,可 與翻發生合金化’因此存在掛禍或溶融槽之強度或耐熱性 易於惡化之問題。因此,Te〇2成分相對於氧化物換算組成 之玻璃總質量之含有率較佳為以1〇 〇%為上限,更佳為以 8,〇%為上限,最佳為以5.0%為上限^ Te〇2成分例如可使用 Te〇2專作為原料而包含於玻璃内。The Te〇2 component is a component which increases the refractive index and is an optional component in the optical glass of the present invention. However, in the case where the platinum or the portion in contact with the molten glass is a molten bath formed of platinum, when the glass raw material is melted, it can be alloyed with the turning. Therefore, the strength or heat resistance of the molten bath is easy. The problem of deterioration. Therefore, the content ratio of the Te〇2 component to the total mass of the glass in terms of the oxide-converted composition is preferably an upper limit of 1% by weight, more preferably an upper limit of 8, 〇%, and most preferably an upper limit of 5.0%. The Te〇2 component can be contained in the glass, for example, using Te〇2 as a raw material.

Alz〇3成分係易於形成穩定之玻璃且提高破璃之化學穩 定性之成分。尤其是,可藉由使A丨2〇3成分之含量為1〇予〇: 以下’而抑制玻璃之耐失透性之惡化。The Alz〇3 component is a component which is easy to form a stable glass and which improves the chemical stability of the glass. In particular, the deterioration of the devitrification resistance of the glass can be suppressed by setting the content of the A丨2〇3 component to 1:.

Ai2U3成分 之含量相對於氧化物換算組成之玻璃總質量較佳為以 10.0%為上限,更佳為以5·0%為上限,最佳為以2 〇%為上 16I736.docThe content of the Ai2U3 component is preferably an upper limit of 10.0% with respect to the total mass of the oxide-converted composition, more preferably an upper limit of 5.0%, and most preferably 2% by weight.

•22- 201236993 限° ai2o3成分例如可使用Ai2〇3、a](oh)3、a1F3等作為原 料而包含於玻璃内。• 22-201236993 Limit The ai2o3 component can be contained in glass, for example, using Ai2〇3, a](oh)3, a1F3, etc. as a raw material.

Ga2〇3成分係易於形成穩定之玻璃且提高折射率之成 分,係本發明之光學玻璃中之任意成分。尤其是,可藉由 使GkO3成分之含量分別為1〇〇%以下,而抑制玻璃之阿貝 數之降低,且減少玻璃之材料成本。因此,Ga2〇3成分之 含量相對於氧化物換算組成之玻璃總質量分別較佳為以 0 /〇為上限,更佳為以5 為上限,最佳為以2 〇%為上 限。GaA3成分例如可使用Ga2〇3、Ga(〇H)3等作為原料而 包含於玻璃内。The Ga2〇3 component is a component which is easy to form a stable glass and which has an increased refractive index, and is an optional component in the optical glass of the present invention. In particular, by reducing the content of the GkO3 component by 1% or less, the reduction in the Abbe number of the glass can be suppressed, and the material cost of the glass can be reduced. Therefore, the content of the Ga2〇3 component is preferably an upper limit of 0/〇, more preferably an upper limit of 5, and most preferably an upper limit of 2% by weight, based on the total mass of the glass of the oxide-converted composition. The GaA3 component can be contained in the glass, for example, using Ga2〇3, Ga(〇H)3 or the like as a raw material.

Sh〇3成分係使熔融玻璃消泡之成分係本發明之光學 玻璃中之任意成分。尤其是’可藉由使%〇3成分之含量 為1.0%以τ,而不易產生玻璃㈣時之過度之發泡,使 讥2〇3成分不易與熔解設備(尤其是汛等貴金屬)進行合金 匕因此,Sb2〇3成分之含量相對於氧化物換算組成之玻 璃總質量較佳為以⑽為上限’更佳為以〇 8%為上限,最 ^圭為以〇.州為上限。Sb2〇3成分例如可使用叫〇3、 b办、Na2H2Sb2(V5H2C)料為原料而包含於玻璃内。 再者’使玻璃澄清且消泡之成分並不限定於上述之 公成分’可使用玻璃製造之領域中之公知之潑清劑、 :::或者該等之組合。此時,Sb2〇3成分或“A成分等 為?丨之含量之合計較佳為以h〇%為上限,更佳為以〇8% 對^,最佳為以0.5%為上限。尤其是,就可容易地獲得 衣兄之負荷較少之玻璃之觀點而言,消泡劑之含量之合 161736.doc -23- 201236993 計亦可設為未達〇·ι%。 <關於不應含有之成分> 繼而,針對本發明之光學玻璃中不應含有之成分及較佳 為不含有之成分進行說明。 於本發明之光學玻璃中,可於無損本案發明之玻璃之特 性之範圍内視需要而添加其他成分。其中,Ge〇2成分由於 會知玻璃之色散性’故而較佳為實質上不含該成分。 又,除 Ti、Zr、Nb、W、La、Gd、Y、Yb、Lu 以外, V、Cr、Μη、Fe、Co、Ni、Cu、Ag 及 各過渡金屬成 为由於即便於單獨或進行複合而少量含有該各成分之情形 時,亦會使玻璃著色而吸收可見光區域之特定之波長,故 而較佳為尤其是於使用可見區域之波長之光學玻璃中實質 上不包含該各成分。 進而,PbO等鉛化合物及aS2〇3等砷化合物、以及Th、 Cd、Ή、Os、Be、Se之各成分近年來存在作為有害化學物 品而控制使用之傾向,不僅於玻璃之製造步驟中,甚至包 括加工步驟及製品化後之處理中均必需採取保護環境方面 之措施。因此,較佳為,於重視環境上之影響之情形時, 除不可避免之混入以外,實質上不含有該等。藉此,於光 學玻璃中實質上不包含污染環境之物質。因此,即便不採 取特別之保護環境方面之措施,亦可製造、加工及廢棄該 光學玻璃。 於本發明之玻璃組合物中,由於其組成係以相對於氧化 物換算組成之玻璃總質量之質量%進行表示,故而無法直 161736.doc -24· 201236993 接表示成mol°/〇之記載’關於存在於滿足本發明中所要求 之諸特性之玻璃組合物中之各成分之mol%表示的組成, 以氧化物換算組成計,大致為以下之值。 B203成分 2.0〜55·0. mol%, Ti02成分 大於 0 mol% 〜55.0 mol%,及 Nb2〇5成分 以及 大於0 mol%〜20.0 mol%, La2〇3成分 0〜30.0 mol%,及/或 Si〇2成分 0〜50.0 mol%,及/或 Zr02成分 0〜20.0 mol%,及/或 Ge02成分 0~10,0 mol%,及/或 Ta2〇5成分 0〜7.0 mol%,及/或 W03成分 0〜7.0 mol%,及/或 Sn02成分 0〜5.0 mol%,及/或 Gd2〇3成分 0~12.0 mol%,及/或 Y2〇3成分 0〜20.0 mol%,及/或 Yb2〇3成分 0~3.0 mol%,及/或 Lll2〇3成分 0~3.0 mol%,及/或 MgO成分 0~45.0 mol°/。,及/或 CaO成分 0〜35.0 mol%,及/或 SrO成分 0~30.0 mol%,及/或 BaO成分 0-50.0 mol%,及/或 ZnO成分 0〜30.0 mol%,及/或 Li20成分 0〜55.0 mol%,及/或 161736.doc -25- 201236993The Sh〇3 component is a component which defoams molten glass is an arbitrary component in the optical glass of this invention. In particular, it is possible to make the 讥2〇3 component difficult to alloy with a melting device (especially a noble metal such as ruthenium) by making the content of the % 〇 3 component 1.0% to τ and not easily generating the glass (four). Therefore, the content of the Sb2〇3 component is preferably the upper limit of (10) with respect to the total mass of the glass in terms of the oxide conversion composition, and the upper limit is preferably 〇8%, and the upper limit is 〇. The Sb2〇3 component can be contained in the glass, for example, using a material called 〇3, b, and Na2H2Sb2 (V5H2C). Further, 'the component which clarifies and defoams the glass is not limited to the above-mentioned common component'. A well-known detergent in the field of glass production, ::: or a combination of these may be used. In this case, the total content of the Sb2〇3 component or the "A component or the like" is preferably an upper limit of h〇%, more preferably 〇8% ^, and most preferably 0.5% upper limit. In view of the fact that it is easy to obtain a glass with less load on the clothes, the content of the antifoaming agent can be set to 161736.doc -23- 201236993 can also be set to less than ι·ι%. The component contained therein is described with respect to the component which should not be contained in the optical glass of the present invention, and the component which is preferably not contained. In the optical glass of the present invention, it is possible to avoid the characteristics of the glass of the invention of the present invention. Other components are added as needed. Among them, the Ge 2 component is preferably substantially free of such components because it knows the dispersibility of the glass. Further, in addition to Ti, Zr, Nb, W, La, Gd, Y, Yb In addition to Lu, V, Cr, Μη, Fe, Co, Ni, Cu, Ag, and each transition metal may cause the glass to be colored to absorb the visible light region even when the components are contained in a small amount, either alone or in combination. a particular wavelength, so it is preferred to use a visible region, especially The long-term optical glass does not substantially contain such a component. Further, a lead compound such as PbO and an arsenic compound such as aS2〇3, and various components of Th, Cd, yttrium, Os, Be, and Se are present as harmful chemicals in recent years. The tendency to control the use of environmental protection measures must be taken not only in the manufacturing steps of the glass, but also in the processing steps and after the product is processed. Therefore, it is preferable to pay attention to environmental influences. In addition to the inevitable mixing, the material is not substantially contained. Therefore, the optical glass does not substantially contain substances that pollute the environment. Therefore, it can be manufactured, processed, and discarded without taking special measures to protect the environment. Optical glass. In the glass composition of the present invention, since the composition is expressed by mass% of the total mass of the glass in terms of oxide composition, it cannot be expressed as mol 161 736.doc -24 · 201236993 The description of the composition of the mol% of each component present in the glass composition satisfying the characteristics required in the present invention is oxidized. The composition of the material is approximately the following values: B203 component 2.0~55·0. mol%, Ti02 component greater than 0 mol% 〜55.0 mol%, and Nb2〇5 component and greater than 0 mol%~20.0 mol%, La2〇 3 components 0~30.0 mol%, and/or Si〇2 component 0~50.0 mol%, and/or Zr02 component 0~20.0 mol%, and/or Ge02 component 0-10,0 mol%, and/or Ta2〇 5 components 0 to 7.0 mol%, and/or W03 components 0 to 7.0 mol%, and/or Sn02 components 0 to 5.0 mol%, and/or Gd2〇3 components 0 to 12.0 mol%, and/or Y2〇3 components 0~20.0 mol%, and/or Yb2〇3 component 0~3.0 mol%, and/or Lll2〇3 component 0~3.0 mol%, and/or MgO component 0~45.0 mol°/. And/or CaO component 0~35.0 mol%, and/or SrO component 0~30.0 mol%, and/or BaO component 0-50.0 mol%, and/or ZnO component 0~30.0 mol%, and/or Li20 component 0~55.0 mol%, and/or 161736.doc -25- 201236993

