TW201245078A - Optical glass, preform, and optical element - Google Patents

Optical glass, preform, and optical element Download PDF

Info

Publication number
TW201245078A
TW201245078A TW101111150A TW101111150A TW201245078A TW 201245078 A TW201245078 A TW 201245078A TW 101111150 A TW101111150 A TW 101111150A TW 101111150 A TW101111150 A TW 101111150A TW 201245078 A TW201245078 A TW 201245078A
Authority
TW
Taiwan
Prior art keywords
component
glass
optical glass
less
composition
Prior art date
Application number
TW101111150A
Other languages
Chinese (zh)
Inventor
Tetsuya Tsuda
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011073357A external-priority patent/JP2012206892A/en
Priority claimed from JP2011073356A external-priority patent/JP2012206891A/en
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201245078A publication Critical patent/TW201245078A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is an optical glass exhibiting enhanced transparency with regard to visible light and having a small Abbe number (?d) and partial dispersion ratio (?g,F) while the refraction index (nd) is within a desired range. The optical glass contains, relative to the entire amount of the glass in terms of oxides, 20.0% to 60.0% of an SiO2 component and more than 20.0% to 50.0% or less of a CaO component, a total of more than 0% and 20.0% or less of a BaO component and a K2O component, and has an Nb2O5 component content of 30.0% or less, wherein the partial dispersion ratio (?g,F) and the Abbe number (?d) satisfy the relationship of (-0.00162?d+0.63822)=(?g,F)=(-0.00275?d+0.68125) when ?d=31 and satisfy the relationship of (-0.00162?d+0.63822)=(?g,F)=(-0.00162?d+0.64622) when ?d>31.

Description

201245078 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學玻璃、預成形體及光學元件。 【先前技術】 數位相機或攝像機等光學系統包含存在大小之分、稱作 像差之模糊。該像差分類為單色像差與色像差,尤其,色 像差較強地依存於光學系統中所使用之透鏡之材料特性。 通常’色像差係組合低分散之凸透鏡與高分散之凹透鏡 進行修正,但於該組合中,僅可進行紅色區域與綠色區域 之像差之修正’藍色區域之像差殘留。將該無法完全除去 之藍色區域之像差稱作二次光譜β為了修正二次光譜,需 進行考慮到藍色區域之g線(435.835 nm)之動向之光學設 計。此時,作為光學設計中所著眼之光學特性之指標,使 用部分分散比(0g,F)。於上述組合低分散之透鏡與高分散 之透鏡之光學系統中,於低分散侧之透鏡中使用部分分散 比(0g,F)較大之光學材料,於高分散側之透鏡中使用部分 分散比(eg,F)較小之光學材料,藉此良好地修正二次光 譜。 部分分散比(eg, f)係藉由下式表示。 0g, F=(ng-nF)/(nF-nc)......⑴ 對於光學玻璃,於表示短波長域之部分分散性之部分分 散比(eg,f)與阿貝數(Vd)之間,存在大致直線性之關 表示該關係之直線係在於縱軸採用部分分散比f)、於 橫軸採用阿貝數(vd)之正交座標上,以連接描繪與 163467.doc 201245078 PBM2之部分分散比及阿貝數之2點之直線表示,稱作正規 線(參照圖1)。成為正規線之基準之標準玻璃根據各光學玻 璃製造商而不同,但各公司均以大致相同之斜度與截距進 行疋義。(NSL7與PBM2為股份有限公司OHARA公司製造 之光學玻璃,PBM2之阿貝數(vd)為36.3,部分分散比(0g, F)為0.5828 ’ NSL7之阿貝數(vd)為60.5,部分分散比(0g,ρ) 為 0.5436) » 此處’作為具有高分散之玻璃,例如已知如專利文獻1〜 3中所示之光學玻璃。 [先前技術文獻] [專利文獻] [專利文獻1]曰本專利特開平03-005340號公報 [專利文獻2]曰本專利特開2006-219365號公報 [專利文獻3]曰本專利特開昭61-168551號公報 【發明内容】 [發明所欲解決之問題] 然而,專利文獻1〜3中所揭示之玻璃之部分分散比並不 小’對於用作修正上述二次光譜之透鏡並不充分。又,專 利文獻1〜3中所揭示之玻璃中,相對於可見光之透明性並 不高,尤其’對於用於透過可見光之用途而言並不充分。 即,尋求一種阿貝數(vd)較小且為高分散、部分分散比(eg, F)較小、並且相對於可見光之透明性較高之光學玻璃。 本發明係鑒於上述問題而成者,其目的在於獲得一種折 射率(nd)處於所期望之範圍内、並且阿貝數(vd)較小 '部分 -4 · 163467.doc201245078 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] An optical system such as a digital camera or a video camera includes blurs of a size, called aberration. The aberration is classified into monochromatic aberration and chromatic aberration, and in particular, the chromatic aberration strongly depends on the material properties of the lens used in the optical system. Generally, the chromatic aberration is combined with a low-dispersion convex lens and a highly-dispersed concave lens. However, in this combination, only the aberration of the red region and the green region can be corrected, and the aberration of the blue region remains. The aberration of the blue region which cannot be completely removed is referred to as a secondary spectrum. In order to correct the secondary spectrum, an optical design in consideration of the direction of the g-line (435.835 nm) of the blue region is required. At this time, as an index of the optical characteristics of the optical design, a partial dispersion ratio (0g, F) was used. In the above optical system combining a low-dispersion lens and a highly-dispersed lens, an optical material having a large partial dispersion ratio (0g, F) is used in a lens on a low dispersion side, and a partial dispersion ratio is used in a lens on a high dispersion side. (eg, F) a smaller optical material whereby the secondary spectrum is well corrected. The partial dispersion ratio (eg, f) is represented by the following formula. 0g, F=(ng-nF)/(nF-nc) (1) For optical glass, the partial dispersion ratio (eg, f) and Abbe number (Vd) indicating partial dispersion in the short wavelength region Between the two, there is a general linear relationship indicating that the relationship is based on the vertical axis using the partial dispersion ratio f), and the horizontal axis using the Abbe number (vd) on the orthogonal coordinates to connect and depict 163467.doc 201245078 The partial dispersion ratio of PBM2 and the straight line of 2 points of the Abbe number are expressed as regular lines (refer to Fig. 1). The standard glass that becomes the basis for the regular line varies according to each optical glass manufacturer, but each company has the same slope and intercept. (NSL7 and PBM2 are optical glass manufactured by OHARA Co., Ltd., the Abbe number (vd) of PBM2 is 36.3, and the partial dispersion ratio (0g, F) is 0.5828'. The Abbe number (vd) of NSL7 is 60.5, partially dispersed. The ratio (0g, ρ) is 0.5436). Here, as the glass having high dispersion, for example, optical glasses as disclosed in Patent Documents 1 to 3 are known. [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2006-219365 (Patent Document 3) [Problem to be Solved by the Invention] However, the partial dispersion ratio of the glass disclosed in Patent Documents 1 to 3 is not small 'not sufficient for the lens used for correcting the above secondary spectrum. . Further, in the glasses disclosed in Patent Documents 1 to 3, the transparency with respect to visible light is not high, and in particular, it is not sufficient for use for transmitting visible light. That is, an optical glass having a small Abbe number (vd) and a high dispersion, a small partial dispersion ratio (eg, F), and a high transparency with respect to visible light is sought. The present invention has been made in view of the above problems, and its object is to obtain a refractive index (nd) which is within a desired range and a small Abbe number (vd) 'part -4 · 163467.doc

201245078 分散比(9g,F)較小、且相對於可見光之透明性提高之光學 玻璃,以及使用該光學玻璃之預成形體及光學元件❶ [解決問題之技術手段] 本發明者等人為解決上述課題反覆進行銳意試驗研究, 結果發現,藉由併用Si〇2成分及Ca〇成分,並將該等之含 量設於特定之範圍内,而可形成穩定之玻璃,並且可實現 阿貝數(vd)之降低,且玻璃之著色減輕。 又,發現藉由使用BaO成分及κ:2〇成分中之丨種以上,而 可獲得所期望之高折射率,並且可獲得更低之部分分散比 (〇g’ F)。又,發現藉由將Nth成分之含量設於特定之範 圍内,而可獲得較低之阿貝數及部分分散比,並且玻璃之 失透減輕,最終完成本發明。與此同時,亦發現藉由併用 Si〇2成分及CaO成分,並將該等之含量設於特定之範圍 内’而於再加熱玻璃時不易產生著色或失透。 又’亦發現藉由將Nb>2〇5成分之含量設於特定之範圍 内’而可獲得較高之折射率或較低之阿貝數、較低之部分 分散比,並且玻璃之失透減輕。 具體而言’本發明係提供如下所示者。 (1) 一種光學玻璃’其係相對於氧化物換算組成之玻璃 總物質量’以莫耳%計’含有Si〇2成分20.0%以上60.0%以 下、及CaO成分多於2〇.〇0/0且50·0ο/〇以下,Nb2〇5成分之含 量為30.0%以下,於部分分散比(0g,F)與阿貝數(vd)之間, 於 vd$3 1 之範圍中滿足(_〇 〇〇i62xvcl+〇.63822)S(0g,F)S (-0.00275xvd+0.68125)之關係’於Vd>31之範圍中滿足 163467.doc 201245078 (-〇.〇〇162xvd+〇.63822)^(0g, F)^(-0.00162xvd+0.64622)^ 關係。 (2) 如(1)之光學玻璃,其中相對於氧化物換算組成之玻 璃總物質量,BaO成分及κ:2〇成分之含量之和多於〇%且 20.0%以下。 (3) 如(1)或(2)之光學玻璃’其中相對於氧化物換算組 成之玻璃總物質量,以莫耳%計,含有Ti02成分〇〜2〇〇%。 (4) 如(1)至(3)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳%計,含有Ti〇2成 分 0〜10.0%。 (5) 如(1)至(4)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,Nb2〇5成分及Ti〇2成分之 含量之和為10·0%以上40.0%以下。 (6) 如(1)至(5)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳%計,含有Ba〇成 分 0〜25.0%。 (7) 如(1)至(6)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳。/。計,含有Ba〇成 分 0〜20.0〇/〇 ° (8) 如(1)至(7)項中任一項之光學玻璃,其中氧化物換 算組成之莫耳比(Nb2〇5+BaO)/(Ti02 + CaO)為O.loo以上。 (9) 如(1)至(8)項中任一項之光學玻璃,其中氧化物換 算組成之莫耳比Ti02/Nb205為5.00以下。 (10) 如(1)至(9)項中任一項之光學玻璃,其中氧化物換 163467.doc 201245078 算組成之莫耳比Ti〇2/Nb2〇5* 3 〇〇以下。 (11) 如(1)至(10)項中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總物質量,以莫耳%計,201245078 Optical glass having a small dispersion ratio (9g, F) and improved transparency with respect to visible light, and a preform and an optical element using the optical glass ❶ [Technical means for solving the problem] The present inventors have solved the above The subject was repeatedly subjected to intensive experimental research, and as a result, it was found that by using the Si〇2 component and the Ca〇 component in combination and setting the content within a specific range, stable glass can be formed, and the Abbe number can be realized (vd). ), and the color of the glass is reduced. Further, it has been found that a desired high refractive index can be obtained by using a BaO component or more of the BaO component and the κ:2〇 component, and a lower partial dispersion ratio (〇g' F) can be obtained. Further, it has been found that by setting the content of the Nth component within a specific range, a lower Abbe number and a partial dispersion ratio can be obtained, and the devitrification of the glass is alleviated, and the present invention is finally completed. At the same time, it has been found that by using the Si 2 component and the CaO component in combination, and setting the contents in a specific range, coloring or devitrification is less likely to occur when the glass is reheated. Also, 'it is found that by setting the content of Nb>2〇5 component within a specific range', a higher refractive index or a lower Abbe number, a lower partial dispersion ratio, and glass devitrification can be obtained. Reduced. Specifically, the present invention provides the following. (1) An optical glass which is based on the total mass of the glass of the oxide-converted composition, in terms of % by mole, contains 20.0% or more and 60.0% or less of the Si 〇 2 component, and has a CaO component of more than 2 〇. 〇 0 / 0 and 50·0ο/〇, the content of the Nb2〇5 component is 30.0% or less, and is satisfied between the partial dispersion ratio (0g, F) and the Abbe number (vd) in the range of vd$3 1 (_〇 〇〇i62xvcl+〇.63822)S(0g,F)S (-0.00275xvd+0.68125) The relationship 'in the range of Vd>31 satisfies 163467.doc 201245078 (-〇.〇〇162xvd+〇.63822)^(0g , F)^(-0.00162xvd+0.64622)^ Relationship. (2) The optical glass of (1), wherein the sum of the contents of the BaO component and the κ:2〇 component is more than 〇% and 20.0% or less with respect to the total mass of the glass of the oxide-converted composition. (3) The optical glass of (1) or (2), wherein the total mass of the glass in terms of oxide conversion is 〇% to 2% by weight based on the mole % of the TiO2 component. (4) The optical glass according to any one of (1) to (3), wherein the total mass of the glass relative to the oxide-converted composition is from 0% to 10.0% in terms of mol%. (5) The optical glass according to any one of (1) to (4), wherein the sum of the contents of the Nb2〇5 component and the Ti〇2 component is 10·0 with respect to the total mass of the glass of the oxide conversion composition. % or more is 40.0% or less. (6) The optical glass according to any one of (1) to (5), wherein the total mass of the glass relative to the composition of the oxide is from 0 to 25.0% in terms of mol%. (7) The optical glass according to any one of (1) to (6), wherein the mass of the glass relative to the composition of the oxide is in the form of a molar. /. The optical glass containing any one of the items (1) to (7), wherein the oxide ratio is composed of a molar ratio (Nb2〇5+BaO)/ (Ti02 + CaO) is above O.loo. (9) The optical glass according to any one of (1) to (8), wherein the oxide conversion composition has a molar ratio of Ti02/Nb205 of 5.00 or less. (10) The optical glass according to any one of (1) to (9), wherein the oxide is replaced by 163467.doc 201245078 and the molar ratio is Ti〇2/Nb2〇5*3 〇〇 or less. (11) The optical glass according to any one of (1) to (10), wherein the total mass of the glass relative to the oxide-converted composition is in mol%,

