WO2013094619A1 - Optical glass and optical element - Google Patents
Optical glass and optical element Download PDFInfo
- Publication number
- WO2013094619A1 WO2013094619A1 PCT/JP2012/082848 JP2012082848W WO2013094619A1 WO 2013094619 A1 WO2013094619 A1 WO 2013094619A1 JP 2012082848 W JP2012082848 W JP 2012082848W WO 2013094619 A1 WO2013094619 A1 WO 2013094619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- glass
- less
- optical glass
- optical
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/02—Other methods of shaping glass by casting molten glass, e.g. injection moulding
Definitions
- the present invention relates to an optical glass and an optical element.
- JP 2006-016293 A Japanese Patent Application Laid-Open No. 2011-144069 JP 2010-083705 A JP 2008-001551 A JP 2001-348244 A JP 2009-173520 A JP 2003-267748 A JP 2006-240889 A
- a gob or glass block formed from optical glass is ground and polished to obtain the shape of the optical element, or a gob or glass formed from optical glass.
- a method of grinding and polishing a glass molded product obtained by reheating and molding a block (reheat press molding), and molding a preform material obtained from a gob or glass block with an ultra-precision machined mold A method of obtaining the shape of an optical element by (precise mold press molding) is known. Any method is required to obtain a stable glass when a gob or glass block is formed from a molten glass raw material.
- the stability devitrification resistance
- the glasses described in Patent Documents 1 and 2 have a problem that the specific gravity of the glass is large and the mass of the optical element is large. That is, when these glasses are used in optical devices such as cameras and projectors, there is a problem that the mass of the entire optical device tends to increase.
- the present invention has been made in view of the above problems, and its object is to provide resistance to devitrification while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges. It is to obtain a glass having a high and high stability at a lower cost.
- Another object of the present invention is to obtain glass that can contribute to weight reduction of optical equipment.
- the present inventors have conducted intensive test studies. As a result, in a glass containing B 2 O 3 component and La 2 O 3 component as essential components, a desired high refractive index and high Abbe. The inventors have found that the material cost of glass can be reduced while obtaining a stable glass having a number, and have completed the present invention.
- the present inventors include a glass containing B 2 O 3 component and La 2 O 3 component as essential components.
- the content of the Y 2 O 3 component within a predetermined range, the desired high refraction can be achieved. It has also been found that the glass material cost is reduced and the specific gravity of the glass is reduced while a stable glass having a high ratio and a high Abbe number is obtained.
- the present inventors reduced the content of the Gd 2 O 3 component in the glass containing the B 2 O 3 component and the La 2 O 3 component, thereby allowing a stable glass having a desired refractive index and Abbe number. It has also been found that the material cost of glass can be reduced.
- the present inventors reduced the content of the Ta 2 O 5 component to a glass having an Abbe number of 35 or more by containing the B 2 O 3 component and the La 2 O 3 component, thereby reducing the desired content. It has also been found that the glass material cost is reduced and the liquidus temperature of the glass is lowered while having a refractive index and an Abbe number. Specifically, the present invention provides the following.
- B 2 O 3 ingredient 1.0 to 30.0% and La 2 O 3 component from 10.0 to 60.0% content for optical glass.
- the optical glass according to (1) or (2) which has an Abbe number ( ⁇ d ) of 35 or more and a Ta 2 O 5 component content of less than 15.0%.
- the mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 75.0% or less (1 ) To (7).
- Ln 2 O 3 component (wherein, Ln is La, Gd, Y, 1 or more selected from the group consisting of Yb) mass sum is less than 75.0% or more 35.0% (1 ) To (8).
- the mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 70.0% or less (1 ) To (9).
- Rn 2 O component (wherein, Rn is Li, Na, K, 1 or more selected from the group consisting of Cs) from the mass sum is less than or equal to 15.0% (1) (28) Any one of the optical glasses.
- a glass having high devitrification resistance and stability can be obtained at a lower cost while the refractive index (n d ) and Abbe number ( ⁇ d ) are within the desired ranges.
- the optical glass of the present invention oxides by mass% with respect to the glass the total weight of the composition in terms of, B 2 O 3 component from 1.0 to 30.0% and content of La 2 O 3 component from 10.0 to 60.0% To do.
- B 2 O 3 component oxides by mass% with respect to the glass the total weight of the composition in terms of, B 2 O 3 component from 1.0 to 30.0% and content of La 2 O 3 component from 10.0 to 60.0% To do.
- the amount of expensive components such as Gd 2 O 3 and Ta 2 O 5 can be reduced.
- a high refractive index and Abbe number can be obtained, and an increase in the liquidus temperature can be suppressed. Therefore, it is possible to obtain an optical glass having a high devitrification resistance and a stable optical glass at a lower cost while the refractive index and the Abbe number are within the desired ranges.
- the first optical glass, oxides by mass% with respect to the glass the total weight of the composition in terms of, B 2 O 3 component from 1.0 to 30.0% and La 2 O 3 component from 10.0 to 60. 0% is contained, and the content of the Y 2 O 3 component is 30.0% or less.
- the La 2 O 3 component as an essential component and making the content of the Y 2 O 3 component within a predetermined range, rare earth elements that are expensive and often increase the specific gravity of the glass, particularly Gd 2 Even if O 3 or Yb 2 O 3 is reduced, a high refractive index and Abbe number can be obtained, and an increase in the liquidus temperature can be suppressed.
- an optical glass with high devitrification resistance that has a refractive index of 1.75 or more and an Abbe number of 23 or more and 50 or less but has a small specific gravity and can contribute to weight reduction of an optical device is obtained at a lower cost. be able to.
- the second optical glass has a B 2 O 3 component of 1.0 to 30.0% and a La 2 O 3 component of 10.0 to 60% by mass with respect to the total mass of the glass having an oxide equivalent composition. containing 2.0%, the content of Gd 2 O 3 component is less 20.0%.
- the raw material cost of the optical glass is reduced.
- the Gd 2 O 3 component is reduced by using the B 2 O 3 component and the La 2 O 3 component as a base, it has a refractive index of 1.75 or more and an Abbe number of 30 to 50.
- the liquidus temperature of the glass tends to be low. Therefore, a stable optical glass having a refractive index and an Abbe number within a desired range and having high devitrification resistance and an optical element using the same can be obtained at a lower cost.
- the third optical glass, 1.0 to 30.0% of B 2 O 3 component in mass% and La 2 O 3 ingredients 10.0 contains to 60.0%, more than 35 Abbe number ( ⁇ d ) and the content of the Ta 2 O 5 component is less than 15.0%.
- the amount of Ta 2 O 5 component requiring melting for expensive and high temperature to reduce the raw material cost and manufacturing cost of the optical glass is reduced.
- the liquidus temperature tends to be low while having an Abbe number ( ⁇ d ) of 35 or more. Therefore, while the refractive index (n d) and Abbe number ([nu d) is within the desired range, and high optical glass devitrification resistance, it is possible to obtain an optical device using the same more expensive.
- the composition range of each component constituting the optical glass of the present invention is described below. Unless otherwise specified in the present specification, the contents of the respective components are all expressed in mass% with respect to the total mass of the glass in terms of oxide.
- the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into an oxide when melted. It is the composition which described each component contained in glass by making the total mass of the said production
- the B 2 O 3 component is an essential component that is indispensable as a glass-forming oxide.
- the content of the B 2 O 3 component is preferably 1.0%, more preferably 3.0%, still more preferably 5.0%, still more preferably 8.5%, and even more preferably 10.5%. Is the lower limit.
- the content of the B 2 O 3 component 30.0% or less a larger refractive index can be easily obtained, and deterioration of chemical durability can be suppressed.
- the content of the B 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, still more preferably 18.0%, still more preferably 16.4%. Is the upper limit.
- the B 2 O 3 component H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like can be used as a raw material.
- the La 2 O 3 component is a component that increases the refractive index of the glass and decreases the dispersion (increases the Abbe number).
- a desired high refractive index can be obtained by containing 10.0% or more of the La 2 O 3 component.
- the content of the La 2 O 3 component is preferably 10.0%, more preferably 20.0%, still more preferably 25.0%, still more preferably 26.0%, and even more preferably 30.0%. More preferably, the lower limit is 34.0%, more preferably 35.0%, and still more preferably 39.0%.
- the devitrification resistance of the glass can be increased by setting the content of the La 2 O 3 component to 60.0% or less.
- the content of the La 2 O 3 component is preferably 60.0%, more preferably 58.0%, even more preferably 56.0%, still more preferably 55.0%, and even more preferably 50.0%. Is the upper limit.
- the La 2 O 3 component La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
- the Y 2 O 3 component is an optional component that can suppress the material cost of the glass and reduce the specific gravity while maintaining a high refractive index and a high Abbe number when it contains more than 0%.
- This Y 2 O 3 component is useful for the optical glass of the present invention because the material cost is low among the rare earth elements and the specific gravity is easily reduced as compared with other rare earth elements. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, still more preferably more than 0.5%, still more preferably more than 1.0%, still more preferably 1. It may be more than 0%.
- the upper limit of the content of the Y 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, and even more preferably 15.0%.
- Y 2 O 3 component Y 2 O 3 , YF 3 or the like can be used as a raw material.
- the content of the Gd 2 O 3 component is preferably 40.0%, more preferably 30.0%, still more preferably 20.0%, still more preferably 15.0%, and even more preferably 10.0%. Is the upper limit, more preferably less than 10.0%, and still more preferably 9.5%.
- Gd 2 O 3 component Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
- the Yb 2 O 3 component is an optional component that can increase the refractive index of the glass and reduce the dispersion when it exceeds 0%.
- the content of the Yb 2 O 3 component is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
- Yb 2 O 3 component Yb 2 O 3 or the like can be used as a raw material.
- Sum (mass sum) of contents of Ln 2 O 3 components (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 75.0% or less Is preferred.
- the dispersion of the glass can be reduced by setting this sum to 30.0% or more. Therefore, the mass sum of the Ln 2 O 3 component is preferably 30.0%, more preferably 35.0%, more preferably 40.0%, still more preferably 45.0%, and even more preferably 48.0%. More preferably, the lower limit is 54.0%.
- the mass sum of Ln 2 O 3 component is preferably 75.0%, more preferably 70.0, more preferably 68.0%, more preferably 65.0%, more preferably 60.0% Is the upper limit.
- the ratio of the sum of the contents of the Gd 2 O 3 component and the Yb 2 O 3 component to the sum of the contents of the La 2 O 3 component and the Y 2 O 3 component (mass ratio). ) Is preferably 0.50 or less.
- the mass ratio (Gd 2 O 3 + Yb 2 O 3 ) / (La 2 O 3 + Y 2 O 3 ) is preferably 0.50, more preferably 0.30, still more preferably 0.22, and even more preferably.
- the upper limit is 0.20, more preferably 0.19.
- the Ta 2 O 5 component is an optional component that can increase the refractive index of the glass, increase the devitrification resistance, and increase the viscosity of the molten glass when it contains more than 0%.
- the Ta 2 O 5 component by reducing the expensive Ta 2 O 5 component to 15.0% or less, the material cost of the glass is reduced, so that a cheaper optical glass can be produced.
- the melting temperature of a raw material becomes low by this and the energy required for melting of a raw material is reduced, the manufacturing cost of optical glass can also be reduced.
- the content of the Ta 2 O 5 component is preferably 15.0% or less, more preferably less than 15.0%, even more preferably 13.0% or less, still more preferably less than 13.0%, still more preferably 8.0% or less, more preferably less than 7.0%.
- the content of the Ta 2 O 5 component is preferably 5.0% or less, more preferably less than 5.0%, still more preferably 4.0% or less, Preferably, it is less than 3.0%, more preferably less than 2.0%, more preferably less than 1.0%.
- Ta 2 O 5 component Ta 2 O 5 or the like can be used as a raw material.
- the content of the Ta 2 O 5 component is less than 3.0%
- the content of the Gd 2 O 3 component is less than 10.0%
- the B 2 O 3 component is 16.4% or less. Also good.
- the La 2 O 3 component is contained at 10.0% or more while the content of the Ta 2 O 5 component is less than 15.0% as described above.
- a La 2 O 3 component that is relatively inexpensive among components that increase the refractive index and can maintain a high Abbe number is predetermined. Included. Therefore, it is possible to obtain an optical glass with a low material cost while having a high refractive index and Abbe number. More preferably, the content of the Ta 2 O 5 component may be less than 5.0% and the La 2 O 3 component may be contained at 40.0% or more.
- the content of the Ta 2 O 5 component is 15.0% or less as described above, the sum of the contents of the Ln 2 O 3 component is 35.0%. It is preferable to make it above. Thereby, since the Ta 2 O 5 component more expensive than the rare earth element is reduced while achieving high refractive index and low dispersion of the optical glass, the material cost of the glass can be suppressed. Further, while the Ta 2 O 5 component that lowers the Abbe number is reduced, the desired high Abbe number can be easily obtained by containing a predetermined amount or more of the Ln 2 O 3 component that increases the Abbe number.
- the Ta 2 O 5 component may be 15.0% or less, and the sum of the contents of the Ln 2 O 3 component may be 30.0% or more. More preferably, the content of the Ta 2 O 5 component may be less than 5.0%, and the sum of the contents of the Ln 2 O 3 component may be 40.0% or more. More preferably, the content of the Ta 2 O 5 component may be 4.0% or less, and the sum of the contents of the Ln 2 O 3 component may be 40.0% or more.
- the sum (mass sum) of the contents of the Gd 2 O 3 component, the Yb 2 O 3 component, and the Ta 2 O 5 component is preferably 30.0% or less.
- the mass sum (Gd 2 O 3 + Yb 2 O 3 + Ta 2 O 5 ) is preferably 30.0%, more preferably 20.0%, still more preferably 15.0%, and even more preferably 13.0%. More preferably, the upper limit is 10.0%.
- the WO 3 component is an optional component that can increase the refractive index and increase the devitrification resistance of the glass while reducing the coloring of the glass due to other high refractive index components when it contains more than 0%. Further, WO 3 components, it is also a component can be lowered glass transition temperature. Therefore, the content of the WO 3 component is preferably more than 0%, more preferably 0.1%, still more preferably 0.5%, and even more preferably 0.6%. On the other hand, by setting the content of the WO 3 component to 25.0% or less, coloring of the glass due to the WO 3 component can be reduced and the visible light transmittance can be increased.
- the upper limit of the content of the WO 3 component is preferably 25.0%, more preferably 20.0%, still more preferably 15.0%, still more preferably 10.0%, and even more preferably 7.0%.
- WO 3 component WO 3 or the like can be used as a raw material.
- the content of the Nb 2 O 5 component when ultra containing 0%, increased the refractive index of the glass, and is an optional component that enhances devitrification resistance. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 1.5%, still more preferably more than 2.0%, still more preferably 4. It may be over 0%. On the other hand, by reducing the content of the Nb 2 O 5 component to 20.0% or less, it is possible to reduce the devitrification resistance of the glass due to the excessive content of the Nb 2 O 5 component and the transmittance of visible light. Can be suppressed.
- the content of the Nb 2 O 5 component is preferably 20.0%, more preferably 15.0%, still more preferably 13.0%, and still more preferably 10.0%.
- Nb 2 O 5 component Nb 2 O 5 or the like can be used as a raw material.
- the TiO 2 component is an optional component that can increase the refractive index of the glass, adjust the Abbe number to a low level, and increase the resistance to devitrification when it contains more than 0%. Therefore, particularly in the first and second optical glasses, the content of the TiO 2 component is preferably more than 0%, more preferably 0.5%, and even more preferably 1.0%. On the other hand, by setting the content of TiO 2 to 30.0% or less, the coloring of the glass is reduced to increase the visible light transmittance, and the glass Abbe number can be prevented from being lowered more than necessary. Further, devitrification due to excessive inclusion of the TiO 2 component can be suppressed.
- the upper limit of the content of the TiO 2 component is preferably 30.0%, more preferably 28.0%, and still more preferably 25.0%.
- the content of the TiO 2 component is preferably 20.0%, more preferably 18.0%, still more preferably 15.0%, and even more preferably 10.0%. It may be less.
- the content of the TiO 2 component is preferably 15.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. Also good.
- TiO 2 component TiO 2 or the like can be used as a raw material.
- the sum (mass sum) of the contents of the Nb 2 O 5 component and the WO 3 component is preferably 1.0% or more and 30.0% or less.
- the refractive index of the glass can be increased and coloring can be reduced even if the Ta 2 O 5 component and rare earth elements are reduced in order to reduce the material cost of the glass.
- devitrification resistance can be improved.
- the mass sum (Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, still more preferably more than 4.0%, and still more preferably more than 5.7%. More preferably, it is more than 7.0%, more preferably more than 8.0%.
- the upper limit of the mass sum (Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, and still more preferably 20.0%.
- the sum (mass sum) of the contents of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is preferably 30.0% or less.
- the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, even more preferably 19.0%, still more preferably 16.0%, and even more preferably.
- the upper limit is 14.0%.
- this sum may be 1.0% or more.
- the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, and even more preferably more than 4.0%.
- the content of the Ta 2 O 5 component is reduced to 15.0% or less while reducing the B 2 O 3 component to 30.0% or less as described above, and Nb 2 O 5
- the sum of the contents of the components and the WO 3 components is preferably 1.0% or more.
- the B 2 O 3 component to lower the refractive index is reduced, Nb 2 O 5 component, and WO 3 components to increase the refractive index of that contained more than a predetermined refractive index of the glass is increased.
- the expensive Ta 2 O 5 component is reduced, while the cheaper Nb 2 O 5 component and the WO 3 component are contained, so An optical glass with high devitrification is obtained. Therefore, the material cost of optical glass having a high refractive index and high devitrification resistance can be suppressed.
- the B 2 O 3 component is 16.4% or less
- the content of the Ta 2 O 5 component is 5.0% or less
- the sum of the contents of the Nb 2 O 5 component and the WO 3 component is 7 It may be 0% or more.
- the SiO 2 component is an optional component that, when contained over 0%, can increase the viscosity of the molten glass, reduce the coloration of the glass, and increase the devitrification resistance. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably 1.0%, still more preferably 2.0%, and even more preferably 3.0%. In particular, in the third optical glass, the content of the SiO 2 component may be 5.0% or more, more preferably more than 6.0%. On the other hand, when the content of the SiO 2 component is 30.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed.
- the upper limit of the content of the SiO 2 component is preferably 30.0%, more preferably 20.0%, more preferably 15.0%, and still more preferably 10.0%. In particular, in the first and second optical glasses, the upper limit may be 8.0%.
- SiO 2 component SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
- the sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably 1.0% or more and 30.0% or less.
- the mass sum (B 2 O 3 + SiO 2 ) is preferably 1.0%, more preferably 5.0%, still more preferably 10.0%, still more preferably 15.0%, and even more preferably 18. 0% is the lower limit.
- the mass sum (B 2 O 3 + SiO 2 ) is preferably 30.0%, more preferably 27.0%, still more preferably 25.0%, still more preferably 24.0%, and even more preferably 21.%.
- the upper limit is 0%.
- the ratio (mass ratio) of the sum of the contents of the Nb 2 O 5 component and the WO 3 component to the sum of the contents of the B 2 O 3 component and the SiO 2 component is 0. .15 or more and 2.00 or less is preferable.
- the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 0.15, more preferably 0.25, still more preferably 0.30, and even more preferably 0.35. More preferably, the lower limit is 0.40, more preferably 0.43.
- the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 2.00, more preferably 1.50, and still more preferably 1.20.
- the MgO component, CaO component, SrO component, and BaO component are optional components that can enhance the meltability of the glass raw material and the devitrification resistance of the glass when the content exceeds 0%.
- the content of each of the MgO component, the CaO component and the SrO component is made 20.0% or less and / or the content of the BaO component is made 25.0% or less. Reduction of refractive index and devitrification resistance due to excessive inclusion can be suppressed. Therefore, the content of each of the MgO component, CaO component and SrO component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. To do.
- the content of the BaO component is preferably 25.0%, more preferably 15.0%, still more preferably 10.0%, and still more preferably 8.0%.
- MgO component, CaO component, SrO component and BaO component are MgCO 3 , MgF 2 , CaCO 3 , CaF 2 , Sr (NO 3 ) 2 , SrF 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2 and the like as raw materials. Can be used.
- the total content (mass sum) of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 25.0% or less.
- R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba.
- the upper limit of the mass sum of the RO component is preferably 25.0%, more preferably 15.0%, still more preferably 10.0%, and still more preferably 5.0%.
- the Li 2 O component is an optional component that can improve the meltability of the glass and lower the glass transition point when it contains more than 0%.
- the content of the Li 2 O component 10.0% or less it is difficult to lower the refractive index of the glass and the devitrification resistance can be improved.
- the viscosity of the molten glass can be increased thereby, the striae of the glass can be reduced, and the chemical durability of the glass can be increased.
- the content of the Li 2 O component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, and even more preferably 1 0.0% or less, more preferably less than 1.0%, more preferably 0.3% or less, and still more preferably less than 0.3%.
- the Li 2 O component Li 2 CO 3 , LiNO 3 , Li 2 CO 3 or the like can be used as a raw material.
- Na 2 O component, K 2 O component, and Cs 2 O component are optional components that can improve the meltability of glass, increase the devitrification resistance of glass, and lower the glass transition point when contained in excess of 0%. It is.
- the content of each of the Na 2 O component, the K 2 O component, and the Cs 2 O component is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and even more preferably 3%. 0.0% is the upper limit.
- Na 2 O component, K 2 O component and Cs 2 O component, NaNO 3 as a raw material NaF, Na 2 SiF 6, K 2 CO 3, KNO 3, KF, KHF 2, K 2 SiF 6, Cs 2 CO 3 , CsNO 3 or the like can be used.
- the content of the Ta 2 O 5 component is less than 15.0% as described above, but the B 2 O 3 component is reduced to 30.0% or less, and the Li 2 O component
- the content of is preferably 10.0% or less.
- the content of the Ta 2 O 5 component is less than 5.0%
- the B 2 O 3 component is reduced to 18.0% or less
- the content of the Li 2 O component is less than 1.0%. May be.
- the total amount of Rn 2 O components (wherein Rn is one or more selected from the group consisting of Li, Na, K, and Cs) is preferably 15.0% or less. Thereby, the fall of the refractive index of glass can be suppressed and devitrification resistance can be improved. Therefore, the upper limit of the mass sum of the Rn 2 O component is preferably 15.0%, more preferably 10.0%, and still more preferably 5.0%.
- the P 2 O 5 component when ultra containing 0%, which is an optional component that enhances devitrification resistance of the glass.
- the content of the P 2 O 5 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
- Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like can be used as a raw material.
- the GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when it contains more than 0%.
- GeO 2 has a high raw material price, by material cost increases and the amount is large, the effect of cost reduction by reducing the Gd 2 O 3 component and the Ta 2 O 5 component or the like is diminished.
- the content of the GeO 2 component is preferably 10.0%, more preferably 5.0%, still more preferably 1.0%, and most preferably not contained.
- the GeO 2 component GeO 2 or the like can be used as a raw material.
- the ZrO 2 component When the ZrO 2 component is contained in an amount of more than 0%, it can contribute to a higher refractive index and a lower dispersion of the glass, and the devitrification resistance of the glass can be improved. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%. On the other hand, by making the ZrO 2 component 15.0% or less, it is possible to suppress a decrease in the devitrification resistance of the glass due to the excessive inclusion of the ZrO 2 component. Therefore, the upper limit of the content of the ZrO 2 component is preferably 15.0%, more preferably 10.0%, and still more preferably 8.0%. As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.
- the ZnO component is an optional component that can lower the glass transition point and increase chemical durability when it is contained in excess of 0%. Therefore, particularly in the third optical glass, the content of the ZnO component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%. On the other hand, by setting the content of the ZnO component to 25.0% or less, a decrease in the refractive index of glass and a decrease in devitrification resistance can be suppressed. Moreover, since the viscosity of molten glass is raised by this, generation
- the content of the ZnO component is preferably 15.0% or less, more preferably 10.0% or less, still more preferably 5.0% or less, and even more preferably 5. It may be less than 0%, more preferably 1.1% or less.
- ZnO component ZnO, ZnF 2 or the like can be used as a raw material.
- the ZnO component it is preferable to reduce the ZnO component to 25.0% or less while the content of the Ta 2 O 5 component is less than 15.0% as described above.
- the content of the Ta 2 O 5 component may be less than 5.0% and the ZnO component may be 25.0% or less.
- the Al 2 O 3 component and the Ga 2 O 3 component are optional components that can increase the chemical durability of the glass and increase the devitrification resistance of the glass when contained in excess of 0%.
- the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
- Al 2 O 3 component and the Ga 2 O 3 component Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3 or the like can be used as a raw material.
- a Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when it exceeds 0%.
- the content of Bi 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
- Bi 2 O 3 component Bi 2 O 3 or the like can be used as a raw material.
- the TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it is contained in excess of 0%.
- TeO 2 has a problem that it can be alloyed with platinum when a glass raw material is melted in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum.
- the content of the TeO 2 component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably not contained.
- TeO 2 component can use TeO 2 or the like as a raw material.
- the SnO 2 component is an optional component that can be refined by reducing the oxidation of the molten glass and can increase the visible light transmittance of the glass.
- the content of the SnO 2 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
- SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
- the Sb 2 O 3 component is an optional component that can degas the molten glass when it contains more than 0%.
- the content of the Sb 2 O 3 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
- Sb 2 O 3 component Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 .5H 2 O, or the like can be used as a raw material.