Na2〇成分 0〜40.0 mol%,及/或 K2〇成分 0〜30.0 mol%,及/或 P2O5成分 0〜15.0 mol°/。,及/或 則2〇3成分〇〜3.0 mol%,及/或 Te02成分 0〜10.0 mol%,及/或 AI2O3成分 〇〜20.0 mol%,及/或 Ga2〇3成分 0~10.0 mol%,及/或 Sb2〇3成分 0〜0.5 mol% [製造方法] 本發明之光學玻璃係以例如以下之方式而製成。即,將 使上述原料以各成分成為特定之含量之範圍内之方式均勾 地混合而製成的混合物投入鉑坩堝、石英坩堝或氧化銘堆 堝中並進行粗熔融,此後投入金坩堝、鉑坩堝、舶合金堆 堝或銥坩堝申並於1200〜1 500t之溫度範圍中使其炫融3〜5 小時’於攪拌均質化並進行消泡等後,使溫度下降至 1200°C以下後進行精攪拌而去除紋理,再使用成形模進行 成形’藉此製成本發明之光學玻璃。 [物性] 本發明之光學玻璃較佳為具有特定之高折射率並且具有 較低之色散(較高之阿貝數更具體而言,本發明之光學 玻璃之折射率(nd)較佳為以丨8〇為下限,更佳為以1 Μ為下 限’進而較佳為以副為下ΡΡ、,最佳為以195為下限:另 -方面,本發明之光學玻璃之折射率(nd)之上限無特別限 -26- 161736.docNa2〇 component 0~40.0 mol%, and/or K2〇 component 0~30.0 mol%, and/or P2O5 component 0~15.0 mol°/. And/or 2〇3 components 〇~3.0 mol%, and/or Te02 components 0~10.0 mol%, and/or AI2O3 components 〇~20.0 mol%, and/or Ga2〇3 components 0~10.0 mol%, And/or Sb2〇3 component 0 to 0.5 mol% [Production method] The optical glass of the present invention is produced, for example, in the following manner. In other words, a mixture prepared by mixing the above-mentioned raw materials in a range in which the respective components are within a specific content is put into a platinum crucible, a quartz crucible, or an oxidized stack, and is roughly melted, and thereafter, gold crucible, platinum is introduced.坩埚, 合金 合金 合金 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 舶 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 The optical glass of the present invention is produced by finely agitating to remove the texture and then forming using a forming mold. [Physical Properties] The optical glass of the present invention preferably has a specific high refractive index and has a low dispersion (higher Abbe number. More specifically, the refractive index (nd) of the optical glass of the present invention is preferably丨8〇 is the lower limit, more preferably 1 Μ is the lower limit' and further preferably the sub 为 is lower, and most preferably 195 is the lower limit: another aspect, the refractive index (nd) of the optical glass of the present invention The upper limit is not limited to -26-161736.doc

201236993 定,但多數情況大致為2.20以下,更具體而言為21〇以 下,進而具體而言為2 〇5以下。又,本發明之光學玻璃之 阿貝數(vd)較佳為以22為下限,更佳為以24為下限,最佳 為以26為下限。另一方面,本發明之光學玻璃之阿貝數 (vd)之上限無特別限定,但多數情況大致為%以下。藉 此,光學設計之自由度增加,進而即便謀求元件之薄型化 亦可獲得較大之光之折射量。 又,本發明之光學玻璃具有較低之部分色散比(0g, F)。更具體而言,本發明之光學玻璃具有〇615以下之部分 色散比(eg,f)。藉此,即便於高折射率低色散之區域亦 可獲得部分色散比較小之光學玻璃,因此可減少由該光學 玻璃所形成之光學元件之色像差。此處,光學玻璃之部分 色散比(eg,f)較佳為以〇·615為上限,更佳為以〇 61〇為上 限,最佳為以0.605為上限。另一方面,本發明之光學玻 璃之部分色散比(0g,F)之下限無特別限定,多數情況為 大致0.585以上,更具體而言為〇.588以上,進而具體而言 為0.590以上。 本發明之光學玻璃之部分色散比(eg,f)係基於日本光 學玻璃工業會規格JOGIS01-2003而測定。再者,本測定中 所使用之玻璃係將緩冷降溫速度設為-25。(〕/hr而利用緩冷 爐進行處理者。 又,本發明之光學玻璃較佳為著色較少。尤其是,本發 明之光學玻璃若以玻璃之穿透率來表示,則於厚度為1〇 161736.doc -27· 201236993 mm之樣品中顯示分光穿透率7〇%之波長(λ7〇)為52〇 nm& 下,更佳為500 run以下,最佳為48〇 nm以下。又,本發明 之光學玻璃於厚度為10 樣品中顯示分光穿透率5%之 波長(λ;)為420 nm以下,更佳為4〇〇 nm以下,最佳為38〇 nm以下。藉此,使玻璃之吸收端位於紫外區域之附近,可 見光區域中之玻璃之透明性提高,因此可將該光學玻璃用 作透鏡等光學元件之材料。 本發明之光學玻璃之穿透率係基於日本光學玻璃工業會 規格JOGIS02而測定。具體而言,將厚度為1〇±〇丨 對面平行研磨品依據JISZ8722而測定其2〇〇〜8〇〇 nm之分光 穿透率,求出λ7〇(穿透率70%時之波長)及人5(穿透率5%時之 波長)。 又,本發明之光學玻璃較佳為耐失透性較高。尤其是本 發明之光學玻璃較佳為具有124(rc以下之較低之液相溫 度。更具體而言,本發明之光學玻璃之液相溫度較佳為以 1240 C為上限’更佳為以12〇〇<>c為上限,進而較佳為以 118〇°C為上限,最佳為以1160°C為上限。藉此,玻璃之穩 疋性提高且晶體減少’因此可提高自熔融狀態而形成玻璃 時之耐失透性’且可減少對使用玻璃之光學元件之光學特 性的影響°另一方面,本發明之光學玻璃之液相溫度之下 限無特別限定’但由本發明所獲得之玻璃之液相溫度多數 睛况大致為5〇〇。(:以上,具體而言為55〇eC以上,進而具體 而言為60〇°c以上。 161736.doc -28- 201236993 關於本發明之光學玻璃之液相溫度,係於50 ml容量之 翻製掛禍中投入30 cc玻璃屑狀之玻璃試樣並使其於1350 °C 下成為完全熔融狀態,後降溫至自1300。(:〜1000。(:為止每 !〇°C而設定之任一溫度並保持12小時,再取出至爐外並於 剛冷卻後立即觀察玻璃表面及玻璃中是否有晶體,並根據 此時之未能確認有晶體之最低溫度而求出。 再者,本發明之光學玻璃之耐失透性除上述液相溫度以 外,亦可藉由如下保溫試驗而求出:將玻璃原料投入5〇 cc 舶製之坩堝中並使其於1200。(:〜1400。(:之爐内熔解120分鐘 左右,於進行攪拌使其均質化後,將所獲得之玻璃於設定 為1000〜11 50eC之爐内保持10小時’再觀察析出於玻璃之 表面及内部以及與坩堝之内壁之接觸面上的晶體。 [預製件及光學元件] 例如可利用再熱擠壓成形或精密擠壓成形等模壓成形之 方法’以所製成之光學玻璃製成玻璃成形體。即,可以光 學玻璃製成模壓成形用之預製件,再於對該預製件進行再 熱擠壓成形之後進行研磨加工而製成玻璃成形體,或例如 可對進行研磨加工所製成之預製件進行精密擠壓成形而形 成玻璃成形體。再者’製成玻璃成形體之方法並不限定於 該等。 以上述方式所製成之玻璃成形體可用於各種光學元件 中’其中尤佳為用於透鏡或稜鏡等光學元件之用途中。藉 此’使設置有光學元件之光學系統之穿透光中由色像差所 161736.doc •29- 201236993 導致的色之模糊減少。因此,於將該光學元件用於相機之 情形時可更加準確地表現拍攝對象,於將該光學元件用於 投影儀之情形時可進一步高精度並高彩度地投影所需影 像。 [實施例] 將本發明之實施例(No. 1〜No.63)及參考例(No. 1〜Νο·3)之 組成、以及該等之玻璃之折射率(nd)及阿貝數(vd)、部分色 散比(eg,F)、穿透率70%時之波長(λ70)[ηιη]、穿透率5%時 之波長(λ5)[nm]及液相溫度[°C]之值示於表1〜表9中。再 者’以下之實施例僅用於例示,本發明並不僅限定於該等 實施例。 關於本發明之實施例(No. 1〜No.63)及參考例(No. 1〜No.3) 之玻璃,均選定各自相應之氧化物、氫氧化物、碳酸鹽、 硝酸鹽、氟化物、偏磷酸化合物等通常之光學玻璃中所使 用之高純度原料作為各成分之原料,進行秤量以成為表卜 表9中所示之各實施例及參考例之組成之比例並均勻混 合,此後投入鉑坩堝中’並依據玻璃組成之熔融難易程度 而於電爐中於1200〜1500。(:之溫度範圍内熔解3〜5小時,再 於攪拌均質化並進行消泡等之後,澆鑄於模具中並進行緩 冷而製作玻璃。 此處,實施例(No. 1〜No.63)及參考例(No.^No 3)之玻璃 之折射率(nd)、阿貝數(Vd)及部分色散比(0g,F)係基於日 本光學玻璃工業會規格JOGIS01-2003而測定。再者,本測 -30- 161736.doc201236993 is fixed, but in most cases it is approximately 2.20 or less, more specifically 21〇 or less, and specifically 225 or less. Further, the Abbe's number (vd) of the optical glass of the present invention is preferably 22 as the lower limit, more preferably 24 as the lower limit, and most preferably 26 as the lower limit. On the other hand, the upper limit of the Abbe number (vd) of the optical glass of the present invention is not particularly limited, but in many cases, it is approximately at most %. As a result, the degree of freedom in optical design is increased, and even if the element is thinned, a large amount of light can be obtained. Further, the optical glass of the present invention has a lower partial dispersion ratio (0g, F). More specifically, the optical glass of the present invention has a partial dispersion ratio (eg, f) below 〇615. Thereby, even in the region of high refractive index and low dispersion, an optical glass having a relatively small partial dispersion can be obtained, so that chromatic aberration of the optical element formed of the optical glass can be reduced. Here, the partial dispersion ratio (eg, f) of the optical glass is preferably an upper limit of 〇·615, more preferably an upper limit of 〇61〇, and most preferably an upper limit of 0.605. On the other hand, the lower limit of the partial dispersion ratio (0g, F) of the optical glass of the present invention is not particularly limited, and is usually substantially 0.585 or more, more specifically 〇.588 or more, and more specifically 0.590 or more. The partial dispersion ratio (eg, f) of the optical glass of the present invention is measured based on the Japanese Optical Glass Industry Association specification JOGIS01-2003. Further, the glass used in the measurement was set to a slow cooling rate of -25. ()/hr is processed by a slow cooling furnace. Further, the optical glass of the present invention preferably has less coloration. In particular, the optical glass of the present invention has a thickness of 1 if it is expressed by the transmittance of glass. 〇161736.doc -27· The sample showing the spectral transmittance of 7〇% (λ7〇) in the sample of 201236993 mm is 52〇nm&, more preferably 500 run or less, and most preferably 48〇nm or less. The optical glass of the present invention exhibits a wavelength (λ;) of 5% of the spectral transmittance in a thickness of 10 samples of 420 nm or less, more preferably 4 Å or less, and most preferably 38 Å or less. The absorption end of the glass is located in the vicinity of the ultraviolet region, and the transparency of the glass in the visible light region is improved, so that the optical glass can be used as a material of an optical element such as a lens. The transmittance of the optical glass of the present invention is based on the Japanese optical glass industry. The measurement is performed in accordance with the specification JOGIS02. Specifically, the light transmittance of 2 〇〇 to 8 〇〇 nm is measured according to JIS Z8722 with a thickness of 1 〇 ± 〇丨 opposite parallel polishing product, and λ 7 〇 (penetration rate 70) is obtained. Wavelength at %) and person 5 (wavelength at 5% penetration) Further, the optical glass of the present invention preferably has a high resistance to devitrification. In particular, the optical glass of the present invention preferably has a lower liquidus temperature of 124 (r or less. More specifically, the optical glass of the present invention The liquidus temperature is preferably an upper limit of 1240 C. More preferably, 12 〇〇 <> c is the upper limit, and further preferably 118 〇 ° C is the upper limit, and most preferably 1160 ° C is the upper limit. Thereby, the stability of the glass is improved and the crystal is reduced, so that the devitrification resistance when the glass is formed from the molten state can be improved and the influence on the optical characteristics of the optical element using the glass can be reduced. On the other hand, the present invention The lower limit of the liquidus temperature of the optical glass is not particularly limited. However, the liquid phase temperature of the glass obtained by the present invention is mostly 5 〇〇. (: Above, specifically 55 〇eC or more, and more specifically 60 〇 °c or more. 161736.doc -28- 201236993 About the liquidus temperature of the optical glass of the present invention, a glass sample of 30 cc glass frit is placed in a 50 ml capacity conversion At 1350 °C, it becomes completely molten, and then cools down to 1 300. (:~1000. (: Every temperature set by 〇 °C for 12 hours, then taken out to the outside of the furnace and immediately observed immediately after cooling, whether there is crystal on the glass surface and glass, and according to this In addition, the devitrification resistance of the optical glass of the present invention can be determined by the following heat preservation test in addition to the liquid phase temperature: the glass raw material is put into 5 〇 cc is made in 坩埚 并 使其 1200 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1400 ( 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 The furnace was kept for 10 hours' and the crystals on the surface and inside of the glass and the contact surface with the inner wall of the crucible were observed. [Preform and optical element] For example, a glass molded body can be produced from the produced optical glass by a method of press forming such as reheat extrusion molding or precision extrusion molding. That is, the preform for the press molding can be made of optical glass, and then the preform can be subjected to a reheat extrusion molding to be subjected to a grinding process to form a glass molded body, or a preform which can be processed, for example, by grinding. Precision extrusion molding is performed to form a glass molded body. Further, the method of forming the glass molded body is not limited to these. The glass formed body produced in the above manner can be used in various optical elements, and particularly preferably used for optical elements such as lenses or iridium. By this, the blurring of the color caused by the chromatic aberration 161736.doc •29-201236993 is reduced in the transmitted light of the optical system provided with the optical element. Therefore, the subject can be more accurately expressed when the optical element is used in a camera, and the desired image can be projected with higher precision and high chroma when the optical element is used in the projector. [Examples] The compositions of the examples (No. 1 to No. 63) and the reference examples (No. 1 to Νο. 3) of the present invention, and the refractive indices (nd) and Abbe numbers of the glasses (the glass) Vd), partial dispersion ratio (eg, F), wavelength (λ70) [ηιη] at a transmittance of 70%, wavelength (λ5) [nm] at a transmittance of 5%, and liquidus temperature [°C] The values are shown in Tables 1 to 9. Further, the following examples are for illustrative purposes only, and the invention is not limited to the embodiments. Regarding the glass of the examples (No. 1 to No. 63) and the reference examples (No. 1 to No. 3) of the present invention, respective oxides, hydroxides, carbonates, nitrates, and fluorides were selected. A high-purity raw material used in a usual optical glass such as a metaphosphoric acid compound is used as a raw material of each component, and is weighed so as to have a ratio of the composition of each of the examples and the reference examples shown in Table 9, and uniformly mixed, and thereafter, In the platinum crucible, it is in the electric furnace at 1200~1500 depending on the ease of melting of the glass composition. (The temperature range is melted for 3 to 5 hours, homogenized by stirring, defoamed, etc., and then cast in a mold and slowly cooled to prepare glass. Here, Examples (No. 1 to No. 63) The refractive index (nd), the Abbe number (Vd), and the partial dispersion ratio (0g, F) of the glass of the reference example (No.^No 3) were measured based on the Japanese Optical Glass Industry Association specification JOGIS01-2003. , the test -30- 161736.doc

