WO2019131123A1 - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
WO2019131123A1
WO2019131123A1 PCT/JP2018/045636 JP2018045636W WO2019131123A1 WO 2019131123 A1 WO2019131123 A1 WO 2019131123A1 JP 2018045636 W JP2018045636 W JP 2018045636W WO 2019131123 A1 WO2019131123 A1 WO 2019131123A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
less
optical
still
Prior art date
Application number
PCT/JP2018/045636
Other languages
French (fr)
Japanese (ja)
Inventor
浄行 桃野
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN201880076786.1A priority Critical patent/CN111406039A/en
Publication of WO2019131123A1 publication Critical patent/WO2019131123A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass, a preform and an optical element.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element and an optical element while the refractive index (n d ) and the Abbe number (v d ) are within desired ranges.
  • An object of the present invention is to obtain an optical glass that can contribute to weight reduction of equipment.
  • the inventors of the present invention conducted intensive studies to solve the above problems, and as a result, in the glass containing SiO 2 component, B 2 O 3 component, La 2 O 3 component and TiO 2 component, the refractive index ( It has been found that a glass having a small specific gravity can be obtained while n d ) and Abbe's number ( d d ) are in desired ranges, and the present invention has been completed. Specifically, the present invention provides the following.
  • (1) in mass%, More than 0% and 15.0% or less of SiO 2 component, More than 0% and 17.0% or less of B 2 O 3 components, 32.0 to 62.0% of the La 2 O 3 component, 6.0 to 37.0% of TiO 2 component Contains It has a refractive index (n d ) of 2.00 or more, and an Abbe number ( ⁇ d ) of 20 or more and 30 or less, Refractive index (n d) and Abbe number ( ⁇ d), the relationship of the specific gravity ⁇ is, 5.00 ⁇ (n d ⁇ 2 + ⁇ d) / ⁇ 7.00 optical glass satisfying the relationship.
  • Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is 40.0% to 65.0%
  • the sum of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to 10.0%
  • the sum of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 0 to 10.0%.
  • Optical glass Optical glass.
  • a preform comprising the optical glass according to any one of claims 1 to 7.
  • the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, obtaining the optical glass which can contribute to weight reduction of optical elements and optical instruments .
  • the optical glass of the present invention is, by mass%, more than 0% and 15.0% or less of SiO 2 component, more than 0% and 17.0% or less of B 2 O 3 component, and 32.0 to 62 of La 2 O 3 component .0 containing 6.0 to 37.0% of TiO 2 component, having a refractive index (n d ) of 2.00 or more, having an Abbe number ( ⁇ d ) of 20 or more and 30 or less, and refraction rate (n d) and Abbe number ([nu d), the relationship of the specific gravity ⁇ satisfies the relation of 5.00 ⁇ (n d ⁇ 2 + ⁇ d) / ⁇ 7.00.
  • the present inventor has, SiO 2 component, B 2 O 3 component and La 2 O 3 component as a base, when it is contained the TiO 2 component thereto, refractive index 2.00 or more (n d) and 20 or more It has been found that a stable glass can be obtained while having an Abbe number ( ⁇ d ) of 30 or less, and a glass with a small specific gravity can be obtained. Accordingly, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, obtaining the optical glass which can contribute to weight reduction of optical elements and optical instruments.
  • optical glass of the present invention can be suitably used in applications where visible light is transmitted because of high transmittance for visible light.
  • Glass composition The composition range of each component which comprises the optical glass of this invention is described below. In the present specification, the contents of the respective components are all represented by mass% relative to the total mass of the oxide conversion composition, unless otherwise specified.
  • the "oxide conversion composition” is assumed that all oxides, composite salts, metal fluorides and the like used as raw materials of the glass component of the present invention are decomposed and converted into oxides during melting. It is the composition in which each component contained in glass is described with the total mass of formation oxide being 100 mass%.
  • the SiO 2 component is an essential component as a glass-forming oxide.
  • a SiO 2 component more than 0% it is also a component that enhances the stability of the glass and makes it easy to obtain a glass endurable to mass production. Moreover, the viscosity of molten glass can be raised and coloring of glass can be reduced. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 4.0%.
  • the content of the SiO 2 component 15.0% or less the rise of the glass transition point can be suppressed and the decrease of the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 15.0% or less, more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably less than 7.0%, still more preferably 6. It is less than 5%, preferably less than 5.0%.
  • the B 2 O 3 component is an essential component as a glass-forming oxide.
  • the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably more than 4.5%, still more preferably 5. More than 0%.
  • the content of the B 2 O 3 component is preferably 17.0% or less, more preferably less than 15.0%, still more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably It is less than 8.0%, preferably 7.0% or less.
  • the La 2 O 3 component is an essential component to increase the refractive index and Abbe number of the glass. Moreover, since it is comparatively cheap among the rare earths, the material cost of glass can be reduced. Therefore, the content of the La 2 O 3 component is preferably 32.0% or more, more preferably more than 35.0%, still more preferably more than 38.0%, still more preferably more than 40.0%, still more preferably More than 43.0%. On the other hand, when the content of the La 2 O 3 component is 62.0% or less, devitrification can be reduced by enhancing the stability of the glass. In addition, the meltability of the glass material can be enhanced.
  • the content of the La 2 O 3 component is preferably 62.0% or less, more preferably less than 60.0%, still more preferably less than 58.0%, still more preferably less than 55.0%, still more preferably It is less than 53.0%, more preferably less than 51.0%.
  • the TiO 2 component is an essential component that can increase the refractive index of the glass and lower the liquidus temperature of the glass to increase the stability, reduce the specific gravity of the glass, and reduce the material cost of the glass. Therefore, the content of the TiO 2 component is preferably 6.0% or more, more preferably 10.0%, more preferably 13.0%, and further preferably 15.0%. On the other hand, by setting the content of the TiO 2 component to 37.0% or less, the devitrification due to the excessive inclusion of the TiO 2 component can be reduced, and a decrease in the transmittance of the glass to visible light (especially wavelength 500 nm or less) It is suppressed. Moreover, the decrease in Abbe number can be suppressed by this.
  • the content of the TiO 2 component is preferably 37.0% or less, more preferably less than 35.0%, still more preferably less than 33.0%, still more preferably less than 30.0%, still more preferably 27. It is 0% or less, more preferably 25.0% or less.
  • the Nb 2 O 5 component is an optional component capable of enhancing the devitrification resistance by increasing the refractive index of the glass and lowering the liquidus temperature of the glass when the Nb 2 O 5 content is more than 0%. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 6.0%, still more preferably 8. It may be 0% or more. On the other hand, by setting the content of the Nb 2 O 5 component to 18.0% or less, the material cost of the glass can be suppressed and the decrease in Abbe number can be suppressed.
  • the content of the Nb 2 O 5 component is preferably 18.0% or less, more preferably less than 15.0%, still more preferably less than 13.0%, and still more preferably less than 10.0%.
  • the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably 4.8% or more.
  • lowering the refractive index of the glass can be suppressed and the stability of the glass can be enhanced by setting the content of the Y 2 O 3 component to 18.0% or less.
  • the deterioration of the meltability of the glass material can be suppressed. Therefore, the content of the Y 2 O 3 component is preferably 18.0% or less, more preferably less than 15.0%, still more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably Less than 9.0%.
  • the ZrO 2 component is an optional component that can increase the refractive index and Abbe number of the glass and can improve the devitrification resistance when it is contained in excess of 0%. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.5%, still more preferably more than 5.0%, still more preferably 6.2% It is good also as above. On the other hand, by making the content of the ZrO 2 component 15.0% or less, the devitrification due to the excessive inclusion of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably 15.0% or less, more preferably less than 12.0%, still more preferably less than 10.0%, and still more preferably less than 7.0%.
  • the Gd 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component are optional components that can increase the refractive index and the Abbe number of the glass when they are contained in excess of 0%.
  • the Gd 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component have high raw material prices, and if the content is large, the production cost increases and the specific gravity of the glass increases. Therefore, the content of each of the Gd 2 O 3 component and the Yb 2 O 3 component is preferably 10.0% or less, more preferably less than 7.0%, still more preferably less than 4.0%, and still more preferably 1. Less than 0%. In particular, in view of reducing the material cost, it is most preferable not to contain these components.
  • the Ta 2 O 5 component is an optional component capable of enhancing the refractive index of the glass and enhancing the devitrification resistance when it contains more than 0%.
  • the Ta 2 O 5 component has a high raw material price, and if the content is large, the production cost will rise. Further, by setting the content of the Ta 2 O 5 component to 10.0% or less, the melting temperature of the raw material is lowered and the energy required for the melting of the raw material is reduced, so that the manufacturing cost of the optical glass can also be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. In particular, in view of reducing the material cost, it is most preferable not to contain the Ta 2 O 5 component.
  • the WO 3 component contains more than 0%, it is an optional component that can increase the refractive index, lower the glass transition point, and improve the devitrification resistance while reducing the coloration of the glass due to other high refractive index components. It is. Therefore, the content of WO 3 ingredient is preferably 0 percent, more preferably from 0.3%, even more preferably may be 0.5% greater. On the other hand, by making the content of the WO 3 component less than 10.0%, the material cost of the glass can be suppressed and the decrease in Abbe number can be suppressed. Also, it increased visible light transmittance to reduce the coloration of the glass due WO 3 components. Therefore, the content of the WO 3 component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the ZnO component is an optional component capable of enhancing the stability of the glass and reducing the coloration when it is contained in excess of 0%. It is also a component that can lower the glass transition temperature and improve the chemical durability.
  • the content of the ZnO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the MgO component, the CaO component, the SrO component, and the BaO component are optional components that can adjust the refractive index, the meltability, and the devitrification resistance of the glass when the content is more than 0%.
  • the content of each of the MgO component, the CaO component, the SrO component and the BaO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably 1. Less than 0%.
  • the Li 2 O component, the Na 2 O component, and the K 2 O component are optional components that can improve the meltability of the glass and can lower the glass transition point when the content is more than 0%. Therefore, among these, the content of the Li 2 O component may be preferably more than 0%, more preferably 0.1% or more. On the other hand, by setting each of the Li 2 O component, the Na 2 O component, and the K 2 O component to 10.0% or less, it is possible to make it difficult to reduce the refractive index of the glass and to reduce the devitrification of the glass.
  • the content of each of the Li 2 O component, the Na 2 O component and the K 2 O component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, further preferably Is less than 1.0%, more preferably less than 0.5%, and still more preferably less than 0.3%.
  • the P 2 O 5 component is an optional component that can act as a glass-forming component and can lower the liquidus temperature of the glass to enhance the devitrification resistance when it is contained in excess of 0%.
  • the content of the P 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the GeO 2 component is an optional component capable of enhancing the refractive index of the glass and improving the devitrification resistance when it is contained in excess of 0%.
  • GeO 2 has a high raw material price, and the production cost increases if the content is high. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. In particular, from the viewpoint of reducing the material cost, the GeO 2 component may not be contained.
  • the Al 2 O 3 component and the Ga 2 O 3 component are optional components capable of improving the chemical durability of the glass and improving the devitrification resistance of the glass when the Al 2 O 3 component and the Ga 2 O 3 component are contained in excess of 0%.
  • the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably 1. Less than 0%.
  • the Bi 2 O 3 component is an optional component capable of enhancing the refractive index and lowering the glass transition point when it is contained in excess of 0%.
  • the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it contains more than 0%.
  • TeO 2 has a problem that it can be alloyed with platinum when it melts a glass material in a crucible made of platinum or a melting tank in which a portion in contact with the molten glass is made of platinum. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the SnO 2 component is an optional component capable of reducing and clarifying the oxidation of the molten glass and enhancing the visible light transmittance of the glass when it contains more than 0%.
  • the content of the SnO 2 component is preferably 3.0% or less, more preferably less than 1.0%, still more preferably less than 0.5%, and still more preferably less than 0.1%.
  • the Sb 2 O 3 component is an optional component capable of degassing the molten glass when it contains more than 0%.
  • the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably less than 0.5%, and still more preferably less than 0.3%.
  • the components for clarifying and degassing the glass are not limited to the above-mentioned Sb 2 O 3 components, and known clarifiers, defoamers or combinations thereof known in the field of glass production can be used.