- components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
- each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
- lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with high environmental loads, it is desirable that they are not substantially contained, that is, not contained at all except for inevitable mixing.
- each component of Th, Cd, Tl, Os, Be, and Se has tended to be refrained from being used as a harmful chemical material in recent years, and not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that these are not substantially contained.
- the glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention.
- the composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
- the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
- the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
- the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
- the optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, and 1100-1500 ° C. in an electric furnace depending on the difficulty of melting the glass composition. It is produced by melting in the temperature range of 2 to 5 hours, stirring and homogenizing, lowering to an appropriate temperature, casting into a mold, and slow cooling.
- the optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion).
- the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.80, even more preferably 1.83, and even more preferably 1.85.
- the upper limit of this refractive index is preferably 2.20, more preferably 2.15, and even more preferably 2.10.
- the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 23, more preferably 24, still more preferably 25, and even more preferably 27.
- the Abbe number ( ⁇ d ) of the first optical glass is preferably 28, more preferably 30, still more preferably 31, and even more preferably 32.
- the Abbe number ( ⁇ d ) of the third optical glass is preferably 35, more preferably 37, and still more preferably 39.
- the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 50, more preferably 47, and more preferably 45.
- the Abbe number ( ⁇ d ) of the first and second optical glasses is preferably 40, more preferably 39.5, and even more preferably less than 39.
- the optical glass of the present invention is useful in optical design, and the optical system can be miniaturized and the degree of freedom in optical design can be expanded while achieving particularly high imaging characteristics.
- the optical glass of the present invention preferably has high devitrification resistance, more specifically, a low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1300 ° C, more preferably 1290 ° C, and still more preferably 1280 ° C. As a result, even if the molten glass flows out at a lower temperature, crystallization of the produced glass is reduced, and thus devitrification when the glass is formed from a molten state can be reduced, and an optical element using glass The influence on the optical characteristics can be reduced.
- the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is preferably 500 ° C, more preferably 600 ° C, and even more preferably 700 ° C. Also good.
- liquid phase temperature refers to a 30 ml cullet-shaped glass sample placed in a platinum crucible in a 50 ml capacity platinum crucible, completely melted at 1350 ° C., and cooled to a predetermined temperature.
- the glass surface and the presence or absence of crystals in the glass are observed immediately after taking out of the furnace and cooling, and indicates the lowest temperature at which no crystals are observed.
- the predetermined temperature when the temperature is lowered is a temperature in increments of 10 ° C. up to 1300 ° C.
- the optical glass of the present invention has high visible light transmittance, in particular, high transmittance of light on the short wavelength side of visible light, and thereby less coloring.
- the wavelength ( ⁇ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is preferably 550 nm, more preferably 520 nm, still more preferably 500 nm, More preferably, the upper limit is 480 nm.
- the wavelength ( ⁇ 70 ) exhibiting a spectral transmittance of 70% in a sample having a thickness of 10 mm is more preferably 450 nm, and even more preferably 400 nm.
- the shortest wavelength ( ⁇ 5 ) having a spectral transmittance of 5% in a sample having a thickness of 10 mm is preferably 440 nm, more preferably 420 nm, still more preferably 400 nm, further preferably 380 nm.
- the shortest wavelength ( ⁇ 5 ) exhibiting a spectral transmittance of 5% in a sample having a thickness of 10 mm may have an upper limit of 360 nm.
- this optical glass can be preferably used for an optical element that transmits light such as a lens.
- the optical glass of the present invention preferably has a low partial dispersion ratio ( ⁇ g, F). More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) ⁇ with respect to the Abbe number ( ⁇ d ) ⁇ It is preferable to satisfy the relationship ( ⁇ g, F) ⁇ ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6971). Thereby, since an optical glass having a small partial dispersion ratio ( ⁇ g, F) is obtained, the optical glass is useful for reducing chromatic aberration of an optical element.
- ⁇ g, F partial dispersion ratio
- the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ). ( ⁇ d +0.6591), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6611) is set as the lower limit.
- the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6971), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3).
- ⁇ ⁇ d +0.6921) more preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6871).
- the optical glass of the present invention preferably has a small specific gravity. More specifically, the specific gravity of the optical glass of the present invention is preferably 5.50 [g / cm 3 ] or less. Thereby, since the mass of an optical element and an optical apparatus using the same is reduced, it can contribute to the weight reduction of an optical apparatus. Therefore, the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.40, still more preferably 5.30, and still more preferably 5.10. The specific gravity of the optical glass of the present invention is generally about 3.00 or more, more specifically 3.50 or more, and more specifically 4.00 or more in many cases. The specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
- a glass molded body can be produced from the produced optical glass by means of, for example, polishing or molding press molding such as reheat press molding or precision press molding. That is, a glass molded body is manufactured by performing mechanical processing such as grinding and polishing on optical glass, or glass molding is performed by performing a polishing process after performing reheat press molding on a preform manufactured from optical glass.
- a glass molded body can be produced by producing a body, or by performing precision press molding on a preform produced by polishing or a preform formed by known float forming or the like.
- the means for producing the glass molded body is not limited to these means.
- the glass molded body formed from the optical glass of the present invention is useful for various optical elements and optical designs, but it is particularly preferable to use them for optical elements such as lenses and prisms.
- This makes it possible to form a glass molded body with a large diameter, so that the optical elements can be enlarged, but with high definition and high precision imaging characteristics and projection when used in optical equipment such as cameras and projectors. The characteristics can be realized.
- Examples (No. 1 to No. 132) are examples of the first optical glass of the present invention.
- Examples (No. 133 to No. 282) and comparative examples (No. A, No. B) are examples and comparative examples of the second optical glass of the present invention.
- Examples (No. 283 to No. 398) and comparative examples (No. C) are examples and comparative examples of the third optical glass of the present invention.
- the following examples are merely for illustrative purposes, and are not limited to these examples.
- the glasses of the examples and comparative examples of the present invention are ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and metaphosphate compounds corresponding to the raw materials of the respective components.
- the high-purity raw materials used in the above are selected, weighed so as to have the composition ratios of the respective examples shown in the table and mixed uniformly, and then put into a platinum crucible, depending on the melting difficulty of the glass composition. After melting for 2 to 5 hours in a temperature range of 1100 to 1500 ° C. in an electric furnace, the mixture was homogenized with stirring, cast into a mold or the like, and slowly cooled to produce a glass.
- the refractive index, Abbe number, and partial dispersion ratio were determined by measuring the glass obtained at a slow cooling rate of -25 ° C / hr.
- permeability of the glass of an Example and a comparative example was measured according to Japan Optical Glass Industry Association standard JOGIS02.
- the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass.
- a face parallel polished product having a thickness of 10 ⁇ 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and ⁇ 5 (wavelength when the transmittance was 5%) and ⁇ 70 (transmittance). Wavelength at 70%).
- the liquid phase temperature of the glass of the examples and comparative examples is as follows: a 30 cc cullet-shaped glass sample is placed in a platinum crucible in a platinum crucible having a capacity of 50 ml and completely melted at 1350 ° C., 1300 ° C. to 1160 ° C. The temperature is lowered to any temperature set in increments of 10 ° C. and held for 12 hours. After taking out of the furnace and cooling, the glass surface and the presence or absence of crystals in the glass are observed immediately, and the lowest crystal is not observed. The temperature was determined.
- the specific gravity of the glasses of the examples and comparative examples was measured based on the Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
- the optical glasses of the examples of the present invention all had a liquidus temperature of 1300 ° C. or lower, more specifically 1220 ° C. or lower, and were within a desired range.
- the comparative example (No. A) was highly devitrified and did not vitrify, the liquidus temperature could not be measured.
- the liquidus temperature exceeded 1300 degreeC in the comparative example (No. B).
- the optical glass of the Example of this invention has a low liquidus temperature and high devitrification resistance compared with the glass of a comparative example (No.A, No.B).
- each of ⁇ 70 (wavelength at a transmittance of 70%) was 550 nm or less, more specifically, 513 nm or less.
- ⁇ 70 of the first optical glass was 505 nm or less.
- ⁇ 70 of the third optical glass was 391 nm or less.
- the optical glasses of the examples of the present invention all had ⁇ 5 (wavelength at a transmittance of 5%) of 440 nm or less, more specifically 396 nm or less.
- ⁇ 5 of the first optical glass was 379 nm or less.
- ⁇ 5 of the third optical glass was 341 nm or less.
- the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.75 or more, more specifically 1.85 or more, and this refractive index is 2.20 or less, more specifically. Was 2.06 or less, and was within the desired range.
- the refractive index (n d ) of the first optical glass was in the range of 1.87 to 2.01.
- the refractive index (n d ) of the second optical glass was in the range of 1.87 to 2.06.
- the refractive index (n d ) of the third optical glass was in the range of 1.85 to 1.95.
- the optical glasses of the examples of the present invention all have an Abbe number ( ⁇ d ) of 23 or more, more specifically 24 or more, and this Abbe number is 50 or less, more specifically 42 or less, It was within the desired range.
- the Abbe number ( ⁇ d ) of the first optical glass was in the range of 28 to 39.
- the Abbe number ( ⁇ d ) of the second optical glass was in the range of 24 to 39.
- the Abbe number ( ⁇ d ) of the third optical glass was in the range of 35 to 42.
- the optical glasses of the examples of the present invention all have a partial dispersion ratio ( ⁇ g, F) of ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) or more, more specifically ( ⁇ 2.50). ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6658) or more.
- the partial dispersion ratio ( ⁇ g, F) of the first optical glass is ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6683) or more ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6750). ) It was within the following range.
- the Abbe number of the second optical glass ([nu d) is, (- 2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6658) or (-2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6785) below It was in the range.
- the Abbe number of the third optical glass ([nu d) is, (- 2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6691) or (-2.50 ⁇ 10 -3 ⁇ ⁇ d +0.6761) below It was in the range.
- the optical glasses of the examples of the present invention all had a specific gravity of 5.50 or less, more specifically 5.20 or less.
- the specific gravity of the third optical glass was 4.96 or less. Therefore, it became clear that the optical glass of the Example of this invention has small specific gravity.
- the optical glass of the embodiment of the present invention can be manufactured at a low cost while having a refractive index and an Abbe number within a desired range, has high resistance to devitrification, little coloring, and low specific gravity. became.
- a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Abstract
The invention provides, at low cost, glass that has high resistance to devitrification while the index of refraction (nd) and the Abbe number (νd) thereof lie within a desired range. Optical glass includes 1.0 to 30.0% of a B2O3 component and 10.0 to 60.0% of a La2O3 component by mass%. Preferably, this optical glass has an index of refraction (nd) of at least 1.75 and has an Abbe number (νd) between 23 and 50.
Description
本発明は、光学ガラス及び光学素子に関する。
The present invention relates to an optical glass and an optical element.
近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。
In recent years, digitization and high definition of devices using optical systems have been rapidly progressing, and various optical devices such as photographing devices such as digital cameras and video cameras, and image reproduction (projection) devices such as projectors and projection televisions. In this field, there is an increasing demand to reduce the number of optical elements such as lenses and prisms used in the optical system, and to reduce the weight and size of the entire optical system.
光学素子を作製する光学ガラスの中でも特に、光学系全体の軽量化及び小型化を図ることが可能な、1.75以上の屈折率(nd)を有し、23以上50以下のアッベ数(νd)を有する高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとしては、特許文献1~8に代表されるようなガラス組成物が知られている。
Among optical glasses for producing optical elements, in particular, it has a refractive index (n d ) of 1.75 or more and an Abbe number of 23 or more and 50 or less (which can reduce the weight and size of the entire optical system). There is a great demand for high refractive index, low dispersion glass with ν d ). As such a high refractive index and low dispersion glass, glass compositions represented by Patent Documents 1 to 8 are known.
光学ガラスから光学素子を作製する方法としては、例えば、光学ガラスから形成されたゴブ又はガラスブロックに対して研削及び研磨を行って光学素子の形状を得る方法、光学ガラスから形成されたゴブ又はガラスブロックを再加熱して成形(リヒートプレス成形)して得られたガラス成形体を研削及び研磨する方法、及び、ゴブ又はガラスブロックから得られたプリフォーム材を超精密加工された金型で成形(精密モールドプレス成形)して光学素子の形状を得る方法が知られている。いずれの方法であっても、熔融したガラス原料からゴブ又はガラスブロックを形成する際に、安定なガラスが得られることが求められる。ここで、得られるゴブ又はガラスブロックを構成するガラスの失透に対する安定性(耐失透性)が低下してガラスの内部に結晶が発生した場合、もはや光学素子として好適なガラスを得ることができない。
As a method for producing an optical element from optical glass, for example, a gob or glass block formed from optical glass is ground and polished to obtain the shape of the optical element, or a gob or glass formed from optical glass. A method of grinding and polishing a glass molded product obtained by reheating and molding a block (reheat press molding), and molding a preform material obtained from a gob or glass block with an ultra-precision machined mold A method of obtaining the shape of an optical element by (precise mold press molding) is known. Any method is required to obtain a stable glass when a gob or glass block is formed from a molten glass raw material. Here, when the stability (devitrification resistance) with respect to devitrification of the glass which comprises the gob or glass block obtained falls and a crystal | crystallization generate | occur | produces inside glass, it can no longer obtain glass suitable as an optical element. Can not.
また、光学ガラスの材料コストを低減するために、光学ガラスを構成する諸成分の原料費は、なるべく安価であることが望まれる。また、光学ガラスの製造コストを低減するため、原料の熔解性が高く、より低温で熔解することが望まれる。ところが、特許文献1~8に記載されたガラスは、このような要求に十分応えるものとは言い難い。
Also, in order to reduce the material cost of the optical glass, it is desired that the raw material costs of the components constituting the optical glass are as low as possible. Moreover, in order to reduce the manufacturing cost of optical glass, it is desired that the raw material has high meltability and is melted at a lower temperature. However, it is difficult to say that the glasses described in Patent Documents 1 to 8 sufficiently meet such requirements.
また、特に特許文献1及び2に記載されたガラスは、ガラスの比重が大きく、光学素子の質量が大きい問題点があった。すなわち、これらのガラスをカメラやプロジェクタ等の光学機器に用いたときに、光学機器全体の質量が大きくなり易い問題点があった。
In particular, the glasses described in Patent Documents 1 and 2 have a problem that the specific gravity of the glass is large and the mass of the optical element is large. That is, when these glasses are used in optical devices such as cameras and projectors, there is a problem that the mass of the entire optical device tends to increase.
本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(nd)及びアッベ数(νd)が所望の範囲内にありながら、耐失透性が高く安定なガラスを、より安価に得ることにある。
The present invention has been made in view of the above problems, and its object is to provide resistance to devitrification while the refractive index (n d ) and Abbe number (ν d ) are within the desired ranges. It is to obtain a glass having a high and high stability at a lower cost.
また、本発明は、光学機器の軽量化に寄与しうるガラスを得ることも目的とする。
Another object of the present invention is to obtain glass that can contribute to weight reduction of optical equipment.
本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、B2O3成分及びLa2O3成分を必須成分として含有するガラスにおいて、所望の高屈折率及び高アッベ数を有する安定なガラスが得られながらも、ガラスの材料コストが低減されうることを見出し、本発明を完成するに至った。
In order to solve the above-mentioned problems, the present inventors have conducted intensive test studies. As a result, in a glass containing B 2 O 3 component and La 2 O 3 component as essential components, a desired high refractive index and high Abbe. The inventors have found that the material cost of glass can be reduced while obtaining a stable glass having a number, and have completed the present invention.
また、本発明者らは、B2O3成分及びLa2O3成分を必須成分として含有するガラスにおいて、Y2O3成分の含有量を所定の範囲内におくことにより、所望の高屈折率及び高アッベ数を有する安定なガラスが得られながらも、ガラスの材料コストが低減され、且つガラスの比重が小さくなることをも見出した。
In addition, the present inventors include a glass containing B 2 O 3 component and La 2 O 3 component as essential components. By placing the content of the Y 2 O 3 component within a predetermined range, the desired high refraction can be achieved. It has also been found that the glass material cost is reduced and the specific gravity of the glass is reduced while a stable glass having a high ratio and a high Abbe number is obtained.
また、本発明者らは、B2O3成分及びLa2O3成分を含有するガラスにおいてGd2O3成分の含有量を低減することにより、所望の屈折率及びアッベ数を有する安定なガラスが得られながらも、ガラスの材料コストが低減されることをも見出した。
In addition, the present inventors reduced the content of the Gd 2 O 3 component in the glass containing the B 2 O 3 component and the La 2 O 3 component, thereby allowing a stable glass having a desired refractive index and Abbe number. It has also been found that the material cost of glass can be reduced.
また、本発明者らは、B2O3成分及びLa2O3成分を含有し、35以上のアッベ数を有するガラスに対してTa2O5成分の含有量を低減することにより、所望の屈折率及びアッベ数を有しながらもガラスの材料コストが低減され、且つガラスの液相温度が低くなることをも見出した。
具体的には、本発明は以下のようなものを提供する。 In addition, the present inventors reduced the content of the Ta 2 O 5 component to a glass having an Abbe number of 35 or more by containing the B 2 O 3 component and the La 2 O 3 component, thereby reducing the desired content. It has also been found that the glass material cost is reduced and the liquidus temperature of the glass is lowered while having a refractive index and an Abbe number.
Specifically, the present invention provides the following.
具体的には、本発明は以下のようなものを提供する。 In addition, the present inventors reduced the content of the Ta 2 O 5 component to a glass having an Abbe number of 35 or more by containing the B 2 O 3 component and the La 2 O 3 component, thereby reducing the desired content. It has also been found that the glass material cost is reduced and the liquidus temperature of the glass is lowered while having a refractive index and an Abbe number.
Specifically, the present invention provides the following.
(1) 質量%でB2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有する光学ガラス。
(1)% by weight B 2 O 3 ingredient 1.0 to 30.0% and La 2 O 3 component from 10.0 to 60.0% content for optical glass.
(2) 質量%で、Ta2O5成分の含有量が15.0%以下である(1)記載の光学ガラス。
(2) The optical glass according to (1), wherein the content of the Ta 2 O 5 component is 15.0% by mass or less.
(3) 35以上のアッベ数(νd)を有し、Ta2O5成分の含有量が15.0%未満である(1)又は(2)記載の光学ガラス。
(3) The optical glass according to (1) or (2), which has an Abbe number (ν d ) of 35 or more and a Ta 2 O 5 component content of less than 15.0%.
(4) 質量%で、Y2O3成分の含有量が30.0%以下である(1)から(3)のいずれか記載の光学ガラス。
(4) The optical glass according to any one of (1) to (3), wherein the content of the Y 2 O 3 component is 30.0% by mass or less.
(5) 質量%で、Gd2O3成分の含有量が40.0%以下である(1)から(4)のいずれか記載の光学ガラス。
(5) The optical glass according to any one of (1) to (4), wherein the Gd 2 O 3 component content is 40.0% by mass or less.
(6) 質量%で、Gd2O3成分の含有量が20.0%以下である(1)から(5)のいずれか記載の光学ガラス。
(6) The optical glass according to any one of (1) to (5), wherein the Gd 2 O 3 component content is 20.0% by mass or less.
(7) 質量%で、Yb2O3成分の含有量が20.0%以下である(1)から(6)のいずれか記載の光学ガラス。
(7) The optical glass according to any one of (1) to (6), wherein the content of the Yb 2 O 3 component is 20.0% by mass or less.
(8) Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上75.0%以下である(1)から(7)のいずれか記載の光学ガラス。
(8) The mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 75.0% or less (1 ) To (7).
(9) Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が35.0%以上75.0%以下である(1)から(8)のいずれか記載の光学ガラス。
(9) Ln 2 O 3 component (wherein, Ln is La, Gd, Y, 1 or more selected from the group consisting of Yb) mass sum is less than 75.0% or more 35.0% (1 ) To (8).
(10) Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上70.0%以下である(1)から(9)のいずれか記載の光学ガラス。
(10) The mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 70.0% or less (1 ) To (9).
(11) 質量比(Gd2O3+Yb2O3)/(La2O3+Y2O3)が0.50以下である(1)から(10)のいずれか記載の光学ガラス。
(11) The optical glass according to any one of (1) to (10), wherein the mass ratio (Gd 2 O 3 + Yb 2 O 3 ) / (La 2 O 3 + Y 2 O 3 ) is 0.50 or less.
(12) Gd2O3成分、Yb2O3成分及びTa2O5成分の含有量の和が30.0%以下である(1)から(11)のいずれか記載の光学ガラス。
(12) The optical glass according to any one of (1) to (11), wherein the sum of the contents of the Gd 2 O 3 component, the Yb 2 O 3 component, and the Ta 2 O 5 component is 30.0% or less.
(13) Gd2O3成分、Yb2O3成分及びTa2O5成分の含有量の和が20.0%以下である(1)から(12)のいずれか記載の光学ガラス。
(13) The optical glass according to any one of (1) to (12), wherein the sum of the contents of the Gd 2 O 3 component, the Yb 2 O 3 component, and the Ta 2 O 5 component is 20.0% or less.
(14) 質量%で
TiO2成分 0~30.0%
Nb2O5成分 0~20.0%
WO3成分 0~25.0%
である(1)から(13)のいずれか記載の光学ガラス。 (14) TiO 2 component in mass% 0 to 30.0%
Nb 2 O 5 component 0-20.0%
WO 3 component 0-25.0%
The optical glass according to any one of (1) to (13).
TiO2成分 0~30.0%
Nb2O5成分 0~20.0%
WO3成分 0~25.0%
である(1)から(13)のいずれか記載の光学ガラス。 (14) TiO 2 component in mass% 0 to 30.0%
Nb 2 O 5 component 0-20.0%
WO 3 component 0-25.0%
The optical glass according to any one of (1) to (13).
(15) 質量%で
WO3成分 0~25.0%
Nb2O5成分 0~20.0%
TiO2成分 0~30.0%
である(1)から(14)のいずれか記載の光学ガラス。 (15) By weight% WO 3 component 0-25.0%
Nb 2 O 5 component 0-20.0%
TiO 2 component 0-30.0%
The optical glass according to any one of (1) to (14).
WO3成分 0~25.0%
Nb2O5成分 0~20.0%
TiO2成分 0~30.0%
である(1)から(14)のいずれか記載の光学ガラス。 (15) By weight% WO 3 component 0-25.0%
Nb 2 O 5 component 0-20.0%
TiO 2 component 0-30.0%
The optical glass according to any one of (1) to (14).
(16) 質量%で、TiO2成分の含有量が20.0%以下である(1)から(15)のいずれか記載の光学ガラス。
(16) The optical glass according to any one of (1) to (15), wherein the content of the TiO 2 component is 20.0% or less by mass.
(17) 質量%で
TiO2成分 0~15.0%
Nb2O5成分 0~20.0%
WO3成分 0~20.0%
である(1)から(16)のいずれか記載の光学ガラス。 (17) TiO 2 component in mass% 0 to 15.0%
Nb 2 O 5 component 0-20.0%
WO 3 component 0-20.0%
The optical glass according to any one of (1) to (16).
TiO2成分 0~15.0%
Nb2O5成分 0~20.0%
WO3成分 0~20.0%
である(1)から(16)のいずれか記載の光学ガラス。 (17) TiO 2 component in mass% 0 to 15.0%
Nb 2 O 5 component 0-20.0%
WO 3 component 0-20.0%
The optical glass according to any one of (1) to (16).
(18) Nb2O5成分及びWO3成分の含有量の和が1.0%以上30.0%以下である(1)から(17)のいずれか記載の光学ガラス。
(18) The optical glass according to any one of (1) to (17), wherein the sum of the contents of the Nb 2 O 5 component and the WO 3 component is 1.0% or more and 30.0% or less.
(19) TiO2成分、Nb2O5成分及びWO3成分の含有量の和が30.0%以下である(1)から(18)のいずれか記載の光学ガラス。
(19) The optical glass according to any one of (1) to (18), wherein the sum of the contents of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is 30.0% or less.
(20) 質量%で、SiO2成分の含有量が30.0%以下である(1)から(19)のいずれか記載の光学ガラス。
(20) The optical glass according to any one of (1) to (19), wherein the content of the SiO 2 component is 30.0% or less by mass%.
(21) 質量%で、SiO2成分の含有量が20.0%以下である(1)から(20)のいずれか記載の光学ガラス。
(21) The optical glass according to any one of (1) to (20), wherein the content of the SiO 2 component is 20.0% by mass or less.
(22) B2O3成分及びSiO2成分の含有量の和が1.0%以上30.0%以下である(1)から(21)のいずれか記載の光学ガラス。
(22) The optical glass according to any one of (1) to (21), wherein the sum of the contents of the B 2 O 3 component and the SiO 2 component is 1.0% or more and 30.0% or less.
(23) 質量比(Nb2O5+WO3)/(B2O3+SiO2)が0.15以上2.00以下である(1)から(22)のいずれか記載の光学ガラス。
(23) The optical glass according to any one of (1) to (22), wherein the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is 0.15 or more and 2.00 or less.
(24) 質量%で
MgO成分 0~20.0%
CaO成分 0~20.0%
SrO成分 0~20.0%
BaO成分 0~25.0%
である(1)から(23)のいずれか記載の光学ガラス。 (24) MgO component by mass% 0-20.0%
CaO component 0-20.0%
SrO component 0-20.0%
BaO component 0-25.0%
The optical glass according to any one of (1) to (23).