201236993 定中所使用之玻璃係將緩冷降溫速度設為-25。〇/hr而利用 緩冷爐進行處理者。 又,實施例(Νο·1〜No.63)及參考例(No.l〜No.3)之玻璃之 穿透率係基於日本光學玻璃工業會規格JOGIS02而測定。 再者,於本發明中,藉由測定玻璃之穿透率而求出玻璃之 著色之有無及程度。具體而言,將厚度為lOiO」mm之對 面平行研磨品依據JISZ8722測定其200〜800 nm之分光穿透 率’並求出穿透率70%時之波長(λ70)及λ5(穿透率5%時之波 長)。 又’關於實施例(No.l〜No.63)及參考例(No. 1~Νο·3)之玻 璃之液相溫度,於5〇 ml容量之鉑製坩禍_投入3〇 cc玻璃 屑狀之玻璃試樣並使其於丨35〇°c下成為完全熔融狀態,後 降溫至自1300。(:〜i〇〇〇°c為止每1〇。〇而設定之任一溫度並 保持12小時,此後取出至爐外並於冷卻後立即觀察玻璃表 面及玻璃中是否有晶體,根據此時之未能確認有晶體之最 低溫度而求出。 161736.doc -31- 201236993 [表i] 實施例 2 3 4 5 6 7 8 B2〇3 9.943 9.842 9.972 9.803 9.921 ».611 9.857 9.428 TiOj 1 4.624 14.476 13.389 14.419 14.592 14.135 14.204 11.967 NbaOe 8.122 8.040 8.146 8.008 8.104 7.851 7.889 9.602 La203 46.803 46.331 46.940 46.146 46.701 47.787 48.020 49.255 sio2 4.821 4.773 4.836 4.754 4.81 1 4.660 4.683 4.572 ZrOz 5.962 5.902 5.980 5.878 5.949 5.763 5.791 5.653 GeO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta8Oe 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.000 0.000 0.000 0.000 0.700 0.678 0.681 0.665 Sn02 0.000 1.1Θ0 1.187 1.186 0.700 0.678 0.681 0.665 GdaOa 7.752 7.674 7.775 7.644 7.735 7.493 7.530 7.351 0.570 0.564 0.572 0.562 0.569 0.551 0.554 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0:000 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 1.403 0.000 0.000 0.000 a.ooo 0.000 0.000 0.000 LiaO 0.000 1.190 1.187 1.381 a.2〇o 0.775 0.292 0.285 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 KaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai£o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.000 0.018 0.018 0.0 18 0.0t8 0.018 0.018 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 55.126 54.569 55.287 54.353 55.005 55.832 56.104 57.146 (Le+Gd+Y + Yb + Lu)/Ti 3.770 3.770 4.129 3.770 3.770 3.950 3.950 4.775 Ti+Nb 22.746 22.5t6 21.535 22.427 22.696 21.986 22.093 21.568 (Ge+Ta)/(Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb-^Ta 8.122 8.040 8.146 8.008 8.104 7.851 7.689 9.602 Ti/(Nb+Ta) 1.Θ01 1.801 1.644 1.80t 1.801 1.801 1.601 1.246 W/Sn - 0.000 0.000 0.000 1.000 1.000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 1.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.000 t.190 1.187 1.581 0.200 0.775 0.292 0.285 B+2n+W+Li 11.345 11.032 11.158 11.384 10.821 11.063 10.631 10.378 (Si+Ge+Ta+Nb)/ (B+Zn+W+Lr) 1.141 1.16t 1.163 1.121 1.194 1.131 1.183 1.366 2.0009 1.98905 1.98207 1.98404 2.001 21 1.9954Θ 2.00102 1.99620 28.3 28.7 29.3 28.9 28.3 28.7 28.5 29.3 Θ g,F 0.6024 0.6009 0.6030 0.6017 0.6012 0.5992 又70 451.5 465.5 460.5 462 471.5 458 466.5 449.5 At 369 368.5 386.5 366.5 373 368 37 1 366.5 液相溫度 1220 161736.doc •32-The glass system used in 201236993 will set the slow cooling rate to -25. 〇/hr and use a slow cooling furnace for processing. Further, the glass transmittances of the examples (Νο·1 to No. 63) and the reference examples (No. 1 to No. 3) were measured based on the Japanese Optical Glass Industry Association specification JOGIS02. Further, in the present invention, the presence or absence of the coloration of the glass is determined by measuring the transmittance of the glass. Specifically, the opposite parallel polishing product having a thickness of 10 μm” mm is measured for the light transmittance of 200 to 800 nm according to JIS Z8722 and the wavelength (λ70) and λ5 (penetration rate 5) at a transmittance of 70% are determined. The wavelength at %). Further, regarding the liquid phase temperature of the glass of the examples (No.1 to No.63) and the reference example (No.1 to Νο.3), the platinum solution of the capacity of 5 〇ml was thrown into the glass crumb of 3 〇cc. The glass sample was allowed to become completely molten at 丨35 ° C, and then cooled to 1300. (:~i〇〇〇°c for every 1 inch.) Set any temperature for 12 hours, then take it out to the outside of the furnace and immediately observe the glass surface and the crystal in the glass after cooling, according to this time. It was found that the lowest temperature of the crystal was not confirmed. 161736.doc -31- 201236993 [Table i] Example 2 3 4 5 6 7 8 B2〇3 9.943 9.842 9.972 9.803 9.921 ».611 9.857 9.428 TiOj 1 4.624 14.476 13.389 14.419 14.592 14.135 14.204 11.967 NbaOe 8.122 8.040 8.146 8.008 8.104 7.851 7.889 9.602 La203 46.803 46.331 46.940 46.146 46.701 47.787 48.020 49.255 sio2 4.821 4.773 4.836 4.754 4.81 1 4.660 4.683 4.572 ZrOz 5.962 5.902 5.980 5.878 5.949 5.763 5.791 5.653 GeO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta8Oe 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.000 0.000 0.000 0.000 0.700 0.678 0.681 0.665 Sn02 0.000 1.1Θ0 1.187 1.186 0.700 0.678 0.681 0.665 GdaOa 7.752 7.674 7.775 7.644 7.735 7.493 7.530 7.351 0.570 0.564 0.572 0.562 0.569 0.551 0.554 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0:000 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 1.403 0.000 0.000 0.000 a.ooo 0.000 0.000 0.000 LiaO 0.000 1.190 1.187 1.381 a.2〇o 0.775 0.292 0.285 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 KaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai£o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.000 0.018 0.018 0.0 18 0.0t8 0.018 0.018 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 55.126 54.569 55.287 54.353 55.005 55.832 56.104 57.146 (Le+Gd+Y + Yb + Lu)/Ti 3.770 3.770 4.129 3.770 3.770 3.950 3.950 4.775 Ti+ Nb 22.746 22.5t6 21.535 22.427 22.696 21.986 22.093 21.568 (Ge+Ta)/(Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb-^Ta 8.122 8.040 8.146 8.008 8.104 7.851 7.689 9.602 Ti/(Nb+Ta) 1. Θ01 1.801 1.644 1.80t 1.801 1.801 1.601 1.246 W/Sn - 0.000 0.000 0.000 1.000 1. 000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 1.403 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.000 t.190 1.187 1.581 0.200 0.775 0.292 0.285 B+2n+W+Li 11.345 11.032 11.158 11.384 10.821 11.063 10.631 10.378 (Si+Ge+Ta+Nb)/ (B+Zn+W+Lr) 1.141 1.16t 1.163 1.121 1.194 1.131 1.183 1.366 2.0009 1.98905 1.98207 1.98404 2.001 21 1.9954Θ 2.00102 1.99620 28.3 28.7 29.3 28.9 28.3 28.7 28.5 29.3 Θ g,F 0.6024 0.6009 0.6030 0.6017 0.6012 0.5992 and 70 451.5 465.5 460.5 462 471.5 458 466.5 449.5 At 369 368.5 386.5 366.5 373 368 37 1 366.5 Liquid temperature 1220 161736.doc • 32-