Li2〇成分0〜25.0%及/或 Na20成分〇〜25.0%及/或 K20成分〇〜25.0%及/或 Cs20成分 〇〜1〇.〇〇/()。 (12) 如(1)至(11)項中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總物質量,RhO成分(式中,為 選自由Li、Na、K、Cs所組成之群中之1種以上)之莫耳和 為30.0%以下。 (13) 如(1)至(12)項中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總物質量,以莫耳%計,Li2〇 component 0~25.0% and/or Na20 component 〇~25.0% and/or K20 component 〇~25.0% and/or Cs20 component 〇~1〇.〇〇/(). (12) The optical glass according to any one of (1) to (11), wherein the RhO component (in the formula, selected from Li, Na, K, Cs) The molar ratio of one or more of the constituent groups is 30.0% or less. (13) The optical glass according to any one of (1) to (12), wherein the total mass of the glass relative to the oxide-converted composition is in mol%,

MgO成分〇〜20.0%及/或 SrO成分〇〜20.0%及/或 211〇成分〇〜3〇.〇〇/。。 (14)如(1)至(13)項中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總物質量,RO成分(式中,、 、〒’ 為選 自由Mg、Ca、Sr、Ba、Zn所組成之群中之〗括 ^ 可τ心1種以上)之莫 耳和為20.0%以上60.0%以下。 (15)如(1)至(14)項中任一項之光學玻璃,其中相對於 氧化物換算組成之玻璃總物質量,以莫耳%計, ?2〇5成分0〜30.0%及/或 Β2〇3成分0〜40.0%及/或 163467.doc 201245078MgO composition 〇~20.0% and/or SrO composition 〇~20.0% and/or 211〇 composition 〇~3〇.〇〇/. . The optical glass according to any one of (1) to (13), wherein the RO component (wherein, 〒' is selected from the group consisting of Mg, Ca, The molar amount of the group consisting of Sr, Ba, and Zn is 20.0% or more and 60.0% or less. (15) The optical glass according to any one of (1) to (14), wherein the mass of the glass relative to the composition of the oxide is in terms of mol%, ?2〇5 component 0 to 30.0% and/or Or Β2〇3 ingredients 0~40.0% and/or 163467.doc 201245078

Ge〇2成分〇〜2〇 〇%及/或 Y2O3成分0〜15.0%及/或 La203成分〇〜15 〇%及/或 Gd203成分〇〜15 〇%及/或 Yb203成分〇〜15 〇%及/或 Ta205成分〇〜15 〇%及/或 別2〇3成分0〜15.0%及/或 W03成分〇〜2〇.0%及/或 Te02成分〇〜3〇 0%及/或 Zr02成分〇〜15 〇%及/或 Al2〇3成分0〜15.0%及/或 Sb203成分 〇〜1 〇%。 (16)如(1)至(15)項中任一項之光學玻璃,其具有17〇以 上2.20以下之折射率(nd),且具有20以上40以下之阿貝數 (vd)。 〇7)如(1)至(16)項中任一項之光學玻璃,其中分光透 過率顯示7〇。/。之波長以7。)為5〇()11〇1以下。 (18)如(1)至(17)項中任一項之光學玻璃,其中用上述 再加熱試驗(一)後之试驗片之波長587.56 nm之光線(d線) 之透過率除以上述再加熱試驗前之試驗片之d線之透過率 所得的值成為0.95以上, [再加熱試驗(二):再加熱試驗片15 mmxl5 _ ’自t ’溫開始Μ肖15G分鐘升溫至較各試樣之轉移溫度 (Tg)高80。。之溫度’於上述較光學玻璃之玻璃轉移溫度 163467.doc 201245078 (Tg)高80°C之溫度下保溫30分鐘,其後自然冷卻至常溫為 止,將試驗片之相對向之2面研磨成厚度10 mm後,目測觀 察]。 (19) 如(1)至(18)項中任一項之光學玻璃,其中上述再 加熱試驗(二)前之試驗片之透過率成為70%之波長即λ70與 上述再加熱試驗後之試驗片之λ7〇之差為20 nm以下, [再加熱試驗(二):再加熱試驗片15 mm><15 mmx30 mm,自室溫開始歷時150分鐘升溫至較各試樣之轉移溫度 (Tg)高80°C之溫度,於上述較光學玻璃之玻璃轉移溫度 (Tg)高80°C之溫度下保溫30分鐘,其後自然冷卻至常溫為 止’將試驗片之相對向之2面研磨成厚度1 〇 mm後,目測觀 察]。 (20) —種研磨加工用及/或精密擠壓成形用之預成形 體’其包含如(1)至(19)項中任一項之光學玻璃。 (21) —種光學元件’其係研削及/或研磨如(1)至(19)項 中任一項之光學玻璃而成。 (22) —種光學元件’其係精密擠壓成形如(丨)至(19)項 中任一項之光學玻璃而成。 [發明之效果] 根據本發明,藉由於Si〇2成分及CaO成分中併用Ba〇成 分及K:2〇成分中之1種以上,並將該等之含量設於特定之範 圍内’而可實現玻璃之高折射率及高分散化,並且於玻璃 之部分分散比(eg,F)與阿貝數(vd)之間具有所期望之關 係,玻璃之著色減輕。因此,可獲得折射率(nd)處於所期 163467.doc 201245078 望之範圍内、並且阿貝數(vd)較小、部分分散比(0g,F)較 小、相對於可見光之透明性較高之光學玻璃,以及使用該 光學玻璃之預成形體及光學元件。 【實施方式】 本發明之光學玻璃係相對於氧化物換算組成之玻璃總物 質量,以莫耳%計,含有Si〇2成分20.0%以上60.0%以下、 及CaO成分多於20.0%且50.0〇/〇以下,Nb205成分之含量為 30.0%以下’於部分分散比(Gg,F)與阿貝數(Vd)之間,於 vd$31 之範圍中滿足(·〇.〇〇ΐ62χνί1+0.63822)$(θ§,F) ^ (-0.00275xvd+0.68125)之關係,於vd>31之範圍中滿足 〇0.00162xvcl+0.63 822) $(0g,F) $(-0.00162xvd+0.64622)之 關係。藉由併用Si〇2成分及CaO成分,並將該等之含量設 於特定之範圍内’而可形成穩定之玻璃,並且可實現阿貝 數(vd)之降低’且玻璃之著色減輕。又,藉由將Nb205成分 之含量設於特定之範圍内,而可獲得較低之阿貝數、較低 之部分分散比’並且玻璃之失透減輕。因此,可獲得折射 率(nd)處於所期望之範圍内、並且阿貝數(Vd)較小、部分分 散比(0g,F)較小、相對於可見光之透明性較高之光學玻 璃,以及使用該光學玻璃之預成形體及光學元件。 其中’第1光學玻璃係相對於氧化物換算組成之玻璃總 物質量,以莫耳。/〇計,含有Ba〇成分及K2〇成分合計多於 0〇/〇且20·0〇/〇以下。藉由使用Ba〇成分及κ2〇成分中之1種以 上’而可獲得所期望之高折射率,並且可獲得更低之部分 分散比(0g,F)。與此同時,藉由併用Si〇2成分及Ca0成 163467.doc •10· 201245078 分,並將該等之含量設於特定之範圍内,而於再加熱玻璃 時不易產生著色或失透。因此,可獲得折射率(nd)處於所 期望之範圍内、並且阿貝數(Vd)較小、部分分散比(Qg,ρ) 較小、且相對於可見光之透明性較高、且具有較高之播麗 成形性之光學玻璃’以及使用該光學玻璃之預成形體及光 學元件。 又’於第2光學玻璃中’藉由將Si〇2成分或Ca〇成分、 Nb2〇5成分之含量設於特定之範圍内,而可獲得較高之折 射率’並且可獲得較低之阿貝數或部分分散比,且玻璃之 失透減輕。因此’可獲得折射率(nd)處於所期望之較高之 範圍内、並且阿貝數(vd)較小、部分分散比(eg,F)較小、 相對於可見光之透明性較高之光學玻璃,以及使用該光學 玻璃之預成形體及光學元件。 以下,詳細說明本發明之光學玻璃之實施形態,但本發 明並不受以下實施形態之任何限定,可於本發明之目的之 範圍内適當添加變更而實施。再者,存在對於說明重複之 處適當省略說明之情況,但並不限定發明之宗旨。 [玻璃成分] 構成本發明之光學玻璃之各成分之組成範圍如下所述。 於本說明書中’各成分之含量於無特別說明之情況下,均 «•又為以相對於氧化物換算組成之玻璃總物質量之莫耳%表 示者。此處,所謂「氧化物換算組成」,係如下組成:於 假疋用作本發明之玻璃構成成分之原料之氧化物、複合 鹽、金屬氟化物等於熔融時全部分解而變為氧化物之情形 163467.doc 201245078 時,將該生成氧化物之總物質量設為100莫耳%,表述玻 璃中所含有之各成分。 <關於必需成分、任意成分>Ge〇2 component 〇~2〇〇% and/or Y2O3 component 0~15.0% and/or La203 component 〇~15 〇% and/or Gd203 component 〇1515%% and/or Yb203 component 〇1515%% / or Ta205 ingredient 〇 15 15% and / or 2 〇 3 components 0 ~ 15.0% and / or W03 composition 〇 ~ 2 〇. 0% and / or Te02 composition 〇 ~ 3 〇 0% and / or Zr02 composition 〇 ~15 〇% and/or Al2〇3 components 0~15.0% and/or Sb203 components 〇~1 〇%. (16) The optical glass according to any one of (1) to (15) which has a refractive index (nd) of 17 Å or more and 2.20 or less and an Abbe number (vd) of 20 or more and 40 or less. The optical glass of any one of (1) to (16), wherein the spectral transmittance shows 7 Å. /. The wavelength is 7. ) is 5 〇 () 11 〇 1 or less. (18) The optical glass according to any one of (1) to (17), wherein a transmittance of a light having a wavelength of 587.56 nm (d line) of the test piece after the reheating test (1) is divided by the above The value obtained by the transmittance of the d-line of the test piece before the reheating test was 0.95 or more, [reheating test (2): reheating test piece 15 mm×l5 _ 'from t 'temperature start Μ 15 15 15 minutes to warm up to each test The transfer temperature (Tg) is as high as 80. . The temperature 'is kept at the temperature of 80 ° C higher than the glass transition temperature of 163467.doc 201245078 (Tg) of the optical glass for 30 minutes, and then naturally cooled to normal temperature, and the opposite sides of the test piece are ground to a thickness. After 10 mm, visual observation]. (19) The optical glass according to any one of (1) to (18), wherein the transmittance of the test piece before the reheating test (II) becomes 70% of the wavelength, that is, λ70 and the test after the above reheating test The difference between the λ7〇 of the sheet is 20 nm or less, [reheating test (2): reheating the test piece 15 mm>< 15 mm x 30 mm, and heating from room temperature for 150 minutes to the transfer temperature (Tg) of each sample The temperature of 80 ° C is maintained at a temperature higher than the glass transition temperature (Tg) of the optical glass by 80 ° C for 30 minutes, and then naturally cooled to room temperature until the opposite sides of the test piece are ground to a thickness. After 1 〇mm, visual observation]. (20) A preform for polishing processing and/or precision extrusion molding, which comprises the optical glass according to any one of (1) to (19). (21) An optical element which is obtained by grinding and/or grinding the optical glass of any one of (1) to (19). (22) An optical element which is formed by precisely extruding an optical glass of any one of (19) to (19). [Effects of the Invention] According to the present invention, one or more of the Ba〇 component and the K:2〇 component are used in combination with the Si〇2 component and the CaO component, and the content thereof is set within a specific range. The high refractive index and high dispersion of the glass are achieved, and the desired relationship between the partial dispersion ratio (eg, F) and the Abbe number (vd) of the glass is obtained, and the color of the glass is reduced. Therefore, the refractive index (nd) can be obtained within the range of 163467.doc 201245078, and the Abbe number (vd) is small, the partial dispersion ratio (0g, F) is small, and the transparency with respect to visible light is high. Optical glass, and preforms and optical components using the optical glass. [Embodiment] The optical glass of the present invention contains 20.0% or more and 60.0% or less of the Si 2 component, and more than 20.0% and 50.0 % of the CaO component, based on the total mass of the glass of the oxide conversion composition. /〇Following, the content of the Nb205 component is 30.0% or less 'between the partial dispersion ratio (Gg, F) and the Abbe number (Vd), which satisfies (·〇.〇〇ΐ62χνί1+0.63822) in the range of vd$31. The relationship between (θ§, F) ^ (-0.00275xvd+0.68125) satisfies the relationship of 〇0.00162xvcl+0.63 822) $(0g,F) $(-0.00162xvd+0.64622) in the range of vd>31. By using the Si〇2 component and the CaO component in combination, and setting the contents in a specific range, a stable glass can be formed, and the Abbe number (vd) can be lowered and the color of the glass can be reduced. Further, by setting the content of the Nb205 component within a specific range, a lower Abbe number and a lower partial dispersion ratio ' can be obtained and the devitrification of the glass is reduced. Therefore, an optical glass having a refractive index (nd) within a desired range and having a small Abbe number (Vd), a small partial dispersion ratio (0g, F), and a high transparency with respect to visible light can be obtained, and A preform of the optical glass and an optical element are used. Wherein the first optical glass is a molar mass of the total composition of the glass in terms of oxide composition. / 〇 , , , , , , , , 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合 合A desired high refractive index can be obtained by using one of the Ba 〇 component and the κ 2 〇 component, and a lower partial dispersion ratio (0g, F) can be obtained. At the same time, by using the Si〇2 component together with Ca0 to form 163467.doc •10·201245078, and the content of these is set within a specific range, coloring or devitrification is less likely to occur when the glass is reheated. Therefore, the refractive index (nd) can be obtained within a desired range, and the Abbe number (Vd) is small, the partial dispersion ratio (Qg, ρ) is small, and the transparency with respect to visible light is high, and has a higher An optical glass that is high in shape and a preform and an optical element using the optical glass. Further, in the second optical glass, by setting the content of the Si〇2 component, the Ca〇 component, and the Nb2〇5 component within a specific range, a higher refractive index can be obtained and a lower yield can be obtained. The number of shells or partial dispersion ratio, and the devitrification of the glass is alleviated. Therefore, 'a refractive index (nd) is obtained in a desired higher range, and the Abbe number (vd) is smaller, the partial dispersion ratio (eg, F) is smaller, and the transparency with respect to visible light is higher. Glass, and preforms and optical components using the optical glass. Hereinafter, the embodiment of the optical glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and may be appropriately modified and implemented within the scope of the object of the present invention. Incidentally, the description of the description will be omitted as appropriate, but the purpose of the invention is not limited. [Glass Component] The composition range of each component constituting the optical glass of the present invention is as follows. In the present specification, the content of each component is, unless otherwise specified, «and is also expressed as % of the total mass of the glass in terms of oxide composition. Here, the "oxide-converting composition" is a composition in which an oxide, a composite salt, and a metal fluoride which are used as a raw material of the glass constituent component of the present invention are equivalent to being completely decomposed and converted into an oxide at the time of melting. 163467.doc 201245078, the total mass of the produced oxide is set to 100 mol%, and each component contained in the glass is expressed. <About essential components, arbitrary components>

