TW201231427A - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
TW201231427A
TW201231427A TW100126451A TW100126451A TW201231427A TW 201231427 A TW201231427 A TW 201231427A TW 100126451 A TW100126451 A TW 100126451A TW 100126451 A TW100126451 A TW 100126451A TW 201231427 A TW201231427 A TW 201231427A
Authority
TW
Taiwan
Prior art keywords
component
glass
optical glass
mass
oxide
Prior art date
Application number
TW100126451A
Other languages
Chinese (zh)
Other versions
TWI541213B (en
Inventor
Michiko Ogino
Susumu Uehara
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010277385A external-priority patent/JP2012126586A/en
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201231427A publication Critical patent/TW201231427A/en
Application granted granted Critical
Publication of TWI541213B publication Critical patent/TWI541213B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

The purpose of the present invention is to provide an optical glass and a lens preform using the same, which has the refractivity (nd) and the Abbe number (νd) within a required range and is preferably applicable to correcting the chromatic aberration. An optical glass comprises B2O3 ingredient, which has the refractivity (nd) above 1.70 and the Abbe number (νd) above 39, and has a partial dispersion ratio (θg, F) which satisfies the relationship of Abbe number (νd): (θg, F) ≥ (-0.00170 × νd+0.63750) or (θg, F) ≥ (-2.0×10 -3 × νd+0.6498).

Description

201231427 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學玻璃、預成形體及光學元件。 【先前技術】 數位相機或攝像機等光學系統有大小 左开,但 巴秸稱作 像差之模糊。該像差分類為單色像差與色像差,尤其是色 像差強烈依賴於光學系統中所使用之透鏡之材料特性。 通#,色像差係組合低分散之凸透鏡與高分散之凹透鏡 而得以修正,但該組合只能修正紅色區域與綠色區域之像 差故而藍色區域之像差便會殘留。將該未被完全去除之 i色區域之像差稱作二次光譜。為了修正二次光谱,必須 進行補充了藍色區域之g線(435.835 nm)之動向之光學設 计。此時,作為光學設計中受到矚目之光學特性之指標, t用部分分散比(eg’F)°於組合上述低分散之透鏡與高 分散之透鏡之光學糸士 # L 于系統中,於低分散側之透鏡使用部分分 月文比,F)較大之光學姑 ,ν ,ν ^ , 科,且於高分散側之透鏡使用 #分分散比(eg,F)較小 次光1。 先子材料,藉此良好地修正二 eg,F=(ng-nF)/(nF-nc) ....··⑴ (ng思指玻璃對光源為汞且 射率,nF意指玻璃科*、· /長為435_835麵之光譜線二 之折射# ^^ 源為氫且波長為486.13 nm之光言 之折射率,nc意指破璃 光譜線之折射率)。 尤源為虱且波長為656.27 m 157771.doc 201231427 於光學玻璃中,在表示短波段之部分分散性之部分分散 比(eg,F)與阿貝數(Vd)之間存在大概直線性關係。表示該 關係之直線係於縱轴上採用部分分散比(0 g,F)且橫轴上 採用阿貝數(vd)之正交座標上’由將描繪NSL7與pBM22 部分分散比及阿貝數之2點連結之直線表示,被稱作正規 線(normal line)(參照圖1)。成為正規線基準之正規玻璃係 根據每個光學玻璃製造商而有所不同,但各公司亦均以大 致相專之斜度及截距進行定義。(NSL7及PBM2係OHARA 股份有限公司製造之光學玻璃,PBM2之阿貝數(Vd)係 3 6.3,部分分散比(0g,F)係0.5828,NSL7之阿貝數(Vd)係 60.5 ’ 部分分散比(0g,F)係 0.5436)。 此處,作為具有1 _73以上之較高折射率(nd)及45以上之 較高阿貝數(較低分散)之玻璃,例如眾所周知如專利文獻 1〜3所示之光學玻璃。 又’作為具有1.70以上之較高折射率(nd)及39以上未達 52之較高阿貝數(較低分散)之玻璃,例如眾所周知如專利 文獻4〜6所示之含有大量La2〇3成分等稀土類元素成分之光 學玻璃。 又,作為具有1.60以上1_70以下之較高折射率(nd)及5〇以 上之較高阿貝數(vd)之玻璃,例如眾所周知如專利文獻 7〜10所示之光學玻璃。 又,作為具有1.57以上之較高折射率(nd)及5〇以上之較 高阿貝數(vd)之玻璃’例如眾所周知如專利文獻11〜19所示 之含有大量La203成分等稀土類元素成分之光學玻璃。 157771.doc 201231427 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2007-261877號公報 [專利文獻2]日本專利特開2009-084059號公報 [專利文獻3]日本專利特開2009-2422 10號公報 [專利文獻4]日本專利特開2005-170782號公報 [專利文獻5]曰本專利特開2006-016295號公報 [專利文獻6]國際公開第2004/054937號手冊 [專利文獻7]曰本專利特開昭56-096747號公報 [專利文獻8]曰本專利特開昭62-087433號公報 [專利文獻9]日本專利特開平1 1-1 57868號公報 [專利文獻10]曰本專利特開2006-1 17504號公報 [專利文獻11]曰本專利特開2007-261877號公報 [專利文獻12]曰本專利特開2009-084〇59號公報 [專利文獻13]日本專利特開2009-2422 10號公報 [專利文獻14]日本專利特開2006-1 17503號公報 [專利文獻15]曰本專利特開平1 1-139844號公報 [專利文獻16]曰本專利特開昭62-100449號公報 [專利文獻17]曰本專利特開2005-170782號公報 [專利文獻18]曰本專利特開2006-016295號公報 .201231427 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] Optical systems such as digital cameras or video cameras have a size to the left, but the bar is called the blur of aberrations. This aberration is classified into monochromatic aberration and chromatic aberration, and in particular, chromatic aberration strongly depends on the material properties of the lens used in the optical system. By #, chromatic aberration is corrected by combining a low-dispersion convex lens with a highly-dispersed concave lens, but this combination can only correct the aberration between the red region and the green region, and the aberration of the blue region remains. The aberration of the i color region which is not completely removed is referred to as a secondary spectrum. In order to correct the secondary spectrum, an optical design supplementing the g-line of the blue region (435.835 nm) must be performed. At this time, as an indicator of the optical characteristics that are attracting attention in the optical design, the partial dispersion ratio (eg'F) is used to combine the above-mentioned low-dispersion lens with the optical lens of the highly dispersed lens in the system, at a low level. The lens on the dispersion side uses a partial fractional ratio, F) a larger optical aperture, ν, ν ^ , and a lens on the high dispersion side using a fractional dispersion ratio (eg, F) of a smaller secondary light. The first sub-material, by which the eigen is well corrected, F=(ng-nF)/(nF-nc) ..... (1) (ng thinks that the glass is the source of mercury and the rate of radiation, nF means the glass family *, · / length is 435_835 surface spectrum line two of the refraction # ^ ^ source is hydrogen and the wavelength is 486.13 nm of the refractive index, nc means the refractive index of the broken spectrum line). The source is 虱 and the wavelength is 656.27 m 157771.doc 201231427 In optical glass, there is a roughly linear relationship between the partial dispersion ratio (eg, F) and the Abbe number (Vd) indicating the partial dispersion of the short wavelength band. The straight line indicating the relationship is a partial dispersion ratio (0 g, F) on the vertical axis and an Abbe number (vd) on the orthogonal axis on the horizontal axis. 'The NSL7 and pBM22 partial dispersion ratio and Abbe number will be drawn. The line connecting the two points is called a normal line (see Fig. 1). The regular glass system that becomes the basis of the regular line varies according to each optical glass manufacturer, but each company also defines it by the slope and intercept. (NSL7 and PBM2 are optical glass manufactured by OHARA Co., Ltd., the Abbe number (Vd) of PBM2 is 3 6.3, the partial dispersion ratio (0g, F) is 0.5828, and the Abbe number (Vd) of NSL7 is 60.5 'partially dispersed. The ratio (0g, F) is 0.5436). Here, as the glass having a higher refractive index (nd) of 1 to 73 or more and a higher Abbe number (lower dispersion) of 45 or more, for example, an optical glass as disclosed in Patent Documents 1 to 3 is known. Further, as a glass having a higher refractive index (nd) of 1.70 or more and a higher Abbe number (lower dispersion) of 39 or more and less than 52, for example, it is known that a large amount of La2〇3 is contained as shown in Patent Documents 4 to 6. An optical glass of a rare earth element component such as a component. Further, as the glass having a higher refractive index (nd) of 1.60 or more and 1 to 70 or less and a higher Abbe number (vd) of 5 or more, for example, an optical glass as disclosed in Patent Documents 7 to 10 is known. In addition, as a glass having a higher refractive index (nd) of 1.57 or more and a higher Abbe number (vd) of 5 Å or more, for example, it is known that a rare earth element component such as a large amount of La203 component is contained as shown in Patent Documents 11 to 19. Optical glass. [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 4] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. 2006-016295 [Patent Document 6] International Publication No. 2004/054937 Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. 2007-261877 [Patent Document 12] Japanese Patent Laid-Open Publication No. 2009-084-59 (Patent Document 13) Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. Japanese Patent Publication No. 2005-170782 [Patent Document 17] Document 18] said present No. 2006-016295 Patent Laid-Open Publication.

[專利文獻19]國際公開第2004/054937號手冊 【發明内容】 [發明所欲解決之問題] 然而,專利文獻1〜19之光學玻璃係部分分散比不大,故[Patent Document 19] International Publication No. 2004/054937 [Explanation] [Problems to be Solved by the Invention] However, the optical glass systems of Patent Documents 1 to 19 have a small dispersion ratio, so

S 157771.doc 201231427 而不適合用作修正上述二次光譜之透鏡。即,業者要求一 種低分散(高阿貝數)且部分分散比(eg,f)較大之光學玻 璃。更具體而言,業者要求一種具有較高之折射率(以)及 較高之阿貝數(vd),並且部分分散比(eg,f)亦較大之光學 玻璃。 尤其是’專利文獻5〜13所揭示之玻璃存在製作玻璃時容 易產生失透之問題點。自產生一次失透之玻璃,製作如控 制尤其是可視區域之光之光學元件較困難。 本發明係鑒於上述問題點開發而成者,其目的在於獲得 一種折射率(nd)及阿貝數(Vd)處於所需之範圍内並且較佳地 使用於修正色像差之光學玻璃及使用其之透鏡預成形體。 [解決問題之技術手段] 本發明者等人為解決上述問題銳意反覆試驗研究,結果 發現藉由併用B2〇3成分與La2〇3成分,實現玻璃之高折射 率及低分散化,並且玻璃之部分分散比(0g,〇係亦於與 阿貝數(vd)之間具有所需之關係,從而完成了本發明。尤 其是,亦發現藉由包含F成分,即便包含降低部分分散比 之作用較強之La^3成分等稀土類元素成分,玻璃之部分 分散比(eg ’ F)係亦於與阿貝數㈤之間具有所需之關係。 八^ ’亦發現藉由併用B2〇3成分與F成分,實現玻璃之低 月文化並且。p为分散比亦提高,由此於與阿貝數(^)之 間可獲得所需之關係。 又,亦發現藉由b2〇3成分及La2〇3成分中併用ai办成; 及F成分,實現玻璃之高折射率及低分散化,並且即便爸 15777l.doc 201231427 含降低部分分散比之作用較強之La2〇3成分等稀土類元素 成分,部分分散比亦提高,由此於與阿貝數(Vd)之間可獲 得所需之關係,且玻璃之液相溫度提高。 具體而言,本發明提供如下所述者。 (1) 一種光學玻璃,其包含B2〇3成分,具有丨.70以上之 折射率(nd)及39以上之阿貝數(Vd),部分分散比(0g,F)係 於與阿貝數(vd)之間滿足(0g,F)g (_〇 〇〇17〇χ〜+〇 6375〇) 或(〇g ’ F)g(-2.〇xl〇-3xVd + 0 6498)之關係。 (2) 如(1)之光學玻璃,其更包含LasO3成分,具有丨73 以上之折射率(nd)及45以上之阿貝數(Vd),部分分散比 (0g F)係於與阿貝數Od)之間滿足(0g,F)g (-〇.〇〇i7〇XVd+ 0.63750)之關係。 (3)如(!)之光學玻璃,其更包含&2〇3成分及F成分, 具有39以上未達52之阿貝數(Vd),部分分散比(0g,F)係於 與阿貝數(vd)之間滿足(eg,F)^(_2 〇xl〇.3xvd+〇料叫之關 係。 (4) 如⑴之光學玻璃,其更包含F成分,於以阿貝數 (vd)為X軸且以折射率(1^)為7軸之xy正交座標中,具有由 A(5〇, 1.70)^(60, 1.60) ^C(63, 1.60).Ο(63. 1.70)^4 點包圍之範圍之阿貝數及折射率。 (5) 如⑺至⑷中任-項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量’以質量%計,B2〇3成分之含量 為5.0〜50.0%,La203成分之含量為55 〇%以下。 (6) 如(5)之光學玻璃,其中相對於氧化物換算組成之S 157771.doc 201231427 is not suitable for use as a lens for correcting the above secondary spectrum. That is, the manufacturer requires an optical glass having a low dispersion (high Abbe number) and a large partial dispersion ratio (eg, f). More specifically, the industry requires an optical glass having a higher refractive index (?) and a higher Abbe number (vd) and a larger partial dispersion ratio (eg, f). In particular, the glass disclosed in the patent documents 5 to 13 has a problem that devitrification easily occurs when glass is produced. Since a devitrified glass is produced, it is difficult to fabricate an optical component such as a light that controls, in particular, a visible area. The present invention has been developed in view of the above problems, and an object thereof is to obtain an optical glass having a refractive index (nd) and an Abbe number (Vd) within a desired range and preferably used for correcting chromatic aberration and use thereof. Its lens preform. [Means for Solving the Problem] The inventors of the present invention have conducted intensive experimental research to solve the above problems, and as a result, it has been found that a high refractive index and a low dispersion of glass are achieved by using a B2〇3 component and a La2〇3 component in combination, and a part of glass The dispersion ratio (0 g, the lanthanide system also has a desired relationship with the Abbe number (vd), thereby completing the present invention. In particular, it has also been found that by including the F component, even if the effect of lowering the partial dispersion ratio is included The rare earth element component such as the strong La^3 component, the partial dispersion ratio of the glass (eg 'F) system also has a desired relationship with the Abbe number (five). It is also found that by using the B2〇3 component in combination. With the F component, the low moon culture of the glass is realized and the dispersion ratio of p is also increased, thereby obtaining the desired relationship with the Abbe number (^). Also, it is found that the b2〇3 component and the La2 are also obtained. 〇3 component is used in combination with ai; and F component to achieve high refractive index and low dispersion of glass, and even if the dad 15777l.doc 201231427 contains a rare partial component such as La2〇3 component which has a lower partial dispersion ratio The partial dispersion ratio is also improved. Thus, the desired relationship can be obtained with the Abbe number (Vd), and the liquidus temperature of the glass is increased. Specifically, the present invention provides the following. (1) An optical glass comprising B2〇3 The composition has a refractive index (nd) of 丨.70 or more and an Abbe number (Vd) of 39 or more, and a partial dispersion ratio (0g, F) is satisfied (0g, F)g between the Abbe number (vd) and the Abbe number (vd). (_〇〇〇17〇χ~+〇6375〇) or (〇g 'F)g(-2.〇xl〇-3xVd + 0 6498). (2) Optical glass as in (1) Further, it contains a LasO3 component having a refractive index (nd) of 丨73 or more and an Abbe number (Vd) of 45 or more, and a partial dispersion ratio (0g F) is satisfied (0g, F)g between the Abe number and Ob). (-〇.〇〇i7〇XVd+ 0.63750). (3) Optical glass such as (!), which further contains & 2〇3 component and F component, has an Abbe number (Vd) of 39 or more and less than 52, and a partial dispersion ratio (0g, F) is associated with The number of shells (vd) satisfies the relationship between (eg, F)^(_2 〇xl〇.3xvd+〇. (4) The optical glass of (1), which further contains the F component, in the Abbe number (vd) The xy orthogonal coordinate of the X-axis and the refractive index (1^) is 7 axes, with A(5〇, 1.70)^(60, 1.60) ^C(63, 1.60).Ο(63. 1.70) (A) The optical glass of any of (7) to (4), wherein the total mass of the glass relative to the oxide-converted composition is % by mass, B2〇3 The content of the La203 component is 55% or less, and the content of the La203 component is 55 % or less. (6) The optical glass of (5), which is composed of an oxide equivalent

S 157771.do. 201231427 玻璃總質量,含有5.0%以上之La203成分。 (7) 如(5)或(6)之光學玻璃’其中相對於氧化物換算組 成之玻璃總質量,含有10.0%以上之La2〇3成分。 (8) 如(5)至(7)令任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,La2〇3成分之含量為5〇〇%以 下。 (9) 如⑴至⑻令任一項之光學玻璃,其中於氧化物換 算組成中,更包含Al2〇3成分。 (10) 如(1)至(9)令任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總質量,以質量%計,A12〇3成分之含量 為20.0%以下。 (11) 如(10)之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量’以質量%計,含有〇.1%以上2〇〇%以下之 AI2O3成分。 (12) 如(1)至(11)中任一項之光學玻璃,其中以外加比 例對氧化物基準質量之質量%計’ F成分之含量為3〇㈣以 下。 (13) 如(12)之光學玻璃,其中以外加比例對氧化物基準 質量之:質量%計,以多於〇%含有F成分。 ⑽如(12)或(13)之光學坡璃,其中以外加比例對氧化 物基準質量之質量%計,含有〇 1%以上之F成分。 (15)如⑴至(14)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量,以質量%計,si〇2成分之含 量為40.0%以下。 157771.doc 201231427 (16) 如⑼之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,以質量%計,Si〇2成分之含量為25 〇%以下。 (17) 如(15)或(16)之光學玻璃,其中相對於氧化物換算 組成之玻璃總質量’以質量%計,更包含Si〇2成分,其含 • 量為25·0%以下。 ' (18)如(1)至(17)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之質量和(8丨〇2+82〇3)為4〇.〇〇/。 以下。 (19) 如(1)至(18)中任一項之光學玻璃,其中 相對於氧化物換算組成之玻璃總質量,以質量%計, Gd2〇3成分0〜40.0%及/或 Y2O3成分0〜20.0%及/或 Yb2〇3成分〇〜20.0%及/或 LU2〇3 成分 0〜20.0%。 (20) 如(19)之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計,S 157771.do. 201231427 Total glass quality, containing more than 5.0% La203. (7) The optical glass of (5) or (6), which contains 10.0% or more of the La2〇3 component, based on the total mass of the glass composed of the oxide. (8) The optical glass according to any one of (5) to (7), wherein the content of the La2〇3 component is 5% or less based on the total mass of the glass in terms of oxide conversion. (9) The optical glass according to any one of (1) to (8), wherein the oxide conversion composition further comprises an Al2〇3 component. (10) The optical glass according to any one of (1) to (9), wherein the content of the A12〇3 component is 20.0% or less by mass% based on the total mass of the glass in terms of the oxide conversion composition. (11) The optical glass of (10), wherein the total mass of the glass in terms of the oxide-converted composition is 3% by mass or less and 3% by mass or less of the AI2O3 component. (12) The optical glass according to any one of (1) to (11), wherein the content of the F-component of the oxide-based mass is not less than 3 〇 (four). (13) The optical glass according to (12), wherein the external component is added in an amount of more than 〇%, based on the mass% of the oxide. (10) The optical glass according to (12) or (13), wherein the ratio of the mass of the oxide to the mass of the oxide is not more than 1% by mass. (15) The optical glass according to any one of (1) to (14), wherein the content of the si〇2 component is 40.0% or less by mass% based on the total mass of the glass of the oxide conversion composition. 157771.doc 201231427 (16) The optical glass of (9), wherein the content of the Si〇2 component is 25% by mass or less based on the total mass of the glass in terms of oxide conversion. (17) The optical glass according to (15) or (16), wherein the total mass of the glass relative to the oxide-converted composition is more than % by mass, and the content of the Si 〇 2 component is 25.0% or less. The optical glass of any one of (1) to (17), wherein the mass of the total mass of the glass in terms of oxide conversion is (丨〇8丨〇82〇3) is 4〇. /. the following. (19) The optical glass according to any one of (1) to (18), wherein the Gd2〇3 component is 0 to 40.0% and/or the Y2O3 component is 0% by mass relative to the total mass of the glass in terms of oxide conversion composition. ~20.0% and / or Yb2 〇 3 components 〇 ~ 20.0% and / or LU2 〇 3 components 0 ~ 20.0%. (20) The optical glass of (19), which further comprises the total mass of the glass relative to the oxide-converted composition, in mass%,

Gd2〇3成分0〜40.0%及/或 Y2〇3成分〇〜20.0%及/或 Yb2〇3成分〇〜20.0%及/或 Lu2〇3成分〇〜10.0%之各成分。 (21) 如(19)或(20)之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量’以質量%計, Gd2〇3成分〇〜30.0%及/或 Y2〇3成分〇〜20.0%及/或 157771.doc 201231427Gd2〇3 component 0~40.0% and/or Y2〇3 component 〇20.0% and/or Yb2〇3 component 〇20.0% and/or Lu2〇3 component 〇10.0% of each component. (21) The optical glass according to (19) or (20), which further comprises, in mass%, Gd2〇3 composition 〇30.0% and/or Y2〇3 composition 相对 by mass% relative to the oxide-converted composition. ~20.0% and / or 157771.doc 201231427

Yb203成分〇〜20.0%及/或 Lu203成分〇〜10.0%之各成分。 (22) 如(1)至(21)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量’以質量%計,Gd2〇3之含量 為29.5%以下。 (23) 如(1)至(22)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之LhO3成分(式中,U係選自 由La、Gd、Y、Yb、Lu所組成之群之!種以上)之質量和為 80.0°/〇以下。 (24) 如(23)之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量之1^〇3成分(式中’ Ln係選自由La、Gd、γ、 Yb、Lu所組成之群之1種以上)之質量和為2〇 〇%以上。 (25) 如(23)或(24)之光學玻璃,其中相對於氧化物換算 組成之玻璃總質量之Ln2〇3成分(式中,Ln係選自由^、The Yb203 component is 220.0% and/or the Lu203 component 〇10.0% of each component. (22) The optical glass according to any one of (1) to (21), wherein the total mass of the glass relative to the oxide-converted composition is, by mass%, the content of Gd2〇3 is 29.5% or less. (A) The optical glass of any one of (1) to (22), wherein the U is selected from La, Gd, Y, Yb, Lu in terms of the total mass of the glass in terms of oxide. The sum of the masses of the above-mentioned groups is 80.0°/〇 or less. (24) The optical glass of (23) wherein the composition of the total mass of the glass relative to the oxide is 1 〇 3 (wherein Ln is selected from the group consisting of La, Gd, γ, Yb, Lu) The mass sum of one or more types is 2% or more. (25) The optical glass according to (23) or (24), wherein the Ln2〇3 component of the total mass of the glass in terms of oxide conversion (wherein Ln is selected from the group consisting of

Gd、Y、Yb、Lu所組成之群之!種以上)之質量和為2〇〇% 以上80.0%以下。 (26)如⑴至(25)中任一項之光學玻璃,#中相對於氧 化物換异組成之玻璃總質量之。…3成分(式中,U係選自 由La、Gd' Y' Yb、Lu所級成之群之】種以上)之質量和多 於43.0%且80.0%以下。 (27) 如(26)之Μ玻璃’其中相對於氧化物換算組成之 玻璃總質量之Ln2〇3成分(式中,Ln係選自由La、Gd、γ、 Yb所組成之群之1種以上)之質量和為〇 5%以下。 (28) 如(26)或(27)之光學破續,其中相對於氧化物換算 I5777I.doc -】0· 201231427 組成之玻璃總質量之Ln203成分(式中,Ln係選自由La、A group of Gd, Y, Yb, and Lu! The mass sum of the above) is 2% or more and 80.0% or less. (26) The optical glass of any one of (1) to (25), wherein the total mass of the glass is changed with respect to the oxide. The mass of the 3 component (wherein U is selected from the group consisting of La, Gd' Y' Yb, and Lu) is more than 43.0% and 80.0% or less. (27) The glass of the (26), wherein the Ln is selected from the group consisting of La, Gd, γ, and Yb, in which the Ln is selected from the total mass of the glass. The quality of the sum is 5% or less. (28) An optical discontinuity as in (26) or (27), wherein the Ln 203 component of the total mass of the glass consisting of the oxide conversion I5777I.doc - 0. 201231427 (wherein Ln is selected from La,

Gd、Y、Yb所組成之群之1種以上)之質量和未達53.0%。 (29) 如(1)至(28)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之質量和(Gd203+Yb203)為 26.0%以下。 (30) 如(1)至(29)中任一項之光學玻璃,其中氧化物換 算組成中之質量比 Ln2〇3/(Bi203+Ti02+W〇3+Nb205+Ta205) 為1.7以上25·0以下。 (31) 如(1)至(30)中任一項之光學玻璃,其中氧化物換 算組成之質量比Ln2〇3/(Si〇2+B203)為1.00以上(式中,Ln 係選自由La、Gd、Y、Yb、Lu所組成之群之1種以上)。 (32) 如(1)至(31)中任一項之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計,The mass of one or more of the groups consisting of Gd, Y, and Yb was less than 53.0%. (29) The optical glass according to any one of (1) to (28), wherein the mass of the total mass of the glass relative to the oxide-converted composition and (Gd203 + Yb203) are 26.0% or less. (30) The optical glass according to any one of (1) to (29), wherein a mass ratio Ln2〇3/(Bi203+Ti02+W〇3+Nb205+Ta205) in the oxide-converted composition is 1.7 or more and 25· 0 or less. (31) The optical glass according to any one of (1) to (30), wherein the mass ratio of the oxide-converted composition is Ln2〇3/(Si〇2+B203) is 1.00 or more (wherein Ln is selected from La One or more of the groups consisting of Gd, Y, Yb, and Lu). (32) The optical glass according to any one of (1) to (31) which further comprises, by mass%, based on the total mass of the glass in terms of oxide conversion composition,

Bi2〇3成分0〜10.0%及/或 Ti〇2成分0〜15.0%及/或 Nb205成分〇〜2〇 〇%之各成分。 (33) 如(1)至(32)中任一項之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, W03成分〇〜15 〇%及/或 K20成分〇〜1〇 〇%之各成分。 /1)至(33)中任一項之光學玻璃,其中相對於氧 換开組成之玻璃總質量之質量和(F+Bi203+Ti〇2+ W03+Nb2〇5+K2G^G 1% 以上 % ㈣以下。 (35)如(34)之光學麵,其巾相對於氧化物換算組成之 157771.docBi2〇3 component 0~10.0% and/or Ti〇2 component 0~15.0% and/or Nb205 component 〇~2〇 〇% of each component. (33) The optical glass according to any one of (1) to (32) further comprising, by mass%, W03 component 〇 15 15 % and/or K 20 component, relative to the total mass of the glass in terms of oxide conversion composition 〇~1〇〇% of each component. The optical glass of any one of (1) to (33), wherein the mass of the total mass of the glass relative to the oxygen exchange is (F+Bi203+Ti〇2+W03+Nb2〇5+K2G^G 1% or more % (4) or less. (35) For the optical surface of (34), the towel is composed of 157771.doc

S -11- 201231427 玻璃總質量之質量和(F+Bi2〇3+Ti〇2+w〇3+Nb2〇5+K2〇)為 1.0%以上。 (36) 如(1)至(35)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之質量和(Bi2〇3 + Ti〇2 + Wc)3 + Nb205)為 20.0%以下。 (37) 如(36)之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量之質量和(Bi2〇3+Ti〇2+w〇3+Nb2〇5^ 1〇 〇%以 下。 (38) 如(1)至(37)中任一項之光學玻璃’其中氧化物換 算組成中之質量比 F/(F+Bi203+Ti02+W03+Nb205+K20)為 0.36以上1.00以下。 (39) 如(1)至(38)中任一項之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, Zr02成分〇〜15.0%及/或 Ta205 成分 〇〜25.〇〇/。。 (40) 如(39)之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, Zr02成分〇〜ΐ5·〇%及/或S -11- 201231427 The total mass of the glass and (F+Bi2〇3+Ti〇2+w〇3+Nb2〇5+K2〇) are 1.0% or more. (36) The optical glass according to any one of (1) to (35), wherein the mass of the total mass of the glass relative to the oxide conversion composition and (Bi2〇3 + Ti〇2 + Wc)3 + Nb205) is 20.0 %the following. (37) The optical glass of (36), wherein the mass of the total mass of the glass relative to the oxide is (Bi2〇3+Ti〇2+w〇3+Nb2〇5^1〇〇% or less. (38) In the optical glass of any one of (1) to (37), the mass ratio F/(F+Bi203+Ti02+W03+Nb205+K20) in the oxide-converted composition is 0.36 or more and 1.00 or less. (39) The optical glass according to any one of (1) to (38), further comprising, by mass%, Zr02 component 〇15.0% and/or Ta205 component 〇~25. 40/.. (40) The optical glass of (39), which further comprises the total mass of the glass relative to the oxide-converted composition, in terms of mass%, Zr02 composition 〇~ΐ5·〇% and/or

Ta205成分〇〜15〇%之各成分。 (41) 如(1)至(40)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之質量和(W03+La203+Zr02+ Ta205)為 ίο·。%以上 6〇 〇%以下。 (42) 如(1)至(41)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之質量和(Bi203+Ti〇2+W03 + 157771.doc -12- 201231427Ta205 is composed of 〇15% by weight of each component. (41) The optical glass according to any one of (1) to (40), wherein the mass of the total mass of the glass and the composition (W03 + La203 + Zr02 + Ta205) with respect to the oxide conversion composition is ίο. % or more 6〇 〇% or less. (42) The optical glass of any one of (1) to (41), wherein the mass of the total mass of the glass is converted relative to the oxide (Bi203+Ti〇2+W03 + 157771.doc -12- 201231427

Nb205+Ta205)多於 〇〇/〇。 其中相對於氧 Ll2〇成分之含 (43)如(1)至(42)中任一項之光學玻璃, 化物換算組成之玻璃總質量,以質量%古十 量為15.0%以下。 (44)如(43)之光學玻璃, 玻璃總質量,以質量%計 下。 其中相對於氧化物換算組成之 Ll2〇成分之含量為10.0%以 (45) 如(44)之光學玻璃,其中相對於氧化物換算组成之 玻璃總質量’以質量%計’ Li20成分之含量為50%以下。 (46) 如⑴至(45)中任一項之光學玻璃,其中氧化物換 算組成中之質量比(Ta2〇5+Zr〇2+Li2〇)/(F+Bi2〇3+Ti〇2+w〇3 + _2〇5+;^2〇)為2.00以下。 (47) 如(1)至(46)中任一項之光學玻璃,其中氧化物換 异組成之質量比(F+Bi2〇3+Ti02+W03+Nb205 + K20)/(Ta2〇5 + Zr02+Li2〇)為 〇 50以上。 (48) 如(47)之光學玻璃,其中氧化物換算組成之質量比 (F+Bi2〇3+Ti〇2+w〇3+Nb2〇5+K2〇)/(Ta2〇5+Zr〇2+Li2〇)為 i 3 以上。 (49)如(1)至(4 8)中任一項之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計 Mg0成分〇〜20.0%及/或 Ca0成分〇〜40.0%及/或 Sr0成分0〜40.0%及/或 Ba〇成分〇〜55.0%之各成分。 157771.docNb205+Ta205) is more than 〇〇/〇. In the optical glass according to any one of (1) to (42), the total mass of the glass of the composition of the composition is 15.0% or less by mass%. (44) The optical glass of (43), the total mass of the glass, in terms of mass%. The optical glass having a content of the L1 2 〇 component in an oxide-converted composition of 10.0% to (45) as in (44), wherein the total mass of the glass relative to the oxide-converted composition is % by mass% of the Li20 component. 50% or less. (46) The optical glass according to any one of (1) to (45), wherein the mass ratio in the oxide-converted composition (Ta2〇5+Zr〇2+Li2〇)/(F+Bi2〇3+Ti〇2+ W〇3 + _2〇5+;^2〇) is 2.00 or less. (47) The optical glass of any one of (1) to (46), wherein the mass ratio of the oxide exchange composition is (F+Bi2〇3+Ti02+W03+Nb205 + K20)/(Ta2〇5 + Zr02 +Li2〇) is 〇50 or more. (48) Optical glass of (47), wherein the mass ratio of the composition of the oxide is (F+Bi2〇3+Ti〇2+w〇3+Nb2〇5+K2〇)/(Ta2〇5+Zr〇2 +Li2〇) is i 3 or more. (49) The optical glass according to any one of (1) to (4), further comprising, by mass%, Mg0 component 〇 20.0% and/or Ca0 component 〇 ~40.0% and/or Sr0 component 0~40.0% and/or Ba〇 component 〇~55.0% of each component. 157771.doc

S •13· 201231427 (50) 如(49)之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計,S •13· 201231427 (50) The optical glass of (49), which further comprises the total mass of the glass relative to the composition of the oxide, in mass %,