MgO成分 0~20.0%
CaO成分 0~20.0%
SrO成分 0~20.0%
BaO成分 0~25.0%
である(1)から(23)のいずれか記載の光学ガラス。 (24) MgO component by mass% 0-20.0%
CaO component 0-20.0%
SrO component 0-20.0%
BaO component 0-25.0%
The optical glass according to any one of (1) to (23).
(25) 質量%で
MgO成分 0~10.0%
CaO成分 0~10.0%
SrO成分 0~10.0%
BaO成分 0~25.0%
である(1)から(24)のいずれか記載の光学ガラス。 (25) MgO component by mass% 0 to 10.0%
CaO component 0-10.0%
SrO component 0 ~ 10.0%
BaO component 0-25.0%
The optical glass according to any one of (1) to (24).
MgO成分 0~10.0%
CaO成分 0~10.0%
SrO成分 0~10.0%
BaO成分 0~25.0%
である(1)から(24)のいずれか記載の光学ガラス。 (25) MgO component by mass% 0 to 10.0%
CaO component 0-10.0%
SrO component 0 ~ 10.0%
BaO component 0-25.0%
The optical glass according to any one of (1) to (24).
(26) RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が25.0%以下である(1)から(25)のいずれか記載の光学ガラス。
(26) Any of (1) to (25), wherein the mass sum of the RO component (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 25.0% or less The optical glass described.
(27) 質量%で、Li2O成分の含有量が10.0%以下である(1)から(26)のいずれか記載の光学ガラス。
(27) The optical glass according to any one of (1) to (26), wherein the content of the Li 2 O component is 10.0% by mass or less.
(28) 質量%で
Na2O成分 0~10.0%
K2O成分 0~10.0%
Cs2O成分 0~10.0%
である(1)から(27)のいずれか記載の光学ガラス。 (28) Na 2 O component by mass% 0 to 10.0%
K 2 O component 0-10.0%
Cs 2 O component 0 to 10.0%
The optical glass according to any one of (1) to (27).
Na2O成分 0~10.0%
K2O成分 0~10.0%
Cs2O成分 0~10.0%
である(1)から(27)のいずれか記載の光学ガラス。 (28) Na 2 O component by mass% 0 to 10.0%
K 2 O component 0-10.0%
Cs 2 O component 0 to 10.0%
The optical glass according to any one of (1) to (27).
(29) Rn2O成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)の質量和が15.0%以下である(1)から(28)のいずれか記載の光学ガラス。
(29) Rn 2 O component (wherein, Rn is Li, Na, K, 1 or more selected from the group consisting of Cs) from the mass sum is less than or equal to 15.0% (1) (28) Any one of the optical glasses.
(30) 質量%で、ZnO成分の含有量が25.0%以下である、(1)から(29)のいずれか記載の光学ガラス。
(30) The optical glass according to any one of (1) to (29), wherein the ZnO component content is 25.0% or less by mass%.
(31) 質量%で、ZnO成分の含有量が15.0%以下である、(1)から(30)のいずれか記載の光学ガラス。
(31) The optical glass according to any one of (1) to (30), wherein the ZnO component content is 15.0% or less by mass%.
(32) 質量%で
P2O5成分 0~10.0%
GeO2成分 0~10.0%
ZrO2成分 0~15.0%
ZnO成分 0~15.0%
Al2O3成分 0~10.0%
Ga2O3成分 0~10.0%
Bi2O3成分 0~10.0%
TeO2成分 0~20.0%
SnO2成分 0~1.0%
Sb2O3成分 0~1.0%
である(1)から(31)のいずれか記載の光学ガラス。 (32) P 2 O 5 component by mass% 0 to 10.0%
GeO 2 component 0 ~ 10.0%
ZrO 2 component 0 ~ 15.0%
ZnO component 0-15.0%
Al 2 O 3 component 0 to 10.0%
Ga 2 O 3 component 0 to 10.0%
Bi 2 O 3 component 0 to 10.0%
TeO 2 component 0-20.0%
SnO 2 component 0-1.0%
Sb 2 O 3 component 0-1.0%
The optical glass according to any one of (1) to (31).
P2O5成分 0~10.0%
GeO2成分 0~10.0%
ZrO2成分 0~15.0%
ZnO成分 0~15.0%
Al2O3成分 0~10.0%
Ga2O3成分 0~10.0%
Bi2O3成分 0~10.0%
TeO2成分 0~20.0%
SnO2成分 0~1.0%
Sb2O3成分 0~1.0%
である(1)から(31)のいずれか記載の光学ガラス。 (32) P 2 O 5 component by mass% 0 to 10.0%
GeO 2 component 0 ~ 10.0%
ZrO 2 component 0 ~ 15.0%
ZnO component 0-15.0%
Al 2 O 3 component 0 to 10.0%
Ga 2 O 3 component 0 to 10.0%
Bi 2 O 3 component 0 to 10.0%
TeO 2 component 0-20.0%
SnO 2 component 0-1.0%
Sb 2 O 3 component 0-1.0%
The optical glass according to any one of (1) to (31).
(33) 1.75以上の屈折率(nd)を有し、23以上50以下のアッベ数(νd)を有する(1)から(32)のいずれか記載の光学ガラス。
(33) The optical glass according to any one of (1) to (32), which has a refractive index (n d ) of 1.75 or more and an Abbe number (ν d ) of 23 to 50.
(34) 1.75以上の屈折率(nd)を有し、35以上50以下のアッベ数(νd)を有する(1)から(33)のいずれか記載の光学ガラス。
(34) The optical glass according to any one of (1) to (33), which has a refractive index (n d ) of 1.75 or more and an Abbe number (ν d ) of 35 or more and 50 or less.
(35) 1300℃以下の液相温度を有する(1)から(34)のいずれか記載の光学ガラス。
(35) The optical glass according to any one of (1) to (34), which has a liquidus temperature of 1300 ° C. or lower.
(36) (1)から(35)のいずれか記載の光学ガラスを母材とする光学素子。
(36) An optical element using the optical glass described in any one of (1) to (35) as a base material.
(37) (36)記載の光学素子を備える光学機器。
(37) An optical device comprising the optical element described in (36).
本発明によれば、屈折率(nd)及びアッベ数(νd)が所望の範囲内にありながら、耐失透性が高く安定なガラスを、より安価に得ることができる。
According to the present invention, a glass having high devitrification resistance and stability can be obtained at a lower cost while the refractive index (n d ) and Abbe number (ν d ) are within the desired ranges.
また、本発明によれば、光学機器の軽量化に寄与しうるガラスを得ることもできる。
Moreover, according to the present invention, it is possible to obtain glass that can contribute to weight reduction of the optical device.
本発明の光学ガラスは、酸化物換算組成のガラス全質量に対する質量%で、B2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有する。La2O3成分を必須成分として含有し、且つ他の成分の含有量を所定の範囲内にすることで、Gd2O3やTa2O5等の高価な成分の使用量を減少させても、高い屈折率及びアッベ数が得られ、且つ液相温度の上昇が抑えられる。そのため、屈折率及びアッベ数が所望の範囲内にありながら、耐失透性が高く安定な光学ガラスを、より安価に得ることができる。
The optical glass of the present invention, oxides by mass% with respect to the glass the total weight of the composition in terms of, B 2 O 3 component from 1.0 to 30.0% and content of La 2 O 3 component from 10.0 to 60.0% To do. By containing the La 2 O 3 component as an essential component and keeping the content of other components within a predetermined range, the amount of expensive components such as Gd 2 O 3 and Ta 2 O 5 can be reduced. However, a high refractive index and Abbe number can be obtained, and an increase in the liquidus temperature can be suppressed. Therefore, it is possible to obtain an optical glass having a high devitrification resistance and a stable optical glass at a lower cost while the refractive index and the Abbe number are within the desired ranges.
このうち、第1の光学ガラスは、酸化物換算組成のガラス全質量に対する質量%で、B2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有し、Y2O3成分の含有量が30.0%以下である。La2O3成分を必須成分として含有し、且つY2O3成分の含有量を所定の範囲内にすることで、高価であり且つガラスの比重を増加することの多い希土類元素、特にGd2O3やYb2O3を低減しても、高い屈折率及びアッベ数が得られ、且つ液相温度の上昇が抑えられる。そのため、1.75以上の屈折率及び23以上50以下のアッベ数を有しながらも、比重が小さく光学機器の軽量化に寄与しうる、耐失透性の高い光学ガラスを、より安価に得ることができる。
Of these, the first optical glass, oxides by mass% with respect to the glass the total weight of the composition in terms of, B 2 O 3 component from 1.0 to 30.0% and La 2 O 3 component from 10.0 to 60. 0% is contained, and the content of the Y 2 O 3 component is 30.0% or less. By containing the La 2 O 3 component as an essential component and making the content of the Y 2 O 3 component within a predetermined range, rare earth elements that are expensive and often increase the specific gravity of the glass, particularly Gd 2 Even if O 3 or Yb 2 O 3 is reduced, a high refractive index and Abbe number can be obtained, and an increase in the liquidus temperature can be suppressed. Therefore, an optical glass with high devitrification resistance that has a refractive index of 1.75 or more and an Abbe number of 23 or more and 50 or less but has a small specific gravity and can contribute to weight reduction of an optical device is obtained at a lower cost. be able to.
また、第2の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有し、Gd2O3成分の含有量が20.0%以下である。Gd2O3成分の含有量を低減することによって、希土類元素の中でも特に高価なGd2O3成分の使用量が減少するため、光学ガラスの原料コストが低減される。それとともに、B2O3成分及びLa2O3成分をベースとすることにより、Gd2O3成分を低減しても、1.75以上の屈折率及び30以上50以下のアッベ数を有しながらも、ガラスの液相温度が低くなり易くなる。このため、屈折率及びアッベ数が所望の範囲内にあり、且つ耐失透性が高く安定な光学ガラスと、これを用いた光学素子をより安価に得ることができる。
The second optical glass has a B 2 O 3 component of 1.0 to 30.0% and a La 2 O 3 component of 10.0 to 60% by mass with respect to the total mass of the glass having an oxide equivalent composition. containing 2.0%, the content of Gd 2 O 3 component is less 20.0%. By reducing the content of Gd 2 O 3 component, to reduce the amount of the particular expensive Gd 2 O 3 component among the rare earth elements, the raw material cost of the optical glass is reduced. At the same time, even if the Gd 2 O 3 component is reduced by using the B 2 O 3 component and the La 2 O 3 component as a base, it has a refractive index of 1.75 or more and an Abbe number of 30 to 50. However, the liquidus temperature of the glass tends to be low. Therefore, a stable optical glass having a refractive index and an Abbe number within a desired range and having high devitrification resistance and an optical element using the same can be obtained at a lower cost.
また、第3の光学ガラスは、質量%でB2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有し、35以上のアッベ数(νd)を有し、Ta2O5成分の含有量が15.0%未満である。Ta2O5成分の含有量を低減することによって、高価であり且つ高温での熔解を要するTa2O5成分の使用量が減少するため、光学ガラスの原料コスト及び製造コストが低減される。それとともに、B2O3成分及びLa2O3成分をベースとすることにより、35以上のアッベ数(νd)を有しながらも、液相温度が低くなり易くなる。このため、屈折率(nd)及びアッベ数(νd)が所望の範囲内にありながら、耐失透性が高い光学ガラスと、これを用いた光学素子をより安価に得ることができる。
The third optical glass, 1.0 to 30.0% of B 2 O 3 component in mass% and La 2 O 3 ingredients 10.0 contains to 60.0%, more than 35 Abbe number ( ν d ) and the content of the Ta 2 O 5 component is less than 15.0%. By reducing the content of Ta 2 O 5 component, the amount of Ta 2 O 5 component requiring melting for expensive and high temperature to reduce the raw material cost and manufacturing cost of the optical glass is reduced. At the same time, by using the B 2 O 3 component and the La 2 O 3 component as a base, the liquidus temperature tends to be low while having an Abbe number (ν d ) of 35 or more. Therefore, while the refractive index (n d) and Abbe number ([nu d) is within the desired range, and high optical glass devitrification resistance, it is possible to obtain an optical device using the same more expensive.
以下、本発明の光学ガラスの実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。
Hereinafter, embodiments of the optical glass of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. be able to. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.
[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。 [Glass component]
The composition range of each component constituting the optical glass of the present invention is described below. Unless otherwise specified in the present specification, the contents of the respective components are all expressed in mass% with respect to the total mass of the glass in terms of oxide. Here, the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into an oxide when melted. It is the composition which described each component contained in glass by making the total mass of the said production | generation oxide into 100 mass%.
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中で特に断りがない場合、各成分の含有量は、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。 [Glass component]
The composition range of each component constituting the optical glass of the present invention is described below. Unless otherwise specified in the present specification, the contents of the respective components are all expressed in mass% with respect to the total mass of the glass in terms of oxide. Here, the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as a raw material of the glass component of the present invention are all decomposed and changed into an oxide when melted. It is the composition which described each component contained in glass by making the total mass of the said production | generation oxide into 100 mass%.
<必須成分、任意成分について>
B2O3成分は、ガラス形成酸化物として欠かすことの出来ない必須成分である。
特に、B2O3成分を1.0%以上含有することで、ガラスの耐失透性を高められ、且つガラスの分散を小さくできる。従って、B2O3成分の含有量は、好ましくは1.0%、より好ましくは3.0%、さらに好ましくは5.0%、さらに好ましくは8.5%、さらに好ましくは10.5%を下限とする。
一方、B2O3成分の含有量を30.0%以下にすることで、より大きな屈折率を得易くでき、化学的耐久性の悪化を抑えられる。従って、B2O3成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、さらに好ましくは18.0%、さらに好ましくは16.4%を上限とする。
B2O3成分は、原料としてH3BO3、Na2B4O7、Na2B4O7・10H2O、BPO4等を用いることができる。 <About essential and optional components>
The B 2 O 3 component is an essential component that is indispensable as a glass-forming oxide.
In particular, by containing 1.0% or more of the B 2 O 3 component, the devitrification resistance of the glass can be enhanced and the dispersion of the glass can be reduced. Therefore, the content of the B 2 O 3 component is preferably 1.0%, more preferably 3.0%, still more preferably 5.0%, still more preferably 8.5%, and even more preferably 10.5%. Is the lower limit.
On the other hand, by making the content of the B 2 O 3 component 30.0% or less, a larger refractive index can be easily obtained, and deterioration of chemical durability can be suppressed. Therefore, the content of the B 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, still more preferably 18.0%, still more preferably 16.4%. Is the upper limit.
As the B 2 O 3 component, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like can be used as a raw material.
B2O3成分は、ガラス形成酸化物として欠かすことの出来ない必須成分である。
特に、B2O3成分を1.0%以上含有することで、ガラスの耐失透性を高められ、且つガラスの分散を小さくできる。従って、B2O3成分の含有量は、好ましくは1.0%、より好ましくは3.0%、さらに好ましくは5.0%、さらに好ましくは8.5%、さらに好ましくは10.5%を下限とする。
一方、B2O3成分の含有量を30.0%以下にすることで、より大きな屈折率を得易くでき、化学的耐久性の悪化を抑えられる。従って、B2O3成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、さらに好ましくは18.0%、さらに好ましくは16.4%を上限とする。
B2O3成分は、原料としてH3BO3、Na2B4O7、Na2B4O7・10H2O、BPO4等を用いることができる。 <About essential and optional components>
The B 2 O 3 component is an essential component that is indispensable as a glass-forming oxide.
In particular, by containing 1.0% or more of the B 2 O 3 component, the devitrification resistance of the glass can be enhanced and the dispersion of the glass can be reduced. Therefore, the content of the B 2 O 3 component is preferably 1.0%, more preferably 3.0%, still more preferably 5.0%, still more preferably 8.5%, and even more preferably 10.5%. Is the lower limit.
On the other hand, by making the content of the B 2 O 3 component 30.0% or less, a larger refractive index can be easily obtained, and deterioration of chemical durability can be suppressed. Therefore, the content of the B 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, still more preferably 18.0%, still more preferably 16.4%. Is the upper limit.
As the B 2 O 3 component, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like can be used as a raw material.
La2O3成分は、ガラスの屈折率を高め、分散を小さく(アッベ数を大きく)する成分である。特に、La2O3成分を10.0%以上含有することで、所望の高屈折率を得ることができる。従って、La2O3成分の含有量は、好ましくは10.0%、より好ましくは20.0%、さらに好ましくは25.0%、さらに好ましくは26.0%、さらに好ましくは30.0%、さらに好ましくは34.0%、さらに好ましくは35.0%、さらに好ましくは39.0%を下限とする。
一方、La2O3成分の含有量を60.0%以下にすることで、ガラスの耐失透性を高められる。従って、La2O3成分の含有量は、好ましくは60.0%、より好ましくは58.0%、さらに好ましくは56.0%、さらに好ましくは55.0%、さらに好ましくは50.0%を上限とする。
La2O3成分は、原料としてLa2O3、La(NO3)3・XH2O(Xは任意の整数)等を用いることができる。 The La 2 O 3 component is a component that increases the refractive index of the glass and decreases the dispersion (increases the Abbe number). In particular, a desired high refractive index can be obtained by containing 10.0% or more of the La 2 O 3 component. Accordingly, the content of the La 2 O 3 component is preferably 10.0%, more preferably 20.0%, still more preferably 25.0%, still more preferably 26.0%, and even more preferably 30.0%. More preferably, the lower limit is 34.0%, more preferably 35.0%, and still more preferably 39.0%.
On the other hand, the devitrification resistance of the glass can be increased by setting the content of the La 2 O 3 component to 60.0% or less. Accordingly, the content of the La 2 O 3 component is preferably 60.0%, more preferably 58.0%, even more preferably 56.0%, still more preferably 55.0%, and even more preferably 50.0%. Is the upper limit.
As the La 2 O 3 component, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
一方、La2O3成分の含有量を60.0%以下にすることで、ガラスの耐失透性を高められる。従って、La2O3成分の含有量は、好ましくは60.0%、より好ましくは58.0%、さらに好ましくは56.0%、さらに好ましくは55.0%、さらに好ましくは50.0%を上限とする。
La2O3成分は、原料としてLa2O3、La(NO3)3・XH2O(Xは任意の整数)等を用いることができる。 The La 2 O 3 component is a component that increases the refractive index of the glass and decreases the dispersion (increases the Abbe number). In particular, a desired high refractive index can be obtained by containing 10.0% or more of the La 2 O 3 component. Accordingly, the content of the La 2 O 3 component is preferably 10.0%, more preferably 20.0%, still more preferably 25.0%, still more preferably 26.0%, and even more preferably 30.0%. More preferably, the lower limit is 34.0%, more preferably 35.0%, and still more preferably 39.0%.
On the other hand, the devitrification resistance of the glass can be increased by setting the content of the La 2 O 3 component to 60.0% or less. Accordingly, the content of the La 2 O 3 component is preferably 60.0%, more preferably 58.0%, even more preferably 56.0%, still more preferably 55.0%, and even more preferably 50.0%. Is the upper limit.
As the La 2 O 3 component, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
Y2O3成分は、0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、ガラスの材料コストを抑えられ、且つ比重を低減できる任意成分である。このY2O3成分は、希土類元素の中でも材料コストが安く、他の希土類元素に比べて比重を低減し易いため、本発明の光学ガラスにとって有用である。従って、Y2O3成分の含有量は、好ましくは0%超、より好ましくは0.5%以上、さらに好ましくは0.5%超、さらに好ましくは1.0%以上、さらに好ましくは1.0%超としてもよい。
一方で、Y2O3成分の含有量を30.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの耐失透性を高められる。従って、Y2O3成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、さらに好ましくは15.0%を上限とする。
Y2O3成分は、原料としてY2O3、YF3等を用いることができる。 The Y 2 O 3 component is an optional component that can suppress the material cost of the glass and reduce the specific gravity while maintaining a high refractive index and a high Abbe number when it contains more than 0%. This Y 2 O 3 component is useful for the optical glass of the present invention because the material cost is low among the rare earth elements and the specific gravity is easily reduced as compared with other rare earth elements. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, still more preferably more than 0.5%, still more preferably more than 1.0%, still more preferably 1. It may be more than 0%.
On the other hand, by setting the content of the Y 2 O 3 component to 30.0% or less, a decrease in the refractive index of the glass can be suppressed and the devitrification resistance of the glass can be enhanced. Accordingly, the upper limit of the content of the Y 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, and even more preferably 15.0%.
As the Y 2 O 3 component, Y 2 O 3 , YF 3 or the like can be used as a raw material.
一方で、Y2O3成分の含有量を30.0%以下にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの耐失透性を高められる。従って、Y2O3成分の含有量は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%、さらに好ましくは15.0%を上限とする。
Y2O3成分は、原料としてY2O3、YF3等を用いることができる。 The Y 2 O 3 component is an optional component that can suppress the material cost of the glass and reduce the specific gravity while maintaining a high refractive index and a high Abbe number when it contains more than 0%. This Y 2 O 3 component is useful for the optical glass of the present invention because the material cost is low among the rare earth elements and the specific gravity is easily reduced as compared with other rare earth elements. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 0.5%, still more preferably more than 0.5%, still more preferably more than 1.0%, still more preferably 1. It may be more than 0%.
On the other hand, by setting the content of the Y 2 O 3 component to 30.0% or less, a decrease in the refractive index of the glass can be suppressed and the devitrification resistance of the glass can be enhanced. Accordingly, the upper limit of the content of the Y 2 O 3 component is preferably 30.0%, more preferably 25.0%, even more preferably 20.0%, and even more preferably 15.0%.
As the Y 2 O 3 component, Y 2 O 3 , YF 3 or the like can be used as a raw material.
Gd2O3成分は、0%超含有する場合に、ガラスの屈折率を高め、且つアッベ数を高められる任意成分である。
一方で、希土類元素の中でも特に高価なGd2O3成分を40.0%以下に低減することで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これによりガラスのアッベ数の必要以上の上昇を抑えられる。従って、Gd2O3成分の含有量は、好ましくは40.0%、より好ましくは30.0%、さらに好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%を上限とし、さらに好ましくは10.0%未満とし、さらに好ましくは9.5%を上限とする。
Gd2O3成分は、原料としてGd2O3、GdF3等を用いることができる。 Gd 2 O 3 component, when 0% ultra containing increasing refractive index of the glass, which is an optional component and increased the Abbe number.
On the other hand, by reducing the particularly expensive Gd 2 O 3 component among rare earth elements to 40.0% or less, the material cost of the glass is reduced, so that a cheaper optical glass can be produced. Moreover, this can suppress the increase of the Abbe number of the glass more than necessary. Therefore, the content of the Gd 2 O 3 component is preferably 40.0%, more preferably 30.0%, still more preferably 20.0%, still more preferably 15.0%, and even more preferably 10.0%. Is the upper limit, more preferably less than 10.0%, and still more preferably 9.5%.
As the Gd 2 O 3 component, Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
一方で、希土類元素の中でも特に高価なGd2O3成分を40.0%以下に低減することで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これによりガラスのアッベ数の必要以上の上昇を抑えられる。従って、Gd2O3成分の含有量は、好ましくは40.0%、より好ましくは30.0%、さらに好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%を上限とし、さらに好ましくは10.0%未満とし、さらに好ましくは9.5%を上限とする。
Gd2O3成分は、原料としてGd2O3、GdF3等を用いることができる。 Gd 2 O 3 component, when 0% ultra containing increasing refractive index of the glass, which is an optional component and increased the Abbe number.
On the other hand, by reducing the particularly expensive Gd 2 O 3 component among rare earth elements to 40.0% or less, the material cost of the glass is reduced, so that a cheaper optical glass can be produced. Moreover, this can suppress the increase of the Abbe number of the glass more than necessary. Therefore, the content of the Gd 2 O 3 component is preferably 40.0%, more preferably 30.0%, still more preferably 20.0%, still more preferably 15.0%, and even more preferably 10.0%. Is the upper limit, more preferably less than 10.0%, and still more preferably 9.5%.
As the Gd 2 O 3 component, Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
Yb2O3成分は、0%超含有する場合に、ガラスの屈折率を高め、且つ分散を小さくできる任意成分である。
一方で、Yb2O3成分の含有量を20.0%以下にすることで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これによりガラスの耐失透性を高められる。従って、Yb2O3成分の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。
Yb2O3成分は、原料としてYb2O3等を用いることができる。 The Yb 2 O 3 component is an optional component that can increase the refractive index of the glass and reduce the dispersion when it exceeds 0%.
On the other hand, since the material cost of glass is reduced by making the content of the Yb 2 O 3 component 20.0% or less, a cheaper optical glass can be produced. This also increases the devitrification resistance of the glass. Therefore, the content of the Yb 2 O 3 component is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
As the Yb 2 O 3 component, Yb 2 O 3 or the like can be used as a raw material.
一方で、Yb2O3成分の含有量を20.0%以下にすることで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これによりガラスの耐失透性を高められる。従って、Yb2O3成分の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。
Yb2O3成分は、原料としてYb2O3等を用いることができる。 The Yb 2 O 3 component is an optional component that can increase the refractive index of the glass and reduce the dispersion when it exceeds 0%.
On the other hand, since the material cost of glass is reduced by making the content of the Yb 2 O 3 component 20.0% or less, a cheaper optical glass can be produced. This also increases the devitrification resistance of the glass. Therefore, the content of the Yb 2 O 3 component is preferably 20.0%, more preferably 10.0%, and still more preferably 5.0%.
As the Yb 2 O 3 component, Yb 2 O 3 or the like can be used as a raw material.
Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の含有量の和(質量和)は、30.0%以上75.0%以下が好ましい。
特に、この和を30.0%以上にすることで、ガラスの分散を小さくできる。従って、Ln2O3成分の質量和は、好ましくは30.0%、より好ましくは35.0%、より好ましくは40.0%、さらに好ましくは45.0%、さらに好ましくは48.0%、さらに好ましくは54.0%を下限とする。
一方で、この和を75.0%以下にすることで、ガラスの液相温度が低くなるため、耐失透性を高められる。従って、Ln2O3成分の質量和は、好ましくは75.0%、より好ましくは70.0%、より好ましくは68.0%、さらに好ましくは65.0%、さらに好ましくは60.0%を上限とする。 Sum (mass sum) of contents of Ln 2 O 3 components (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 75.0% or less Is preferred.
In particular, the dispersion of the glass can be reduced by setting this sum to 30.0% or more. Therefore, the mass sum of the Ln 2 O 3 component is preferably 30.0%, more preferably 35.0%, more preferably 40.0%, still more preferably 45.0%, and even more preferably 48.0%. More preferably, the lower limit is 54.0%.
On the other hand, by setting the sum to 75.0% or less, the liquidus temperature of the glass is lowered, so that the devitrification resistance can be improved. Therefore, the mass sum of Ln 2 O 3 component is preferably 75.0%, more preferably 70.0, more preferably 68.0%, more preferably 65.0%, more preferably 60.0% Is the upper limit.
特に、この和を30.0%以上にすることで、ガラスの分散を小さくできる。従って、Ln2O3成分の質量和は、好ましくは30.0%、より好ましくは35.0%、より好ましくは40.0%、さらに好ましくは45.0%、さらに好ましくは48.0%、さらに好ましくは54.0%を下限とする。
一方で、この和を75.0%以下にすることで、ガラスの液相温度が低くなるため、耐失透性を高められる。従って、Ln2O3成分の質量和は、好ましくは75.0%、より好ましくは70.0%、より好ましくは68.0%、さらに好ましくは65.0%、さらに好ましくは60.0%を上限とする。 Sum (mass sum) of contents of Ln 2 O 3 components (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) is 30.0% or more and 75.0% or less Is preferred.
In particular, the dispersion of the glass can be reduced by setting this sum to 30.0% or more. Therefore, the mass sum of the Ln 2 O 3 component is preferably 30.0%, more preferably 35.0%, more preferably 40.0%, still more preferably 45.0%, and even more preferably 48.0%. More preferably, the lower limit is 54.0%.
On the other hand, by setting the sum to 75.0% or less, the liquidus temperature of the glass is lowered, so that the devitrification resistance can be improved. Therefore, the mass sum of Ln 2 O 3 component is preferably 75.0%, more preferably 70.0, more preferably 68.0%, more preferably 65.0%, more preferably 60.0% Is the upper limit.
特に第1及び第2の光学ガラスでは、La2O3成分及びY2O3成分の含有量の和に対する、Gd2O3成分及びYb2O3成分の含有量の和の比率(質量比)は、0.50以下が好ましい。これにより、高いアッベ数と高い透過率を維持しながらも、高価なGd2O3成分やYb2O3成分の使用が低減されるため、ガラスの材料コストを抑えられる。従って、質量比(Gd2O3+Yb2O3)/(La2O3+Y2O3)は、好ましくは0.50、より好ましくは0.30、さらに好ましくは0.22、さらに好ましくは0.20、さらに好ましくは0.19を上限とする。
Particularly in the first and second optical glasses, the ratio of the sum of the contents of the Gd 2 O 3 component and the Yb 2 O 3 component to the sum of the contents of the La 2 O 3 component and the Y 2 O 3 component (mass ratio). ) Is preferably 0.50 or less. Thereby, since the use of expensive Gd 2 O 3 component and Yb 2 O 3 component is reduced while maintaining a high Abbe number and high transmittance, the material cost of glass can be suppressed. Therefore, the mass ratio (Gd 2 O 3 + Yb 2 O 3 ) / (La 2 O 3 + Y 2 O 3 ) is preferably 0.50, more preferably 0.30, still more preferably 0.22, and even more preferably. The upper limit is 0.20, more preferably 0.19.
Ta2O5成分は、0%超含有する場合に、ガラスの屈折率を高め、耐失透性を高め、且つ熔融ガラスの粘性を高められる任意成分である。
一方で、高価なTa2O5成分を15.0%以下に低減することで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これにより、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストをも低減できる。従って、Ta2O5成分の含有量は、好ましくは15.0%以下、より好ましくは15.0%未満、さらに好ましくは13.0%以下、さらに好ましくは13.0%未満、さらに好ましくは8.0%以下、さらに好ましくは7.0%未満とする。特に、より安価な光学ガラスを作製する観点では、Ta2O5成分の含有量は、好ましくは5.0%以下、より好ましくは5.0%未満、さらに好ましくは4.0%以下、さらに好ましくは3.0%未満、さらに好ましくは2.0%未満、さらに好ましくは1.0%未満とする。
Ta2O5成分は、原料としてTa2O5等を用いることができる。 The Ta 2 O 5 component is an optional component that can increase the refractive index of the glass, increase the devitrification resistance, and increase the viscosity of the molten glass when it contains more than 0%.
On the other hand, by reducing the expensive Ta 2 O 5 component to 15.0% or less, the material cost of the glass is reduced, so that a cheaper optical glass can be produced. Moreover, since the melting temperature of a raw material becomes low by this and the energy required for melting of a raw material is reduced, the manufacturing cost of optical glass can also be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 15.0% or less, more preferably less than 15.0%, even more preferably 13.0% or less, still more preferably less than 13.0%, still more preferably 8.0% or less, more preferably less than 7.0%. In particular, from the viewpoint of producing a cheaper optical glass, the content of the Ta 2 O 5 component is preferably 5.0% or less, more preferably less than 5.0%, still more preferably 4.0% or less, Preferably, it is less than 3.0%, more preferably less than 2.0%, more preferably less than 1.0%.
As the Ta 2 O 5 component, Ta 2 O 5 or the like can be used as a raw material.
一方で、高価なTa2O5成分を15.0%以下に低減することで、ガラスの材料コストが低減されるため、より安価な光学ガラスを作製できる。また、これにより、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストをも低減できる。従って、Ta2O5成分の含有量は、好ましくは15.0%以下、より好ましくは15.0%未満、さらに好ましくは13.0%以下、さらに好ましくは13.0%未満、さらに好ましくは8.0%以下、さらに好ましくは7.0%未満とする。特に、より安価な光学ガラスを作製する観点では、Ta2O5成分の含有量は、好ましくは5.0%以下、より好ましくは5.0%未満、さらに好ましくは4.0%以下、さらに好ましくは3.0%未満、さらに好ましくは2.0%未満、さらに好ましくは1.0%未満とする。
Ta2O5成分は、原料としてTa2O5等を用いることができる。 The Ta 2 O 5 component is an optional component that can increase the refractive index of the glass, increase the devitrification resistance, and increase the viscosity of the molten glass when it contains more than 0%.
On the other hand, by reducing the expensive Ta 2 O 5 component to 15.0% or less, the material cost of the glass is reduced, so that a cheaper optical glass can be produced. Moreover, since the melting temperature of a raw material becomes low by this and the energy required for melting of a raw material is reduced, the manufacturing cost of optical glass can also be reduced. Therefore, the content of the Ta 2 O 5 component is preferably 15.0% or less, more preferably less than 15.0%, even more preferably 13.0% or less, still more preferably less than 13.0%, still more preferably 8.0% or less, more preferably less than 7.0%. In particular, from the viewpoint of producing a cheaper optical glass, the content of the Ta 2 O 5 component is preferably 5.0% or less, more preferably less than 5.0%, still more preferably 4.0% or less, Preferably, it is less than 3.0%, more preferably less than 2.0%, more preferably less than 1.0%.
As the Ta 2 O 5 component, Ta 2 O 5 or the like can be used as a raw material.
特に第3の光学ガラスでは、上述のようにTa2O5成分の含有量を15.0%未満にしながらも、B2O3成分を30.0%以下にすることが好ましい。これにより、屈折率を高める反面で高価なTa2O5成分及びGd2O3成分が低減される一方で、屈折率を下げるB2O3成分が低減されることで、Ta2O5成分及びGd2O3成分の低減による屈折率の低下を抑えられる。そのため、所望の高屈折率を有しながらも、より安価な光学ガラスを得られる。より好ましくは、Ta2O5成分の含有量を3.0%未満にし、Gd2O3成分の含有量を10.0%未満にし、且つB2O3成分を16.4%以下にしてもよい。
In particular, in the third optical glass, it is preferable to make the B 2 O 3 component 30.0% or less while the content of the Ta 2 O 5 component is less than 15.0% as described above. Thereby, while increasing the refractive index, the expensive Ta 2 O 5 component and the Gd 2 O 3 component are reduced, while the B 2 O 3 component that lowers the refractive index is reduced, thereby reducing the Ta 2 O 5 component. and suppressing a decrease in the refractive index due to the reduction of Gd 2 O 3 component. Therefore, a cheaper optical glass can be obtained while having a desired high refractive index. More preferably, the content of the Ta 2 O 5 component is less than 3.0%, the content of the Gd 2 O 3 component is less than 10.0%, and the B 2 O 3 component is 16.4% or less. Also good.
また、特に第3の光学ガラスでは、上述のようにTa2O5成分の含有量を15.0%未満にしながらも、La2O3成分を10.0%以上含有することが好ましい。これにより、屈折率を高める反面で高価なTa2O5成分が低減される一方で、屈折率を上げる成分の中でも比較的安価であり、且つ高アッベ数を維持できるLa2O3成分が所定以上含まれる。そのため、高い屈折率及びアッベ数を有しながらも材料コストの抑えられた光学ガラスを得ることができる。より好ましくは、Ta2O5成分の含有量を5.0%未満にし、且つLa2O3成分を40.0%以上含有してもよい。
Particularly, in the third optical glass, it is preferable that the La 2 O 3 component is contained at 10.0% or more while the content of the Ta 2 O 5 component is less than 15.0% as described above. As a result, while the refractive index is increased, the expensive Ta 2 O 5 component is reduced. On the other hand, a La 2 O 3 component that is relatively inexpensive among components that increase the refractive index and can maintain a high Abbe number is predetermined. Included. Therefore, it is possible to obtain an optical glass with a low material cost while having a high refractive index and Abbe number. More preferably, the content of the Ta 2 O 5 component may be less than 5.0% and the La 2 O 3 component may be contained at 40.0% or more.
また、特に第2及び第3の光学ガラスでは、上述のようにTa2O5成分の含有量を15.0%以下にしながらも、Ln2O3成分の含有量の和を35.0%以上にすることが好ましい。これにより、光学ガラスの高屈折率低分散化を図りながらも、希土類元素よりも高価なTa2O5成分が低減されるため、ガラスの材料コストを抑えられる。また、アッベ数を下げるTa2O5成分が低減される一方で、アッベ数を高めるLn2O3成分が所定以上含有されることで、所望の高いアッベ数を得易くできる。より好ましくは、Ta2O5成分を15.0%以下にし、且つLn2O3成分の含有量の和を30.0%以上にしてもよい。さらに好ましくは、Ta2O5成分の含有量を5.0%未満にし、且つLn2O3成分の含有量の和を40.0%以上にしてもよい。さらに好ましくは、Ta2O5成分の含有量を4.0%以下にし、且つLn2O3成分の含有量の和を40.0%以上にしてもよい。
In particular, in the second and third optical glasses, while the content of the Ta 2 O 5 component is 15.0% or less as described above, the sum of the contents of the Ln 2 O 3 component is 35.0%. It is preferable to make it above. Thereby, since the Ta 2 O 5 component more expensive than the rare earth element is reduced while achieving high refractive index and low dispersion of the optical glass, the material cost of the glass can be suppressed. Further, while the Ta 2 O 5 component that lowers the Abbe number is reduced, the desired high Abbe number can be easily obtained by containing a predetermined amount or more of the Ln 2 O 3 component that increases the Abbe number. More preferably, the Ta 2 O 5 component may be 15.0% or less, and the sum of the contents of the Ln 2 O 3 component may be 30.0% or more. More preferably, the content of the Ta 2 O 5 component may be less than 5.0%, and the sum of the contents of the Ln 2 O 3 component may be 40.0% or more. More preferably, the content of the Ta 2 O 5 component may be 4.0% or less, and the sum of the contents of the Ln 2 O 3 component may be 40.0% or more.
また、本発明の光学ガラスでは、Gd2O3成分、Yb2O3成分及びTa2O5成分の含有量の和(質量和)は、30.0%以下が好ましい。これにより、これら高価な成分の含有量が低減されるため、ガラスの材料コストを抑えられる。従って、質量和(Gd2O3+Yb2O3+Ta2O5)は、好ましくは30.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは13.0%、さらに好ましくは10.0%を上限とする。
In the optical glass of the present invention, the sum (mass sum) of the contents of the Gd 2 O 3 component, the Yb 2 O 3 component, and the Ta 2 O 5 component is preferably 30.0% or less. Thereby, since content of these expensive components is reduced, the material cost of glass can be held down. Accordingly, the mass sum (Gd 2 O 3 + Yb 2 O 3 + Ta 2 O 5 ) is preferably 30.0%, more preferably 20.0%, still more preferably 15.0%, and even more preferably 13.0%. More preferably, the upper limit is 10.0%.
WO3成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら屈折率を高め、且つガラスの耐失透性を高められる任意成分である。また、WO3成分は、ガラス転移点を低くできる成分でもある。そのため、WO3成分の含有量は、好ましくは0%超、より好ましくは0.1%、さらに好ましくは0.5%、さらに好ましくは0.6%を下限としてもよい。
一方で、WO3成分の含有量を25.0%以下にすることで、WO3成分によるガラスの着色を低減して可視光透過率を高めることができる。従って、WO3成分の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは7.0%を上限とする。
WO3成分は、原料としてWO3等を用いることができる。 The WO 3 component is an optional component that can increase the refractive index and increase the devitrification resistance of the glass while reducing the coloring of the glass due to other high refractive index components when it contains more than 0%. Further, WO 3 components, it is also a component can be lowered glass transition temperature. Therefore, the content of the WO 3 component is preferably more than 0%, more preferably 0.1%, still more preferably 0.5%, and even more preferably 0.6%.
On the other hand, by setting the content of the WO 3 component to 25.0% or less, coloring of the glass due to the WO 3 component can be reduced and the visible light transmittance can be increased. Therefore, the upper limit of the content of the WO 3 component is preferably 25.0%, more preferably 20.0%, still more preferably 15.0%, still more preferably 10.0%, and even more preferably 7.0%. And
As the WO 3 component, WO 3 or the like can be used as a raw material.
一方で、WO3成分の含有量を25.0%以下にすることで、WO3成分によるガラスの着色を低減して可視光透過率を高めることができる。従って、WO3成分の含有量は、好ましくは25.0%、より好ましくは20.0%、さらに好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは7.0%を上限とする。
WO3成分は、原料としてWO3等を用いることができる。 The WO 3 component is an optional component that can increase the refractive index and increase the devitrification resistance of the glass while reducing the coloring of the glass due to other high refractive index components when it contains more than 0%. Further, WO 3 components, it is also a component can be lowered glass transition temperature. Therefore, the content of the WO 3 component is preferably more than 0%, more preferably 0.1%, still more preferably 0.5%, and even more preferably 0.6%.
On the other hand, by setting the content of the WO 3 component to 25.0% or less, coloring of the glass due to the WO 3 component can be reduced and the visible light transmittance can be increased. Therefore, the upper limit of the content of the WO 3 component is preferably 25.0%, more preferably 20.0%, still more preferably 15.0%, still more preferably 10.0%, and even more preferably 7.0%. And
As the WO 3 component, WO 3 or the like can be used as a raw material.
Nb2O5成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。そのため、Nb2O5成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは1.5%超、さらに好ましくは2.0%超、さらに好ましくは4.0%超にしてもよい。
一方で、Nb2O5成分の含有量を20.0%以下にすることで、Nb2O5成分の過剰な含有によるガラスの耐失透性の低下や、可視光の透過率の低下を抑えることができる。従って、Nb2O5成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは13.0%、さらに好ましくは10.0%を上限とする。
Nb2O5成分は、原料としてNb2O5等を用いることができる。 Nb 2 O 5 component, when ultra containing 0%, increased the refractive index of the glass, and is an optional component that enhances devitrification resistance. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 1.5%, still more preferably more than 2.0%, still more preferably 4. It may be over 0%.
On the other hand, by reducing the content of the Nb 2 O 5 component to 20.0% or less, it is possible to reduce the devitrification resistance of the glass due to the excessive content of the Nb 2 O 5 component and the transmittance of visible light. Can be suppressed. Therefore, the content of the Nb 2 O 5 component is preferably 20.0%, more preferably 15.0%, still more preferably 13.0%, and still more preferably 10.0%.
As the Nb 2 O 5 component, Nb 2 O 5 or the like can be used as a raw material.
一方で、Nb2O5成分の含有量を20.0%以下にすることで、Nb2O5成分の過剰な含有によるガラスの耐失透性の低下や、可視光の透過率の低下を抑えることができる。従って、Nb2O5成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは13.0%、さらに好ましくは10.0%を上限とする。
Nb2O5成分は、原料としてNb2O5等を用いることができる。 Nb 2 O 5 component, when ultra containing 0%, increased the refractive index of the glass, and is an optional component that enhances devitrification resistance. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 1.5%, still more preferably more than 2.0%, still more preferably 4. It may be over 0%.
On the other hand, by reducing the content of the Nb 2 O 5 component to 20.0% or less, it is possible to reduce the devitrification resistance of the glass due to the excessive content of the Nb 2 O 5 component and the transmittance of visible light. Can be suppressed. Therefore, the content of the Nb 2 O 5 component is preferably 20.0%, more preferably 15.0%, still more preferably 13.0%, and still more preferably 10.0%.
As the Nb 2 O 5 component, Nb 2 O 5 or the like can be used as a raw material.
TiO2成分は、0%超含有する場合に、ガラスの屈折率を高め、アッベ数を低く調整し、且つ耐失透性を高められる任意成分である。そのため、特に第1及び第2の光学ガラスでは、TiO2成分の含有量は、好ましくは0%超とし、より好ましくは0.5%、さらに好ましくは1.0%を下限としてもよい。
一方で、TiO2の含有量を30.0%以下にすることで、ガラスの着色を低減して可視光透過率を高め、ガラスのアッベ数の必要以上の低下を抑えられる。また、TiO2成分の過剰な含有による失透を抑えられる。従って、TiO2成分の含有量は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは25.0%を上限とする。特に、第1の光学ガラスでは、TiO2成分の含有量は、好ましくは20.0%、より好ましくは18.0%、さらに好ましくは15.0%を上限とし、さらに好ましくは10.0%未満としてもよい。また、第3の光学ガラスでは、TiO2成分の含有量は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限としてもよい。
TiO2成分は、原料としてTiO2等を用いることができる。 The TiO 2 component is an optional component that can increase the refractive index of the glass, adjust the Abbe number to a low level, and increase the resistance to devitrification when it contains more than 0%. Therefore, particularly in the first and second optical glasses, the content of the TiO 2 component is preferably more than 0%, more preferably 0.5%, and even more preferably 1.0%.
On the other hand, by setting the content of TiO 2 to 30.0% or less, the coloring of the glass is reduced to increase the visible light transmittance, and the glass Abbe number can be prevented from being lowered more than necessary. Further, devitrification due to excessive inclusion of the TiO 2 component can be suppressed. Therefore, the upper limit of the content of the TiO 2 component is preferably 30.0%, more preferably 28.0%, and still more preferably 25.0%. In particular, in the first optical glass, the content of the TiO 2 component is preferably 20.0%, more preferably 18.0%, still more preferably 15.0%, and even more preferably 10.0%. It may be less. In the third optical glass, the content of the TiO 2 component is preferably 15.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. Also good.
As the TiO 2 component, TiO 2 or the like can be used as a raw material.
一方で、TiO2の含有量を30.0%以下にすることで、ガラスの着色を低減して可視光透過率を高め、ガラスのアッベ数の必要以上の低下を抑えられる。また、TiO2成分の過剰な含有による失透を抑えられる。従って、TiO2成分の含有量は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは25.0%を上限とする。特に、第1の光学ガラスでは、TiO2成分の含有量は、好ましくは20.0%、より好ましくは18.0%、さらに好ましくは15.0%を上限とし、さらに好ましくは10.0%未満としてもよい。また、第3の光学ガラスでは、TiO2成分の含有量は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限としてもよい。
TiO2成分は、原料としてTiO2等を用いることができる。 The TiO 2 component is an optional component that can increase the refractive index of the glass, adjust the Abbe number to a low level, and increase the resistance to devitrification when it contains more than 0%. Therefore, particularly in the first and second optical glasses, the content of the TiO 2 component is preferably more than 0%, more preferably 0.5%, and even more preferably 1.0%.
On the other hand, by setting the content of TiO 2 to 30.0% or less, the coloring of the glass is reduced to increase the visible light transmittance, and the glass Abbe number can be prevented from being lowered more than necessary. Further, devitrification due to excessive inclusion of the TiO 2 component can be suppressed. Therefore, the upper limit of the content of the TiO 2 component is preferably 30.0%, more preferably 28.0%, and still more preferably 25.0%. In particular, in the first optical glass, the content of the TiO 2 component is preferably 20.0%, more preferably 18.0%, still more preferably 15.0%, and even more preferably 10.0%. It may be less. In the third optical glass, the content of the TiO 2 component is preferably 15.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. Also good.
As the TiO 2 component, TiO 2 or the like can be used as a raw material.
特に第1及び第2の光学ガラスでは、Nb2O5成分及びWO3成分の含有量の和(質量和)は、1.0%以上30.0%以下が好ましい。
特に、この和を1.0%以上にすることで、ガラスの材料コストを低減するためにTa2O5成分や希土類元素を低減しても、ガラスの屈折率を高められ、着色を低減でき、且つ耐失透性を高められる。従って、質量和(Nb2O5+WO3)は、好ましくは1.0%を下限とし、より好ましくは2.0%超、さらに好ましくは4.0%超、さらに好ましくは5.7%超、さらに好ましくは7.0%超、さらに好ましくは8.0%超とする。
一方、この和を30.0%以下にすることで、これら成分の過剰な含有による着色やを低減でき、耐失透性を高められる。従って、質量和(Nb2O5+WO3)は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%を上限とする。 In particular, in the first and second optical glasses, the sum (mass sum) of the contents of the Nb 2 O 5 component and the WO 3 component is preferably 1.0% or more and 30.0% or less.
In particular, by making this sum 1.0% or more, the refractive index of the glass can be increased and coloring can be reduced even if the Ta 2 O 5 component and rare earth elements are reduced in order to reduce the material cost of the glass. And devitrification resistance can be improved. Accordingly, the mass sum (Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, still more preferably more than 4.0%, and still more preferably more than 5.7%. More preferably, it is more than 7.0%, more preferably more than 8.0%.
On the other hand, by making this sum 30.0% or less, coloring caused by excessive inclusion of these components can be reduced, and devitrification resistance can be improved. Therefore, the upper limit of the mass sum (Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, and still more preferably 20.0%.
特に、この和を1.0%以上にすることで、ガラスの材料コストを低減するためにTa2O5成分や希土類元素を低減しても、ガラスの屈折率を高められ、着色を低減でき、且つ耐失透性を高められる。従って、質量和(Nb2O5+WO3)は、好ましくは1.0%を下限とし、より好ましくは2.0%超、さらに好ましくは4.0%超、さらに好ましくは5.7%超、さらに好ましくは7.0%超、さらに好ましくは8.0%超とする。
一方、この和を30.0%以下にすることで、これら成分の過剰な含有による着色やを低減でき、耐失透性を高められる。従って、質量和(Nb2O5+WO3)は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは20.0%を上限とする。 In particular, in the first and second optical glasses, the sum (mass sum) of the contents of the Nb 2 O 5 component and the WO 3 component is preferably 1.0% or more and 30.0% or less.
In particular, by making this sum 1.0% or more, the refractive index of the glass can be increased and coloring can be reduced even if the Ta 2 O 5 component and rare earth elements are reduced in order to reduce the material cost of the glass. And devitrification resistance can be improved. Accordingly, the mass sum (Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, still more preferably more than 4.0%, and still more preferably more than 5.7%. More preferably, it is more than 7.0%, more preferably more than 8.0%.
On the other hand, by making this sum 30.0% or less, coloring caused by excessive inclusion of these components can be reduced, and devitrification resistance can be improved. Therefore, the upper limit of the mass sum (Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, and still more preferably 20.0%.
特に第3の光学ガラスでは、TiO2成分、Nb2O5成分及びWO3成分の含有量の和(質量和)は、30.0%以下が好ましい。これにより、アッベ数の低下が抑えられるため、所望のアッベ数を得易くできる。また、これら成分の過剰な含有による着色を低減でき、耐失透性を高められる。従って、質量和(TiO2+Nb2O5+WO3)は、好ましくは30.0%、より好ましくは25.0%、さらに好ましくは19.0%、さらに好ましくは16.0%、さらに好ましくは14.0%を上限とする。
一方で、この和は、1.0%以上にしてもよい。これにより、ガラスの材料コストを低減するためにTa2O5成分等を低減しても、ガラスの屈折率を高められ、且つ耐失透性を高められる。従って、質量和(TiO2+Nb2O5+WO3)は、好ましくは1.0%を下限とし、より好ましくは2.0%超、さらに好ましくは4.0%超としてもよい。 In particular, in the third optical glass, the sum (mass sum) of the contents of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is preferably 30.0% or less. Thereby, since the fall of Abbe number is suppressed, it can be easy to obtain a desired Abbe number. Further, coloring due to excessive inclusion of these components can be reduced, and devitrification resistance can be enhanced. Accordingly, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, even more preferably 19.0%, still more preferably 16.0%, and even more preferably. The upper limit is 14.0%.