Si〇2成分係促進穩定之玻璃形成,減少作為光學玻璃欠 佳之失透(結晶物之產生)之成分。尤其藉由將Si〇2成分之 含量設為20.0%以上,而可於未大幅提高玻璃之部分分散 比之情況下獲得耐失透性優異之玻璃。又,藉此,可減少 再加熱時之失透或著色。另一方面,藉由將§丨〇2成分之含 量設為60.0%以下,而使玻璃之折射率變得不易降低,藉 此可容易地獲得所期望之較高之折射率,且可抑制玻璃之 部分分散比之上升。又,藉由將Si〇2成分之含量設為 60.0%以下,可良好地保持玻璃之熔融性。因此,成 分之含量之下限較佳為設為20.0%,更佳為21 ,進而更 佳為24.0%,進而更佳為27.〇%,最佳為3〇 〇%。又該 si〇2成分之含量之上限較佳為設為60 0%,更佳為5〇 〇%, 最佳為 45.0%。Si02成分可使用 si〇2、K2SiF6、Na2SiF6 等 作為原料。The Si 2 component promotes stable glass formation and reduces the composition of devitrification (production of crystals) which is poor as an optical glass. In particular, by setting the content of the Si 2 component to 20.0% or more, it is possible to obtain a glass excellent in devitrification resistance without significantly increasing the partial dispersion ratio of the glass. Further, by this, devitrification or coloration at the time of reheating can be reduced. On the other hand, by setting the content of the §2 component to 60.0% or less, the refractive index of the glass is not easily lowered, whereby a desired higher refractive index can be easily obtained, and the glass can be suppressed. Part of the dispersion has increased. Further, by setting the content of the Si 2 component to 60.0% or less, the meltability of the glass can be favorably maintained. Therefore, the lower limit of the content of the component is preferably 20.0%, more preferably 21, still more preferably 24.0%, still more preferably 27.9%, most preferably 3〇%. Further, the upper limit of the content of the si 2 component is preferably 60%, more preferably 5 %, and most preferably 45.0%. As the Si02 component, si〇2, K2SiF6, Na2SiF6 or the like can be used as a raw material.

CaO成分係為了獲得阿貝數較低且耐失透性較高之玻璃 所必須之成分。尤其藉由將Ca0成分之含量設為多於 20.0%,而可獲得阿貝數較低且耐失透性較高之光學玻 璃,且可k咼玻璃之溶解性。另一方面,藉由將Ca〇成分 之含量設為50·0%以下’而可抑制玻璃之折射率之降低或 部分分散比之上升’並且可抑制由CaO成分之過剩之含有 引起之玻璃之耐失透性之惡化。又,藉此,可減少再加熱 163467.doc 12 201245078 時之失透或著色。因此,CaO成分之含量之下限較佳為設 為多於20.0%,更佳為24.0%,進而更佳為多於3〇 〇%,進 而更佳為32.0。/。,最佳為33.5%。又,該Ca〇成分之含量之 上限較佳為設為50.0%,更佳為45.0%,進而更佳為 43.0% ’最佳為4〇.〇〇/0。CaO成分可使用CaC03、CaF2等作 為原料。 尤其於第1光學玻璃中,較佳為含有Ba〇成分及K2〇成分 合計多於0〇/〇且20,0%以下。藉由含有該合計含量多於〇%, 可獲得具有所期望之較低之部分分散比之玻璃。另一方 面,藉由將該合計含量設為20.〇%以下,可抑制由該等成 分之過剩之含有引起之耐失透性或化學耐久性之惡化。因 此,莫耳和(BaO+hO)之下限較佳為設為多於〇%,更佳為 0.5。/。,進而更佳為κο%。又,該莫耳和(Ba〇+K2〇)之上限 較佳為設為20.0°/。,更佳為15 〇%,最佳為1〇 〇0/〇。The CaO component is a component necessary for obtaining a glass having a low Abbe number and high devitrification resistance. In particular, by setting the content of the Ca0 component to more than 20.0%, an optical glass having a low Abbe number and high devitrification resistance can be obtained, and the solubility of the glass can be obtained. On the other hand, by setting the content of the Ca 〇 component to 50·0% or less ′, it is possible to suppress a decrease in the refractive index of the glass or an increase in the partial dispersion ratio ′ and to suppress the glass caused by the excessive content of the CaO component. Deterioration of resistance to devitrification. Moreover, by this, the devitrification or coloration when reheating 163467.doc 12 201245078 can be reduced. Therefore, the lower limit of the content of the CaO component is preferably set to be more than 20.0%, more preferably 24.0%, still more preferably more than 3〇%, and even more preferably 32.0. /. The best is 33.5%. Further, the upper limit of the content of the Ca 〇 component is preferably 50.0%, more preferably 45.0%, still more preferably 43.0% Å, most preferably 4 〇.〇〇/0. As the CaO component, CaC03, CaF2 or the like can be used as a raw material. In particular, in the first optical glass, it is preferable that the Ba 〇 component and the K 〇 〇 component are more than 0 〇 / 〇 and 20, 0% or less. By containing the total content in more than 〇%, a glass having a desired lower partial dispersion ratio can be obtained. On the other hand, by setting the total content to 20.0% or less, it is possible to suppress the deterioration of the devitrification resistance or the chemical durability caused by the excessive content of the components. Therefore, the lower limit of the molar and (BaO + hO) is preferably set to be more than 〇%, more preferably 0.5. /. And further preferably κο%. Further, the upper limit of the molar and (Ba〇+K2〇) is preferably set to 20.0°/. More preferably, it is 15%, and the best is 1〇 〇0/〇.

Nb2〇5成分係提南玻璃之耐失透性之成分,且係提高玻 璃之折射率並降低阿貝數及部分分散比之成分,為本發明 之光學玻璃中之任意成分。尤其藉由將Nb2〇5成分之含量 設為3〇.〇%以下,可抑制玻璃製造時之熔解溫度之上升, 且可減少由Nb2〇5成分之過剩之含有引起之失透。因此, Nb2〇5成分之含量之上限較佳為設為3〇 〇%,更佳為 2〇.〇%,最佳為1 5·〇%。再者,亦可不含有Nb2〇5成分,但 藉由含有Nb2〇5成分之含量多於〇%,可&高玻璃之折射 率,並且可進-步降低阿貝冑,且可降低玻璃之部分分散 比。又,藉由含有Nb2〇5成分之含量多於〇%,可提高玻璃 163467.doc 201245078 之耐失透性,担古 人 棱间玻璃之擠壓成形性。因此,Nb2〇5成分 量之下限較佳為設為多於〇% ’更佳為3 ,進 佳為4.0%,谁而苗又 更佳為5.0/。,最佳為6 〇%。Nb2〇s成分 使用Nb»2〇5等作為原料。 、2成刀係提尚玻璃之折射率,並且降低阿貝數之成 刀為本發明之光學玻璃十之任意成分。 尤其藉由將Ti〇2成分之含量設為2〇〇%以下,更佳為 :〇戲以了,可減少玻璃之著色,提高玻璃之内部透過 率又,藉由將Tl〇2成分之含量設為10.〇%以下,由於部 刀刀散比變4不易上升,故而可容易地獲得接近正規線之 :低之部分分散比。因& ’ Ti〇2成分之含量之上限較佳為 為20·0/〇 ’更佳為15 〇%,進而更佳為未達孤進而 更佳為10.0%,進而更佳為9 5%,最佳為9 〇〇/〇。 另一方面,就獲得更低之部分分散比之觀點、或減少著 色之觀點ft t,較㈣不含有⑽成》,但就獲得更高之 折射率或更低之阿貝數、提高耐失透性之觀點而言,該 Ti〇2成分之含量之下限較佳為設為多於〇%,更佳為 1-0%,進而更佳為3.0。/〇,最佳為4.5%。The Nb2〇5 component is a component which is resistant to devitrification of the glass of the South, and is a component which increases the refractive index of the glass and lowers the Abbe number and the partial dispersion ratio, and is an arbitrary component in the optical glass of the present invention. In particular, by setting the content of the Nb2〇5 component to 3 〇.% or less, the increase in the melting temperature at the time of glass production can be suppressed, and the devitrification caused by the excessive content of the Nb2〇5 component can be reduced. Therefore, the upper limit of the content of the Nb2〇5 component is preferably set to 3〇%, more preferably 2〇.〇%, and most preferably 1 5·〇%. Further, the Nb2〇5 component may not be contained, but by containing more than 〇% of the Nb2〇5 component, the refractive index of the high glass can be & and the abebe can be further lowered, and the glass can be lowered. Partial dispersion ratio. Further, by containing more than 〇% of the Nb2〇5 component, the devitrification resistance of the glass 163467.doc 201245078 can be improved, and the extrusion formability of the intergranular glass can be improved. Therefore, the lower limit of the amount of the Nb2〇5 component is preferably set to be more than 〇% ‘, preferably 3, preferably 4.0%, and the seedling is preferably 5.0/. The best is 6 〇%. The Nb2〇s component uses Nb»2〇5 or the like as a raw material. The 2% knife system raises the refractive index of the glass, and reduces the Abbe number. The knife is an arbitrary component of the optical glass of the present invention. In particular, by setting the content of the Ti〇2 component to 2% or less, it is more preferable to reduce the color of the glass and increase the internal transmittance of the glass by the content of the T1〇2 component. When it is set to 10.〇% or less, since the partial knife width ratio 4 does not easily rise, it is possible to easily obtain a low partial dispersion ratio close to the regular line. The upper limit of the content of the & 'Ti〇2 component is preferably 20·0/〇', more preferably 15% by weight, and even more preferably less than or equal to 10.0%, and even more preferably 95%. The best is 9 〇〇 / 〇. On the other hand, the viewpoint of obtaining a lower partial dispersion ratio or the viewpoint of reducing coloration is higher than (4) without (10), but a higher refractive index or lower Abbe number is obtained, and the tolerance is improved. From the viewpoint of permeability, the lower limit of the content of the Ti 2 component is preferably set to more than 〇%, more preferably from 1 to 0%, still more preferably 3.0. /〇, the best is 4.5%.