  • the F component is an optional component that can increase the Abbe's number of the glass, lower the glass transition temperature, and improve the devitrification resistance when the F component is more than 0%.
  • the content of the F component that is, the total amount as fluoride F substituted with part or all of one or more oxides of each metal element described above exceeds 10.0%, F Since the volatilization amount of the components increases, it becomes difficult to obtain stable optical constants and it becomes difficult to obtain homogeneous glass. Therefore, the content of the F component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the sum (mass sum) of the content of Ln 2 O 3 components (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is 40.0% or more and 65.0%. % Or less is preferable.
  • the mass sum of the Ln 2 O 3 component is preferably 40.0% or more, more preferably more than 45.0%, still more preferably 47.0% or more, and still more preferably 50.0% or more.
  • the mass sum of the Ln 2 O 3 component is preferably 65.0% or less, more preferably less than 62.0%, still more preferably less than 60.0%, further preferably less than 58.0%.
  • the sum (mass sum) of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 10.0% or less.
  • R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba
  • the mass sum of the RO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
  • the sum (mass sum) of the content of the Rn 2 O component (wherein, Rn is one or more selected from the group consisting of Li, Na, and K) is preferably 10.0% or less.
  • the mass sum of the Rn 2 O component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably less than 1.0%, still more preferably 0 Less than 5%, preferably less than 0.3%.
  • the lower limit value of the mass sum of the Rn 2 O component may be more than 0%, or may be 0.1% or more.
  • the ratio (mass ratio) of the content of the La 2 O 3 component, the Gd 2 O 3 component and the Yb 2 O 3 component to the content of the Y 2 O 3 component is preferably more than 0 and 0.50 or less.
  • the mass ratio Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 ) is preferably more than 0, more preferably more than 0.010, still more preferably more than 0.030, still more preferably 0 More than 070, more preferably 0.095 or more, further preferably 0.114 or more.
  • this mass ratio is preferably 0.500, more preferably 0.400, still more preferably 0.300, still more preferably 0.203, from the viewpoint of making it easy to obtain the desired refractive index and Abbe number. It may be
  • the sum (mass sum) of the content of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is preferably 15.0% to 45.0%.
  • the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 15.0% or more, more preferably more than 20.0%, still more preferably more than 23.0%, still more preferably more than 25.0% I assume.
  • the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 45.0% or less, more preferably less than 40.0%, still more preferably less than 36.0%, still more preferably less than 35.0% I assume.
  • the sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably 5.0% or more and 20.0% or less.
  • the mass sum (B 2 O 3 + SiO 2 ) is preferably 5.0% or more, more preferably more than 8.0%, still more preferably more than 10.0%.
  • the sum is 20.0% or less, the decrease in the refractive index due to the excessive content of these components can be suppressed.
  • the mass sum (B 2 O 3 + SiO 2 ) is preferably 20.0% or less, more preferably less than 18.0%, still more preferably less than 15.0%, still more preferably less than 14.5%, and further preferably Preferably, it is less than 12.5%.
  • the ratio (mass ratio) of the sum of the contents of the TiO 2 component, the WO 3 component and the Nb 2 O 5 component to the sum of the content of the SiO 2 component and the B 2 O 3 component is 1.00 or more and 5.00 or less Is preferred.
  • the mass ratio (TiO 2 + WO 3 + Nb 2 O 5 ) / (SiO 2 + B 2 O 3 ) is preferably 1.00 or more, more preferably 1.30 or more, still more preferably 1.60 or more, more preferably Is more than 1.80, more preferably more than 2.00, still more preferably 2.25 or more, still more preferably 2.30 or more.
  • the mass ratio (TiO 2 + WO 3 + Nb 2 O 5 ) / (SiO 2 + B 2 O 3 ) is preferably 5.00 or less, more preferably 4.00 or less, still more preferably 3.50 or less, more preferably Is less than 3.30.
  • each transition metal component such as Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu excluding V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo is independent.
  • the glass be substantially free of light, because the glass is colored even when contained in a small amount in a complex or causes absorption at a specific wavelength in the visible range. .
  • lead compounds and As 2 O 3 or the like arsenic compound such as PbO because environmental load is highly components, it does not substantially contained, i.e., it is desirable not to contain any except inevitable contamination.
  • Th, Cd, Tl, Os, Be, and Se components tend to refrain from use as harmful chemical substances in recent years, and they are not only used in glass manufacturing processes but also in processing processes and disposal after productization. All environmental measures are needed. Therefore, when emphasizing environmental impact, it is preferable not to contain these substantially.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, the prepared mixture is put into a platinum crucible, and the melting point of the glass raw material is 1100 to 1500 ° C. in an electric furnace. The mixture is melted, stirred and homogenized in the temperature range of 2 to 5 hours, and then lowered to a suitable temperature and then cast into a mold and gradually cooled.
  • the optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion).
  • the lower limit of the refractive index (n d ) of the optical glass of the present invention is preferably 2.00, more preferably 2.01, still more preferably 2.03, further preferably 2.04.
  • the upper limit of the refractive index (n d ) may preferably be 2.20, more preferably 2.15, and still more preferably 2.10.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 20, more preferably 21, and further preferably 22.
  • the upper limit of the Abbe number (v d ) is preferably 30, more preferably 29, and further preferably 28.
  • the optical glass of the present invention is useful for optical design, and in particular, when the optical system is configured, the optical system can be miniaturized while achieving high imaging characteristics etc. Can expand the degree of freedom of
  • the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) and the specific gravity ⁇ satisfies the relationship of (n d ⁇ 2 + ⁇ d ) / ⁇ 5.00.
  • the glass having a refractive index ( nd ) of 2.00 or more and low dispersion conventionally, only glasses having a large specific gravity have been known.
  • the optical element and the optical element are satisfied by using the optical glass which has the small specific gravity ⁇ ⁇ relative to the refractive index (n d ) and the Abbe number ( d d ). It can contribute to weight reduction of the device.
  • the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) and the specific gravity ⁇ ⁇ ⁇ ⁇ in the optical glass of the present invention is preferably a relationship of (n d ⁇ 2 + ⁇ d ) / ⁇ 5.00 More preferably satisfy the relation of (n d ⁇ 2 + ⁇ d ) / ⁇ 5.30, more preferably the relation of (n d ⁇ 2 + ⁇ d ) / ⁇ 5.50, still more preferably (n d ⁇ 2 + ⁇ d ) satisfy the / ⁇ 5.80 relation, more preferably satisfies the (n d ⁇ 2 + ⁇ d ) / ⁇ 6.00 relationship, more preferably (n d ⁇ 2 + ⁇ d And the relationship of ⁇ 6.0 6.06 is satisfied.
  • the optical glass of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01 ⁇ d +2.25) relationship ⁇ n d ⁇ (-0.01 ⁇ d +2.40 ) It is preferable to satisfy In the glass having the composition specified in the present invention, a more stable glass can be obtained when the refractive index (n d ) and the Abbe number (v d ) satisfy this relationship.
  • the refractive index (n d ) and the Abbe number ( d d ) satisfy the relationship of n d (( ⁇ 0.01 d d + 2.25), and n d -( ⁇ it is more preferable to satisfy the relationship 0.01 ⁇ d +2.28), more preferably satisfies the relationship n d ⁇ (-0.01 ⁇ d +2.30) , n d ⁇ (-0.01 ⁇ d +2. It is further preferable to satisfy the relationship of 31).
  • the refractive index (n d ) and the Abbe number (v d ) satisfy the relationship of n d ⁇ ( ⁇ 0.01 v d +2.40), n d ⁇ it is more preferable to satisfy the relationship -0.01 ⁇ d +2.37), it is more preferable to satisfy the relation of n d ⁇ (-0.01 ⁇ d +2.35) .
  • the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.30, and preferably 5.20, from the viewpoint of contributing to weight reduction of the optical element and the optical apparatus.
  • the specific gravity of the optical glass of the present invention is often about 3.00 or more, more specifically 3.50 or more, more specifically 4.00 or more.
  • the specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”.
  • the optical glass of the present invention preferably has high devitrification resistance, more specifically, low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1350 ° C., more preferably 1320 ° C., still more preferably 1300 ° C., further preferably 1250 ° C. Thereby, even if the melted glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that the devitrification when forming the glass from the molten state can be reduced, and the optical using the glass The influence on the optical characteristics of the element can be reduced.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is about 800 ° C. or more, specifically 850 ° C. or more, more specifically 900 Often more than ° C.
  • liquidus temperature means that a 5 cc cullet glass sample is put in a platinum crucible in a platinum crucible with a capacity of 50 ml, completely melted at 1400 ° C., and cooled to a predetermined temperature Then, the temperature is maintained for 1 hour, taken out of the furnace and immediately after cooling, the lowest temperature at which no crystal is observed is observed when the presence or absence of crystals in the glass surface and the glass is observed.
  • the predetermined temperature at which the temperature is lowered is a temperature in steps of 10 ° C. between 1350 ° C. and 800 ° C.
  • the optical glass of the present invention preferably has a high visible light transmittance, particularly high light transmittance on the short wavelength side of visible light, whereby the coloration is low.
  • the shortest wavelength ( ⁇ 5 ) showing a spectral transmittance of 5% for a sample with a thickness of 10 mm is preferably 420 nm, more preferably 400 nm, still more preferably 390 nm. Since the absorption edge of the glass is in the ultraviolet region or in the vicinity thereof and the transparency of the glass to visible light is enhanced, the optical glass can be preferably used for an optical element that transmits light such as a lens.
  • a glass molded body can be produced from the produced optical glass, for example, by means of polishing or means of mold press molding such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on optical glass to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and reheat press molding is performed on this preform. After that, it is subjected to polishing processing to produce a glass molded product, or to a preform produced by polishing processing, or to a preform produced by publicly known float molding etc. by performing precision press molding on a glass molded product. Can be produced.
  • the means to produce a glass forming body is not limited to these means.
  • the optical glass of the present invention is useful for various optical elements and optical designs.
  • it is particularly preferable to form a preform from the optical glass of the present invention perform reheat press molding or precision press molding using this preform, and produce an optical element such as a lens or a prism.
  • a preform having a large diameter can be formed. Therefore, even when the optical element is enlarged, high definition and high precision imaging characteristics and projection characteristics are obtained when used in an optical apparatus such as a camera or a projector. Can be realized.
  • the following examples are for the purpose of illustration only, and the present invention is not limited to these examples.
  • the glasses of the examples and comparative examples of the present invention can be used for ordinary optical glasses such as corresponding oxides, hydroxides, carbonates, nitrates, fluorides and metaphosphates as raw materials of the respective components.
  • High-purity raw materials are selected, weighed and uniformly mixed so that the composition proportions of the respective examples shown in the table are obtained, and then put into a platinum crucible, and according to the melting difficulty of the glass raw materials After melting in a temperature range of ⁇ 1500 ° C. for 2 to 5 hours, the mixture was stirred and homogenized, then cast into a mold or the like and gradually cooled to prepare.
  • the refractive index (n d ) and the Abbe's number ( ⁇ d ) of the glasses of the examples are shown as measured values for the d-line (587.56 nm) of a helium lamp.
  • the Abbe number ([nu d), the refractive index with respect to the refractive index of the d line, hydrogen lamp F line (486.13nm) (n F), the refractive index for the C line (656.27nm) (n C) using the value, the Abbe number ( ⁇ d) calculated from the formula [(n d -1) / ( n F -n C)].
  • the specific gravity ⁇ ⁇ ⁇ of the glass of the example and the comparative example was measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”. Further, the value of the measured specific gravity [rho, the value of the refractive index (n d) and Abbe number ([nu d), was determined a value of (n d ⁇ 2 + ⁇ d ) / ⁇ .
  • the transmittance of the glass of the example and the comparative example was measured according to Japan Optical Glass Industrial Standard JOGIS 02-2003.
  • the transmittance of glass was measured to determine the presence or absence and degree of coloring of the glass.
  • the spectral transmittance of 200 to 800 nm was measured according to JIS Z 8222, and the ⁇ 5 (wavelength at 5% transmittance) was determined.