MgO成分 〇〜!〇.〇%及/或 CaO成分 〇〜25.0%及/或 SrO成分 〇〜25.0%及/或 BaO成分 0〜55.0%之各成分。 (51) 如(49)或(50)之光學玻璃,其中 相對於氧化物換算組成之玻璃總質量,以質量y。計,MgO composition 〇~! 〇.〇% and/or CaO component 〇~25.0% and/or SrO component 〇~25.0% and/or BaO component 0~55.0% of each component. (51) The optical glass of (49) or (50), wherein the mass is y with respect to the total mass of the glass in terms of oxide composition. meter,

MgO成分〇〜1〇 〇%及/或 CaO成分 〇〜15〇%及/或 SrO成分 0〜15_0%及/或MgO composition 〇~1〇 〇% and/or CaO component 〇~15〇% and/or SrO component 0~15_0% and/or

BaO成分 〇〜25.0%。 (52) 如(1)至(51)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之尺〇成分(式中,尺係選自由BaO composition 〇~25.0%. (50) The optical glass according to any one of (1) to (51), wherein the ruler component is selected from the total mass of the glass in terms of oxide conversion (wherein the ruler is selected from

Mg、Ca、Sr、仏所組成之群之丨種以上)之質量和為μ 以下。 (53) 如(52)之光學玻璃,其巾相對於氧化物換算組成之 玻璃總質量之RO成分(式中,厌係選自由Mg、Ca、以、以 所組成之群之1種以上)之質量和為25〇%以下。 (54) 如(52)或(53)之光學玻璃’其中相對於氧化物換算 組成之玻璃總質量之RO成分(式中,尺係選自由Mg、Ca、 Sr、Ba所組成之群之;!種以上)之質量和為2〇 〇%以下。 (55) 如⑴至(54)中任—項之光學玻璃,其中以相對於 氧化物換算組成之破璃總f量之f量%計,MO成分之含 157771.doc •14, 201231427 量為20.0%以下。 (56) 如(55)之光學玻璃,其中以相對於氧化物換算組成 之玻璃總質量之質量°/◦計,NkO成分之含量為1〇 〇%以 下。 (57) 如(1)至(56)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量之RhO成分(式中,Rn係選自 由Li、Na、K所組成之群之丨種以上)之質量和為25〇%以 下。 (58) 如(57)之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之Rr^O成分(式中,Rn係選自由以、仏、〖所 組成之群之1種以上)之質量和為15.0%以下。 (59) 如(1)至(58)中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總質量,以質量%計,Zn〇成分之含 量為30.0%以下。 (60) 如(59)之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量’以質量%計’ Zn0成分之含量為25〇%以下。 (61) 如(59)或(60)之光學玻璃,其中相對於氧化物換算 級成之玻璃總質量’以質量%計’ Zn〇成分之含量為15 〇% 以下。 (62) 如(1)至(61)中任一項之光學玻螭’其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計,The sum of the masses of the above-mentioned groups of Mg, Ca, Sr, and yttrium is μ or less. (53) The optical glass of (52), the RO component of the total mass of the glass of the composition of the oxide (in the formula, the anaesthetic is selected from the group consisting of Mg, Ca, and The sum of the masses is below 25%. (54) The optical component of the optical glass of (52) or (53), wherein the ruler is selected from the group consisting of Mg, Ca, Sr, Ba; The quality of the above kind) is less than 2%. (55) The optical glass according to any one of (1) to (54), wherein the MO component contains 157771.doc •14, 201231427 in terms of the amount of f of the total amount of fr of the composition of the oxide in terms of oxide. 20.0% or less. (56) The optical glass of (55), wherein the content of the NkO component is 1% or less based on the mass % of the total mass of the glass in terms of oxide. The optical glass according to any one of (1) to (56), wherein the Rn component is selected from the group consisting of Li, Na, and K with respect to the total mass of the glass in the composition of the oxide. The mass of the above species is less than 25%. (58) The optical glass according to (57), wherein the Rr^O component of the total mass of the glass in terms of oxide conversion (wherein Rn is selected from one or more of the group consisting of 以, 仏, 〖) The mass sum is 15.0% or less. The optical glass according to any one of (1) to (58), wherein the content of the Zn〇 component is 30.0% or less by mass% based on the total mass of the glass of the oxide conversion composition. (60) The optical glass of (59), wherein the total mass of the glass relative to the oxide-converted composition is 5% by mass or less by mass% of the Zn0 component. (61) The optical glass of (59) or (60), wherein the content of the Zn 〇 component in terms of % by mass of the glass in terms of oxide conversion is 15% by weight or less. (62) The optical glass bottle of any one of (1) to (61) which further comprises the total mass of the glass relative to the oxide-converted composition, in mass%,

Ge〇2成分 〇〜10.0%及/或 p2〇5成分 0〜10.0%及/或Ge〇2 component 〇~10.0% and/or p2〇5 component 0~10.0% and/or

Ga2〇3成分 〇〜10.0%及/或Ga2〇3 composition 〇~10.0% and/or

157771.doc S 201231427157771.doc S 201231427

Te02 成分 0~10.0°/。及/或 Sn02成分 0〜5.0%及/或 Sb203成分 0〜1.0%之各成分。 (63) 如(62)之光學玻璃,其中 相對於氧化物換算組成之玻璃總質量,以質量%計, Ge02成分 0-10.0%及/或 P2O5成分 0〜10.0%及/或Te02 composition 0~10.0°/. And/or Sn02 component 0 to 5.0% and/or Sb203 component 0 to 1.0% of each component. (63) The optical glass of (62), wherein the total mass of the glass relative to the oxide-converted composition is 0-10.0% by mass of the Ge02 component and/or 0 to 10.0% of the P2O5 component and/or

Ga203成分 0〜10.0%及/或 Te02成分 0〜10.0%及/或Ga203 component 0~10.0% and/or Te02 component 0~10.0% and/or

Sn02成分 0~1.0%及/或 Sb203成分 〇~1.〇%。 (64) 如(1)至(63)中任一項之光學玻璃,其中具有157以 上之折射率(nd)及45以上之阿貝數(vd)。 (65) 如(1)至(6句中任一項之光學玻璃,其中阿貝數 係於與折射率(nd)之間滿Svd2-100xnd+220之關係。 (66) 如(1)至(65)中任一項之光學玻璃,其中阿貝數(Vd) 係於與折射率(η<〇之間滿Svd2-125xnd+265之關係。 () 種預成形體材,其包含如(1)至(66)中任一項之 光學玻璃。 (68) —種光學元件,其係對如(67)之預成形體材進行擠 壓成形製作而成。 (69) —種光學元件,其係以如(1)至(66)中任—項之光 學玻璃為母材。 、 (7〇)—種光學機器,其包括如(68)或(69)之光學元件。 15777l.doc 201231427 [發明之效果] 根據本發明,可獲得一種折射率(…)及阿貝數處於所 需之範圍内並且可較佳地使用於修正色像差之光學玻璃、 使用其之預成形體及光學元件。 【實施方式】 本發明之光學玻璃係包含b2〇3成分,部分分散比(0g, F)係於與阿貝數(vd)之間滿足(0g,F)g (_〇 〇〇17〇XVd+ 0.63750)或(eg ’ F)g (-2.〇xl〇_3XVd+〇 6498)之關係。使部分 分散比(0g,F)於與阿貝數(Vd)之間滿足特定之關係,藉此 由光學玻璃形成之光學元件之色像差下降。因此,可獲得 折射率(nd)及阿貝數(Vd)處於所需之範圍内並且可較佳地使 用於修正色像差之光學玻璃、使用其之預成形體及光學元 件。 尤其疋,第一貫施態樣之光學玻璃(以下,設為第一光 學玻璃)係包含B2〇3成分、La2〇3成分,具有丨73以上之折 射率(nd)及45以上之阿貝數(Vd),部分分散比(0g,F)係於 與阿貝數(%)之間滿足(eg,F)g (_〇 〇〇17〇xvd+〇 6375〇)之 關係。尤其是,於第一光學玻璃中,包含b2〇3成分及Sn02 component 0~1.0% and/or Sb203 component 〇~1.〇%. The optical glass according to any one of (1) to (63), which has a refractive index (nd) of 157 or more and an Abbe number (vd) of 45 or more. (65) The optical glass of any one of (1) to (6), wherein the Abbe number is between Svd2-100xnd+220 and the refractive index (nd). (66) as in (1) to (65) The optical glass of any one of (65), wherein the Abbe number (Vd) is related to a refractive index (η < 满 between Svd2-125xnd + 265. () a preformed body comprising The optical glass of any one of (1) to (66). (68) An optical element produced by extrusion molding a preformed material such as (67). (69) An optical element, The optical glass of any one of (1) to (66) is used as a base material. (7〇) is an optical machine comprising an optical component such as (68) or (69). 15777l.doc 201231427 [Effect of the Invention] According to the present invention, an optical glass having a refractive index (...) and an Abbe number within a desired range and preferably used for correcting chromatic aberration, a preform using the same, and optical can be obtained. [Embodiment] The optical glass of the present invention contains a b2〇3 component, and a partial dispersion ratio (0g, F) is satisfied (0g, F)g between the Abbe number (vd) (_〇〇) 17〇XVd+ 0.63750) or (eg ' F)g (-2.〇xl〇_3XVd+〇6498). The partial dispersion ratio (0g, F) satisfies the specific relationship with the Abbe number (Vd). Thereby, the chromatic aberration of the optical element formed by the optical glass is lowered. Therefore, the refractive index (nd) and the Abbe number (Vd) can be obtained within a desired range and can be preferably used for correcting chromatic aberration. An optical glass, a preform using the same, and an optical element. In particular, the first optical glass (hereinafter referred to as a first optical glass) contains a B2〇3 component and a La2〇3 component, and has a crucible 73. The above refractive index (nd) and the Abbe number (Vd) of 45 or more, the partial dispersion ratio (0g, F) is satisfied with the Abbe number (%) (eg, F)g (_〇〇〇17 〇xvd+〇6375〇). In particular, in the first optical glass, the b2〇3 component is included

La^3成分,藉此玻璃之折射率提高而分散減小。又,使 部分分散比(eg ’ F)於與阿貝數(Vd)之間滿足特定之關係, 藉此由光學玻璃形成之光學元件之色像差下降。因此,可 獲付折射率(nd)及阿貝數(Vd)處於所f之範圍内並且著色較 少且可較佳地使用於修正色像差之光學玻璃、使用其之預 成形體及光學元件。 157771.doc 5 201231427 又,第二實施態樣之光學玻璃(以下,設為第二光學玻 璃)係包含B2〇3成分、La2〇3成分及F成分,具有ι·7〇以上之 折射率(nd)及39以上未達52之阿貝數(vd),部分分散比 (Gg,F)係於與阿貝數(Vd)之間滿足,F)g (_2 〇χ1()·3χ vd + 0.6498)之關係。尤其是,於第二光學玻璃中,包含 B2〇3成分及La2〇3成分,藉此玻璃之折射率提高而分散減 小’對可視光之透明性亦提高。又,包含F成分,藉此即 便包含降低部分分散比之作用較強之LhO3成分等稀土類 元素成分,部分分散比(0g,F)亦提高,藉此由光學玻璃 形成之光學元件之色像差下降。因此,可獲得折射率(心) 及阿貝數(vd)處於所需之範圍内並且著色較少且可較佳地 使用於修正色像差之光學玻璃。 又,第三實施形態之光學玻璃(以下,設為第三光學玻 璃)係包含ΙΟ;成分及F成分,於以阿貝數(%)為乂軸且以折 射率(nd)為y轴之xy正交座標中,具有由a(5(),1 7〇)、 B(60 1.60)、C(63 ’ 1.60)、D(63,1.70)之 4點包圍之範圍 之阿貝數及折射率,部分分散比(0g,F)係於與阿貝數…) 之間滿足(Gg ’ F)g-〇.〇〇17〇XVd+〇 6375之關係。尤其是, ;第一光4·玻$中,併用ΙΑ成分與F成分,藉此實現玻 螭之低刀政化,並且部分分散比亦提高,由此於與阿貝數 〇d)之間獲仔所需之關係。因此可獲得折射率…)及阿貝 數〇d)處於所而之範圍内並且可較佳地使用於修正色像差 之光學玻璃、使用其之預成形體及光學元件。 又第四實細形態之光學玻璃(以下,設為第四光學玻 157771.docThe La^3 component, whereby the refractive index of the glass is increased and the dispersion is reduced. Further, the partial dispersion ratio (eg 'F) satisfies a specific relationship with the Abbe number (Vd), whereby the chromatic aberration of the optical element formed of the optical glass is lowered. Therefore, an optical glass having a refractive index (nd) and an Abbe number (Vd) in the range of f and having less coloration and preferably used for correcting chromatic aberration, a preform using the same, and optical can be obtained. element. 157771.doc 5 201231427 Further, the optical glass of the second embodiment (hereinafter referred to as a second optical glass) contains a B2〇3 component, a La2〇3 component, and an F component, and has a refractive index of 1⁄7 or more. Nd) and above the Abe number (vd) of 52, the partial dispersion ratio (Gg, F) is satisfied with the Abbe number (Vd), F)g (_2 〇χ1()·3χ vd + 0.6498) relationship. In particular, in the second optical glass, the B2〇3 component and the La2〇3 component are contained, whereby the refractive index of the glass is increased and the dispersion is reduced, and the transparency to visible light is also improved. In addition, the F component is contained, and even if the rare earth element component such as the LhO3 component having a strong partial dispersion ratio is contained, the partial dispersion ratio (0g, F) is improved, whereby the color image of the optical element formed of the optical glass is formed. The difference is falling. Therefore, an optical glass in which the refractive index (heart) and the Abbe number (vd) are in a desired range and which is less colored and can be preferably used for correcting chromatic aberration can be obtained. Further, the optical glass of the third embodiment (hereinafter, referred to as a third optical glass) contains bismuth; a component and an F component, and has an Abbe number (%) as a 乂 axis and a refractive index (nd) as a y-axis. In the xy orthogonal coordinates, there are Abbe numbers and refractions in the range surrounded by 4 points of a(5(), 1 7〇), B(60 1.60), C(63 ' 1.60), D(63, 1.70). The rate, the partial dispersion ratio (0g, F) is related to the relationship between (Gg 'F)g-〇.〇〇17〇XVd+〇6375 with the Abbe number...). In particular, the first light 4 · glass $, and the use of the bismuth component and the F component, thereby achieving a low knife economy, and the partial dispersion ratio is also improved, thereby being between the Abbe number and d) Get the relationship you need. Therefore, an optical glass having a refractive index...) and an Abbe number )d) which is in the range of the above and which can be preferably used for correcting chromatic aberration, a preform using the same, and an optical element can be obtained. The fourth real thin optical glass (hereinafter, set as the fourth optical glass 157771.doc

-18- 201231427 璃)係以質量。/〇計包含5.0〜55.0%之1〇3成分、1〇〇〜55〇% 之La2〇3成分,更包含八丨2^成分及F成分。尤其是於第 四光學玻璃中,在特定含量之範圍内包含b2〇3成分及 LhO3成分,藉此玻璃之折射率提高而分散減小,且對可 視光之透明性提高。又,於ΙΑ成分及成分中併用 Ah〇3成分及F成分,藉此即便包含降低部分分散比之作用 較強之La"3成分等稀土類元素成分,部分分散比(0g, 亦提高,且,玻璃之液相溫度提高。因此,可獲得折射率 (nd)及阿貝數(vd)處於所f之範圍内並且可較佳地使用於修 正色像差且耐失透性較高之光學玻璃。 以下’對本發明之光學玻璃之實施形態進行詳細說明, 但本發明衫受限於以下實施形態,可於本發明之目標範 圍内適當附加變更而實施。再者,有時針對重複說明之部 位適當省略說明,但並不限定發明之宗旨。 [玻璃成分] 以下,對構成本發明之光學玻璃之各成分之組成範圍進 行敍述。於本說明書中’各成分之含量係只要不做特別說 明::形時,全部以相對於氧化物換算組成之玻璃總質量 之質量%表示。此處’所謂「氧化物換算組成」係指當假 設用作本發明之玻璃構成成分之原料的氧化物、複合链、 金屬銳化物等在炼融時全部進行分解而變為氧化物之情形 時’將該生成氧化物之總質量設為1〇〇質量%來標記玻璃 中所含之各成分之組成。 <關於必須成分、任意成分>-18- 201231427 Glass) is based on quality. The composition contains 5.0 to 55.0% of the 1〇3 component, 1〇〇~55〇% of the La2〇3 component, and further includes the barium 2^ component and the F component. In particular, in the fourth optical glass, the b2〇3 component and the LhO3 component are contained within a specific content range, whereby the refractive index of the glass is increased and the dispersion is reduced, and the transparency to the visible light is improved. In addition, the Ah 〇 3 component and the F component are used in combination with the bismuth component and the component, and the partial dispersion ratio (0g is improved even if the rare earth element component such as the La"3 component having a strong partial dispersion ratio is contained. The temperature of the liquid phase of the glass is increased. Therefore, the refractive index (nd) and the Abbe number (vd) are in the range of f and can be preferably used for correcting chromatic aberration and having high devitrification resistance. In the following, the embodiment of the optical glass of the present invention will be described in detail. However, the present invention is limited to the following embodiments, and may be appropriately modified and modified within the scope of the present invention. The description of the components is omitted as appropriate. However, the purpose of the invention is not limited. [Glass component] Hereinafter, the composition range of each component constituting the optical glass of the present invention will be described. In the present specification, the content of each component is not specifically described. In the case of ::form, all are expressed as mass % of the total mass of the glass in terms of oxide composition. Here, the term "oxide conversion composition" means when used as a hypothesis When the oxide, the composite chain, and the metal sharpening of the raw material of the glass component are all decomposed and converted into an oxide during the melting, the total mass of the produced oxide is set to 1% by mass. The composition of each component contained in the glass. <About required components, arbitrary components>

S I5777I.doc •19· 201231427 B2〇3成分係於玻璃内部形成網狀結構而促進穩定之玻璃 形成之成分》尤其是,將B2〇3成分之含量設為5 0%以上, 藉此使玻璃難以失透,可容易獲得穩定之玻璃。另一方 面’將Βζ〇3成分之含量設為55,0%以下,藉此可容易獲得 所需之折射率及分散性。因此,將相對於氧化物換算 之玻璃總質量的ΙΑ成分之含量之下限設為較佳為5 〇〇/〇, 更佳為8.0%,最佳為10.0%,進而較佳為13 〇% ,最佳為 15.0%。另一方面 限設為較佳 將该B2〇3成分之含量之上 更佳為50.0%,進而較佳為45〇%,進而較佳為 為 55.0% 4〇.〇%’ it而較佳為35.0%。尤其是,於本發明之光學玻璃 中,亦可將該B2〇3成分之含量之上限設為3〇 〇%βΒ2〇3成 分係例如可使用Η3Β〇3 ' 、Na2B4〇7聰2〇、2抑 等作為原料而包含於玻璃内。S I5777I.doc •19·201231427 The B2〇3 component is a component that forms a network structure inside the glass and promotes stable glass formation. In particular, the content of the B2〇3 component is set to 50% or more, thereby making the glass It is difficult to get rid of, and it is easy to obtain stable glass. On the other hand, the content of the Βζ〇3 component is set to 55,0% or less, whereby the desired refractive index and dispersibility can be easily obtained. Therefore, the lower limit of the content of the cerium component relative to the total mass of the glass in terms of oxide is preferably 5 〇〇 / 〇, more preferably 8.0%, most preferably 10.0%, and still more preferably 13 〇 %. The best is 15.0%. On the other hand, it is preferable to set the content of the B2〇3 component to be more preferably 50.0%, more preferably 45% by weight, still more preferably 55.0%, and preferably 4%. 35.0%. In particular, in the optical glass of the present invention, the upper limit of the content of the B2〇3 component may be set to 3〇〇%βΒ2〇3 component, for example, Η3Β〇3 ', Na2B4〇7 Cong 2〇, 2 may be used. It is contained in the glass as a raw material.

LhO3成分係提尚玻璃之折射率而減小分散之成分。 尤其是,將LhO3成分之含量設為55.〇%以下,藉此抑制 玻璃之分相,製作玻璃時,可使玻璃難以失透。因此,將 相對於氧化物換算組成之玻璃總質量的[“Ο3成分之含量 之上限設為較佳為55.0%,更佳為54.〇%,進而較佳為 53.〇%,進而較佳為52 〇%,進而較佳為5〇 〇%,最佳為 45.、〇%。再者,La2〇3成分之含量之下限係於可獲得具有所 而光干特性之玻璃之範圍内適當設定,但藉由將成 分之含量設為5.0%以上,可容易獲得具有所需較高之折射 率及較高之阿貝數且對可視光之穿透率較高之玻璃。因 此,將該La2〇3成分之含量之下限設為較佳為5 〇%,更佳 157771.d〇cThe LhO3 component is a component that reduces the refractive index of the glass and reduces the dispersion. In particular, when the content of the LhO3 component is 55.5% or less, the phase separation of the glass is suppressed, and when the glass is produced, the glass is hard to devitrify. Therefore, the upper limit of the content of the "component of the Ο3 component" is preferably 55.0%, more preferably 54.%, more preferably 53.%, and further preferably It is 52%, more preferably 5%, and most preferably 45., 〇%. Further, the lower limit of the content of the La2〇3 component is suitable for obtaining a glass having a light-drying property as appropriate. It is set, but by setting the content of the component to 5.0% or more, it is possible to easily obtain a glass having a desired higher refractive index and a higher Abbe number and having a higher transmittance to visible light. The lower limit of the content of the La2〇3 component is preferably set to 5 〇%, more preferably 157771.d〇c

-20- 201231427 為10·0%,進而較佳為多於12 0%,進而較佳為13 〇%,進 而較佳為15.0%。亦可將該La2〇3成分之含量之下限設為 2〇.〇%,亦可將下限設為25.0%。La2〇3成分係例如可使用 WO3、La(N〇3)rXH2〇(x係任意之整數)等作為原料而包 F成分係提高玻璃之部分分散比之成分,且係降低玻璃 之轉私點(Tg)之成分。尤其是,將]?成分之含量設為go o% 以下,藉此可提高玻璃之穩定性而使其難以失透。因此, 將以相對於氧化物基準質量之外加比例計之F成分之含量 之上限設為較佳為30.0%,更佳為25.〇%,進而較佳為 20.0%’最佳為15.0%。尤其是,於第三光學玻璃中亦可 將該F成分之含量設為10.0%以下。再者,本發明之光學玻 散比之光學玻璃’但藉由包W成分,可獲得具有較高之 部分分散比並且著色亦較少之光學玻璃^ @此,將以相對 於氧化物基準質量之外加比例計之F成分之含量之下限設 !?佳為多於〇、更佳為〇.1%,更佳為多於〇.5%,進而較-20- 201231427 is 10·0%, further preferably more than 120%, further preferably 13%, and further preferably 15.0%. The lower limit of the content of the La2〇3 component may be 2〇.〇%, or the lower limit may be 25.0%. For the La2〇3 component, for example, WO3, La(N〇3)rXH2(R) (an arbitrary number of x), or the like can be used as a raw material, and the F component can be used to increase the partial dispersion ratio of the glass, and the glass can be reduced. (Tg) component. In particular, the content of the component is set to be below o o%, whereby the stability of the glass can be improved and it is difficult to devitrify. Therefore, the upper limit of the content of the F component in terms of the ratio with respect to the oxide reference mass is preferably 30.0%, more preferably 25% by weight, still more preferably 20.0%' is preferably 15.0%. In particular, the content of the F component in the third optical glass may be 10.0% or less. Furthermore, the optical glass of the present invention has a ratio of optical glass to the optical glass of the present invention, but by the W component, an optical glass having a higher partial dispersion ratio and less coloration can be obtained. The lower limit of the content of the F component in addition to the ratio is set to be more than 〇, more preferably 〇.1%, more preferably more than 〇.5%, and thus

157771.doc 201231427 再者,本說明書中之F成分之含量係假設構成玻璃之陽 離子成分全部形成其與恰好達到電荷平衡數量之氧鍵結而 成之氧化物且將由彼等氧化物形成之整個玻璃之質量設為 100% ’並以質量%來表示F成分之質量者(相對於氣化物基 準質量之外加比例質量。/0)。157771.doc 201231427 Furthermore, the content of the F component in the present specification assumes that the cationic components constituting the glass all form an oxide which is bonded to the oxygen which is just a charge balance amount and which is formed by the oxides. The mass is set to 100% ' and the mass of the F component is expressed in mass % (the proportional mass is added to the vapor reference mass. /0).

Al2〇3成分係容易形成穩定之玻璃之成分,係本發明之 光予玻璃中之任意成分。尤其是,將Ai2〇3成分之含量設 為20.㈣以τ,藉此可抑制玻璃之阿貝數之下降。因此, f相對於氧化物換算組成之玻璃總質量的从…成分之含 量之上限設為較佳為20 0%,更佳為15 0%,進而較佳為 10.0/。。亦可將該幻2〇3成分之含量之上限設為較佳為 8.0%’進而較佳為5·〇%,最佳為2 〇%。此處,亦可不包含 Α!2〇3成分,但尤其是於第四光學玻璃中,藉由包含Αι2〇3 成分而可抑制玻璃之阿貝數之下降。因此,將相對於氧化 物換算組成之玻璃總質量的Al2〇3成分之含量之下限設為 較么為多於0% ’更佳為0.1 %,進而較佳為0.5%,進而較 么為1.0% ’進而較佳為多於3 〇%,最佳為多於3 4%。 乂2〇3成分係例如可使用Μ"3、AK〇H)3、Alh等作為原料 而包含於玻璃内。 尤其是,於第四光學玻璃中,Α〗2〇3成分之含量對f成分 =含量之比率較佳為大於〇且15 〇以下。將該比率設為特 定範圍内,藉此提高玻璃之穩定性,故而可獲得耐失透性 更阿之玻璃。因此,將氧化物換算組成之質量比A12〇3/f 之下限设為較佳為大於〇、更佳為〇」、最佳為〇 3。另一方 157771.d〇, •22- 201231427 將σ亥比率之上限设為較佳為i5 〇、更佳為1 、進而 較佳為5.0、進而較佳為4 〇、最佳為3·2。再者,於該含量 之比率巾F成分之含量係指以相對於氧化物基準質量之 外=比例3|·之含量,Al2Q3^分之含量係指相對於氧化物 換算組成之破璃總質量之含量。The Al2〇3 component is a component which is easy to form a stable glass and is an optional component of the glass of the present invention. In particular, the content of the Ai2〇3 component is set to 20. (4) τ, whereby the decrease in the Abbe number of the glass can be suppressed. Therefore, the upper limit of the content of the component from the total mass of the glass of the oxide-converted composition is preferably 20%, more preferably 15%, still more preferably 10.0%. . The upper limit of the content of the Magic 2〇3 component may be preferably 8.0%', more preferably 5% by weight, and most preferably 2% by weight. Here, the Α!2〇3 component may not be included, but particularly in the fourth optical glass, the decrease in the Abbe number of the glass can be suppressed by including the Αι2〇3 component. Therefore, the lower limit of the content of the Al2〇3 component relative to the total mass of the glass in terms of the oxide conversion composition is more preferably more than 0%', more preferably 0.1%, still more preferably 0.5%, and more preferably 1.0. % ' is further preferably more than 3 %, and most preferably more than 3 4%. The 乂2〇3 component can be contained in the glass, for example, using Μ"3, AK〇H)3, Alh or the like as a raw material. In particular, in the fourth optical glass, the ratio of the content of the component 〇2〇3 to the content of the f component = is preferably greater than 〇 and 15 〇 or less. By setting the ratio within a specific range, thereby improving the stability of the glass, it is possible to obtain a glass which is more resistant to devitrification. Therefore, the lower limit of the mass ratio A12〇3/f of the oxide-converted composition is preferably larger than 〇, more preferably 〇, and most preferably 〇3. The other party 157771.d〇, •22-201231427 sets the upper limit of the σ海 ratio to preferably i5 〇, more preferably 1, more preferably 5.0, still more preferably 4 〇, and most preferably 3.4. In addition, the content of the content of the F component in the ratio of the content of the content of the F component is in the ratio of the ratio of the ratio of the content of the alloy to the ratio of the ratio of the content of the alloy, and the content of the Al2Q3 component is the total mass of the glass in terms of the composition of the oxide. The content.