Tl〇2成分可使用Ti〇2等作為原料。 尤其於第2光學玻璃中,較佳為Nb2〇5成分及丁丨〇2成分之 含里之和為1〇·〇%以上40.0%以下。尤其藉由該和為1〇〇% 以上’由於提高折射率並降低阿貝數之Nb2〇5成分及Ti〇2 成分之含量增加’故而可獲得具有所期望之較高之折射率 與較低之阿貝數之光學玻璃。另一方面,藉由該和為 163467.doc •14· 201245078 40.0〇/〇以下,由於由該箄忐八 田通等成为引起之失透減輕,故而可獲 得对失透性更高之穩定之玻璃 , 坂瑪。因此,莫耳和 更佳為12·0%,進 -方面,莫耳和 更佳為3 0. 〇 %,進 (Nb205+Ti02)之下限較佳為設為1〇 〇% 、 而更佳為14.0%,最佳為15 〇%。另 (Nb2〇5+Ti〇2)之上限較佳為設為4〇 而更佳為25.0%,最佳為2〇 〇0/。。As the T1〇2 component, Ti〇2 or the like can be used as a raw material. In particular, in the second optical glass, it is preferable that the sum of the Nb2〇5 component and the butadiene2 component is 1%·〇% or more and 40.0% or less. In particular, it is possible to obtain a desired higher refractive index and lower by increasing the content of the Nb2〇5 component and the Ti〇2 component by increasing the refractive index and lowering the Abbe number. Optical glass of Abbe number. On the other hand, since the sum is 163467.doc •14·201245078 40.0〇/〇 or less, since the devitrification caused by the 箄忐八田通 is reduced, a stable glass with higher devitrification property can be obtained. , Karma. Therefore, the molar and more preferably 12·0%, the aspect-in, the molar and the better is 30. 〇%, and the lower limit of the (Nb205+Ti02) is preferably set to 1〇〇%, and more preferably It is 14.0%, and the best is 15%. Further, the upper limit of (Nb2〇5+Ti〇2) is preferably set to 4〇 and more preferably 25.0%, and most preferably 2〇 〇0/. .

BaO成分係提高破璃夕杯φ ^ 坂碉之折射率,降低玻璃之部分分散 比’且提高玻璃之耐失读袖夕+八 町天边I·生之成分。尤其藉由將Ba〇成分 之含量設為25.0%以下,更佳為2〇()%以下,可抑制由祕 成分之過剩之含有弓丨起之耐失透性或化學耐久性之惡化。 因此,以〇成分之含量之上限較佳為設為25·0% ’更佳為 20.0/〇,進而更佳為15 〇%,最佳為⑺㈣。再者,由於 Ba〇成分為任意成分,故而亦可不含有,但藉由含有Ba〇 成刀夕於0/〇’可提商炫解性或耐失透性,並且可容易地 實現所期望之較高之折射率與較低之部分分散比。又,藉 此,可減少再加熱時之失透或著色。因此’ Ba0成分之含 量之下限亦可較佳為設為多於〇% ’更佳為〇 ,進而更 佳為1.0%。另一方面,Ba〇成分可使用、Ba(N〇3)2 等作為原料。 本發明之光學玻璃較佳為Nb2〇5成分及Ba0成分之含量 之和相對於Ti〇2成分及Ca〇成分之含量之和為〇1〇〇以上。 藉此,相對於作為提高部分分散比之成分之Ti02成分及 Ca〇成分之含量’作為降低部分分散比之成分之1^2〇5成 分及BaO成分之含量增加,因此可獲得具有所期望之較低 163467.doc 15 201245078 之部分分散比之光學玻璃《因此,氧化物換算組成之莫耳 比(Nb205+Ba0)/(Ti02+Ca0)之下限較佳為設為〇_!〇〇,更佳 為0.120,進而更佳為mo,最佳為〇14〇。另一方面,該 莫耳比(Nb2〇5+BaO)/(Ti〇2+Ca〇)之上限並無特別限定,但 本發明之光學玻璃多為該莫耳比(Nb2〇5+Ba〇)/(Ti〇2 + Ca〇) 為1_000以下,更詳細而言為〇 7〇〇以下,進一步詳細而言 為0.400以下。 本發明之光學玻璃較佳為氧化物換算組成之莫耳比The BaO component improves the refractive index of the φ ^ 坂碉 of the glazed cup, reduces the partial dispersion ratio of the glass, and improves the composition of the glass. In particular, by setting the content of the Ba〇 component to 25.0% or less, more preferably 2% by weight or less, deterioration of devitrification resistance or chemical durability due to excessive inclusion of the secret component can be suppressed. Therefore, the upper limit of the content of the bismuth component is preferably set to 25.0%, more preferably 20.0/Torr, still more preferably 15%, and most preferably (7) (4). Further, since the Ba〇 component is an optional component, it may or may not be contained, but it can be easily degraded or devitrified by containing Ba〇 into a knife, and the desired property can be easily achieved. Higher refractive index and lower partial dispersion ratio. Further, by this, the devitrification or coloring upon reheating can be reduced. Therefore, the lower limit of the content of the 'Ba0 component' is preferably more than 〇%', more preferably 〇, and still more preferably 1.0%. On the other hand, as the Ba〇 component, Ba(N〇3)2 or the like can be used as a raw material. In the optical glass of the present invention, the sum of the content of the Nb2〇5 component and the Ba0 component is preferably 〇1〇〇 or more with respect to the sum of the content of the Ti〇2 component and the Ca〇 component. In this way, the content of the TiO 2 component and the Ca 〇 component as a component for increasing the partial dispersion ratio is increased as the content of the component 1 / 2 〇 5 component and the BaO component which lowers the partial dispersion ratio component, and thus the desired content can be obtained. Lower 163467.doc 15 201245078 Partial dispersion ratio of optical glass "Therefore, the lower limit of the molar ratio of the molar ratio (Nb205 + Ba0) / (Ti02 + Ca0) is preferably set to 〇 _! 〇〇, more The best is 0.120, and even more preferably mo, the best is 〇14〇. On the other hand, the upper limit of the molar ratio (Nb2〇5+BaO)/(Ti〇2+Ca〇) is not particularly limited, but the optical glass of the present invention is mostly the molar ratio (Nb2〇5+Ba〇). /(Ti〇2 + Ca〇) is 1_000 or less, more specifically 〇7〇〇 or less, and more specifically 0.400 or less. The optical glass of the present invention preferably has a molar ratio of oxide conversion

Ti〇2/Nb2〇5為5·〇〇以下。藉此,玻璃之阿貝數得以調整於 所期望之範圍内,並且部分分散比變低,因此可獲得具有 所期望之阿貝數與部分分散比之關係之光學玻璃。與此同 時,可獲得著色較少之光學玻璃。因&,氧化物換算組成 之莫耳比TiOVNhO5之上限較佳為設為5 〇〇,更佳為 4.00,進而更佳為3.〇〇,進而更佳為2 5〇,進而更佳為 2.00。尤其於含有Ba0成分及ΚΖ0成分中之至少一者作為 必需成分之第1光學玻璃中,就進一步降低部分分散比之 觀點而言,最佳為將該Ti〇2/Nb2〇s設為2.〇〇以下。Ti〇2/Nb2〇5 is 5·〇〇 or less. Thereby, the Abbe number of the glass can be adjusted within a desired range, and the partial dispersion ratio becomes low, so that an optical glass having a desired Abbe number and a partial dispersion ratio can be obtained. At the same time, an optical glass having less coloration can be obtained. The upper limit of the molar ratio of the composition of the oxide to the composition of the oxide ratio is preferably set to 5 〇〇, more preferably 4.00, still more preferably 3. 〇〇, more preferably 2 5 〇, and even more preferably 2.00. In particular, in the first optical glass containing at least one of the Ba0 component and the ΚΖ0 component as an essential component, it is preferable to set the Ti〇2/Nb2〇s to 2. 〇〇The following.

Ll2〇成分係提高玻璃之㈣性,且降低玻璃之部分分$ 比之成分,為本發明之光學玻璃中之任意成分。尤其藉$ 將⑽成分之含量設為25〇%以了,可抑制折射率之p 低’與此同時減少由Li2〇成分之過剩含有引起之玻璃之, 成時或再加熱時之乳白化或結晶析出,並且提高玻璃之4 學耐久性。因此’⑽成分之含量之上限較佳為設為車Μ 為25·〇%,更佳為17爲,進而更佳為12戲,進而更们 163467.doc S' -16- 201245078 9.5%,最佳為 5.0% e Li2〇成分可使用 U2C〇3、LiN〇3、uf 等作為原料。The Ll2 bismuth component is a component of the optical glass of the present invention which increases the (tetra) property of the glass and lowers the component of the glass. In particular, by setting the content of the component (10) to 25%, it is possible to suppress the low p of the refractive index, and at the same time, reduce the whitening caused by the excessive content of the component of Li2, or the whitening at the time of re-heating or reheating. Crystallization precipitates and improves the durability of the glass. Therefore, the upper limit of the content of the '(10) component is preferably set to be 25%, more preferably 17, and more preferably 12, and further 163467.doc S'-16-201245078 9.5%, most Preferably, 5.0% e Li2〇 component can be used as a raw material using U2C〇3, LiN〇3, uf, and the like.

Na2〇成分係提高玻璃之炼融性之成分,肖此同時係降低 玻璃轉移點之成分,為本發明之光學玻璃中之任意成分。 尤其藉由將NkO成分之含量設為25〇%以下,可使折射率 不易降低,與此同時使化學耐久性不易惡化…可提高 玻璃形成時之耐失透性,減少再加熱時之失透或著色。因 此,NazO成分之含量之上限較佳為設為25 ,更佳為 15.0%,進而更佳為1〇.〇%,最佳為5〇%。Naz〇成分可使 用 NaWO3、NaN〇3、NaF、Na2SiF6等作為原料。 成分係調整玻璃之熔融性,並且降低玻璃轉移點之 成分,為本發明之光學玻璃中之任意成分。尤其藉由將 Κ2〇成分之含量设為25.0%以下,可提高玻璃形成時之耐 失透性,減少再加熱時之失透或著色。因此,κ2〇成分之 含量之上限較佳為設為25.0%,更佳為20.0%,進而更佳為 15.0%,最佳為ίο.0%。再者,〖a成分就獲得擠壓成形性 更尚之玻璃之觀點而言,亦可不含有,但由於具有進一步 降低部分分散比之作用,故而亦可將含有之下限較佳為設 為多於0%,更佳為〇.5〇/。,進而更佳為! 〇0/。。κ2〇成分可使 用 K2C03、ΚΝ〇3、KF、KHF2、K2SiF6等作為原料。The Na2〇 component is a component which improves the smelting property of the glass, and at the same time, reduces the component of the glass transition point, and is an arbitrary component in the optical glass of the present invention. In particular, by setting the content of the NkO component to 25 〇% or less, the refractive index is not easily lowered, and chemical durability is not easily deteriorated. The devitrification resistance at the time of glass formation can be improved, and the devitrification at the time of reheating can be reduced. Or coloring. Therefore, the upper limit of the content of the NazO component is preferably set to 25, more preferably 15.0%, still more preferably 1% by weight, and most preferably 5% by weight. The Naz〇 component can be made of NaWO3, NaN〇3, NaF, Na2SiF6 or the like as a raw material. The composition adjusts the meltability of the glass and lowers the composition of the glass transition point, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Κ2〇 component to 25.0% or less, the devitrification resistance at the time of glass formation can be improved, and the devitrification or coloration at the time of reheating can be reduced. Therefore, the upper limit of the content of the κ 2 〇 component is preferably 25.0%, more preferably 20.0%, still more preferably 15.0%, and most preferably ίο. 0%. Further, the component a may not be contained in view of obtaining a glass having more extrusion moldability, but the lower limit of the content may be set to more than 0 because it has a function of further reducing the partial dispersion ratio. %, more preferably 〇.5〇/. And even better! 〇0/. . The κ 2 〇 component can be used as a raw material such as K2C03, ΚΝ〇3, KF, KHF2, K2SiF6 or the like.