  • the liquidus temperature of the glass of the example and the comparative example is as follows: put a 5 cc cullet glass sample in a platinum crucible in a platinum crucible with a volume of 50 ml and completely melt at 1400 ° C. 10 to 1350 ° C. to 800 ° C. The temperature is lowered to any temperature set in ° C and held for 1 hour, taken out of the furnace and cooled immediately after observation of the surface of the glass and the presence or absence of crystals in the glass, the lowest at which no crystals are observed The temperature was determined.
  • all the optical glasses of the examples of the present invention have a refractive index (n d ) of 2.00 or more, more specifically 2.04 or more, and the refractive index (n d) ) was 2.20 or less, more specifically 2.10 or less, and was within the desired range.
  • the optical glasses according to the examples of the present invention each have an Abbe number (v d ) of 20 or more, more specifically 22 or more, and the Abbe number (v d ) is 30 or less, more specifically 28 It was below and was within the desired range.
  • the specific gravity was all 5.50 or less, more specifically 5.20 or less.
  • the optical glass of the embodiment of the present invention has a relation of refractive index (n d ), Abbe number (v d ), specific gravity ⁇ of 5.00 ⁇ (n d ⁇ 2 + v d ) / ⁇ 7.00.
  • the relationship is satisfied, and more specifically, the relationship between the refractive index (n d ) and the Abbe number ( ⁇ d ) and the specific gravity ⁇ is 5.40 ⁇ (n d ⁇ 2 + v d ) / d ⁇ 6.20 I met the relationship.
  • the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number (v d ) of (-0.01 v d + 2.25) n n d ((-0.01 v d + 2.40).
  • the relationship of ( ⁇ 0.02 v d +2.30) ⁇ n d ⁇ ( ⁇ 0.02 v d +2.33) was satisfied in more detail.
  • the relationship between the refractive index (n d ) and the Abbe number (v d ) for the glass of the example of the present application is as shown in FIG.
  • the optical glass of the present invention forms a stable glass, and devitrification hardly occurs at the time of glass production. This is also inferred from the fact that the liquidus temperature of the optical glass of the present invention is 1350 ° C. or less, more specifically 1300 ° C. or less.
  • the optical glass of the example of the present invention had ⁇ 5 (wavelength at 5% transmittance) of 420 nm, more specifically 390 nm or less, and within the desired range.
  • the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number (v d ) within the desired range, while the refractive index (n d ) and the Abbe number (v d ) are opposite to each other. It became clear that the specific gravity was small. Therefore, it is guessed that the optical glass of the Example of this invention contributes to weight reduction of an optical element or an optical instrument.
  • a glass block was formed using the optical glass of the embodiment of the present invention, and this glass block was ground and polished to be processed into a lens and a prism shape. As a result, it could be stably processed into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is an optical glass which can contribute to reducing the weight of optical elements and optical devices while still having a refractive index (nd) and Abbe's number (νd) within desired ranges. This optical glass contains, on a mass basis, 0 (exclusive) to 15.0% of a SiO2 component, 0 (exclusive) to 17.0% of a B2O3 component, 32.0 to 62.0% of a La2O3 component, and 6.0 to 37.0% of a TiO2 component, and has a refractive index (nd) of 2.00 or more, and an Abbe's number (νd) of 20 to 30. The refractive index (nd), Abbe's number (νd), and specific gravity ρ satisfy the relationship: 5.00 ≤ (nd × 2 + νd)/ρ ≤ 7.00.

Description

光学ガラス、プリフォーム及び光学素子Optical glass, preform and optical element
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。 The present invention relates to an optical glass, a preform and an optical element.
 近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。 In recent years, digitalization and high definition of equipment using optical systems are rapidly progressing, and various optical equipment such as photographing equipment such as digital cameras and video cameras, and image reproduction (projection) equipment such as projectors and projection televisions In the field of optical systems, there is an increasing demand for reducing the number and weight of the entire optical system by reducing the number of optical elements such as lenses and prisms used in the optical system.
 光学素子を作製する光学ガラスの中でも特に、光学系全体の小型化を図ることが可能な、2.00以上の屈折率(n)を有し、20以上30以下のアッベ数(ν)を有する高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとして、特許文献1に代表されるようなガラス組成物が知られている。 Among optical glasses for producing an optical element, Abbe number (ν d ) having a refractive index (n d ) of 2.00 or more and 20 or more and 30 or less, which can achieve miniaturization of the entire optical system. The demand for high-refractive-index, low-dispersion glasses is very high. As such high refractive index and low dispersion glass, a glass composition as typified by Patent Document 1 is known.
特開2012-162448号公報JP 2012-162448 A
 しかし、2.00以上の屈折率(n)を有し、20以上30以下のアッベ数(ν)を有する光学ガラスとしては、比重が大きいものが知られるのみであった。そのような中で、光学素子や光学機器の軽量化の観点からも、このような屈折率(n)及びアッベ数(ν)において、比重のより小さいガラスが求められていた。 However, as an optical glass having a refractive index (n d ) of 2.00 or more and an Abbe number (ν d ) of 20 or more and 30 or less, only one having a large specific gravity is known. Under such circumstances, a glass having a smaller specific gravity in such refractive index (n d ) and Abbe number ( d d ) has been required also from the viewpoint of weight reduction of optical elements and optical devices.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、光学素子や光学機器の軽量化に寄与することが可能な光学ガラスを得ることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element and an optical element while the refractive index (n d ) and the Abbe number (v d ) are within desired ranges. An object of the present invention is to obtain an optical glass that can contribute to weight reduction of equipment.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO成分、B成分、La成分及びTiO成分を含有するガラスにおいて、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながらも、比重の小さいガラスが得られることを見出し、本発明を完成するに至った。
 具体的には、本発明は以下のようなものを提供する。
The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, in the glass containing SiO 2 component, B 2 O 3 component, La 2 O 3 component and TiO 2 component, the refractive index ( It has been found that a glass having a small specific gravity can be obtained while n d ) and Abbe's number ( d d ) are in desired ranges, and the present invention has been completed.
Specifically, the present invention provides the following.
 (1) 質量%で、
SiO成分を0%超15.0%以下、
成分を0%超17.0%以下、
La成分を32.0~62.0%、
TiO成分を6.0~37.0%
含有し、
 2.00以上の屈折率(n)を有し、20以上30以下のアッベ数(ν)を有し、
 屈折率(n)とアッベ数(ν)、比重ρの関係が、5.00≦(n×2+ν)/ρ≦7.00の関係を満たす光学ガラス。
(1) in mass%,
More than 0% and 15.0% or less of SiO 2 component,
More than 0% and 17.0% or less of B 2 O 3 components,
32.0 to 62.0% of the La 2 O 3 component,
6.0 to 37.0% of TiO 2 component
Contains
It has a refractive index (n d ) of 2.00 or more, and an Abbe number (ν d ) of 20 or more and 30 or less,
Refractive index (n d) and Abbe number (ν d), the relationship of the specific gravity ρ is, 5.00 ≦ (n d × 2 + ν d) /ρ≦7.00 optical glass satisfying the relationship.
 (2) 質量%で、
Nb成分 0~18.0%、
成分 0~18.0%、
ZrO成分 0~15.0%、
である請求項1に記載の光学ガラス。
(2) in mass%,
Nb 2 O 5 component 0 to 18.0%,
Y 2 O 3 component 0 to 18.0%,
ZrO 2 component 0 to 15.0%,
The optical glass according to claim 1.
 (3) 質量%で、
Gd成分 0~10.0%、
Yb成分 0~10.0%
Ta成分 0~10.0%、
WO成分 0~10.0%未満、
ZnO成分 0~10.0%、
MgO成分 0~10.0%、
CaO成分 0~10.0%、
SrO成分 0~10.0%、
BaO成分 0~10.0%、
LiO成分 0~10.0%、
NaO成分 0~10.0%、
O成分 0~10.0%、
成分 0~10.0%、
GeO成分 0~10.0%、
Al成分 0~10.0%、
Ga成分 0~10.0%、
Bi成分 0~10.0%、
TeO成分 0~10.0%、
SnO成分 0~3.0%、
Sb成分 0~1.0%
であり、
 上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%である請求項1又は2記載の光学ガラス。
(3) in mass%,
Gd 2 O 3 component 0 to 10.0%,
Yb 2 O 3 component 0 to 10.0%
Ta 2 O 5 components 0 to 10.0%,
WO 3 component 0 to less than 10.0%,
ZnO component 0 to 10.0%,
MgO component 0 to 10.0%,
CaO component 0 to 10.0%,
SrO component 0 to 10.0%,
BaO ingredient 0 to 10.0%,
Li 2 O component 0 to 10.0%,
Na 2 O component 0 to 10.0%,
K 2 O component 0 to 10.0%,
P 2 O 5 component 0 to 10.0%,
GeO 2 component 0 to 10.0%,
Al 2 O 3 component 0 to 10.0%,
Ga 2 O 3 component 0 to 10.0%,
Bi 2 O 3 component 0 to 10.0%,
0 to 10.0% of TeO 2 ingredients,
SnO 2 component 0 to 3.0%,
Sb 2 O 3 component 0 to 1.0%
And
The optical glass according to claim 1 or 2, wherein a content of a fluoride substituted with part or all of one or more of the oxides of the respective elements as F is 0 to 10.0% by mass.
 (4) 質量%で、
 Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の含有量の和が40.0%以上65.0%以下であり、
 RO成分(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)の含有量の和が0~10.0%であり、
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和が0~10.0%である請求項1から3のいずれか記載の光学ガラス。
(4) in mass%,
The sum of the content of the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is 40.0% to 65.0%,
The sum of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to 10.0%,
The sum of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 0 to 10.0%. Optical glass.
 (5) 質量比Y/(La+Gd+Yb)が0超0.500以下である請求項1から4のいずれか記載の光学ガラス。 (5) The optical glass according to any one of claims 1 to 4, wherein the mass ratio Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 ) is more than 0 and 0.500 or less.
 (6) 質量和TiO+WO+Nbが15.0%以上45.0%以下である請求項1から5のいずれか記載の光学ガラス。 (6) mass sum TiO 2 + WO 3 + Nb 2 O 5 is 15.0% or more 45.0% less optical glass according to any one of claims 1 to 5 is.
 (7) 質量和SiO+Bが5.0%以上20.0%以下である請求項1から6のいずれか記載の光学ガラス。 (7) The optical glass according to any one of claims 1 to 6, wherein the mass sum SiO 2 + B 2 O 3 is 5.0% or more and 20.0% or less.
 (8) 請求項1から7のいずれか記載の光学ガラスからなるプリフォーム。 (8) A preform comprising the optical glass according to any one of claims 1 to 7.
 (9) 請求項1から7のいずれか記載の光学ガラスからなる光学素子。 (9) An optical element comprising the optical glass according to any one of claims 1 to 7.
 (10) 請求項9に記載の光学素子を備える光学機器。 (10) An optical apparatus comprising the optical element according to claim 9.
 本発明によれば、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、光学素子や光学機器の軽量化に寄与することが可能な光学ガラスを得ることができる。 According to the present invention, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, obtaining the optical glass which can contribute to weight reduction of optical elements and optical instruments .
本願の実施例のガラスについての屈折率(nd)とアッベ数(ν)の関係を示す図である。It is a figure which shows the relationship of the refractive index (nd) and Abbe's number ((nu) d ) about the glass of the Example of this application.