On the other hand, this sum may be 1.0% or more. Accordingly, even when reducing the Ta 2 O 5 component or the like in order to reduce the material cost of the glass, an elevated refractive index of the glass, and enhance resistance to devitrification. Therefore, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, and even more preferably more than 4.0%.
一方で、この和は、1.0%以上にしてもよい。これにより、ガラスの材料コストを低減するためにTa2O5成分等を低減しても、ガラスの屈折率を高められ、且つ耐失透性を高められる。従って、質量和(TiO2+Nb2O5+WO3)は、好ましくは1.0%を下限とし、より好ましくは2.0%超、さらに好ましくは4.0%超としてもよい。 In particular, in the third optical glass, the sum (mass sum) of the contents of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is preferably 30.0% or less. Thereby, since the fall of Abbe number is suppressed, it can be easy to obtain a desired Abbe number. Further, coloring due to excessive inclusion of these components can be reduced, and devitrification resistance can be enhanced. Accordingly, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 30.0%, more preferably 25.0%, even more preferably 19.0%, still more preferably 16.0%, and even more preferably. The upper limit is 14.0%.
On the other hand, this sum may be 1.0% or more. Accordingly, even when reducing the Ta 2 O 5 component or the like in order to reduce the material cost of the glass, an elevated refractive index of the glass, and enhance resistance to devitrification. Therefore, the mass sum (TiO 2 + Nb 2 O 5 + WO 3 ) is preferably 1.0% as a lower limit, more preferably more than 2.0%, and even more preferably more than 4.0%.
特に第1の光学ガラスでは、上述のようにB2O3成分を30.0%以下に低減しながらも、Ta2O5成分の含有量を15.0%以下にし、且つNb2O5成分及びWO3成分の含有量の和を1.0%以上にすることが好ましい。これにより、屈折率を下げるB2O3成分が低減される一方で、屈折率を高めるNb2O5成分及びWO3成分が所定以上含有されることで、ガラスの屈折率が高められる。それとともに、屈折率と耐失透性を高める成分の中でも高価なTa2O5成分が低減される一方で、より安価なNb2O5成分及びWO3成分が含有されることで、より耐失透性の高い光学ガラスが得られる。従って、屈折率が高く耐失透性の高い光学ガラスの材料コストを抑えられる。より好ましくは、B2O3成分を16.4%以下にし、Ta2O5成分の含有量を5.0%以下にし、且つNb2O5成分及びWO3成分の含有量の和を7.0%以上にしてもよい。
In particular, in the first optical glass, the content of the Ta 2 O 5 component is reduced to 15.0% or less while reducing the B 2 O 3 component to 30.0% or less as described above, and Nb 2 O 5 The sum of the contents of the components and the WO 3 components is preferably 1.0% or more. Thus, while the B 2 O 3 component to lower the refractive index is reduced, Nb 2 O 5 component, and WO 3 components to increase the refractive index of that contained more than a predetermined refractive index of the glass is increased. At the same time, among the components that increase the refractive index and resistance to devitrification, the expensive Ta 2 O 5 component is reduced, while the cheaper Nb 2 O 5 component and the WO 3 component are contained, so An optical glass with high devitrification is obtained. Therefore, the material cost of optical glass having a high refractive index and high devitrification resistance can be suppressed. More preferably, the B 2 O 3 component is 16.4% or less, the content of the Ta 2 O 5 component is 5.0% or less, and the sum of the contents of the Nb 2 O 5 component and the WO 3 component is 7 It may be 0% or more.
SiO2成分は、0%超含有する場合に、熔融ガラスの粘度を高め、ガラスの着色を低減でき、且つ耐失透性を高められる任意成分である。従って、SiO2成分の含有量は、好ましくは0%超とし、より好ましくは1.0%、さらに好ましくは2.0%、さらに好ましくは3.0%を下限としてもよい。特に、第3の光学ガラスでは、SiO2成分の含有量は5.0%以上としてもよく、さらに好ましくは6.0%超としてもよい。
一方で、SiO2成分の含有量を30.0%以下にすることで、ガラス転移点の上昇を抑え、且つ屈折率の低下を抑えることができる。従って、SiO2成分の含有量は、好ましくは30.0%、より好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%を上限とする。特に第1及び第2の光学ガラスでは、8.0%を上限としてもよい。
SiO2成分は、原料としてSiO2、K2SiF6、Na2SiF6等を用いることができる。 The SiO 2 component is an optional component that, when contained over 0%, can increase the viscosity of the molten glass, reduce the coloration of the glass, and increase the devitrification resistance. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably 1.0%, still more preferably 2.0%, and even more preferably 3.0%. In particular, in the third optical glass, the content of the SiO 2 component may be 5.0% or more, more preferably more than 6.0%.
On the other hand, when the content of the SiO 2 component is 30.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed. Accordingly, the upper limit of the content of the SiO 2 component is preferably 30.0%, more preferably 20.0%, more preferably 15.0%, and still more preferably 10.0%. In particular, in the first and second optical glasses, the upper limit may be 8.0%.
As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
一方で、SiO2成分の含有量を30.0%以下にすることで、ガラス転移点の上昇を抑え、且つ屈折率の低下を抑えることができる。従って、SiO2成分の含有量は、好ましくは30.0%、より好ましくは20.0%、より好ましくは15.0%、さらに好ましくは10.0%を上限とする。特に第1及び第2の光学ガラスでは、8.0%を上限としてもよい。
SiO2成分は、原料としてSiO2、K2SiF6、Na2SiF6等を用いることができる。 The SiO 2 component is an optional component that, when contained over 0%, can increase the viscosity of the molten glass, reduce the coloration of the glass, and increase the devitrification resistance. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably 1.0%, still more preferably 2.0%, and even more preferably 3.0%. In particular, in the third optical glass, the content of the SiO 2 component may be 5.0% or more, more preferably more than 6.0%.
On the other hand, when the content of the SiO 2 component is 30.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed. Accordingly, the upper limit of the content of the SiO 2 component is preferably 30.0%, more preferably 20.0%, more preferably 15.0%, and still more preferably 10.0%. In particular, in the first and second optical glasses, the upper limit may be 8.0%.
As the SiO 2 component, SiO 2 , K 2 SiF 6 , Na 2 SiF 6 or the like can be used as a raw material.
ここで、B2O3成分及びSiO2成分の含有量の和(質量和)は、1.0%以上30.0%以下が好ましい。
特に、この和を1.0%以上にすることで、B2O3成分やSiO2成分の欠乏による耐失透性の低下を抑えられる。従って、質量和(B2O3+SiO2)は、好ましくは1.0%、より好ましくは5.0%、さらに好ましくは10.0%、さらに好ましくは15.0%、さらに好ましくは18.0%を下限とする。
一方で、この和を30.0%以下にすることで、これらの成分の過剰な含有による屈折率の低下が抑えられるので、所望の高屈折率を得易くできる。従って、質量和(B2O3+SiO2)は、好ましくは30.0%、より好ましくは27.0%、さらに好ましくは25.0%、さらに好ましくは24.0%、さらに好ましくは21.0%を上限とする。 Here, the sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably 1.0% or more and 30.0% or less.
In particular, by making this sum 1.0% or more, it is possible to suppress a decrease in devitrification resistance due to the lack of the B 2 O 3 component or the SiO 2 component. Accordingly, the mass sum (B 2 O 3 + SiO 2 ) is preferably 1.0%, more preferably 5.0%, still more preferably 10.0%, still more preferably 15.0%, and even more preferably 18. 0% is the lower limit.
On the other hand, by making this sum 30.0% or less, a decrease in the refractive index due to excessive inclusion of these components can be suppressed, so that a desired high refractive index can be easily obtained. Therefore, the mass sum (B 2 O 3 + SiO 2 ) is preferably 30.0%, more preferably 27.0%, still more preferably 25.0%, still more preferably 24.0%, and even more preferably 21.%. The upper limit is 0%.
特に、この和を1.0%以上にすることで、B2O3成分やSiO2成分の欠乏による耐失透性の低下を抑えられる。従って、質量和(B2O3+SiO2)は、好ましくは1.0%、より好ましくは5.0%、さらに好ましくは10.0%、さらに好ましくは15.0%、さらに好ましくは18.0%を下限とする。
一方で、この和を30.0%以下にすることで、これらの成分の過剰な含有による屈折率の低下が抑えられるので、所望の高屈折率を得易くできる。従って、質量和(B2O3+SiO2)は、好ましくは30.0%、より好ましくは27.0%、さらに好ましくは25.0%、さらに好ましくは24.0%、さらに好ましくは21.0%を上限とする。 Here, the sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably 1.0% or more and 30.0% or less.
In particular, by making this sum 1.0% or more, it is possible to suppress a decrease in devitrification resistance due to the lack of the B 2 O 3 component or the SiO 2 component. Accordingly, the mass sum (B 2 O 3 + SiO 2 ) is preferably 1.0%, more preferably 5.0%, still more preferably 10.0%, still more preferably 15.0%, and even more preferably 18. 0% is the lower limit.
On the other hand, by making this sum 30.0% or less, a decrease in the refractive index due to excessive inclusion of these components can be suppressed, so that a desired high refractive index can be easily obtained. Therefore, the mass sum (B 2 O 3 + SiO 2 ) is preferably 30.0%, more preferably 27.0%, still more preferably 25.0%, still more preferably 24.0%, and even more preferably 21.%. The upper limit is 0%.
特に第1及び第2の光学ガラスでは、B2O3成分及びSiO2成分の含有量の和に対する、Nb2O5成分及びWO3成分の含有量の和の比率(質量比)は、0.15以上2.00以下が好ましい。
特に、この比率を0.15以上にすることで、高い耐失透性を維持しながらも屈折率を高められる。従って、質量比(Nb2O5+WO3)/(B2O3+SiO2)は、好ましくは0.15、より好ましくは0.25、さらに好ましくは0.30、さらに好ましくは0.35、さらに好ましくは0.40、さらに好ましくは0.43を下限とする。
一方で、この比率を2.00以下にすることで、Nb2O5成分やWO3成分の過剰な含有や、B2O3成分やSiO2成分の欠乏による耐失透性の低下を抑えられる。従って、質量比(Nb2O5+WO3)/(B2O3+SiO2)は、好ましくは2.00、より好ましくは1.50、さらに好ましくは1.20を上限とする。 In particular, in the first and second optical glasses, the ratio (mass ratio) of the sum of the contents of the Nb 2 O 5 component and the WO 3 component to the sum of the contents of the B 2 O 3 component and the SiO 2 component is 0. .15 or more and 2.00 or less is preferable.
In particular, by setting this ratio to 0.15 or more, the refractive index can be increased while maintaining high devitrification resistance. Therefore, the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 0.15, more preferably 0.25, still more preferably 0.30, and even more preferably 0.35. More preferably, the lower limit is 0.40, more preferably 0.43.
On the other hand, by the ratio 2.00, suppressing excessive content or Nb 2 O 5 component and WO 3 components, a reduction in the devitrification resistance due to absence of the B 2 O 3 component and the SiO 2 component It is done. Therefore, the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 2.00, more preferably 1.50, and still more preferably 1.20.
特に、この比率を0.15以上にすることで、高い耐失透性を維持しながらも屈折率を高められる。従って、質量比(Nb2O5+WO3)/(B2O3+SiO2)は、好ましくは0.15、より好ましくは0.25、さらに好ましくは0.30、さらに好ましくは0.35、さらに好ましくは0.40、さらに好ましくは0.43を下限とする。
一方で、この比率を2.00以下にすることで、Nb2O5成分やWO3成分の過剰な含有や、B2O3成分やSiO2成分の欠乏による耐失透性の低下を抑えられる。従って、質量比(Nb2O5+WO3)/(B2O3+SiO2)は、好ましくは2.00、より好ましくは1.50、さらに好ましくは1.20を上限とする。 In particular, in the first and second optical glasses, the ratio (mass ratio) of the sum of the contents of the Nb 2 O 5 component and the WO 3 component to the sum of the contents of the B 2 O 3 component and the SiO 2 component is 0. .15 or more and 2.00 or less is preferable.
In particular, by setting this ratio to 0.15 or more, the refractive index can be increased while maintaining high devitrification resistance. Therefore, the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 0.15, more preferably 0.25, still more preferably 0.30, and even more preferably 0.35. More preferably, the lower limit is 0.40, more preferably 0.43.
On the other hand, by the ratio 2.00, suppressing excessive content or Nb 2 O 5 component and WO 3 components, a reduction in the devitrification resistance due to absence of the B 2 O 3 component and the SiO 2 component It is done. Therefore, the mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is preferably 2.00, more preferably 1.50, and still more preferably 1.20.
MgO成分、CaO成分、SrO成分及びBaO成分は、0%超含有する場合に、ガラス原料の熔融性やガラスの耐失透性を高められる任意成分である。
一方で、MgO成分、CaO成分及びSrO成分の各々の含有量を20.0%以下にすること、及び/又は、BaO成分の含有量を25.0%以下にすることで、これらの成分の過剰な含有による、屈折率の低下や耐失透性の低下を抑えられる。従って、MgO成分、CaO成分及びSrO成分の各々の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。また、BaO成分の含有量は、好ましくは25.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは8.0%を上限とする。
MgO成分、CaO成分、SrO成分及びBaO成分は、原料としてMgCO3、MgF2、CaCO3、CaF2、Sr(NO3)2、SrF2、BaCO3、Ba(NO3)2、BaF2等を用いることができる。 The MgO component, CaO component, SrO component, and BaO component are optional components that can enhance the meltability of the glass raw material and the devitrification resistance of the glass when the content exceeds 0%.
On the other hand, the content of each of the MgO component, the CaO component and the SrO component is made 20.0% or less and / or the content of the BaO component is made 25.0% or less. Reduction of refractive index and devitrification resistance due to excessive inclusion can be suppressed. Therefore, the content of each of the MgO component, CaO component and SrO component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. To do. Further, the content of the BaO component is preferably 25.0%, more preferably 15.0%, still more preferably 10.0%, and still more preferably 8.0%.
MgO component, CaO component, SrO component and BaO component are MgCO 3 , MgF 2 , CaCO 3 , CaF 2 , Sr (NO 3 ) 2 , SrF 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2 and the like as raw materials. Can be used.
一方で、MgO成分、CaO成分及びSrO成分の各々の含有量を20.0%以下にすること、及び/又は、BaO成分の含有量を25.0%以下にすることで、これらの成分の過剰な含有による、屈折率の低下や耐失透性の低下を抑えられる。従って、MgO成分、CaO成分及びSrO成分の各々の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。また、BaO成分の含有量は、好ましくは25.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは8.0%を上限とする。
MgO成分、CaO成分、SrO成分及びBaO成分は、原料としてMgCO3、MgF2、CaCO3、CaF2、Sr(NO3)2、SrF2、BaCO3、Ba(NO3)2、BaF2等を用いることができる。 The MgO component, CaO component, SrO component, and BaO component are optional components that can enhance the meltability of the glass raw material and the devitrification resistance of the glass when the content exceeds 0%.
On the other hand, the content of each of the MgO component, the CaO component and the SrO component is made 20.0% or less and / or the content of the BaO component is made 25.0% or less. Reduction of refractive index and devitrification resistance due to excessive inclusion can be suppressed. Therefore, the content of each of the MgO component, CaO component and SrO component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably 3.0%. To do. Further, the content of the BaO component is preferably 25.0%, more preferably 15.0%, still more preferably 10.0%, and still more preferably 8.0%.
MgO component, CaO component, SrO component and BaO component are MgCO 3 , MgF 2 , CaCO 3 , CaF 2 , Sr (NO 3 ) 2 , SrF 2 , BaCO 3 , Ba (NO 3 ) 2 , BaF 2 and the like as raw materials. Can be used.
RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の合計(質量和)は、25.0%以下が好ましい。これにより、RO成分の過剰な含有による、ガラスの屈折率の低下や耐失透性の低下を抑えられる。従って、RO成分の質量和は、好ましくは25.0%、より好ましくは15.0%、さらに好ましくは10.0%、さらに好ましくは5.0%を上限とする。
The total content (mass sum) of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 25.0% or less. Thereby, the fall of the refractive index of glass and the fall of devitrification resistance by containing excessive RO component can be suppressed. Accordingly, the upper limit of the mass sum of the RO component is preferably 25.0%, more preferably 15.0%, still more preferably 10.0%, and still more preferably 5.0%.
Li2O成分は、0%超含有する場合に、ガラスの熔融性を改善し、且つガラス転移点を低くできる任意成分である。
一方で、Li2O成分の含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つ、耐失透性を高められる。また、これにより溶融ガラスの粘性を高められてガラスの脈理を低減でき、且つ、ガラスの化学的耐久性を高めることができる。従って、Li2O成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下、さらに好ましくは1.0%以下、さらに好ましくは1.0%未満、さらに好ましくは0.3%以下、さらに好ましくは0.3%未満とする。
Li2O成分は、原料としてLi2CO3、LiNO3、Li2CO3等を用いることができる。 The Li 2 O component is an optional component that can improve the meltability of the glass and lower the glass transition point when it contains more than 0%.
On the other hand, by making the content of the Li 2 O component 10.0% or less, it is difficult to lower the refractive index of the glass and the devitrification resistance can be improved. In addition, the viscosity of the molten glass can be increased thereby, the striae of the glass can be reduced, and the chemical durability of the glass can be increased. Therefore, the content of the Li 2 O component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, and even more preferably 1 0.0% or less, more preferably less than 1.0%, more preferably 0.3% or less, and still more preferably less than 0.3%.
As the Li 2 O component, Li 2 CO 3 , LiNO 3 , Li 2 CO 3 or the like can be used as a raw material.
一方で、Li2O成分の含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つ、耐失透性を高められる。また、これにより溶融ガラスの粘性を高められてガラスの脈理を低減でき、且つ、ガラスの化学的耐久性を高めることができる。従って、Li2O成分の含有量は、好ましくは10.0%以下、より好ましくは8.0%以下、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下、さらに好ましくは1.0%以下、さらに好ましくは1.0%未満、さらに好ましくは0.3%以下、さらに好ましくは0.3%未満とする。
Li2O成分は、原料としてLi2CO3、LiNO3、Li2CO3等を用いることができる。 The Li 2 O component is an optional component that can improve the meltability of the glass and lower the glass transition point when it contains more than 0%.
On the other hand, by making the content of the Li 2 O component 10.0% or less, it is difficult to lower the refractive index of the glass and the devitrification resistance can be improved. In addition, the viscosity of the molten glass can be increased thereby, the striae of the glass can be reduced, and the chemical durability of the glass can be increased. Therefore, the content of the Li 2 O component is preferably 10.0% or less, more preferably 8.0% or less, still more preferably 5.0% or less, still more preferably 3.0% or less, and even more preferably 1 0.0% or less, more preferably less than 1.0%, more preferably 0.3% or less, and still more preferably less than 0.3%.
As the Li 2 O component, Li 2 CO 3 , LiNO 3 , Li 2 CO 3 or the like can be used as a raw material.
Na2O成分、K2O成分及びCs2O成分は、0%超含有する場合に、ガラスの熔融性を改善し、ガラスの耐失透性を高め、且つガラス転移点を低くできる任意成分である。ここで、Na2O成分、K2O成分及びCs2O成分の各々の含有量を10.0%以下にすることで、ガラスの屈折率を低下し難くし、且つ、耐失透性を高められる。従って、Na2O成分、K2O成分及びCs2O成分の各々の含有量は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。
Na2O成分、K2O成分及びCs2O成分は、原料としてNaNO3、NaF、Na2SiF6、K2CO3、KNO3、KF、KHF2、K2SiF6、Cs2CO3、CsNO3等を用いることができる。 Na 2 O component, K 2 O component, and Cs 2 O component are optional components that can improve the meltability of glass, increase the devitrification resistance of glass, and lower the glass transition point when contained in excess of 0%. It is. Here, by making each content of the Na 2 O component, the K 2 O component and the Cs 2 O component 10.0% or less, it is difficult to lower the refractive index of the glass, and the devitrification resistance is improved. Enhanced. Therefore, the content of each of the Na 2 O component, the K 2 O component, and the Cs 2 O component is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and even more preferably 3%. 0.0% is the upper limit.
Na 2 O component, K 2 O component and Cs 2 O component, NaNO 3 as a raw material, NaF, Na 2 SiF 6, K 2 CO 3, KNO 3, KF, KHF 2, K 2 SiF 6, Cs 2 CO 3 , CsNO 3 or the like can be used.
Na2O成分、K2O成分及びCs2O成分は、原料としてNaNO3、NaF、Na2SiF6、K2CO3、KNO3、KF、KHF2、K2SiF6、Cs2CO3、CsNO3等を用いることができる。 Na 2 O component, K 2 O component, and Cs 2 O component are optional components that can improve the meltability of glass, increase the devitrification resistance of glass, and lower the glass transition point when contained in excess of 0%. It is. Here, by making each content of the Na 2 O component, the K 2 O component and the Cs 2 O component 10.0% or less, it is difficult to lower the refractive index of the glass, and the devitrification resistance is improved. Enhanced. Therefore, the content of each of the Na 2 O component, the K 2 O component, and the Cs 2 O component is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and even more preferably 3%. 0.0% is the upper limit.
Na 2 O component, K 2 O component and Cs 2 O component, NaNO 3 as a raw material, NaF, Na 2 SiF 6, K 2 CO 3, KNO 3, KF, KHF 2, K 2 SiF 6, Cs 2 CO 3 , CsNO 3 or the like can be used.
特に第3の光学ガラスでは、上述のようにTa2O5成分の含有量を15.0%未満にしながらも、B2O3成分を30.0%以下に低減し、且つLi2O成分の含有量を10.0%以下にすることが好ましい。これにより、屈折率を高める反面で高価なTa2O5成分が低減される一方で、屈折率を下げるB2O3成分やLi2O成分が低減されることで、Ta2O5成分の低減による屈折率の低下を抑えられる。そのため、高い屈折率を有しながらも材料コストの抑えられた光学ガラスを得ることができる。より好ましくは、Ta2O5成分の含有量を5.0%未満にし、B2O3成分を18.0%以下に低減し、且つLi2O成分の含有量を1.0%未満にしてもよい。
In particular, in the third optical glass, the content of the Ta 2 O 5 component is less than 15.0% as described above, but the B 2 O 3 component is reduced to 30.0% or less, and the Li 2 O component The content of is preferably 10.0% or less. As a result, while the refractive index is increased, the expensive Ta 2 O 5 component is reduced, while the B 2 O 3 component and the Li 2 O component that lower the refractive index are reduced, thereby reducing the Ta 2 O 5 component. A decrease in refractive index due to the reduction can be suppressed. Therefore, an optical glass having a high refractive index and a reduced material cost can be obtained. More preferably, the content of the Ta 2 O 5 component is less than 5.0%, the B 2 O 3 component is reduced to 18.0% or less, and the content of the Li 2 O component is less than 1.0%. May be.
Rn2O成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)の合計量は、15.0%以下が好ましい。これにより、ガラスの屈折率の低下を抑え、且つ耐失透性を高められる。従って、Rn2O成分の質量和は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とする。
The total amount of Rn 2 O components (wherein Rn is one or more selected from the group consisting of Li, Na, K, and Cs) is preferably 15.0% or less. Thereby, the fall of the refractive index of glass can be suppressed and devitrification resistance can be improved. Therefore, the upper limit of the mass sum of the Rn 2 O component is preferably 15.0%, more preferably 10.0%, and still more preferably 5.0%.
P2O5成分は、0%超含有する場合に、ガラスの耐失透性を高められる任意成分である。特に、P2O5成分の含有量を10.0%以下にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P2O5成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
P2O5成分は、原料としてAl(PO3)3、Ca(PO3)2、Ba(PO3)2、BPO4、H3PO4等を用いることができる。 P 2 O 5 component, when ultra containing 0%, which is an optional component that enhances devitrification resistance of the glass. In particular, by making the content of the P 2 O 5 component 10.0% or less, it is possible to suppress a decrease in chemical durability, particularly water resistance, of the glass. Therefore, the content of the P 2 O 5 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
As the P 2 O 5 component, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like can be used as a raw material.
P2O5成分は、原料としてAl(PO3)3、Ca(PO3)2、Ba(PO3)2、BPO4、H3PO4等を用いることができる。 P 2 O 5 component, when ultra containing 0%, which is an optional component that enhances devitrification resistance of the glass. In particular, by making the content of the P 2 O 5 component 10.0% or less, it is possible to suppress a decrease in chemical durability, particularly water resistance, of the glass. Therefore, the content of the P 2 O 5 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
As the P 2 O 5 component, Al (PO 3 ) 3 , Ca (PO 3 ) 2 , Ba (PO 3 ) 2 , BPO 4 , H 3 PO 4 or the like can be used as a raw material.
GeO2成分は、0%超含有する場合に、ガラスの屈折率を高め、且つ耐失透性を向上できる任意成分である。しかしながら、GeO2は原料価格が高いため、その量が多いと材料コストが高くなることで、Gd2O3成分やTa2O5成分等を低減することによるコスト低減の効果が減殺される。従って、GeO2成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは1.0%を上限とし、最も好ましくは含有しない。
GeO2成分は、原料としてGeO2等を用いることができる。 The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when it contains more than 0%. However, GeO 2 has a high raw material price, by material cost increases and the amount is large, the effect of cost reduction by reducing the Gd 2 O 3 component and the Ta 2 O 5 component or the like is diminished. Accordingly, the content of the GeO 2 component is preferably 10.0%, more preferably 5.0%, still more preferably 1.0%, and most preferably not contained.