CszO成分係降低玻璃轉移點之成分,為本發明之光學玻 璃中之任意成分。尤其藉由將CS2〇成分之含量設為1 〇.〇% 以下,可減少由Cs2〇成分之過剩含有引起之玻璃之失透。 因此’ Cs2〇成分之含量之上限較佳為設為1〇 〇%,更佳為 163467.doc •17· 201245078The CszO component lowers the composition of the glass transition point and is an optional component in the optical glass of the present invention. In particular, by setting the content of the CS2 bismuth component to 1 〇.〇% or less, the devitrification of the glass caused by the excessive content of the Cs2 bismuth component can be reduced. Therefore, the upper limit of the content of the 'Cs2〇 component is preferably set to 1〇%, more preferably 163467.doc •17· 201245078

Cs2〇成分可使用 Cs2C〇3、csNC) 5.0°/。,進而更佳為3.0%。 等作為原料。 於本發明之光學玻射,較佳為Rn2⑽分(式中,以為 選自由Li ' Na、κ及Cs所組成之群中u種以上)之含量之 和為30.0%以了。尤其藉由將該莫耳和設為3〇戲以下可 容易地獲得所期望之高折㈣,與此㈣減少玻璃之失 透。因此,Rn2〇成分之含量之莫耳和之上限較佳為設為 30.0/。,更佳為2〇 〇%,進而更佳為〇%,進而更佳為 7·0°/〇 ’ 最佳為 5.〇〇/0。The Cs2〇 component can be used as Cs2C〇3, csNC) 5.0°/. And further preferably 3.0%. Etc. as a raw material. In the optical glass of the present invention, it is preferable that the sum of the contents of Rn2 (10) (wherein, the group selected from the group consisting of Li 'Na, κ and Cs) is 30.0%. In particular, the desired high fold (4) can be easily obtained by setting the moir and the following, and (4) reducing the glass opacity. Therefore, the upper limit of the molar content of the Rn2〇 component is preferably set to 30.0/. More preferably, it is 2〇 〇%, and further preferably 〇%, and more preferably 7·0°/〇 ’ is preferably 5.〇〇/0.

MgO成分係降低玻璃之炫融溫度之成分,為本發明之光 學玻璃中之任意成分。尤其藉由將Mg〇成分之含量設為 20.0%以了,可抑制玻璃之折射率之降低並且提高㈣ 之耐失透性。又,藉此,可減少再加熱時之失透或著色。 因此,Mg〇成分之含量之上限較佳為設為2〇 〇%,更佳為 10.0%,最佳為5.0%。Mg0成分可使用Mg〇、MgC〇3、 MgFz等作為原料。The MgO component is a component which lowers the glass transition temperature of the glass and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Mg bismuth component to 20.0%, the decrease in the refractive index of the glass can be suppressed and the devitrification resistance of (4) can be improved. Moreover, by this, devitrification or coloring at the time of reheating can be reduced. Therefore, the upper limit of the content of the Mg 〇 component is preferably 2% ,%, more preferably 10.0%, and most preferably 5.0%. As the MgO component, Mg〇, MgC〇3, MgFz or the like can be used as a raw material.

SrO成幺係提高玻璃之折射率、提高玻璃之耐失透性之 成分,為本發明之光學玻璃中之任意成分。尤其藉由將 SrO成分之含量設為20.0%以下,可抑制玻璃之化學耐久性 之惡化。因此,Sr0成分之含量之上限較佳為設為2〇 〇%, 更佳為15.0%,最佳為1〇 〇%。Sr〇成分可使用Sr(N〇丄、 S r F2等作為原料。The SrO bismuth is a component which increases the refractive index of the glass and increases the resistance to devitrification of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the SrO component to 20.0% or less, deterioration of chemical durability of the glass can be suppressed. Therefore, the upper limit of the content of the Sr0 component is preferably set to 2% ,%, more preferably 15.0%, and most preferably 1% 〇%. As the Sr〇 component, Sr (N〇丄, S r F2 or the like can be used as a raw material.

ZnO成为係提高玻璃之耐失透性、降低玻璃轉移點之成 分’為本發明之光學玻璃中之任意成分。尤其藉由將Zn〇 163467.doc $ _ 18· 201245078 成分之含量設為3〇.〇%以下,可減少玻璃之再加熱時之失 透,並且提高玻璃之化學耐久性。又,藉此,可減少再加 熱時之失透或著色。因此,Zn〇成分之含量之上限較佳為 設為30.0%,更佳為2〇 〇%,進而更佳為16 〇%,最佳為 /〇再者,由於Zn〇成分為任意成分,故而亦可不含 有,但尤其就獲得較高之耐失透性與較低之玻璃轉移點之 觀點而言,該Zn〇成分之含量之下限亦可較佳為設為多於 〇%,更佳為0.5% ’進而更佳為丨。zn〇成分可使用 ZnO、ZnF2等作為原料。 於本發明之光學玻璃中,R〇成分(式中,R為選自由 Zn、Mg、Ca、Sr、Ba所組成之群中之丨種以上)係提高玻 璃之耐失透性、並且對於調整折射率有用之成分。尤其藉 由將RO成分之含量設為20·0%以上,可提高玻璃之耐失透 1*生另方面’若該等RO成分之合計含量過多,則反而 使玻璃之耐失透性變得易於惡化,玻璃之化學耐久性亦變 得易於惡化。因此,R〇成分之合計含量之下限較佳為設 為20.0%,更佳為25 〇%,進而更佳為3〇 〇%,最佳為多於 35.0/。^又,該R〇成分之合計含量之上限較佳為設為 60.0%,更佳為55.0%,最佳為50.0%。 ?2〇5成分係提高玻璃之穩定性之成分,為本發明之光學 玻璃中之任意成分。尤其藉由將P2〇s成分之含量設為 30.0%以下,由於由P2〇5成分之過剩之含有引起之失透減 輕,故而可提高玻璃之穩定性。因此,Ρζ〇5成分之含量之 上限較佳為設為較佳為3〇 〇% ’更佳為2〇 〇%,最佳為 163467.doc 201245078 10.0%。p2〇5成分可使用 A1(P〇3)3、Ca(p〇3)2、Ba(p〇3)2、 bp〇4、H3p〇4等作為原料。 B2〇3成分係促進穩定之玻璃形成並提高耐失透性,且提 尚玻璃之熔解性之成分,為本發明之光學玻璃中之任意成 分。尤其藉由將Βζ〇3成分之含量設為4〇·〇%以下,抑制折 射率之降低’藉此可獲得所期望之較高之折射率,與此同 時可抑制玻璃之部分分散比之上升。又,藉此,可減少玻 璃之再加熱時之失透。因此,^(^成分之含量之上限較佳 為設為40.0%,更佳為30·0%,進而更佳為2〇 〇%,進而更 佳為15.0%,最佳為10.0。/(^再者,由於β2〇3成分為任意成 分’故而亦可不含有,但藉由含有Β2〇3成分多於〇%,可 提高玻璃之耐失透性及熔解性。因此,該β2〇3成分之含量 之下限較佳為設為多於0%,更佳為丨〇%,最佳為2 〇%。 Β2〇3成分可使用 Η3Β〇3、Na2B407、Na2B4O7.10H2O、ΒΡ04 等作為原料。ZnO is an ingredient which increases the resistance to devitrification of glass and lowers the glass transition point, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Zn〇 163467.doc $ _ 18· 201245078 component to 3 〇.〇% or less, the glass can be reduced in reheating during reheating, and the chemical durability of the glass can be improved. Further, by this, the devitrification or coloring at the time of reheating can be reduced. Therefore, the upper limit of the content of the Zn 〇 component is preferably set to 30.0%, more preferably 2% by weight, still more preferably 16% by weight, and most preferably 〇, since the Zn 〇 component is an optional component, The content of the Zn 〇 component may preferably be set to be more than 〇%, more preferably, from the viewpoint of obtaining a higher resistance to devitrification and a lower glass transition point. 0.5% 'and thus better. As the raw material of zn〇, ZnO, ZnF2 or the like can be used. In the optical glass of the present invention, the R〇 component (wherein R is selected from the group consisting of Zn, Mg, Ca, Sr, and Ba) improves the resistance to devitrification of the glass and is adjusted. A useful component of the refractive index. In particular, by setting the content of the RO component to 20.0% or more, the devitrification resistance of the glass can be improved. When the total content of the RO components is too large, the devitrification resistance of the glass is reversed. It is prone to deterioration and the chemical durability of the glass also becomes prone to deterioration. Therefore, the lower limit of the total content of the R 〇 component is preferably set to 20.0%, more preferably 25% by weight, still more preferably 3 〇%, and most preferably more than 35.0%. Further, the upper limit of the total content of the R 〇 component is preferably set to 60.0%, more preferably 55.0%, and most preferably 50.0%. The 2〇5 component is a component which improves the stability of the glass and is an optional component in the optical glass of the present invention. In particular, by setting the content of the P2〇s component to 30.0% or less, the devitrification caused by the excessive content of the P2〇5 component is reduced, so that the stability of the glass can be improved. Therefore, the upper limit of the content of the cerium 5 component is preferably set to preferably 3 〇 % ' more preferably 2 〇 〇 %, and most preferably 163467.doc 201245078 10.0%. As the p2〇5 component, A1(P〇3)3, Ca(p〇3)2, Ba(p〇3)2, bp〇4, H3p〇4 or the like can be used as a raw material. The B2〇3 component is a component which promotes stable glass formation and improves resistance to devitrification, and which improves the meltability of glass, and is an arbitrary component in the optical glass of the present invention. In particular, by reducing the content of the yttrium 3 component to 4 〇·〇% or less, the decrease in the refractive index can be suppressed, whereby a desired higher refractive index can be obtained, and at the same time, the partial dispersion ratio of the glass can be suppressed from increasing. . Further, by this, the devitrification of the glass during reheating can be reduced. Therefore, the upper limit of the content of the component (^) is preferably 40.0%, more preferably 30.0%, still more preferably 2% by weight, still more preferably 15.0%, most preferably 10.0. / (^ Further, since the β2〇3 component is an optional component, it may not be contained, but by containing more than 〇% of the Β2〇3 component, the devitrification resistance and the meltability of the glass can be improved. Therefore, the β2〇3 component is The lower limit of the content is preferably set to more than 0%, more preferably 丨〇%, and most preferably 2% 。%. Β2〇3 may be used as a raw material using Η3Β〇3, Na2B407, Na2B4O7.10H2O, ΒΡ04 or the like.