 本発明の光学ガラスは、質量%で、SiO成分を0%超15.0%以下、B成分を0%超17.0%以下、La成分を32.0~62.0%、TiO成分を6.0~37.0%含有し、2.00以上の屈折率(n)を有し、20以上30以下のアッベ数(ν)を有し、屈折率(n)とアッベ数(ν)、比重ρの関係が、5.00≦(n×2+ν)/ρ≦7.00の関係を満たす。本発明者は、SiO成分、B成分及びLa成分をベースとし、これにTiO成分を含有させた場合に、2.00以上の屈折率(n)及び20以上30以下のアッベ数(ν)を有しながらも、安定なガラスが得られ、また、比重の小さいガラスが得られることを見出した。従って、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、光学素子や光学機器の軽量化に寄与することが可能な光学ガラスを得ることができる。 The optical glass of the present invention is, by mass%, more than 0% and 15.0% or less of SiO 2 component, more than 0% and 17.0% or less of B 2 O 3 component, and 32.0 to 62 of La 2 O 3 component .0 containing 6.0 to 37.0% of TiO 2 component, having a refractive index (n d ) of 2.00 or more, having an Abbe number (ν d ) of 20 or more and 30 or less, and refraction rate (n d) and Abbe number ([nu d), the relationship of the specific gravity ρ satisfies the relation of 5.00 ≦ (n d × 2 + ν d) /ρ≦7.00. The present inventor has, SiO 2 component, B 2 O 3 component and La 2 O 3 component as a base, when it is contained the TiO 2 component thereto, refractive index 2.00 or more (n d) and 20 or more It has been found that a stable glass can be obtained while having an Abbe number (ν d ) of 30 or less, and a glass with a small specific gravity can be obtained. Accordingly, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, obtaining the optical glass which can contribute to weight reduction of optical elements and optical instruments.
 加えて、本発明の光学ガラスは、可視光についての透過率が高いことで可視光を透過させる用途に好適に使用できる。 In addition, the optical glass of the present invention can be suitably used in applications where visible light is transmitted because of high transmittance for visible light.
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, an embodiment of the optical glass of the present invention will be described in detail. The present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be suitably abbreviate | omitted about the location where description overlaps, it does not limit the meaning of invention.
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass composition]
The composition range of each component which comprises the optical glass of this invention is described below. In the present specification, the contents of the respective components are all represented by mass% relative to the total mass of the oxide conversion composition, unless otherwise specified. Here, the "oxide conversion composition" is assumed that all oxides, composite salts, metal fluorides and the like used as raw materials of the glass component of the present invention are decomposed and converted into oxides during melting. It is the composition in which each component contained in glass is described with the total mass of formation oxide being 100 mass%.
<必須成分、任意成分について>
 SiO成分は、ガラス形成酸化物として必須の成分である。特に、SiO成分を0%超含有することで、ガラスの安定性を高めて量産に耐えるガラスを得易くする成分でもある。また、熔融ガラスの粘度を高め、ガラスの着色を低減することができる。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは4.0%超とする。
 他方で、SiO成分の含有量を15.0%以下にすることで、ガラス転移点の上昇を抑えられ、且つ屈折率の低下を抑えられる。従って、SiO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%未満、さらに好ましくは10.0%未満、さらに好ましくは7.0%未満、さらに好ましくは6.5%未満、さらに好ましくは5.0%未満とする。
<Required Component, Optional Component>
The SiO 2 component is an essential component as a glass-forming oxide. In particular, by containing a SiO 2 component more than 0%, it is also a component that enhances the stability of the glass and makes it easy to obtain a glass endurable to mass production. Moreover, the viscosity of molten glass can be raised and coloring of glass can be reduced. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 4.0%.
On the other hand, by making the content of the SiO 2 component 15.0% or less, the rise of the glass transition point can be suppressed and the decrease of the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 15.0% or less, more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably less than 7.0%, still more preferably 6. It is less than 5%, preferably less than 5.0%.
 B成分は、ガラス形成酸化物として必須の成分である。特に、B成分を0%超含有することで、ガラスの安定性を高めて耐失透性を高め、且つガラスのアッベ数を高めることができる。従って、B成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは4.0%超、さらに好ましくは4.5%超、さらに好ましくは5.0%超とする。
 一方、B成分の含有量を17.0%以下にすることで、より大きな屈折率を得易くでき、且つ化学的耐久性の悪化を抑えられる。従って、B成分の含有量は、好ましくは17.0%以下、より好ましくは15.0%未満、さらに好ましくは12.0%未満、さらに好ましくは10.0%未満、さらに好ましくは8.0%未満、さらに好ましくは7.0%以下とする。
The B 2 O 3 component is an essential component as a glass-forming oxide. In particular, by containing the B 2 O 3 component more than 0%, the stability of the glass can be enhanced, the devitrification resistance can be enhanced, and the Abbe number of the glass can be enhanced. Therefore, the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably more than 4.5%, still more preferably 5. More than 0%.
On the other hand, by setting the content of the B 2 O 3 component to 17.0% or less, a larger refractive index can be easily obtained, and the deterioration of the chemical durability can be suppressed. Therefore, the content of the B 2 O 3 component is preferably 17.0% or less, more preferably less than 15.0%, still more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably It is less than 8.0%, preferably 7.0% or less.
 La成分は、ガラスの屈折率及びアッベ数を高める必須成分である。また、希土類の中では比較的安価なため、ガラスの材料コストを低減することができる。従って、La成分の含有量は、好ましくは32.0%以上、より好ましくは35.0%超、さらに好ましくは38.0%超、さらに好ましくは40.0%超、さらに好ましくは43.0%超とする。
 一方、La成分の含有量を62.0%以下にすることで、ガラスの安定性を高めることで失透を低減できる。また、ガラス原料の熔解性を高められる。従って、La成分の含有量は、好ましくは62.0%以下、より好ましくは60.0%未満、さらに好ましくは58.0%未満、さらに好ましくは55.0%未満、さらに好ましくは53.0%未満、さらに好ましくは51.0%未満とする。
The La 2 O 3 component is an essential component to increase the refractive index and Abbe number of the glass. Moreover, since it is comparatively cheap among the rare earths, the material cost of glass can be reduced. Therefore, the content of the La 2 O 3 component is preferably 32.0% or more, more preferably more than 35.0%, still more preferably more than 38.0%, still more preferably more than 40.0%, still more preferably More than 43.0%.
On the other hand, when the content of the La 2 O 3 component is 62.0% or less, devitrification can be reduced by enhancing the stability of the glass. In addition, the meltability of the glass material can be enhanced. Therefore, the content of the La 2 O 3 component is preferably 62.0% or less, more preferably less than 60.0%, still more preferably less than 58.0%, still more preferably less than 55.0%, still more preferably It is less than 53.0%, more preferably less than 51.0%.
 TiO成分は、ガラスの屈折率を高め、且つガラスの液相温度を低くすることで安定性を高められ、また、ガラスの比重を小さくでき、ガラスの材料コストを低減できる必須成分である。従って、TiO成分の含有量は、好ましくは6.0%以上、より好ましくは10.0%超、さらに好ましくは13.0%超、さらに好ましくは15.0%超とする。
 他方で、TiO成分の含有量を37.0%以下にすることで、TiO成分の過剰な含有による失透を低減でき、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、TiO成分の含有量は、好ましくは37.0%以下、より好ましくは35.0%未満、さらに好ましくは33.0%未満、さらに好ましくは30.0%未満、さらに好ましくは27.0%以下、さらに好ましくは25.0%以下とする。
The TiO 2 component is an essential component that can increase the refractive index of the glass and lower the liquidus temperature of the glass to increase the stability, reduce the specific gravity of the glass, and reduce the material cost of the glass. Therefore, the content of the TiO 2 component is preferably 6.0% or more, more preferably 10.0%, more preferably 13.0%, and further preferably 15.0%.
On the other hand, by setting the content of the TiO 2 component to 37.0% or less, the devitrification due to the excessive inclusion of the TiO 2 component can be reduced, and a decrease in the transmittance of the glass to visible light (especially wavelength 500 nm or less) It is suppressed. Moreover, the decrease in Abbe number can be suppressed by this. Therefore, the content of the TiO 2 component is preferably 37.0% or less, more preferably less than 35.0%, still more preferably less than 33.0%, still more preferably less than 30.0%, still more preferably 27. It is 0% or less, more preferably 25.0% or less.
 Nb成分は、0%超含有する場合に、ガラスの屈折率を高め、且つガラスの液相温度を低くすることで耐失透性を高められる任意成分である。従って、Nb成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは6.0%超、さらに好ましくは8.0%以上としてもよい。
 他方で、Nb成分の含有量を18.0%以下にすることで、ガラスの材料コストを抑えられ、アッベ数の低下を抑えられる。また、Nb成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。従って、Nb成分の含有量は、好ましくは18.0%以下、より好ましくは15.0%未満、さらに好ましくは13.0%未満、さらに好ましくは10.0%未満とする。
The Nb 2 O 5 component is an optional component capable of enhancing the devitrification resistance by increasing the refractive index of the glass and lowering the liquidus temperature of the glass when the Nb 2 O 5 content is more than 0%. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 6.0%, still more preferably 8. It may be 0% or more.
On the other hand, by setting the content of the Nb 2 O 5 component to 18.0% or less, the material cost of the glass can be suppressed and the decrease in Abbe number can be suppressed. Further, it is possible to reduce the devitrification due to excessive content of Nb 2 O 5 component, and, suppress the decrease in transmittance of the glass in the visible light (in particular a wavelength of 500nm or less). Therefore, the content of the Nb 2 O 5 component is preferably 18.0% or less, more preferably less than 15.0%, still more preferably less than 13.0%, and still more preferably less than 10.0%.
 Y成分は、0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、ガラスの材料コストを抑えられ、且つ、ガラスの比重を低減できる任意成分である。従って、Y成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは4.0%超、さらに好ましくは4.8%以上としてもよい。
 他方で、Y成分の含有量を18.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの安定性を高められる。また、ガラス原料の熔解性の悪化を抑えられる。従って、Y成分の含有量は、好ましくは18.0%以下、より好ましくは15.0%未満、さらに好ましくは12.0%未満、さらに好ましくは10.0%未満、さらに好ましくは9.0%未満とする。
When the Y 2 O 3 content is more than 0%, the material cost of the glass can be suppressed while maintaining the high refractive index and the high Abbe number, and the specific gravity of the glass can be reduced. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably 4.8% or more.
On the other hand, lowering the refractive index of the glass can be suppressed and the stability of the glass can be enhanced by setting the content of the Y 2 O 3 component to 18.0% or less. In addition, the deterioration of the meltability of the glass material can be suppressed. Therefore, the content of the Y 2 O 3 component is preferably 18.0% or less, more preferably less than 15.0%, still more preferably less than 12.0%, still more preferably less than 10.0%, still more preferably Less than 9.0%.
 ZrO成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められ、且つ耐失透性を向上できる任意成分である。従って、ZrO成分の含有量を、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.5%超、さらに好ましくは5.0%超、さらに好ましくは6.2%以上としてもよい。
 他方で、ZrO成分の含有量を15.0%以下にすることで、ZrO成分の過剰な含有による失透を低減できる。従って、ZrO成分の含有量は、好ましくは15.0%以下、より好ましくは12.0%未満、さらに好ましくは10.0%未満、さらに好ましくは7.0%未満とする。
The ZrO 2 component is an optional component that can increase the refractive index and Abbe number of the glass and can improve the devitrification resistance when it is contained in excess of 0%. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.5%, still more preferably more than 5.0%, still more preferably 6.2% It is good also as above.
On the other hand, by making the content of the ZrO 2 component 15.0% or less, the devitrification due to the excessive inclusion of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably 15.0% or less, more preferably less than 12.0%, still more preferably less than 10.0%, and still more preferably less than 7.0%.
 Gd成分、Yb成分及びLu成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。
 しかしながら、Gd成分、Yb成分及びLu成分は原料価格が高く、その含有量が多いと生産コストが上昇し、且つ、ガラスの比重が増大する。従って、Gd成分及びYb成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは7.0%未満、さらに好ましくは4.0%未満、さらに好ましくは1.0%未満とする。特に材料コストを低減させる観点では、これらの成分を含有しないことが最も好ましい。
The Gd 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component are optional components that can increase the refractive index and the Abbe number of the glass when they are contained in excess of 0%.
However, the Gd 2 O 3 component, the Yb 2 O 3 component, and the Lu 2 O 3 component have high raw material prices, and if the content is large, the production cost increases and the specific gravity of the glass increases. Therefore, the content of each of the Gd 2 O 3 component and the Yb 2 O 3 component is preferably 10.0% or less, more preferably less than 7.0%, still more preferably less than 4.0%, and still more preferably 1. Less than 0%. In particular, in view of reducing the material cost, it is most preferable not to contain these components.