As the GeO 2 component, GeO 2 or the like can be used as a raw material.
GeO2成分は、原料としてGeO2等を用いることができる。 The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when it contains more than 0%. However, GeO 2 has a high raw material price, by material cost increases and the amount is large, the effect of cost reduction by reducing the Gd 2 O 3 component and the Ta 2 O 5 component or the like is diminished. Accordingly, the content of the GeO 2 component is preferably 10.0%, more preferably 5.0%, still more preferably 1.0%, and most preferably not contained.
As the GeO 2 component, GeO 2 or the like can be used as a raw material.
ZrO2成分は、0%超含有する場合に、ガラスの高屈折率化及び低分散化に寄与でき、且つガラスの耐失透性を高められる。そのため、ZrO2成分の含有量は、好ましくは0%超、より好ましくは1.0%、さらに好ましくは3.0%を下限としてもよい。
一方で、ZrO2成分を15.0%以下にすることで、ZrO2成分の過剰な含有によるガラスの耐失透性の低下を抑えられる。従って、ZrO2成分の含有量は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは8.0%を上限とする。
ZrO2成分は、原料としてZrO2、ZrF4等を用いることができる。 When the ZrO 2 component is contained in an amount of more than 0%, it can contribute to a higher refractive index and a lower dispersion of the glass, and the devitrification resistance of the glass can be improved. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%.
On the other hand, by making the ZrO 2 component 15.0% or less, it is possible to suppress a decrease in the devitrification resistance of the glass due to the excessive inclusion of the ZrO 2 component. Therefore, the upper limit of the content of the ZrO 2 component is preferably 15.0%, more preferably 10.0%, and still more preferably 8.0%.
As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.
一方で、ZrO2成分を15.0%以下にすることで、ZrO2成分の過剰な含有によるガラスの耐失透性の低下を抑えられる。従って、ZrO2成分の含有量は、好ましくは15.0%、より好ましくは10.0%、さらに好ましくは8.0%を上限とする。
ZrO2成分は、原料としてZrO2、ZrF4等を用いることができる。 When the ZrO 2 component is contained in an amount of more than 0%, it can contribute to a higher refractive index and a lower dispersion of the glass, and the devitrification resistance of the glass can be improved. Therefore, the content of the ZrO 2 component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%.
On the other hand, by making the ZrO 2 component 15.0% or less, it is possible to suppress a decrease in the devitrification resistance of the glass due to the excessive inclusion of the ZrO 2 component. Therefore, the upper limit of the content of the ZrO 2 component is preferably 15.0%, more preferably 10.0%, and still more preferably 8.0%.
As the ZrO 2 component, ZrO 2 , ZrF 4 or the like can be used as a raw material.
ZnO成分は、0%超含有する場合に、ガラス転移点を低くでき、且つ化学的耐久性を高められる任意成分である。そのため、特に第3の光学ガラスでは、ZnO成分の含有量を、好ましくは0%超、より好ましくは1.0%、さらに好ましくは3.0%を下限としてもよい。
一方で、ZnO成分の含有量を25.0%以下にすることで、ガラスの屈折率の低下や、耐失透性の低下を抑えられる。また、これにより熔融ガラスの粘性が高められるため、ガラスへの脈理の発生を低減できる。従って、ZnO成分の含有量は、好ましくは25.0%、より好ましくは22.0%、さらに好ましくは20.0%を上限とする。特に、第1及び第2の光学ガラスでは、ZnO成分の含有量を、好ましくは15.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%以下、さらに好ましくは5.0%未満、さらに好ましくは1.1%以下としてもよい。
ZnO成分は、原料としてZnO、ZnF2等を用いることができる。 The ZnO component is an optional component that can lower the glass transition point and increase chemical durability when it is contained in excess of 0%. Therefore, particularly in the third optical glass, the content of the ZnO component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%.
On the other hand, by setting the content of the ZnO component to 25.0% or less, a decrease in the refractive index of glass and a decrease in devitrification resistance can be suppressed. Moreover, since the viscosity of molten glass is raised by this, generation | occurrence | production of the striae to glass can be reduced. Therefore, the content of the ZnO component is preferably 25.0%, more preferably 22.0%, and further preferably 20.0%. In particular, in the first and second optical glasses, the content of the ZnO component is preferably 15.0% or less, more preferably 10.0% or less, still more preferably 5.0% or less, and even more preferably 5. It may be less than 0%, more preferably 1.1% or less.
As the ZnO component, ZnO, ZnF 2 or the like can be used as a raw material.
一方で、ZnO成分の含有量を25.0%以下にすることで、ガラスの屈折率の低下や、耐失透性の低下を抑えられる。また、これにより熔融ガラスの粘性が高められるため、ガラスへの脈理の発生を低減できる。従って、ZnO成分の含有量は、好ましくは25.0%、より好ましくは22.0%、さらに好ましくは20.0%を上限とする。特に、第1及び第2の光学ガラスでは、ZnO成分の含有量を、好ましくは15.0%以下、より好ましくは10.0%以下、さらに好ましくは5.0%以下、さらに好ましくは5.0%未満、さらに好ましくは1.1%以下としてもよい。
ZnO成分は、原料としてZnO、ZnF2等を用いることができる。 The ZnO component is an optional component that can lower the glass transition point and increase chemical durability when it is contained in excess of 0%. Therefore, particularly in the third optical glass, the content of the ZnO component is preferably more than 0%, more preferably 1.0%, and even more preferably 3.0%.
On the other hand, by setting the content of the ZnO component to 25.0% or less, a decrease in the refractive index of glass and a decrease in devitrification resistance can be suppressed. Moreover, since the viscosity of molten glass is raised by this, generation | occurrence | production of the striae to glass can be reduced. Therefore, the content of the ZnO component is preferably 25.0%, more preferably 22.0%, and further preferably 20.0%. In particular, in the first and second optical glasses, the content of the ZnO component is preferably 15.0% or less, more preferably 10.0% or less, still more preferably 5.0% or less, and even more preferably 5. It may be less than 0%, more preferably 1.1% or less.
As the ZnO component, ZnO, ZnF 2 or the like can be used as a raw material.
特に第3の光学ガラスでは、上述のようにTa2O5成分の含有量を15.0%未満にしながらも、ZnO成分を25.0%以下に低減することが好ましい。これにより、熔融ガラスの粘性や耐失透性を上げる反面で高価なTa2O5成分が低減される一方で、熔融ガラスの粘性を下げるZnO成分が低減される。そのため、脈理が低減されながらも材料コストが抑えられており、なお且つ耐失透性が高い点で、量産性に優れたガラスを作製することができる。より好ましくは、Ta2O5成分の含有量を5.0%未満にし、ZnO成分を25.0%以下にしてもよい。
In particular, in the third optical glass, it is preferable to reduce the ZnO component to 25.0% or less while the content of the Ta 2 O 5 component is less than 15.0% as described above. Thereby, while increasing the viscosity and devitrification resistance of the molten glass, the expensive Ta 2 O 5 component is reduced, while the ZnO component lowering the viscosity of the molten glass is reduced. Therefore, the material cost can be suppressed while the striae is reduced, and a glass excellent in mass productivity can be manufactured in terms of high devitrification resistance. More preferably, the content of the Ta 2 O 5 component may be less than 5.0% and the ZnO component may be 25.0% or less.
Al2O3成分及びGa2O3成分は、0%超含有する場合に、ガラスの化学的耐久性を高め、且つガラスの耐失透性を高められる任意成分である。
一方で、Al2O3成分及びGa2O3成分の各々の含有量を10.0%以下にすることで、これらの過剰な含有によるガラスの耐失透性の低下を抑えられる。従って、Al2O3成分及びGa2O3成分の各々の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
Al2O3成分及びGa2O3成分は、原料としてAl2O3、Al(OH)3、AlF3、Ga2O3、Ga(OH)3等を用いることができる。 The Al 2 O 3 component and the Ga 2 O 3 component are optional components that can increase the chemical durability of the glass and increase the devitrification resistance of the glass when contained in excess of 0%.
On the other hand, by making each content of the Al 2 O 3 component and the Ga 2 O 3 component 10.0% or less, a decrease in the devitrification resistance of the glass due to the excessive content thereof can be suppressed. Therefore, the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
For the Al 2 O 3 component and the Ga 2 O 3 component, Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3 or the like can be used as a raw material.
一方で、Al2O3成分及びGa2O3成分の各々の含有量を10.0%以下にすることで、これらの過剰な含有によるガラスの耐失透性の低下を抑えられる。従って、Al2O3成分及びGa2O3成分の各々の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
Al2O3成分及びGa2O3成分は、原料としてAl2O3、Al(OH)3、AlF3、Ga2O3、Ga(OH)3等を用いることができる。 The Al 2 O 3 component and the Ga 2 O 3 component are optional components that can increase the chemical durability of the glass and increase the devitrification resistance of the glass when contained in excess of 0%.
On the other hand, by making each content of the Al 2 O 3 component and the Ga 2 O 3 component 10.0% or less, a decrease in the devitrification resistance of the glass due to the excessive content thereof can be suppressed. Therefore, the content of each of the Al 2 O 3 component and the Ga 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
For the Al 2 O 3 component and the Ga 2 O 3 component, Al 2 O 3 , Al (OH) 3 , AlF 3 , Ga 2 O 3 , Ga (OH) 3 or the like can be used as a raw material.
Bi2O3成分は、0%超含有する場合に、屈折率を高め、且つガラス転移点を下げられる任意成分である。
一方で、Bi2O3成分の含有量を10.0%以下にすることで、ガラスの耐失透性を高められ、且つ、ガラスの着色を低減して可視光透過率を高められる。従って、Bi2O3成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
Bi2O3成分は、原料としてBi2O3等を用いることができる。 A Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when it exceeds 0%.
On the other hand, by the content of Bi 2 O 3 component to 10.0% or less, enhanced resistance to devitrification of the glass, and it is enhanced visible light transmittance to reduce the coloration of the glass. Therefore, the content of the Bi 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
As the Bi 2 O 3 component, Bi 2 O 3 or the like can be used as a raw material.
一方で、Bi2O3成分の含有量を10.0%以下にすることで、ガラスの耐失透性を高められ、且つ、ガラスの着色を低減して可視光透過率を高められる。従って、Bi2O3成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%を上限とする。
Bi2O3成分は、原料としてBi2O3等を用いることができる。 A Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when it exceeds 0%.
On the other hand, by the content of Bi 2 O 3 component to 10.0% or less, enhanced resistance to devitrification of the glass, and it is enhanced visible light transmittance to reduce the coloration of the glass. Therefore, the content of the Bi 2 O 3 component is preferably 10.0%, more preferably 5.0%, and still more preferably 3.0%.
As the Bi 2 O 3 component, Bi 2 O 3 or the like can be used as a raw material.
TeO2成分は、0%超含有する場合に、屈折率を高め、且つガラス転移点を下げられる任意成分である。
しかしながら、TeO2は白金製の坩堝や、溶融ガラスと接する部分が白金で形成されている溶融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO2成分の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とし、さらに好ましくは含有しない。
TeO2成分は、原料としてTeO2等を用いることができる。 The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it is contained in excess of 0%.
However, TeO 2 has a problem that it can be alloyed with platinum when a glass raw material is melted in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum. Accordingly, the content of the TeO 2 component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably not contained.
TeO 2 component can use TeO 2 or the like as a raw material.
しかしながら、TeO2は白金製の坩堝や、溶融ガラスと接する部分が白金で形成されている溶融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO2成分の含有量は、好ましくは20.0%、より好ましくは10.0%、さらに好ましくは5.0%を上限とし、さらに好ましくは含有しない。
TeO2成分は、原料としてTeO2等を用いることができる。 The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when it is contained in excess of 0%.
However, TeO 2 has a problem that it can be alloyed with platinum when a glass raw material is melted in a crucible made of platinum or a melting tank in which a portion in contact with molten glass is formed of platinum. Accordingly, the content of the TeO 2 component is preferably 20.0%, more preferably 10.0%, still more preferably 5.0%, and even more preferably not contained.
TeO 2 component can use TeO 2 or the like as a raw material.
SnO2成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
一方で、SnO2成分の含有量を1.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO2成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO2成分の含有量は、好ましくは1.0%、より好ましくは0.7%、さらに好ましくは0.5%を上限とする。
SnO2成分は、原料としてSnO、SnO2、SnF2、SnF4等を用いることができる。 When the SnO 2 component is contained in an amount of more than 0%, the SnO 2 component is an optional component that can be refined by reducing the oxidation of the molten glass and can increase the visible light transmittance of the glass.
On the other hand, by setting the content of the SnO 2 component to 1.0% or less, it is possible to reduce the coloration of the glass due to the reduction of the molten glass and the glass devitrification. Further, since the alloying of the SnO 2 component and the melting equipment (especially a noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the content of the SnO 2 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
For the SnO 2 component, SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
一方で、SnO2成分の含有量を1.0%以下にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO2成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO2成分の含有量は、好ましくは1.0%、より好ましくは0.7%、さらに好ましくは0.5%を上限とする。
SnO2成分は、原料としてSnO、SnO2、SnF2、SnF4等を用いることができる。 When the SnO 2 component is contained in an amount of more than 0%, the SnO 2 component is an optional component that can be refined by reducing the oxidation of the molten glass and can increase the visible light transmittance of the glass.
On the other hand, by setting the content of the SnO 2 component to 1.0% or less, it is possible to reduce the coloration of the glass due to the reduction of the molten glass and the glass devitrification. Further, since the alloying of the SnO 2 component and the melting equipment (especially a noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the content of the SnO 2 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
For the SnO 2 component, SnO, SnO 2 , SnF 2 , SnF 4 or the like can be used as a raw material.
Sb2O3成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
一方で、Sb2O3量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb2O3成分の含有量は、好ましくは1.0%、より好ましくは0.7%、さらに好ましくは0.5%を上限とする。
Sb2O3成分は、原料としてSb2O3、Sb2O5、Na2H2Sb2O7・5H2O等を用いることができる。 The Sb 2 O 3 component is an optional component that can degas the molten glass when it contains more than 0%.
On the other hand, when the amount of Sb 2 O 3 is too large, the transmittance in the short wavelength region of the visible light region is deteriorated. Therefore, the content of the Sb 2 O 3 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
As the Sb 2 O 3 component, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 .5H 2 O, or the like can be used as a raw material.
一方で、Sb2O3量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb2O3成分の含有量は、好ましくは1.0%、より好ましくは0.7%、さらに好ましくは0.5%を上限とする。
Sb2O3成分は、原料としてSb2O3、Sb2O5、Na2H2Sb2O7・5H2O等を用いることができる。 The Sb 2 O 3 component is an optional component that can degas the molten glass when it contains more than 0%.
On the other hand, when the amount of Sb 2 O 3 is too large, the transmittance in the short wavelength region of the visible light region is deteriorated. Therefore, the content of the Sb 2 O 3 component is preferably 1.0%, more preferably 0.7%, and still more preferably 0.5%.
As the Sb 2 O 3 component, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 .5H 2 O, or the like can be used as a raw material.
なお、ガラスを清澄し脱泡する成分は、上記のSb2O3成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。
Incidentally, components defoamed fining glass is not limited to the above Sb 2 O 3 component, a known refining agents in the field of glass production, it is possible to use a defoamer or a combination thereof.
<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。 <About ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。 <About ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。
Other components can be added as necessary within the range not impairing the characteristics of the glass of the present invention. However, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is independent of each other. Or, even when it is contained in a small amount in combination, the glass is colored and has the property of causing absorption at a specific wavelength in the visible range. .
また、PbO等の鉛化合物及びAs2O3等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。
Moreover, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with high environmental loads, it is desirable that they are not substantially contained, that is, not contained at all except for inevitable mixing.
さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。
Furthermore, each component of Th, Cd, Tl, Os, Be, and Se has tended to be refrained from being used as a harmful chemical material in recent years, and not only in the glass manufacturing process, but also in the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, when importance is placed on the environmental impact, it is preferable that these are not substantially contained.
本発明のガラス組成物は、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
B2O3成分 2.0~55.0モル%、及び
La2O3成分 5.0~30.0モル%、
並びに
Y2O3成分 0~20.0モル%、
Gd2O3成分 0~20.0モル%、
Yb2O3成分 0~10.0モル%、
Ta2O5成分 0~5.0モル%、
WO3成分 0~20.0モル%、
Nb2O5成分 0~15.0モル%、
TiO2成分 0~50.0モル%、
SiO2成分 0~60.0モル%、
MgO成分 0~50.0モル%、
CaO成分 0~40.0モル%、
SrO成分 0~30.0モル%、
BaO成分 0~35.0モル%、
Li2O成分 0~30.0モル%、
Na2O成分 0~25.0モル%、
K2O成分 0~20.0モル%、
Cs2O成分 0~10.0モル%、
P2O5成分 0~15.0モル%、
GeO2成分 0~10.0モル%、
ZrO2成分 0~20.0モル%、
ZnO成分 0~60.0モル%、
Al2O3成分 0~20.0モル%、
Ga2O3成分 0~5.0モル%、
Bi2O3成分 0~5.0モル%、
TeO2成分 0~20.0モル%、
SnO2成分 0~0.3モル%、又は
Sb2O3成分 0~0.5モル% The glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention. The composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
B 2 O 3 component 2.0 to 55.0 mol%, and La 2 O 3 component 5.0 to 30.0 mol%,
Y 2 O 3 component 0-20.0 mol%,
Gd 2 O 3 component 0-20.0 mol%,
Yb 2 O 3 component 0-10.0 mol%,
Ta 2 O 5 component 0 to 5.0 mol%,
WO 3 component 0-20.0 mol%,
Nb 2 O 5 component 0 to 15.0 mol%,
TiO 2 component 0-50.0 mol%,
SiO 2 component 0-60.0 mol%,
MgO component 0-50.0 mol%,
CaO component 0-40.0 mol%,
SrO component 0-30.0 mol%,
BaO component 0-35.0 mol%,
Li 2 O component 0-30.0 mol%,
Na 2 O component 0-25.0 mol%,
K 2 O component 0-20.0 mol%,
Cs 2 O component 0-10.0 mol%,
P 2 O 5 component 0 to 15.0 mol%,
GeO 2 component 0-10.0 mol%,
ZrO 2 component from 0 to 20.0 mol%,
ZnO component 0-60.0 mol%,
Al 2 O 3 component 0-20.0 mol%,
Ga 2 O 3 component 0-5.0 mol%,
Bi 2 O 3 component 0-5.0 mol%,
TeO 2 component 0-20.0 mol%,
SnO 2 component 0 to 0.3 mol%, or Sb 2 O 3 component 0 to 0.5 mol%
B2O3成分 2.0~55.0モル%、及び
La2O3成分 5.0~30.0モル%、
並びに
Y2O3成分 0~20.0モル%、
Gd2O3成分 0~20.0モル%、
Yb2O3成分 0~10.0モル%、
Ta2O5成分 0~5.0モル%、
WO3成分 0~20.0モル%、
Nb2O5成分 0~15.0モル%、
TiO2成分 0~50.0モル%、
SiO2成分 0~60.0モル%、
MgO成分 0~50.0モル%、
CaO成分 0~40.0モル%、
SrO成分 0~30.0モル%、
BaO成分 0~35.0モル%、
Li2O成分 0~30.0モル%、
Na2O成分 0~25.0モル%、
K2O成分 0~20.0モル%、
Cs2O成分 0~10.0モル%、
P2O5成分 0~15.0モル%、
GeO2成分 0~10.0モル%、
ZrO2成分 0~20.0モル%、
ZnO成分 0~60.0モル%、
Al2O3成分 0~20.0モル%、
Ga2O3成分 0~5.0モル%、
Bi2O3成分 0~5.0モル%、
TeO2成分 0~20.0モル%、
SnO2成分 0~0.3モル%、又は
Sb2O3成分 0~0.5モル% The glass composition of the present invention cannot be expressed directly in the description of mol% because the composition is expressed by mass% with respect to the total mass of the glass of oxide conversion composition, but various properties required in the present invention. The composition expressed by mol% of each component present in the glass composition satisfying the above conditions generally takes the following values in terms of oxide conversion.
B 2 O 3 component 2.0 to 55.0 mol%, and La 2 O 3 component 5.0 to 30.0 mol%,
Y 2 O 3 component 0-20.0 mol%,
Gd 2 O 3 component 0-20.0 mol%,
Yb 2 O 3 component 0-10.0 mol%,
Ta 2 O 5 component 0 to 5.0 mol%,
WO 3 component 0-20.0 mol%,
Nb 2 O 5 component 0 to 15.0 mol%,
TiO 2 component 0-50.0 mol%,
SiO 2 component 0-60.0 mol%,
MgO component 0-50.0 mol%,
CaO component 0-40.0 mol%,
SrO component 0-30.0 mol%,
BaO component 0-35.0 mol%,
Li 2 O component 0-30.0 mol%,
Na 2 O component 0-25.0 mol%,
K 2 O component 0-20.0 mol%,
Cs 2 O component 0-10.0 mol%,
P 2 O 5 component 0 to 15.0 mol%,
GeO 2 component 0-10.0 mol%,
ZrO 2 component from 0 to 20.0 mol%,
ZnO component 0-60.0 mol%,
Al 2 O 3 component 0-20.0 mol%,
Ga 2 O 3 component 0-5.0 mol%,
Bi 2 O 3 component 0-5.0 mol%,
TeO 2 component 0-20.0 mol%,
SnO 2 component 0 to 0.3 mol%, or Sb 2 O 3 component 0 to 0.5 mol%
特に、第1の光学ガラスでは、以下の成分のモル%表示による組成は、酸化物換算組成で以下の値をとってもよい。
TiO2成分 0~40.0モル%、
SiO2成分 0~50.0モル%、又は
ZnO成分 0~50.0モル%、 In particular, in the first optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
TiO 2 component 0-40.0 mol%,
SiO 2 component 0 to 50.0 mol%, or ZnO component 0 to 50.0 mol%,
TiO2成分 0~40.0モル%、
SiO2成分 0~50.0モル%、又は
ZnO成分 0~50.0モル%、 In particular, in the first optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
TiO 2 component 0-40.0 mol%,
SiO 2 component 0 to 50.0 mol%, or ZnO component 0 to 50.0 mol%,
また、第2の光学ガラスでは、以下の成分のモル%表示による組成は、酸化物換算組成で以下の値を取ってもよい。
Gd2O3成分 0~10.0モル%、
SiO2成分 0~50.0モル%、又は
ZnO成分 0~50.0モル%、 Further, in the second optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
Gd 2 O 3 component 0-10.0 mol%,
SiO 2 component 0 to 50.0 mol%, or ZnO component 0 to 50.0 mol%,
Gd2O3成分 0~10.0モル%、
SiO2成分 0~50.0モル%、又は
ZnO成分 0~50.0モル%、 Further, in the second optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
Gd 2 O 3 component 0-10.0 mol%,
SiO 2 component 0 to 50.0 mol%, or ZnO component 0 to 50.0 mol%,
また、第3の光学ガラスでは、以下の成分のモル%表示による組成は、酸化物換算組成で以下の値を取ってもよい。
TiO2成分 0~30.0モル%、
WO3成分 0~15.0モル%、
MgO成分 0~25.0モル%、
CaO成分 0~20.0モル%、又は
SrO成分 0~15.0モル%、 Further, in the third optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
TiO 2 component 0-30.0 mol%,
WO 3 component 0-15.0 mol%,
MgO component 0-25.0 mol%,
CaO component 0-20.0 mol%, or SrO component 0-15.0 mol%,
TiO2成分 0~30.0モル%、
WO3成分 0~15.0モル%、
MgO成分 0~25.0モル%、
CaO成分 0~20.0モル%、又は
SrO成分 0~15.0モル%、 Further, in the third optical glass, the composition expressed by mol% of the following components may take the following value as an oxide conversion composition.
TiO 2 component 0-30.0 mol%,
WO 3 component 0-15.0 mol%,
MgO component 0-25.0 mol%,
CaO component 0-20.0 mol%, or SrO component 0-15.0 mol%,
[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔融し、攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。 [Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, and 1100-1500 ° C. in an electric furnace depending on the difficulty of melting the glass composition. It is produced by melting in the temperature range of 2 to 5 hours, stirring and homogenizing, lowering to an appropriate temperature, casting into a mold, and slow cooling.
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔融し、攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。 [Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above raw materials are uniformly mixed so that each component is within a predetermined content range, and the prepared mixture is put into a platinum crucible, and 1100-1500 ° C. in an electric furnace depending on the difficulty of melting the glass composition. It is produced by melting in the temperature range of 2 to 5 hours, stirring and homogenizing, lowering to an appropriate temperature, casting into a mold, and slow cooling.