Ge〇2成分係提高玻璃之折射率,使玻璃穩定化,並減少 成形時之失透之成分,為本發明之光學玻璃中之任意成 刀。尤其藉由將Ge〇2成分之含量設為2〇〇%以下,由於價 格昂貴之Ge〇2成分之使用量減少’故而可減少玻璃之材料 成本。因此’ Ge〇2成分之含量之上限較佳為設為2〇 〇%, 更佳為1G.0%’進而更佳為5〇%,最佳為3()%。&〇2成分 可使用Ge〇2等作為原料。 γ2〇3成分、La2〇3成分' Gd2〇3成分及Yb2〇3成分係提高 玻璃之折射率’並且降低部分分散比之成分,為本發明之 163467.doc -20- 201245078 光學玻璃中之任意成分。尤其藉由將Υ2〇3成分、La2〇3成 分、Gd2〇3成分及Yb2〇3成分之含量分別設為15 〇%以下, 可提尚玻璃之耐失透性,且可抑制玻璃之阿貝數之上升。 因此,Y203成分、La203成分、Gd203成分及Yb2〇3成分之 各自之含量之上限較佳為設為15.0%,更佳為1〇.〇%,進而 更佳為7.0%,最佳為4.2。/❶。Y2〇3成分、La2〇3成分、Gd2〇3 成分及 Yb2o3 成分可使用 γ2〇3、%、La2〇3、La(N〇3)3 XH20(X為任意之整數)、Gd2〇3、GdF3、Yb2〇3等作為原 料。The Ge 〇 2 component is an arbitrarily formed knives in the optical glass of the present invention by increasing the refractive index of the glass, stabilizing the glass, and reducing the devitrification component during molding. In particular, by setting the content of the Ge 〇 2 component to 2% by weight or less, the amount of the Ge 〇 2 component which is expensive is reduced, so that the material cost of the glass can be reduced. Therefore, the upper limit of the content of the 'Ge〇2 component is preferably 2% ,%, more preferably 1 G.0%' and still more preferably 5% by weight, and most preferably 3 (%). & 〇 2 component Ge 〇 2 or the like can be used as a raw material. Γ2〇3 component, La2〇3 component 'Gd2〇3 component and Yb2〇3 component are components which increase the refractive index of glass and reduce the partial dispersion ratio, and are any of 163467.doc -20- 201245078 optical glass of the present invention. ingredient. In particular, by setting the contents of the Υ2〇3 component, the La2〇3 component, the Gd2〇3 component, and the Yb2〇3 component to 15% by weight or less, the devitrification resistance of the glass can be improved, and the glass Abe can be suppressed. The number has risen. Therefore, the upper limit of the content of each of the Y203 component, the La203 component, the Gd203 component, and the Yb2〇3 component is preferably 15.0%, more preferably 1% by weight, still more preferably 7.0%, and most preferably 4.2. /❶. Γ2〇3, %, La2〇3, La(N〇3)3 XH20 (X is an arbitrary integer), Gd2〇3, GdF3 can be used for the Y2〇3 component, the La2〇3 component, the Gd2〇3 component, and the Yb2o3 component. , Yb2〇3, etc. as raw materials.

Ta2〇5成分係提尚玻璃之折射率,降低玻璃之阿貝數及 部分分散比,且提高玻璃之耐失透性之成分,為本發明之 光學玻璃中之任意成分。尤其藉由將Ta2〇5成分之含量設 為15.0%以下,由於作為稀有礦物資源之τ&2〇5成分之使用 量減少,與此同時玻璃變得易於在更低溫下熔解,故而可 減少玻璃之生產成本。又,藉由將Ta2〇5成分之含量設為 15.0%以下,可減少由丁幻〇5成分之過剩之含有引起之玻璃 之失透。因此’ Ta2〇5成分之含量之上限較佳為設為 15.0%,更佳為1〇 〇% ’最佳為5 〇%。Ta2〇5成分可使用 Ta205等作為原料。The Ta2〇5 component is a component of the optical glass of the present invention which is a component of the optical glass of the present invention which is a component which increases the refractive index of the glass, lowers the Abbe number and partial dispersion ratio of the glass, and improves the resistance to devitrification of the glass. In particular, by setting the content of the Ta2〇5 component to 15.0% or less, the amount of the τ&2〇5 component which is a rare mineral resource is reduced, and at the same time, the glass is easily melted at a lower temperature, so that the glass can be reduced. Production costs. Further, by setting the content of the Ta2〇5 component to 15.0% or less, it is possible to reduce the devitrification of the glass caused by the excessive content of the component of the dinosaur. Therefore, the upper limit of the content of the 'Ta2〇5 component is preferably set to 15.0%, more preferably 1% 〇%' is preferably 5%. As the Ta2〇5 component, Ta205 or the like can be used as a raw material.

Bi2〇3成分係提高玻璃之折射率並降低阿貝數,且降低 玻璃轉移點之成分,為本發明之光學玻璃中之任意成分。 尤其藉由將Bl2〇3成分之含量設為15.0%以下,可使玻璃之 部分分散比變得不易上升。又,藉由將Bi2〇3成分之含量 設為15.0〇/〇以下,可減少玻璃之著色,可提高玻璃之内部 163467.doc •21 · 201245078 透過率。因此,B彳士、八 3成刀之含量之上限較佳為設為 15.0%,更佳為1〇 〇0/ 最 取住為5.0%。Bi2〇3成分可使用The Bi2〇3 component increases the refractive index of the glass and lowers the Abbe number, and lowers the composition of the glass transition point, and is an arbitrary component in the optical glass of the present invention. In particular, by setting the content of the B2 2 〇 3 component to 15.0% or less, the partial dispersion ratio of the glass can be prevented from rising. Further, by setting the content of the Bi2〇3 component to 15.0 Å/〇 or less, the color of the glass can be reduced, and the transmittance of the glass can be increased by 163467.doc • 21 · 201245078. Therefore, the upper limit of the content of the B gentleman and the eighty-three knives is preferably set to 15.0%, more preferably 1 〇 〇 0 / the maximum occupancy is 5.0%. Bi2〇3 ingredients can be used

Bi2〇3等作為原料》 W〇3成分係提高玻璃之折射率並降低阿貝數,提高玻螭 之耐失透性’提高玻璃之熔解性之成分,為本發明之光學 玻璃中之任意成分。尤其藉由將wo3成分之含量設為 20.0%以下’可使玻璃之部分分散比變得不易上升。又, 藉由將W〇3成分之含量設為2〇 以下,可減少玻璃之著 色,提高玻璃之内部透過率。因此,w〇3成分之含量之上 限較佳為設為20.0。/。’更佳為1〇 〇%,最佳為5 〇%。w〇3成 分可使用W03等作為原料。Bi2〇3 is used as a raw material. The W〇3 component is a component of the optical glass of the present invention which increases the refractive index of the glass and lowers the Abbe number, and improves the devitrification resistance of the glass. . In particular, by setting the content of the wo3 component to 20.0% or less, the partial dispersion ratio of the glass can be prevented from rising. Further, by setting the content of the W〇3 component to 2 Å or less, the color of the glass can be reduced, and the internal transmittance of the glass can be improved. Therefore, the upper limit of the content of the w〇3 component is preferably set to 20.0. /. ‘More preferably 1〇 〇%, optimally 5%%. The w〇3 component can use W03 or the like as a raw material.

Te〇2成分係提高玻璃之折射率,降低玻璃之部分分散 比,降低玻璃轉移點之成分,為本發明之光學玻璃中之任 意成分》尤其藉由將Te〇2成分之含量設為3〇 〇%以下,可 減少玻璃之著色,提高玻璃相對於可見光之透過率。又, 藉由減少價格昂貴之Te〇2成分之使用,可獲得材料成本更 低之玻璃。因此,Te〇2成分之含量之上限較佳為設為 30.0%,更佳為2〇 〇%,最佳為丨〇 〇%。Te〇2成分可使用 Te〇2等作為原料。The Te〇2 component increases the refractive index of the glass, lowers the partial dispersion ratio of the glass, and lowers the composition of the glass transition point, and is an arbitrary component in the optical glass of the present invention, especially by setting the content of the Te〇2 component to 3〇. Below 〇%, the color of the glass can be reduced, and the transmittance of the glass with respect to visible light can be improved. Further, by reducing the use of the expensive Te〇2 component, a glass having a lower material cost can be obtained. Therefore, the upper limit of the content of the Te〇2 component is preferably set to 30.0%, more preferably 2% by weight, and most preferably 丨〇%. As the Te〇2 component, Te〇2 or the like can be used as a raw material.

Zr〇2成分係提高玻璃之折射率及阿貝數,降低部分分散 比’並且且提高对失透性之成分,為本發明之光學玻璃中 之任意成分。尤其藉由將Zr02成分之含量設為15.0°/〇以 下’可減少玻璃之失透,且可容易地獲得更均質之玻璃。 因此’ Zr〇2成分之含量之上限較佳為設為15·0%,更佳為 163467.doc -22- s 201245078 12.0%’最佳為1〇秦再者,亦可不含有Zr〇2成分, 由含有Zr〇2成分多於〇% ’可提高玻璃之折射率及阿貝 數’並且可容易地進一步降低玻璃之部分分散比。又,藉 此,可減少再加熱時之失透或著色。因此,ha成分之含 量之下限較佳為設為多於〇%,更佳為i爲,進而更佳為 2·0°/〇。Zr02成分可使用Zr〇2、ZrF4等作為原料。 Α1ζ〇3成分係提高玻璃之化學耐久性,提高玻璃之耐失 透性之成分,為本發明之光學玻璃中之任意成分。尤其藉 由將Ah〇3成分之含量設為15〇%以下,可減少由 分之過剩之含有引起之失透。又,藉此,可減少再加熱時 之失透或著色。因*匕’ Al2〇3成分之含量之上限較佳為設 為15.0%’更佳為10.0%,最佳為5〇%。Al2〇3成分可使用 Al2〇3、Al(OH)3、A1F3 等作為原料。The Zr〇2 component is an optional component in the optical glass of the present invention which is a component which increases the refractive index and Abbe number of the glass, lowers the partial dispersion ratio, and improves the devitrification property. In particular, the devitrification of the glass can be reduced by setting the content of the ZrO 2 component to 15.0 ° / 〇 or less, and a more homogeneous glass can be easily obtained. Therefore, the upper limit of the content of the 'Zr〇2 component is preferably set to 15.0%, more preferably 163467.doc -22-s 201245078 12.0% 'Best is 1 〇Qin or no Zr〇2 component By containing more than 〇% of the Zr〇2 component, the refractive index and Abbe number of the glass can be increased and the partial dispersion ratio of the glass can be easily further reduced. Further, by this, the devitrification or coloring upon reheating can be reduced. Therefore, the lower limit of the content of the ha component is preferably set to be more than 〇%, more preferably i is, and still more preferably 2·0°/〇. As the ZrO 2 component, Zr 〇 2, ZrF 4 or the like can be used as a raw material. The Α1ζ〇3 component is a component which improves the chemical durability of the glass and improves the resistance to devitrification of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ah 3 component to 15% or less, the devitrification caused by the excessive content can be reduced. Further, by this, devitrification or coloration at the time of reheating can be reduced. The upper limit of the content of the *匕' Al2〇3 component is preferably set to 15.0%', more preferably 10.0%, most preferably 5%. As the Al2〇3 component, Al2?3, Al(OH)3, A1F3 or the like can be used as a raw material.

ShO3成分係促進玻璃之脫泡,澄清玻璃之成分,為本 發明之光學玻璃中之任意成分。相對於玻璃總物質量,藉 由將Sfc>2〇3成分之含量設為i 〇%以下,可使於玻璃熔融時 不易產生過度之發泡,可使Sb203成分不易與熔解設備(尤 其Pt等貴金屬)合金化。因此,Sb2〇3成分之含量之上限較 佳為設為1.0%,更佳為0.8%,進而更佳為〇.6%。然而,於 重視光學玻璃對於環境之影響之情形時,較佳為不含有 Sb203成分。Sb2〇3成分可使用 Sb2〇3、sb2〇5、Na2H2Sb2〇7 5H20等作為原料。 再者’澄清玻璃並脫泡之成分並不限定於上述sb2〇3成 分,可使用玻璃製造之領域中公知之澄清劑或脫泡劑、或 163467.doc •23- 201245078 該等之組合。 <關於不應含有之成分> 其次,說明本發明之光學玻璃中不應含有之成分'及含 有欠佳之成分。 於本發明之光學玻璃中,可於無損玻璃之特性之範圍内 視需要添加其他成分。 然而,除 Ti、Zr、Nb 以外,v、Cr、Mn、c〇、犯、 Cu、Ag及Mo等各過渡金屬成分即便於.單獨或複合地少量 含有各自之情形時,亦具有使玻璃著色、吸收可見域之特 疋之波長之光的性質,因此尤其於使用可見區域之波長之 光學玻璃中,較佳為實質上不含有。 進而,PbO等鉛化合物及AS2〇3等砷化合物、以及丁匕、 Cd、ΊΠ、Os、Be、Se之各成分於近年來作為有害之化學物 資,存在控制使用之傾向,不僅於玻璃之製造步驟中,於 加工步驟、及直至製品化後之處理為止均需要環境對策方 面之措施。因此,於重視環境方面之影響之情形時,較佳 為除不可避免之混入以外實質上不含有該等。藉此使光 學玻璃變得實質上不含有污染環境之物質。因此,即便不 採取特殊之環境對策方面之措施,亦可製造、加工、及廢 棄該光學玻璃。 較佳地用作本發明之光學玻璃之玻璃,其組成係以相對 於氧化物換算組成之玻璃總物質量之簟耳。/圭_ 夫吁/0表不,因此並 非直接表述為質量。/。之記載,滿足本發明中所要求之各特 性之玻璃組成物中所存在之各成分之藉由質 ' 只里/0衣不之組 163467.doc -24- 201245078 成,以氧化物換算組成計,大致取以下值。 Si02成分15.0〜45.0質量%及 CaO成分15.0〜35.0質量% 以及The ShO3 component promotes defoaming of glass and clarifies the composition of the glass, and is an optional component in the optical glass of the present invention. By setting the content of the Sfc>2〇3 component to i 〇% or less with respect to the total mass of the glass, it is possible to prevent excessive foaming when the glass is melted, and it is possible to make the Sb203 component difficult to melt with the melting equipment (especially Pt, etc.) Precious metal) alloyed. Therefore, the upper limit of the content of the Sb2〇3 component is preferably set to 1.0%, more preferably 0.8%, and still more preferably 〇.6%. However, in the case where the influence of the optical glass on the environment is emphasized, it is preferred that the Sb203 component is not contained. As the raw material of Sb2〇3, Sb2〇3, sb2〇5, Na2H2Sb2〇7 5H20 or the like can be used. Further, the component for clarifying the glass and defoaming is not limited to the above sb2〇3 component, and a clarifier or a defoaming agent known in the field of glass production, or a combination of 163467.doc • 23-201245078 may be used. <About the component which should not be contained> Next, the component "which should not be contained in the optical glass of the present invention" and the component containing an undesirable component will be described. In the optical glass of the present invention, other components may be added as needed within the range of the characteristics of the non-destructive glass. However, in addition to Ti, Zr, and Nb, each transition metal component such as v, Cr, Mn, c〇, sin, Cu, Ag, and Mo has a coloring of the glass even when it is contained in a small amount alone or in combination. Since the light of the wavelength of the characteristic of the visible region is absorbed, it is preferable that the optical glass having a wavelength of the visible region is substantially not contained. Further, lead compounds such as PbO and arsenic compounds such as AS2〇3, and various components of butyl sulfonium, Cd, hydrazine, Os, Be, and Se have been used as harmful chemical materials in recent years, and tend to be used not only in the manufacture of glass. In the step, measures for environmental measures are required in the processing steps and processing up to the time of product preparation. Therefore, when it is important to pay attention to environmental influences, it is preferable that these are not substantially contained except for inevitable mixing. Thereby, the optical glass is made substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking special measures for environmental countermeasures. It is preferably used as the glass of the optical glass of the present invention, and its composition is based on the total mass of the glass of the composition in terms of oxide. /Kou _ Fu Yu / 0 is not, so it is not directly expressed as quality. /. It is described that the components present in the glass composition satisfying the characteristics required in the present invention are formed by the composition of the oxides in the form of oxides in the form of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , roughly take the following values. SiO2 component 15.0 to 45.0% by mass and CaO component 15.0 to 35.0% by mass and