 Ta成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。
 しかしながら、Ta成分は原料価格が高く、その含有量が多いと生産コストが上昇する。また、Ta成分の含有量を10.0%以下にすることで、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストも低減できる。従って、Ta成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に材料コストを低減させる観点では、Ta成分を含有しないことが最も好ましい。
The Ta 2 O 5 component is an optional component capable of enhancing the refractive index of the glass and enhancing the devitrification resistance when it contains more than 0%.
However, the Ta 2 O 5 component has a high raw material price, and if the content is large, the production cost will rise. Further, by setting the content of the Ta 2 O 5 component to 10.0% or less, the melting temperature of the raw material is lowered and the energy required for the melting of the raw material is reduced, so that the manufacturing cost of the optical glass can also be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. In particular, in view of reducing the material cost, it is most preferable not to contain the Ta 2 O 5 component.
 WO成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つ耐失透性を高められる任意成分である。従って、WO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超としてもよい。
 他方で、WO成分の含有量を10.0%未満にすることで、ガラスの材料コストを抑えられ、アッベ数の低下を抑えられる。また、WO成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
When the WO 3 component contains more than 0%, it is an optional component that can increase the refractive index, lower the glass transition point, and improve the devitrification resistance while reducing the coloration of the glass due to other high refractive index components. It is. Therefore, the content of WO 3 ingredient is preferably 0 percent, more preferably from 0.3%, even more preferably may be 0.5% greater.
On the other hand, by making the content of the WO 3 component less than 10.0%, the material cost of the glass can be suppressed and the decrease in Abbe number can be suppressed. Also, it increased visible light transmittance to reduce the coloration of the glass due WO 3 components. Therefore, the content of the WO 3 component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 ZnO成分は、0%超含有する場合に、ガラスの安定性を高められ、着色を低減できる任意成分である。また、ガラス転移点を低くでき、化学的耐久性を改善できる成分でもある。
 他方で、ZnO成分の含有量を10.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The ZnO component is an optional component capable of enhancing the stability of the glass and reducing the coloration when it is contained in excess of 0%. It is also a component that can lower the glass transition temperature and improve the chemical durability.
On the other hand, by setting the content of the ZnO component to 10.0% or less, the decrease in the refractive index of the glass can be suppressed, and the devitrification due to the excessive decrease in viscosity can be reduced. Therefore, the content of the ZnO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 MgO成分、CaO成分、SrO成分及びBaO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
 他方で、MgO成分、CaO成分、SrO成分及びBaO成分の含有量をそれぞれ10.0%以下にすることで、屈折率の低下を抑えることができ、且つこれらの成分の過剰な含有による失透を低減できる。従って、MgO成分、CaO成分、SrO成分及びBaO成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に屈折率の高いガラスを得る観点では、これらの成分を含有しないことが最も好ましい。
The MgO component, the CaO component, the SrO component, and the BaO component are optional components that can adjust the refractive index, the meltability, and the devitrification resistance of the glass when the content is more than 0%.
On the other hand, by setting the contents of the MgO component, the CaO component, the SrO component and the BaO component to 10.0% or less, respectively, the decrease in the refractive index can be suppressed, and the devitrification due to the excessive inclusion of these components Can be reduced. Accordingly, the content of each of the MgO component, the CaO component, the SrO component and the BaO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably 1. Less than 0%. In particular, in view of obtaining a glass having a high refractive index, it is most preferable not to contain these components.
 LiO成分、NaO成分及びKO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。そのため、これらのうちLiO成分の含有量は、好ましくは0%超、より好ましくは0.1%以上としてもよい。
 他方で、LiO成分、NaO成分及びKO成分のそれぞれ10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、LiO成分、NaO成分及びKO成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
The Li 2 O component, the Na 2 O component, and the K 2 O component are optional components that can improve the meltability of the glass and can lower the glass transition point when the content is more than 0%. Therefore, among these, the content of the Li 2 O component may be preferably more than 0%, more preferably 0.1% or more.
On the other hand, by setting each of the Li 2 O component, the Na 2 O component, and the K 2 O component to 10.0% or less, it is possible to make it difficult to reduce the refractive index of the glass and to reduce the devitrification of the glass. Therefore, the content of each of the Li 2 O component, the Na 2 O component and the K 2 O component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, further preferably Is less than 1.0%, more preferably less than 0.5%, and still more preferably less than 0.3%.
 P成分は、ガラス形成成分として作用することができ、0%超含有する場合に、ガラスの液相温度を下げて耐失透性を高められる任意成分である。
 他方で、P成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The P 2 O 5 component is an optional component that can act as a glass-forming component and can lower the liquidus temperature of the glass to enhance the devitrification resistance when it is contained in excess of 0%.
On the other hand, by setting the content of the P 2 O 5 component to 10.0% or less, it is possible to suppress a decrease in the chemical durability of the glass, particularly the water resistance. Therefore, the content of the P 2 O 5 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
 しかしながら、GeOは原料価格が高く、その含有量が多いと生産コストが上昇する。従って、GeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に、材料コストを低減させる観点では、GeO成分を含有しなくてもよい。
The GeO 2 component is an optional component capable of enhancing the refractive index of the glass and improving the devitrification resistance when it is contained in excess of 0%.
However, GeO 2 has a high raw material price, and the production cost increases if the content is high. Therefore, the content of the GeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%. In particular, from the viewpoint of reducing the material cost, the GeO 2 component may not be contained.
 Al成分及びGa成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つガラスの耐失透性を向上できる任意成分である。
 他方で、Al成分及びGa成分の各々の含有量を10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Al成分及びGa成分の含有量は、それぞれ好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The Al 2 O 3 component and the Ga 2 O 3 component are optional components capable of improving the chemical durability of the glass and improving the devitrification resistance of the glass when the Al 2 O 3 component and the Ga 2 O 3 component are contained in excess of 0%.
On the other hand, by setting the content of each of the Al 2 O 3 component and the Ga 2 O 3 component to 10.0% or less, the liquidus temperature of the glass can be lowered to enhance the devitrification resistance. Therefore, the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably 1. Less than 0%.
 Bi成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、Bi成分の含有量を10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The Bi 2 O 3 component is an optional component capable of enhancing the refractive index and lowering the glass transition point when it is contained in excess of 0%.
On the other hand, by setting the content of the Bi 2 O 3 component to 10.0% or less, the liquidus temperature of the glass can be lowered to enhance the devitrification resistance. Therefore, the content of the Bi 2 O 3 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 TeO成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it contains more than 0%.
On the other hand, TeO 2 has a problem that it can be alloyed with platinum when it melts a glass material in a crucible made of platinum or a melting tank in which a portion in contact with the molten glass is made of platinum. Therefore, the content of the TeO 2 component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
 他方で、SnO成分の含有量を3.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO成分の含有量は、好ましくは3.0%以下、より好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満とする。
The SnO 2 component is an optional component capable of reducing and clarifying the oxidation of the molten glass and enhancing the visible light transmittance of the glass when it contains more than 0%.
On the other hand, by setting the content of the SnO 2 component to 3.0% or less, coloring of the glass by reduction of the molten glass and devitrification of the glass can be reduced. Moreover, since the alloying of the SnO 2 component and the melting equipment (especially noble metals such as Pt) is reduced, the life of the melting equipment can be prolonged. Therefore, the content of the SnO 2 component is preferably 3.0% or less, more preferably less than 1.0%, still more preferably less than 0.5%, and still more preferably less than 0.1%.
 Sb成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
 他方で、Sb量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb成分の含有量は、好ましくは1.0%以下、より好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
The Sb 2 O 3 component is an optional component capable of degassing the molten glass when it contains more than 0%.
On the other hand, when the amount of Sb 2 O 3 is too large, the transmittance in the short wavelength region of the visible light region is deteriorated. Therefore, the content of the Sb 2 O 3 component is preferably 1.0% or less, more preferably less than 0.5%, and still more preferably less than 0.3%.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。 The components for clarifying and degassing the glass are not limited to the above-mentioned Sb 2 O 3 components, and known clarifiers, defoamers or combinations thereof known in the field of glass production can be used.
 F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
 しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が10.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。
 従って、F成分の含有量は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The F component is an optional component that can increase the Abbe's number of the glass, lower the glass transition temperature, and improve the devitrification resistance when the F component is more than 0%.
However, when the content of the F component, that is, the total amount as fluoride F substituted with part or all of one or more oxides of each metal element described above exceeds 10.0%, F Since the volatilization amount of the components increases, it becomes difficult to obtain stable optical constants and it becomes difficult to obtain homogeneous glass.
Therefore, the content of the F component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和(質量和)は、40.0%以上65.0%以下が好ましい。
 特に、この和を40.0%以上にすることで、ガラスの屈折率及びアッベ数が高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、Ln成分の質量和は、好ましくは40.0%以上、より好ましくは45.0%超、さらに好ましくは47.0%以上、さらに好ましくは50.0%超とする。
 他方で、この和を65.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。従って、Ln成分の質量和は、好ましくは65.0%以下、より好ましくは62.0%未満、さらに好ましくは60.0%未満、さらに好ましくは58.0%未満とする。
The sum (mass sum) of the content of Ln 2 O 3 components (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is 40.0% or more and 65.0%. % Or less is preferable.
In particular, by setting the sum to 40.0% or more, the refractive index and the Abbe's number of the glass can be increased, so that it is possible to easily obtain the glass having the desired refractive index and the Abbe's number. Therefore, the mass sum of the Ln 2 O 3 component is preferably 40.0% or more, more preferably more than 45.0%, still more preferably 47.0% or more, and still more preferably 50.0% or more.
On the other hand, by setting the sum to 65.0% or less, the liquidus temperature of the glass is lowered, so that the devitrification of the glass can be reduced. Therefore, the mass sum of the Ln 2 O 3 component is preferably 65.0% or less, more preferably less than 62.0%, still more preferably less than 60.0%, further preferably less than 58.0%.
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%以下が好ましい。これにより、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、RO成分の質量和は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。 The sum (mass sum) of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 10.0% or less. Thereby, the decrease in refractive index can be suppressed and the stability of the glass can be enhanced. Therefore, the mass sum of the RO component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, and still more preferably less than 1.0%.
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%以下が好ましい。これにより、溶融ガラスの粘性の低下を抑えられ、ガラスの屈折率を低下し難くでき、且つガラスの失透を低減できる。従って、RnO成分の質量和は、好ましくは10.0%以下、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
 他方で、RnO成分の質量和の下限値は、0%超としてもよく、0.1%以上としてもよい。
The sum (mass sum) of the content of the Rn 2 O component (wherein, Rn is one or more selected from the group consisting of Li, Na, and K) is preferably 10.0% or less. Thereby, the decrease in viscosity of the molten glass can be suppressed, the refractive index of the glass can be hardly reduced, and the devitrification of the glass can be reduced. Therefore, the mass sum of the Rn 2 O component is preferably 10.0% or less, more preferably less than 5.0%, still more preferably less than 3.0%, still more preferably less than 1.0%, still more preferably 0 Less than 5%, preferably less than 0.3%.
On the other hand, the lower limit value of the mass sum of the Rn 2 O component may be more than 0%, or may be 0.1% or more.
 Y成分の含有量に対する、La成分、Gd成分及びYb成分の含有量の比率(質量比)は、0超0.50以下が好ましい。
 特に、この質量比を0超にすることで、ガラスの比重を小さくすることができる。従って、質量比Y/(La+Gd+Yb)は、好ましくは0超、より好ましくは0.010超、さらに好ましくは0.030超、さらに好ましくは0.070超、さらに好ましくは0.095以上、さらに好ましくは0.114以上とする。
 他方で、この質量比は、所望の屈折率及びアッベ数を得易くする観点から、好ましくは0.500、より好ましくは0.400、さらに好ましくは0.300、さらに好ましくは0.203を上限としてもよい。
The ratio (mass ratio) of the content of the La 2 O 3 component, the Gd 2 O 3 component and the Yb 2 O 3 component to the content of the Y 2 O 3 component is preferably more than 0 and 0.50 or less.
In particular, by setting the mass ratio to more than 0, the specific gravity of the glass can be reduced. Therefore, the mass ratio Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 ) is preferably more than 0, more preferably more than 0.010, still more preferably more than 0.030, still more preferably 0 More than 070, more preferably 0.095 or more, further preferably 0.114 or more.