Si〇2成分係促進穩定之玻璃形成且抑制製作玻璃時之失 透(結晶物之產生)之成分,係本發明之光學玻璃中之任意 成刀尤其是,將Sl〇2成分之含量設為40.0%以下,藉此 使31〇2成分容易溶解於熔融玻璃中,可避免高溫下之溶 解。將相對於氧化物換算組成之玻璃總質量的以〇2成分之 含量之上限設為較佳為4G.G%,更佳為,進而較佳為 未達28.0%,進而較佳為25()%,進而較佳為未達25〇%, 進而較佳為24.0%,進而較佳為2〇.〇%,冑佳為未達 20.0%。尤其是 '於第—、第二及第四光學玻璃中,亦可 將該si〇2成分之含量之上限設為15 〇%,亦可將上限設為 10.0%。再者’即便不包含Si〇2成分,亦可獲得具有所需 較高之部分分散比之玻璃,但藉由包含Si02成分,可提高 玻璃之耐失透性。因此,將相對於氧化物換算組 總質量的Si〇2成分之含量之下限設為較佳為多於〇%,較佳 為0.1%,更佳為0.5%,進而較佳為1·0%。尤其是,於第二 光學玻璃中,亦可將該叫成分之含量之下^為H 亦可設為多於5.0%。Si〇2成分係例如可使用⑽、 K^SiF6、Na〗SiF6 %作為原料而包含於玻璃内。 尤其是,於第四光學玻璃中,Si〇2成分與B2〇3成分之質The Si〇2 component is a component that promotes stable glass formation and suppresses devitrification (production of crystallized matter) in the production of glass, and is an arbitrary forming tool in the optical glass of the present invention, in particular, the content of the S1〇2 component is set to 40.0% or less, whereby the 31〇2 component is easily dissolved in the molten glass, and dissolution at a high temperature can be avoided. The upper limit of the content of the 〇2 component relative to the total mass of the glass in terms of the oxide conversion composition is preferably 4 G.G%, more preferably, still more preferably less than 28.0%, and still more preferably 25 (). %, further preferably less than 25%, more preferably 24.0%, still more preferably 2%, 胄%, and less than 20.0%. In particular, in the first, second, and fourth optical glasses, the upper limit of the content of the si 〇 2 component may be set to 15 〇 %, and the upper limit may be set to 10.0%. Further, even if the Si 2 component is not contained, a glass having a desired higher partial dispersion ratio can be obtained, but by containing the SiO 2 component, the devitrification resistance of the glass can be improved. Therefore, the lower limit of the content of the Si〇2 component relative to the total mass of the oxide-converted group is preferably more than 〇%, preferably 0.1%, more preferably 0.5%, still more preferably 1.0%. . In particular, in the second optical glass, the content of the component may be H or may be more than 5.0%. The Si〇2 component can be contained in the glass, for example, using (10), K^SiF6, Na and SiF6% as raw materials. In particular, in the fourth optical glass, the composition of the Si〇2 component and the B2〇3 component

S 157771.doc 201231427 量和較佳為40.0%以丁。, 下 猎此,抑制玻璃之折射率之 降,故而可獲得具有所需之高折射率之光學玻璃。因此, 將相對於乳化物換算組成之玻璃總質量的質量和 (加他叫之上限設為較佳為则%,更佳為μ 〇% 佳為32爲。再者,就獲得穩定性較高且耐失透性較高之 ^璃之觀點而言’將該f量和_2+B2〇3)之下㈣為較佳 為5.0% ’更佳為1〇.〇%,最佳為15 〇%。 叫〇33成分係提高玻璃之折射率而減小分散之成分。 尤/、疋將Gd2〇3成分之含量設為4〇〇%以下藉此 玻璃之分相,J',製作玻璃時,可使玻璃難以失透。 因此’將相對於氧化物換算組成之玻璃總質量的G 成分之含量之上限設為較佳為後G%,更佳為35G%, 較佳為30.0%,最佳為29.5%。 尤其是’於苐三光學麵中,亦可將該Gd办成分之含 量設為較佳為未㈣戲,更佳為未達2通,最 20.0%。 q 不運 再者’即便不包含Gd2〇3成分,亦可獲得具有所需較高 之部分分散比之玻璃’但藉由包含〇ι%以上之W处成 ^可容易獲得所需之折射率及分散性。因此,將相對於 氧化物換算組成之玻璃總質量的%〇3成分之含量之下限 設為較佳為請,更佳紅Q%,心較佳為2鳥。尤盆 Γ於第一及第四光學玻璃中,亦可將該Gd2〇3成分之含 里之下限設為5·0% ’亦可將下限設為7,〇%。㈤办成分係 例如可使用Gd2〇3、GdF3等作為原料而包含於玻璃内。’、 157771.doc •24- 201231427 Υ2〇3成分、Yb>2〇3成分及Lu2〇3成分係提高玻璃之折射率 而減小分散之成分。此處,將Y2〇3成分、Yb2〇3成分或S 157771.doc 201231427 Quantity and preferably 40.0% diced. Under the test, the refractive index of the glass is suppressed, so that an optical glass having a desired high refractive index can be obtained. Therefore, the mass of the total mass of the glass converted to the composition of the emulsion is set to (the upper limit of the addition is preferably set to %, more preferably μ 〇% is preferably 32. Further, the stability is higher. And from the viewpoint of the glass having a high resistance to devitrification, the amount of 'f and _2+B2〇3) is preferably 5.0%, more preferably 1〇.〇%, and most preferably 15 〇%. The composition of 〇33 is to increase the refractive index of the glass and to reduce the component of dispersion. In particular, the content of the Gd2〇3 component is set to 4% by weight or less, whereby the phase separation of the glass, J', makes the glass difficult to devitrify when the glass is produced. Therefore, the upper limit of the content of the G component relative to the total mass of the glass in terms of the oxide-converted composition is preferably preferably G%, more preferably 35 G%, more preferably 30.0%, most preferably 29.5%. In particular, in the optical surface of the 苐三三, the content of the Gd component may be preferably less than (four), more preferably less than 2, and most 20.0%. q If you don't want to use it, even if you don't include the Gd2〇3 component, you can get the glass with the desired higher partial dispersion ratio. However, you can easily obtain the desired refractive index by including 〇ι% or more. Dispersibility. Therefore, the lower limit of the content of the % 〇 3 component of the total mass of the glass in terms of the oxide conversion composition is preferably, more preferably, red Q%, and the heart is preferably 2 birds. In the first and fourth optical glasses, the lower limit of the content of the Gd2〇3 component may be set to 5·0%', and the lower limit may be set to 7, 〇%. (5) Component system For example, Gd2〇3, GdF3, or the like can be used as a raw material and contained in glass. ’, 157771.doc •24- 201231427 Υ2〇3, Yb>2〇3 and Lu2〇3 are components that increase the refractive index of the glass and reduce the dispersion. Here, Y2〇3 component, Yb2〇3 component or

Lu2〇3成分之含量設為20.0%以下,藉此可使玻璃難以失 透。尤其是,將Yb>2〇3成分之含量設為10.0%以下,藉此於 玻璃之長波長側(波長1 〇〇〇 nm之附近)難以產生吸收,故 而可提高玻璃對紅外線之财性。因此’將相對於氧化物換 算組成之玻璃總質量的Y2〇3成分及Yt>2〇3成分之含量之上 限設為較佳為20.0%,更佳為15.0%,進而較佳為1〇 〇%, 進而較佳為8.0%,進而較佳為5_0% ’最佳為4.0%。又,將 相對於氧化物換算組成之玻璃總質量的Lu2〇3成分之含量 之上限設為較佳為20.0%,更佳為15.0%,進而較佳為 10·〇% ’進而較佳為8.0%,進而較佳為5 〇%,最佳為 3·0%。尤其是,就提高玻璃對紅外線之耐性之觀點而言, 將相對於氧化物換算組成之玻璃總質量的Yb2〇3成分之含 量設為較佳為未達3·0%,最佳為未達i 〇%。ΙΟ;成分、 竹2〇3成分及lU2〇3成分係例如可使用、γρ3、The content of the Lu2〇3 component is set to 20.0% or less, whereby the glass is hard to be devitrified. In particular, when the content of the Yb>2〇3 component is 10.0% or less, absorption on the long wavelength side of the glass (near the wavelength of 1 〇〇〇 nm) is less likely to occur, so that the glass can be improved in the infrared ray. Therefore, the upper limit of the content of the Y2〇3 component and the Yt>2〇3 component of the total mass of the glass in terms of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, still more preferably 1〇〇. %, further preferably 8.0%, further preferably 5_0% 'best 4.0%. Further, the upper limit of the content of the Lu 2 〇 3 component based on the total mass of the glass in terms of oxide conversion is preferably 20.0%, more preferably 15.0%, still more preferably 10% '% and further preferably 8.0. %, further preferably 5 〇%, most preferably 3.0%. In particular, from the viewpoint of improving the resistance of the glass to infrared rays, the content of the Yb2〇3 component relative to the total mass of the glass in terms of oxide composition is preferably less than 3.0%, and most preferably not i 〇%. ΙΟ; ingredients, bamboo 2〇3 components and lU2〇3 components can be used, for example, γρ3,

Yb203、lU2〇3等作為原料而包含於玻璃内。 於本發明之光學玻璃中’ Ln2〇3成分(式中,㈣選自由Yb203, lU2〇3, etc. are contained in the glass as a raw material. In the optical glass of the present invention, the 'Ln2〇3 component (wherein, (4) is selected from

La、Gd、γ、Yb、Lu所組成之群之丨種以上)之含量之質量 和較料8G.G%以下。藉此,可降低製作玻璃時之玻璃: 失透。 、匕將相對於氧化物換算組成之玻螭總質量的丄^2〇3 成分之含量之質量和之上限設為較佳為8〇 g%,更 H Μ為。尤其是’於第三光學玻璃中,亦可 157771.doc -25· 201231427 將该Ln2〇3成分之含量之質量和之上限設為較佳為63·5%, 更佳為60.0%,進而較佳為55〇%,最佳為未達5〇.〇%。再 者,Ln2〇3成分之合計含量之下限係於可獲得所需特性之 光學玻璃之範圍内適當選擇,但例如設為多於1〇〇%,藉 此可容易獲得所需較高之折射率及阿貝數,減少著色,且 減小光彈性常數。尤其是,於本發明之光學玻璃中,即便 包含大量稀土類,部分分散比亦難以下降,故而可容易兼 顧所需較高之部分分散比與較高之折射率及阿貝數。因 此,將相對於氧化物換算組成之玻璃總質量的Ln2〇3成分 之含量之質量和之下限設為較佳為多於1〇 〇%,更佳為多 於15.0/〇 ’進而車父佳為多於16 〇%,進而較佳為〇%,最 佳為多於20_0%。尤其是,於第一、第二及第四光學玻璃 中,亦可將該Ln2〇3成分之含量之質量和之下限設為較佳 為30.0%,更佳為4〇 〇%,進而較佳為多於43 〇%,進而較 佳為45.0%,進而較佳為5〇 〇% ,最佳為55 〇%。 尤其是,於第三光學玻璃中,GAO;成分與Yb2〇3成分之 和較佳為26.0%以下。藉此,抑制使用提高折射率之作用 杈強之Gd2〇3成分及Yb2〇3成分,故而提高部分分散比,並 且亦可容易獲得所需之折射率及分散。因此,將相對於氧 化物換算組成之玻璃總質量之質量和(Gd2〇3+Yb2〇3)之上 限α又為幸乂佳為26 〇〇/。,更佳為23 〇0/❶,進而較佳為〇%, 最佳為1 5.0。/。。 又’於本發明之光學玻璃中’ LhO3之含量對質量和 ⑼办+丁叫憎仏+训必+丁化⑹之質量比較佳為1 7以上 157771.doc •26- 201231427 25.0以下。藉此’相對於降低阿貝數之出处成分、加2成 分、W〇3成分、Nb2〇5成分及Ta2〇5成分之合計含量,提高 阿貝數之Ln2〇3之合計含量成為特定範圍内,故而可容Z 獲得所需之阿貝數,甚至可於部分分散比與阿貝數之間具 有所需之關係。因此,將氧化物換算組成中之質量2 Li^OABhOeTiOdWC^+Nl^C^+Tae5)之下限設為較佳為 1·7’更佳為3·〇’進而較佳為5.G’並將其上限設為較佳為 25.0,更佳為20.0,最佳為i6.8。 又’於第四鮮玻璃中’Ln2〇3(式中,選自由 Gd、Y、Yb、Lu所組成之群之t種以上)成分之含量對叫 成分與ίο;成分之質量和之比率較佳為1〇〇以上。將該比 率設為㈣以^,藉此即便包含Al2〇3成分,折射率較提 高,故而可獲得具有較高之部分分散比,並且亦兼具玻璃 之穩定性及高折射率之光學玻璃。因此,將氧化物換算組 成之質量比Ln203/(Si02+B2〇3)之下限設為較佳為i⑻,更 佳紅25’最佳為L40。另—方面,㈣率之上限係只要 可獲得穩定之玻璃,便無特別限定,但例如超過㈣時, 推測出有容易引起失透之可能性。因&,將氧化物換算,且 成之質量比Ln2〇3/(Si〇2+B2〇3)之上限設為較佳為ι〇 〇〇, =為U0,最佳為5秦於一成分中,La2〇3成分係 /、有進—步提高玻璃之穩定性之作用,故而就可獲得耐失 透性特別高之玻璃之觀點而言,更佳為將La203/(si02+ B2〇3)之比率設為上述範圍内…就可獲得耐失透性更 尚之玻璃之觀點而言,亦可將氧化物換算組成之質量比The content of the content of the group consisting of La, Gd, γ, Yb, and Lu is equal to or less than 8 G.G%. Thereby, the glass when the glass is produced can be reduced: devitrification. The mass and the upper limit of the content of the 丄^2〇3 component of the total mass of the glass yttrium having an oxide conversion composition are preferably 8 〇 g%, and more H Μ is. In particular, in the third optical glass, the mass and the upper limit of the content of the Ln2〇3 component may be preferably 63.5%, more preferably 60.0%, and further preferably 157771.doc -25·201231427. The best is 55〇%, and the best is less than 5〇.〇%. Further, the lower limit of the total content of the Ln2〇3 component is appropriately selected within the range of the optical glass in which the desired characteristics can be obtained, but is, for example, set to more than 1% by mass, whereby the desired higher refractive index can be easily obtained. Rate and Abbe number, reduce coloration, and reduce photoelastic constant. In particular, in the optical glass of the present invention, even if a large amount of rare earth is contained, the partial dispersion ratio is hard to be lowered, so that a higher partial dispersion ratio and a higher refractive index and Abbe number can be easily achieved. Therefore, the mass and the lower limit of the content of the Ln2〇3 component relative to the total mass of the glass in the oxide conversion composition are preferably more than 1% by weight, more preferably more than 15.0/〇, and thus the car is good. It is more than 16%, more preferably 〇%, and most preferably more than 20%%. In particular, in the first, second, and fourth optical glasses, the mass and the lower limit of the content of the Ln2〇3 component may be preferably 30.0%, more preferably 4% by weight, and further preferably. It is more than 43%, more preferably 45.0%, still more preferably 5%, and most preferably 55 %. In particular, in the third optical glass, the sum of the component of the GAO; and the component of Yb2〇3 is preferably 26.0% or less. Thereby, it is possible to suppress the use of the Gd2〇3 component and the Yb2〇3 component which have a function of increasing the refractive index, so that the partial dispersion ratio is improved, and the desired refractive index and dispersion can be easily obtained. Therefore, the mass of the total mass of the glass and the upper limit of (Gd2〇3+Yb2〇3) with respect to the composition of the oxide are again good for 26 〇〇/. More preferably, it is 23 〇0/❶, and further preferably 〇%, and most preferably 1 5.0. /. . Further, in the optical glass of the present invention, the content of the 'LhO3' is good for the mass and the quality of the (9), +, Ding, 训, +, and + (6) 157771.doc • 26-201231427 25.0 or less. Therefore, the total content of the Lb2〇3 of the Abbe number is increased within a specific range with respect to the total content of the component of the Abbe number, the addition of the 2 component, the W〇3 component, the Nb2〇5 component, and the Ta2〇5 component. Therefore, it is possible to obtain the required Abbe number, and even have a desired relationship between the partial dispersion ratio and the Abbe number. Therefore, the lower limit of the mass 2 Li^OABhOeTiOdWC^+Nl^C^+Tae5) in the oxide-converted composition is preferably 1·7', more preferably 3·〇', and even more preferably 5.G'. The upper limit is preferably set to 25.0, more preferably 20.0, and most preferably i6.8. Further, in the fourth fresh glass, the content of the component 'Ln2〇3 (wherein, selected from the group consisting of Gd, Y, Yb, and Lu) is the ratio of the component to the component and the mass of the component. Good for more than 1〇〇. When the ratio is (4), the refractive index is improved even if the Al2?3 component is contained, so that an optical glass having a high partial dispersion ratio and having both glass stability and high refractive index can be obtained. Therefore, the lower limit of the mass ratio Ln203/(Si02+B2〇3) of the oxide conversion composition is preferably i (8), and more preferably the red 25' is preferably L40. On the other hand, the upper limit of the rate of (4) is not particularly limited as long as it can obtain stable glass. However, for example, when it exceeds (4), it is presumed that there is a possibility that devitrification is likely to occur. For the &, the oxide is converted, and the upper limit of the mass ratio Ln2〇3/(Si〇2+B2〇3) is preferably ι〇〇〇, = U0, and the best is 5 Qin Yuyi Among the components, the La2〇3 component is/in order to improve the stability of the glass, so that it is more preferable to obtain La203/(si02+B2〇3 from the viewpoint of obtaining a glass having particularly high devitrification resistance. The ratio of the ratio is set to the above range... In terms of the glass which is more resistant to devitrification, the mass ratio of the oxide conversion composition can also be obtained.

S 157771‘doc -27· 201231427S 157771‘doc -27· 201231427

La2〇3/B2〇3之上限設為較佳為1〇 〇〇,更佳為5 〇〇,進而較 佳為3.5G’進而較佳為23(),最佳為未達2〇〇。The upper limit of La2〇3/B2〇3 is preferably 1 〇 〇〇, more preferably 5 〇〇, and still more preferably 3.5 G' and further preferably 23 (), and most preferably less than 2 Å.

Bi2〇3成分係提高玻璃之部分分散比之成分,並且提高 玻璃之折射率且降低玻璃轉移點之成分,係本發明之光學 玻璃中之任意成分。尤其是,將Bi203成分之含量設為 10.0/。以下’藉此可使可視短波長(5〇〇 nm以下)之光線穿 透率難以惡化。因此’將相對於氧化物換算組成之玻璃總 質S的Bi2〇3成分之含量之上限設為較佳為1〇 〇%,更佳為 8.0/。’最佳為5.0。/。。則2〇3成分係例如可使用Bi2〇3等作為 原料而包含於玻璃内。 Τι〇2成分係提高玻璃之部分分散比之成分,並且提高破 妈之折射率及分散且提高玻璃之化學耐久性之成分,係本 發明之光學玻璃中之任意成分。尤其是,將Ti〇2成分之含 置設為15.0〇/〇以下,藉此容易獲得所需較高之阿貝數, 且,可使可視短波長(500 nm以下)之光線穿透率難以惡 化。因此,將相對於氧化物換算組成之玻璃總質量的丁丨〇2 成分之含量之上限設為較佳為15 〇%,更佳為12 〇%,進而 較佳為10.0%,進而較佳為8〇%,進而較佳為7 〇%,最佳 為5.0%。Ti〇2成分係例如可使用Ti〇2等作為原料而包含於 玻璃内。 、The Bi2〇3 component is a component which increases the refractive index of the glass and increases the refractive index of the glass and lowers the composition of the glass transition point, and is an optional component in the optical glass of the present invention. In particular, the content of the Bi203 component was set to 10.0/. In the following, it is difficult to deteriorate the light transmittance of visible short wavelengths (below 5 Å nm). Therefore, the upper limit of the content of the Bi2〇3 component of the glass total S of the oxide-converted composition is preferably 1% ,%, more preferably 8.0%. 'Best is 5.0. /. . The 2〇3 component can be contained in the glass, for example, by using Bi2〇3 or the like as a raw material. The Τι〇2 component is a component which increases the refractive index of the glass and which increases the refractive index of the mother and disperses and increases the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ti 2 component to 15.0 Å/〇 or less, it is easy to obtain a desired high Abbe number, and it is difficult to achieve a light transmittance of a short wavelength (below 500 nm). deterioration. Therefore, the upper limit of the content of the butyl sulfonium 2 component relative to the total mass of the glass in terms of the oxide conversion composition is preferably 15% by weight, more preferably 12% by weight, still more preferably 10.0%, and further preferably 8〇%, further preferably 7〇%, and most preferably 5.0%. The Ti 2 component can be contained in the glass, for example, using Ti 2 or the like as a raw material. ,

NhO5成分係提高玻璃之部分分散比之成分,並且提高 玻璃之折射率及分散且提高玻璃之化學耐久性之成分,係 本發明之光學玻璃中之任意成分。尤其是,將叫〇5成分 之含量設為20.0%以下,藉此可容易獲得所需較高之阿貝 157771.doc -28- 201231427 數。因此,將相對於氧化物換算組成之玻璃總質量的 Nb2〇5成分之含量之上限設為較佳為20 〇%,更佳為 ΐ5·0/〇 ’最佳為10.0〇/〇。Nb2〇5成分係例如可使用Nb2〇5等 作為原料而包含於玻璃内。 WO3成分係提高玻璃之部分分散比之成分,並且提高破 璃之折射率及分散且提高玻璃之化學冑久性之成分,係本 發明之光學玻璃中之任意成分。尤其是,將成分之含 量設為15.0%以下’藉此容易獲得所需較高之阿貝數, 且,可使可視短波長(5〇〇 nm以下)之光線穿透率難以惡 化因此,將相對於氧化物換算組成之玻璃總質量的w〇3 成刀之含S之上限設為較佳為15 〇%,更佳為12篇,進而 較佳為10.0%,進而較佳為8 〇%,最佳為5 〇%。再者,即 便不包含W03成分’亦可獲得具有所需較高之部分分散比 之光學玻璃’但藉由將w〇3成分之含量設為以上,可 提高玻璃之部分分散比’故而可容易獲得具有所需較高之 部分分散比之玻璃。因此’將相對於氧化物換算組成之玻 璃總質量的W〇3成分之含量之下限設為較佳為請,更佳 為〇.3% ’最佳為〇.5%。w〇3成分係例如可使用w〇3等作為 原料而包含於玻璃内。 K2〇成分係進-步提高玻璃之部分分散比之成分,並且 改善玻璃之㈣性之成分,係本發明之光學玻璃中之任意 成分。尤其是,將κ2〇忐八+ a θ 成刀之含夏設為10.0%以下,藉此 可使玻璃之折射率難以下降’提高玻璃之敎性而使^透 等難以產生。因此,將相對於氧化物換算組成之破璃總質 £ 157771.doc -29- 201231427 量的κζο成分之含量之上限設為較佳為ι〇 〇%,更佳為 8.0% ’最佳為5.0%。κ20成分係例如可使用K2C〇3、 KN〇3、KF、KHF2、K2SiF6等作為原料而包含於玻璃内。 於本發明之光學玻璃中,選自由F成分、Bi2〇3成分、 Tih成分、WO;成分、Nth成分及心〇成分所組成之群之 1種以上之含里和較佳為〇 i %以上。將該和設為〇 1 %以 上,藉此必須包含S高部分分散比之成分,故而可容易镬 得所需較高之部分分散比。x,因玻璃之部分分散比^ 高,故而部分分散比係可於與阿貝數之間具有所需之關 係。因此,將相對於氧化物換算組成之質量的該等成分之 含里和之下限設為較佳為0.1%,更佳為丨〇%,進而較佳為 3.0%,進而較佳為4.〇%,進而較佳為5 〇%,進而較佳為 6.2%,最佳為8.〇%。另—方面’豸等成分之含量和之上限 係只要可獲得穩定之玻璃,便無特別限定,但例如超過 60.0%時,推測出有容易引起失透之可能性。因此,將相 對於氧化物換算組成之質量的該等成分之含量和之上限設 為較佳為60.0%,更佳為50.0%,進而較佳為4〇 〇%。尤其 是,於第二及第三光學玻璃中,亦可將相對於氧化物換算 組成之質量的該等成分之含量和之上限設為較佳為 30.〇% ’更佳為25.0%,更佳為20_0%,最佳為15 〇%。再 者,於該含量和中,F成分之含量係指以相對於氧化物基 準質量之外加比例計之含量,則2〇3成分' Ti〇2成分' j分、Nb2〇5成分及Re成分之含量係指相對於氧化物換 算纽成之玻璃總質量之含量。 157771.doc -30- 201231427 於該等成分中,κβ成分係具有降低折射率之作用,故 而就可獲得折射率特別高之玻璃之觀點而言,較佳為包含 選自由F成分、Bi2〇3成分、Ti〇2成分、w〇3成分及叫〇5 成分所組成之群之i種以上。又,因Nb2〇5成分係降低阿貝 數之作用較強’故而就可獲得阿貝數特別高之玻璃之觀點 而言,較佳為包含選自由F成分、則2〇3成分、Ti〇2成分、 w〇3成分及K2〇成分所組成之群之1種以上。又,因Bi2〇3 成分' Ti〇2成分及W〇3成分係將玻璃進行著色之作用較 強,故而就可獲得著色特別少之玻璃之觀點而言,較佳為 包含選自由F成分' Nb2〇5成分及K2〇成分所組成之群之i 種以上。因此,就可獲得具有較高之部分分散比並且折射 率及阿貝數亦較高且著色較少之玻璃之觀點而言,較佳為 增加該等成分中特別是F成分之含量。 於本發明之光學玻璃中,該等成分中之Bi2〇3成分、The NhO5 component is a component which increases the refractive index of the glass and increases the refractive index and dispersion of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, the content of the 〇5 component is set to 20.0% or less, whereby the desired higher Abe 157771.doc -28-201231427 number can be easily obtained. Therefore, the upper limit of the content of the Nb2〇5 component relative to the total mass of the glass in the oxide conversion composition is preferably 20% by weight, more preferably ΐ5·0/〇' is preferably 10.0 Å/〇. The Nb2〇5 component can be contained in the glass, for example, using Nb2〇5 or the like as a raw material. The WO3 component is a component which increases the refractive index of the glass and increases the refractive index and dispersion of the glass and improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. In particular, the content of the component is set to be 15.0% or less, whereby the desired higher Abbe number can be easily obtained, and the light transmittance of the visible short wavelength (below 5 nm) is hard to be deteriorated. The upper limit of the S? with respect to the total mass of the glass of the oxide-converted composition is preferably 15%, more preferably 12, still more preferably 10.0%, still more preferably 8%. The best is 5 〇%. Further, even if the W03 component is not included, an optical glass having a desired higher partial dispersion ratio can be obtained. However, by setting the content of the w〇3 component to be higher, the partial dispersion ratio of the glass can be increased. A glass having a desired higher partial dispersion ratio is obtained. Therefore, the lower limit of the content of the W〇3 component of the total mass of the glass in terms of the oxide-converted composition is preferably, and more preferably 3%. The w〇3 component can be contained in the glass, for example, using w〇3 or the like as a raw material. The K2 bismuth component is a component which increases the component ratio of the glass in a stepwise manner and improves the (tetra) property of the glass, and is an optional component in the optical glass of the present invention. In particular, when the summer content of κ2〇忐8+ a θ is set to 10.0% or less, the refractive index of the glass is hard to be lowered, and the enthalpy of the glass is increased to make it difficult to produce. Therefore, the upper limit of the content of the κ ζ 成分 component of the total amount of the granules of the oxide-converted composition is preferably ι 〇〇 %, more preferably 8.0% 'best 5.0. %. The κ20 component can be contained in the glass, for example, using K2C〇3, KN〇3, KF, KHF2, K2SiF6 or the like as a raw material. In the optical glass of the present invention, one or more selected from the group consisting of the F component, the Bi2〇3 component, the Tih component, the WO component, the Nth component, and the palpitant component are preferably 〇i% or more. . The sum is set to 〇 1% or more, whereby it is necessary to include a component having a high partial dispersion ratio of S, so that a desired higher partial dispersion ratio can be easily obtained. x, because the partial dispersion ratio of the glass is high, the partial dispersion ratio can have a desired relationship with the Abbe number. Therefore, the lower limit of the content of the components relative to the mass of the oxide-converted composition is preferably 0.1%, more preferably 丨〇%, still more preferably 3.0%, and still more preferably 4. %, further preferably 5 %, further preferably 6.2%, most preferably 8. %. Further, the content and the upper limit of the components such as hydrazine are not particularly limited as long as a stable glass can be obtained. However, for example, when it exceeds 60.0%, it is presumed that there is a possibility that devitrification is likely to occur. Therefore, the content and the upper limit of the components relative to the mass of the oxide-converted composition are preferably 60.0%, more preferably 50.0%, still more preferably 4% by weight. In particular, in the second and third optical glasses, the content and the upper limit of the components relative to the mass of the oxide-converted composition may be preferably 30.%%, more preferably 25.0%, more preferably Good is 20_0%, best is 15%. In addition, in the content and content, the content of the F component means the content in addition to the oxide-based mass, and the 2〇3 component 'Ti〇2 component' j component, Nb2〇5 component, and Re component. The content refers to the content of the total mass of the glass relative to the oxide conversion. 157771.doc -30- 201231427 Among these components, the κβ component has a function of lowering the refractive index, and therefore, from the viewpoint of obtaining a glass having a particularly high refractive index, it is preferable to contain a component selected from the F component and Bi2〇3. One or more of the group consisting of a component, a Ti〇2 component, a w〇3 component, and a 〇5 component. Further, since the Nb2〇5 component is more effective in lowering the Abbe number, it is preferable to include a glass having a particularly high Abbe number, and it is preferable to contain a component selected from the F component, the 2〇3 component, and the Ti〇. One or more of the group consisting of the two components, the w〇3 component, and the K2〇 component. Further, since the Bi2〇3 component 'Ti〇2 component and the W〇3 component have a strong effect of coloring the glass, it is preferable to include a component selected from the F component from the viewpoint of obtaining a glass having a particularly small coloration. More than one of the group consisting of the Nb2〇5 component and the K2〇 component. Therefore, from the viewpoint of obtaining a glass having a higher partial dispersion ratio and a higher refractive index and Abbe number and less coloration, it is preferred to increase the content of the components particularly in the F component. In the optical glass of the present invention, the Bi2〇3 component of the components,

Ti〇2成分、w〇3成分及Nb2〇5成分之含量和較佳為2〇.〇%以 下。藉此,使得分散提高之成分減少,故而可容易獲得具 有所需之分散之玻璃。又,因抑制包含過量該等成分所引 起之玻璃之穩定性之下降,故而可進一步提高玻璃之耐失 透性。因此,將相對於氧化物換算組成之玻璃總質量的質 量和(Bi203 + Ti02 + W〇3+Nb2〇5)之上限設為較佳為2〇 〇%, 更佳為15.0%,最佳為1〇 〇%。尤其是,亦可將第三光學玻 璃中之該質量和之上限設為8 〇%,亦可將上限設為5 〇%。 再者,就可獲得分散特別小之玻璃之觀點而言,亦可將該 質量和設為未達0.5%。另一方面,即便不包含任何該等成The content of the Ti〇2 component, the w〇3 component and the Nb2〇5 component is preferably 2〇.〇% or less. Thereby, the component which is improved in dispersion is reduced, so that the glass having the desired dispersion can be easily obtained. Further, since the decrease in the stability of the glass caused by the excessive inclusion of the components is suppressed, the resistance to devitrification of the glass can be further improved. Therefore, the upper limit of the mass of the glass and the upper limit of (Bi203 + Ti02 + W〇3 + Nb2 〇 5) with respect to the oxide-converted composition is preferably 2% by weight, more preferably 15.0%, and most preferably 1〇〇%. In particular, the mass and the upper limit in the third optical glass may be set to 8 〇%, and the upper limit may be set to 5 〇%. Further, from the viewpoint of obtaining a glass which is particularly small in dispersion, the mass sum may be set to less than 0.5%. On the other hand, even if it does not contain any such

S 157771.doc 201231427 分’亦可獲得具有所需較高之部分分散比之光學玻璃,但 藉由將該等成分之質量和設為01%以上可提高玻璃之部 分分散比’故而可容易獲得具有所需較高之部分分散比之 玻璃…’就獲得較高之部分分散比之觀點而言,亦可 將該質量和(Bi2o3+Ti〇2+W()3+Nb2〇5)之下限設為較佳為 0.1%,更佳為0.5。/。,進而較佳為〇 8%。 尤其是’於第三光學玻璃中,F成分之含量對f成分、S 157771.doc 201231427 points 'Optical glass with a desired higher partial dispersion ratio can also be obtained, but the partial dispersion ratio of the glass can be easily obtained by setting the mass sum of the components to 01% or more. The glass having the desired higher partial dispersion ratio... can also be the lower limit of the mass and (Bi2o3+Ti〇2+W()3+Nb2〇5) from the viewpoint of obtaining a higher partial dispersion ratio. It is preferably set to 0.1%, more preferably 0.5. /. Further preferably 〇 8%. Especially in the third optical glass, the content of the F component is opposite to the f component,

Bl2〇3成分、Ti〇2成分、W〇3成分、叫〇5成分及Κ2〇成分 之含量和之比率較佳狀36以上。尤其是,將該比率設為 0.36以上’藉此包含大量提高部分分散比並且著色亦較少 之成分而可獲得具有所需之部分分散比之透明玻璃。 因此,將氧化物換算組成中之質量比F/(F+Bi2〇3+Ti如 W〇3+Nb2Q5+K2〇)之下限設為較佳為Q36,更佳為㈣,進 而較佳為0.5 0。再者,%曾县, 丹有 Θ貝里比取佳為1.00,但就欲獲得 更穩定之玻璃之觀點而言,亦可未達100。The content of the Bl2〇3 component, the Ti〇2 component, the W〇3 component, the 〇5 component, and the Κ2〇 component is preferably 36 or more. In particular, the ratio is set to 0.36 or more. Thus, a transparent glass having a desired partial dispersion ratio can be obtained by containing a large amount of a component which increases the partial dispersion ratio and which is less colored. Therefore, the lower limit of the mass ratio F/(F+Bi2〇3+Ti such as W〇3+Nb2Q5+K2〇) in the oxide-converted composition is preferably Q36, more preferably (4), still more preferably 0.5. 0. In addition, in the case of the % Zeng County, Dan has a better than 1.00, but in terms of the desire to obtain a more stable glass, it can be less than 100.

Zr〇2成分係提高玻璃之折射率,提高製作玻璃時之耐失 祕之成分,係本發明之光學玻璃中之任意成分。尤其 是’將Zr02成分之含量設為15⑽以了,藉此可抑制破璃 之部分分散比之下降。X,將吨成分之含量設為卜〇% 以下’藉此抑制玻狀阿貝數之下降,並且避免玻璃製造 時之高溫下之熔解’可降低玻璃製造時之能量損耗。因 此,將相對於氧化物換算組成之玻璃總質量的心…成分之 含里之上限设為較佳為15.0%,更佳為1〇 〇%,進而較佳為 8·0/。進而較佳為7.0%,進而較佳為5.0%,最佳為未達 157771.doc -32- 201231427 4.0%。再者,即便不包含Zr〇2成分,亦可獲得具有所需之 光學特性之玻璃,但藉由將Zr〇2成分之含量設為〇1%以 上,可提高玻璃之耐失透性。因此,於包含Zr〇2成分之情 形時,將相對於氧化物換算組成之玻璃總質量的Zr〇2成分 之含罝之下限設為較佳為01%,更佳為〇 5%,進而較佳為 1.0%。Zr〇2成分係例如可使用Zr〇2、ZrF4等作為原料而包 含於玻璃内。The Zr〇2 component is a component which increases the refractive index of the glass and improves the resistance to breakage in the production of glass, and is an optional component in the optical glass of the present invention. In particular, the content of the ZrO 2 component is set to 15 (10), whereby the decrease in the partial dispersion ratio of the glass can be suppressed. X, the content of the ton component is set to 〇% or less, thereby suppressing the decrease in the glassy Abbe number and avoiding the melting at the high temperature at the time of glass production, which can reduce the energy loss at the time of glass production. Therefore, the upper limit of the content of the core component of the total mass of the glass in terms of the oxide conversion composition is preferably 15.0%, more preferably 1% by weight, still more preferably 8·0/. Further preferably, it is 7.0%, more preferably 5.0%, and most preferably it is less than 157771.doc -32 - 201231427 4.0%. Further, even if the Zr 〇 2 component is not contained, a glass having desired optical characteristics can be obtained. However, by setting the content of the Zr 〇 2 component to 〇 1% or more, the devitrification resistance of the glass can be improved. Therefore, when the Zr〇2 component is contained, the lower limit of the yttrium content of the Zr〇2 component relative to the total mass of the glass in the oxide conversion composition is preferably 01%, more preferably 〇5%, and further Good is 1.0%. The Zr 2 component can be contained in the glass, for example, using Zr 2 , ZrF 4 or the like as a raw material.