Nb205成分0〜5 5.0質量%及/或 Ti02成分0〜20.0質量%及/或 BaO成分0〜45.0質量%及/或 Li20成分0〜10.0質量%及/或 Na20成分0〜20.0質量%及/或 K20成分0〜3 0.0質量%及/或 Cs20成分0〜25.0質量%及/或 MgO成分0〜5.0質量°/〇及/或 SrO成分0〜25.0質量°/〇及/或 ZnO成分0〜25.0質量%及/或 P2〇5成分〇〜3 0.0質量%及/或 B2〇3成分0〜30.0質量%及/或 Ge02成分0〜20.0質量%及/或 Y2〇3成分〇〜3 0.0質量%及/或 La203成分0〜40.0質量%及/或 Gd203成分0〜40.0質量%及/或 Yb203成分0〜40.0質量°/〇及/或 Ta205成分0〜50.0質量%及/或 Bi2〇3成分〇〜50.0質量°/〇及/或 W03成分0〜30.0質量%及/或 163467.doc -25- 201245078Nb205 component 0 to 5 5.0% by mass and/or TiO 2 component 0 to 20.0% by mass and/or BaO component 0 to 45.0% by mass and/or Li20 component 0 to 10.0% by mass and/or Na20 component 0 to 20.0% by mass and/or Or K20 component 0 to 3 0.0% by mass and/or Cs20 component 0 to 25.0% by mass and/or MgO component 0 to 5.0 mass ° / 〇 and / or SrO component 0 to 25.0 mass ° / 〇 and / or ZnO component 0 ~ 25.0% by mass and/or P2〇5 component 〇~3 0.0% by mass and/or B2〇3 component 0 to 30.0% by mass and/or Ge02 component 0 to 20.0% by mass and/or Y2〇3 component 〇~3 0.0 mass % and / or La203 component 0 to 40.0% by mass and / or Gd203 component 0 to 40.0% by mass and / or Yb203 component 0 to 40.0 mass ° / 〇 and / or Ta205 component 0 to 50.0% by mass and / or Bi2 〇 3 component 〇~50.0 mass ° / 〇 and / or W03 composition 0 ~ 30.0% by mass and / or 163467.doc -25- 201245078

Te02成分0〜45.0質量%及/或 Zr02成分0〜20.0質量%及/或 Al2〇3成分0〜20.0質量%及/或 Sb203成分0〜3.0質量。/〇 尤其第1光學玻璃中所存在之各成分之藉由質量%表示 之組成,以氧化物換算組成計,大致取以下值。Te02 component 0 to 45.0% by mass and/or Zr02 component 0 to 20.0% by mass and/or Al2〇3 component 0 to 20.0% by mass and/or Sb203 component 0 to 3.0 mass. / 〇 In particular, the composition of each component present in the first optical glass represented by mass % is approximately the following value in terms of oxide conversion composition.

Si02成分15.0〜45.0質量%及 CaO成分15.0〜35.0質量% 以及SiO2 component 15.0 to 45.0% by mass and CaO component 15.0 to 35.0% by mass and

Nb205成分0-5 5.0質量%及/或 Ti02成分0〜10.0質量%及/或 BaO成分0〜3 5.0質量%及/或 Li20成分0〜10.0質量%及/或 Na20成分0〜20.0質量%及/或 K20成分0〜30.0質量%及/或 Cs20成分0〜25.0質量°/。及/或 MgO成分0〜5.0質量%及/或 SrO成分0-25.0質量%及/或 ZnO成分0~25.0質量%及/或 P2〇5成分〇〜3 0.0質量%及/或 B2〇3成分0〜30.0質量%及/或 Ge02成分0〜20.0質量%及/或 Y2〇3成分〇〜30.0質量%及/或 La203成分0〜40.0質量°/〇及/或 163467.doc •26· 201245078Nb205 component 0-5 5.0% by mass and/or TiO2 component 0 to 10.0% by mass and/or BaO component 0 to 3 5.0% by mass and/or Li20 component 0 to 10.0% by mass and/or Na20 component 0 to 20.0% by mass and/or / or K20 component 0 to 30.0% by mass and / or Cs20 component 0 to 25.0 mass ° /. And/or MgO component 0 to 5.0% by mass and/or SrO component 0-25.0% by mass and/or ZnO component 0 to 25.0% by mass and/or P2〇5 component 〇~3 0.0% by mass and/or B2〇3 component 0 to 30.0% by mass and/or Ge02 component 0 to 20.0% by mass and/or Y2〇3 component 〇~30.0% by mass and/or La203 component 0 to 40.0 mass °/〇 and/or 163467.doc •26·201245078

Gd203成分0〜40.0質量%及/或 Yb203成分0〜40.0質量%及/或 Ta205成分0〜50.0質量%及/或 Bi203成分0〜50.0質量%及/或 W03成分0〜30.0質量%及/或 Te02成分0〜45.0質量%及/或 Zr02成分0〜20.0質量%及/或 Al2〇3成分0〜20.0質量%及/或 Sb203成分0〜3.0質量% 又,第2光學玻璃中所存在之各成分之藉由質量%表示 之組成,以氧化物換算組成計,大致取以下值。Gd203 component 0 to 40.0% by mass and/or Yb203 component 0 to 40.0% by mass and/or Ta205 component 0 to 50.0% by mass and/or Bi203 component 0 to 50.0% by mass and/or W03 component 0 to 30.0% by mass and/or Te02 component 0 to 45.0% by mass and/or Zr02 component 0 to 20.0% by mass and/or Al2〇3 component 0 to 20.0% by mass and/or Sb203 component 0 to 3.0% by mass, and each of the second optical glass The composition represented by the mass % of the component is approximately the following value in terms of the oxide conversion composition.

Si02成分15.0〜45.0質量%及 CaO成分15.0〜35.0質量% 以及SiO2 component 15.0 to 45.0% by mass and CaO component 15.0 to 35.0% by mass and