On the other hand, this mass ratio is preferably 0.500, more preferably 0.400, still more preferably 0.300, still more preferably 0.203, from the viewpoint of making it easy to obtain the desired refractive index and Abbe number. It may be
 TiO成分、Nb成分及びWO成分の含有量の和(質量和)は、15.0%以上45.0%以下が好ましい。
 特に、この和を15.0%以上にすることで、屈折率が高まり、且つガラスの安定性が高まるため、高屈折率低分散の光学ガラスを得易くできる。従って、質量和(TiO+Nb+WO)は、好ましくは15.0%以上、より好ましくは20.0%超、さらに好ましくは23.0%超、さらに好ましくは25.0%超とする。
 一方で、この和を45.0%以下にすることで、これら成分の過剰な含有によるガラスのアッベ数の低下や、ガラスの着色や失透を低減できる。従って、質量和(TiO+Nb+WO)は、好ましくは45.0%以下、より好ましくは40.0%未満、さらに好ましくは36.0%未満、さらに好ましくは35.0%未満とする。
The sum (mass sum) of the content of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is preferably 15.0% to 45.0%.
In particular, by setting the sum to 15.0% or more, the refractive index is increased and the stability of the glass is increased, so that it is possible to easily obtain an optical glass having a high refractive index and a low dispersion. Therefore, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 15.0% or more, more preferably more than 20.0%, still more preferably more than 23.0%, still more preferably more than 25.0% I assume.
On the other hand, by setting the sum to 45.0% or less, it is possible to reduce the decrease in Abbe's number of the glass and the coloring and the devitrification of the glass due to the excessive content of these components. Therefore, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 45.0% or less, more preferably less than 40.0%, still more preferably less than 36.0%, still more preferably less than 35.0% I assume.
 B成分及びSiO成分の含有量の和(質量和)は、5.0%以上20.0%以下が好ましい。
 特に、この和を5.0%以上にすることで、ガラスのネットワーク構造が形成されるため、安定なガラスを形成することができる。従って、質量和(B+SiO)は、好ましくは5.0%以上、より好ましくは8.0%超、さらに好ましくは10.0%超とする。
 他方で、この和を20.0%以下にすることで、これらの成分の過剰な含有による屈折率の低下を抑えられる。従って、質量和(B+SiO)は、好ましくは20.0%以下、より好ましくは18.0%未満、さらに好ましくは15.0%未満、さらに好ましくは14.5%未満、さらに好ましくは12.5%未満とする。
The sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably 5.0% or more and 20.0% or less.
In particular, by setting the sum to 5.0% or more, a glass network structure is formed, so that stable glass can be formed. Therefore, the mass sum (B 2 O 3 + SiO 2 ) is preferably 5.0% or more, more preferably more than 8.0%, still more preferably more than 10.0%.
On the other hand, when the sum is 20.0% or less, the decrease in the refractive index due to the excessive content of these components can be suppressed. Therefore, the mass sum (B 2 O 3 + SiO 2 ) is preferably 20.0% or less, more preferably less than 18.0%, still more preferably less than 15.0%, still more preferably less than 14.5%, and further preferably Preferably, it is less than 12.5%.
 SiO成分及びB成分の含有量の和に対する、TiO成分、WO成分及びNb成分の含有量の和の比率(質量比)は、1.00以上5.00以下が好ましい。
 特に、この質量比を0.50以上にすることで、ガラスの屈折率を高められる。従って、質量比(TiO+WO+Nb)/(SiO+B)は、好ましくは1.00以上、より好ましくは1.30超、さらに好ましくは1.60超、さらに好ましくは1.80超、さらに好ましくは2.00超、さらに好ましくは2.25以上、さらに好ましくは2.30以上とする。
 他方で、この質量比を5.00以下にすることで、ガラスの安定性を高められ、アッベ数の低下を抑えられる。従って、質量比(TiO+WO+Nb)/(SiO+B)は、好ましくは5.00以下、より好ましくは4.00以下、さらに好ましくは3.50以下、さらに好ましくは3.30以下とする。
The ratio (mass ratio) of the sum of the contents of the TiO 2 component, the WO 3 component and the Nb 2 O 5 component to the sum of the content of the SiO 2 component and the B 2 O 3 component is 1.00 or more and 5.00 or less Is preferred.
In particular, by setting the mass ratio to 0.50 or more, the refractive index of the glass can be increased. Therefore, the mass ratio (TiO 2 + WO 3 + Nb 2 O 5 ) / (SiO 2 + B 2 O 3 ) is preferably 1.00 or more, more preferably 1.30 or more, still more preferably 1.60 or more, more preferably Is more than 1.80, more preferably more than 2.00, still more preferably 2.25 or more, still more preferably 2.30 or more.
On the other hand, by setting this mass ratio to 5.00 or less, the stability of the glass can be enhanced and the decrease in Abbe number can be suppressed. Therefore, the mass ratio (TiO 2 + WO 3 + Nb 2 O 5 ) / (SiO 2 + B 2 O 3 ) is preferably 5.00 or less, more preferably 4.00 or less, still more preferably 3.50 or less, more preferably Is less than 3.30.
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be contained>
Next, the components which should not be contained in the optical glass of the present invention and the components which should not be contained are described.
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as needed as long as the properties of the glass of the present invention are not impaired. However, each transition metal component such as Ti, Zr, Nb, W, La, Gd, Y, Yb, Lu excluding V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo is independent. In the case of an optical glass using a wavelength in the visible range, it is preferable that the glass be substantially free of light, because the glass is colored even when contained in a small amount in a complex or causes absorption at a specific wavelength in the visible range. .
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 Further, lead compounds and As 2 O 3 or the like arsenic compound such as PbO, because environmental load is highly components, it does not substantially contained, i.e., it is desirable not to contain any except inevitable contamination.
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, Th, Cd, Tl, Os, Be, and Se components tend to refrain from use as harmful chemical substances in recent years, and they are not only used in glass manufacturing processes but also in processing processes and disposal after productization. All environmental measures are needed. Therefore, when emphasizing environmental impact, it is preferable not to contain these substantially.
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, the prepared mixture is put into a platinum crucible, and the melting point of the glass raw material is 1100 to 1500 ° C. in an electric furnace. The mixture is melted, stirred and homogenized in the temperature range of 2 to 5 hours, and then lowered to a suitable temperature and then cast into a mold and gradually cooled.
[物性]
 本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有することが好ましい。特に、本発明の光学ガラスの屈折率(n)は、好ましくは2.00、より好ましくは2.01、さらに好ましくは2.03、さらに好ましくは2.04を下限とする。この屈折率(n)は、好ましくは2.20、より好ましくは2.15、さらに好ましくは2.10を上限としてもよい。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは20、より好ましくは21、さらに好ましくは22を下限とする。このアッベ数(ν)は、好ましくは30、より好ましくは29、さらに好ましくは28を上限とする。
 このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズとして用いたときに光の波長による焦点のずれ(色収差)を小さくできる。そのため、例えば高分散(低いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
 このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
[Physical properties]
The optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion). In particular, the lower limit of the refractive index (n d ) of the optical glass of the present invention is preferably 2.00, more preferably 2.01, still more preferably 2.03, further preferably 2.04. The upper limit of the refractive index (n d ) may preferably be 2.20, more preferably 2.15, and still more preferably 2.10. The Abbe number (ν d ) of the optical glass of the present invention is preferably 20, more preferably 21, and further preferably 22. The upper limit of the Abbe number (v d ) is preferably 30, more preferably 29, and further preferably 28.
By having such a high refractive index, a large amount of light refraction can be obtained even if the thickness of the optical element is reduced. Further, by having such a low dispersion, it is possible to reduce the focal shift (chromatic aberration) due to the wavelength of light when used as a single lens. Therefore, for example, when an optical system is configured in combination with an optical element having high dispersion (low Abbe number), aberration can be reduced as a whole of the optical system, and high imaging characteristics and the like can be achieved.
As described above, the optical glass of the present invention is useful for optical design, and in particular, when the optical system is configured, the optical system can be miniaturized while achieving high imaging characteristics etc. Can expand the degree of freedom of
 ここで、本発明の光学ガラスは、屈折率(n)とアッベ数(ν)、比重ρの関係が、(n×2+ν)/ρ≧5.00の関係式を満たす。屈折率(n)が2.00以上であり且つ低分散を有するガラスとしては、従来、比重が大きいものが知られるのみであった。これに対し、本発明では、上記関係式を満たしており、それにより屈折率(n)とアッベ数(ν)に相対して小さな比重ρを有する光学ガラスによることで、光学素子や光学機器の軽量化に寄与することができる。より具体的には、本発明の光学ガラスにおける屈折率(n)とアッベ数(ν)、比重ρの関係は、好ましくは(n×2+ν)/ρ≧5.00の関係式を満たし、より好ましくは(n×2+ν)/ρ≧5.30の関係式を満たし、より好ましくは(n×2+ν)/ρ≧5.50の関係式を満たし、さらに好ましくは(n×2+ν)/ρ≧5.80の関係式を満たし、さらに好ましくは(n×2+ν)/ρ≧6.00の関係式を満たし、さらに好ましくは(n×2+ν)/ρ≧6.06の関係式を満たす。
 他方で、(n×2+ν)/ρの上限については、好ましくは(n×2+ν)/ρ≦7.00の関係式を満たし、より好ましくは(n×2+ν)/ρ≦6.50の関係式を満たし、さらに好ましくは(n×2+ν)/ρ≦6.20の関係式を満たす。このようなガラスにすることで、より安定なガラスにすることができる。
Here, in the optical glass of the present invention, the relationship between the refractive index (n d ) and the Abbe number (ν d ) and the specific gravity ρ satisfies the relationship of (n d × 2 + ν d ) /ρ≧5.00. As the glass having a refractive index ( nd ) of 2.00 or more and low dispersion, conventionally, only glasses having a large specific gravity have been known. On the other hand, in the present invention, the optical element and the optical element are satisfied by using the optical glass which has the small specific gravity 相 対 relative to the refractive index (n d ) and the Abbe number ( d d ). It can contribute to weight reduction of the device. More specifically, the relationship between the refractive index (n d ) and the Abbe number (ν d ) and the specific gravity に お け る in the optical glass of the present invention is preferably a relationship of (n d × 2 + ν d ) /ρ≧5.00 More preferably satisfy the relation of (n d × 2 + ν d ) /ρ≧5.30, more preferably the relation of (n d × 2 + × d ) /ρ≧5.50, still more preferably (n d × 2 + ν d ) satisfy the /ρ≧5.80 relation, more preferably satisfies the (n d × 2 + ν d ) /ρ≧6.00 relationship, more preferably (n d × 2 + ν d And the relationship of 式 6.0 6.06 is satisfied.
On the other hand, with respect to the upper limit of (n d × 2 + d d ) / 好 ま し く, preferably the relationship of (n d × 2 + ν d ) // ≦ 7.00 is satisfied, and more preferably (n d × 2 + ν d ) / ρ meet ≦ 6.50 relations, more preferably satisfy the relation of (n d × 2 + ν d ) /ρ≦6.20. By using such glass, more stable glass can be obtained.
 また、本発明の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01ν+2.25)≦n≦(-0.01ν+2.40)の関係を満たすことが好ましい。本発明で特定される組成のガラスでは、屈折率(n)及びアッベ数(ν)がこの関係を満たすことで、より安定なガラスを得られる。
 従って、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≧(-0.01ν+2.25)の関係を満たすことが好ましく、n≧(-0.01ν+2.28)の関係を満たすことがより好ましく、n≧(-0.01ν+2.30)の関係を満たすことがさらに好ましく、n≧(-0.01ν+2.31)の関係を満たすことがさらに好ましい。
 一方で、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≦(-0.01ν+2.40)の関係を満たすことが好ましく、n≦(-0.01ν+2.37)の関係を満たすことがより好ましく、n≦(-0.01ν+2.35)の関係を満たすことがさらに好ましい。
Further, the optical glass of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01ν d +2.25) relationship ≦ n d ≦ (-0.01ν d +2.40 ) It is preferable to satisfy In the glass having the composition specified in the present invention, a more stable glass can be obtained when the refractive index (n d ) and the Abbe number (v d ) satisfy this relationship.