Ta2〇5成分係提高玻璃之折射率並且使玻璃穩定化之成 分,係本發明之光學玻璃中之任意成分。尤其是,將The Ta2〇5 component is a component which increases the refractive index of the glass and stabilizes the glass, and is an optional component in the optical glass of the present invention. Especially, will

TkO5成分之含量設為25.〇%以下’藉此可抑制玻璃之部分 刀政比之下降《又,將τ&2〇5成分之含量設為25 以下, 糟此降低玻璃之材料成本,並且可避免高溫下之熔解而降 低玻璃製造時之能量損耗。因此’將相對於氧化物換算組 成之玻璃總質量的TkO5成分之含量之上限設為較佳為 25.0%,更佳為未達16 5%,進而較佳為Η㈣,進而較佳 為1〇·〇%,最佳為5.0%。Ta2〇5成分係例如可使用 作為原料而包含於玻璃内。 、於本發明之光學玻璃中,W〇3成分、La2〇3成分、吨 成分及Ta2〇5之含量和較佳為10.0%以上。將該和嗖為2 1讓以上’藉此降低玻璃之著色,並且可更提高折射 率二因此’將相對於氧化物換算組成之質量的該等成分之 含量和之下限設為較佳為10()%,更佳為動%,進 最佳為3議。另—方面,該等成分之含量和之 上限係只要可獲得穩定之玻璃,便無特別限定,但例如超The content of the TkO5 component is set to be less than or equal to 25.5%, thereby suppressing a decrease in the knife-to-knife ratio of the glass. Further, the content of the τ&2〇5 component is set to 25 or less, thereby reducing the material cost of the glass, and It can avoid melting at high temperatures and reduce energy loss during glass manufacturing. Therefore, the upper limit of the content of the TkO5 component relative to the total mass of the glass in the oxide conversion composition is preferably 25.0%, more preferably less than 165%, still more preferably Η(iv), and still more preferably 1 〇· 〇%, the best is 5.0%. The Ta2〇5 component can be contained, for example, as a raw material in the glass. In the optical glass of the present invention, the content of the W〇3 component, the La2〇3 component, the ton component, and the Ta2〇5 is preferably 10.0% or more. The sum is 2 1 to allow the above to reduce the color of the glass, and the refractive index can be further increased. Therefore, the content and the lower limit of the components relative to the mass of the oxide-converted composition are preferably set to 10. ()%, better for moving%, the best is 3. On the other hand, the content and the upper limit of the components are not particularly limited as long as a stable glass is obtained, but for example, super

S 157771.doc -33- 201231427 過65.0%時,推測出有容易引起失透之可能性。因此,將 相對於氧化物換算組成之質量的該等成分之含量和之切 設為較佳為65.0%,更佳為6〇.〇%,進而較佳為Μ 〇%最 佳為50.0%。 項1 尤其是’於第二光學玻璃中,選自由%〇3成分、Ti0 成分、㈣3成分、Nb2〇5成分及Ta2〇5成分所組成之群之^ 種以上之含量和較佳為多於〇%。藉此,玻璃之阿 小,故而可容易獲得具有所需範圍之阿貝數之光學玻璃: 因此’將相對於氧化物換算組成之質量㈣等成分之含量 和之下限設為較佳為多於〇%, $ 2.。%。另一方面,該等成分之更佳為最佳為 穩定之玻璃,便益特別t 和之上限係只要可獲得 便…特別限疋,但例如超過25〇%時 之可能性。因此’將相對於 =之:::該等成分之含量和之上限設為較Γ: 25.0/。’更佳為15.〇%,最佳為⑺游”S 157771.doc -33- 201231427 When 65.0% passed, it is speculated that there is a possibility of devitrification. Therefore, the content of the components relative to the mass of the oxide-converted composition is preferably 65.0%, more preferably 6 〇.%, and still more preferably 5% 5%. In particular, in the second optical glass, the content of the group consisting of the % 〇 3 component, the Ti 0 component, the (4) 3 component, the Nb 2 〇 5 component, and the Ta 2 〇 5 component is preferably more than 〇%. Thereby, since the glass is small, the optical glass having the Abbe number of the desired range can be easily obtained: Therefore, it is preferable to set the content and the lower limit of the mass (four) and the like with respect to the composition of the oxide. 〇%, $ 2. %. On the other hand, it is more preferable that the components are the most stable glass, and the upper limit and the upper limit are particularly limited as long as they are available, but for example, the possibility is more than 25 %. Therefore, the content of the ingredients and the upper limit of the ingredients will be set to be more than 25.0/. ‘More preferably 15.〇%, the best is (7) Tour”

Li2〇成分係改善玻璃 玻璃中之任意成分。尤其t t成分,係本發明之光學 15._下,藉此抑制玻璃之部分:;:。: :部與阿貝數保持⑽之:係”又: 刀之έ畺δ又為1 5 ,〇〇/〇以下, 降,並且可使包含過量u:::=璃:折 生。因此,將相對於氧化物換::= 成分之含量之上限設為較佳成之玻璃總質量的㈣ 較佳為8·。。/。’進而較佳為5 :,更佳。為1〇戲,進而 更仏為4.0 /。’進而較佳為 157771.d〇< -34- 201231427 3.0% ,進而較佳為未達3.0%,進而較佳為2.3。/。。尤其是, 就可容易獲得具有更高之部分分散比之光學玻璃之觀點而 吕’亦可將該LhO成分之含量設為0.5%以下,亦可設為 0.4%以下,亦可設為未達〇.1%,實質上亦可不包含。 成分係例如可使用LhCO3、LiN〇3、LiF等作為原料而包含 於玻璃内。 於本發明之光學玻璃中’ Ta2〇5成分、Zr02成分及Li2〇 成分之含量和對F成分、BbO3成分、Ti〇2成分、W〇3成 分、Nb>2〇5成分及κ:2〇成分之含量和之比率較佳為2 〇〇以 下。藉此’因具有降低部分分散比之作用之成分之含量少 於具有提向部分分散比之作用之成分,故而可獲得具有更 高之部分分散比之玻璃。因此,將氧化物換算組成中之質 星比(Ta2〇5+Zr02+Li2〇)/(F+Bi2〇3 + Ti〇2 + W03+Nb2〇5+K2〇) 之上限设為較佳為2.〇〇 ’更佳為1.40,更佳為1.〇〇,最佳 為0.80。再者’該質量比亦可為〇,但藉由將該質量比設 為0 · 10以上,可更加提高玻璃之耐失透性。因此,將氧化 物換算組成中之質量比(Ta205+zr02+Li20)/(F+Bi203+Ti02+ W03+Nb205+K20)之下限設為較佳為〇·1〇,更佳為〇 2〇,最 佳為0.30。 又’於本發明之光學玻璃中,(F+Bi2〇3 + Ti02 + W03 + Nb205+K20)之質量和對(Ta2〇5+Zr〇2+Li2〇)之質量和之比 率較佳為0.50以上。藉此,因提高部分分散比之成分之含 量多於大幅降低部分分散比之成分之含量,故而即便添加 更多稀土類’亦可容易獲得所需較高之部分分散比。即,The Li2〇 component improves any component in the glass. In particular, the t t component is the optical device of the present invention, whereby the portion of the glass is suppressed:;:. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The upper limit of the content of the component for the conversion of the oxide::= is preferably set to (4) of the total mass of the glass to be preferably 8%. Further preferably 5:, more preferably. Further, it is more preferably 4.0 /. ' Further preferably 157771.d〇<-34-201231427 3.0%, further preferably less than 3.0%, further preferably 2.3%. Especially, it is easily obtained. The content of the LhO component may be 0.5% or less, or may be 0.4% or less, or may be less than 0.1%, from the viewpoint of an optical glass having a higher partial dispersion ratio. The component may be contained in glass, for example, using LhCO3, LiN〇3, LiF or the like as a raw material. In the optical glass of the present invention, the content of the 'Ta2〇5 component, the Zr02 component, and the Li2〇 component and the F component are The content of BbO3 component, Ti〇2 component, W〇3 component, Nb>2〇5 component, and κ:2〇 component is preferably 2 〇〇 or less. The content of the component having a low partial dispersion ratio is less than that of the component having the effect of the direction-to-part dispersion ratio, so that a glass having a higher partial dispersion ratio can be obtained. Therefore, the mass-to-star ratio (Ta2) in the composition of the oxide is obtained.上限5+Zr02+Li2〇)/(F+Bi2〇3 + Ti〇2 + W03+Nb2〇5+K2〇) The upper limit is preferably set to 2. 〇〇' is preferably 1.40, more preferably 1 〇〇, the optimum is 0.80. In addition, the mass ratio may be 〇, but by setting the mass ratio to 0·10 or more, the devitrification resistance of the glass can be further improved. The lower limit of the mass ratio (Ta205+zr02+Li20)/(F+Bi203+Ti02+W03+Nb205+K20) in the composition is preferably 〇·1〇, more preferably 〇2〇, and most preferably 0.30. In the optical glass of the present invention, the mass of the (F+Bi2〇3 + Ti02 + W03 + Nb205+K20) and the ratio of the mass (Ta2〇5+Zr〇2+Li2〇) are preferably 0.50 or more. Therefore, since the content of the component of the partial dispersion ratio is more than the content of the component which greatly reduces the partial dispersion ratio, even if more rare earths are added, the desired higher portion can be easily obtained. San ratio. That is,

S 157771.doc -35- 201231427 可容易兼顧較高之部分分散比與較高之阿貝數。因此,將 氧化物換算組成中之質量比(F+Bi2〇3+Ti()2+WQ3+Nb2C)5+ K20)/(Ta205+Zr〇2+Li2〇)之下限設為較佳為〇 5〇,更佳^ 1.00,進而較佳為1·32,進而較佳為丨7〇。尤其是,於第 -光學玻璃中’亦可將該含量之比率之下紐為較佳為 13更佳為1.5 ’最佳為2.G。另-方面,對於該含量之比 率之上限,並無特別限定,亦可無限大(即, TaedZrOdUWi%),但就更加提高玻璃之穩定性之觀 點而言,該比率亦可為1 〇 〇 〇以下。S 157771.doc -35- 201231427 It is easy to balance the higher partial dispersion ratio with the higher Abbe number. Therefore, the lower limit of the mass ratio (F+Bi2〇3+Ti()2+WQ3+Nb2C)5+K20)/(Ta205+Zr〇2+Li2〇) in the oxide-converted composition is preferably 〇 5〇, more preferably 1.00, still more preferably 1.32, and still more preferably 丨7〇. In particular, in the first optical glass, the ratio of the content may be preferably 13 or more preferably 1.5 Å to 2. G. On the other hand, the upper limit of the ratio of the content is not particularly limited and may be infinite (i.e., TaedZrOdUWi%), but the ratio may also be 1 观点 from the viewpoint of further improving the stability of the glass. the following.

MgO成分、Ca〇成分、Sr〇成分及Ba〇成分係改善玻璃之 熔融性而提高耐失透性之成分,係本發明之光學玻璃中之 任意成分》尤其是,將Mg〇成分之含量設為2〇〇%以下, 將CaO成分或Sr〇成分之含量設為4〇〇%以下或者將 BaO成分之含量設為55〇%以下,藉此可使玻璃之折射率 難以下降。因此,將相對於氧化物換算組成之玻璃總質量 的MgO成分之含量之上限設為較佳為2〇 〇%,更佳為 15.0%,進而較佳為1〇 〇%,進而較佳為8 〇%,最佳為 5.0/〇。又’將相對於氧化物換算組成之玻璃總質量的ca〇 成为之含置之上限設為較佳為4〇 〇%,更佳為3〇 〇%,進而 車父佳為25.0。/。,進而較佳為2〇 〇%,進而較佳為15〇%,進 而較佳為12.0%,進而較佳為1〇 〇%,最佳為未達1〇 〇%。 又’將相對於氧化物換算組成之玻璃總質量的Sr〇成分之 3里之上限設為較佳為40_0%,更佳為30.0%,進而較佳為 25.0% ’進而較佳為2〇 〇%,進而較佳為未達16 〇%,進而 157771.docThe MgO component, the Ca 〇 component, the Sr 〇 component, and the Ba 〇 component are components which improve the meltability of the glass and improve the devitrification resistance, and are optional components of the optical glass of the present invention, in particular, the content of the Mg 〇 component is set. When the content of the CaO component or the Sr〇 component is 4% by weight or less, or the content of the BaO component is 55% by weight or less, the refractive index of the glass is hardly lowered. Therefore, the upper limit of the content of the MgO component relative to the total mass of the glass in the oxide conversion composition is preferably 2% by weight, more preferably 15.0%, still more preferably 1% by weight, still more preferably 8 〇%, the best is 5.0/〇. Further, the upper limit of the total amount of ca 相对 of the total amount of the glass in terms of the oxide conversion composition is preferably 4 〇 〇 %, more preferably 3 〇 〇 %, and further, the car is 25.0. /. Further, it is preferably 2% by mole, more preferably 15% by weight, still more preferably 12.0%, still more preferably 1% by weight, most preferably less than 1% by weight. Further, the upper limit of 3 of the Sr 〇 component of the total mass of the glass in terms of the oxide conversion composition is preferably 40% by weight, more preferably 30.0%, still more preferably 25.0%' and further preferably 2 〇〇. %, and thus preferably less than 16%, and further 157771.doc

-36- C 201231427 較佳為15.0%»又,亦可將該Sr0成分之含量之上限設為更 佳為12.0%,進而較佳為10.0%。又,將相對於氧化物換算 組成之玻璃總質量的Ba0成分之含量之上限設為較佳為 55.0%,更佳為45·0%,進而較佳為4〇 〇% ’進而較佳為 35.0%,進而較佳為未達3〇.〇C/^又,亦可將該如〇成分之 含量之上限設為較佳為25.0% ’更佳為2〇 〇%,進而較佳為 15.0/。。尤其疋,於第二光學玻璃中,亦可將該成分 之含量之上限設為10.0%,亦可設為未達6 〇%。]^扣成 为、CaO成分、SrO成分及BaO成分係例如可使用MgC〇3、 MgF2、CaC03、CaF2、Sr(N〇3)2、SrF2、BaC〇3、Ba(N〇3)2 夺作為原料而包含於玻璃内。 於本發明之光學玻璃中,R〇成分(式中,尺係選自由 Mg、Ca、Sr、Ba所組成之群之1種以上)之含量之質量和 較佳為55.0%以下。藉此,降低包含過量尺〇成分所引起之 玻璃之失透,且可使玻璃之折射率難以下降。因此,將相 對於氧化物換算組成之玻璃總質量的R〇成分之含量之質 里和之上限没為較佳為55.0%,更佳為45.〇%,進而較佳為 40.0%,最佳為35.0%。又,亦可將該尺〇成分之含量之質 量和之上限設為較佳為25.0%,更佳為20·0%,進而較佳為 15.0%,最佳為 1〇.〇°/0。Further, the upper limit of the content of the Sr0 component is more preferably 12.0%, still more preferably 10.0%. Further, the upper limit of the content of the Ba0 component based on the total mass of the glass in terms of the oxide conversion composition is preferably 55.0%, more preferably 45.0%, still more preferably 4%% and further preferably 35.0. %, further preferably less than 3 〇. 〇 C / ^, the upper limit of the content of the 〇 component may be preferably 25.0% 'more preferably 2%, more preferably 15.0/ . . In particular, in the second optical glass, the upper limit of the content of the component may be 10.0% or may be less than 6%. For example, MgC〇3, MgF2, CaC03, CaF2, Sr(N〇3)2, SrF2, BaC〇3, and Ba(N〇3)2 can be used as the CaO component, the SrO component, and the BaO component. The raw material is contained in the glass. In the optical glass of the present invention, the mass of the R〇 component (wherein the ruler is selected from one or more of the group consisting of Mg, Ca, Sr, and Ba) is preferably 55.0% or less. Thereby, the devitrification of the glass caused by the excessive scale component is lowered, and the refractive index of the glass is hard to be lowered. Therefore, the upper limit of the mass of the R 〇 component of the total mass of the glass in terms of the oxide conversion composition is not preferably 55.0%, more preferably 45% by weight, still more preferably 40.0%, and most preferably It is 35.0%. Further, the mass and the upper limit of the content of the ruler component may be preferably 25.0%, more preferably 20.0%, still more preferably 15.0%, and most preferably 1〇.〇°/0.

Na20成分係改善玻璃之熔融性之成分,係本發明之光學 玻璃中之任意成分。尤其是,將NhO成分之含量設為 20.0%以下,藉此可使玻璃之折射率難以下降,提高玻璃 之穩定性而使失透等難以產生。因此,將相對於氧化物換 s 157771‘doc 37· 201231427 异組成之玻璃總質量的Ν^〇成分之含量之上限設為較佳為 20.0%,更佳為15 〇%,進而較佳為1〇 〇%,更佳為8 〇%, 最佳為5.0%。Na2〇成分係例如可使用Na2C03、NaN03、 NaF、NhSiF6等作為原料而包含於玻璃内。The Na20 component is a component which improves the meltability of glass and is an optional component in the optical glass of the present invention. In particular, when the content of the NhO component is 20.0% or less, the refractive index of the glass is hardly lowered, and the stability of the glass is improved to prevent devitrification or the like from occurring. Therefore, the upper limit of the content of the 〇^〇 component of the total mass of the glass which is different from the oxide s 157771'doc 37·201231427 is preferably 20.0%, more preferably 15%, more preferably 1 〇〇%, more preferably 8 〇%, and most preferably 5.0%. The Na 2 〇 component can be contained in the glass, for example, using Na 2 CO 3 , NaN03, NaF, NhSiF 6 or the like as a raw material.

Rn2〇成分(式中,Rn係選自由以、Ν&、κ所組成之群之工 種以上)係改善玻璃之熔融性並且降低玻璃轉移點而降低 玻璃之失透之成分。此處,將Rn2〇成分之含量設為25 〇% 以下,藉此可使玻璃之折射率難以下降,提高玻璃之穩定 性而降低失透等之產生。因此,將相對於氧化物換算組成 之玻璃總質量的Rr^O成分之質量和之上限設為較佳為 25.0%,更佳為20.0%,最佳為15 〇%。尤其是,於第四光 學玻璃中,亦可將該質量和之上限設為丨〇 〇%,亦可將上 限設為5.0%。The Rn2 〇 component (wherein Rn is selected from the group consisting of 以, Ν & κ) is a component which improves the meltability of the glass and lowers the glass transition point to lower the devitrification of the glass. Here, when the content of the Rn2 bismuth component is 25 〇% or less, the refractive index of the glass is hardly lowered, and the stability of the glass is improved to reduce the occurrence of devitrification or the like. Therefore, the mass and the upper limit of the Rr^O component with respect to the total mass of the glass in terms of the oxide conversion composition are preferably 25.0%, more preferably 20.0%, and most preferably 15% by weight. In particular, in the fourth optical glass, the upper limit of the mass and the mass may be set to 丨〇 〇 %, and the upper limit may be set to 5.0%.

ZnO成分係改善玻璃之熔融性、降低玻璃轉移點且容易 形成穩定之玻璃之成分,係本發明之光學玻璃中之任意成 分。 尤其是,將ZnO成分之含量設為30·0%以下,藉此小幅 抑制光學玻璃之光彈性常數。因此,可提高光學玻璃之穿 透光之偏光特性,甚至可提高投影機或照相機中之顯色 性。 因此,將相對於氧化物換算組成之玻璃總質量的Ζη〇成 分之含量之上限設為較佳為30.0% ’更佳為25 〇%,進而較 佳為20.0% ’進而較佳為15.0% ’進而較佳為12 〇%,進而 車父佳為1 0 · 0 % ’進而較佳為8.7 % ’進而較佳為7 7%。尤甘 15777l.doc •38- 201231427 是’於第-光學玻璃中,亦可將該Zn0成分之含量之上限 設為5·0%。Zn0成分係例如可使用Zn〇、叫等作為料 而包含於玻璃内。The ZnO component is an element of the optical glass of the present invention which is a component which improves the meltability of glass, lowers the glass transition point, and easily forms a stable glass. In particular, the photoelastic constant of the optical glass is slightly suppressed by setting the content of the ZnO component to 30·0% or less. Therefore, the polarizing characteristics of the optical glass can be improved, and the color rendering property in the projector or the camera can be improved. Therefore, the upper limit of the content of the Ζη〇 component relative to the total mass of the glass of the oxide-converted composition is preferably 30.0%', more preferably 25%, more preferably 20.0%', and still more preferably 15.0%. Further, it is preferably 12% by weight, and further preferably the vehicle is preferably 10% and further preferably 8.7% and further preferably 7.7%. Yougan 15777l.doc •38- 201231427 is 'in the first optical glass, the upper limit of the content of the Zn0 component may be set to 5.0%. The Zn0 component can be contained in the glass, for example, by using Zn ruthenium or the like as a material.

GeCh成分係具有提高玻璃之折射率而提高耐失透性之效 果之成分,係本發明之光學玻璃中之任意成分。然而,因 Ge〇2成分之原料價格昂貴,故而若其量較多,則材料成本 上升’因此所得之玻璃不實用。因此,將相對於氡化物換 算組成之玻璃總質量的(^〇2成分之含量之上限設為較佳為 10·0Λ,更佳為8.0%,進而較佳為5 〇%,進而較佳為 2.0/。,最佳為未達2 〇%。Ge〇2成分係例如可使用等 作為原料包含於而玻璃内。 P2〇5成分係具有降低玻璃之液相溫度而提高耐失透性之 效果之成分,係本發明之光學玻璃中之任意成分。尤其 是’將P2〇5成分之含量設為10_0%以下,藉此可抑制玻璃 之化學耐久性、尤其是对水性之下降。因此,將相對於氧 化物換算組成之玻璃總質量的P2〇5成分之含量之上限設為 較佳為10.0%,更佳為8 〇%,進而較佳為5 〇%,最佳為 。P2〇5 成分係例如可使用 a1(p〇3)3、Ca(p〇A、 Ba(P〇3)2、BP〇4、H3P〇4等作為原料而包含於玻璃内。The GeCh component is a component having an effect of increasing the refractive index of glass and improving the resistance to devitrification, and is an optional component in the optical glass of the present invention. However, since the raw material of the Ge 2 component is expensive, if the amount is large, the material cost rises. Therefore, the obtained glass is not practical. Therefore, the upper limit of the content of the total amount of the glass relative to the composition of the telluride composition is preferably 10·0Λ, more preferably 8.0%, still more preferably 5% by weight, and still more preferably 2.0%, preferably less than 2%. The Ge〇2 component can be contained in the glass, for example, as a raw material. The P2〇5 component has the effect of lowering the liquidus temperature of the glass and improving the resistance to devitrification. The component is an optional component in the optical glass of the present invention. In particular, the content of the P2〇5 component is 10% by mole or less, whereby the chemical durability of the glass, particularly the decrease in water content, can be suppressed. The upper limit of the content of the P2〇5 component relative to the total mass of the glass in the oxide-converted composition is preferably 10.0%, more preferably 8% by weight, still more preferably 5% by weight, most preferably P2〇5 component. For example, a1(p〇3)3, Ca(p〇A, Ba(P〇3)2, BP〇4, H3P〇4 or the like can be used as a raw material and contained in the glass.

Ga2〇3成分係容易形成穩定之玻璃之成分,係本發明之 光學玻璃中之任意成分。尤其是,將Ga2〇3成分之含量設 為1 〇·〇%以下’藉此可抑制玻璃之阿貝數之下降。因此, 將相對於氧化物換算組成之玻璃總質量的Ga203成分之含 里之上限分別設為較佳為1 〇_〇%,更佳為8.0%,進而較佳The Ga2〇3 component is a component which is easy to form a stable glass and is an optional component in the optical glass of the present invention. In particular, the content of the Ga2〇3 component is set to 1 〇·〇% or less, whereby the decrease in the Abbe number of the glass can be suppressed. Therefore, the upper limit of the Ga203 component of the total mass of the glass in terms of the oxide conversion composition is preferably 1 〇 〇 %, more preferably 8.0%, and further preferably 8.0%.

S 157771.doc _ 201231427 為5爲,最佳為2_〇%。叫〇3成分係例如可使用以办、 Ga(OH)3等作為原料而包含於玻璃内。 2成刀係提间折射率、降低玻璃轉移點之成分, 係本發明之光學玻璃中之任意成分、然而,⑽存在如下 問題’即’ _製㈣或由_成與㈣玻璃相接觸之部 分之炫融槽中㈣破璃原料時,可能會與16進行合全化。 因此,將相對於氧化物換算組成之玻璃總質量的㈣成分 之含有率之上限設為較佳為1〇 〇% ’更佳為8 〇%,最佳為 5·0%。Te〇2成分係例如可使用Te〇2等作為原料而包含於玻 璃内。S 157771.doc _ 201231427 is 5, the best is 2_〇%. For example, the component 3 can be contained in a glass using, for example, Ga(OH) 3 or the like as a raw material. The composition of the optical glass of the present invention is an arbitrary component of the optical glass of the present invention. However, (10) has the following problem of 'that' or the part of the glass that is in contact with the (four) glass. In the sleek melting tank (4), when the raw material is broken, it may be combined with 16. Therefore, the upper limit of the content ratio of the (four) component of the total mass of the glass in terms of the oxide-converted composition is preferably 1% ’%', more preferably 8%, and most preferably 5%. The Te〇2 component can be contained in the glass, for example, using Te〇2 or the like as a raw material.

Sn〇2成分係降低熔融玻璃之氧化而淨化熔融玻璃、且使 玻璃對光照射之穿透率難以惡化之成分,係本發明之光學 玻璃中之任意成分。尤其是,將叫成分之含量設為5 〇% 以下,藉此可使熔融玻璃之還原所引起之玻璃之著色或玻 璃之失透難以產生。又,Sn〇2成分與溶解設備(尤其是& 等貴金屬)之合金化下降,故而可實現溶解設備之長壽命 化。因此,將相對於氧化物換算組成之玻璃總質量的“〇2 成刀之έ里之上限投為較佳為5.0%,更佳為3.〇%,進而較 佳為1.0%,更佳為〇.7%,最佳為〇 5%。Sn〇2成分係例如 可使用SnO、Sn〇2、SnF2、S11F4等作為原料而包含於玻璃 内0 st>2〇3成分係使熔融玻璃脫泡之成分,係本發明之光學 玻璃中之任思成分。尤其是,將St>2〇3成分之含量設為 1.0%以下,藉此可使玻璃熔融時之過度發泡難以產生,可 15777I.doc -40- 201231427 使Sb2〇3成分難以與溶解設備(尤其是Pt等貴金屬)進行合金 化。因此,將相對於氧化物換算組成之玻璃總質量的 Sb2〇3成分之含量之上限設為較佳為J 〇%,更佳為〇篇, 最佳為0.5%。Sb2〇3成分係例如可使用sb2〇3、补2〇5、 NaeebaOrSH2。等作為原料而包含於玻璃内。 再者,使玻璃淨化且脫泡之成分並不限定於上述讥2〇3 成分,可使用玻璃製造領域中之眾所周知之淨化劑 '脫泡 劑或彼等之組合。 <關於不應包含之成分> 其次’對本發明之光學玻璃中不應包含之成分及包含時 不佳之成分進行說明。 於本發明之光學玻璃中,可於不損及本中請案發明之玻 璃之特性之範圍内,視需要添加其他成分。其中,Ge02成 分會導致玻璃之分散性提高,故而較佳為實質上不包含。 又,除Ti、Zr、Nb、w、La、Gd、γ、Yb、Lu以外, V ' Cf ' Μη ' Fe、Co、Ni、Cu、“及M〇等各過渡金屬成 分係於將各者單獨或複合而少量含有之情形時,亦具有破 璃被著色且於可視域之特定波長中產生吸收之性質,故而 尤其是使用可視區域之波長之光學玻璃中,較佳為實質上 不包含。 進而,Pb〇等鉛化合物及AS2〇3等砷化合物,以及Th、The Sn 2 component is a component which lowers the oxidation of the molten glass to purify the molten glass and hardly deteriorates the transmittance of the glass to light, and is an optional component in the optical glass of the present invention. In particular, the content of the component is set to 5 〇% or less, whereby the coloring of the glass or the devitrification of the glass caused by the reduction of the molten glass is less likely to occur. Further, the alloying of the Sn 2 component and the dissolving device (especially a noble metal such as & etc.) is lowered, so that the life of the dissolving device can be extended. Therefore, the upper limit of the total mass of the glass of the oxide-converted composition is preferably 5.0%, more preferably 3.3%, still more preferably 1.0%, more preferably 〇.7%, preferably 〇5%. The Sn 〇2 component can be contained in the glass by using SnO, Sn 〇 2, SnF 2, S11F4 or the like as a raw material, for example, 0 st > 2 〇 3 component is used to defoam the molten glass. The component is a component of the optical glass of the present invention. In particular, when the content of the St 2 2 component is 1.0% or less, excessive foaming during melting of the glass is difficult to occur, and it can be 15777I. Doc -40- 201231427 It is difficult to alloy the Sb2〇3 component with a dissolving device (especially a noble metal such as Pt). Therefore, the upper limit of the content of the Sb2〇3 component relative to the total mass of the glass in the oxide conversion composition is set to be Preferably, it is J 〇%, and more preferably it is 0.5%. The Sb2 〇3 component can be contained in glass, for example, sb2〇3, 补2〇5, NaeebaOrSH2, etc. The component which purifies and defoams the glass is not limited to the above 讥2〇3 component, and can be used in the field of glass manufacturing. A known decontaminant 'defoaming agent or a combination thereof. <Components not to be included> Next, the components which should not be contained in the optical glass of the present invention and the components which are not included in the description are described. In the optical glass, other components may be added as needed within the range which does not impair the characteristics of the glass of the invention of the present invention. Among them, the Ge02 component causes the dispersibility of the glass to be improved, and therefore it is preferably not substantially contained. Further, in addition to Ti, Zr, Nb, w, La, Gd, γ, Yb, and Lu, each transition metal component such as V ' Cf ' Μ η 'Fe, Co, Ni, Cu, and M 系 is used for each When it is contained alone or in combination and in a small amount, it also has a property that the glass is colored and absorbs at a specific wavelength of the visible region. Therefore, it is preferable that the optical glass having a wavelength of the visible region is substantially not included. Further, lead compounds such as Pb〇 and arsenic compounds such as AS2〇3, and Th,

Cd、丁卜0s、Be、Se之各成分近年來存在控制用作有害化 學物資之傾向,不僅是玻璃之製造步驟,連加工步驟及製 品化後之處分為止均需要環境對策上之措施。因此,於重 15777,d〇C -41- 201231427 ’兄上之衫響之情形時,較佳為除不可避免之混入以 卜實貝上不包含該等。藉此,光學玻璃中實質上不包含 污木衣i兄之物質。目必匕,即便不實施特別的環境對策上之 措施,亦可製造、加工及廢棄該光學玻璃。 本發明之玻璃組合物係因以相對於氧化物換算組成之玻 璃總貝里之質量%來表示其組成,故而並不直接由莫耳% 之記載來表示,但依據滿足本發明中要求之諸多特性之玻 璃組合物中存在之各成分之苴:a:。/主、/ τ甘你 < 分取刀之旲耳表不的組成係以氧化物 換算組成大概採用以下值。 B2O3成分 1〇.〇〜75.0 mol%及 以及In recent years, various components of Cd, Dingbu 0s, Be, and Se have a tendency to be controlled as harmful chemicals, and not only the manufacturing steps of glass, but also measures for environmental countermeasures are required for the processing steps and the points after the production. Therefore, in the case of the weight of the 15777, d〇C -41- 201231427 'brother's shirt, it is better not to include it except for the inevitable mixing. Thereby, the optical glass does not substantially contain the substance of the filth. It is imperative that the optical glass can be manufactured, processed and discarded without implementing special environmental measures. The glass composition of the present invention is represented by the mass % of the total glass of the composition in terms of oxide, and therefore is not directly represented by the description of the mole %, but is in accordance with the requirements of the present invention. The enthalpy of each component present in the characteristic glass composition: a:. /Main, / τ甘你 < The composition of the ear knives of the knives is approximately the following values in terms of oxide composition. B2O3 composition 1〇.〇~75.0 mol% and

La2〇3 成分 0~25.〇111〇1%及/或 Bi2〇3成分 〇~4.0mol%及 /或 Ti02成分0〜30.0 mol%及/或 W03成分0〜10.0 mol%及/或 Nb205成分0〜10.0 mol%及/或 K20成分0〜15.0 mol%及/或 Ta2〇5 成分 〇 〜1〇.〇111〇1%及/或 Zr〇2 成分 〇〜25.〇111〇1%及/或 Li2〇 成分 〇〜40.〇111〇1%及/或 Gd2〇3 成分 〇〜20.〇111〇1%及/或 Y203 成分 〇〜15.〇111〇1%及/或 Yb2〇3成分〇〜l〇.〇m〇l%及/或 Lu2〇3成分0〜10.0m〇l%及/或 157771.doc -42- 201231427La2〇3 Ingredient 0~25.〇111〇1% and/or Bi2〇3 component〇~4.0mol% and/or Ti02 component 0~30.0 mol% and/or W03 component 0~10.0 mol% and/or Nb205 component 0~10.0 mol% and/or K20 component 0~15.0 mol% and/or Ta2〇5 component 〇~1〇.〇111〇1% and/or Zr〇2 composition 〇~25.〇111〇1% and / Or Li2〇 composition 〇~40.〇111〇1% and/or Gd2〇3 ingredient 〇~20.〇111〇1% and/or Y203 ingredient 〇~15.〇111〇1% and/or Yb2〇3 component 〇~l〇.〇m〇l% and/or Lu2〇3 ingredients 0~10.0m〇l% and/or 157771.doc -42- 201231427

MgO 成分 0~50.0mol%及 / 或 CaO成分0〜50.0mol°/〇及/或 SrO成分0〜50.0 mol%及/或 BaO成分 0〜55.0 mol%及/或 Si02成分0〜70.0 mol%及/或 - ZnO成分 0〜30.0 mol°/。及 /或MgO component 0~50.0mol% and/or CaO component 0~50.0mol°/〇 and/or SrO component 0~50.0 mol% and/or BaO component 0~55.0 mol% and/or SiO2 component 0~70.0 mol% and / or - ZnO composition 0~30.0 mol ° /. And / or

Ge〇2 成分 0〜20.〇111〇1%及/或 P2〇5成分〇〜1〇.〇 mol%及/或 Al2〇3成分0〜40.0 mol%及/或 Ga2〇3 成分 〇 〜8.〇111〇1%及/或 Na20成分0〜25.0 mol%及/或 Te02成分0〜8.〇111〇1%及/或 Sn〇2 成分 〇〜5.〇111〇1°/()及/或 Sn〇2成分0〜l.Omol%及/或 Sb2〇3成分 〇〜〇·5 mol% 以及 與上述各金屬元素之1種或2種以上之氧化物之一部分或全 部取代而成之氟化物之作為F之合計量0〜75.0 mol% 尤其是,根據第一光學玻璃莫耳%表示之組成係以氧化 ' 物換算組成計,較佳為 1^203成分5.0~25.〇111〇1% 以及Ge〇2 Component 0~20.〇111〇1% and/or P2〇5 component〇~1〇.〇mol% and/or Al2〇3 component 0~40.0 mol% and/or Ga2〇3 composition〇8 〇111〇1% and/or Na20 component 0~25.0 mol% and/or Te02 component 0~8.〇111〇1% and/or Sn〇2 component 〇~5.〇111〇1°/() and / or Sn 〇 2 component 0 ~ l. Omol% and / or Sb2 〇 3 components 〇 ~ 〇 · 5 mol% and one or more of one or two or more of the above metal elements are replaced by one or all of the oxides Fluoride as a total amount of F 0 to 75.0 mol% In particular, the composition represented by the first optical glass molar % is based on the composition of the oxidation, preferably 1 ^ 203 component 5.0 to 25. 〇 111 〇 1% and

Ta2〇5成分 〇〜5.0mol°/〇及 /或 Li2〇成分〇〜25.0 mol%及/或 £ 157771.doc -43 - 201231427Ta2〇5 component 〇~5.0mol ° / 〇 and / or Li2 〇 composition 〇 ~ 25.0 mol% and / or £ 157771.doc -43 - 201231427

MgO成分0〜35.0 mol%及/或 CaO成分 0〜35.0 mol%及/或 SrO成分 0~25.0 mol%及 /或 BaO成分 0〜25.0 mol%及/或 Si〇2 成分 〇~60.〇mol%及/或 AI2O3 成分 〇〜20.〇1«〇1%及/或 Sn02成分 0~1.0 mol%。 又,根據第二光學玻璃莫耳%表示之組成係以氧化物換 算組成計,較佳為 1^2〇3成分5.0〜25.〇111〇1% 以及MgO component 0~35.0 mol% and/or CaO component 0~35.0 mol% and/or SrO component 0~25.0 mol% and/or BaO component 0~25.0 mol% and/or Si〇2 component 〇~60.〇mol % and / or AI2O3 composition 〇 ~ 20. 〇 1 « 〇 1% and / or Sn02 composition 0 ~ 1.0 mol%. Further, the composition expressed by the second optical glass molar % is preferably an oxide composition, preferably 1 ^ 2 〇 3 component 5.0 to 25. 〇 111 〇 1% and

Li2〇成分0〜30.0 mol%及/或Li2 is 0~30.0 mol% and/or

Lu2〇3 成分 〇〜5.〇111〇1%及/或Lu2〇3 Ingredients 〇~5.〇111〇1% and/or

MgO成分 〇〜35.0 mol%及/或MgO composition 〇~35.0 mol% and/or

CaO 成分 〇~35.0mol%及 / 或CaO composition 〇~35.0mol% and / or

SrO成分 0〜25.0 mol%及/或SrO composition 0~25.0 mol% and/or

BaO 成分 〇~25.0mol%及 / 或BaO composition 〇~25.0mol% and / or

Si〇2 成分 0〜60.〇111〇1%及/或Si〇2 composition 0~60.〇111〇1% and/or

Al2〇3成分0〜20.0 mol%及/或Al2〇3 component 0~20.0 mol% and/or

Sn〇2成分 0~1.0 mol%。Sn〇2 component 0~1.0 mol%.