201236993 [表2] 實施例 9 10 11 12 13 1.4 15 16 B2〇3 9.428 9.428 9.428 9.428 9.518 8.559 9.657 9.705 τιο2 Η.967 13.392 13.867 11.967 12.561 12.081 12.258 12.318 Nb2Oe 9.602 9.602 7.702 9.602 9.214 9.694 9.835 9.884 La2〇a 47.354 47.829 49.255 49.255 48.768 49.727 48.020 47.768 Si02 4.572 4.572 4.572 4.572 4.61 6 4.616 4.683 4.706 2r02 5.653 5.853 5.653 5.653 5.707 5.707 5.791 5.819 GeOz 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.665 0.665 0.665 0.665 0.671 0.671 0.681 0.685 Sn02 0.665 0.665 0.665 0.665 0.671 0.671 0.681 0.Θ85 Gd203 7.351 7.351 7.351 7.351 7.422 7.422 7.530 7.567 Ya〇3 0.541 0.54t 0.541 0.541 0.546 0.546 0.554 0.556 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 1.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LiaO 0.285 0.285 0.285 0.285 0.288 0.288 0.292 0.293 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2Oa 0.017 0.017 0.017 0.018 0.017 0.017 0.018 0.018 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 55.246 55.721 57.146 57.146 56.735 57.694 56.104 55.889 (La + Gd+Y+Yb + Lu)/Ti 4.617 4.161 4.121 4.775 4.517 4.775 4.577 4.537 Ti + Nb 21.568 22.994 21.568 21.566 21.775 21.775 22.093 22.201 (Ge + Ta)/(Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ta 9.602 9.602 7.702 9.602 9.214 9.694 9.835 9.884 Ti/(Nb+Ta) 1.246 1.395 1.801 1.246 1.363 1.246 1.24B 1.246 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 1.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.288 0.238 0.292 0.293 B+Zn+W+Li 10.378 10.378 10.378 10.378 10.478 9.518 10.631 10.683 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 1.366 1.36G 1.183 1.366 1.320 1.503 1.366 1.366 Ι.ΘΘ100 2.00393 2.00126 1.99637 1.99755 a.00463 t.99584 1.99344 29.3 28.5 28.7 29.3 29 29 29 28.9 9g.f 0.5988 0.6012 0.6009 0.5995 0.6002 0.5990 0.6008 0.6001 A,〇 447.5 454 459.5 448.5 461.5 455.5 464.5 456.5 又5 36a.5 368.5 369 36β.5 369 307 370 369 液相溫度 1220 1200 33- 161736.doc 201236993 [表3] 實施例 17 18 L9 20 21 22 23 24 b2〇3 9.339 8.734 9.428 9.428 9.428 9.428 9.428 9.998 Τί〇2 1 1.854 1 1.Θ67 11.967 1 1.967 11.967 11.967 11.967 13.857 Nb205 9.511 9.602 9.602 9.802 9.602 9.602 9.Θ02 9.602 La 2 〇3 48.791 49.255 47.354 45.454 48.305 39.754 35.003 4Θ.794 SIO£ 4.529 4.572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.600 5.653 5.653 5.653 5.653 5.653 5.653 5.653 GeOs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2O0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.659 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.659 0.665 0.666 0.665 0.665 0.665 0.665 0.665 Gd203 7.282 8.045 9.251 11.151 7.351 16.652 21.603 7.351 Y2〇3 0.536 0.541 0.541 0.541 0.541 0.541 0.541 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.941 0.000 0.000 0.000 0.950 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LizO 0.282 0.285 0.285 0.285 0:285 0.285 0.285 0.285 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Al203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.017 0.017 0.017 0.01 7 0.018 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 56.608 57.840 57.146 57.140 56.196 57.146 57.14« 54.685 (La+Gd+Y+Yb+Lu)/Ti 4.775 4.833 4.775 4.775 4.696 4.775 4.775 3.946 Ti + Nb 21.365 21.568 21.568 21.568 21.568 21.568 21.568 23.459 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 9.511 9.602 9.602 9.602 9.602 9.602 9.602 9.602 Ti/(Nb+Ta) 1.246 1.246 1.246 1.246 1.246 1.246 1.246 1.443 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca + Sr+Be + Zn 0.941 0.000 0.000 0.000 0.950 0.000 0.000 0.000 Li + Na + K 0.282 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+LI 10.280 9.684 1(?.378 10.378 10.378 10.378 10.378 10.948 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 1.366 1.464 1.366 1.366 1.366 1.366 1.366 1.295 1.99407 2.00275 1.99643 1.99655 1.99399 1.99642 1.99578 2.00136 29.3 29.2 29.3 29.2 29.3 2Θ.2 29.1 28.3 Θ g,F 0.5986 0.5988 0.5ΘΘ8 0.6003 0.5968 0.6004 0.5998 0.60277 叉,0 456 445.5 445.5 449 447 450 458.5 451.5 又δ 367 366.5 366.5 367 366 367.5 369.5 359 液相溫度 Π80 34- 161736.doc 201236993 [表4] 實施例 25 26 27 28 29 30 31 B2〇3 9.998 9.998 9.998 9.420 8.734 9.428 9.428 τιο2 13.392 13.629 13.487 11.956 11.967 12.641 13.392 Nb2Os 10.552 10.077 10.219 9.593 Θ.602 1 1.027 9.602 La203 46.309 46.547 46.547 49.212 49.948 49.055 47.829 sio2 4.572 4.572 4.572 4.568 4.572 4.572 4.572 2rOa 5.653 5.653 5.653 5.648 5.653 3.753 5.653 GeOg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.665 0.665 0.665 0.664 0.665 1.206 0.665 SnOa 0.665 0.6Θ5 0.565 0.664 0.665 0.665 0.665 Gd2Oa 7.351 7.351 7.351 7.345 7.351 7.351 7.351 Y2〇3 0.541 0.541 0.541 0.540 0.541 0.000 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 .0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0:000 0.000 0.000 0.000 0.000 0.000 0.000 Li20 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.017 0.017 0.01 7 0.104 0.01 7 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 54.201 54.438 54.438 57.096 57.840 56.406 55.721 (La+Gd+Y+Yb+Lu)/Ti 4.047 3.994 4.03Θ 4.775 4.833 4.462 4.161 Ti+Nb 23.944 23.706 23.706 21.550 21.568 23.668 22.994 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ta 10.552 10.077 10.219 9.593 9.602 11.027 9.602 Ti/(Nb + Ta) 1.2Θ9 1.353 1.320 1.246 1.246 1.148 1.395 W/Sn 1.000 1.000 1.000 1.000 1.000 1.813 1.000 Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+Li 10.948 10.948 10.d48 10.369 9.684 10.D19 10.378 <Si+Ge+Ta+Nb)/ (B+Zn+W+U) 1.381 1.338 1.351 1.366 1.464 1.429 1.366 nd 2.00180 2.00160 2.00109 1.99647 2.00273 2.00216 2.00443 28.2 28.2 28.3 29.3 29.2 28.5 28.5 Θ g.F 0.60175 0.60209 0.60226 0.5999 0.5987 0.6014 0.6018 A 70 449 453.5 451.5 458.5 455 461.5 462 又3 368.5 369.5 369 374.5 367 370.5 370 液相溫度 1200 1180 1180 35- 161736.doc 201236993 [表5] 實施例 32 33 34 35 36' 37 38 b2〇3 9.998 9.998 9.932 9.932 9.932 9.932 9.932 Ti〇2 15.758 16.708 15.758 15.758 1 5.758 15.758 15.758 Nb2Os 5.863 3.Θ9Θ 5.863 5.663 5.863 5.863 5.863 La203 48.632 49.549 49.23S 48.698 46.389 52.089 45.848 SiOz 4,572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.653 5.653 5.653 5.653 5.653 5.653 5.653 G ο O e 0,000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Gd203 7.351 7.351 7.351 7.892 10.201 4.501 10.742 Y2〇3 0.541 0.541 0.000 0.000 0.000 0.000 0.000 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 0,000 ZnO 0.000 0.000 0.000 o.ooo 0.000 0.000 0.000 U20 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NaaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 K2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 A’2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.017 0.017 0.017 0.017 0.017 0.01 7 0.017 TOTAL 100.00 too.oo 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 56.524 57.441 56.590 56.590 56.590 56.590 56.590 (La+Gd+Y+Yb+Lu)/Ti 3.587 3.438 3.591 3.591 3.591 3.59t 3.591 Ti+Nb 21.621 20.704 21.621 21.821 21.621 21.621 21.621 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.663 3.996 5.863 5.863 5.863 5.863 5.863 TI/(Nb+Ta) 2.688 4.181 2.688 2·&88 2.668 2.688 2.688 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1,000 Mg+Ga+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+Li 10.948 10.948 10.882 10.882 10.882 10.882 .10.882 (Si+Ge+Ta+Nb)/ (B-t-Zn+W+Li) 0.953 0.783 0.959 0.959 0.959 0.959 0.959 2.00102 2.00054 2.00186 2.00197 2.00180 2.00201 2.00221 28.3 28.4 28.3 28.3 28.2 28.3 28.2 flg.F 0.6030 0.6030 0.6025 0.6028 0.6028 0.6026 0.6031 ^ 70 460.5 464 458.5 459 467 468 467 Λ 3 371 371.5 371 371 372.5 372 371.5 液相溫度 1140 1160 1140 Ί 140 1120 1140 1120 161736.doc -36-201236993 [Table 2] Example 9 10 11 12 13 1.4 15 16 B2〇3 9.428 9.428 9.428 9.428 9.518 8.559 9.657 9.705 τιο2 Η.967 13.392 13.867 11.967 12.561 12.081 12.258 12.318 Nb2Oe 9.602 9.602 7.702 9.602 9.214 9.694 9.835 9.884 La2〇a 47.354 47.829 49.255 49.255 48.768 49.727 48.020 47.768 Si02 4.572 4.572 4.572 4.572 4.61 6 4.616 4.683 4.706 2r02 5.653 5.853 5.653 5.653 5.707 5.707 5.791 5.819 GeOz 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.665 0.665 0.665 0.665 0.671 0.671 0.681 0.685 Sn02 0.665 0.665 0.665 0.665 0.671 0.671 0.681 0. Θ85 Gd203 7.351 7.351 7.351 7.351 7.422 7.422 7.530 7.567 Ya〇3 0.541 0.54t 0.541 0.541 0.546 0.546 0.554 0.556 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 1.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LiaO 0.285 0.285 0.285 0.285 0.288 0.288 0.292 0.293 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2Oa 0.017 0.017 0.017 0.018 0.017 0.017 0.018 0.018 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 55.246 55.721 57.146 57.146 56.735 57.694 56.104 55.889 (La + Gd+Y+Yb + Lu)/Ti 4.617 4.161 4.121 4.775 4.517 4.775 4.577 4.537 Ti + Nb 21.568 22.994 21.568 21.566 21.775 21.775 22.093 22.201 (Ge + Ta) / (Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 9.602 9.602 7.702 9.602 9.214 9.694 9.835 9.884 Ti/(Nb+Ta) 1.246 1.395 1.801 1.246 1.363 1.246 1.24B 1.246 W /Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 1.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.288 0.238 0.292 0.293 B+Zn+W+Li 10.378 10.378 10.378 10.378 10.478 9.518 10.631 10.683 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 1.366 1.36G 1.183 1.366 1.320 1.503 1.366 1.366 Ι.ΘΘ100 2.00393 2.00126 1.99637 1.99755 a.00463 t.99584 1.99344 29.3 28.5 28.7 29.3 29 29 29 28.9 9g.f 0.5988 0.6012 0.6009 0.5995 0.6002 0.5990 0.6008 0.6001 A, 〇447.5 454 459.5 448.5 461.5 455.5 464.5 456.5 and 5 36a.5 368.5 369 36β.5 369 307 370 369 Liquidus temperature 1220 1200 33-161736.doc 201236993 [Table 3] Example 17 18 L9 20 21 22 23 24 b2〇3 9.339 8.734 9.428 9.428 9.428 9.428 9.428 9.998 Τί〇2 1 1.854 1 1.Θ67 11.967 1 1.967 11.967 11.967 11.967 13.857 Nb205 9.511 9.602 9.602 9.802 9.602 9.602 9.Θ02 9.602 La 2 〇3 48.791 49.255 47.354 45.454 48.305 39.754 35.003 4Θ.794 SIO£ 4.529 4.572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.600 5.653 5.653 5.653 5.653 5.653 5.653 5.653 GeOs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2O0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.659 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.659 0.665 0.666 0.665 0.665 0.665 0.665 0.665 Gd203 7.282 8.045 9.2 51 11.151 7.351 16.652 21.603 7.351 Y2〇3 0.536 0.541 0.541 0.541 0.541 0.541 0.541 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.941 0.000 0.000 0.000 0.950 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LizO 0.282 0.285 0.285 0.285 0:285 0.285 0.285 0.285 Na20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Al203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.017 0.017 0.017 0.01 7 0.018 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 56.608 57.840 57.146 57.140 56.196 57.146 57.14« 54.685 (La+Gd+Y+Yb+Lu)/Ti 4.775 4.833 4.775 4.775 4.696 4.775 4.775 3.946 Ti + Nb 21.365 21.568 21.568 21.568 21.568 21.568 21.568 23.459 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 9.511 9.602 9.602 9.602 9.602 9.602 9.602 9.602 Ti/(Nb+Ta) 1.246 1.246 1.246 1.246 1.246 1.246 1.246 1.443 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca + Sr+Be + Zn 0.941 0.000 0.000 0.000 0.950 0.000 0.000 0.000 Li + Na + K 0.282 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+LI 10.280 9.684 1(?.378 10.378 10.378 10.378 10.378 10.948 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 1.366 1.464 1.366 1.366 1.366 1.366 1.366 1.295 1.99407 2.00275 1.99643 1.99655 1.99399 1.99642 1.99578 2.00136 29.3 29.2 29.3 29.2 29.3 2Θ.2 29.1 28.3 Θ g,F 0.5986 0.5988 0.5ΘΘ8 0.6003 0.5968 0.6004 0.5998 0.60277 Fork, 0 456 445.5 445.5 449 447 450 458.5 451.5 and δ 367 366.5 366.5 367 366 367.5 369.5 359 Liquidus temperature Π80 34-161736.doc 201236993 [Table 4] Example 25 26 27 28 29 30 31 B2〇3 9.998 9.998 9.998 9.420 8.734 9.428 9.428 τιο2 13.392 13.629 13.487 11.956 11.967 12.641 13.392 Nb2Os 10.552 10.077 10.219 9.593 Θ.602 1 1.027 9.602 La203 46.309 46.547 46.547 49.212 49.948 49.055 47.829 sio2 4.572 4.572 4.572 4.568 4.572 4.572 4.572 2rOa 5.653 5.653 5.653 5.648 5.653 3.753 5.653 GeOg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.665 0.665 0.665 0.664 0.665 1.206 0.665 SnOa 0.665 0.6Θ5 0.565 0.664 0.665 0.665 0.665 Gd2Oa 7.351 7.351 7.351 7.345 7.351 7.351 7.351 Y2〇3 0.541 0.541 0.541 0.540 0.541 0.000 0.541 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 .0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0:000 0.000 0.000 0.000 0.000 0.000 0.000 Li20 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.017 0.017 0.01 7 0.104 0.01 7 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 54.201 54.438 54.438 57.096 57.840 56.406 55.721 (La+Gd+Y+Yb+Lu)/Ti 4 .047 3.994 4.03Θ 4.775 4.833 4.462 4.161 Ti+Nb 23.944 23.706 23.706 21.550 21.568 23.668 22.994 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ta 10.552 10.077 10.219 9.593 9.602 11.027 9.602 Ti/( Nb + Ta) 1.2Θ9 1.353 1.320 1.246 1.246 1.148 1.395 W/Sn 1.000 1.000 1.000 1.000 1.000 1.813 1.000 Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+Li 10.948 10.948 10.d48 10.369 9.684 10.D19 10.378 <Si+Ge+Ta+Nb)/ (B+Zn+W+U) 1.381 1.338 1.351 1.366 1.464 1.429 1.366 nd 2.00180 2.00160 2.00109 1.99647 2.00273 2.00216 2.00443 28.2 28.2 28.3 29.3 29.2 28.5 28.5 Θ gF 0.60175 0.60209 0.60226 0.5999 0.5987 0.6014 0.6018 A 70 449 453.5 451.5 458.5 455 461.5 462 and 3 368.5 369.5 369 374.5 367 370.5 370 Liquid temperature 1200 1180 1180 35- 161736.doc 201236993 [ Table 5] Example 32 33 34 35 36' 37 38 b2〇3 9.998 9.998 9.932 9.932 9.932 9.932 9.932 Ti〇2 15.758 16.708 15.758 15.758 1 5.758 15.758 15.758 N b2Os 5.863 3.Θ9Θ 5.863 5.663 5.863 5.863 5.863 La203 48.632 49.549 49.23S 48.698 46.389 52.089 45.848 SiOz 4,572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.653 5.653 5.653 5.653 5.653 5.653 5.653 G ο O e 0,000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W 〇 3 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Gd203 7.351 7.351 7.351 7.892 10.201 4.501 10.742 Y2〇3 0.541 0.541 0.000 0.000 0.000 0.000 0.000 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 0,000 ZnO 0.000 0.000 0.000 o.ooo 0.000 0.000 0.000 U20 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NaaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 K2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 A'2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb2〇3 0.017 0.017 0.017 0.017 0.017 0.01 7 0.017 TOTAL 100.00 to O.oo 100.00 100.00 100.00 100.00 100.00 La+Gd+Y+Yb+Lu 56.524 57.441 56.590 56.590 56.590 56.590 56.590 (La+Gd+Y+Yb+Lu)/Ti 3.587 3.438 3.591 3.591 3.591 3.59t 3.591 Ti+Nb 21.621 20.704 21.621 21.821 21.621 21.621 21.621 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.663 3.996 5.863 5.863 5.863 5.863 5.863 TI/(Nb+Ta) 2.688 4.181 2.688 2·&88 2.668 2.688 2.688 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1,000 Mg+Ga+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+Li 10.948 10.948 10.882 10.882 10.882 10.882 .10.882 (Si+Ge+Ta+Nb)/ (Bt-Zn+W+Li) 0.953 0.783 0.959 0.959 0.959 0.959 0.959 2.00102 2.00054 2.00186 2.00197 2.00180 2.00201 2.00221 28.3 28.4 28.3 28.3 28.2 28.3 28.2 flg.F 0.6030 0.6030 0.6025 0.6028 0.6028 0.6026 0.6031 ^ 70 460.5 464 458.5 459 467 468 467 Λ 3 371 371.5 371 371 372.5 372 371.5 Liquid temperature 1140 1160 1140 Ί 140 1120 1140 1120 161736.doc -36-