Therefore, in the optical glass of the present invention, it is preferable that the refractive index (n d ) and the Abbe number ( d d ) satisfy the relationship of n d ((−0.01 d d + 2.25), and n d -(− it is more preferable to satisfy the relationship 0.01ν d +2.28), more preferably satisfies the relationship n d ≧ (-0.01ν d +2.30) , n d ≧ (-0.01ν d +2. It is further preferable to satisfy the relationship of 31).
On the other hand, in the optical glass of the present invention, it is preferable that the refractive index (n d ) and the Abbe number (v d ) satisfy the relationship of n d ≦ (−0.01 v d +2.40), n d ≦ it is more preferable to satisfy the relationship -0.01ν d +2.37), it is more preferable to satisfy the relation of n d ≦ (-0.01ν d +2.35) .
 本発明の光学ガラスの比重は、光学素子や光学機器の軽量化に寄与する観点から、好ましくは5.50、より好ましくは5.30、好ましくは5.20を上限とする。他方で、本発明の光学ガラスの比重は、概ね3.00以上、より詳細には3.50以上、さらに詳細には4.00以上であることが多い。
 本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定する。
The specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.30, and preferably 5.20, from the viewpoint of contributing to weight reduction of the optical element and the optical apparatus. On the other hand, the specific gravity of the optical glass of the present invention is often about 3.00 or more, more specifically 3.50 or more, more specifically 4.00 or more.
The specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”.
 本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。すなわち、本発明の光学ガラスの液相温度は、好ましくは1350℃、より好ましくは1320℃、さらに好ましくは1300℃、さらに好ましくは1250℃を上限とする。これにより、熔解後のガラスをより低い温度で流出しても、作製されたガラスの結晶化が低減されるため、熔融状態からガラスを形成したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね800℃以上、具体的には850℃以上、さらに具体的には900℃以上であることが多い。なお、本明細書中における「液相温度」とは、50mlの容量の白金製坩堝に5ccのカレット状のガラス試料を白金坩堝に入れて1400℃で完全に熔融状態にし、所定の温度まで降温して1時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときに、結晶が認められない一番低い温度を表す。ここで降温する際の所定の温度は、1350℃~800℃の間の10℃刻みの温度である。 The optical glass of the present invention preferably has high devitrification resistance, more specifically, low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1350 ° C., more preferably 1320 ° C., still more preferably 1300 ° C., further preferably 1250 ° C. Thereby, even if the melted glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that the devitrification when forming the glass from the molten state can be reduced, and the optical using the glass The influence on the optical characteristics of the element can be reduced. Moreover, since the glass can be formed even if the melting temperature of the glass is lowered, the manufacturing cost of the glass can be reduced by suppressing the energy consumed at the time of forming the glass. On the other hand, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is about 800 ° C. or more, specifically 850 ° C. or more, more specifically 900 Often more than ° C. In this specification, “liquidus temperature” means that a 5 cc cullet glass sample is put in a platinum crucible in a platinum crucible with a capacity of 50 ml, completely melted at 1400 ° C., and cooled to a predetermined temperature Then, the temperature is maintained for 1 hour, taken out of the furnace and immediately after cooling, the lowest temperature at which no crystal is observed is observed when the presence or absence of crystals in the glass surface and the glass is observed. Here, the predetermined temperature at which the temperature is lowered is a temperature in steps of 10 ° C. between 1350 ° C. and 800 ° C.
 本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く、それにより着色が少ないことが好ましい。
 特に、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ)は、好ましくは420nm、より好ましくは400nm、さらに好ましくは390nmを上限とする。
 これらにより、ガラスの吸収端が紫外領域又はその近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。
The optical glass of the present invention preferably has a high visible light transmittance, particularly high light transmittance on the short wavelength side of visible light, whereby the coloration is low.
In particular, in the optical glass of the present invention, the shortest wavelength (λ 5 ) showing a spectral transmittance of 5% for a sample with a thickness of 10 mm is preferably 420 nm, more preferably 400 nm, still more preferably 390 nm.
Since the absorption edge of the glass is in the ultraviolet region or in the vicinity thereof and the transparency of the glass to visible light is enhanced, the optical glass can be preferably used for an optical element that transmits light such as a lens.
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preform and Optical Element]
A glass molded body can be produced from the produced optical glass, for example, by means of polishing or means of mold press molding such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on optical glass to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and reheat press molding is performed on this preform. After that, it is subjected to polishing processing to produce a glass molded product, or to a preform produced by polishing processing, or to a preform produced by publicly known float molding etc. by performing precision press molding on a glass molded product. Can be produced. In addition, the means to produce a glass forming body is not limited to these means.
 このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、カメラやプロジェクタ等の光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。 Thus, the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention, perform reheat press molding or precision press molding using this preform, and produce an optical element such as a lens or a prism. As a result, a preform having a large diameter can be formed. Therefore, even when the optical element is enlarged, high definition and high precision imaging characteristics and projection characteristics are obtained when used in an optical apparatus such as a camera or a projector. Can be realized.
 本発明の実施例(No.1~No.13)及び比較例(No.A)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、液相温度、分光透過率が5%を示す波長(λ)及び比重の結果を表1~表2に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples (No.1 ~ No.13) of the present invention and comparative examples (No. A), and the refractive index of these glasses (n d), Abbe number ([nu d), the liquidus temperature, spectral Tables 1 and 2 show the results of the wavelength (λ 5 ) and specific gravity at which the transmittance is 5%. The following examples are for the purpose of illustration only, and the present invention is not limited to these examples.
 本発明の実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。 The glasses of the examples and comparative examples of the present invention can be used for ordinary optical glasses such as corresponding oxides, hydroxides, carbonates, nitrates, fluorides and metaphosphates as raw materials of the respective components. High-purity raw materials are selected, weighed and uniformly mixed so that the composition proportions of the respective examples shown in the table are obtained, and then put into a platinum crucible, and according to the melting difficulty of the glass raw materials After melting in a temperature range of ̃1500 ° C. for 2 to 5 hours, the mixture was stirred and homogenized, then cast into a mold or the like and gradually cooled to prepare.
 実施例のガラスの屈折率(n)及びアッベ数(ν)は、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、上記d線の屈折率と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。 The refractive index (n d ) and the Abbe's number (ν d ) of the glasses of the examples are shown as measured values for the d-line (587.56 nm) of a helium lamp. The Abbe number ([nu d), the refractive index with respect to the refractive index of the d line, hydrogen lamp F line (486.13nm) (n F), the refractive index for the C line (656.27nm) (n C) using the value, the Abbe number (ν d) = calculated from the formula [(n d -1) / ( n F -n C)].
 実施例及び比較例のガラスの比重ρは、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定した。また、測定された比重ρの値と、屈折率(n)及びアッベ数(ν)の値から、(n×2+ν)/ρの値を求めた。 The specific gravity ガ ラ ス of the glass of the example and the comparative example was measured based on Japan Optical Glass Industrial Standard JOGIS 05-1975 “Method of measuring specific gravity of optical glass”. Further, the value of the measured specific gravity [rho, the value of the refractive index (n d) and Abbe number ([nu d), was determined a value of (n d × 2 + ν d ) / ρ.
 実施例及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02-2003に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ(透過率5%時の波長)を求めた。 The transmittance of the glass of the example and the comparative example was measured according to Japan Optical Glass Industrial Standard JOGIS 02-2003. In the present invention, the transmittance of glass was measured to determine the presence or absence and degree of coloring of the glass. Specifically, according to JIS Z 8722, the spectral transmittance of 200 to 800 nm was measured according to JIS Z 8222, and the λ 5 (wavelength at 5% transmittance) was determined.
 実施例及び比較例のガラスの液相温度は、50mlの容量の白金製坩堝に5ccのカレット状のガラス試料を白金坩堝に入れて1400℃で完全に熔融状態にし、1350℃~800℃まで10℃刻みで設定したいずれかの温度まで降温して1時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときに、結晶が認められない一番低い温度を求めた。 The liquidus temperature of the glass of the example and the comparative example is as follows: put a 5 cc cullet glass sample in a platinum crucible in a platinum crucible with a volume of 50 ml and completely melt at 1400 ° C. 10 to 1350 ° C. to 800 ° C. The temperature is lowered to any temperature set in ° C and held for 1 hour, taken out of the furnace and cooled immediately after observation of the surface of the glass and the presence or absence of crystals in the glass, the lowest at which no crystals are observed The temperature was determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表に表されるように、本発明の実施例の光学ガラスは、いずれも屈折率(n)が2.00以上、より詳細には2.04以上であるとともに、この屈折率(n)は2.20以下、より詳細には2.10以下であり、所望の範囲内であった。 As shown in the table, all the optical glasses of the examples of the present invention have a refractive index (n d ) of 2.00 or more, more specifically 2.04 or more, and the refractive index (n d) ) Was 2.20 or less, more specifically 2.10 or less, and was within the desired range.
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が20以上、より詳細には22以上であるとともに、このアッベ数(ν)は30以下、より詳細には28以下であり、所望の範囲内であった。 The optical glasses according to the examples of the present invention each have an Abbe number (v d ) of 20 or more, more specifically 22 or more, and the Abbe number (v d ) is 30 or less, more specifically 28 It was below and was within the desired range.
 また、本発明の実施例の光学ガラスは、いずれも比重が5.50以下、より詳細には5.20以下であった。 Moreover, as for the optical glass of the Example of this invention, the specific gravity was all 5.50 or less, more specifically 5.20 or less.
 そして、本発明の実施例の光学ガラスは、屈折率(n)とアッベ数(ν)、比重ρの関係が、5.00≦(n×2+ν)/ρ≦7.00の関係を満たしており、より詳細には屈折率(n)とアッベ数(ν)、比重ρの関係が、5.40≦(n×2+ν)/ρ≦6.20の関係の関係を満たしていた。他方で、比較例の光学ガラスは、(n×2+ν)/ρが10.15であり、所望とする範囲よりも大きな値であり、屈折率(n)とアッベ数(ν)に相対し比重ρが大きいものであった。 The optical glass of the embodiment of the present invention has a relation of refractive index (n d ), Abbe number (v d ), specific gravity ρ of 5.00 ≦ (n d × 2 + v d ) /ρ≦7.00. The relationship is satisfied, and more specifically, the relationship between the refractive index (n d ) and the Abbe number (ν d ) and the specific gravity ρ is 5.40 ≦ (n d × 2 + v d ) / d ≦ 6.20 I met the relationship. On the other hand, in the optical glass of the comparative example, (n d × 2 + / d ) /0.15 is 10.15, which is a value larger than the desired range, and the refractive index (n d ) and the Abbe number (ν d ) Relative to the specific gravity ρ was large.
 また、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01ν+2.25)≦n≦(-0.01ν+2.40)の関係を満たしており、より詳細には(-0.02ν+2.30)≦n≦(-0.02ν+2.33)の関係を満たしていた。なお、本願の実施例のガラスについての屈折率(n)及びアッベ数(ν)の関係は、図1に示されるようになった。 Further, the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number (v d ) of (-0.01 v d + 2.25) n n d ((-0.01 v d + 2.40). The relationship of (−0.02 v d +2.30) ≦ n d ≦ (−0.02 v d +2.33) was satisfied in more detail. The relationship between the refractive index (n d ) and the Abbe number (v d ) for the glass of the example of the present application is as shown in FIG.
 また、本発明の光学ガラスは、安定なガラスを形成しており、ガラス作製時において失透が起こり難いものであった。このことは、本発明の光学ガラスの液相温度が1350℃以下、より詳細には1300℃以下であることからも推察される。 In addition, the optical glass of the present invention forms a stable glass, and devitrification hardly occurs at the time of glass production. This is also inferred from the fact that the liquidus temperature of the optical glass of the present invention is 1350 ° C. or less, more specifically 1300 ° C. or less.
 また、本発明の実施例の光学ガラスは、λ(透過率5%時の波長)がいずれも420nm、より詳細には390nm以下であり、所望の範囲内であった。 In addition, the optical glass of the example of the present invention had λ 5 (wavelength at 5% transmittance) of 420 nm, more specifically 390 nm or less, and within the desired range.