[物性]
本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有することが好ましい。特に、本発明の光学ガラスの屈折率(nd)は、好ましくは1.75、より好ましくは1.80、さらに好ましくは1.83、さらに好ましくは1.85を下限とする。この屈折率の上限は、好ましくは2.20、より好ましくは2.15、さらに好ましくは2.10であってもよい。
また、本発明の光学ガラスのアッベ数(νd)は、好ましくは23、より好ましくは24、さらに好ましくは25、さらに好ましくは27を下限とする。特に、第1の光学ガラスのアッベ数(νd)は、好ましくは28、より好ましくは30、さらに好ましくは31、さらに好ましくは32を下限としてもよい。また、第3の光学ガラスのアッベ数(νd)は、好ましくは35、より好ましくは37、さらに好ましくは39を下限としてもよい。
一方で、本発明の光学ガラスのアッベ数(νd)は、好ましくは50、より好ましくは47、より好ましくは45を上限とする。特に、第1及び第2の光学ガラスのアッベ数(νd)は、好ましくは40、より好ましくは39.5を上限とし、さらに好ましくは39未満としてもよい。
このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズであっても光の波長による焦点のずれ(色収差)が小さくなる。加えて、このような低分散を有することで、例えば高分散(低いアッベ数)を有する光学素子と組み合わせた場合に、高い結像特性等を図ることができる。
従って、本発明の光学ガラスは、光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。 [Physical properties]
The optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion). In particular, the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.80, even more preferably 1.83, and even more preferably 1.85. The upper limit of this refractive index is preferably 2.20, more preferably 2.15, and even more preferably 2.10.
Further, the Abbe number (ν d ) of the optical glass of the present invention is preferably 23, more preferably 24, still more preferably 25, and even more preferably 27. In particular, the Abbe number (ν d ) of the first optical glass is preferably 28, more preferably 30, still more preferably 31, and even more preferably 32. Further, the Abbe number (ν d ) of the third optical glass is preferably 35, more preferably 37, and still more preferably 39.
On the other hand, the upper limit of the Abbe number (ν d ) of the optical glass of the present invention is preferably 50, more preferably 47, and more preferably 45. In particular, the Abbe number (ν d ) of the first and second optical glasses is preferably 40, more preferably 39.5, and even more preferably less than 39.
By having such a high refractive index, a large amount of light can be obtained even if the optical element is thinned. In addition, by having such low dispersion, even with a single lens, focus shift (chromatic aberration) due to the wavelength of light is reduced. In addition, by having such low dispersion, for example, when combined with an optical element having high dispersion (low Abbe number), high imaging characteristics and the like can be achieved.
Therefore, the optical glass of the present invention is useful in optical design, and the optical system can be miniaturized and the degree of freedom in optical design can be expanded while achieving particularly high imaging characteristics.
本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有することが好ましい。特に、本発明の光学ガラスの屈折率(nd)は、好ましくは1.75、より好ましくは1.80、さらに好ましくは1.83、さらに好ましくは1.85を下限とする。この屈折率の上限は、好ましくは2.20、より好ましくは2.15、さらに好ましくは2.10であってもよい。
また、本発明の光学ガラスのアッベ数(νd)は、好ましくは23、より好ましくは24、さらに好ましくは25、さらに好ましくは27を下限とする。特に、第1の光学ガラスのアッベ数(νd)は、好ましくは28、より好ましくは30、さらに好ましくは31、さらに好ましくは32を下限としてもよい。また、第3の光学ガラスのアッベ数(νd)は、好ましくは35、より好ましくは37、さらに好ましくは39を下限としてもよい。
一方で、本発明の光学ガラスのアッベ数(νd)は、好ましくは50、より好ましくは47、より好ましくは45を上限とする。特に、第1及び第2の光学ガラスのアッベ数(νd)は、好ましくは40、より好ましくは39.5を上限とし、さらに好ましくは39未満としてもよい。
このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズであっても光の波長による焦点のずれ(色収差)が小さくなる。加えて、このような低分散を有することで、例えば高分散(低いアッベ数)を有する光学素子と組み合わせた場合に、高い結像特性等を図ることができる。
従って、本発明の光学ガラスは、光学設計上有用であり、特に高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。 [Physical properties]
The optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion). In particular, the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.80, even more preferably 1.83, and even more preferably 1.85. The upper limit of this refractive index is preferably 2.20, more preferably 2.15, and even more preferably 2.10.
Further, the Abbe number (ν d ) of the optical glass of the present invention is preferably 23, more preferably 24, still more preferably 25, and even more preferably 27. In particular, the Abbe number (ν d ) of the first optical glass is preferably 28, more preferably 30, still more preferably 31, and even more preferably 32. Further, the Abbe number (ν d ) of the third optical glass is preferably 35, more preferably 37, and still more preferably 39.
On the other hand, the upper limit of the Abbe number (ν d ) of the optical glass of the present invention is preferably 50, more preferably 47, and more preferably 45. In particular, the Abbe number (ν d ) of the first and second optical glasses is preferably 40, more preferably 39.5, and even more preferably less than 39.
By having such a high refractive index, a large amount of light can be obtained even if the optical element is thinned. In addition, by having such low dispersion, even with a single lens, focus shift (chromatic aberration) due to the wavelength of light is reduced. In addition, by having such low dispersion, for example, when combined with an optical element having high dispersion (low Abbe number), high imaging characteristics and the like can be achieved.
Therefore, the optical glass of the present invention is useful in optical design, and the optical system can be miniaturized and the degree of freedom in optical design can be expanded while achieving particularly high imaging characteristics.
本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。すなわち、本発明の光学ガラスの液相温度は、好ましくは1300℃、より好ましくは1290℃、さらに好ましくは1280℃を上限とする。これにより、より低い温度で熔融ガラスを流出しても、作製されたガラスの結晶化が低減されるため、特に熔融状態からガラスを形成したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、好ましくは500℃、より好ましくは600℃、さらに好ましくは700℃を下限としてもよい。なお、本明細書中における「液相温度」は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、所定の温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を表す。ここで降温する際の所定の温度は、1300℃までの10℃刻みの温度である。
The optical glass of the present invention preferably has high devitrification resistance, more specifically, a low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1300 ° C, more preferably 1290 ° C, and still more preferably 1280 ° C. As a result, even if the molten glass flows out at a lower temperature, crystallization of the produced glass is reduced, and thus devitrification when the glass is formed from a molten state can be reduced, and an optical element using glass The influence on the optical characteristics can be reduced. Moreover, since glass can be shape | molded even if the melting temperature of glass is lowered | hung, the manufacturing cost of glass can be reduced by suppressing the energy consumed at the time of shaping | molding glass. On the other hand, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is preferably 500 ° C, more preferably 600 ° C, and even more preferably 700 ° C. Also good. In this specification, “liquid phase temperature” refers to a 30 ml cullet-shaped glass sample placed in a platinum crucible in a 50 ml capacity platinum crucible, completely melted at 1350 ° C., and cooled to a predetermined temperature. The glass surface and the presence or absence of crystals in the glass are observed immediately after taking out of the furnace and cooling, and indicates the lowest temperature at which no crystals are observed. The predetermined temperature when the temperature is lowered is a temperature in increments of 10 ° C. up to 1300 ° C.
本発明の光学ガラスは、可視光透過率、特に可視光のうち短波長側の光の透過率が高く、それにより着色が少ないことが好ましい。
特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)は、好ましくは550nm、より好ましくは520nm、さらに好ましくは500nm、さらに好ましくは480nmを上限とする。特に第3の光学ガラスでは、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)は、さらに好ましくは450nm、さらに好ましくは400nmを上限としてもよい。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ5)は、好ましくは440nm、より好ましくは420nm、さらに好ましくは400nm、さらに好ましくは380nmを上限とする。特に第3の光学ガラスでは、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ5)は、360nmを上限としてもよい。
これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。 It is preferable that the optical glass of the present invention has high visible light transmittance, in particular, high transmittance of light on the short wavelength side of visible light, and thereby less coloring.
In particular, when the optical glass of the present invention is represented by the transmittance of the glass, the wavelength (λ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is preferably 550 nm, more preferably 520 nm, still more preferably 500 nm, More preferably, the upper limit is 480 nm. In particular, in the third optical glass, the wavelength (λ 70 ) exhibiting a spectral transmittance of 70% in a sample having a thickness of 10 mm is more preferably 450 nm, and even more preferably 400 nm.
In the optical glass of the present invention, the shortest wavelength (λ 5 ) having a spectral transmittance of 5% in a sample having a thickness of 10 mm is preferably 440 nm, more preferably 420 nm, still more preferably 400 nm, further preferably 380 nm. And In particular, in the third optical glass, the shortest wavelength (λ 5 ) exhibiting a spectral transmittance of 5% in a sample having a thickness of 10 mm may have an upper limit of 360 nm.
As a result, the absorption edge of the glass is in the vicinity of the ultraviolet region, and the transparency of the glass with respect to visible light is enhanced. Therefore, this optical glass can be preferably used for an optical element that transmits light such as a lens.
特に、本発明の光学ガラスは、ガラスの透過率で表すと、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)は、好ましくは550nm、より好ましくは520nm、さらに好ましくは500nm、さらに好ましくは480nmを上限とする。特に第3の光学ガラスでは、厚み10mmのサンプルで分光透過率70%を示す波長(λ70)は、さらに好ましくは450nm、さらに好ましくは400nmを上限としてもよい。
また、本発明の光学ガラスにおける、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ5)は、好ましくは440nm、より好ましくは420nm、さらに好ましくは400nm、さらに好ましくは380nmを上限とする。特に第3の光学ガラスでは、厚み10mmのサンプルで分光透過率5%を示す最も短い波長(λ5)は、360nmを上限としてもよい。
これらにより、ガラスの吸収端が紫外領域の近傍になり、可視光に対するガラスの透明性が高められるため、この光学ガラスを、レンズ等の光を透過させる光学素子に好ましく用いることができる。 It is preferable that the optical glass of the present invention has high visible light transmittance, in particular, high transmittance of light on the short wavelength side of visible light, and thereby less coloring.
In particular, when the optical glass of the present invention is represented by the transmittance of the glass, the wavelength (λ 70 ) showing a spectral transmittance of 70% in a sample having a thickness of 10 mm is preferably 550 nm, more preferably 520 nm, still more preferably 500 nm, More preferably, the upper limit is 480 nm. In particular, in the third optical glass, the wavelength (λ 70 ) exhibiting a spectral transmittance of 70% in a sample having a thickness of 10 mm is more preferably 450 nm, and even more preferably 400 nm.
In the optical glass of the present invention, the shortest wavelength (λ 5 ) having a spectral transmittance of 5% in a sample having a thickness of 10 mm is preferably 440 nm, more preferably 420 nm, still more preferably 400 nm, further preferably 380 nm. And In particular, in the third optical glass, the shortest wavelength (λ 5 ) exhibiting a spectral transmittance of 5% in a sample having a thickness of 10 mm may have an upper limit of 360 nm.
As a result, the absorption edge of the glass is in the vicinity of the ultraviolet region, and the transparency of the glass with respect to visible light is enhanced. Therefore, this optical glass can be preferably used for an optical element that transmits light such as a lens.
本発明の光学ガラスは、低い部分分散比(θg,F)を有することが好ましい。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(νd)との間で、(-2.50×10-3×νd+0.6571)≦(θg,F)≦(-2.50×10-3×νd+0.6971)の関係を満たすことが好ましい。これにより、部分分散比(θg,F)の小さい光学ガラスが得られるため、光学ガラスを光学素子の色収差の低減等に役立てられる。
従って、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×νd+0.6571)、より好ましくは(-2.50×10-3×νd+0.6591)、さらに好ましくは(-2.50×10-3×νd+0.6611)を下限とする。
一方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×νd+0.6971)、より好ましくは(-2.50×10-3×νd+0.6921)、さらに好ましくは(-2.50×10-3×νd+0.6871)を上限とする。 The optical glass of the present invention preferably has a low partial dispersion ratio (θg, F). More specifically, the partial dispersion ratio (θg, F) of the optical glass of the present invention is (−2.50 × 10 −3 × ν d +0.6571) ≦ with respect to the Abbe number (ν d ) ≦ It is preferable to satisfy the relationship (θg, F) ≦ (−2.50 × 10 −3 × ν d +0.6971). Thereby, since an optical glass having a small partial dispersion ratio (θg, F) is obtained, the optical glass is useful for reducing chromatic aberration of an optical element.
Therefore, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably (−2.50 × 10 −3 × ν d +0.6571), more preferably (−2.50 × 10 −3 ×). (ν d +0.6591), more preferably (−2.50 × 10 −3 × ν d +0.6611) is set as the lower limit.
On the other hand, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably (−2.50 × 10 −3 × ν d +0.6971), more preferably (−2.50 × 10 −3). × ν d +0.6921), more preferably (−2.50 × 10 −3 × ν d +0.6871).
従って、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×νd+0.6571)、より好ましくは(-2.50×10-3×νd+0.6591)、さらに好ましくは(-2.50×10-3×νd+0.6611)を下限とする。
一方で、本発明の光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×νd+0.6971)、より好ましくは(-2.50×10-3×νd+0.6921)、さらに好ましくは(-2.50×10-3×νd+0.6871)を上限とする。 The optical glass of the present invention preferably has a low partial dispersion ratio (θg, F). More specifically, the partial dispersion ratio (θg, F) of the optical glass of the present invention is (−2.50 × 10 −3 × ν d +0.6571) ≦ with respect to the Abbe number (ν d ) ≦ It is preferable to satisfy the relationship (θg, F) ≦ (−2.50 × 10 −3 × ν d +0.6971). Thereby, since an optical glass having a small partial dispersion ratio (θg, F) is obtained, the optical glass is useful for reducing chromatic aberration of an optical element.
Therefore, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably (−2.50 × 10 −3 × ν d +0.6571), more preferably (−2.50 × 10 −3 ×). (ν d +0.6591), more preferably (−2.50 × 10 −3 × ν d +0.6611) is set as the lower limit.
On the other hand, the partial dispersion ratio (θg, F) of the optical glass of the present invention is preferably (−2.50 × 10 −3 × ν d +0.6971), more preferably (−2.50 × 10 −3). × ν d +0.6921), more preferably (−2.50 × 10 −3 × ν d +0.6871).
また、本発明の光学ガラスは、比重が小さいことが好ましい。より具体的には、本発明の光学ガラスの比重は5.50[g/cm3]以下であることが好ましい。これにより、光学素子やそれを用いた光学機器の質量が低減されるため、光学機器の軽量化に寄与することができる。従って、本発明の光学ガラスの比重は、好ましくは5.50、より好ましくは5.40、さらに好ましくは5.30、さらに好ましくは5.10を上限とする。なお、本発明の光学ガラスの比重は、概ね3.00以上、より詳細には3.50以上、さらに詳細には4.00以上であることが多い。
本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定する。 The optical glass of the present invention preferably has a small specific gravity. More specifically, the specific gravity of the optical glass of the present invention is preferably 5.50 [g / cm 3 ] or less. Thereby, since the mass of an optical element and an optical apparatus using the same is reduced, it can contribute to the weight reduction of an optical apparatus. Therefore, the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.40, still more preferably 5.30, and still more preferably 5.10. The specific gravity of the optical glass of the present invention is generally about 3.00 or more, more specifically 3.50 or more, and more specifically 4.00 or more in many cases.
The specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定する。 The optical glass of the present invention preferably has a small specific gravity. More specifically, the specific gravity of the optical glass of the present invention is preferably 5.50 [g / cm 3 ] or less. Thereby, since the mass of an optical element and an optical apparatus using the same is reduced, it can contribute to the weight reduction of an optical apparatus. Therefore, the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.40, still more preferably 5.30, and still more preferably 5.10. The specific gravity of the optical glass of the present invention is generally about 3.00 or more, more specifically 3.50 or more, and more specifically 4.00 or more in many cases.
The specific gravity of the optical glass of the present invention is measured based on Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
[ガラス成形体及び光学素子]
作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスから作製したプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。 [Glass molding and optical element]
A glass molded body can be produced from the produced optical glass by means of, for example, polishing or molding press molding such as reheat press molding or precision press molding. That is, a glass molded body is manufactured by performing mechanical processing such as grinding and polishing on optical glass, or glass molding is performed by performing a polishing process after performing reheat press molding on a preform manufactured from optical glass. A glass molded body can be produced by producing a body, or by performing precision press molding on a preform produced by polishing or a preform formed by known float forming or the like. In addition, the means for producing the glass molded body is not limited to these means.
作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスから作製したプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。 [Glass molding and optical element]
A glass molded body can be produced from the produced optical glass by means of, for example, polishing or molding press molding such as reheat press molding or precision press molding. That is, a glass molded body is manufactured by performing mechanical processing such as grinding and polishing on optical glass, or glass molding is performed by performing a polishing process after performing reheat press molding on a preform manufactured from optical glass. A glass molded body can be produced by producing a body, or by performing precision press molding on a preform produced by polishing or a preform formed by known float forming or the like. In addition, the means for producing the glass molded body is not limited to these means.
このように、本発明の光学ガラスから形成したガラス成形体は、様々な光学素子及び光学設計に有用であるが、その中でも特に、レンズやプリズム等の光学素子に用いることが好ましい。これにより、径の大きなガラス成形体の形成が可能になるため、光学素子の大型化を図りながらも、カメラやプロジェクタ等の光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。
As described above, the glass molded body formed from the optical glass of the present invention is useful for various optical elements and optical designs, but it is particularly preferable to use them for optical elements such as lenses and prisms. This makes it possible to form a glass molded body with a large diameter, so that the optical elements can be enlarged, but with high definition and high precision imaging characteristics and projection when used in optical equipment such as cameras and projectors. The characteristics can be realized.
実施例(No.1~No.398)及び比較例(No.A~No.C)の組成、並びに、これらのガラスの屈折率(nd)、アッベ数(νd)、部分分散比(θg,F)、液相温度、分光透過率が5%及び70%を示す波長(λ5及びλ70)並びに比重の結果を表1~表56に示す。このうち、実施例(No.1~No.132)は、本発明の第1の光学ガラスの実施例である。また、実施例(No.133~No.282)及び比較例(No.A、No.B)は、本発明の第2の光学ガラスの実施例及び比較例である。また、実施例(No.283~No.398)及び比較例(No.C)は、本発明の第3の光学ガラスの実施例及び比較例である。
なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples (No. 1 to No. 398) and Comparative Examples (No. A to No. C), and refractive indexes (n d ), Abbe numbers (ν d ), partial dispersion ratios of these glasses ( Tables 1 to 56 show the results of θg, F), liquid phase temperature, wavelengths (λ 5 and λ 70 ) at which the spectral transmittance is 5% and 70%, and specific gravity. Of these, Examples (No. 1 to No. 132) are examples of the first optical glass of the present invention. Examples (No. 133 to No. 282) and comparative examples (No. A, No. B) are examples and comparative examples of the second optical glass of the present invention. Examples (No. 283 to No. 398) and comparative examples (No. C) are examples and comparative examples of the third optical glass of the present invention.
The following examples are merely for illustrative purposes, and are not limited to these examples.
なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples (No. 1 to No. 398) and Comparative Examples (No. A to No. C), and refractive indexes (n d ), Abbe numbers (ν d ), partial dispersion ratios of these glasses ( Tables 1 to 56 show the results of θg, F), liquid phase temperature, wavelengths (λ 5 and λ 70 ) at which the spectral transmittance is 5% and 70%, and specific gravity. Of these, Examples (No. 1 to No. 132) are examples of the first optical glass of the present invention. Examples (No. 133 to No. 282) and comparative examples (No. A, No. B) are examples and comparative examples of the second optical glass of the present invention. Examples (No. 283 to No. 398) and comparative examples (No. C) are examples and comparative examples of the third optical glass of the present invention.
The following examples are merely for illustrative purposes, and are not limited to these examples.
本発明の実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔融した後、攪拌均質化してから金型等に鋳込み、徐冷してガラスを作製した。
The glasses of the examples and comparative examples of the present invention are ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and metaphosphate compounds corresponding to the raw materials of the respective components. The high-purity raw materials used in the above are selected, weighed so as to have the composition ratios of the respective examples shown in the table and mixed uniformly, and then put into a platinum crucible, depending on the melting difficulty of the glass composition. After melting for 2 to 5 hours in a temperature range of 1100 to 1500 ° C. in an electric furnace, the mixture was homogenized with stirring, cast into a mold or the like, and slowly cooled to produce a glass.
ここで、実施例及び比較例のガラスの屈折率、アッベ数、及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。そして、求められたアッベ数及び部分分散比の値について、関係式(θg,F)=-a×νd+bにおける、傾きaが0.0025のときの切片bを求めた。ここで、屈折率、アッベ数、及び部分分散比は、徐冷降温速度を-25℃/hrにして得られたガラスについて測定を行うことで求めた。
Here, the refractive index, Abbe number, and partial dispersion ratio (θg, F) of the glasses of the examples and comparative examples were measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003. Then, with respect to the obtained Abbe number and partial dispersion ratio, the intercept b when the slope a is 0.0025 in the relational expression (θg, F) = − a × ν d + b was obtained. Here, the refractive index, Abbe number, and partial dispersion ratio were determined by measuring the glass obtained at a slow cooling rate of -25 ° C / hr.
また、実施例及び比較例のガラスの透過率は、日本光学硝子工業会規格JOGIS02に準じて測定した。なお、本発明においては、ガラスの透過率を測定することで、ガラスの着色の有無と程度を求めた。具体的には、厚さ10±0.1mmの対面平行研磨品をJISZ8722に準じ、200~800nmの分光透過率を測定し、λ5(透過率5%時の波長)及びλ70(透過率70%時の波長)を求めた。
Moreover, the transmittance | permeability of the glass of an Example and a comparative example was measured according to Japan Optical Glass Industry Association standard JOGIS02. In the present invention, the presence / absence and degree of coloration of the glass were determined by measuring the transmittance of the glass. Specifically, a face parallel polished product having a thickness of 10 ± 0.1 mm was measured for a spectral transmittance of 200 to 800 nm in accordance with JISZ8722, and λ 5 (wavelength when the transmittance was 5%) and λ 70 (transmittance). Wavelength at 70%).
また、実施例及び比較例のガラスの液相温度は、50mlの容量の白金製坩堝に30ccのカレット状のガラス試料を白金坩堝に入れて1350℃で完全に熔融状態にし、1300℃~1160℃まで10℃刻みで設定したいずれかの温度まで降温して12時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察し、結晶が認められない一番低い温度を求めた。
The liquid phase temperature of the glass of the examples and comparative examples is as follows: a 30 cc cullet-shaped glass sample is placed in a platinum crucible in a platinum crucible having a capacity of 50 ml and completely melted at 1350 ° C., 1300 ° C. to 1160 ° C. The temperature is lowered to any temperature set in increments of 10 ° C. and held for 12 hours. After taking out of the furnace and cooling, the glass surface and the presence or absence of crystals in the glass are observed immediately, and the lowest crystal is not observed. The temperature was determined.
また、実施例及び比較例のガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定した。
The specific gravity of the glasses of the examples and comparative examples was measured based on the Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
The specific gravity of the glasses of the examples and comparative examples was measured based on the Japan Optical Glass Industry Association Standard JOGIS05-1975 “Method for Measuring Specific Gravity of Optical Glass”.
本発明の実施例の光学ガラスは、いずれも液相温度が1300℃以下、より詳細には1220℃以下であり、所望の範囲内であった。一方、比較例(No.A)は、失透性が強くガラス化しなかったので、液相温度を測定できなかった。また、比較例(No.B)は液相温度が1300℃を超えていた。このため、本発明の実施例の光学ガラスは、比較例(No.A、No.B)のガラスに比べて液相温度が低く、耐失透性が高いことが明らかになった。
The optical glasses of the examples of the present invention all had a liquidus temperature of 1300 ° C. or lower, more specifically 1220 ° C. or lower, and were within a desired range. On the other hand, since the comparative example (No. A) was highly devitrified and did not vitrify, the liquidus temperature could not be measured. Moreover, the liquidus temperature exceeded 1300 degreeC in the comparative example (No. B). For this reason, it became clear that the optical glass of the Example of this invention has a low liquidus temperature and high devitrification resistance compared with the glass of a comparative example (No.A, No.B).
また、本発明の実施例の光学ガラスは、λ70(透過率70%時の波長)がいずれも550nm以下、より詳細には513nm以下であった。特に、第1の光学ガラスのλ70は、505nm以下であった。また、第3の光学ガラスのλ70は、391nm以下であった。
また、本発明の実施例の光学ガラスは、λ5(透過率5%時の波長)がいずれも440nm以下、より詳細には396nm以下であった。特に、第1の光学ガラスのλ5は、379nm以下であった。また、第3の光学ガラスのλ5は、341nm以下であった。 In addition, in the optical glasses of the examples of the present invention, each of λ 70 (wavelength at a transmittance of 70%) was 550 nm or less, more specifically, 513 nm or less. In particular, λ 70 of the first optical glass was 505 nm or less. In addition, λ 70 of the third optical glass was 391 nm or less.
The optical glasses of the examples of the present invention all had λ 5 (wavelength at a transmittance of 5%) of 440 nm or less, more specifically 396 nm or less. In particular, λ 5 of the first optical glass was 379 nm or less. Further, λ 5 of the third optical glass was 341 nm or less.
また、本発明の実施例の光学ガラスは、λ5(透過率5%時の波長)がいずれも440nm以下、より詳細には396nm以下であった。特に、第1の光学ガラスのλ5は、379nm以下であった。また、第3の光学ガラスのλ5は、341nm以下であった。 In addition, in the optical glasses of the examples of the present invention, each of λ 70 (wavelength at a transmittance of 70%) was 550 nm or less, more specifically, 513 nm or less. In particular, λ 70 of the first optical glass was 505 nm or less. In addition, λ 70 of the third optical glass was 391 nm or less.
The optical glasses of the examples of the present invention all had λ 5 (wavelength at a transmittance of 5%) of 440 nm or less, more specifically 396 nm or less. In particular, λ 5 of the first optical glass was 379 nm or less. Further, λ 5 of the third optical glass was 341 nm or less.