201236993 [表6] 實施例 39 40 41 42 43 44 45 46 bz〇3 9.932 9.932 9.932 9.932 9.932 9.932 9.932 9.932 TI〇2 15.758 15.758 15.758 15.758 15.758 15.758 15.758 15.758 Nb2Os 5.863 5.863 5.863 5.863 5.863 5.863 5.863 5.863 La2〇3 51.549 42.998 43.538 40.622 38.247 35.872 33.496 49.239 sio2 4.572 4.572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.653 5.653 5.653 5.653 5.653 5.653 5.653 5.653 G〇〇2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta4 Oa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W03 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Gda03 5.041 13.592 13.052 1 5.968 18.343 20.718 23.094 7.351 Y2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2nO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 LfzO 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.01 7 0.017 0,017 0.017 0.017 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y + Yb + Lu 56.590 56.590 56.590 56.590 56.590 56.590 56.590 56.590 (La + Gd+Y+Yb+Lu)/Ti 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 Ti+Nb 21.621 21.621 21.621 21.621 21.621 21.621 21.621 21.621 (Ge+Ta)/(Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.863 5.363 5.863 5.863 5.863 5.863 5.863 5.863 Ti/(Nb+Ta) 2.688 2.686 2.688 2.688 2.688 2.688 2.688 2.688 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+U 10.882 10.862 10.882 10.882 10,882 10.862 10.882 10.882 (Si+Ge+Ta+Nb)/ (Β+Ζπ+W+U) ' 0.959 0.959 0.959 0.959 0.95» 0.959 0.959 0.959 2.00220 2.00215 2.0021 1 2.00160 2.00140 2.00138 2.00106 2.00245 28.3 28.2 28.2 28.2 28.1 28.1 28.1 28.3 0g,F 0.6023 0.3035 0.6031 0.6030 0.6031 0.6032 0.6037 0.6025 又70 466 467 470 460.5 459.5 470.5 464.5 469.5 又S 371 372.5 372 372 371.5 373 372.5 372 液相溫度 1120 1100 1100 1110 1120 1100 1100 37- 161736.doc 201236993 [表7] 實施例 參考例 47 48 49 50 51 52 1 B2〇3 9.932 9.998 9.95Ϊ 9.428 9.125 9.341 10.084 TiOg 15.758 14.808 13.361 11.^67 11.582 13.540 14.832 NbaOs 5.863 7.732 8.129 9.602 12.051 8.053 8.238 La203 46.389 47.713 49.438 49.255 48.129 50.101 47.469 Si08 4.572 4.572 4.825 4.572 4.425 4.787 4.890 2rOa 5.653 5.653 5.967 5.653 5.471 5.923 6.047 GeO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2Os 0.000 0.000 0.000 0.000 0.000 0.000 0.000 wo3 0.665 0.665 0.000 0.665 0.644 0.000 0.000 Sn02 0.665 0.665 0.000 0.&65 0.644 0.000 0.000 Gd2Oa 10.201 7.351 7.759 7.351 7.114 7.688 7.863 Y2〇3 0.000 0.541 0.570 0.541 0.523 0.568 0.578 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 u2o 0.285 0.285 0.000 0.285 0.276 0.000 0.000 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k8o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.017 0.000 0.017 0.017 0.000 0.000 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y + Yb + Lu 56.590 55.605 57.767 57.147 55.788 58.357 55.910 (Le + Gd + Y+Yb + Lu)/Ti 3.591 3.755 4.324 4.775 4.815 4.310 3.770 Ti+Nb 21.621 22.540 21.490 21.569 23.633 21.593 23.070 (Ge + Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.863 7.732 8.129 Θ.&02 12.051 8.053 8.238 Ti/(Nb+Ta) 2.688 t.915 1.644 1.246 0.9Θ1 1.681 1.800 W/Sn 1.000 1.000 - 1.000 1.000 - - Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.285 0.285 0.000 0.285 0.276 0.000 0.000 B+Zn+W+Li 10.882 10.94S 9.951 10.378 10.045 9.341 10.084 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 0.959 1.124 1.302 1.366 1.640 1.375 1.302 nd 2.00189 2.00148 1.99458 1.99591 2.00491 2.00Π3 2.00215 28.2 28.3 29.1 29.3 28.7 29 28.2 flg.F 0.6026 0.6025 0.5996 0.6030 又70 464.5 477 429 430 434.5 419.5 501 Λ b 371.5 373 364 364 3Θ5.5 363.5 387.5 液相溫度 38- 161736.doc 201236993 [表8] 實施例 參考例 53 54 2 3 b2〇3 10.324 1 1.947 4.980 4.990 ΤίΟ£ 16.380 15.412 10.458 10.479 Nb2Os 3.000 5.920 9.462 9.481 La203 45.258 40.626 47.809 47.904 Si02 3.765 4.617 Θ.474 5.988 Zr02 5.877 5.708 6.375 6.387 GeOg 0.988 Ta20B 2.108 5.976 5.988 W〇3 0.691 0.672 Sn〇2 0.691 0.672 0.499 Gd203 10.604 7.423 7.570 7.585 Y2〇3 0.498 0,499 MgO CaO SrO BaO 1.919 ZnO 4.797 Li£0 NaaO 0.296 k2o 0.286 ai2o3 Sb203 0.018 Asg〇3 0.398 0.200 100.00 100.00 100.40 100.20 La+Gd+Y+Yb+Lu 55.86 48.05 55.88 55.99 (La + Gd+Y+Yb+Lu)/Ti 3.410 3.118 5.343 S.343 Ti + Nb 19.38 21.33 19.92 19.96 (Ge+Ta)/(Ti+Nb) 0.160 0.000 0.300 0.300 Nb + Ta 5.1 1 5.92 15.44 15.47 Ti/(Nb+Ta) 3.207 2.603 0.677 0.677 W/Sn 1.000 1.000 - 0.000 Mg+Ce+Sr+Ba+Zn 0.00 6.72 0.00 0.00 Li + Na + K 0.30 0.29 0.00 0.00 B+Zn+W+Li 11.015 17.416 4.980 4.990 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 0.B95 0.605 4.400 4.300 1.99604 1.97063 2.02365 28.3 2S.5 失透 29 9 g.F 0.6040 0-6037 0.5980 又70 459 494 446.5 451 A 5 371.5 372.5 365 365 液相溫度 1080 1080 1300 1300 39- 161736.doc 201236993 [表9] 實施例 55 56 57 58 60 61 62 63 B2 〇3 9.952 10.246 9.550 9.060 1 2.450 12.450 9.958 9.958 Ti〇ij 1 6.467 16.481 14.500 13.800 1 4.900 15.500 16.907 16.077 Nb205 4.593 4.597 8.700 8.100 8.310 7.610 4.839 4.669 L a 2 〇3 47.612 47.366 55.300 47.000 52.710 47.330 48.841 48.041 SIOa 4.612 4.616 5.020 4.820 2.350 2.200 4.609 4.609 Zr02 5.702 5.707 5.800 5.800 5.600 5.800 5.799 5.799 G θ O 2 T a 2 〇 e WOa 0.671 0.671 1.100 3.040 1.100 1.000 1.000 1.000 Sn〇2 G d 2 O 3 10.29 10.299 Y2〇3 8.300 2.300 8.030 8.029 8.928 MgO CaO SrO BaO ZnO Li20 Na20 k2o Al2〇3 . S b 2 O 3 0.101 0.017 0.030 0.080 0.080 0.080 0.018 0.018 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y+Yb + Lu 57.902 57.665 55.300 55.300 55.01 55.36 56.87 56.969 (La+Gd+Y+Yb+Lu)/Ti 3.516 3.499 3.814 4.007 3.692 3.572 3.364 3.356 Ti + Nb 21.060 21.078 23.200 21.900 23.210 23.1 10 21.746 21.646 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 N b + Ta 4.593 4.597 8.700 8.100 8.310 7.610 4.839 4.669 Ti/(Nb + Ta) 3.585 3.585 1.667 1.704 1.793 2.037 3.494 3.636 W/Sn Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 B + 2n+W + Li 10.623 10.917 10.650 12.100 1 3.550 1 3.450 10.958 10.958 (Si + Ge + Ta + Nb)/ (B + Zn+W + Li) 0.867 0.844 1.288 1.068 0.787 0.729 0.862 0.847 nd 2.00293 2.00108 2.00658 2.00376 1.99976 2.00134 2.0029 2.0017 28.3 28.3 28.1 28.5 28.5 28.3 28.3 28.3 Θ g.F 0.6030 0.6031 0.6030 0.6017 0.6019 0.6038 0.6033 0.6027 又TO 462.5 448.5 469 466 452.5 462.5 486.5 464 As 377.5 370 373.5 378.5 376 376.5 371.5 372 液相溫度 1120 1110 1110 1110 161736.doc -40-201236993 [Table 6] Example 39 40 41 42 43 44 45 46 bz〇3 9.932 9.932 9.932 9.932 9.932 9.932 9.932 9.932 TI〇2 15.758 15.758 15.758 15.758 15.758 15.758 15.758 15.758 Nb2Os 5.863 5.863 5.863 5.863 5.863 5.863 5.863 5.863 La2〇3 51.549 42.998 43.538 40.622 38.247 35.872 33.496 49.239 sio2 4.572 4.572 4.572 4.572 4.572 4.572 4.572 4.572 Zr02 5.653 5.653 5.653 5.653 5.653 5.653 5.653 5.653 G〇〇2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta4 Oa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W03 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Sn02 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 Gda03 5.041 13.592 13.052 1 5.968 18.343 20.718 23.094 7.351 Y2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2nO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 .000 LfzO 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.01 7 0.017 0,017 0.017 0.017 0.017 0.017 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y + Yb + Lu 56.590 56.590 56.590 56.590 56.590 56.590 56.590 56.590 (La + Gd+Y+Yb+Lu)/Ti 3.591 3.591 3.591 3.591 3.591 3.591 3.591 3.591 Ti+Nb 21.621 21.621 21.621 21.621 21.621 21.621 21.621 21.621 (Ge+Ta)/(Ti + Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.863 5.363 5.863 5.863 5.863 5.863 5.863 5.863 Ti/(Nb+Ta) 2.688 2.686 2.688 2.688 2.688 2.688 2.688 2.688 W/Sn 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li+Na+K 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 B+Zn+W+U 10.882 10.862 10.882 10.882 10,882 10.862 10.882 10.882 (Si+Ge+Ta+Nb)/ (Β+Ζπ+ W+U) ' 0.959 0.959 0.959 0.959 0.95» 0.959 0.959 0.959 2.00220 2.00215 2.0021 1 2.00160 2.00140 2.00138 2.00106 2.00245 28.3 28.2 28.2 28.2 28.1 28.1 28.1 28.3 0g, F 0.6023 0.3035 0.6031 0.6030 0.6031 0.6032 0.6037 0.6025 and 70 466 467 470 460.5 459.5 470.5 464.5 469.5 and S 371 372.5 372 372 371.5 373 372.5 372 Liquidus temperature 1120 1100 1100 1110 1120 1100 1100 37- 161736.doc 201236993 [Table 7] Example Reference Example 47 48 49 50 51 52 1 B2〇3 9.932 9.998 9.95Ϊ 9.428 9.125 9.341 10.084 TiOg 15.758 14.808 13.361 11.^67 11.582 13.540 14.832 NbaOs 5.863 7.732 8.129 9.602 12.051 8.053 8.238 La203 46.389 47.713 49.438 49.255 48.129 50.101 47.469 Si08 4.572 4.572 4.825 4.572 4.425 4.787 4.890 2rOa 5.653 5.653 5.967 5.653 5.471 5.923 6.047 GeO 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2Os 0.000 0.000 0.000 0.000 0.000 0.000 0.000 wo3 0.665 0.665 0.000 0.665 0.644 0.000 0.000 Sn02 0.665 0.665 0.000 0.&65 0.644 0.000 0.000 Gd2Oa 10.201 7.351 7.759 7.351 7.114 7.688 7.863 Y 2〇3 0.000 0.541 0.570 0.541 0.523 0.568 0.578 MgO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 BaO 0.000 0.000 0.000 0.000 0.000 0.000 ZnO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 U2o 0.285 0.285 0.000 0.285 0.276 0.000 0.000 NazO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k8o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ai2o3 0.000 0.000 0.000 0.000 0.000 0.000 Sb203 0.017 0.017 0.000 0.017 0.017 0.000 0.000 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y + Yb + Lu 56.590 55.605 57.767 57.147 55.788 58.357 55.910 (Le + Gd + Y+Yb + Lu)/Ti 3.591 3.755 4.324 4.775 4.815 4.310 3.770 Ti+Nb 21.621 22.540 21.490 21.569 23.633 21.593 23.070 23.070 (Ge + Ta)/ (Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb + Ta 5.863 7.732 8.129 Θ.&02 12.051 8.053 8.238 Ti/(Nb+Ta) 2.688 t.915 1.644 1.246 0.9Θ1 1.681 1.800 W/Sn 1.000 1.000 - 1.000 1.000 - - Mg+Ca+Sr+Ba+Zn 0. 000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.285 0.285 0.000 0.285 0.276 0.000 0.000 B+Zn+W+Li 10.882 10.94S 9.951 10.378 10.045 9.341 10.084 (Si+Ge+Ta+Nb)/ (B+Zn+W +Li) 0.959 1.124 1.302 1.366 1.640 1.375 1.302 nd 2.00189 2.00148 1.99458 1.99591 2.00491 2.00Π3 2.00215 28.2 28.3 29.1 29.3 28.7 29 28.2 flg.F 0.6026 0.6025 0.5996 0.6030 and 70 464.5 477 429 430 434.5 419.5 501 Λ b 371.5 373 364 364 3Θ5. 5 363.5 387.5 Liquidus temperature 38-161736.doc 201236993 [Table 8] Example Reference Example 53 54 2 3 b2〇3 10.324 1 1.947 4.980 4.990 ΤίΟ£ 16.380 15.412 10.458 10.479 Nb2Os 3.000 5.920 9.462 9.481 La203 45.258 40.626 47.809 47.904 Si02 3.765 4.617 Θ.474 5.988 Zr02 5.877 5.708 6.375 6.387 GeOg 0.988 Ta20B 2.108 5.976 5.988 W〇3 0.691 0.672 Sn〇2 0.691 0.672 0.499 Gd203 10.604 7.423 7.570 7.585 Y2〇3 0.498 0,499 MgO CaO SrO BaO 1.919 ZnO 4.797 Li£0 NaaO 0.296 k2o 0.286 ai2o3 Sb203 0.018 Asg〇3 0.398 0.200 100.00 100.00 100.40 100.20 La+Gd+Y+Yb+Lu 55.86 48.05 55.88 55.99 (La + Gd+Y+Yb+Lu)/Ti 3.410 3.118 5.343 S.343 Ti + Nb 19.38 21.33 19.92 19.96 (Ge+Ta)/ (Ti+Nb) 0.160 0.000 0.300 0.300 Nb + Ta 5.1 1 5.92 15.44 15.47 Ti/(Nb+Ta) 3.207 2.603 0.677 0.677 W/Sn 1.000 1.000 - 0.000 Mg+Ce+Sr+Ba+Zn 0.00 6.72 0.00 0.00 Li + Na + K 0.30 0.29 0.00 0.00 B+Zn+W+Li 11.015 17.416 4.980 4.990 (Si+Ge+Ta+Nb)/ (B+Zn+W+Li) 0.B95 0.605 4.400 4.300 1.99604 1.97063 2.02365 28.3 2S.5 Devitrification 29 9 gF 0.6040 0-6037 0.5980 70 459 494 446.5 451 A 5 371.5 372.5 365 365 Liquidus temperature 1080 1080 1300 1300 39-161736.doc 201236993 [Table 9] Example 55 56 57 58 60 61 62 63 B2 〇3 9.952 10.246 9.550 9.060 1 2.450 12.450 9.958 9.958 Ti〇ij 1 6.467 16.481 14.500 13.800 1 4.900 15.500 16.907 16.077 Nb205 4.593 4.597 8.700 8.100 8.310 7.610 4.839 4.669 L a 2 〇3 47.612 47.366 55.300 47.000 52.710 47.330 48.841 48.041 SIOa 4.612 4.616 5.020 4.820 2.350 2.200 4.609 4.609 Zr02 5.702 5.707 5 .800 5.800 5.600 5.800 5.799 5.799 G θ O 2 T a 2 〇e WOa 0.671 0.671 1.100 3.040 1.100 1.000 1.000 1.000 Sn〇2 G d 2 O 3 10.29 10.299 Y2〇3 8.300 2.300 8.030 8.029 8.928 MgO CaO SrO BaO ZnO Li20 Na20 K2o Al2〇3 . S b 2 O 3 0.101 0.017 0.030 0.080 0.080 0.080 0.018 0.018 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La + Gd+Y+Yb + Lu 57.902 57.665 55.300 55.300 55.01 55.36 56.87 56.969 (La+Gd+Y +Yb+Lu)/Ti 3.516 3.499 3.814 4.007 3.692 3.572 3.364 3.356 Ti + Nb 21.060 21.078 23.200 21.900 23.210 23.1 10 21.746 21.646 (Ge+Ta)/(Ti+Nb) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 N b + Ta 4.593 4.597 8.700 8.100 8.310 7.610 4.839 4.669 Ti/(Nb + Ta) 3.585 3.585 1.667 1.704 1.793 2.037 3.494 3.636 W/Sn Mg+Ca+Sr+Ba+Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Li + Na + K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 B + 2n+W + Li 10.623 10.917 10.650 12.100 1 3.550 1 3.450 10.958 10.958 (Si + Ge + Ta + Nb) / (B + Zn+W + Li) 0.867 0.844 1.288 1.068 0.787 0.729 0.862 0.847 nd 2.00293 2.00108 2.00658 2.00376 1.99976 2.00134 2.0029 2.0017 28.3 28.3 28.1 28.5 28.5 28.3 28.3 28.3 Θ gF 0.6030 0.6031 0.6030 0.6017 0.6019 0.6038 0.6033 0.6027 and TO 462.5 448.5 469 466 452.5 462.5 486.5 464 As 377.5 370 373.5 378.5 376 376.5 371.5 372 Liquid temperature 1120 1110 1110 1110 161736.doc -40-