 従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、屈折率(n)とアッベ数(ν)に相対して比重が小さいことが明らかになった。そのため、本発明の実施例の光学ガラスは、光学素子や光学機器の軽量化に寄与することが推察される。 Therefore, the optical glass of the embodiment of the present invention has a refractive index (n d ) and an Abbe number (v d ) within the desired range, while the refractive index (n d ) and the Abbe number (v d ) are opposite to each other. It became clear that the specific gravity was small. Therefore, it is guessed that the optical glass of the Example of this invention contributes to weight reduction of an optical element or an optical instrument.
 さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, a glass block was formed using the optical glass of the embodiment of the present invention, and this glass block was ground and polished to be processed into a lens and a prism shape. As a result, it could be stably processed into various lens and prism shapes.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, the present embodiment is for the purpose of illustration only, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (10)

  1.  質量%で、
    SiO成分を0%超15.0%以下、
    成分を0%超17.0%以下、
    La成分を32.0~62.0%、
    TiO成分を6.0~37.0%
    含有し、
     2.00以上の屈折率(n)を有し、20以上30以下のアッベ数(ν)を有し、
     屈折率(n)とアッベ数(ν)、比重ρの関係が、5.00≦(n×2+ν)/ρ≦7.00の関係を満たす光学ガラス。
    In mass%,
    More than 0% and 15.0% or less of SiO 2 component,
    More than 0% and 17.0% or less of B 2 O 3 components,
    32.0 to 62.0% of the La 2 O 3 component,
    6.0 to 37.0% of TiO 2 component
    Contains
    It has a refractive index (n d ) of 2.00 or more, and an Abbe number (ν d ) of 20 or more and 30 or less,
    Refractive index (n d) and Abbe number (ν d), the relationship of the specific gravity ρ is, 5.00 ≦ (n d × 2 + ν d) /ρ≦7.00 optical glass satisfying the relationship.
  2.  質量%で、
    Nb成分 0~18.0%、
    成分 0~18.0%、
    ZrO成分 0~15.0%、
    である請求項1に記載の光学ガラス。
    In mass%,
    Nb 2 O 5 component 0 to 18.0%,
    Y 2 O 3 component 0 to 18.0%,
    ZrO 2 component 0 to 15.0%,
    The optical glass according to claim 1.
  3.  質量%で、
    Gd成分 0~10.0%、
    Yb成分 0~10.0%
    Ta成分 0~10.0%、
    WO成分 0~10.0%未満、
    ZnO成分 0~10.0%、
    MgO成分 0~10.0%、
    CaO成分 0~10.0%、
    SrO成分 0~10.0%、
    BaO成分 0~10.0%、
    LiO成分 0~10.0%、
    NaO成分 0~10.0%、
    O成分 0~10.0%、
    成分 0~10.0%、
    GeO成分 0~10.0%、
    Al成分 0~10.0%、
    Ga成分 0~10.0%、
    Bi成分 0~10.0%、
    TeO成分 0~10.0%、
    SnO成分 0~3.0%、
    Sb成分 0~1.0%
    であり、
     上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%である請求項1又は2記載の光学ガラス。
    In mass%,
    Gd 2 O 3 component 0 to 10.0%,
    Yb 2 O 3 component 0 to 10.0%
    Ta 2 O 5 components 0 to 10.0%,
    WO 3 component 0 to less than 10.0%,
    ZnO component 0 to 10.0%,
    MgO component 0 to 10.0%,
    CaO component 0 to 10.0%,
    SrO component 0 to 10.0%,
    BaO ingredient 0 to 10.0%,
    Li 2 O component 0 to 10.0%,
    Na 2 O component 0 to 10.0%,
    K 2 O component 0 to 10.0%,
    P 2 O 5 component 0 to 10.0%,
    GeO 2 component 0 to 10.0%,
    Al 2 O 3 component 0 to 10.0%,
    Ga 2 O 3 component 0 to 10.0%,
    Bi 2 O 3 component 0 to 10.0%,
    0 to 10.0% of TeO 2 ingredients,
    SnO 2 component 0 to 3.0%,
    Sb 2 O 3 component 0 to 1.0%
    And
    The optical glass according to claim 1 or 2, wherein a content of a fluoride substituted with part or all of one or more of the oxides of the respective elements as F is 0 to 10.0% by mass.
  4.  質量%で、
     Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の含有量の和が40.0%以上65.0%以下であり、
     RO成分(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)の含有量の和が0~10.0%であり、
     RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和が0~10.0%である請求項1から3のいずれか記載の光学ガラス。
    In mass%,
    The sum of the content of the Ln 2 O 3 component (wherein, Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is 40.0% to 65.0%,
    The sum of the content of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to 10.0%,
    The sum of the content of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 0 to 10.0%. Optical glass.
  5.  質量比Y/(La+Gd+Yb)が0超0.500以下である請求項1から4のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 4, wherein a mass ratio Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Yb 2 O 3 ) is more than 0 and not more than 0.500.
  6.  質量和TiO+WO+Nbが15.0%以上45.0%以下である請求項1から5のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 5, wherein the mass sum TiO 2 + WO 3 + Nb 2 O 5 is 15.0% or more and 45.0% or less.
  7.  質量和SiO+Bが5.0%以上20.0%以下である請求項1から6のいずれか記載の光学ガラス。 Mass sum SiO 2 + B 2 O 3 is 5.0% or more 20.0% or less any description of the optical glass of claims 1 6.
  8.  請求項1から7のいずれか記載の光学ガラスからなるプリフォーム。 A preform comprising the optical glass according to any one of claims 1 to 7.
  9.  請求項1から7のいずれか記載の光学ガラスからなる光学素子。 An optical element comprising the optical glass according to any one of claims 1 to 7.
  10.  請求項9に記載の光学素子を備える光学機器。 An optical apparatus comprising the optical element according to claim 9.
PCT/JP2018/045636 2017-12-27 2018-12-12 Optical glass, preform, and optical element WO2019131123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880076786.1A CN111406039A (en) 2017-12-27 2018-12-12 Optical glass, preform, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252200A JP7325927B2 (en) 2017-12-27 2017-12-27 Optical glass, preforms and optical elements
JP2017-252200 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131123A1 true WO2019131123A1 (en) 2019-07-04

Family

ID=67067020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045636 WO2019131123A1 (en) 2017-12-27 2018-12-12 Optical glass, preform, and optical element

Country Status (4)

Country Link
JP (2) JP7325927B2 (en)
CN (1) CN111406039A (en)
TW (2) TWI791074B (en)
WO (1) WO2019131123A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183140A1 (en) 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2031590B1 (en) 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
WO2023227595A1 (en) 2022-05-25 2023-11-30 Saint-Gobain Glass France Composite pane having a reflection element
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120171A1 (en) 2020-07-30 2022-02-03 Schott Ag High refractive glass
CN115231817A (en) * 2022-08-26 2022-10-25 成都光明光电股份有限公司 Optical glass, optical element and optical instrument
CN115504666A (en) * 2022-08-26 2022-12-23 成都光明光电股份有限公司 Optical glass and optical element
CN115231819A (en) * 2022-08-26 2022-10-25 成都光明光电股份有限公司 High refractive index optical glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131845A (en) * 1983-12-01 1985-07-13 シヨツト、グラスヴエルケ Optical glass having refractive index of more than 1.90, abbe's number of more than 25 and high chemical stability
JP2010030879A (en) * 2008-06-27 2010-02-12 Hoya Corp Optical glass
WO2013129302A1 (en) * 2012-02-28 2013-09-06 Hoya株式会社 Optical glass and use thereof
WO2015025943A1 (en) * 2013-08-23 2015-02-26 Hoya株式会社 Optical glass and application for same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033229A (en) * 1983-07-28 1985-02-20 Minolta Camera Co Ltd Optical glass having high refractive index
JP4466955B2 (en) * 2005-07-15 2010-05-26 Hoya株式会社 Optical glass, glass gob for press molding, and optical element
CN102503121B (en) * 2011-10-08 2013-09-18 成都光明光电股份有限公司 Optical glass and optical element
CN104010982A (en) * 2011-12-20 2014-08-27 株式会社小原 Optical glass and optical element
CN103145331B (en) * 2013-04-03 2016-02-17 成都尤利特光电科技有限公司 High dioptrics glass and manufacture method thereof
TWI659004B (en) * 2013-04-05 2019-05-11 日商小原股份有限公司 Optical glass, preforms and optical components
CN103241942B (en) * 2013-05-24 2016-01-13 成都尤利特光电科技有限公司 High-refraction low-dispersion optical glass for mold and manufacture method thereof
JP6136009B2 (en) * 2013-07-16 2017-05-31 日本電気硝子株式会社 Optical glass
JP5979723B2 (en) * 2013-07-31 2016-08-31 株式会社オハラ Optical glass and optical element
JP2016074556A (en) * 2014-10-06 2016-05-12 株式会社オハラ Optical glass and optical element
TWI743061B (en) * 2015-11-06 2021-10-21 日商小原股份有限公司 Optical glass, preforms and optical components
TWI743073B (en) * 2015-12-25 2021-10-21 日商小原股份有限公司 Optical glass, preform and optical element
CN106348586B (en) * 2016-08-31 2019-03-15 湖北新华光信息材料有限公司 A kind of optical glass and preparation method thereof
CN106396369B (en) * 2016-09-29 2017-12-01 成都光明光电股份有限公司 Optical glass, gas preform and optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131845A (en) * 1983-12-01 1985-07-13 シヨツト、グラスヴエルケ Optical glass having refractive index of more than 1.90, abbe's number of more than 25 and high chemical stability
JP2010030879A (en) * 2008-06-27 2010-02-12 Hoya Corp Optical glass
WO2013129302A1 (en) * 2012-02-28 2013-09-06 Hoya株式会社 Optical glass and use thereof
WO2015025943A1 (en) * 2013-08-23 2015-02-26 Hoya株式会社 Optical glass and application for same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
WO2023183140A1 (en) 2022-03-25 2023-09-28 Corning Incorporated High-index silicoborate and borosilicate glasses
NL2031590B1 (en) 2022-03-25 2023-10-06 Corning Inc High-Index Silicoborate and Borosilicate Glasses
EP4257562A1 (en) 2022-03-25 2023-10-11 Corning Incorporated High-index silicoborate and borosilicate glasses
WO2023227595A1 (en) 2022-05-25 2023-11-30 Saint-Gobain Glass France Composite pane having a reflection element

Also Published As

Publication number Publication date
JP7325927B2 (en) 2023-08-15
TW201934506A (en) 2019-09-01
TWI791074B (en) 2023-02-01
TW202313502A (en) 2023-04-01
JP2019116408A (en) 2019-07-18
JP2023115073A (en) 2023-08-18
CN111406039A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2019131123A1 (en) Optical glass, preform, and optical element
JP5979723B2 (en) Optical glass and optical element
JP6560650B2 (en) Optical glass and optical element
JP6096502B2 (en) Optical glass and optical element
WO2013094619A1 (en) Optical glass and optical element
JP7112856B2 (en) Optical glass, preforms and optical elements
JPWO2018003719A1 (en) Optical glass, preform material and optical element
JP6664826B2 (en) Optical glass and optical element
JP7048348B2 (en) Optical glass, preforms and optical elements
JP7224099B2 (en) Optical glass, preforms and optical elements
JP2018052764A (en) Optical glass, preform, and optical element
JP7227693B2 (en) Optical glass, preforms and optical elements
WO2019031095A1 (en) Optical glass, optical element, and optical device
JP7085316B2 (en) Optical glass, preforms and optical elements
WO2019021689A1 (en) Optical glass, preform, and optical element
JP7424978B2 (en) Optical glass, preforms and optical elements
JP2014210695A (en) Optical glass, preform material, and optical element
JP7094095B2 (en) Optical glass, preforms and optical elements
JP2022125089A (en) Optical glass, preform and optical element
JP2017171578A (en) Optical glass and optical element
JP7089870B2 (en) Optical glass, optics and preforms
JP7126350B2 (en) Optical glass, optical elements and preforms
JP7010856B2 (en) Optical glass, preforms and optics
JP6033488B1 (en) Optical glass and optical element
JP6033487B2 (en) Optical glass and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897128

Country of ref document: EP

Kind code of ref document: A1