尤其是,根據第三光學玻璃莫耳%砉+ + A 表不之組成係以氧化 物換算組成計,較佳為 Gd2〇3 成分 0〜15.〇111〇1%及/或 Ta205成分〇〜3.0 mol%及/或 157771.doc • 44- 201231427In particular, the composition of the third optical glass Mohr%++ A is preferably a Gd2〇3 component 0~15.〇111〇1% and/or a Ta205 component〇~ 3.0 mol% and / or 157771.doc • 44- 201231427

ZnO成分0〜25·〇 mol%及/或 八12〇3成分0~20.〇111〇1% 以及 一部分或全 mol% 〜75.0 與上述各金屬元素之1種或2種以上之氧化物之 部取代而成之氟化物之作為F之合計量超過〇 mol%。 又’根據第四光學玻璃莫耳%表示之組成係以氧化物換 算組成計,較佳為 B2O3成分 10.0〜75.0 mol%,ZnO component 0 to 25·〇mol% and/or 八12〇3 component 0~20.〇111〇1% and a part or all mol% ~75.0 and one or more oxides of each of the above metal elements The total amount of fluoride substituted by the portion is more than 〇 mol%. Further, the composition represented by the fourth optical glass Moer % is preferably an oxide conversion composition, preferably a B2O3 component of 10.0 to 75.0 mol%.

La203成分 10.0〜25.0 mol%及 八12〇3成分超過〇111〇1%〜40.〇111〇1。/() 以及The composition of La203 is 10.0~25.0 mol% and the composition of 八12〇3 exceeds 〇111〇1%~40.〇111〇1. /() as well as

Ta2〇5 成分 〇〜4.0]11〇1%及/或 Li2〇成分 〇〜15.〇111〇1%及/或 MgO成分0〜35.0 mol°/。及/或 CaO成分 0~50.〇 mol%及 /或 SrO成分 0〜35.0m〇l%&/4 BaO成分0〜50.0 mol%及/或 ZnO成分 0~25.0 mol% 以及 與上述各金屬元素之1種或2種以上之氧化物之一部分或全 部取代而成之氟化物之作為F之合計量超過〇 m〇1%〜75〇 mol%。 [製造方法] 157771.doc • 45 -Ta2〇5 Ingredient 〇~4.0]11〇1% and/or Li2〇 component 〇~15.〇111〇1% and/or MgO component 0~35.0 mol°/. And/or CaO component 0~50.〇mol% and/or SrO component 0~35.0m〇l%&/4 BaO component 0~50.0 mol% and/or ZnO component 0~25.0 mol% and with the above metals The total amount of F of the fluoride which is partially or completely substituted by one or two or more kinds of oxides of the element exceeds 〇m〇1% to 75〇mol%. [Manufacturing Method] 157771.doc • 45 -

S 201231427 本發明之光學玻璃係例如如下所述製作。即,以各成分 成為特定含量之範圍内之方式均勻地混合上述原料,將所 製作之混合物投入到鉑坩堝、石英坩堝或氧化鋁坩堝而進 仃粗熔融後,放入金坩堝、鉑坩堝、鉑合金坩堝或銥坩 堝,並於900〜1400°C之溫度範圍内熔融1〜5小時,進行攪 拌使其均質化而進行消泡等後,降低至12〇(rc以下之溫度 後,進行精加工攪拌而去除條紋,使用成形模具進行成 形,藉此製作。此處,作為獲得使用成形模具進行成形之 玻璃之方法,可列舉將熔融玻璃流至成形模具之一端,同 時自成形模具之另一端側抽出已成形之玻璃之方法或者 藉由所明一次壓型(Direct Press)而形成玻璃成形體之方 法,或者如所謂懸浮成形般將熔融玻璃澆鑄 冷卻而形成玻璃成㈣之方法。 ' ^ [物性;) 本如月之光學玻璃較佳為具有特定之折射率及分散(阿 貝數)。 此處’將本發明之光學玻璃之折射率( 佳為i—5。,更―,進而較佳㈣。尤其是:= 將第H光學玻璃之折射率(nd)之下限^為較佳為 U,更佳為1.73,進而較佳為(75,最佳為I??。又亦 叮將第四光學破璃之折射率㈤)之下限設為較佳為1.57, =為1.60,最佳為165。另一方面,對於本發明之光學 之折射率κ)之上限,並無特別限定,大概為22〇以 下、更具體而言2·10以下、$而具體而言2 〇〇以下之情況 157771.doc •46- 201231427 居多。尤其是,亦可將第三光學玻璃之折射率⑹之上限 設為較佳為1.70,更佳為未達17〇,最佳為丨69。 將本發明之光學玻璃之阿貝數㈤之下限設為較佳為 39 ’更佳為40 ’進而較佳為41。尤其是,亦可將第一及第 四光學玻璃之阿貝數(Vd)之下限設為較佳為乜,更佳為 47,最佳為49。X,亦可將第三光學玻璃之阿貝數⑹之 下限設為較佳為50,更佳為52,最佳為53。另一方面,對 於本發明之光學玻璃之阿貝數(Vd)之上限,並無特別限 定,大概為63以下、更具體而言61以下、進而具體而言的 以下、進而具體而言58以下、進而具體而言57以下之情況 居多。尤其是,亦可將本發明之苐二光學玻璃之阿貝數 (vd)之上限設為較佳為52,更佳為51,最佳為5〇。 此處,本發明之第二光學玻璃之阿貝數(Vd)係於與折射 率(11(1)之間,較佳為滿足(〜)2(_125><11£1+265)之關係’更佳 為滿足(vd)2(-125xncj+266)之關係,最佳為滿足(Vd)g(_ 125x nd + 267)之關係。 又,本發明之光學玻璃之阿貝數(Vd)係於與折射率(nd)之 間,較佳為滿足(Vd)g(_l〇〇xnd+22〇)之關係,更佳為滿足 (vd)g(-l〇〇Xnd+222)之關係,最佳為滿足(Vd)g(_1〇〇Xnd+223) 之關係。尤其是,於第三光學玻璃中,於以阿貝數(…)為X 軸且以折射率(nd)為y軸之Xy正交座標中,較佳為具有由 A(50,1.70)、B(60 ’ uo)、C(63,1.60)、D(63,1.70)之4 點包圍之範圍之阿貝數及折射率。 藉由該等,光學設計之自由度變寬,進而即便實現元件 15777] .doc •47- 201231427 之薄型化’亦可獲得較大光之折射量。 又’本發明之光學玻璃係具有較高之部分分散比(0g, F)。更具體而言,本發明之光學玻璃之部分分散比(0g,F) 係於與阿貝數(vd)之間滿足(eg,F)2(_〇 〇〇17〇XVd+〇 6375) 或(0g,F)g (-2.〇xl(T3xVd + 〇 6498)之關係。本發明之光學 玻璃係可獲得具有較包含大量稀土類元素成分之先前眾所 周知之玻璃更尚之部分分散比(eg,F)之光學玻璃。因 此’貫現玻璃之咼折射率及低分散化,並且亦可減少由該 光學玻璃形成之光學元件之色像差。 此處,第一光學玻璃之部分分散比(Qg,F)之下限較佳 為(-0.00170>^+0.63750)’更佳為(_〇0〇17〇><、+ 〇 6395〇), 最佳為(-0.0017〇xvd+0.641 50)。另一方面,對於第一光學 玻璃之部分分散比(eg ’ f)之上限,並無特別限定,例如 為(-0_00170><vd+0.65750)、更佳為(_〇 0017〇XVd+〇 6555〇)、 最佳為(-〇.〇〇17〇xvd+0.653750)之情況居多。 又,弟一光學玻璃之部分分散比(0g,F)之下限較佳為 (-2.0><10_3>^(1+0.6498)’更佳為(_2(^1〇-3><〜+ 〇6518),最 佳為(-2·0χ10 xvd+0.6558)。另一方面,對於第二光學玻 璃之部分分散比(eg ’ f)之上限,並無特別限定,例如為 (-2.0xl(T3xvd + 0,6950)、更佳為(_2〇xl〇-3xvd+〇 693〇)、最 佳為(-2.0><10-3>^+0.6910)之情況居多。再者,於使用與 正規線平行之直線定義第二光學玻璃之部分分散比與阿貝 數(vd)之關係之情形時’部分分散比(eg,F)成為例如(_17χ l〇-3XVd+0,63450)以上、更具體而言(_l7xl〇-3xVd+〇 6375〇) 157771.doc •48- 201231427 以上、進而具體而言(-1·7 xio·3 XVd+0.63950)以上、進而具 體而言(-1.7><10-3>^£1+0.64150)以上之情況居多,例如成為 (-1.7xl〇-3xvd+〇.67750)以下、更具體而言㈠ 7χ1〇·3χ^+ 0.67550)以下、進而具體而言(_i.7xi〇_3xVd+〇 67350)以下 之情況居多。 又,第二光學玻璃之部分分散比(0g , F)之下限較佳為 (-0.00170xvd+0.6375),更佳為(_〇 〇〇17〇XVd+〇 6395),最佳 為(-0.00l70xvd + 0.6415)。另一方面,對於第三光學破螭 之部分分散比(Θ g ’ F)之上限’並無特別限定,大概 為(-0.00170xvd+0.6575)、更具體而言(_〇 〇〇17〇XVd+〇 6555)、 進而具體而g(-〇.〇〇17〇xvd+〇.6535)之情況居多。 又,第四光學玻璃之部分分散比,F)之下限較佳為 (-0.00170xvd + 0.6375),更佳為(_〇.〇〇17〇XVd+〇 6395),最佳 為(-0.0〇17〇xVd+0.6415)。另一方面,對於第四光學= 璃之部分分散比(0g,F)之上限,並無特別限定,大概 為(-0.00170xvd+0.6800)以下、更具體而言(_〇 〇〇ΐ7〇χ、+ 0.6790)以下、進而具體而言(_〇.〇〇17〇XVd+〇 678〇)以下^ 情況居多。再者,本發明中之部分分散比之較佳範圍係隨 著光學玻璃之阿貝數產生變動,故而使用與正規線平行2 直線表示。 本發明之光學玻璃之部分分散比㈣,F)係基於日本光 學硝子工業會規格IQGIS()1-2G()3進行敎。再者,本測定 中使用之玻璃係使用冑徐冷降溫速度設為_25t/hr而利: 徐冷爐進行處理所得者。 S. 157771.doc •49- 201231427 又,本發明之光學玻璃較佳為具有650°C以下之玻璃轉 移點(Tg)。藉此,可進行更低溫度下之擠壓成形,故而亦 可降低模壓成形中使用之模具之氧化而實現模具之長壽命 化。因此,將本發明之光學玻璃之玻璃轉移點(Tg)之上限 設為較佳為650°C,更佳為620°C,最佳為600°C。再者, 對於本發明之光學玻璃之玻璃轉移點(Tg)之下限,並無特 別限定,藉由本發明所得之玻璃之玻璃轉移點(Tg)大概為 100°C以上、具體而言150°C以上、進而具體而言200°c以 上之情況居多。 本發明之光學玻璃之玻璃轉移點(Tg)係藉由進行使用示 差熱測定裝置(NETZSCH-Geratebau公司製造STA 409 CD) 之測定而算出。此處,將進行測定時之樣品粒度設為 425〜600 μηι,並將升溫速度設為10°C/min。 又,本發明之光學玻璃較佳為著色較少。於本發明之光 學玻璃中,若以玻璃之穿透率表示,則厚度10 mm之樣品 中表示分光穿透率7〇°/◦之波長(λ7〇)為500 nm以下,更佳為 480 nm以下,最佳為450 nm以下。尤其是,於本發明之光 學玻璃中,厚度10 mm之樣品中表示分光穿透率80%之波 長(λ8〇)較佳為500 nm以下,更佳為480 nm以下,最佳為 450 nm以下。又,於本發明之光學玻璃中,厚度10 mm之 樣品中表示分光穿透率5%之波長(λ5)為450 nm以下,更佳 為430 nm以下,最佳為410 nm以下。藉此,使玻璃之吸收 端位於紫外區域之附近,提高可視域中之玻璃之透明性, 故而可將該光學玻璃用作透鏡等光學元件之材料。 157771.doc -50- 201231427 本發明之光學玻璃之穿透率係依據曰本光學硝子工業會 規格JOGIS02進行測定。具體而言,對厚度1〇±〇丨之 對面平行研磨品,依據JISZ8722測定2〇〇〜8〇〇 分光穿 透率’算hu80(穿透率80%時之波長)、λ7〇(穿透率7〇%時I 波長)及λ5(穿透率5%時之波長)。 又本發明之光學玻璃較佳為光彈性常數較小。尤其 是,於本發明之光學玻璃中,波長5463 nm中之光彈性常 數(β)為 2.〇xl〇·5 nm.cm-i.Pa_i以下,更佳為 i 5χ1〇_5 咖 Pa·1以下,進而較佳為1〇xl〇-5 以下最佳為 0.7X10·5 nm.cm-i.Pa-i以下。藉此,光學玻璃之部分分散比 提兩,並且穿透光之偏光特性亦提高,故而將光學玻璃使 用於投影機或照相機(尤其是包括偏光鏡者)之光學系統 時’降低色像差’並且亦抑制光學元件之内部之光之亂反 射。即,可進一步提高該等投影機或照相機中之顯色性。 本發明之光學玻祝之光彈性常數(β)係使用經對面研磨 之直徑25 mm、厚度8 mm之圓板形狀之試樣,沿特定方向 施加F[Pa]之壓縮荷重,測定此時在玻璃中心產生之波長 546.1 nm之光之光程差δ[ηιη]。繼而,使用所得之ρ及δ之 值與玻璃之厚度d[cm]之值’並根據5=pxd><F之關係式算出 光彈性常數β[1(Τ5 nm.cnTi.Pa-1]。再者,波長546.1 nm之測 定光源係使用超高壓汞燈。 又,本發明之光學玻璃較佳為耐失透性較高。尤其是, 本發明之光學玻璃較佳為具有1200。(:以下之較低液相溫 度。更具體而言’將本發明之光學玻璃之液相溫度之上限S 201231427 The optical glass of the present invention is produced, for example, as follows. In other words, the raw materials are uniformly mixed so that the respective components are within a specific content, and the produced mixture is poured into platinum crucible, quartz crucible or alumina crucible, and then coarsely melted, and then the crucible, platinum crucible, and Platinum alloy ruthenium or osmium, and melted in the temperature range of 900 to 1400 ° C for 1 to 5 hours, stirred to homogenize and defoamed, etc., and then lowered to 12 〇 (the temperature below rc, fine It is produced by processing and stirring to remove streaks and molding using a molding die. Here, as a method of obtaining a glass formed by using a molding die, a method of flowing molten glass to one end of a molding die while self-forming the other end of the mold A method of extracting the formed glass from the side or a method of forming a glass formed body by a single press, or a method of casting the molten glass by cooling as in a so-called suspension forming to form a glass into a (4) method. Physical properties;) The optical glass of this month preferably has a specific refractive index and dispersion (Abbe number). Here, the refractive index of the optical glass of the present invention (preferably i-5, more, and further preferably (d). In particular: = the lower limit of the refractive index (nd) of the H-th optical glass is preferably More preferably, the lower limit of U, more preferably 1.73, and further preferably (75, most preferably I?? and also the refractive index of the fourth optical glass (5)) is preferably 1.57, = 1.60, preferably The upper limit of the refractive index κ of the optical component of the present invention is not particularly limited, and is approximately 22 Å or less, more specifically 2·10 or less, and specifically 2 Å or less. Situation 157771.doc •46- 201231427 Most. In particular, the upper limit of the refractive index (6) of the third optical glass may be preferably 1.70, more preferably less than 17 Å, and most preferably 丨69. The lower limit of the Abbe number (5) of the optical glass of the present invention is preferably 39 Å or more preferably 40 Å and more preferably 41. In particular, the lower limit of the Abbe number (Vd) of the first and fourth optical glasses may be preferably 乜, more preferably 47, and most preferably 49. X, the lower limit of the Abbe number (6) of the third optical glass may be preferably 50, more preferably 52, and most preferably 53. On the other hand, the upper limit of the Abbe number (Vd) of the optical glass of the present invention is not particularly limited, and is approximately 63 or less, more specifically 61 or less, more specifically, the following, and more specifically 58 or less. More specifically, the situation below 57 is mostly. In particular, the upper limit of the Abbe number (vd) of the second optical glass of the present invention may be preferably 52, more preferably 51, and most preferably 5 Å. Here, the Abbe number (Vd) of the second optical glass of the present invention is between the refractive index (11(1) and preferably (~)2 (_125><11£1+265). The relationship 'better is to satisfy the relationship of (vd) 2 (-125xncj + 266), and it is preferable to satisfy the relationship of (Vd)g (_125x nd + 267). Further, the Abbe number of the optical glass of the present invention (Vd) Between the refractive index (nd) and preferably (Vd)g (_l〇〇xnd+22〇), more preferably (vd)g(-l〇〇Xnd+222) The relationship is optimal to satisfy the relationship of (Vd)g(_1〇〇Xnd+223). In particular, in the third optical glass, the Abbe number (...) is taken as the X-axis and the refractive index (nd) is Among the Xy orthogonal coordinates of the y-axis, it is preferable to have a range surrounded by four points of A (50, 1.70), B (60 ' uo), C (63, 1.60), and D (63, 1.70). The number and the refractive index. By these, the degree of freedom in optical design is widened, and even the thinning of the element 15777].doc •47-201231427 can achieve a larger amount of light refraction. The glass system has a higher partial dispersion ratio (0g, F). More specifically, the present invention The partial dispersion ratio (0g, F) of the optical glass is such that (eg, F) 2 (_〇〇〇17〇XVd+〇6375) or (0g,F)g (-2) is satisfied with the Abbe number (vd). 〇xl (T3xVd + 〇6498). The optical glass of the present invention can obtain an optical glass having a partial dispersion ratio (eg, F) which is more than a previously known glass containing a large amount of rare earth element components. The refractive index and low dispersion of the glass are now reduced, and the chromatic aberration of the optical element formed by the optical glass can also be reduced. Here, the lower limit of the partial dispersion ratio (Qg, F) of the first optical glass is preferably ( -0.00170>^+0.63750)' is better (_〇0〇17〇><, + 〇6395〇), and the best is (-0.0017〇xvd+0.641 50). On the other hand, for the first The upper limit of the partial dispersion ratio (eg 'f) of the optical glass is not particularly limited, and is, for example, (-0_00170><vd+0.65750), more preferably (_〇0017〇XVd+〇6555〇), and most preferably ( - 〇.〇〇17〇xvd+0.653750) is mostly the case. Also, the lower limit of the partial dispersion ratio (0g, F) of the optical glass is preferably (-2.0><10_3&gt ;^(1+0.6498)' is more preferably (_2(^1〇-3><~+ 〇6518), and most preferably (-2·0χ10 xvd+0.6558). On the other hand, the upper limit of the partial dispersion ratio (eg 'f) of the second optical glass is not particularly limited, and is, for example, (-2.0xl (T3xvd + 0, 6950), more preferably (_2〇xl〇-3xvd+) 〇693〇), the best is (-2.0><10-3>^+0.6910). In addition, the partial dispersion ratio of the second optical glass is defined by the line parallel to the regular line and Abbe In the case of the relationship of the number (vd), the 'partial dispersion ratio (eg, F) becomes, for example, (_17χ l〇-3XVd+0,63450) or more, more specifically (_l7xl〇-3xVd+〇6375〇) 157771.doc • 48-201231427 or more, more specifically (-1·7 xio·3 XVd+0.63950) or more, and more specifically (-1.7><10-3>^£1+0.64150) or more, for example, It is (-1.7xl〇-3xvd+〇.67750) below, more specifically (1) 7χ1〇·3χ^+ 0.67550), and more specifically (_i.7xi〇_3xVd+〇67350). Further, the lower limit of the partial dispersion ratio (0g, F) of the second optical glass is preferably (-0.00170xvd+0.6375), more preferably (_〇〇〇17〇XVd+〇6395), and most preferably (-0.00l70xvd) + 0.6415). On the other hand, the upper limit of the partial dispersion ratio (Θ g ' F) of the third optical rupture is not particularly limited, and is approximately (-0.00170×vd+0.6575), more specifically (_〇〇〇17〇XVd+ 〇6555), and then specific g(-〇.〇〇17〇xvd+〇.6535) is mostly the case. Further, the partial dispersion ratio of the fourth optical glass, the lower limit of F) is preferably (-0.00170xvd + 0.6375), more preferably (_〇.〇〇17〇XVd+〇6395), and most preferably (-0.0〇17) 〇xVd+0.6415). On the other hand, the upper limit of the partial dispersion ratio (0g, F) of the fourth optical = glass is not particularly limited, and is approximately (-0.00170xvd + 0.6800) or less, more specifically (_〇〇〇ΐ7〇χ) , + 0.6790) below, and then specifically (_〇.〇〇17〇XVd+〇678〇) below ^ is mostly the case. Further, the preferred range of the partial dispersion ratio in the present invention varies depending on the Abbe number of the optical glass, and therefore is represented by a straight line parallel to the regular line. The partial dispersion ratio (4) of the optical glass of the present invention, F) is based on the Japanese Optical Glass Industry Association specification IQGIS() 1-2G()3. Further, the glass used in the measurement was obtained by using a cold cooling rate of _25 t/hr and a treatment by a quench furnace. Further, the optical glass of the present invention preferably has a glass transition point (Tg) of 650 ° C or lower. Thereby, extrusion molding at a lower temperature can be performed, so that the oxidation of the mold used in the press molding can be reduced to achieve a longer life of the mold. Therefore, the upper limit of the glass transition point (Tg) of the optical glass of the present invention is preferably 650 ° C, more preferably 620 ° C, and most preferably 600 ° C. Further, the lower limit of the glass transition point (Tg) of the optical glass of the present invention is not particularly limited, and the glass transition point (Tg) of the glass obtained by the present invention is approximately 100 ° C or higher, specifically 150 ° C. The above, and more specifically 200 °c or more, are mostly the case. The glass transition point (Tg) of the optical glass of the present invention was calculated by measurement using a differential thermal measuring device (STA 409 CD manufactured by NETZSCH-Geratebau Co., Ltd.). Here, the sample particle size at the time of measurement was set to 425 to 600 μηι, and the temperature increase rate was set to 10 ° C/min. Further, the optical glass of the present invention preferably has less coloration. In the optical glass of the present invention, if the transmittance is 10 mm, the wavelength of the spectral transmittance of 7 〇 ° / ◦ (λ7 〇) is 500 nm or less, more preferably 480 nm. Below, the best is below 450 nm. In particular, in the optical glass of the present invention, the wavelength indicating the spectral transmittance of 80% (λ8 〇) in the sample having a thickness of 10 mm is preferably 500 nm or less, more preferably 480 nm or less, and most preferably 450 nm or less. . Further, in the optical glass of the present invention, the wavelength of 5% of the spectral transmittance (λ5) in the sample having a thickness of 10 mm is 450 nm or less, more preferably 430 nm or less, and most preferably 410 nm or less. Thereby, the absorption end of the glass is located in the vicinity of the ultraviolet region, and the transparency of the glass in the visible region is improved, so that the optical glass can be used as a material of an optical element such as a lens. 157771.doc -50- 201231427 The transmittance of the optical glass of the present invention is measured in accordance with the Kobe Optical Glass Industry Association specification JOGIS02. Specifically, for the opposite parallel grinding product with a thickness of 1〇±〇丨, the spectral transmittance of 2〇〇~8〇〇 is measured according to JISZ8722' hu80 (wavelength at 80% transmittance), λ7〇 (penetration) The rate is 7 〇% at I wavelength) and λ5 (wavelength at 5% transmittance). Further, the optical glass of the present invention preferably has a small photoelastic constant. In particular, in the optical glass of the present invention, the photoelastic constant (β) at a wavelength of 5463 nm is 2. 〇xl 〇 5 nm.cm-i.Pa_i or less, more preferably i 5 χ 1 〇 _5 咖 Pa· 1 or less, further preferably 1 〇 x l 〇 -5 or less is preferably 0.7 X 10 · 5 nm. cm - i. Pa - i or less. Thereby, the partial dispersion ratio of the optical glass is increased, and the polarization characteristics of the transmitted light are also improved, so that the optical glass is used to reduce the chromatic aberration when used in an optical system of a projector or a camera (especially including a polarizer). It also suppresses the disordered reflection of light inside the optical element. That is, the color rendering properties in such projectors or cameras can be further improved. The photoelastic constant (β) of the optical glass of the present invention is a sample of a circular plate having a diameter of 25 mm and a thickness of 8 mm which is oppositely ground, and a compressive load of F[Pa] is applied in a specific direction, and is measured at the center of the glass at this time. The optical path difference δ [ηιη] of the light having a wavelength of 546.1 nm is generated. Then, using the obtained values of ρ and δ and the thickness d [cm] of the glass ' and calculating the photoelastic constant β [1 (Τ5 nm.cn Ti.Pa-1) according to the relationship of 5 = pxd >< F Further, the measuring light source having a wavelength of 546.1 nm is an ultrahigh pressure mercury lamp. Further, the optical glass of the present invention preferably has a high resistance to devitrification. In particular, the optical glass of the present invention preferably has 1200. The lower liquidus temperature below. More specifically, the upper limit of the liquidus temperature of the optical glass of the present invention

S 157771.doc -51 - 201231427 ,為較佳為讓更佳為1⑽。c ,最佳為⑴代。藉 =玻璃之較性提高而結晶化下降,故而可提高自熔融 料、…/成玻璃時之耐失透性,可減少使用玻璃之光學元件 對光學特性之影響。另一 万面’對於本發明之光學玻璃之 液相溫度之下限’並無特別限定,藉由本發明所得之玻璃 之液相溫度大概為500°c以上、具體而言满以上、進而 /、體而5 600 C以上之情況居多。再者,本說明書中之 「保溫試驗」係藉由如下方式進行1,為確認玻璃之耐 失透性較高,將玻璃原料放入3〇 cc之鉑製坩堝後,蓋上蓋 子而於mmic之爐内溶解1g〜2g分鐘左右,進行授 拌使其均貝化後’將所得之玻璃在設定為〜η $代之 爐内盍上蓋子保持2小時’觀察向玻璃之表面及内部、以 及與坩堝之内壁之接觸面析出之結晶。 [預成形體及光學元件] 由所製作之光學玻璃,例如可使用再熱擠壓成形或精密 払壓成形等模壓成升)之方法而製作玻璃成形體。即,可由 光學玻璃製作模壓成形用之預成形體,並對該預成形體進 行再熱擠壓成形後,進行研磨加工而製作玻璃成形體,或 者例如對進行研磨加工所製作之預成形體進行精密擠壓成 形而製作玻璃成形體。再者,製作玻璃成形 體之方法並不 限定於該等方法。 如此製作之玻璃成形體係有效利用於各種光學元件,其 中尤其較佳為使用於透鏡或棱鏡等光學元件之用途。藉 此’降低設置有光學元件之光學系統之穿透光中之色像差 157771.doc -52- 201231427 所引起之色模糊。因此,將該光學元件使用於照相機之情 形時,可更正確地表現出攝影對象物,將該光學元件使用 於投影機之情形時,可精彩度更高地投影所需之影像。 [實施例] 將本發明之實施例(No. A1〜No. A13、No. B卜No. B23、 No· Cl〜No. C6、No. D1 〜No. D36)及比較例(No. al、No. cl、No. dl)之組成、以及該等玻璃之折射率(nd)及阿貝數 (vd)、部分分散比(0g ’ F)、玻璃轉移點(Tg)、穿透率80% 時之波長(λ—、穿透率5%時之波長(λ5)及液相溫度之值示 於表1〜表11。再者,以下實施例只不過是例示目的,並不 限定於該等實施例。 本發明之實施例(No. Α1〜No. Α13、No. Β1〜No. Β23、 No· Cl〜No. C6、No. D1〜No. D36)之光學玻璃及比較例 (No· al、No· cl、No. dl)之玻璃係作為各成分之原料均分 別遥擇相當之氧化物、氫氧化物、碳酸鹽、確酸鹽、氟化 物虱氧化物、偏鱗酸化合物等通常光學玻璃中使用之高 純度原料’並以達到表1〜表丨丨所示之各實施例及比較例之 組成之比例之方式稱取而均勻地混合後,投入到鉑坩螞 内’並根據玻璃組成之溶融難易度而利用電爐在 1000〜1400°c之溫度範圍内溶解卜6小時,進行攪拌使其均 質化而進行消泡等後’將溫度降低至12001以下而進行授 拌使用均質化後,澆鑄到模具内,緩慢冷卻而製作玻璃。 此處’實施例(No. A1 〜No. A13、No. B1 〜No. B23、No. Cl〜No. C6、No. D1 〜No. D36)及比較例(No. al、N〇. cl、 157771.doc •53· 201231427S 157771.doc -51 - 201231427 , preferably 1 (10). c, the best is (1) generation. By the fact that the glass is improved and the crystallization is lowered, the devitrification resistance from the melt, .../glass formation can be improved, and the influence of the optical element using glass on the optical characteristics can be reduced. The other surface is not particularly limited to the lower limit of the liquidus temperature of the optical glass of the present invention, and the liquid phase temperature of the glass obtained by the present invention is approximately 500 ° C or more, specifically, more than or equal to, and further, Most cases are above 5 600 C. In addition, the "insulation test" in the present specification is performed by the following method. In order to confirm that the glass has high resistance to devitrification, the glass raw material is placed in a platinum crucible of 3 cc, and the lid is placed on the mmic. Dissolve 1 g to 2 g minutes in the furnace, mix and homogenize it, and then [suppress the obtained glass in the furnace set to ~η $ for 2 hours in the furnace, observe the surface and inside of the glass, and Crystallized from the contact surface with the inner wall of the crucible. [Preform and optical element] A glass molded body can be produced from the produced optical glass by, for example, molding by reheat extrusion molding or precision press molding. In other words, a preform for press molding can be produced from optical glass, and the preform can be subjected to reheat extrusion molding, followed by polishing to prepare a glass molded body, or, for example, a preform produced by polishing. The glass molded body was produced by precision extrusion molding. Further, the method of producing the glass formed body is not limited to these methods. The glass forming system thus produced is effectively utilized for various optical elements, and among them, it is particularly preferably used for optical elements such as lenses or prisms. By this, the color chromatic aberration caused by the chromatic aberration 157771.doc -52 - 201231427 in the transmitted light of the optical system provided with the optical element is lowered. Therefore, when the optical element is used in the case of a camera, the object to be imaged can be more accurately displayed, and when the optical element is used in a projector, the desired image can be projected with higher brightness. [Examples] Examples of the present invention (No. A1 to No. A13, No. B, No. B23, No. Cl to No. C6, No. D1 to No. D36) and comparative examples (No. al) Composition of No. cl, No. dl), and refractive index (nd) and Abbe number (vd), partial dispersion ratio (0g 'F), glass transition point (Tg), and transmittance of the glass. The wavelength at % (λ - the wavelength at which the transmittance is 5% (λ5) and the value of the liquidus temperature are shown in Tables 1 to 11. Further, the following examples are merely illustrative purposes, and are not limited thereto. Examples of the optical glass and comparative examples (No. 〜1 to No. Α13, No. Β1 to No. Β23, No. Cl~No. C6, No. D1 to No. D36) of the present invention. · The glass of al, No. cl, and No. dl) is a raw material for each component, which is equivalent to oxides, hydroxides, carbonates, acid salts, fluoride cerium oxides, meta- sulphate compounds, etc. Usually, the high-purity raw material used in the optical glass is weighed and uniformly mixed in such a manner as to achieve the ratio of the composition of each of the examples and the comparative examples shown in Tables 1 to 丨丨, and then put into the platinum crucible. According to the glass group After the melting is difficult, the electric furnace is dissolved in a temperature range of 1000 to 1400 ° C for 6 hours, stirred to homogenize, and defoamed, etc., and then the temperature is lowered to 1 2001 or less, and the mixture is homogenized. Cast into a mold and slowly cool to produce glass. Here, 'Examples (No. A1 to No. A13, No. B1 to No. B23, No. Cl to No. C6, No. D1 to No. D36) and Comparative example (No. al, N〇. cl, 157771.doc •53·201231427