201236993 本發明之實施例之光學玻璃之阿貝數(Vd)均為3 〇以下, 並且該阿貝數(Vd)為22以上’更詳細而言為28以上,於所 期望之範圍内。 又,本發明之實施例之光學玻璃之部分色散比,F) 為0.61 5以下,更具體而言為0.604以下。因此已明確:本 發明之實施例之光學玻璃具有低色散並且部分色散比 (9g ’ F)亦較小,可減小形成光學元件時之色像差。 又,本發明之實施例之光學玻璃之折射率(nd)均為丨9〇 以上,更詳細而言為1.98以上,並且該折射率(nd)為22〇以 下’更詳細而言為2.01以下’於所期望之範圍内。 又’本發明之實施例之光學玻璃之λ7〇(穿透率7〇%時之 波長)均為520 nm以下,更詳細而言為487 nm以下。又, 本發明之貫施例之光學玻璃之穿透率5%時之波長)均為 420 nm以下,更詳細而言為379 〇〇1以下’於所期望之範圍 内。另一方面,參考例(No.l)之玻璃之人7〇為5〇1 nm。因此 已明確:與參考例(No.1}之玻璃相比,本發明之實施例之 光學玻璃對可見光之穿透率較高,著色亦較少。 又,本發明之貫鉍例之光學玻璃之液相溫度均為丨24〇它 以下,更詳細而言為1220t;以下,並且該液相溫度為 5〇〇°C以上,於所期望之範圍内。另一方面,參考例 (No.2〜No.3)之玻璃之液相溫度為u〇〇t,尤其是參考例 (No.2)之玻璃發生失透。因此已明確:與參考例 (Νο·2〜Νο·3)之玻璃相&’本發明 < 實施例之光學玻璃之耐 失透性較高。 161736.doc 41 201236993 因此,本發明之實施例之光學玻璃之折射率(nd)及阿貝 數(vd)於所期望的範圍内,並且色像差較小,對可見區域 之波長之光之透明性較高,且耐失透性較高。 進而,使用本發明之實施例中所獲得之光學玻璃進行 再熱擠壓成形後進行研磨拋光,而加工為透鏡及稜鏡之形 狀。又,使用本發明之實施例之光學玻璃,形成精密擠壓 成形用預製件,並對精密擠壓成形用預製件進行精密擠壓 成形加工。於任一情形時,加熱軟化後之玻璃中均不會產 生乳白化及失透等問題,而可穩定地加工為各種透鏡及稜 鏡之形狀》 可以理解’以上’為了例示本發明而詳細地進行說明, 但本實施例僅用於例示’從業者可於不脫離本發明之思想 及範圍内進行多種改變。 【圖式簡單說明】 圖1係表示部分色散比(eg,F)為縱輛、阿貝數(Vd)為橫 軸之正交座標中所示之正規線的圖。 161736.doc 42·201236993 The optical glass of the embodiment of the present invention has an Abbe number (Vd) of 3 Å or less, and the Abbe number (Vd) is 22 or more, and more specifically 28 or more, which is within a desired range. Further, the partial dispersion ratio of the optical glass of the embodiment of the present invention, F) is 0.61 5 or less, more specifically 0.604 or less. Therefore, it has been clarified that the optical glass of the embodiment of the present invention has low dispersion and a small partial dispersion ratio (9g'F), which can reduce chromatic aberration when forming an optical element. Further, the refractive index (nd) of the optical glass of the embodiment of the present invention is 丨9 〇 or more, more specifically 1.98 or more, and the refractive index (nd) is 22 Å or less, and more specifically 2.01 or less. 'In the range expected. Further, λ7 光学 (wavelength at a transmittance of 7〇%) of the optical glass of the embodiment of the present invention is 520 nm or less, and more specifically 487 nm or less. Further, the wavelength of the optical glass having a transmittance of 5% according to the embodiment of the present invention is 420 nm or less, and more specifically, 379 〇〇 1 or less is within a desired range. On the other hand, the glass of the reference example (No. 1) was 7 〇 1 nm. Therefore, it has been clarified that the optical glass of the embodiment of the present invention has a higher transmittance to visible light and less coloration than the glass of the reference example (No. 1}. Further, the optical glass of the present invention The liquidus temperature is 丨24〇 or less, more specifically 1220t; below, and the liquidus temperature is above 5°C, within the desired range. On the other hand, reference example (No. The liquidus temperature of the glass of 2 to No. 3) is u〇〇t, and especially the glass of the reference example (No. 2) is devitrified. Therefore, it has been clarified: and the reference example (Νο·2~Νο·3) The glass phase & 'present invention<> The optical glass of the embodiment has a high resistance to devitrification. 161736.doc 41 201236993 Therefore, the refractive index (nd) and Abbe number (vd) of the optical glass of the embodiment of the present invention Within the desired range, and the chromatic aberration is small, the transparency to the light of the wavelength of the visible region is high, and the devitrification resistance is high. Further, using the optical glass obtained in the embodiment of the present invention After hot extrusion molding, it is polished and polished to be processed into a shape of a lens and a crucible. The optical glass of the embodiment of the present invention forms a preform for precision extrusion molding, and performs precision extrusion molding on the preform for precision extrusion molding. In either case, no whitening occurs in the glass after heating and softening. And the problem of devitrification, etc., can be stably processed into various lenses and shapes of the cymbals. It is to be understood that 'the above' is explained in detail for exemplifying the present invention, but the present embodiment is only used to exemplify that 'practitioners can not leave Various changes are made within the spirit and scope of the present invention. [Simplified Schematic] FIG. 1 shows the partial dispersion ratio (eg, F) as the vertical and the Abbe number (Vd) as the horizontal axis. A diagram of the regular line. 161736.doc 42·