また、本発明の実施例の光学ガラスは、いずれも屈折率(nd)が1.75以上、より詳細には1.85以上であるとともに、この屈折率は2.20以下、より詳細には2.06以下であり、所望の範囲内であった。
特に、第1の光学ガラスの屈折率(nd)は、1.87以上2.01以下の範囲内にあった。また、第2の光学ガラスの屈折率(nd)は、1.87以上2.06以下の範囲内にあった。また、第3の光学ガラスの屈折率(nd)は、1.85以上1.95以下の範囲内にあった。 The optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.75 or more, more specifically 1.85 or more, and this refractive index is 2.20 or less, more specifically. Was 2.06 or less, and was within the desired range.
In particular, the refractive index (n d ) of the first optical glass was in the range of 1.87 to 2.01. The refractive index (n d ) of the second optical glass was in the range of 1.87 to 2.06. The refractive index (n d ) of the third optical glass was in the range of 1.85 to 1.95.
特に、第1の光学ガラスの屈折率(nd)は、1.87以上2.01以下の範囲内にあった。また、第2の光学ガラスの屈折率(nd)は、1.87以上2.06以下の範囲内にあった。また、第3の光学ガラスの屈折率(nd)は、1.85以上1.95以下の範囲内にあった。 The optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.75 or more, more specifically 1.85 or more, and this refractive index is 2.20 or less, more specifically. Was 2.06 or less, and was within the desired range.
In particular, the refractive index (n d ) of the first optical glass was in the range of 1.87 to 2.01. The refractive index (n d ) of the second optical glass was in the range of 1.87 to 2.06. The refractive index (n d ) of the third optical glass was in the range of 1.85 to 1.95.
また、本発明の実施例の光学ガラスは、いずれもアッベ数(νd)が23以上、より詳細には24以上であるとともに、このアッベ数は50以下、より詳細には42以下であり、所望の範囲内であった。
特に、第1の光学ガラスのアッベ数(νd)は、28以上39以下の範囲内にあった。また、第2の光学ガラスのアッベ数(νd)は、24以上39以下の範囲内にあった。また、第3の光学ガラスのアッベ数(νd)は、35以上42以下の範囲内にあった。 The optical glasses of the examples of the present invention all have an Abbe number (ν d ) of 23 or more, more specifically 24 or more, and this Abbe number is 50 or less, more specifically 42 or less, It was within the desired range.
In particular, the Abbe number (ν d ) of the first optical glass was in the range of 28 to 39. Further, the Abbe number (ν d ) of the second optical glass was in the range of 24 to 39. The Abbe number (ν d ) of the third optical glass was in the range of 35 to 42.
特に、第1の光学ガラスのアッベ数(νd)は、28以上39以下の範囲内にあった。また、第2の光学ガラスのアッベ数(νd)は、24以上39以下の範囲内にあった。また、第3の光学ガラスのアッベ数(νd)は、35以上42以下の範囲内にあった。 The optical glasses of the examples of the present invention all have an Abbe number (ν d ) of 23 or more, more specifically 24 or more, and this Abbe number is 50 or less, more specifically 42 or less, It was within the desired range.
In particular, the Abbe number (ν d ) of the first optical glass was in the range of 28 to 39. Further, the Abbe number (ν d ) of the second optical glass was in the range of 24 to 39. The Abbe number (ν d ) of the third optical glass was in the range of 35 to 42.
また、本発明の実施例の光学ガラスは、いずれも部分分散比(θg,F)が(-2.50×10-3×νd+0.6571)以上、より詳細には(-2.50×10-3×νd+0.6658)以上であった。その反面で、本発明の実施例の光学ガラスの部分分散比(-2.50×10-3×νd+0.6971)以下、より詳細には(-2.50×10-3×νd+0.6785)以下であった。そのため、これらの部分分散比(θg,F)が所望の範囲内にあることがわかった。
特に、第1の光学ガラスの部分分散比(θg,F)は、(-2.50×10-3×νd+0.6683)以上(-2.50×10-3×νd+0.6750)以下の範囲内にあった。また、第2の光学ガラスのアッベ数(νd)は、(-2.50×10-3×νd+0.6658)以上(-2.50×10-3×νd+0.6785)以下の範囲内にあった。また、第3の光学ガラスのアッベ数(νd)は、(-2.50×10-3×νd+0.6691)以上(-2.50×10-3×νd+0.6761)以下の範囲内にあった。 The optical glasses of the examples of the present invention all have a partial dispersion ratio (θg, F) of (−2.50 × 10 −3 × ν d +0.6571) or more, more specifically (−2.50). × 10 −3 × ν d +0.6658) or more. On the other hand, the partial dispersion ratio (-2.50 × 10 −3 × ν d +0.6971) or less of the optical glass of the example of the present invention, more specifically (−2.50 × 10 −3 × ν d). +0.6785) or less. Therefore, it was found that these partial dispersion ratios (θg, F) are within a desired range.
In particular, the partial dispersion ratio (θg, F) of the first optical glass is (−2.50 × 10 −3 × ν d +0.6683) or more (−2.50 × 10 −3 × ν d +0.6750). ) It was within the following range. The Abbe number of the second optical glass ([nu d) is, (- 2.50 × 10 -3 × ν d +0.6658) or (-2.50 × 10 -3 × ν d +0.6785) below It was in the range. The Abbe number of the third optical glass ([nu d) is, (- 2.50 × 10 -3 × ν d +0.6691) or (-2.50 × 10 -3 × ν d +0.6761) below It was in the range.
特に、第1の光学ガラスの部分分散比(θg,F)は、(-2.50×10-3×νd+0.6683)以上(-2.50×10-3×νd+0.6750)以下の範囲内にあった。また、第2の光学ガラスのアッベ数(νd)は、(-2.50×10-3×νd+0.6658)以上(-2.50×10-3×νd+0.6785)以下の範囲内にあった。また、第3の光学ガラスのアッベ数(νd)は、(-2.50×10-3×νd+0.6691)以上(-2.50×10-3×νd+0.6761)以下の範囲内にあった。 The optical glasses of the examples of the present invention all have a partial dispersion ratio (θg, F) of (−2.50 × 10 −3 × ν d +0.6571) or more, more specifically (−2.50). × 10 −3 × ν d +0.6658) or more. On the other hand, the partial dispersion ratio (-2.50 × 10 −3 × ν d +0.6971) or less of the optical glass of the example of the present invention, more specifically (−2.50 × 10 −3 × ν d). +0.6785) or less. Therefore, it was found that these partial dispersion ratios (θg, F) are within a desired range.
In particular, the partial dispersion ratio (θg, F) of the first optical glass is (−2.50 × 10 −3 × ν d +0.6683) or more (−2.50 × 10 −3 × ν d +0.6750). ) It was within the following range. The Abbe number of the second optical glass ([nu d) is, (- 2.50 × 10 -3 × ν d +0.6658) or (-2.50 × 10 -3 × ν d +0.6785) below It was in the range. The Abbe number of the third optical glass ([nu d) is, (- 2.50 × 10 -3 × ν d +0.6691) or (-2.50 × 10 -3 × ν d +0.6761) below It was in the range.
本発明の実施例の光学ガラスは、いずれも比重が5.50以下、より詳細には5.20以下であった。特に、第3の光学ガラスの比重は、4.96以下であった。そのため、本発明の実施例の光学ガラスは、比重が小さいことが明らかになった。
The optical glasses of the examples of the present invention all had a specific gravity of 5.50 or less, more specifically 5.20 or less. In particular, the specific gravity of the third optical glass was 4.96 or less. Therefore, it became clear that the optical glass of the Example of this invention has small specific gravity.
従って、本発明の実施例の光学ガラスは、屈折率及びアッベ数が所望の範囲内にありながらも安価に作製でき、耐失透性が高く、着色が少なく、且つ比重が小さいことが明らかになった。
Therefore, it is clear that the optical glass of the embodiment of the present invention can be manufactured at a low cost while having a refractive index and an Abbe number within a desired range, has high resistance to devitrification, little coloring, and low specific gravity. became.
さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。
Furthermore, a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shape of a lens and a prism. As a result, it was possible to stably process into various lens and prism shapes.
以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。
Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.
Claims (27)
- 質量%でB2O3成分を1.0~30.0%及びLa2O3成分を10.0~60.0%含有する光学ガラス。 An optical glass containing 1.0 to 30.0% of a B 2 O 3 component and 10.0 to 60.0% of a La 2 O 3 component by mass%.
- 質量%で、Ta2O5成分の含有量が15.0%以下である請求項1記載の光学ガラス。 The optical glass according to claim 1, wherein the content of the Ta 2 O 5 component is 15.0% or less by mass.
- 35以上のアッベ数(νd)を有し、Ta2O5成分の含有量が15.0%未満である請求項1又は2記載の光学ガラス。 3. The optical glass according to claim 1, wherein the optical glass has an Abbe number (ν d ) of 35 or more and the content of the Ta 2 O 5 component is less than 15.0%.
- 質量%で、Y2O3成分の含有量が30.0%以下である請求項1から3のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, wherein the content of the Y 2 O 3 component is 30.0% or less in terms of mass%.
- 質量%で、Gd2O3成分の含有量が40.0%以下である請求項1から4のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 4, wherein the content of the Gd 2 O 3 component is 40.0% or less in terms of mass%.
- 質量%で、Gd2O3成分の含有量が20.0%以下である請求項1から5のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 5, wherein the content of the Gd 2 O 3 component is 20.0% or less by mass%.
- 質量%で、Yb2O3成分の含有量が20.0%以下である請求項1から6のいずれか記載の光学ガラス。 The optical glass according to claim 1, wherein the content of the Yb 2 O 3 component is 20.0% or less by mass.
- Ln2O3成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)の質量和が30.0%以上75.0%以下である請求項1から7のいずれか記載の光学ガラス。 The mass sum of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Gd, Y, Yb) is 30.0% or more and 75.0% or less. The optical glass according to any one of the above.
- 質量比(Gd2O3+Yb2O3)/(La2O3+Y2O3)が0.50以下である請求項1から8のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 8, wherein a mass ratio (Gd 2 O 3 + Yb 2 O 3 ) / (La 2 O 3 + Y 2 O 3 ) is 0.50 or less.
- Gd2O3成分、Yb2O3成分及びTa2O5成分の含有量の和が30.0%以下である請求項1から9のいずれか記載の光学ガラス。 The optical glass according to claim 1, wherein the sum of the contents of the Gd 2 O 3 component, the Yb 2 O 3 component, and the Ta 2 O 5 component is 30.0% or less.
- 質量%で
TiO2成分 0~30.0%
Nb2O5成分 0~20.0%
WO3成分 0~25.0%
である請求項1から10のいずれか記載の光学ガラス。 TiO 2 component by mass% 0-30.0%
Nb 2 O 5 component 0-20.0%
WO 3 component 0-25.0%
The optical glass according to any one of claims 1 to 10. - Nb2O5成分及びWO3成分の含有量の和が1.0%以上30.0%以下である請求項1から11のいずれか記載の光学ガラス。 The optical glass according to claim 1, wherein the sum of the contents of the Nb 2 O 5 component and the WO 3 component is 1.0% or more and 30.0% or less.
- TiO2成分、Nb2O5成分及びWO3成分の含有量の和が30.0%以下である請求項1から12のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 12, wherein the sum of the contents of the TiO 2 component, the Nb 2 O 5 component, and the WO 3 component is 30.0% or less.
- 質量%で、SiO2成分の含有量が30.0%以下である請求項1から13のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 13, wherein the content of the SiO 2 component is 30.0% or less in terms of mass%.
- B2O3成分及びSiO2成分の含有量の和が1.0%以上30.0%以下である請求項1から14のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 14, wherein the sum of the contents of the B 2 O 3 component and the SiO 2 component is 1.0% or more and 30.0% or less.
- 質量比(Nb2O5+WO3)/(B2O3+SiO2)が0.15以上2.00以下である請求項1から15のいずれか記載の光学ガラス。 The optical glass according to claim 1, wherein a mass ratio (Nb 2 O 5 + WO 3 ) / (B 2 O 3 + SiO 2 ) is 0.15 or more and 2.00 or less.
- 質量%で
MgO成分 0~20.0%
CaO成分 0~20.0%
SrO成分 0~20.0%
BaO成分 0~25.0%
である請求項1から16のいずれか記載の光学ガラス。 MgO component in mass% 0 to 20.0%
CaO component 0-20.0%
SrO component 0-20.0%
BaO component 0-25.0%
The optical glass according to any one of claims 1 to 16. - RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の質量和が25.0%以下である請求項1から17のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 17, wherein a mass sum of RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is 25.0% or less.
- 質量%で、Li2O成分の含有量が10.0%以下である請求項1から18のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 18, wherein the content of the Li 2 O component is 10.0% or less by mass.
- 質量%で
Na2O成分 0~10.0%
K2O成分 0~10.0%
Cs2O成分 0~10.0%
である請求項1から19のいずれか記載の光学ガラス。 Na 2 O component by mass% 0-10.0%
K 2 O component 0-10.0%
Cs 2 O component 0 to 10.0%
The optical glass according to claim 1, wherein: - Rn2O成分(式中、RnはLi、Na、K、Csからなる群より選択される1種以上)の質量和が15.0%以下である請求項1から20のいずれか記載の光学ガラス。 21. The optical component according to claim 1, wherein the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, K, and Cs) has a mass sum of 15.0% or less. Glass.
- 質量%で、ZnO成分の含有量が25.0%以下である、請求項1から21のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 21, wherein the content of the ZnO component is 25.0% or less by mass%.
- 質量%で
P2O5成分 0~10.0%
GeO2成分 0~10.0%
ZrO2成分 0~15.0%
ZnO成分 0~15.0%
Al2O3成分 0~10.0%
Ga2O3成分 0~10.0%
Bi2O3成分 0~10.0%
TeO2成分 0~20.0%
SnO2成分 0~1.0%
Sb2O3成分 0~1.0%
である請求項1から22のいずれか記載の光学ガラス。 Mass% with P 2 O 5 component from 0 to 10.0%
GeO 2 component 0 ~ 10.0%
ZrO 2 component 0 ~ 15.0%
ZnO component 0-15.0%
Al 2 O 3 component 0 to 10.0%
Ga 2 O 3 component 0 to 10.0%
Bi 2 O 3 component 0 to 10.0%
TeO 2 component 0-20.0%
SnO 2 component 0-1.0%
Sb 2 O 3 component 0-1.0%
The optical glass according to any one of claims 1 to 22. - 1.75以上の屈折率(nd)を有し、23以上50以下のアッベ数(νd)を有する請求項1から23のいずれか記載の光学ガラス。 The optical glass according to claim 1, which has a refractive index (n d ) of 1.75 or more and an Abbe number (ν d ) of 23 or more and 50 or less.
- 1300℃以下の液相温度を有する請求項1から24のいずれか記載の光学ガラス。 The optical glass according to claim 1, which has a liquidus temperature of 1300 ° C. or lower.
- 請求項1から25のいずれか記載の光学ガラスを母材とする光学素子。 An optical element having the optical glass according to any one of claims 1 to 25 as a base material.
- 請求項26記載の光学素子を備える光学機器。 An optical device comprising the optical element according to claim 26.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280062678.1A CN104010982A (en) | 2011-12-20 | 2012-12-18 | Optical glass and optical element |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278868 | 2011-12-20 | ||
JP2011-278868 | 2011-12-20 | ||
JP2011-289956 | 2011-12-28 | ||
JP2011289957 | 2011-12-28 | ||
JP2011-289957 | 2011-12-28 | ||
JP2011289956 | 2011-12-28 | ||
JP2012190083 | 2012-08-30 | ||
JP2012190082 | 2012-08-30 | ||
JP2012-190084 | 2012-08-30 | ||
JP2012-190083 | 2012-08-30 | ||
JP2012190084 | 2012-08-30 | ||
JP2012-190082 | 2012-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013094619A1 true WO2013094619A1 (en) | 2013-06-27 |
Family
ID=48668506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082848 WO2013094619A1 (en) | 2011-12-20 | 2012-12-18 | Optical glass and optical element |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN107285622A (en) |
TW (2) | TWI616415B (en) |
WO (1) | WO2013094619A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104341102A (en) * | 2013-07-31 | 2015-02-11 | 株式会社小原 | Optical glass and optical element |
US20150203395A1 (en) * | 2014-01-22 | 2015-07-23 | Cdgm Glass Co., Ltd. | High refractivity and high dispersion optical glass, element and instrument |
JP2016117598A (en) * | 2014-12-18 | 2016-06-30 | 光ガラス株式会社 | Optical glass, and optical element and optical device prepared with optical glass |
JP2016196408A (en) * | 2016-08-19 | 2016-11-24 | 株式会社オハラ | Optical glass and optical element |
JP2016199469A (en) * | 2016-08-24 | 2016-12-01 | 株式会社オハラ | Optical glass and optical element |
JP2016216282A (en) * | 2015-05-18 | 2016-12-22 | 株式会社オハラ | Optical glass and optical element |
CN106467358A (en) * | 2015-08-14 | 2017-03-01 | 成都光明光电股份有限公司 | Optical glass |
JP2017171578A (en) * | 2017-06-23 | 2017-09-28 | 株式会社オハラ | Optical glass and optical element |
EP3915952A4 (en) * | 2019-08-26 | 2021-12-29 | AGC Inc. | Optical glass |
JP7528313B2 (en) | 2017-12-27 | 2024-08-05 | 株式会社オハラ | Optical glass, preforms and optical elements |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104445922A (en) * | 2013-09-18 | 2015-03-25 | 株式会社小原 | Optical glass and optical element |
JP6587286B2 (en) * | 2014-11-07 | 2019-10-09 | Hoya株式会社 | Glass, glass material for press molding, optical element blank, and optical element |
TWI671270B (en) * | 2015-01-13 | 2019-09-11 | 日商Hoya股份有限公司 | Glass, glass materials for stamping, optical component blanks, and optical components |
CN108751696B (en) * | 2015-04-10 | 2021-09-07 | 成都光明光电股份有限公司 | Optical glass |
CN106467359A (en) * | 2015-08-14 | 2017-03-01 | 成都光明光电股份有限公司 | Optical glass |
CN105198206A (en) * | 2015-08-14 | 2015-12-30 | 成都光明光电股份有限公司 | Optical glass |
CN105645766B (en) * | 2016-03-07 | 2019-02-26 | 成都光明光电股份有限公司 | Optical glass and optical element |
CN105645760B (en) * | 2016-03-07 | 2019-01-22 | 成都光明光电股份有限公司 | Optical glass and optical element |
JP6738243B2 (en) * | 2016-08-31 | 2020-08-12 | Hoya株式会社 | Glass, glass material for press molding, optical element blank and optical element |
JP7089933B2 (en) * | 2018-04-26 | 2022-06-23 | Hoya株式会社 | Optical glass and optical elements |
CN108726872B (en) * | 2018-07-27 | 2020-10-30 | 望江县天长光学仪器有限公司 | Optical glass |
JP7194551B6 (en) * | 2018-10-11 | 2024-02-06 | Hoya株式会社 | Optical glass, glass materials for press molding, optical element blanks and optical elements |
WO2021199554A1 (en) * | 2020-03-31 | 2021-10-07 | Hoya株式会社 | Optical glass, optical element blank, and optical element |
CN118745077A (en) * | 2022-08-26 | 2024-10-08 | 成都光明光电股份有限公司 | Optical glass, glass preform and optical element |
CN117658454A (en) * | 2022-08-26 | 2024-03-08 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element, and optical instrument |
CN115231819A (en) * | 2022-08-26 | 2022-10-25 | 成都光明光电股份有限公司 | High refractive index optical glass |
CN115385570A (en) * | 2022-08-26 | 2022-11-25 | 成都光明光电股份有限公司 | High refractive index optical glass |
CN115286238A (en) * | 2022-08-26 | 2022-11-04 | 成都光明光电股份有限公司 | Optical glass |
CN115231817A (en) * | 2022-08-26 | 2022-10-25 | 成都光明光电股份有限公司 | Optical glass, optical element and optical instrument |
CN115304269A (en) * | 2022-08-26 | 2022-11-08 | 成都光明光电股份有限公司 | Optical glass |
CN115321813A (en) * | 2022-08-26 | 2022-11-11 | 成都光明光电股份有限公司 | Optical glass and optical element |
CN117658450A (en) * | 2022-08-26 | 2024-03-08 | 成都光明光电股份有限公司 | Optical glass, optical element and optical instrument |
CN115504666A (en) * | 2022-08-26 | 2022-12-23 | 成都光明光电股份有限公司 | Optical glass and optical element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565345A (en) * | 1979-06-28 | 1981-01-20 | Nippon Kogaku Kk <Nikon> | Optical glass |
JP2007063071A (en) * | 2005-08-31 | 2007-03-15 | Hoya Corp | Optical glass, preform for precision press forming and method of manufacturing the same, optical device and method of manufacturing the same |
JP2011006318A (en) * | 2009-05-28 | 2011-01-13 | Asahi Glass Co Ltd | Optical glass |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5180758B2 (en) * | 2008-09-30 | 2013-04-10 | Hoya株式会社 | Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank |
-
2012
- 2012-12-18 CN CN201710509876.2A patent/CN107285622A/en active Pending
- 2012-12-18 WO PCT/JP2012/082848 patent/WO2013094619A1/en active Application Filing
- 2012-12-18 CN CN201280062678.1A patent/CN104010982A/en active Pending
- 2012-12-19 TW TW101148508A patent/TWI616415B/en active
- 2012-12-19 TW TW106123091A patent/TW201803821A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS565345A (en) * | 1979-06-28 | 1981-01-20 | Nippon Kogaku Kk <Nikon> | Optical glass |
JP2007063071A (en) * | 2005-08-31 | 2007-03-15 | Hoya Corp | Optical glass, preform for precision press forming and method of manufacturing the same, optical device and method of manufacturing the same |
JP2011006318A (en) * | 2009-05-28 | 2011-01-13 | Asahi Glass Co Ltd | Optical glass |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104341102B (en) * | 2013-07-31 | 2018-08-07 | 株式会社小原 | Optical glass and optical element |
JP2015030631A (en) * | 2013-07-31 | 2015-02-16 | 株式会社オハラ | Optical glass and optical element |
CN104341102A (en) * | 2013-07-31 | 2015-02-11 | 株式会社小原 | Optical glass and optical element |
US20150203395A1 (en) * | 2014-01-22 | 2015-07-23 | Cdgm Glass Co., Ltd. | High refractivity and high dispersion optical glass, element and instrument |
US9487432B2 (en) * | 2014-01-22 | 2016-11-08 | Cdgm Glass Co., Ltd | High refractivity and high dispersion optical glass, element and instrument |
JP2016117598A (en) * | 2014-12-18 | 2016-06-30 | 光ガラス株式会社 | Optical glass, and optical element and optical device prepared with optical glass |
JP2016216282A (en) * | 2015-05-18 | 2016-12-22 | 株式会社オハラ | Optical glass and optical element |
CN106467358A (en) * | 2015-08-14 | 2017-03-01 | 成都光明光电股份有限公司 | Optical glass |
JP2016196408A (en) * | 2016-08-19 | 2016-11-24 | 株式会社オハラ | Optical glass and optical element |
JP2016199469A (en) * | 2016-08-24 | 2016-12-01 | 株式会社オハラ | Optical glass and optical element |
JP2017171578A (en) * | 2017-06-23 | 2017-09-28 | 株式会社オハラ | Optical glass and optical element |
JP7528313B2 (en) | 2017-12-27 | 2024-08-05 | 株式会社オハラ | Optical glass, preforms and optical elements |
EP3915952A4 (en) * | 2019-08-26 | 2021-12-29 | AGC Inc. | Optical glass |
Also Published As
Publication number | Publication date |
---|---|
TW201335094A (en) | 2013-09-01 |
TWI616415B (en) | 2018-03-01 |
TW201803821A (en) | 2018-02-01 |
CN107285622A (en) | 2017-10-24 |
CN104010982A (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740422B2 (en) | Optical glass and optical element | |
JP6409039B2 (en) | Optical glass and optical element | |
JP6033486B2 (en) | Optical glass, preform material and optical element | |
JP5979723B2 (en) | Optical glass and optical element | |
JP5827067B2 (en) | Optical glass and optical element | |
WO2013094619A1 (en) | Optical glass and optical element | |
JP6560651B2 (en) | Optical glass and optical element | |
JP2012229148A (en) | Optical glass and optical element | |
JP6188553B2 (en) | Optical glass, preform material and optical element | |
JP2016216282A (en) | Optical glass and optical element | |
JP6363141B2 (en) | Optical glass, preform material and optical element | |
JP5875572B2 (en) | Optical glass, preform material and optical element | |
JP2017171578A (en) | Optical glass and optical element | |
JP6049591B2 (en) | Optical glass, preform material and optical element | |
JP2013209232A (en) | Optical glass and optical element | |
JP6091251B2 (en) | Optical glass and optical element | |
JP6033487B2 (en) | Optical glass and optical element | |
JP6033488B1 (en) | Optical glass and optical element | |
JP6165281B2 (en) | Optical glass and optical element | |
JP6611410B2 (en) | Optical glass, preform material and optical element | |
JP2013209233A (en) | Optical glass and optical element | |
JP2019031441A (en) | Optical glass and optical element | |
JP2014162708A (en) | Optical glass and optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12860854 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12860854 Country of ref document: EP Kind code of ref document: A1 |