No· dl)之玻璃之折射率(nd)及阿貝數(Vd)及部分分散比 (Qg ’ F)係基於曰本光學硝子工業會規格j〇Gis〇 1 __2〇〇3進 行測定。繼而’關於所算出之阿貝數(Vd)及部分分散比 (0g ’ F)之值,算出關係式(0g ’ F)=-axvd+b中之斜度a為 0.0017及0.0020時之截距b。又,關於所算出之折射率(nd) 之值’异出關係式- l〇〇xnd+220之值。再者,本測定中使 用之玻璃係使用將徐冷降溫速度設為_25〇c /hr而利用徐冷 爐進行處理所得者。 又,實施例(No. D1〜No· D36)及比較例(No. dl)之玻璃之 玻璃轉私點(Tg)係藉由進行使用示差熱測定裝置 (NETZSCH-Gemebau公司製造STA 409 CD)之測定而算 出。此處,將進行測定時之樣品粒度設為425〜6〇〇 ,並 將升溫速度設為i 0°c/min。 又,關於實施例(No. D1〜No. D36)及比較例(No. dl)之玻 璃之穿透率’依據日本光學硝子工業會規格進行 測疋。再者,於本發明中,測定玻璃之穿透率,藉此算出 著色之有無及程度。具體而言,對厚度1 〇士〇. 1 mm 之對面平行研磨品,依據JISZ8722測定200〜800 nm之分光 牙透率,算出穿透率8〇%時之波長08〇)及心(穿透率5%時之 波長)。 又,實施例(No· D1〜No. D36)及比較例(Νο· dl)之玻璃之 :相溫度係藉由如下方式測定,#,將已粉碎之玻璃試樣 ' mm間隔載置於鉑板上’將其在附帶800eC至120(TC之 X倾斜之爐内保持3〇分鐘後取出,冷卻後,利用倍率8〇 J 57771 .doc -54· 201231427 倍之顯微鏡觀察玻璃試樣中之結晶之有無。此時,作為樣 品,將光學玻璃粉碎成直徑2 mm左右之粒狀。 [表1] ____ 實施例 A1 A2 A3 A4 A5 A6 A7 A8 b2〇3 22.63 22.63 22.63 22.63 23.11 18.95 18.95 18.53 La2〇3 37.43 37.43 44.44 37.43 43.28 47.00 47.00 45.98 Bi203 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 Ti〇2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 W03 0.00 0.00 0.00 0.00 0.00 0.22 0,00 2.18 Nb2〇5 2.16 2.16 2.16 2.16 2.20 2.23 0.00 2.18 K,0 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Zr02 2.69 2.69 2.69 2.69 2.75 2.79 2.79 2.73 Ta2〇5 0.00 0.00 0.00 0.00 0.00 0.00 2.23 0.22 LhO Gd203 30.72 23.71 23.71 23.71 24.21 24.52 24.52 23.99 Y2O3 Yb203 0.00 7.01 0.00 0.00 0.00 0.00 0.00 0.00 Lu2〇3 MrO 〇.〇〇 0.00 0.00 7.33 0.00 0.00 0.00 0.00 CaO 〇.〇〇 0.00 0.11 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SiCh 3.23 3.23 3.23 3.23 3.30 3.34 3.34 3.27 ZnO 0.75 0.86 0.97 0.75 0.88 0.89 0.89 0.87 Ge〇2 P7O5 ai2〇3 Na2〇 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.22 0.00 Sn〇2 Sb2〇3 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 合計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F(外加比例) 7.84 7.84 7.84 7.84 10.08 11.51 11.51 11.26 F+Bi+Ti+W+Nb+K 10.00 10.00 10.00 10.00 12.50 13.96 11.51 15.62 (F+Bi+Ti+W+Nb+K)/ (Zr+Ta+Li) 3.71 3.71 3.71 3.71 4.55 5.01 2.30 5.31 La+Gd+Y+Yb+Lu 68.15 68.15 68.15 61.14 67.49 71.52 71.52 69.96 Mg+Ca+Sr+Ba 0.32 0.22 0.11 7.33 0.00 0.00 0.00 0.00 nd 1.77414 1.77168 1.77072 1.73661 1.76743 1.77589 1.76898 1.77082 Vd 50.6 49.2 49.3 56.6 49.5 50.2 52.2 51.5 157771.doc •55· s 201231427 [表2] 實施例 A9 A10 All A12 A13 B2〇3 18.95 16.72 19.07 18.95 18.95 La2〇3 47.00 47.00 48.90 47.00 47.00 Bi203 0.00 0.00 0.00 0.00 0.00 Ti02 0.33 〇.〇〇 〇.〇〇 〇.〇〇 〇.〇〇 W〇3 0.00 0.00 0.00 0.00 0.00 Nb205 2.23 2.23 0.00 0.00 0.00 k2o 0.00 0.00 0.45 0.00 0.00 Zr02 2.79 2.79 2.80 3.01 2.79 Ta2〇5 0,00 0.22 0.00 0.00 0.00 Li20 Gd2〇3 24.52 24.52 24*68 24.52 26.97 y2〇3 Yb203 0.00 0.00 0.00 0.00 0.00 LU2O3 MgO 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 BaO 0.00 2.23 0.00 2.23 0.00 S1O2 3.34 3.34 3.37 3.34 3.34 ZnO 0.78 0.89 0.67 0.89 0.89 Ge〇2 P2〇5 Al203 Na2〇 0.00 0.00 0.00 0.00 0.00 Sn02 Sb203 0.06 0.06 0.06 0.06 0.06 合計 100.00 100.00 100.00 100.00 100.00 F(外加比例) 11.51 11.51 12.24 11.51 11.51 F+Bi+Ti+W+Nb+K 14.07 13.74 12.69 11.51 11.51 (F+Bi+Ti+W+Nb+K)/ (Zr+Ta+Li) 5.05 4.57 4.52 3.83 4.13 La+Gd+Y+Yb+Lu 71.52 71.52 73.58 71.52 73.98 Mg+Ca+Sr+Ba 0*00 2.23 〇.〇〇 2.23 〇.〇〇 nd 1.76346 1.76924 1.76334 1.7574 1.76374 vd 53.7 51.1 53.2 51,6 53.4 -56- 157771.doc 201231427 [表3] 實施例 B1 B2 B3 B4 B5 B6 B7 B8 02〇3 16.46 17.91 20.03 18.99 21.91 15.65 15.65 15.65 La2〇3 52.44 32.81 43.88 41.76 39.43 39.43 39.43 39.43 ΒΪ2〇3 0.00 0.00 0.00 0.00 0,00 0.00 〇.〇〇 0.00 Nb205 4.17 〇.〇〇 2.23 2.22 2.09 5.22 5.22 5.22 Ti02 4.51 5.17 2.41 2.40 4.17 0.00 0.00 3.13 W03 0.00 0.00 0.00 1.92 0·00 0.00 0.00 0.00 K20 0.00 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 Ta2〇5 0.00 0.00 0.00 1.77 〇.〇〇 0.00 0.00 〇.〇〇 Gd2〇3 2.71 29.47 8.53 15.11 22.96 22.96 26.09 22.96 y2〇3 9.65 4.36 5.16 5.72 0.00 0.00 0.00 0.00 Yb2〇3 0.00 0.00 7.23 0.00 0.00 0.00 0.00 0.00 Zr02 5.95 6.25 4.65 6.07 2.61 2.61 2.61 2.61 Li20 0.00 0.21 0.48 0.10 0.00 0.00 0.00 0.00 Si02 2.35 2.76 3.99 2.53 3.13 3.13 3.13 3.13 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.90 0.00 0.48 0.48 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 A1203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.81 1.00 0.90 0.90 3.65 10.96 7.83 7.83 Te02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F 6.56 6.02 6.31 5.59 7.59 7.59 7.59 7.59 (F+Bi+Ti+W+Nb+K) 15.24 11.20 10.95 12.12 13.85 12.81 12.81 15.94 (Bi+Ti+W+Nb+Ta) 8.68 5.17 4.64 8.31 6.26 5,22 5.22 8.35 La+Gd+Y+Yb+Lu 70.76 72.89 69.44 68.65 64.99 64.99 68.12 64.99 (La+Gd+Y+Yb+Lu)/ (Bi+Ti+W+Nb+Ta) 8.15 14.09 14.98 8.26 10.38 12.46 13.06 7.79 (F+Bi+Ti+W+Nb+K)/ (Ta+Zr+Li) 2.56 1.73 2.13 1.53 5,31 4.91 4.91 6.11 Mg+Ca+Sr+Ba 0,90 0.00 0.48 0.48 0.00 〇.〇〇 〇.〇〇 〇.〇〇 nd 1.83058 1.84202 1.79024 1.82153 1.80296 1.79632 1.79961 1.82139 vd 42.0 40.7 45.6 43.3 43.5 46.1 46.1 44.5 9g ’ F 0.57049 0.57226 0.59400 0.57007 0.58342 0.56109 0.56376 0.58613 -125xnd+265 36.2 34.7 41.2 37.3 39.6 40.5 40.0 37.3 截距 b(a=0.0017) 0.64189 0.64145 0.67152 0.64368 0.65737 0.63946 0.64213 0.66178 截距 b(a=0_0020) 0.65449 0.65366 0.68520 0.65667 0.67042 0.65329 0.65596 0.67513 •57- 157771.doc 201231427 [表4] 實施例 B9 B10 Bll B12 B13 B14 B15 B16 02〇3 15.65 17.84 23.91 17.78 17.84 18.04 18.07 18.07 La2〇3 39.43 35.30 37.56 33.44 35.30 48.48 49.45 47.33 Bi203 3.13 0.00 〇.〇〇 0.00 0.00 0.00 0.00 0.00 Nb205 5.22 2.10 2.08 2.09 0.00 1.06 1.06 2.13 Ti02 0.00 〇.〇〇 2.08 〇.〇〇 0.00 〇.〇〇 0.00 0.00 W〇3 0.00 4.20 0.00 4.18 4.20 2.12 2.13 2.13 k2o 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 Ta2〇5 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 Gd2〇3 22.96 23.09 22.87 23.01 23.09 23.34 23.39 23.39 y2〇3 0.00 0.00 〇.〇〇 2.09 2.10 〇.〇〇 0.00 〇.〇〇 Yb2〇3 0.00 0.00 〇.〇〇 〇.〇〇 〇.〇〇 〇.〇〇 0.00 〇.〇〇 Zr02 2.61 2.62 2.60 2.61 2.62 2.65 1.59 2.66 Li20 0.00 0.00 0.00 〇.〇〇 0.00 0.00 0.00 0.00 Si02 3.13 3.15 3,12 3.14 3.15 3.18 3.19 3.19 MgO 0.00 〇.〇〇 〇.〇〇 〇.〇〇 〇.〇〇 〇.〇〇 0.00 0.00 CaO 0.00 3.77 〇.〇〇 3.76 3.77 〇.〇〇 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 ai2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 7.83 7.87 5.72 7.84 7.87 1.06 1.06 1.06 Te02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb2〇3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 TOTAL 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 F 7.59 8.66 6.96 8.02 8.66 10.65 10.98 10.98 (F+Bi+Ti+W+Nb+K) 15.94 14.96 11.12 14.30 12.86 13.84 14.17 15.23 (Bi+Ti+W+Nb+Ta) 8.35 6.30 4.16 6.28 4.20 3.18 3.19 4.25 La+Gd+Y+Yb+Lu 64.99 61·02 63.04 61.15 63.11 74.48 74.43 73.37 (La 十 Gd+Y+Yb+Lu)/ (Bi+Ti+W+Nb+Ta) 7.79 9.69 15.16 9.74 15.03 23.40 23.34 17.26 (F+Bi+Ti+W+Nb+K)/ (Ta+Zr+Li) 6.11 5.70 4.28 5.47 4.90 5.22 8.89 5.73 Mg+Ca+Sr+Ba 0.00 3.77 0.00 3.76 3.77 0.00 0.00 0.00 nd 1.8066 1.7606 1.79344 1.75874 1.76998 1.77705 1.77429 1.78692 vd 45.2 48.6 46.6 49.2 47.4 50.1 50.3 47.7 0g,F 0.58019 0.58789 0.56448 0.55843 0.56028 0.55649 -125><nd+265 39.2 44.9 40.8 45.2 43.8 42.9 43.2 41.6 戴距 b(a=0.0017) 0.66281 0.66711 0.64812 0.63901 0.64545 0.64200 戴距 b(a=0.0020) 0.67739 0.68109 0.66288 0.65323 0.66048 0.65709 • 58 · 157771.doc 201231427 [表5] 實施例 B17 B18 B19 B20 B21 B22 B23 Β2〇3 18.07 18.07 22.04 20.83 22.04 22.04 22.04 La2〇3 47.33 47.33 41.60 37.47 41.60 41.60 41.60 Bi2〇3 2.13 0.00 0.00 0.00 0.00 0.00 0.00 Nb205 0.00 0.00 2*10 1·98 2.10 2.10 2.10 Ti02 0.00 0.00 0.00 0.00 0.00 1.05 0.00 W〇3 2.13 2.13 0.00 4.96 0.00 0.00 1.05 K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Τ^2〇5 0.00 2.13 1.05 0.00 1.05 0.00 0.00 Gd203 23.39 23.39 23.09 21.82 23,09 23.09 23.09 Y2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Yb203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Zr02 2.66 2.66 2.62 2.48 2.62 2.62 2.62 Li20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si〇2 3.19 3.19 3.15 2.98 3.15 3.15 3.15 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 3.77 0.00 3.77 3.77 3.77 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AI2O3 0.00 0.00 0.00 0,00 0.00 0.00 0.00 ZnO 1.06 1.06 0.52 7.44 0.52 0.52 0.52 Te02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.05 0.05 0.05 0.05 0.05 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F 10.98 10.98 8.66 7.21 8.66 8.66 8.66 (F+Bi+Ti+W+Nb+K) 15.23 13.11 10.76 14.16 10.76 11:81 11.81 (Bi+Ti+W+Nb+Ta) 4.25 4.25 3.15 6.94 3.15 3.15 3.15 La+Gd+Y+Yb+Lu 73.37 73.37 67.31 61.77 67.31 67.31 67.31 (La+Gd 十 Y+Yb+Lu)/ (Bi+Ti+W+Nb+Ta) 17.26 17.26 21.38 8.90 21.38 21.38 21.38 (F+Bi+Ti+W+Nb+K)/ (Ta+Zr+Li) 5.73 2.74 2.93 5.71 2.93 4.50 4.50 Mg+Ca+Sr+Ba 0.00 0.00 3.77 0.00 3.77 3.77 3.77 nd 1.77972 1.77926 1.75725 1.78543 1.75725 1.76099 1.75588 vd 48.3 49.2 51.3 46.4 51.3 49.9 51.0 eg ’ f 0.55142 0.56233 0.55766 0.56233 0,56562 0.56005 -125xnd+265 42.5 42.6 45.3 41.8 45.3 44.9 45.5 截距 b(a=0.0017) 0.63506 0.64954 0.63654 0.64954 0,65045 0.64675 截距 b(a=0.0020) 0.64982 0.66493 0.65046 0.66493 0.66542 0.66205 ·59· 157771.doc 201231427 [表6] 實施例 比較例 Cl C2 C3 C4 C5 C6 cl b2o3 41.981 40.501 36.889 10.013 10.130 10.079 20.200 L^2〇3 33.714 41.152 32.813 16.265 16.455 16.373 15.795 Si02 6.972 6.726 10.522 25.841 26.143 26.012 18.485 Gd2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Y2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Yb203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bi203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ti02 0.000 0.000 0.000 0.640 0.648 0.645 0,000 Nb205 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Zr02 2.724 2.628 4.162 6.099 6.171 6.140 3.400 Li20 0.316 0.305 0.000 0.000 0.000 0.000 0.000 MrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 6.101 2.110 3.748 1.454 1.471 1.463 0.000 SrO 0.000 0.000 0.000 10.166 10.284 21.206 0.000 BaO 4.358 2.879 6.723 26.898 15.519 15.442 41.601 Na20 0.000 0.000 0Ό00 0.000 0.000 0.000 0.000 ZnO 3.813 3.679 5.122 2.196 12.746 2.210 0.000 Al2〇3 0.000 0.000 0.000 0.325 0.329 0.327 0.500 Sb203 0.022 0.021 0.021 0.102 0.103 0.102 0.020 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F 6.340 3.779 5.094 2.864 4.914 4.024 0.000 La+Gd+Y+Yb+Lu 33.714 41.152 32.813 16.265 16.455 16.373 - Gd+Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F+B i+Ti+W+Nb+K 6.340 3.779 5.094 3.505 5.562 4.668 0.000 Bi+Ti+W+Nb 0.000 0.000 0.000 0.640 0.648 0.645 0.000 F/(F+Bi+Ti+W+Nb+K) 1.000 1.000 1.000 0.817 0.884 0.862 - (Ta+Zr 屮 Li)/ (F+Bi+Ti+W+Nb+K) 0.479 0.776 0.817 1.740 1.109 1.315 - Mg+Ca+Sr+Ba 10.458 4.988 10.471 38.517 27.274 38.111 41.601 Li+Na+K 0.316 0.305 0.000 0.000 0.000 0.000 0.000 nd 1.67603 1.68429 1.68787 1.67 1.65914 1.65867 1.671 vd 55.8 56.6 55.3 54.1 54.8 55.0 55.5 -100nd+220 52.397 51.571 51.213 53.000 54.086 54.133 52.9 0g 1 F 0.55 0.551 0.552 0.559 0.560 0.558 0.546 戠距 b(a=0.00170) 0.64486 0.64722 0.64601 0.65097 0.65316 0.6515 0.64035 -60- 157771.doc 201231427 [表7] 實施例 D1 D2 D3 D4 D5 D6 D7 D8 B203 21.78 20.96 22.00 21.78 22.24 20.33 21.55 21.55 La2〇3 39.19 39.60 37.50 41.26 40.02 38.30 36.73 36.73 Al2〇3 7.36 7.44 7.44 7.36 7.51 7.59 7.28 7.28 Si02 3.11 3.14 3.14 3.11 3.18 3.21 3.08 3.08 W03 1.04 1.05 1.05 1.04 1.06 1.07 1.03 3.08 Zr02 2.59 2.62 2.62 2.59 2.65 2.68 2.57 2.57 Ta2〇5 〇.〇〇 0.00 0.00 0.00 〇.〇〇 0.00 0.00 0.00 Bi2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti02 0.00 0.00 1.05 0.00 0.00 1.07 3.08 1.03 Nb2〇5 2.07 2.10 2.10 0.00 0.00 2.14 2.05 2.05 MgO 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 〇.〇〇 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Gd203 22.81 23.05 23.05 22.81 23.30 23.55 22.58 22.58 Y2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li20 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2〇 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 0.00 K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p2〇5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sn〇2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb2〇3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 8.23 832 8.32 8.23 8.41 8.50 8.15 8.15 F/Al 1.12 1.12 1.12 U2 1,12 1.12 1.12 1.12 Si+B 24.89 24.10 25.15 24.89 25.41 23.55 24.63 24.63 Ln/(Si+B) 2.49 2.60 2.41 2.57 2.49 2.63 2.41 2.41 La/B 1.80 1,89 1.70 1.89 1.80 L88 1.70 1.70 W+La+Zr+Ta 42.82 43.26 41.17 44.89 43.72 42.05 40.32 42.38 Bi+Ti+Nb+W 3.11 3.14 4.19 1.04 1.06 4.28 6.16 6.16 Mg+Ca+Sr+Ba 〇.〇〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0*00 0.00 La+Gd+Y+Yb+Lu 62.00 62.65 60.55 64.07 63.31 61.85 59.31 59.31 nd 1.73673 1.73924 1.74506 1.72992 1.72769 1.74824 1.75890 1.74905 vd 51.70 52.20 50.00 54.30 51.90 48.30 45.90 48.80 -100nd+220 46.33 46.08 45.49 47.01 47.23 45.18 44.11 45.10 eg ’ f 0.556 0.554 0.557 0.5535 0.556 0.560 0.568 0.564 裁距 b(a=0.0017) 0.644 0.643 0.642 0.646 0.644 0.642 0.646 0.647 Tg[°C] 596 598 595 599 580 603 605 599 λ80[ηιπ] 387 389 395 383 384 394 403 396 λ5[ηΐΐΐ] 324 324 334 322 322 334 343 337 液相溫度[°c] 1030 1040 1040 1030 1030 1050 1060 1040 15777】.doc -61 -The refractive index (nd) and the Abbe's number (Vd) and the partial dispersion ratio (Qg'F) of the glass of No. dl) are measured based on the specifications of the 光学本光光工工业会j〇Gis〇 1 __2〇〇3. Then, with respect to the calculated values of the Abbe number (Vd) and the partial dispersion ratio (0g 'F), the intercept of the relationship (0g 'F)=-axvd+b is calculated to be an intercept of 0.0017 and 0.0020. b. Further, the value of the calculated refractive index (nd) is a value of the relationship - l〇〇xnd + 220. Further, the glass used in the measurement was obtained by subjecting the cooling rate of the cold cooling to _25 〇 c / hr and treating it in a quench furnace. In addition, the glass transition point (Tg) of the glass of the examples (No. D1 to No. D36) and the comparative example (No. dl) was performed by using a differential heat measuring device (STA TZ CD manufactured by NETZSCH-Gemebau Co., Ltd.) Calculated by measurement. Here, the sample particle size at the time of measurement was set to 425 to 6 Torr, and the temperature increase rate was set to i 0 °c/min. Further, the transmittances of the glass of the examples (No. D1 to No. D36) and the comparative example (No. dl) were measured in accordance with the specifications of the Japan Optical Glass Industry Association. Further, in the present invention, the transmittance of the glass is measured, thereby calculating the presence or absence of coloration. Specifically, for a parallel-surface grinding product having a thickness of 1 〇士〇. 1 mm, a spectroscopic transmittance of 200 to 800 nm is measured according to JIS Z8722, and a wavelength of 08〇) and a heart (penetration at a transmittance of 8〇%) are calculated. The wavelength is 5%). Further, in the examples (No. D1 to No. D36) and the glass of the comparative example (Νο· dl), the phase temperature was measured by the following method, #, and the pulverized glass sample was placed at intervals of platinum at 'mm. On the board, take it out in the oven with 800 °C to 120 (the X tilt of the TC is taken for 3 minutes, and after cooling, observe the crystal in the glass sample with a microscope with a magnification of 8〇J 57771 .doc -54· 201231427 times. At this time, as a sample, the optical glass was pulverized into a pellet having a diameter of about 2 mm. [Table 1] ____ Example A1 A2 A3 A4 A5 A6 A7 A8 b2〇3 22.63 22.63 22.63 22.63 23.11 18.95 18.95 18.53 La2〇 3 37.43 37.43 44.44 37.43 43.28 47.00 47.00 45.98 Bi203 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 Ti〇2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.18 K,0 〇.〇〇0.00 0.00 0.00 0.00 0.00 0.00 0.00 Zr02 2.69 2.69 2.69 2.69 2.75 2.79 2.79 2.73 Ta2〇5 0.00 0.00 0.00 0.00 0.00 0.00 2.23 0.22 LhO Gd203 30.72 23.71 23.71 23.71 24.21 24.52 2 4.52 23.99 Y2O3 Yb203 0.00 7.01 0.00 0.00 0.00 0.00 0.00 0.00 Lu2〇3 MrO 〇.〇〇0.00 0.00 7.33 0.00 0.00 0.00 0.00 CaO 〇.〇〇0.00 0.11 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SiCh 3.23 3.23 3.23 3.23 3.30 3.34 3.34 3.27 ZnO 0.75 0.86 0.97 0.75 0.88 0.89 0.89 0.87 Ge〇2 P7O5 ai2〇3 Na2〇〇.〇〇0.00 0.00 0.00 0.00 0.00 0.22 0.00 Sn〇2 Sb2〇 3 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.05 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F (addition ratio) 7.84 7.84 7.84 7.84 10.08 11.51 11.51 11.26 F+Bi+Ti+W+Nb+K 10.00 10.00 10.00 10.00 12.50 13.96 11.51 15.62 (F+Bi+Ti+W+Nb+K)/(Zr+Ta+Li) 3.71 3.71 3.71 3.71 4.55 5.01 2.30 5.31 La+Gd+Y+Yb+Lu 68.15 68.15 68.15 61.14 67.49 71.52 71.52 69.96 Mg+Ca+ Sr+Ba 0.32 0.22 0.11 7.33 0.00 0.00 0.00 0.00 nd 1.77414 1.77168 1.77072 1.73661 1.76743 1.77589 1.76898 1.77082 Vd 50.6 49.2 49. 3 56.6 49.5 50.2 52.2 51.5 157771.doc •55· s 201231427 [Table 2] Example A9 A10 All A12 A13 B2〇3 18.95 16.72 19.07 18.95 18.95 La2〇3 47.00 47.00 48.90 47.00 47.00 Bi203 0.00 0.00 0.00 0.00 0.00 Ti02 0.33 〇 .〇〇〇.〇〇〇.〇〇〇.〇〇W〇3 0.00 0.00 0.00 0.00 0.00 Nb205 2.23 2.23 0.00 0.00 0.00 k2o 0.00 0.00 0.45 0.00 0.00 Zr02 2.79 2.79 2.80 3.01 2.79 Ta2〇5 0,00 0.22 0.00 0.00 0.00 Li20 Gd2〇3 24.52 24.52 24*68 24.52 26.97 y2〇3 Yb203 0.00 0.00 0.00 0.00 0.00 LU2O3 MgO 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 BaO 0.00 2.23 0.00 2.23 0.00 S1O2 3.34 3.34 3.37 3.34 3.34 ZnO 0.78 0.89 0.67 0.89 0.89 Ge〇2 P2〇5 Al203 Na2〇0.00 0.00 0.00 0.00 0.00 Sn02 Sb203 0.06 0.06 0.06 0.06 0.06 Total 100.00 100.00 100.00 100.00 100.00 F (addition ratio) 11.51 11.51 12.24 11.51 11.51 F+Bi+Ti +W+Nb+K 14.07 13.74 12.69 11.51 11.51 (F+Bi+Ti+W+Nb+K)/ (Zr+Ta+Li) 5.05 4.57 4. 52 3.83 4.13 La+Gd+Y+Yb+Lu 71.52 71.52 73.58 71.52 73.98 Mg+Ca+Sr+Ba 0*00 2.23 〇.〇〇2.23 〇.〇〇nd 1.76346 1.76924 1.76334 1.7574 1.76374 vd 53.7 51.1 53.2 51,6 53.4 -56- 157771.doc 201231427 [Table 3] Example B1 B2 B3 B4 B5 B6 B7 B8 02〇3 16.46 17.91 20.03 18.99 21.91 15.65 15.65 15.65 La2〇3 52.44 32.81 43.88 41.76 39.43 39.43 39.43 39.43 ΒΪ2〇3 0.00 0.00 0.00 0.00 0,00 0.00 〇.〇〇0.00 Nb205 4.17 〇.〇〇2.23 2.22 2.09 5.22 5.22 5.22 Ti02 4.51 5.17 2.41 2.40 4.17 0.00 0.00 3.13 W03 0.00 0.00 0.00 1.92 0·00 0.00 0.00 0.00 K20 0.00 〇.〇〇0.00 0.00 0.00 0.00 0.00 0.00 Ta2〇5 0.00 0.00 0.00 1.77 〇.〇〇0.00 0.00 〇.〇〇Gd2〇3 2.71 29.47 8.53 15.11 22.96 22.96 26.09 22.96 y2〇3 9.65 4.36 5.16 5.72 0.00 0.00 0.00 0.00 Yb2〇3 0.00 0.00 7.23 0.00 0.00 0.00 0.00 0.00 Zr02 5.95 6.25 4.65 6.07 2.61 2.61 2.61 2.61 Li20 0.00 0.21 0.48 0.10 0.00 0.00 0.00 0.00 Si02 2.35 2.76 3.99 2.53 3.13 3.13 3.13 3.13 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.90 0.00 0.48 0.48 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 A 1203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.04 0.05 0.05 0.05 0.05 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F 6.56 6.02 6.31 5.59 7.59 7.59 7.59 7.59 (F+Bi+Ti+W+Nb+K) 15.24 11.20 10.95 12.12 13.85 12.81 12.81 15.94 (Bi+Ti+W+Nb+Ta) 8.68 5.17 4.64 8.31 6.26 5,22 5.22 8.35 La+Gd+Y+Yb+Lu 70.76 72.89 69.44 68.65 64.99 64.99 68.12 64.99 (La+Gd+Y+Yb +Lu)/ (Bi+Ti+W+Nb+Ta) 8.15 14.09 14.98 8.26 10.38 12.46 13.06 7.79 (F+Bi+Ti+W+Nb+K)/ (Ta+Zr+Li) 2.56 1.73 2.13 1.53 5, 31 4.91 4.91 6.11 Mg+Ca+Sr+Ba 0,90 0.00 0.48 0.48 0.00 〇.〇〇〇.〇〇〇.〇〇nd 1.83058 1.84202 1.79024 1.82153 1.80296 1.79632 1.79961 1.82139 vd 42.0 40.7 45.6 43.3 43.5 46.1 46.1 44.5 9g ' F 0.57049 0.57226 0.59400 0.57007 0.5 8342 0.56109 0.56376 0.58613 -125xnd+265 36.2 34.7 41.2 37.3 39.6 40.5 40.0 37.3 Intercept b(a=0.0017) 0.64189 0.64145 0.67152 0.64368 0.65737 0.63946 0.64213 0.66178 Intercept b(a=0_0020) 0.65449 0.65366 0.68520 0.65667 0.67042 0.65329 0.65596 0.67513 •57 - 157771.doc 201231427 [Table 4] Example B9 B10 B11 B12 B13 B14 B15 B16 02〇3 15.65 17.84 23.91 17.78 17.84 18.04 18.07 18.07 La2〇3 39.43 35.30 37.56 33.44 35.30 48.48 49.45 47.33 Bi203 3.13 0.00 〇.〇〇 0.00 0.00 0.00 0.00 0.00 Nb205 5.22 2.10 2.08 2.09 0.00 1.06 1.06 2.13 Ti02 0.00 〇.〇〇2.08 〇.〇〇0.00 〇.〇〇0.00 0.00 W〇3 0.00 4.20 0.00 4.18 4.20 2.12 2.13 2.13 k2o 0.00 0.00 0.00 0.00 0.00 〇.〇 〇0.00 0.00 Ta2〇5 0.00 0.00 0.00 0.00 0.00 〇.〇〇0.00 0.00 Gd2〇3 22.96 23.09 22.87 23.01 23.09 23.34 23.39 23.39 y2〇3 0.00 0.00 〇.〇〇2.09 2.10 〇.〇〇0.00 〇.〇〇Yb2〇 3 0.00 0.00 〇.〇〇〇.〇〇〇.〇〇〇.〇〇0.00 〇.〇〇Zr02 2.61 2.62 2.60 2.61 2.62 2.65 1.59 2.66 Li20 0.00 0.00 0.00 〇.〇〇0.00 0.00 0.00 0.00 Si02 3.13 3.15 3,12 3.14 3.15 3.18 3.19 3.19 MgO 0.00 〇.〇〇〇.〇〇〇.〇〇〇.〇〇〇.〇〇0.00 0.00 CaO 0.00 3.77 〇.〇〇3.76 3.77 〇.〇〇0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 〇.〇〇0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 〇.〇〇0.00 0.00 ai2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 7.83 7.87 5.72 7.84 7.87 1.06 1.06 1.06 Te02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00bb〇3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 TOTAL 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 F 7.59 8.66 6.96 8.02 8.66 10.65 10.98 10.98 (F+ Bi+Ti+W+Nb+K) 15.94 14.96 11.12 14.30 12.86 13.84 14.17 15.23 (Bi+Ti+W+Nb+Ta) 8.35 6.30 4.16 6.28 4.20 3.18 3.19 4.25 La+Gd+Y+Yb+Lu 64.99 61·02 63.04 61.15 63.11 74.48 74.43 73.37 (La 十 Gd+Y+Yb+Lu)/ (Bi+Ti+W+Nb+Ta) 7.79 9.69 15.16 9.74 15.03 23.40 23.34 17.26 (F+Bi+Ti+W+Nb+K) / (Ta+Zr+Li) 6.11 5.70 4.28 5.47 4.90 5.22 8.89 5.73 Mg+Ca+Sr+Ba 0.00 3.77 0. 00 3.76 3.77 0.00 0.00 0.00 nd 1.8066 1.7606 1.79344 1.75874 1.76998 1.77705 1.77429 1.78692 vd 45.2 48.6 46.6 49.2 47.4 50.1 50.3 47.7 0g, F 0.58019 0.58789 0.56448 0.55843 0.56028 0.55649 -125><nd+265 39.2 44.9 40.8 45.2 43.8 42.9 43.2 41.6 Wear Distance b (a=0.0017) 0.66281 0.66711 0.64812 0.63901 0.64545 0.64200 Wearing distance b (a=0.0020) 0.67739 0.68109 0.66288 0.65323 0.66048 0.65709 • 58 · 157771.doc 201231427 [Table 5] Example B17 B18 B19 B20 B21 B22 B23 Β2〇3 18.07 18.07 22.04 20.83 22.04 22.04 22.04 La2〇3 47.33 47.33 41.60 37.47 41.60 41.60 41.60 Bi2〇3 2.13 0.00 0.00 0.00 0.00 0.00 0.00 Nb205 0.00 0.00 2*10 1·98 2.10 2.10 2.10 Ti02 0.00 0.00 0.00 0.00 0.00 1.05 0.00 W〇3 2.13 2.13 0.00 4.96 0.00 0.00 1.05 K20 0.00 0.00 0.00 0.00 0.00 0.00 Τ^2〇5 0.00 2.13 1.05 0.00 1.05 0.00 0.00 Gd203 23.39 23.39 23.09 21.82 23,09 23.09 23.09 Y2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Yb203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Zr02 2.66 2.66 2.62 2.48 2.62 2.62 2 .62 Li20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si〇2 3.19 3.19 3.15 2.98 3.15 3.15 3.15 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 0.00 0.00 AI2O3 0.00 0.00 0.00 0,00 0.00 0.00 0.00 ZnO 1.06 1.06 0.52 7.44 0.52 0.52 0.52 Te02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.66 8.66 (F+Bi+Ti+W+Nb+K) 15.23 13.11 10.76 14.16 10.76 11:81 11.81 (Bi+Ti+W+Nb+Ta) 4.25 4.25 3.15 6.94 3.15 3.15 3.15 La+Gd+Y+Yb+ Lu 73.37 73.37 67.31 61.77 67.31 67.31 67.31 (La+Gd 十Y+Yb+Lu)/ (Bi+Ti+W+Nb+Ta) 17.26 17.26 21.38 8.90 21.38 21.38 21.38 (F+Bi+Ti+W+Nb+K ) / (Ta+Zr+Li) 5.73 2.74 2.93 5.71 2.93 4.50 4.50 Mg+Ca+Sr+Ba 0.00 0.00 3.77 0.00 3.77 3.77 3.77 nd 1.77972 1.77926 1.75725 1.78543 1.75725 1.76099 1.75588 vd 48.3 49.2 51.3 46.4 51.3 49.9 51.0 eg ' f 0.55142 0.56233 0.55 766 0.56233 0,56562 0.56005 -125xnd+265 42.5 42.6 45.3 41.8 45.3 44.9 45.5 Intercept b (a=0.0017) 0.63506 0.64954 0.63654 0.64954 0,65045 0.64675 Intercept b (a=0.0020) 0.64982 0.66493 0.65046 0.66493 0.66542 0.66205 ·59· 157771.doc 201231427 [Table 6] Example Comparative Example Cl C2 C3 C4 C5 C6 cl b2o3 41.981 40.501 36.889 10.013 10.130 10.079 20.200 L^2〇3 33.714 41.152 32.813 16.265 16.455 16.373 15.795 Si02 6.972 6.726 10.522 25.841 26.143 26.012 18.485 Gd2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Y2〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Yb203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Bi203 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ti02 0.000 0.000 0.000 0.640 0.648 0.645 0,000 Nb205 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W 〇3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 k2o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ta2〇5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Zr02 2.724 2.628 4.162 6.099 6.171 6.140 3.400 Li20 0.316 0.305 0.000 0.000 0.000 0.000 0.000 MrO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CaO 6.101 2.110 3.748 1.454 1.471 1.463 0.000 SrO 0.000 0.000 0.000 10.166 10.284 21.206 0.000 BaO 4.358 2.879 6.723 26.898 15.519 15.442 41.601 Na20 0.000 0.000 0Ό00 0.000 0.000 0.000 0.000 ZnO 3.813 3.679 5.122 2.196 12.746 2.210 0.000 Al2〇3 0.000 0.000 0.000 0.325 0.329 0.327 0.500 Sb203 0.022 0.021 0.021 0.102 0.103 0.102 0.020 TOTAL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 F 6.340 3.779 5.094 2.864 4.914 4.024 0.000 La+Gd+Y+Yb+Lu 33.714 41.152 32.813 16.265 16.455 16.373 - Gd+Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F+B i+Ti+W+Nb+K 6.340 3.779 5.094 3.505 5.562 4.668 0.000 Bi+Ti+W+Nb 0.000 0.000 0.000 0.640 0.648 0.645 0.000 F/(F+Bi+Ti+W +Nb+K) 1.000 1.000 1.000 0.817 0.884 0.862 - (Ta+Zr 屮Li)/ (F+Bi+Ti+W+Nb+K) 0.479 0.776 0.817 1.740 1.109 1.315 - Mg+Ca+Sr+Ba 10.458 4.988 10.471 38.517 27.274 38.111 41.601 Li+Na+K 0.316 0.305 0.000 0.000 0.000 0.000 0.000 nd 1.67603 1.68429 1.68787 1.67 1.65914 1.65867 1.671 vd 55.8 56.6 55.3 54.1 54.8 55.0 55.5 -100nd+220 52.397 51.571 51.213 53.000 54.086 54.133 52.9 0g 1 F 0.55 0.551 0.552 0.559 0.560 0.558 0.546 戠 distance b (a=0.00170) 0.64486 0.64722 0.64601 0.65097 0.65316 0.6515 0.64035 -60- 157771. Doc 201231427 [Table 7] Example D1 D2 D3 D4 D5 D6 D7 D8 B203 21.78 20.96 22.00 21.78 22.24 20.33 21.55 21.55 La2〇3 39.19 39.60 37.50 41.26 40.02 38.30 36.73 36.73 Al2〇3 7.36 7.44 7.44 7.36 7.51 7.59 7.28 7.28 Si02 3.11 3.14 3.14 3.11 3.18 3.21 3.08 3.08 W03 1.04 1.05 1.05 1.04 1.06 1.07 1.03 3.08 Zr02 2.59 2.62 2.62 2.59 2.65 2.68 2.57 2.57 Ta2〇5 〇.〇〇0.00 0.00 0.00 〇.〇〇0.00 0.00 0.00 Bi2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti02 0.00 0.00 1.05 0.00 0.00 1.07 3.08 1.03 Nb2〇5 2.07 2.10 2.10 0.00 0.00 2.14 2.05 2.05 MgO 0.00 0.00 0.00 0.00 0.00 〇.〇〇0.00 〇.〇〇CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 〇.〇 〇0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 〇.〇〇0.00 0.00 0.00 0.00 0.00 0.00. 00 Gd203 22.81 23.05 23.05 22.81 23.30 23.55 22.58 22.58 22.2 Y2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li20 〇.〇〇0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 π 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 100.0 100.0 F 8.23 832 8.32 8.23 8.41 8.50 8.15 8.15 F/Al 1.12 1.12 1.12 U2 1,12 1.12 1.12 1.12 Si+B 24.89 24.10 25.15 24.89 25.41 23.55 24.63 24.63 Ln/(Si+B) 2.49 2.60 2.41 2.57 2.49 2.63 2.41 2.41 La/B 1.80 1,89 1.70 1.89 1.80 L88 1.70 1.70 W+La+Zr+Ta 42.82 43.26 41.17 44.89 43.72 42.05 40.32 42.38 Bi+Ti+Nb+W 3.11 3.14 4.19 1.04 1.06 4.28 6.16 6.16 Mg+Ca+Sr +Ba 〇.〇〇0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0.000*00 0.00 La+Gd+Y+Yb+Lu 62.00 62.65 60.55 64.07 63.31 61.85 59.31 59.31 nd 1.73673 1.73924 1.74506 1.72992 1.72769 1.74824 1.75890 1.74905 vd 51.70 52.20 50.00 54.30 51.90 48.30 45.90 48.80 -100nd+220 46.33 46.08 45.49 47.01 47.23 45.18 44.11 45.10 eg ' f 0.556 0.554 0.557 0.5535 0.556 0.560 0.568 0.564 Cut length b (a= 0.0017) 0.644 0.643 0.642 0.646 0.644 0.642 0.646 0.647 Tg[°C] 596 598 595 599 580 603 605 599 λ80[ηιπ] 387 389 395 383 384 394 403 396 λ5[ηΐΐΐ] 324 324 334 322 322 334 343 337 Liquidus temperature [°c] 1030 1040 1040 1030 1030 1050 1060 1040 15777].doc -61 -