Claims (1)

201236993 七、申請專利範圍: 1 · 一種光學玻璃’其係相對於氧化物換算組成之玻璃總質 量’以質量%§十’含有B2〇3成分1.0〜31.0%及L112O3成分 40.0~65.0〇/。’且Ti〇2成分之含量為30.0%以下,Nb205成 分之含量為30.0%以下者。 2.如請求項1之光學玻璃,其中氧化物換算組成之質量比 Lri2〇3/Ti〇2為3.00以上(式中,Ln為選自由La、Gd、Y、 Yb、Lu所組成之群中之1種以上)。 3 ·如請求項1或2之光學玻璃,其中相對於氧化物換算組成 之玻璃總質量,以質量%計含有La2〇3成分18 〇〜6〇 〇0/。。 4. 如請求項1至3中任一項之光學玻璃,其中質量和 (Ti〇2+Nb2〇5)相對於氧化物換算組成之玻璃總質量為 8.0%以上35.0%以下。 5. 如請求項1至4中任一項之光學玻璃,其中相對於氧化物 換算組成之玻璃總質量,以質量%計,進而含有如下各 成分: Si〇2成分0〜20.0%,及/或 Zr02成分 〇〜15.0%。 6. 如請求項5之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,以質量%計含有Si〇2成分1〇%以上。 7·如請求項5或6之光學玻璃,其中相對於氧化物換算組成 之玻璃總質量’以質量%計含有Zr〇2成分3 〇%以上。 8.如請求項!至7中任一項之光學玻璃,其中相對於氧化物 換算組成之玻璃總質量,以質量%計, 161736.doc 201236993 Ge〇2成分為0〜10.0%,及/或 Ta2〇5成分為 0~20.0〇/〇。 9. 如請求項8之光學玻璃,其中氧化物換算組成中之質量 比(Ge〇2+Ta2〇5)/(Ti〇2+Nb205)為 1.00 以下。 10. 如請求項1至9中任一項之光學玻璃,其中質量和 (Nb2〇5+Ta2〇5)相對於氧化物換算組成之玻璃總質量為 3.0%以上30.0%以下。 11·如請求項1至10中任一項之光學玻璃,其中氧化物換算 組成中之質量比Ti02/(Nb205+Ta205)為〇.8〇以上。 12_如請求項丨至丨丨中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,以質量%計, w〇3成分為〇〜10.0%,及/或 Sn〇2成分為0〜5.0%。 13. 如請求項12之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,含有W〇3成分多於0.5%。 14. 如請求項丨至13中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,以質量%計, Gd2〇3成分為0〜30.0%,及/或 Y2O3成分為0〜20.0%,及/或 Yb2〇3成分為0〜6.0%,及/或 Lu2〇3成分為〇〜6.0%。 15. 如請求項1至14中任一項之光學玻璃,其 六甲相對於氧化 物換算組成之破璃總質量,以質量%計, MgO成分為〇〜15 〇%,及/或 I61736.doc 201236993 CaO成分為〇〜15 〇%,及/或 SrO成分為〇〜15.〇%,及/或 BaO成分為〇〜35 〇%,及/或 ZnO成分為〇〜15 〇%。 16. 如請求項15之光學玻璃,其中R〇成分(式 八碑選自由 ^§、0&、81'、丑&所組成之群中之1種以上)之晳旦11 貝量和相對 於氧化物換算組成之玻璃總質量為35.0%以下。 17. 如請求項1至16中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,以質量%計, Li2〇成分為〇〜15.0%,及/或 Na2〇成分為〇〜15.0%,及/或 K2〇成分為〇〜15.0%。 18. 如請求項17之光學玻璃,其中成分(式中,Rn為選 自由Li、Na、K所組成之群中之1種以上)之質量和相對 於氧化物換算組成之玻璃總質量為1 〇·0%以下。 19. 如請求項丨至丨8中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,以質量。/。計, P2O5成分為0〜10.0%,及/或 Bi2〇3成分為〇〜10.0%,及/或 Te〇2成分為〇〜10.〇%,及/或 Al2〇3成分為0〜10.0%,及/或 Ga2〇3成分為0〜10.0%,及/或 Sb2〇3成分為0〜1.0%。 20. 如請求項1至19中任一項之光學玻璃’其具有1.80以上之 161736.doc 201236993 折射率(nd),且具有22以上30以下之阿貝數(vd)。 21. 如請求項1至20中任一項之光學玻璃,其具有0.615以下 之部分色散比(0g,F)。 22. —種預製件材’其包含如請求項1至21中任一項之光學 玻璃。 23. —種光學元件,其係對如請求項22之預製件材進行擠壓 成形而製成者。 24. —種光學元件,其係以如請求項1至21中任一項之光學 玻璃為母材。 25. —種光學機器,其具備如請求項23或24中任一項之光學 元件。 16l736.doc -4-201236993 VII. Patent application scope: 1 · An optical glass 'the total mass of the glass relative to the oxide-converted composition' contains, by mass% § 10, 1.0 to 31.0% of the B2〇3 component and 40.0 to 65.0〇 of the L112O3 component. The content of the Ti 2 component is 30.0% or less, and the content of the Nb 205 component is 30.0% or less. 2. The optical glass according to claim 1, wherein the mass ratio of the oxide-converted composition is 3.00 or more of Lri2〇3/Ti〇2 (wherein Ln is selected from the group consisting of La, Gd, Y, Yb, and Lu). One or more of them). The optical glass according to claim 1 or 2, wherein the total mass of the glass of the oxide-converted composition is contained in mass% of La2〇3 component 18 〇~6〇 〇0/. . 4. The optical glass according to any one of claims 1 to 3, wherein the mass and the total mass of (Ti〇2+Nb2〇5) relative to the oxide-converted composition are 8.0% or more and 35.0% or less. 5. The optical glass according to any one of claims 1 to 4, wherein the total mass of the glass in terms of the oxide-converted composition, in terms of mass%, further comprises the following components: Si 〇 2 component 0 to 20.0%, and / Or Zr02 composition 〇 ~15.0%. 6. The optical glass according to claim 5, wherein the total mass of the glass in terms of the oxide-converted composition is 1% by mass or more based on the mass% of the Si 2 component. The optical glass according to claim 5 or 6, wherein the total mass of the glass relative to the oxide-converted composition is more than 3 % by mass based on the Zr 〇 2 component. 8. As requested! The optical glass according to any one of the items 7, wherein the total mass of the glass relative to the oxide conversion composition is 0.001736.doc 201236993 Ge〇2 component is 0 to 10.0%, and/or the Ta2〇5 component is 0% by mass. ~20.0〇/〇. 9. The optical glass of claim 8, wherein the mass ratio (Ge〇2+Ta2〇5)/(Ti〇2+Nb205) in the oxide-converted composition is 1.00 or less. The optical glass according to any one of claims 1 to 9, wherein the mass and (Nb2〇5+Ta2〇5) are from 3.0% to 30.0% by mass based on the total mass of the oxide-converted composition. The optical glass according to any one of claims 1 to 10, wherein a mass ratio of Ti02/(Nb205+Ta205) in the oxide-converted composition is 〇.8〇 or more. The optical glass according to any one of the preceding claims, wherein the total mass of the glass in terms of oxide conversion is in mass%, w〇3 is 〇10.0%, and/or Sn〇2 The composition is 0 to 5.0%. 13. The optical glass of claim 12, wherein the W?3 component is more than 0.5% based on the total mass of the glass in terms of oxide conversion. 14. The optical glass according to any one of the preceding claims, wherein the total mass of the glass in terms of oxide conversion is 0% to 30.0% by mass%, and/or the Y2O3 component is 0% by mass. ~20.0%, and/or Yb2〇3 components are 0 to 6.0%, and/or Lu2〇3 components are 〇~6.0%. 15. The optical glass according to any one of claims 1 to 14, wherein the total mass of the glass of the hexagram relative to the oxide conversion composition is, by mass%, the MgO component is 〇15%, and/or I61736.doc 201236993 CaO composition is 〇~15 〇%, and/or SrO component is 〇~15.〇%, and/or BaO component is 〇~35 〇%, and/or ZnO component is 〇~15 〇%. 16. The optical glass of claim 15, wherein the R 〇 component (the eight-character is selected from the group consisting of ^§, 0&, 81', ugly & one or more) The total mass of the glass in terms of oxide conversion is 35.0% or less. The optical glass according to any one of claims 1 to 16, wherein the Li2〇 component is 〇15.0% by mass, and/or the Na2〇 component is 〇, by mass%, based on the total mass of the glass of the oxide conversion composition. ~15.0%, and / or K2〇 composition is 〇~15.0%. 18. The optical glass of claim 17, wherein the mass of the component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) and the total mass of the glass in terms of oxide conversion are 1 〇·0% or less. 19. The optical glass of any one of the preceding claims, wherein the total mass of the glass is converted to mass relative to the oxide. /. The P2O5 component is 0 to 10.0%, and/or the Bi2〇3 component is 〇10.0%, and/or the Te〇2 component is 〇10.〇%, and/or the Al2〇3 component is 0~10.0%. And/or the Ga2〇3 component is 0 to 10.0%, and/or the Sb2〇3 component is 0 to 1.0%. The optical glass of any one of claims 1 to 19 which has a refractive index (nd) of 161736.doc 201236993 of 1.80 or more and an Abbe number (vd) of 22 or more and 30 or less. The optical glass according to any one of claims 1 to 20, which has a partial dispersion ratio (0g, F) of 0.615 or less. 22. A preformed article comprising the optical glass of any one of claims 1 to 21. 23. An optical component produced by extrusion molding a preform of claim 22. An optical element which is an optical glass according to any one of claims 1 to 21 as a base material. 25. An optical machine comprising the optical component of any one of claims 23 or 24. 16l736.doc -4-
TW101102060A 2011-01-18 2012-01-18 Optical glass, prefabricated and optical components TWI545098B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008253 2011-01-18