S 201231427 [表8] 實施例 D9 D10 Dll D12 D13 D14 B2〇3 21.78 21.78 21.78 19.91 19.70 18.86 L^2〇3 41.26 41.26 43.85 37.50 41.26 37.50 ai2〇3 7.36 7.36 7.36 7.44 7.36 7.43 Si02 3.11 3.11 3.11 3.14 3.11 3.14 W03 1.04 1.04 1.04 1.05 1.04 1.05 Zr02 0.00 0.00 〇.〇〇 2.62 0.00 2.62 Ta2〇5 0.00 0.00 〇.〇〇 0.00 0.00 〇.〇〇 Bi203 0.00 0.00 0.00 〇.〇〇 〇.〇〇 〇.〇〇 Ti02 0*00 0.00 0.00 1.05 0.00 1.05 Nb205 0.00 0.00 0.00 2.10 0.00 2.10 MrO 0.00 0.00 0.00 〇.〇〇 0.00 〇.〇〇 CaO 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 Gd2〇3 22.81 25.41 22.81 25.15 24.89 26.20 y2〇3 2.59 0.00 0.00 0.00 2.59 0.00 Li2〇 0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 0.00 0.00 k2o 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 p2〇5 0.00 0.00 0.00 0.00 0.00 0.00 Sn〇2 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.05 0.05 0.05 0.05 Total 100.0 100.0 100.0 100.0 100.0 100.0 F 8.23 8.23 8.23 8.32 8.23 8.32 F/Al 1.12 1.12 1.12 1,12 1.12 1.12 Si+B 24.89 24.89 24.89 23.05 22.81 22.00 Ln/(Si+B) 2.68 2.68 2.68 2.72 3.01 2.89 La/B 1·89 1.89 2.01 1.88 2.09 1.99 W+La 十 Zr 十 Ta 42.30 42.30 44.89 41.17 42.30 41.17 Bi+Ti+Nb+W 1.04 1.04 1.04 4.19 1.04 4.19 Mg+Ca+Sr+Ba 0.00 〇.〇〇 〇.〇〇 〇.〇〇 0.00 0.00 Li+Na+K 0.00 0.00 〇.〇〇 0.00 0.00 0·00 La+Gd+Y+Yb+Lu 66.67 66.67 66.67 62.65 68.74 63.70 nd 1.72183 1.72324 1.72553 1.74855 1.73418 L75532 vd 56.00 55.00 54.80 49.00 53.80 49.30 -100nd+220 47.82 47.68 47.45 45.15 46.58 44.47 eg,f 0.553 0.553 0.554 0.564 0.555 0.564 載距 b(a=0_0017) 0.648 0.647 0.647 0.647 0.646 0.648 Tg[°C] 618 602 599 595 590 598 λ80[ηπι] 381 382 382 393 384 396 λ5Γηπι] 320 321 321 334 322 333 液相溫度[°c] 1040 1040 1050 1030 1060 1050 -62- 157771.doc 201231427 [表9] 實施例 D15 D16 D17 D18 D19 D20 D21 D22 ΒΛ 23.91 23.91 23.57 23.24 23.13 23.24 22.77 24.20 La2〇3 32.79 32.79 27.68 39.67 42.91 42.65 43.14 38.93 ΑΙ2Ο3 8.51 1.11 0.66 2.17 2.51 2.52 3.13 3.97 Si02 3.42 3.42 3.37 3.32 3.30 3.32 3.25 3.46 W03 0.00 0.00 0.00 1.11 L10 1.11 1.08 0.00 Zr02 2.85 2.85 0.00 2.77 0.00 0.00 0.00 0.00 Ta2〇5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Bi2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti02 0.00 0.00 5.05 0.00 0.00 0.00 〇.〇〇 0.00 Nb2〇5 2.28 2.28 0.00 2.21 0.00 0.00 0.00 0.00 M^O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 2.01 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 4.49 0.00 0.00 0.00 0.00 0.00 Gd203 25.05 25.05 24.69 24.35 24.23 24.34 23.85 25.35 y2〇3 0.00 0.00 0.00 0.00 2.75 2.77 2.71 4.03 Li20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 1.14 8.54 8.42 1.11 0.00 0.00 0.00 0.00 p2〇5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sn02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.06 0.06 0,06 0.06 0.06 0.06 0.05 0.06 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 10.49 10.49 9.34 8.82 9.85 10.45 7.53 13.84 F/Al 1.23 9.46 14.24 4.07 3.92 4.14 2.40 3.48 Si+B 27.33 27.33 26.94 26.56 26.44 26.56 26.02 27.65 Ln/(Si+B) 2.12 2.12 1.94 2.41 2.64 2.63 2.68 2.47 La/B 1.37 1.37 1.17 1.71 1.86 1.84 1.89 1.61 W+La+Zr+Ta 35.63 35.63 27,68 43.54 44.01 43.76 44,23 38.93 Bi+Ti+Nb+W 2.28 2.28 5.05 3.32 1.10 1.11 1.08 0.00 M^+Ca+Sr+Ba 0.00 0.00 6.50 0.00 0.00 0.00 〇.〇〇 0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0‘00 La+Gd+Y+Yb+Lu 57.84 57.84 52.38 64.02 69.90 69.76 69.71 68.32 nd 1.72196 1.75574 1.75045 1.74232 1.70453 1.70280 1.71917 1.69503 vd 52.30 49.30 45.80 51.30 60.50 57.00 55.60 57.50 -100nd+220 47.80 44.43 44.96 45.77 49.55 49.72 48.08 50.50 0g,F 0.556 0.56 0.566 0.558 0.55 0.552 0.554 0.552 截距 b(a=0.0017) 0.645 0.644 0.644 0.645 0.653 0.649 0.649 0.650 Tg[°C] 580 578 581 610 581 580 615 560 λ8〇Γηιπ] 386 387 376 369 382 380 381 382 X5[nm] 316 315 310 302 318 318 319 315 液相溫度[°c] 1020 1030 1020 1040 1030 1020 1040 1010 157771.doc -63-S 201231427 [Table 8] Example D9 D10 Dll D12 D13 D14 B2〇3 21.78 21.78 21.78 19.91 19.70 18.86 L^2〇3 41.26 41.26 43.85 37.50 41.26 37.50 ai2〇3 7.36 7.36 7.36 7.44 7.36 7.43 Si02 3.11 3.11 3.11 3.14 3.11 3.14 W03 1.04 1.04 1.04 1.05 1.04 1.05 Zr02 0.00 0.00 〇.〇〇2.62 0.00 2.62 Ta2〇5 0.00 0.00 〇.〇〇0.00 0.00 〇.〇〇Bi203 0.00 0.00 0.00 〇.〇〇〇.〇〇〇.〇〇Ti02 0 *00 0.00 0.00 1.05 0.00 1.05 Nb205 0.00 0.00 0.00 2.10 0.00 2.10 MrO 0.00 0.00 0.00 〇.〇〇0.00 〇.〇〇CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 22.81 25.41 22.81 25.15 24.89 26.20 y2〇3 2.59 0.00 0.00 0.00 2.59 0.00 Li2〇0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sn〇2 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.05 0.05 0.05 Total 100.0 100.0 100.0 100.0 100. 0 100.0 F 8.23 8.23 8.23 8.32 8.23 8.32 F/Al 1.12 1.12 1.12 1,12 1.12 1.12 Si+B 24.89 24.89 24.89 23.05 22.81 22.00 Ln/(Si+B) 2.68 2.68 2.68 2.72 3.01 2.89 La/B 1·89 1.89 2.01 1.88 2.09 1.99 W+La Ten Zr Ten Ta 42.30 42.30 44.89 41.17 42.30 41.17 Bi+Ti+Nb+W 1.04 1.04 1.04 4.19 1.04 4.19 Mg+Ca+Sr+Ba 0.00 〇.〇〇〇.〇〇〇.〇〇0.00 0.00 Li+Na+K 0.00 0.00 〇.〇〇0.00 0.00 0·00 La+Gd+Y+Yb+Lu 66.67 66.67 66.67 62.65 68.74 63.70 nd 1.72183 1.72324 1.72553 1.74855 1.73418 L75532 vd 56.00 55.00 54.80 49.00 53.80 49.30 -100nd+220 47.82 47.68 47.45 45.15 46.58 44.47 eg,f 0.553 0.553 0.554 0.564 0.555 0.564 Carrying distance b(a=0_0017) 0.648 0.647 0.647 0.647 0.646 0.648 Tg[°C] 618 602 599 595 590 598 λ80[ηπι] 381 382 382 393 384 396 λ5Γηπι] 320 321 321 334 322 333 Liquidus temperature [°c] 1040 1040 1050 1030 1060 1050 -62- 157771.doc 201231427 [Table 9] Example D15 D16 D17 D18 D19 D20 D21 D22 ΒΛ 23.91 23.91 23.57 23.24 23.13 23.24 22.77 24.20 La2〇3 32.79 32.79 27.68 39.67 42.91 42.65 43.14 38.93 ΑΙ2Ο3 8.51 1.11 0.66 2.17 2.51 2.52 3.13 3.97 Si02 3.42 3.42 3.37 3.32 3.30 3.32 3.25 3.46 W03 0.00 0.00 0.00 1.11 L10 1.11 1.08 0.00 Zr02 2.85 2.85 0.00 2.77 0.00 0.00 0.00 0.00 Ta2〇5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Bi2〇3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.06 0.06 0,06 0.06 0.06 0.06 0.05 0.06 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 10.49 10.49 9.34 8.82 9.85 10.45 7.53 13.84 F/Al 1.23 9.46 14.24 4.07 3.92 4.14 2.40 3.48 Si+B 27.33 27.33 26.94 26.56 26.44 26.56 26.02 27.65 Ln/ (Si+B) 2.12 2.12 1.94 2.41 2.64 2.63 2.68 2.47 La/B 1.37 1.37 1.17 1.71 1.86 1.84 1.89 1.61 W+La+Zr+Ta 35.63 35.63 27,68 43.54 44.01 43.76 44,23 38.93 Bi+Ti+Nb+W 2.28 2.28 5.05 3.32 1.10 1.11 1.08 0.00 M^+Ca+Sr+Ba 0.00 0.00 6.50 0.00 0.00 0.00 〇.〇〇0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0'00 La+Gd+Y+Yb+ Lu 57.84 57.84 52.38 64.02 69.90 69.76 69.71 68.32 nd 1.72196 1.75574 1.75045 1.74232 1.70453 1.70280 1.71917 1.69503 vd 52.30 49.30 45.80 51.30 60.50 57.00 55.60 57.50 -100nd+220 47.80 44.43 44.96 45.77 49.55 49.72 48.08 50.50 0g,F 0.556 0.56 0.566 0.558 0.55 0.552 0.554 0.552 Intercept b(a=0.0017) 0.645 0.644 0.644 0.645 0.653 0.649 0.649 0.650 Tg[°C] 580 578 581 610 581 580 615 560 λ8〇Γηιπ] 386 387 376 369 382 380 3 81 382 X5[nm] 316 315 310 302 318 318 319 315 Liquidus temperature [°c] 1020 1030 1020 1040 1030 1020 1040 1010 157771.doc -63-

S 201231427 [表 10] 實施例 D23 D24 D25 D26 D27 D28 D29 D30 B2〇3 24.06 26.90 20.97 23.17 22.87 22.92 22.87 22.97 L&2〇3 38.71 37.88 39.49 39.49 40.91 43.43 43.34 43.52 Al2〇3 3.28 3.21 2.52 2.52 1.85 2.49 2.69 2.28 Si〇2 3.44 3.36 3.31 1.10 3.27 3.27 3.27 3.28 W〇3 0.00 0.00 1.10 uo 1.09 1.09 1.09 1.09 Zr02 0.00 0.00 2.76 2.76 2.72 0.00 0.00 〇.〇〇 Ta2〇5 0.00 0.00 2.21 2.21 0.00 〇.〇〇 0.00 〇.〇〇 Bi203 0.00 0.00 0.00 0.00 0.00 〇.〇〇 0.00 〇.〇〇 Ti02 0.00 0.00 1.10 1.10 1.09 〇.〇〇 0.00 0.00 Nb205 0.00 0.00 2.21 2.21 2.18 0.00 0.00 0.00 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 〇.〇〇 0.00 0.00 0.00 Gd2〇3 25.21 24.66 24.28 24.28 23.96 24.01 23.96 24.06 Y2〇3 4.01 3.92 0.00 0.00 0.00 2.73 2.72 2.73 Li2〇 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 〇.〇〇 0.00 〇.〇〇 0.00 k2o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 p2〇5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sn〇2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb2〇3 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 13.16 11.19 8.76 8.76 7.38 8.67 9.39 7_94 F/Al 4.01 3.48 3.48 3.48 4.00 3.48 3.48 3.48 Si+B 27.50 30.27 24.28 24.28 26.14 26.20 26.14 26.25 Ln/(Si+B) 2.47 2.20 2.63 2.63 2.48 2.68 2.68 2.68 La/B 1.61 1.41 1.88 1.70 1.79 1.89 1.89 1.89 W+La+Zr+Ta 38.71 37.88 45.56 45.56 44.72 44.52 44.43 44.62 Bi+Ti+Nb+W 0.00 0.00 4.41 4.41 4.36 1.09 1.09 1.09 Mg+Ca+Sr+Ba 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li 十 Na+K 0.00 0.00 0.00 〇.〇〇 0.00 0.00 0.00 0.00 La+Gd+Y+Yb+Lu 67.93 66.47 63.77 63.77 64.88 70.Π 70.02 70.32 nd 1.69620 1.70133 1.75235 1.76810 1.75661 1.72252 1.71941 1.73308 vd 56.60 55.90 50.10 47.60 48.10 54.40 56.00 54.70 •100nd+220 50.38 49.87 44.77 43.19 44.34 47.75 48.06 46.69 0g,F 0.551 0.552 0.56 0.564 0.563 0.554 0.552 0.553 裁距 b(a=0.0017) 0.647 0.647 0.645 0.645 0.645 0.646 0.647 0.646 Tg[°C] 565 572 581 584 593 581 578 583 λ80[ηι*η] 380 381 395 399 392 385 383 384 X5[nm] 313 313 334 335 334 322 321 322 液相溫度[°c] 1000 1020 1040 1050 1040 1020 1020 1040 -64- 157771.doc 201231427 [表 11] 實施例 比較例 D31 D32 D33 D34 D35 D36 dl B203 20.74 18.56 16.37 19.62 25.43 13.08 19.57 L^2〇3 45.61 47.80 49.98 32.82 36.89 32.80 26.08 ai2〇3 2.49 2.49 2.49 2.37 2.12 2.13 0.00 Si02 3.27 3.27 3.27 8.28 3.07 6.99 2.17 W03 1.09 1.09 1.09 0.00 0.00 0.00 0.00 Zr02 0.00 0.00 0.00 7.78 7.12 6.55 0.00 Ta2〇5 0.00 0.00 0,00 5.80 6.36 20.43 0.00 Bi203 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ti02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nb205 0.00 0.00 0.00 0.00 6.82 1.09 0.00 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Gd203 24.01 24.01 24.01 22.19 8.88 16.82 30.44 Y2O3 2.73 2.73 2.73 0.00 3.26 0,00 0.00 Li20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ZnO 0.00 0.00 0.00 0.00 0.00 0.00 21.74 p:〇5 0.00 0.00 0.00 1.10 0.00 0.00 0.00 Sn〇2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sb203 0.05 0.05 0.05 0.00 0.00 0.00 0.00 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 8.67 8.67 8.67 8.24 7.38 7.42 6.17 F/Al 3.48 3.48 3.48 3.48 3.48 3.48 - Si+B 24.01 21.83 19.65 27.89 28.49 20.07 21.74 Ln/(Si+B) 3.01 3.41 3.91 1.97 1.72 2.47 2.60 La/B 2.20 2.58 3.05 1.67 1.45 2.51 1.33 W+La+Zr+Ta 46.70 48.89 51.07 46,39 50.37 59.78 26.08 Bi+Ti+Nb+W 1.09 1.09 1.09 0.00 6.82 1.09 0.00 Mg+Ca+Sr+Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 La+Gd+Y+Yb+Lu 72.35 74.54 76.72 55.00 49.03 49.62 56.52 nd 1.73226 1.73883 1.74378 1.73972 1.77979 1.80125 1.76253 vd 54.60 54.90 50.70 51.50 46.00 46.60 49.9 -100nd+220 46.77 46.12 45.62 46.03 42.02 39.88 43.75 0g,F 0.552 0.553 0.559 0.59 0.57 0.56 0.558 截距 b(a=0.0017) 0.645 0.646 0.645 0.678 0.644 0.643 0.643 Tg[°C] 581 580 578 605 580 620 407 λ80[ηιη1 384 384 386 388 408 406 347 λ5[ηιη] 322 323 323 313 328 322 580 液相溫度[°c] 1050 1030 1050 1040 1050 1060 >1200 157771.doc -65- s 201231427 本發明之實施例之光學玻璃之部分分散比(eg,f)為 (-0.00170xvd+0.6375)以上,更具體而言卜〇 〇〇17〇XVd+〇 642〇) 以上。尤其是,實施例(N〇_ Cl〜N〇 C6)之光學玻璃之部分 分散比(eg,f)為(_0.0017〇XVd+〇 64486)以上。又本發明 之實施例(No. Al〜N〇. A13)之光學玻璃之部分分散比他, F)亦為(-0.0017〇XVd + 〇 6375〇)以上,推測出具有所需較高 之部分分散比。另一方面,本發明之實施例(N〇 bi〜n〇 B23)之光學玻璃之部分分散比(0g,F)為(〇 〇〇2〇〇χ〜+ 0.64982)以上。因此,清楚明白本發明之實施例之光學玻 璃係與阿貝數(vd)之關係式中部分分散比(0g,F)較大,形 成光學元件時之色像差較小。 本發明之實施例之光學玻璃之折射率(nd)均為丨57以 上’更詳細而言為1.65以上’並且該折射率(11<〇為2 2〇以 下,更詳細而言為1.85以下,在所需之範圍内。尤其是, 本發明之實施例(No. A卜No. A13)之光學玻璃之折射率 (nd)均為1.73以上,並且該折射率(nd)為丨78以下。又本 發明之實施例(No. B ^Νο. B23)之光學玻璃之折射率(nd)均 為1.70以上’更具體而言為L75以上。又,實施例(n〇 Cl〜No. C6)之光學玻璃之折射率(nd)均為丨6〇以上,更詳 細而言為1.65以上,並且該折射率(nd)為17〇以下。又,實 施例(No. Dl~No. D36)之光學玻璃之折射率(nd)均為丨的以 上,並且該折射率(nd)為1.81以下。 又,本發明之實施例之光學玻璃之阿貝數(〜)均為39以 上,更詳細而言為40.7以上,並且該阿貝數(Vd)為63以 157771.doc -66- 201231427 下’更詳細而言為61以下,在所需之範圍内。尤其是,本 發明之實施例(No· A1〜No. A13)之光學玻璃之阿貝數(Vd)均 為45以上’更詳細而言為49以上,並且該阿貝數(Vd)為6〇 以下,更詳細而言為54以下。又,本發明之實施例(No B1〜No· B23)之光學玻璃之阿貝數(Vd)均為39以上,更詳細 而言為40.7以上,並且該阿貝數(Vd)未達52,更詳細而言 為51.3以下。又,本發明之實施例(N〇. ci〜No. C6)之光學 玻璃之阿貝數(vd)均為50以上,更具體而言為54以上,並 且該阿貝數(vd)為57以下。又,本發明之實施例(No. D1〜 No. D36)之光學玻璃之阿貝數(Vd)均為45以上,並且該阿 貝數(vd)為63以下,更詳細而言為61以下。 此處,於本發明之實施例(N〇. Cl~No. C6)之光學玻璃 中,本發明之光學玻璃之阿貝數(Vd)係於與折射率(nd)之間 滿足(vd)g(-l〇〇xnd+220)之關係。 又’本發明之實施例(No. D1〜No· D36)之光學玻璃之玻 璃轉移點(Tg)為650°C以下’更詳細而言為62〇。〇以下,在 所需之範圍内。又’推測出本發明之其他實施例之光學玻 璃之玻璃轉移點(Tg)亦為650°C以下。 又,本發明之實施例(No. D1〜No, D36)之光學玻璃之 入8〇(穿透率80%時之波長)均為5〇〇 nm以下,更詳細而言為 410 nm以下。又,本發明之實施例(N〇 m〜N〇 D36)之光 學玻智之人5(牙透率5%時之波長)均為450 nm以下,更詳細 而言為350 nm以下,在所需之範圍内。又,推測出本發明 之其他貫施例之光學玻璃之kQ(穿透率時之波長)亦均S 201231427 [Table 10] Example D23 D24 D25 D26 D27 D28 D29 D30 B2〇3 24.06 26.90 20.97 23.17 22.87 22.92 22.87 22.97 L&2〇3 38.71 37.88 39.49 39.49 40.91 43.43 43.34 43.52 Al2〇3 3.28 3.21 2.52 2.52 1.85 2.49 2.69 2.28 Si〇2 3.44 3.36 3.31 1.10 3.27 3.27 3.27 3.28 W〇3 0.00 0.00 1.10 uo 1.09 1.09 1.09 1.09 Zr02 0.00 0.00 2.76 2.76 2.72 0.00 0.00 〇.〇〇Ta2〇5 0.00 0.00 2.21 2.21 0.00 〇.〇〇0.00 〇. 〇〇Bi203 0.00 0.00 0.00 0.00 0.00 〇.〇〇0.00 〇.〇〇Ti02 0.00 0.00 1.10 1.10 1.09 〇.〇〇0.00 0.00 Nb205 0.00 0.00 2.21 2.21 2.18 0.00 0.00 0.00 MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 24. 〇0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 〇.〇〇0.00 〇.〇〇0.00 k2o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 F 13.16 11.19 8.76 8.76 7.38 8.67 9.39 7_94 F/Al 4.01 3.48 3.48 3.48 4.00 3.48 3.48 3.48 Si+B 27.50 30.27 24.28 24.28 26.14 26.20 26.14 26.25 Ln/(Si+B) 2.47 2.20 2.63 2.63 2.48 2.68 2.68 2.68 La/B 1.61 1.41 1.88 1.70 1.79 1.89 1.89 1.89 W+La+Zr+Ta 38.71 37.88 45.56 45.56 44.72 44.52 44.43 44.62 Bi+Ti+Nb+W 0.00 0.00 4.41 4.41 4.36 1.09 1.09 1.09 Mg+Ca+Sr +Ba 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li Ten Na+K 0.00 0.00 0.00 〇.〇〇0.00 0.00 0.00 0.00 La+Gd+Y+Yb+Lu 67.93 66.47 63.77 63.77 64.88 70.Π 70.02 70.32 nd 1.69620 1.70133 1.75235 1.76810 1.75661 1.72252 1.71941 1.73308 vd 56.60 55.90 50.10 47.60 48.10 54.40 56.00 54.70 •100nd+220 50.38 49.87 44.77 43.19 44.34 47.75 48.06 46.69 0g,F 0.551 0.552 0.56 0.564 0.563 0.554 0.552 0.553 Cutting distance b (a=0.0017) 0.647 0.647 0.645 0.645 0.645 0.646 0.647 0.646 Tg[°C] 565 572 581 584 593 581 578 583 λ80[ηι*η] 380 381 395 399 392 385 383 384 X5[nm] 313 313 334 335 334 322 321 322 Liquidus temperature [°c] 1000 1020 1040 1050 1040 1020 1020 1040 -64- 157771.doc 201231427 [Table 11] Example Comparative Example D31 D32 D34 D34 D35 D36 dl B203 20.74 18.56 16.37 19.62 25.43 13.08 19.57 L^2〇3 45.61 47.80 49.98 32.82 36.89 32.80 26.08 ai2〇3 2.49 2.49 2.49 2.37 2.12 2.13 0.00 Si02 3.27 3.27 3.27 8.28 3.07 6.99 2.17 W03 1.09 1.09 1.09 0.00 0.00 0.00 0.00 Zr02 0.00 0.00 0.00 7.78 7.12 6.55 0.00 Ta2〇5 0.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Gd203 24.01 24.01 2 4.01 22.19 8.88 16.82 30.44 Y2O3 2.73 2.73 2.73 0.00 3.26 0,00 0.00 Li20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 1.10 0.00 0.00 0.00 Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.48 - Si+B 24.01 21.83 19.65 27.89 28.49 20.07 21.74 Ln/(Si+B) 3.01 3.41 3.91 1.97 1.72 2.47 2.60 La/B 2.20 2.58 3.05 1.67 1.45 2.51 1.33 W+La+Zr+Ta 46.70 48.89 51.07 46,39 50.37 59.78 26.08 Bi+Ti+Nb+W 1.09 1.09 1.09 0.00 6.82 1.09 0.00 Mg+Ca+Sr+Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Li+Na+K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 La+Gd+Y+Yb+ Lu 72.35 74.54 76.72 55.00 49.03 49.62 56.52 nd 1.73226 1.73883 1.74378 1.73972 1.77979 1.80125 1.76253 vd 54.60 54.90 50.70 51.50 46.00 46.60 49.9 -100nd+220 46.77 46.12 45.62 46.03 42.02 39.88 43.75 0g,F 0.552 0.553 0.559 0.59 0.57 0.56 0.558 Intercept b(a=0.0017) 0.645 0.646 0.645 0.678 0.644 0.643 0.643 Tg[°C] 581 580 578 605 580 620 407 λ80[ηιη1 384 384 386 388 408 406 347 λ5[ηιη] 322 323 323 313 328 322 580 Liquidus temperature [°c] 1050 1030 1050 1040 1050 1060 >1200 157771.doc -65- s 201231427 Partial dispersion ratio of optical glass of an embodiment of the present invention ( Eg, f) is (-0.00170xvd+0.6375) or more, more specifically, 〇17〇XVd+〇642〇) or more. In particular, the partial dispersion ratio (eg, f) of the optical glass of the examples (N〇_Cl~N〇 C6) was (_0.0017 〇 XVd + 〇 64486) or more. Further, the partial dispersion of the optical glass of the embodiment (No. Al to N〇. A13) of the present invention is more than (-0.0017 〇 XVd + 〇6375 〇), and it is presumed that it has a desired higher portion. Dispersion ratio. On the other hand, the partial dispersion ratio (0g, F) of the optical glass of the embodiment (N〇 bi~n〇 B23) of the present invention is (〇 〇〇 2 〇〇χ to + 0.64982) or more. Therefore, it is clear that the partial dispersion ratio (0g, F) of the relationship between the optical glass system and the Abbe number (vd) of the embodiment of the present invention is large, and the chromatic aberration when forming the optical element is small. The refractive index (nd) of the optical glass of the embodiment of the present invention is 丨57 or more 'more specifically 1.65 or more' and the refractive index (11 < 〇 is 2 2 〇 or less, more specifically 1.85 or less, In particular, the refractive index (nd) of the optical glass of the embodiment (No. A, No. A13) of the present invention is 1.73 or more, and the refractive index (nd) is 丨78 or less. Further, the refractive index (nd) of the optical glass of the embodiment (No. B ^Νο. B23) of the present invention is 1.70 or more, and more specifically L75 or more. Further, the embodiment (n〇Cl~No. C6) The refractive index (nd) of the optical glass is 丨6〇 or more, more specifically 1.65 or more, and the refractive index (nd) is 17〇 or less. Further, the embodiment (No. Dl~No. D36) The refractive index (nd) of the optical glass is 丨 or more, and the refractive index (nd) is 1.81 or less. Further, the Abbe number (~) of the optical glass of the embodiment of the present invention is 39 or more, and more specifically Said to be 40.7 or more, and the Abbe number (Vd) is 63 to 157771.doc -66-201231427 under 'more detailed, 61 or less, within the required range In particular, the Abbe number (Vd) of the optical glass of the embodiment (No. A1 to No. A13) of the present invention is 45 or more 'more specifically 49 or more, and the Abbe number (Vd) 6 Å or less, more specifically 54 or less. Further, the Abbe number (Vd) of the optical glass of the embodiment (No B1 to No. B23) of the present invention is 39 or more, and more specifically 40.7 or more. And the Abbe number (Vd) is less than 52, more specifically 51.3 or less. Further, the Abbe number (vd) of the optical glass of the embodiment (N〇. ci~No. C6) of the present invention is 50 or more, more specifically 54 or more, and the Abbe number (vd) is 57 or less. Further, the Abbe number (Vd) of the optical glass of the embodiment (No. D1 to No. D36) of the present invention is 45 or more, and the Abbe number (vd) is 63 or less, and more specifically 61 or less. Here, in the optical glass of the embodiment (N〇. Cl~No. C6) of the present invention, the present invention The Abbe number (Vd) of the optical glass is such that it satisfies the relationship of (vd)g(-l〇〇xnd+220) with respect to the refractive index (nd). Further, the embodiment of the present invention (No. D1 to No) · D36) glass of optical glass The glass transition point (Tg) is 650 ° C or less 'more specifically 62 〇. 〇 below, within the required range. Also 'specifies the glass transition point (Tg) of the optical glass of other embodiments of the present invention Also, it is 650 ° C or less. Further, in the optical glass of the embodiment (No. D1 to No. D36) of the present invention, 8 〇 (wavelength at a transmittance of 80%) is 5 〇〇 nm or less, more detailed. In terms of 410 nm or less. Further, in the embodiment (N〇m~N〇D36) of the present invention, the optically intelligent person 5 (the wavelength at which the tooth permeability is 5%) is 450 nm or less, and more specifically 350 nm or less, as needed. Within the scope. Further, it is presumed that the kQ (wavelength at the time of transmittance) of the optical glass of the other embodiments of the present invention is also

S 157771.doc -67- 201231427 為500 nm以下’ 穿透率5%時之波長)亦均為450 nm以 下。 又’本發明之貫施例(No. D1〜No. D36)之光學玻璃之液 相溫度均為1200°C以下’更詳細而言為11()〇ι以下,並且 該液相溫度為500°C以上。另一方面,比較例(ν〇· dl)之玻 璃之液相溫度為1200°C以上。因此,清楚明白本發明之實 施例之光學玻璃係液相溫度低於比較例之玻璃而難以失 透。 又,推測出本發明之實施例(No. A1〜No. A1 3)之光學玻 璃係波長546.1 nm中之光彈性常數(β)為2.〇xl〇-5 nm.cnr1. Pa'1以下。 因此’清楚明白本發明之實施例之光學玻璃係折射率 (nd)及阿貝數(Vd)處於所需之範圍内,並且色像差較小,容 易進行模壓成形,對可視區域波長光之透明性較高。尤其 是,亦清楚明白本發明之實施例(No. D1〜No. D36)之光學 玻璃係耐失透性較高。又,認為實施例(No. A1〜No. A13) 之光學玻璃係光學玻璃内部之亂反射亦較小。 進而,使用本發明之實施例中獲得之光學玻璃,進行再 熱擠壓成形後’進行研削及研磨,加工成透鏡及稜鏡之形 狀。又’使用本發明之實施例之光學玻璃,形成精密擠壓 成形用預成形體,並對精密擠壓成形用預成形體進行精密 擠壓成形加工。於任一情形時,加熱軟化後之玻璃中均未 產生乳白化及失透等問題,可穩定地加工成各種透鏡及稜 鏡之形狀。 157771.doc -68 - 201231427 以上,對本發明根據例示目的進行了詳細說明,但本實 施例只不過是例示目的,只要不脫離本發明之思想及範 圍,便應理解業者可進行各種改變。 【圖式簡單說明】 圖1係表示部分分散比(eg,f)為縱軸且阿貝數(vd)為橫 車由之正交座標上所表示之正規線的圖。S 157771.doc -67- 201231427 is below 500 nm 'wavelength at 5% penetration rate) is also below 450 nm. Further, in the optical glass of the present invention (No. D1 to No. D36), the liquidus temperature is 1200 ° C or lower, and more specifically, 11 () 以下 or less, and the liquidus temperature is 500. Above °C. On the other hand, the liquid phase temperature of the glass of the comparative example (ν〇·dl) was 1200 ° C or more. Therefore, it is clear that the optical glass of the embodiment of the present invention has a liquidus temperature lower than that of the glass of the comparative example and is difficult to devitrify. Further, it is estimated that the photoelastic constant (β) of the optical glass system at a wavelength of 546.1 nm in the examples (No. A1 to No. A1 3) of the present invention is 2. 〇xl 〇 -5 nm.cnr1. Pa'1 or less . Therefore, it is clear that the optical glass system refractive index (nd) and the Abbe number (Vd) of the embodiment of the present invention are within a desired range, and the chromatic aberration is small, and it is easy to perform press molding, and the visible region wavelength light is High transparency. In particular, it is also clear that the optical glass of the examples (No. D1 to No. D36) of the present invention has high resistance to devitrification. Further, it is considered that the disordered reflection inside the optical glass-based optical glass of the examples (No. A1 to No. A13) is also small. Further, the optical glass obtained in the examples of the present invention is subjected to re-extrusion molding, and then subjected to grinding and polishing to form a lens and a crucible. Further, the optical glass of the embodiment of the present invention is used to form a preform for precision extrusion molding, and the preform for precision extrusion molding is subjected to precision extrusion molding. In either case, problems such as opalization and devitrification do not occur in the glass which is softened by heating, and it can be stably processed into various lenses and prisms. 157771.doc -68 - 201231427 The above is a detailed description of the present invention, but it is to be understood that the present invention is not limited by the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a partial dispersion ratio (eg, f) as a vertical axis and an Abbe number (νd) as a normal line indicated by orthogonal coordinates of a vehicle.

C 15777I.doc 69-C 15777I.doc 69-

Claims (1)

201231427 七、申請專利範圍: 1- 一種光學玻璃,其包含B2〇3成分,具有1.70以上之折射 率(nd)及39以上之阿貝數(Vd),部分分散比(0g ’ F)係於與 阿貝數(vd)之間滿足(0g,F)2 (-〇.〇〇17〇xvd+〇.63750)或 (〇g,F)g(-2.〇xl〇-3xVd + 〇.6498)之關係。 2. 如請求項1之光學玻璃,其更包含La203成分,具有丨.73 以上之折射率(nd)及45以上之阿貝數(vd),部分分散比 (eg ’ f)係於與阿貝數(Vd)之間滿足,F)g (_0 0017〇χ vd+0.63750)之關係。 3. 如請求項1之光學玻璃,其更包含La2〇3成分及F成分, 具有39以上未達52之阿貝數(Vd),部分分散比,〇係 於與阿貝數(vd)之間滿足(0g,F)2 (_2.〇xl〇-3xVd+0.6498) 之關係。 4. 如請求項1之光學玻璃,其更包含F成分,於以阿貝數 (vd)為X軸且以折射率(nd)為y軸之Xy正交座標中,具有由 A(50,1.70)、B(6〇,16〇) ' c(63, i 6〇)、D(63,i 7〇)之4 點包圍之範圍之阿貝數及折射率。 5. 如請求項2至4中任一項之光學玻璃,其中相對於氧化物 換算組成之玻璃總質量,以質量%計,ho〗成分之含量 為5.〇〜50.0%,La203成分之含量為55.0%以下。 6·如請求項5之光學玻璃,其中相對於氧化物換算組成之 玻%總質量,含有5.0%以上之La2〇3成分。 7·如4求項1之光學玻璃,其中於氧化物換算組成中,更 包含Al2〇3成分。 157771.doc 201231427 8. 9. 10. 11. 12. 13. 14. 15. :农項1之光學玻璃,其中相對於氧化物換算組成之 ㈣總質量,以質量。/。計’ A]2〇3成分之含量為2〇〇%以 下。 所2长項1之光學玻璃,其中以外加比例對氧化物基準 貝:之質量%計’ F成分之含量為3〇 〇%以下。 ^ h 9之光學玻璃’其中以外加比例對氧化物基準 里之質量%計,以多於〇%含有F成分。 月长項1之光學玻璃,其中相對於氧化物換算組成之 璃〜質里,以質量%計,Sic>2成分之含量為40 0%以 下。 々月求項1之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量之質量和(Si〇2+B2〇3)為40.0%以下。 如請求項1之光學玻璃,其中 相對於氧化物換算組成之玻璃總質量,以質量%計, Gd2〇3成分〇〜40.0%及/或 Υ2〇3成分0〜20.0%及/或 Yb2〇3成分〇〜20.0%及/或 Lu2〇3 成分 〇〜20.0%。 士明求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總貝s之Ln2〇3成分(;式中,Ln係選自由La、、 γ、Yb、Lu所組成之群之i種以上)之質量和為8〇 〇%以 下。 如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之質量和(Gd2〇3+Yb2〇3)為26.0%以下。 157771.doc 201231427 16 17. 18. 19. 20. 21. 22. 如請求項1之光學玻璃’其中氧化物換算組成中之質量 比 Ln2〇3/(Bi2〇3+Ti〇2+W〇3+Nb2〇5+Ta2〇5A i 7 以上乃 〇 以下。 如請求項1之光學玻璃,其中氧化物換算組成之質量比 Ln203/(Si〇2+B203)為 1.00 以上(式中 ’ Ln係選自由 La、 Gd、Y、Yb、Lu所組成之群之種以上)。 如請求項1之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, Bi2〇3成分0〜10.0%及/或 Ti〇2成分0〜15.0°/。及/或 Nb2〇5成分0〜20.0%及/或 w〇3成分0〜15.0%及/或 κ2〇成分〇〜10.0%之各成分。 如明求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之質量和(F+Bi203+Ti02+wc)3+Nb2()5+K2Q) 為0.1%以上30.0%以下。 如明求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之質量和(Bi203+Ti02+W03+Nb205)為2〇 〇% 以下。 如請求項1之光學玻璃,其中氧化物換算組成中之質量 比 F/(F+Bi203+Ti02+W03+Nb205+K20)為 0.36 以上 i ·〇〇 以下。 如請求項1之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, 157771.doc 201231427 Zr02成分 0〜15.0%及/或 Ta205成分 0〜25.0%。 23 ·如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之質量和(W03+La203+Zr02 + Ta205)為10.0% 以上60.0%以下。 2 4.如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量之質量和(Bi203+Ti02 + W03+Nb2〇5+Ta205)多 於0%。 2 5.如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,以質量%計,Li20成分之含量為15.0%以 下。 26. 如請求項1之光學玻璃,其中氧化物換算組成中之質量 比(Ta205+Zr02+Li20)/(F+Bi203+Ti02+W03+Nb205+K20)為 2.00以下。 27. 如請求項1之光學玻璃,其中氧化物換算組成之質量比 (F+Bi203 + Ti02 + W〇3+Nb205 + K20)/(Ta205+Zr02+Li20)為 0.5 0以上。 2 8.如請求項1之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, MgO成分 0〜20.0%及/或 CaO成分0-40.0%及/或 SrO成分0〜40.0%及/或 BaO成分0〜55.0%之各成分。 29.如請求項1之光學玻璃,其中相對於氧化物換算組成之 157771.doc 201231427 201231427 30. 31. 32. 33. 34. 35. 36. 玻璃總f量之R◦成分(式中,R係'選自由Mg、Ca、Sr、 Ba所組成之群之丨種以上)之質量和為55〇%以下。 如請求項1之光學玻璃,其中以々日料认& , T以相對於氧化物換算組成 之玻璃總質量之質量%計,〇 j·、八 人 T Na2〇成分之含量為20.0%以 下。 如凊求項1之光學玻璃’其中相對於氧化物換算組成之 玻璃總質量之Rn2〇成分(式中,以係選自由以、他、K所 組成之群之1種以上)之質量和為25.0%以下。 如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總質量,以質量%計,Zn0成分之含量為魏以 下。 如請求項1之光學玻璃,其更包含 相對於氧化物換算組成之玻璃總質量,以質量%計, Ge〇2成分〇〜10.0%及/或 p2〇5成分0~10·0%及/或 Ga2〇3成分〇〜10.0%及/或 Te〇2成分〇〜10.0%及/或 Sn〇2成分0〜5.0%及/或 Sb2〇3成分0〜1.0%之各成分。 如請求項1之光學玻璃,其中具有1.57以上之折射率(nd) 及45以上之阿貝數(Vd)。 如請求項1之光學玻璃,其中阿貝數(Vd)係於與折射率 (nd)之間滿足vdg - l〇〇xnd+220之關係。 如凊求項1之光學玻璃,其中阿貝數(vd)係於與折射率 I57771.doc 201231427 (η<ί)之間滿足vd 2 -125 xnd+265之關係。 37. 38. 39. 40. 種預成形體材’其包含如請求項1之光學玻璃β 一種光學元件,其係對如請求項37之預成形體材進行擠 壓成形製作而成。 種光學兀件,其係以如請求項丨之光學玻璃為母材。 -種光孥機器’其包括如請求項38或39之光學元件。 157771.doc -6 ·201231427 VII. Patent application scope: 1- An optical glass containing B2〇3 component, having a refractive index (nd) of 1.70 or more and an Abbe number (Vd) of 39 or more, and a partial dispersion ratio (0g 'F) is attached to (0g, F)2 (-〇.〇〇17〇xvd+〇.63750) or (〇g,F)g(-2.〇xl〇-3xVd + 〇.6498) is satisfied with the Abbe number (vd) ) relationship. 2. The optical glass of claim 1, further comprising a La203 component having a refractive index (nd) of 丨.73 or more and an Abbe number (vd) of 45 or more, and a partial dispersion ratio (eg 'f) is associated with The relationship between the number of shells (Vd) and F)g (_0 0017〇χ vd+0.63750) is satisfied. 3. The optical glass of claim 1, which further comprises a La2〇3 component and an F component, having an Abbe number (Vd) of 39 or more and less than 52, a partial dispersion ratio, and a lanthanum and an Abbe number (vd) The relationship between (0g, F) 2 (_2. 〇 xl 〇 - 3xVd + 0.6498) is satisfied. 4. The optical glass of claim 1, further comprising an F component having an Ay-square (vd) as an X-axis and an Xy orthogonal coordinate having a refractive index (nd) as a y-axis, having A (50, 1.70), B(6〇,16〇) The Abbe number and the refractive index of the range surrounded by the four points of 'c(63, i 6〇) and D(63, i 7〇). 5. The optical glass according to any one of claims 2 to 4, wherein the content of the ho component is 5. 〇 50.0%, the content of the La 203 component, relative to the total mass of the glass of the oxide conversion composition. It is 55.0% or less. 6. The optical glass according to claim 5, which contains 5.0% or more of the La2〇3 component with respect to the total % by mass of the oxide-converted composition. 7. The optical glass of claim 1, wherein the oxide-converted composition further comprises an Al2?3 component. 157771.doc 201231427 8. 9. 10. 11. 12. 13. 14. 15. : Optical glass of agricultural product 1, which is composed of (4) total mass relative to oxide. /. The content of the 'A] 2〇3 component is 2% or less. In the optical glass of the first item 1, the content of the F component is not more than 3 〇% by mass of the oxide base. The optical glass of h 9 is contained in an amount of more than 〇% of the mass % in the oxide standard. In the optical glass of the term 1 of the moon, the content of the Sic > 2 component is 40% or less by mass% based on the oxide-to-mass composition of the oxide conversion composition. In the optical glass of the item 1 of the present invention, the mass of the total mass of the glass and the composition of (Si〇2+B2〇3) are 40.0% or less. The optical glass of claim 1, wherein the total mass of the glass relative to the oxide-converted composition is, by mass%, Gd2〇3 component 〇40.0% and/or Υ2〇3 component 0 to 20.0% and/or Yb2〇3 The composition 〇~20.0% and/or the Lu2〇3 component 〇~20.0%. The optical glass of claim 1, wherein the Ln2〇3 component of the glass total shell s is equivalent to the composition of the oxide (in the formula, the Ln is selected from the group consisting of La, γ, Yb, and Lu) The mass sum of the above) is 8〇〇% or less. The optical glass of the claim ,, wherein the mass of the total mass of the glass relative to the oxide-converted composition and (Gd2〇3+Yb2〇3) is 26.0% or less. 157771.doc 201231427 16 17. 18. 19. 20. 21. 22. The optical glass of claim 1 wherein the mass ratio in the oxide-converted composition is Ln2〇3/(Bi2〇3+Ti〇2+W〇3 +Nb2〇5+Ta2〇5A i 7 The above is the following. In the optical glass of claim 1, the mass ratio of the oxide conversion composition is Ln203/(Si〇2+B203) is 1.00 or more (in the formula, 'Ln is selected The optical glass of claim 1, which further comprises the total mass of the glass relative to the oxide-converted composition, in terms of mass%, Bi2〇3 composition 0~10.0% and/or Ti〇2 component 0~15.0°/. and/or Nb2〇5 component 0~20.0% and/or w〇3 component 0~15.0% and/or κ2〇 component 〇~10.0% The optical glass of claim 1, wherein the mass of the total mass of the glass relative to the oxide conversion composition and (F+Bi203+Ti02+wc)3+Nb2()5+K2Q) are 0.1% or more and 30.0%. the following. The optical glass of claim 1, wherein the mass of the total mass of the glass relative to the oxide-converted composition and (Bi203 + Ti02 + W03 + Nb 205) are 2 〇 % or less. The optical glass of claim 1, wherein the mass ratio F/(F+Bi203+Ti02+W03+Nb205+K20) in the oxide-converted composition is 0.36 or more and i·〇〇 or less. The optical glass of claim 1, which further comprises, by mass%, 157771.doc 201231427 Zr02 component 0 to 15.0% and/or Ta205 component 0 to 25.0% by mass. The optical glass of claim 1, wherein the mass of the total mass of the glass relative to the oxide-converted composition and (W03 + La203 + Zr02 + Ta205) are 10.0% or more and 60.0% or less. 2. The optical glass of claim 1, wherein the mass of the total mass of the glass relative to the oxide conversion composition (Bi203 + Ti02 + W03 + Nb2 〇 5 + Ta205) is more than 0%. [2] The optical glass of claim 1, wherein the content of the Li20 component is 15.0% or less by mass based on the total mass of the glass of the oxide conversion composition. 26. The optical glass of claim 1, wherein the mass ratio (Ta205 + Zr02 + Li20) / (F + Bi203 + Ti02 + W03 + Nb 205 + K20) in the oxide-converted composition is 2.00 or less. 27. The optical glass of claim 1, wherein the mass ratio of the oxide-converted composition (F + Bi203 + Ti02 + W〇3 + Nb205 + K20) / (Ta205 + Zr02 + Li20) is 0.5 or more. 2. The optical glass of claim 1, which further comprises, by mass%, MgO component 0 to 20.0% and/or CaO component 0-40.0% and/or SrO component, relative to the total mass of the glass in terms of oxide conversion composition. Each component of 0 to 40.0% and/or BaO component 0 to 55.0%. 29. The optical glass of claim 1, wherein the composition is 157771.doc 201231427 201231427 30. 31. 32. 33. 34. 35. 36. 36. 36. 36. 36. 36. The mass of the 'selected from the group consisting of Mg, Ca, Sr, and Ba) is 55 % by mass or less. The optical glass of claim 1, wherein the content of the total mass of the glass in terms of the composition of the oxide is 2j·, and the content of the T Na2 〇 component of the eight persons is 20.0% or less. . For example, the mass of the Rn2〇 component (in the formula, one or more selected from the group consisting of Y, Y, and K) of the optical glass of the composition of the optical fiber of the item 1 is 25.0% or less. The optical glass of claim 1, wherein the content of the Zn0 component is in the range of % by mass or less based on the total mass of the glass of the oxide-converted composition. The optical glass of claim 1, which further comprises, by mass%, Ge?2 component 〇~10.0% and/or p2〇5 component 0~10·0% and/or Or Ga2〇3 component 〇10.0% and/or Te〇2 component 〇10.0% and/or Sn〇2 component 0-5.0% and/or Sb2〇3 component 0-1.0% of each component. The optical glass of claim 1, which has a refractive index (nd) of 1.57 or more and an Abbe number (Vd) of 45 or more. The optical glass of claim 1, wherein the Abbe number (Vd) is in a relationship with the refractive index (nd) satisfying the relationship of vdg - l〇〇xnd + 220. For example, the optical glass of Item 1 wherein the Abbe number (vd) is in a relationship with the refractive index I57771.doc 201231427 (η<ί) satisfies the relationship of vd 2 -125 xnd+265. 37. 38. 39. 40. A preformed body material comprising the optical glass β of claim 1 which is formed by extrusion molding the preformed body of claim 37. An optical element is made of an optical glass as claimed in the claims. - An optical device comprising an optical component as claimed in claim 38 or 39. 157771.doc -6 ·
TW100126451A 2010-07-26 2011-07-26 Optical glass, preform and optical element TWI541213B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010167479 2010-07-26
JP2010244740 2010-10-29
JP2010277385A JP2012126586A (en) 2010-12-13 2010-12-13 Optical glass, preform, and optical element
JP2010277386 2010-12-13

Publications (2)

Publication Number Publication Date
TW201231427A true TW201231427A (en) 2012-08-01
TWI541213B TWI541213B (en) 2016-07-11

Family

ID=45543369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126451A TWI541213B (en) 2010-07-26 2011-07-26 Optical glass, preform and optical element

Country Status (2)

Country Link
CN (3) CN105948483B (en)
TW (1) TWI541213B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626394B (en) * 2012-08-27 2017-05-24 成都光明光电股份有限公司 Optical glass used for precision mould pressing, glass prefab, optical element and optical instrument
CN117486484A (en) * 2014-12-24 2024-02-02 株式会社小原 Optical glass, prefabricated member and optical element
JP6472657B2 (en) * 2014-12-26 2019-02-20 Hoya株式会社 Glass, glass material for press molding, optical element blank, and optical element
CN105906198A (en) * 2015-02-20 2016-08-31 株式会社小原 Optical glass, prefabricated member and optical element
CN106430948A (en) * 2016-09-29 2017-02-22 成都光明光电股份有限公司 Optical glass, glass preform and optical element
CN106698926A (en) 2016-09-30 2017-05-24 成都光明光电股份有限公司 Optical glass, glass prefabricated part, optical element and optical instrument
CN106746597A (en) * 2016-12-15 2017-05-31 成都光明光电股份有限公司 Optical glass
CN108249754B (en) * 2016-12-28 2023-06-16 株式会社小原 Optical glass, preform and optical element
CN107098579B (en) * 2017-05-15 2020-07-17 湖北戈碧迦光电科技股份有限公司 Environment-friendly lanthanum crown optical glass and preparation method thereof
CN107010826B (en) * 2017-05-15 2020-06-26 湖北戈碧迦光电科技股份有限公司 Environment-friendly lanthanum flint optical glass and preparation method thereof
JP7174536B2 (en) * 2017-05-16 2022-11-17 株式会社オハラ Optical glass, preforms and optical elements
CN107140825A (en) * 2017-07-10 2017-09-08 成都光明光电股份有限公司 Optical glass
CN107365068A (en) * 2017-08-07 2017-11-21 湖北戈碧迦光电科技股份有限公司 A kind of high index of refraction, medium dispersion environmental protection lanthanide optical glass
CN109592898B (en) * 2017-10-02 2023-09-19 株式会社小原 Optical glass, preform and optical element
JP7305317B2 (en) * 2018-08-16 2023-07-10 Hoya株式会社 Optical glasses, optical element blanks and optical elements
CN109626815B (en) * 2019-01-23 2021-10-01 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
JP7225047B2 (en) * 2019-07-25 2023-02-20 富士フイルム株式会社 Imaging lens and imaging device
CN110482854A (en) * 2019-09-30 2019-11-22 成都光明光电股份有限公司 Optical glass, its manufactured optical precast product, optical element and optical instrument
CN111977970B (en) * 2020-09-07 2022-04-15 成都光明光电股份有限公司 Optical glass and optical element
CN112919799B (en) * 2021-02-07 2022-09-06 湖北新华光信息材料有限公司 Optical glass, method for producing same, and optical element
CN113024110B (en) * 2021-03-18 2022-04-15 成都光明光电股份有限公司 Glass composition
CN113735436B (en) * 2021-09-07 2022-12-13 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506916A (en) * 1974-07-24 1978-04-12 Jenaer Glaswerk Schott & Gen Optical glass
JPS5215510A (en) * 1975-07-28 1977-02-05 Nippon Chemical Ind Optical glass
JPS553329A (en) * 1978-06-21 1980-01-11 Ohara Inc Optical glass
JPS606297B2 (en) * 1980-05-30 1985-02-16 株式会社小原光学硝子製造所 optical glass
JPS5734044A (en) * 1980-08-07 1982-02-24 Nippon Kogaku Kk <Nikon> Optical glass
FR2540486A1 (en) * 1983-02-09 1984-08-10 Corning Glass Works MOLDABLE FLUORO-BORATE OPTIC LENSES
DE3307497C2 (en) * 1983-03-03 1985-09-12 Schott Glaswerke, 6500 Mainz Optical glass in the system Si0? 2? - B? 2? 0? 3? - La 2 0 3 - Zr0? 2? - alkali oxide - alkaline earth oxide - Zn0 - F with refractive index? 1.70, Payoff? 48, with good devitrification stability and good chemical resistance
JPS62100449A (en) * 1985-10-24 1987-05-09 Ohara Inc Optical glass
JP4739721B2 (en) * 2003-11-17 2011-08-03 株式会社オハラ Optical glass
CN102015562A (en) * 2009-04-17 2011-04-13 株式会社小原 Optical glass

Also Published As

Publication number Publication date
CN105948483B (en) 2020-05-15
CN107879619B (en) 2021-09-17
TWI541213B (en) 2016-07-11
CN107879619A (en) 2018-04-06
CN102344248A (en) 2012-02-08
CN105948483A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
TW201231427A (en) Optical glass, preform, and optical element
TW201223907A (en) Optical glass, preform material, and optical element
JP6014301B2 (en) Optical glass, preform and optical element
TW201236993A (en) Optical glass, preform, and optical element
WO2010038597A1 (en) Optical glass and method for suppressing the deterioration of spectral transmittance
TW200944485A (en) Optical glass
WO2019131123A1 (en) Optical glass, preform, and optical element
JP2006327926A (en) Optical glass
WO2011052687A1 (en) Optical glass, preform, and optical element
KR20130016126A (en) Optical glass, preform, and optical element
TW201245078A (en) Optical glass, preform, and optical element
TW201331146A (en) Optical glass, preform, and optical element
JP2023017903A (en) Optical glass and optical element
JP2021008397A (en) Glass, glass material for press-molding, optical element blank, and optical element
JP2012240907A (en) Optical glass, preform and optical element
TW201139319A (en) Optical glass, preform and optical element
JP2015059064A (en) Optical glass and optical element
JP6396622B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP2012224501A (en) Optical glass, optical element and preform
JP6280284B1 (en) Glass, glass material for press molding, optical element blank, and optical element
US20230083714A1 (en) Optical glass
TW201249769A (en) Optical glass, preform and optical element
TW201114719A (en) Optical glass, optical element and pre-forming objecz obtained through precision press forming
JP7126350B2 (en) Optical glass, optical elements and preforms
JP6163620B1 (en) Optical glass and optical element