Publications (2)

Publication Number Publication Date
TW201236993A true TW201236993A (en) 2012-09-16
TWI545098B TWI545098B (en) 2016-08-11

Family

ID=46515790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102060A TWI545098B (en) 2011-01-18 2012-01-18 Optical glass, prefabricated and optical components

Country Status (4)

Country Link
JP (2) JP6230210B2 (en)
CN (2) CN107879621A (en)
TW (1) TWI545098B (en)
WO (1) WO2012099168A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136009B2 (en) * 2013-07-16 2017-05-31 日本電気硝子株式会社 Optical glass
JP6509525B2 (en) * 2014-10-30 2019-05-08 株式会社オハラ Optical glass, preform and optical element
JP6763303B2 (en) * 2014-11-12 2020-09-30 日本電気硝子株式会社 Resin composition for three-dimensional modeling, manufacturing method of three-dimensional modeling and inorganic filler particles
JP6400461B2 (en) * 2014-12-18 2018-10-03 光ガラス株式会社 Optical glass, optical element using optical glass, optical device
WO2018037797A1 (en) * 2016-08-26 2018-03-01 国立大学法人東京大学 Optical glass, optical element formed of optical glass, and optical device
JPWO2018235725A1 (en) 2017-06-23 2020-04-23 Agc株式会社 Optical glass and optical components
TWI795418B (en) * 2017-07-21 2023-03-11 日商小原股份有限公司 Optical glass, preforms and optical components
JP7048348B2 (en) * 2018-02-28 2022-04-05 株式会社オハラ Optical glass, preforms and optical elements
JP7112856B2 (en) * 2018-02-28 2022-08-04 株式会社オハラ Optical glass, preforms and optical elements
CN109384387A (en) * 2018-09-27 2019-02-26 成都光明光电股份有限公司 Optical glass and the gas preform being made from it, optical element and optical instrument
RU2759043C1 (en) 2018-10-11 2021-11-09 Ниппон Стил Корпорейшн Threaded joint for steel pipes
US20220340475A1 (en) * 2019-07-05 2022-10-27 Nippon Electric Glass Co., Ltd. Optical glass
US20230083714A1 (en) * 2020-04-06 2023-03-16 Nippon Electric Glass Co., Ltd. Optical glass
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US20220306517A1 (en) 2021-03-19 2022-09-29 Corning Incorporated High-Index Borate Glasses
NL2028260B1 (en) 2021-03-19 2022-09-29 Corning Inc High-Index Borate Glasses
US20220324744A1 (en) 2021-04-05 2022-10-13 Corning Incorporated High-Index Silicoborate and Borosilicate Glasses
NL2028132B1 (en) 2021-04-05 2022-10-19 Corning Inc High-Index Silicoborate and Borosilicate Glasses
NL2031590B1 (en) * 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
WO2023183140A1 (en) * 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
JP7234454B2 (en) 2022-10-04 2023-03-07 Hoya株式会社 Optical glass, glass materials for press molding, optical element blanks and optical elements

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120732A (en) * 1977-12-12 1978-10-17 Kabushiki Kaisha Ohara Kogaku Garasu Seizosho Optical glass
JPS553329A (en) * 1978-06-21 1980-01-11 Ohara Inc Optical glass
JPS55121925A (en) * 1979-03-14 1980-09-19 Ohara Inc Optical glass
JPS6022656B2 (en) * 1980-08-21 1985-06-03 ホ−ヤ株式会社 optical glass
DE3130039C2 (en) * 1981-07-30 1984-07-12 Schott Glaswerke, 6500 Mainz CdO-ThO? 2? -Free, high refractive index optical glass with the optical position nd = 1.85 - 2.05 and vd 25-43
DE3343418A1 (en) * 1983-12-01 1985-06-20 Schott Glaswerke, 6500 Mainz OPTICAL GLASS WITH REFRACTION VALUES> = 1.90, PAYBACK> = 25 AND WITH HIGH CHEMICAL RESISTANCE
DE10227494C1 (en) * 2002-06-19 2003-12-04 Schott Glas Lead-free optical glass with specified refractive index and Abbe number, for optics, laser technology and communications, has specified composition
US7232779B2 (en) * 2002-08-20 2007-06-19 Hoya Corporation Optical glass, precision press molding preform and method of manufacturing the same, optical element and method of manufacturing the same
JP5926479B2 (en) * 2002-12-27 2016-05-25 Hoya株式会社 Optical glass, glass gob for press molding, and optical element
JP4218804B2 (en) * 2004-03-19 2009-02-04 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
EP1604959A1 (en) * 2004-06-02 2005-12-14 Kabushiki Kaisha Ohara An optical glass
JP5078272B2 (en) * 2006-03-31 2012-11-21 株式会社オハラ Optical glass
JP5290528B2 (en) * 2007-03-05 2013-09-18 株式会社住田光学ガラス Optical glass for precision press molding
JP5317522B2 (en) * 2007-04-24 2013-10-16 パナソニック株式会社 Optical glass composition, preform and optical element
JP5138401B2 (en) * 2008-01-30 2013-02-06 Hoya株式会社 Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank
JP2009203155A (en) * 2008-01-31 2009-09-10 Ohara Inc Optical glass
JP5671776B2 (en) * 2008-02-26 2015-02-18 日本電気硝子株式会社 Optical glass
JP4948569B2 (en) * 2008-06-27 2012-06-06 Hoya株式会社 Optical glass
JP5180758B2 (en) * 2008-09-30 2013-04-10 Hoya株式会社 Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank
JP2010083702A (en) * 2008-09-30 2010-04-15 Hoya Corp Optical glass, glass gob for press forming and optical element
CN101386469B (en) * 2008-10-16 2011-05-11 成都光明光电股份有限公司 High refraction and low dispersion optical glass
CN102272064B (en) * 2008-11-10 2014-12-24 Hoya株式会社 Method for producing glass, optical glass, glass material for press molding, optical element and methods for producing same
DE102009010701B4 (en) * 2009-02-27 2016-12-15 Schott Ag Optical glass

Also Published As

Publication number Publication date
CN103313947A (en) 2013-09-18
JP2017145192A (en) 2017-08-24
JP6594374B2 (en) 2019-10-23
JP2012162448A (en) 2012-08-30
TWI545098B (en) 2016-08-11
CN107879621A (en) 2018-04-06
WO2012099168A1 (en) 2012-07-26
JP6230210B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
TW201236993A (en) Optical glass, preform, and optical element
JP6033486B2 (en) Optical glass, preform material and optical element
JP5827067B2 (en) Optical glass and optical element
JP6903373B2 (en) Optical glass, preform materials and optical elements
TW200944485A (en) Optical glass
TW201038502A (en) Optical glass
JP2012229148A (en) Optical glass and optical element
TW201231427A (en) Optical glass, preform, and optical element
JP7233844B2 (en) Optical glass, preforms and optical elements
TW200831428A (en) Optical glass
JP6808385B2 (en) Optical glass, preform materials and optical elements
JP6188553B2 (en) Optical glass, preform material and optical element
JP6664826B2 (en) Optical glass and optical element
JP2011093731A (en) Optical glass, preform, and optical element
JP2023054181A (en) Optical glass, preform and optical element
JP7126505B2 (en) Optical glasses, optical elements and optical equipment
JP7446052B2 (en) Optical glass, preforms and optical elements
JP2014210694A (en) Optical glass, preform material, and optical element
JP6014573B2 (en) Optical glass, preform material and optical element
JP6866012B2 (en) Optical glass, preform materials and optical elements
JP6062613B2 (en) Optical glass, preform material and optical element
TW201249769A (en) Optical glass, preform and optical element
JP7174536B2 (en) Optical glass, preforms and optical elements
JP6689057B2 (en) Optical glass, preforms and optical elements
JP6086941B2 (en) Optical glass and method for suppressing deterioration of spectral transmittance