Nb205成分0〜5 5.0質量%及/或 Ti02成分0〜20.0質量%及/或 BaO成分0〜45.0質量%及/或 Li20成分0〜10.0質量%及/或 Na20成分0〜20.0質量%及/或 K20成分0〜30.0質量%及/或 Cs20成分0〜25.0質量%及/或 MgO成分0〜5.0質量%及/或 SrO成分0〜25.0質量%及/或 ZnO成分0〜25.0質量%及/或 163467.doc •27- 201245078 P2〇5成分0〜30.0質量%及/或 Β203成分〇〜3〇.〇質量%及/或 Ge02成分〇〜20.0質量%及/或 Y2O3成分0〜30.0質量%及/或 La203成分〇〜40.0質量。/〇及/或 Gd203成分〇〜4〇.〇質量。/。及/或 Yb203成分〇〜40.0質量。/。及/或 Ta205成分〇〜5〇.〇質量。/。及/或 Bi2〇3成分〇〜50.0質量。/〇及/或 W03成分〇〜3〇.〇質量%及/或 Te02成分〇〜45.0質量0/〇及/或 Zr〇2成分〇〜20.〇質量%及/或 AI2O3成分〇〜20.0質量。/〇及/或 Sb2〇3成分〇〜3.0質量% [製造方法] 本發明之光學玻璃例如可以下述方式製作,即,以各成 分成為特定之含量之範圍内之方式均句地混合上述原料, 將所製作之混合物投入鉑坩堝、石英坩堝或氧化鋁坩堝中 進行粗熔融後,將其放入金坩堝 '鉑坩堝、鉑合金坩堝或 銥坩堝中,於1100〜1400。(:之溫度範圍中熔融3〜5小時,進 行攪拌均質化,進行消泡等後,降低至〜13〇〇它之溫 度後,進行精授拌,除去脈紋,將其禱入模具中,進行^ 冷部’藉此製作光學玻璃。 <物性:> 163467.doc -28^ 201245078 本發明之光學玻璃較佳為具有特定之折射率及分散(阿 貝數)。更具體而言,本發明之光學破璃之折射率(nd)之下 限較佳為設為1.70,更佳為1.75,最佳為178。另一方 面,本發明之光學玻璃之折射率(nd)之上限並無特別限 定’多為約2.20以下’更具體而言為2.1〇以下,進而更具 體而言為2.00以下,進而更具體而言為195以下《又,本 發明之光學玻璃之阿貝數(vd)之上限較佳為設為4〇,更佳 為38,最佳為35。另一方面,本發明之光學玻璃之阿貝數 (vd)之下限並無特別限定,多為約2〇以上,更具體而言為 25以上,進而更具體而言為27以上。藉由該等,光學設計 之自由度擴大’進而即便謀求元件之薄型化亦可獲得較大 之光之折射量。 又’本發明之光學玻璃具有較低之部分分散比(eg,F)。 更具體而言’於本發明之光學玻璃之部分分散比(0g,F)與 阿貝數(vd)之間,於Vd$31之範圍中滿足(_〇 〇〇162xvd+ O.63822)S(0g,F)$(-0.00275xvd+0.68125)之關係,且於 vd>31 之範圍令滿足(-〇.〇〇i62xvd+O.63822)S(0g,F)g (-0_00162xvd+0.64622)之關係。藉此,可獲得具有接近正 規線之部分分散比(eg,F)之光學玻璃,因此可減少由該光 學玻璃所形成之光學元件之色像差。此處,Vd$31時之光 學玻璃之部分分散比(0g,F)之下限較佳為(_0.00162x vd+0.63822),更佳為(_0.00162xvd+〇.63922),最佳為(-0.00162x vd+0.64022)。另一方面’ Vd$31時之光學玻璃之部分分散 比(0g,F)之上限較佳為(_〇.〇〇275xvd+0.68125),更佳為 I63467.doc •29- 201245078 (•0.00275xvd+0.68025),最佳為(-〇.〇〇275xvd+0.67925)。 又,vd>3 1時之光學玻璃之部分分散比(0g, F)之下限較佳為 (-0.00162xvd+0.63822),更佳為(-0.00162><vd+0.63922), 最佳為(-0.00162xvd+0.64022)。另一方面,vd>31時之光學 玻璃之部分分散比(〇g,F)之上限較佳為(-0.00162xvd+ 0.64622),更佳為(-0.00162xvd+0.64522),最佳為(-0·00162χ vd+0.64422)。再者,尤其於阿貝數(vd)較小之區域中,普 通玻璃之部分分散比(0g,F)處於高於正規線之值,普通玻 璃之部分分散比(eg, F)與阿貝數(vd)之關係係以曲線表 示。然而,由於該曲線之近似較為困難,故而於本發明 中,使用以vd=3 1為分界而具有不同斜度之直線表示部分 分散比(0g,F)低於普通玻璃。 又,本發明之光學玻璃較佳為著色較少。尤其本發明之 光學玻璃若以玻璃之透過率表示,則以厚度10 mm之試樣 顯示分光透過率70%之波長(λ7〇)為500 nm以下,更佳為470 nm以下,進而更佳為450 nm以下,最佳為430 nm以下。 又,本發明之光學玻璃若以玻璃之透過率表示,則以厚度 10 mm之試樣顯示分光透過率80%之波長(λβο)為560 nm以 下,更佳為540 nm以下,最佳為520 nm以下。又’本發明 之光學玻璃以厚度10 mm之試樣顯示分光透過率5 %之波長 (λ5)為420 nm以下,更佳為400 nm以下,最佳為380 nm以 下。藉此,玻璃之吸收端位於紫外區域之附近,可見域中 之玻璃之透明性提高,因此該光學玻璃可較佳地用作透鏡 等光學元件之材料。 163467.doc -30· 201245078 又’本發明之光學玻璃較。佳為擠壓成形性良好。即本 發明之光學玻璃較佳為用再加熱試驗(二)後之試驗片之波 長587.56 nm之光線(d線)之透過率除以再加熱試驗前之試 驗片之d線之透過率所得的值為〇 95以上。又,較佳為再 加熱試驗(二)前之試驗片之透過率成為7〇%之波長即λ7〇與 再加熱試驗後之試驗片之人7〇的差為2〇 nm以下。藉此,即 便進行假疋再熱擠壓加工之再加熱試驗亦不易引起失透及 著色,藉此玻璃之光線透過率不易喪失,因此可容易地對 玻璃進行以再熱擠壓加工為代表之再加熱處理。即,由於 可利用擠壓成形製作複雜形狀之光學元件,故而可實現製 造成本低廉、且生產性良好之光學元件製造。 此處,用再加熱試驗(二)後之試驗片之波長587·56 光線(d線)之透過率除以再加熱試驗(二)前之試驗片之 之透過率所得的值之下限較佳為設為〇 95,更佳為〇 %, 最佳為0.97…再加熱試驗(二)前之試驗片之“與再加 熱試驗(二)後之試驗片之λ7。之差之上限較佳為設為2〇 nm ’更佳為18 nm,最佳為16 nm。 再者’再加熱試驗(二)係藉由如下方式進行:再加熱試 驗片 15 mmxl5 mmx30 mm, 自室溫開始歷時150分鐘升溫 至較各試樣之轉移溫度(如高啊之溫度,於上述較光學 玻璃之玻璃轉移溫度(Tg)高8(rc之溫度下保溫3q分鐘,其 後自然冷卻至常溫為止’將試驗片之相對向之2面研磨成 厚度10 mm後,目測觀察。 [預成形體及光學元件] 163467.doc 201245078 可由所製作之光學玻璃,例如使用再熱擠壓成形或精密 擠壓成形等模具擠壓成形之手段,製作玻璃成形體β即, 可由光學玻璃製作模具擠壓成形用之預成形體,對該預成 形體進行再熱擠壓成形後,進行研磨加工,製作玻璃成形 體’或者例如對於進行研磨加工所製作之預成形體進行精 密擠壓成形,製作玻璃成形體。再者,製作玻璃成形體之 手段並不限定於該等手段。 如此所製作之玻璃成形體對於各種光學元件有用,其 中’尤佳為用於透鏡或稜鏡等光學元件之用途。藉此,設 置有光學元件之光學系統之透過光中之由色像差引起之色 之模糊減輕。因此,於將該光學元件用於相機中之情形 時,可更正確地顯現出攝影對象物,於將該光學元件用於 投影儀中之情形時,可高精彩地投影出所期望之影像。 [實施例] 將本發明之實施例(No.^No.y)及比較例(Ν〇 Α〜n〇 D) 之組成、及折射率(nd)、阿貝數(Vd)、部分分散比㈣,F)、 分光透過率顯示5%、70%及80%之波長%、^、^)、以 及再加熱試驗(二)前後之透過率之變動示於表丨〜表9 ^其 令,實施例卜42係作為第1光學玻璃之實施例而列舉。' 又,實施例1 30及36〜57 、4〜11、13、14、16〜20、23 係作為第2光學玻璃之實施例而列舉。 丹有,以下實施例 之目的僅為例示,本發明並不限定於該等實施例。 本發明之實施例及比較例之玻璃均選定各自相办之氧化 物、氫氧化物、碳酸鹽、硝酸鹽、氟化物、氫氧化物、偏 163467.doc •32· 201245078 礙酸化合物等通常光學玻璃中所使用之高純度之原料作為 各成分之原料,以成為表卜表9中所示之各實施例及比較 例之組成之比例之方式枰量,並均勻地混合後,將其投入 銘时竭中’根據玻璃組成之熔融難易度,利用電爐於 1100〜1400°c之溫度範圍内熔解3〜5小時,進行攪拌均質 化’進行消泡等後,將溫度下降至!〇〇〇〜! 300°c&進行搜 拌均質化後’將其鑄入模具中,進行緩冷卻而製作玻璃。 此處,實施例及比較例之玻璃之折射率(nd)、阿貝數(Vd) 及部分分散比(eg,F)係基於曰本光學硝子工業會規格 JOGIS01-2003而測定。並且,對於所求出之阿貝數及 部分分散比(0g,F)之值,求出關係式(eg,F)=-axvd+b中之 於斜度a為0.00162及0.00275時之截距b»再者,本測定中 所使用之玻璃係使用將緩冷卻降溫速度設為_25°c/hr、利 用緩冷卻爐進行有處理者。 又’實施例及比較例之玻璃之透過率係依據日本光學硝 子工業會規格JOGIS02而測定。再者,於本發明中,藉由 測定玻璃之透過率’求出玻璃之著色之有無與程度。具體 而言,對於厚度10±0.1 mm之相對面平行研磨品,依據 JISZ8722 ’測定200〜800 nm之分光透過率,求出λ5(透過率 5%時之波長)、λ7〇(透過率70%時之波長)及x8G(透過率80〇/〇 時之波長)。 又’實施例及比較例之玻璃之再加熱試驗(二)前後之透 過率之變動係以如下方式進行測定》 用再加熱試驗(二)後之試驗片之波長587.56 nm之光線(d 163467.doc 33· 201245078 線)之透過率除以再加熱試驗前之試驗片之d線之透過率所 得的值係對於再加熱試驗(二)前後之玻璃依據日本光學 硝子工業會規格J〇GIS02-2003而進行。具體而言,對於厚 度l〇±〇.l mm之相對面平行研磨品’依據JISZ8722測定丄線 之分光透過率,求出(再加熱試驗(二)後之d線透過率)/(再 …〇式驗(一)前之d線透過率),評價再加熱試驗(二)前後 之最大透過率之變化。 另一方面’再加熱試驗(二)前之試驗片之透過率成為 70 /❶之波長即λ7〇與再加熱試驗後之試驗片之λ7〇之差係對於 再加熱試驗(二)前後之玻璃,利用上述試驗方法求出 人7〇(透過率70%時之波長),評價再加熱試驗(二)前之試驗 片之λ7〇與再加熱試驗(二)後之試驗片之λ70之差。 此處’再加熱試驗(二)係利用如下方法進行:將15 mmxl5 mmx30 mm之試驗片載置於凹型耐火物上,放入電 爐中進行再加熱’自常溫開始歷時15〇分鐘升溫至較各試 樣之轉移溫度(TS)高80。(:之溫度(陷入耐火物中之溫度), 於該溫度下保溫30分鐘後,冷卻至常溫為止,取出至爐 外,為了能夠於内部觀察,而將相對向之2面研磨成厚度 10 mm後,目測觀察經研磨之玻璃試樣。 163467.doc 9 -34· 201245078 [表l] 實施例 1 2 3 4 5 6 7 8 Si02 33.655 33.655 33.655 33.655 36.655 33.655 33.655 36.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 37.562 37.562 Nb205 7.204 7.204 7.718 7.718 7.718 9.218 9.218 9.218 Ti02 6.990 6.990 8.490 8.490 8.490 6.990 6.990 6.990 Li20 Na2〇 K20 3.000 3.000 3.000 MaO SrO BaO 3.000 3.000 2.000 3.000 2.000 ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 2.699 4.699 4.699 2.699 Y7.〇3 La2〇3 0.514 0.514 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 4.403 4.403 2.903 2.903 2.903 2.903 2.903 2.903 AI2O3 Sb,〇3 0,012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100.00 100,00 100.00 100.00 100.00 100.00 Ba+K 3.000 3.000 3.000 3.000 2.000 3.000 3.000 2.000 Nb+Ti 14.194 14.194 16.208 16.208 16.208 16.208 16.208 16.208 (Nb+Ba)/(Ti+Ca) 0.162 0.229 0.168 0.233 0.211 0.207 0.274 0.252 Ti/Nb 0.970 0.970 1.100 1.100 1.100 0.758 0.758 0.758 Li+Na+K+Cs 3.000 0.000 3.000 0.000 0.000 3.000 0.000 0.000 Mg+Ca+Sr+Ba+Zn 39.523 42,523 39.523 42.523 41.523 39.523 42.523 41.523 nd 1.7907 1.8111 1.7942 1.8148 1.8119 1.8044 1.8243 1.8213 Vd 33.3 33.2 32.2 32.1 32.0 31.7 31.6 31.6 9g,F 0.5882 0.5871 0.5918 0.5927 0.5919 0.5927 0.5932 0.5930 戴距 b(a=-0.00162) 0.64216 0.64094 0.64398 0.64476 0.64379 0.64411 0.64444 0.64420 戴距 b(a=-0.00275) 0.67979 0.67845 0.68036 0.68103 0.67995 0.67993 0.68015 0.67991 λ8〇『ηηι1 430 442 442 452 441 443 451 449 λ7〇Γηηι1 392 399 399 404 399 400 403 400 Xsfnm'] 351 353 354 357 357 354 356 356 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後λ70-試驗(二)前、〇 -35- 163467.doc 201245078 [表2] 實施例 9 10 11 Si02 33.655 33.655 36.655 CaO 37.562 37.562 37.562 Nb205 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 Li2〇 Na20 K20 3.000 MgO SrO BaO 3.000 2.000 ZnO 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 Y2O3 La2〇3 Gd2〇3 Yb2〇3 Τ^2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0.012 總計 100.00 100.00 100.00 Ba+K 3.000 3.000 2.000 Nb+Ti 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.196 0.263 0.241 Ti/Nb 0.802 0.802 0.802 Li+Na+K+Cs 3.000 0.000 0.000 Mg+Ca+Sr+Ba+Zn 39.523 42.523 41.523 nd 1.8002 1.8216 1.8183 vd 32.1 31.9 31.9 0g,F 0.5923 0.5917 0.5929 截距 b(a=-0.00162) 0.64439 0.64345 0.64466 截距 b(a=-0.00275) 0.68066 0.67950 0.68071 λ80[ητη] 436 436 434 λ7〇[ηηι] 396 397 396 λ5[ητη] 353 355 355 試驗(二)後透過率/試驗(二)前透過率 0.997 試驗(二)後λ7〇-試驗(二)前λγο 2.5 -36- 163467.doc 201245078 [表3] 實施例 12 13 14 15 16 17 18 19 Si02 30.655 30.655 33.655 30.655 33.655 33.655 33.655 33.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 40.562 34.562 Nb205 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na2〇 k2o 6.000 3.000 3.000 3.000 2.000 MgO SrO BaO 3.000 2.000 3.000 5.000 3.000 3.000 6.000 ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 4.699 2.699 2.699 1.699 4.699 y2〇3 La2〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0,012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100,00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 6.000 5.000 6.000 5.000 5.000 3.000 6.000 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.196 0.263 0.241 0.263 0.308 0.263 0.246 0.354 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 6.000 3.000 3.000 3.000 0.000 2.000 0.000 0.000 Mg+Ca+Sr+Ba+Zn 39.523 42.523 41.523 42.523 44.523 42.523 45.523 42.523 n<i 1.7895 1.8088 1.8060 1.8083 1.8262 1.8118 1.8280 1.8213 Vd 32.3 32.1 32.1 32.2 32.0 32.1 32.0 32.0 eg,F 0.5900 0.5899 0.5893 0.5918 0.5920 0.5913 0.5918 0.5925 戴距 b(a=-0.00162) 0.64234 0.64199 0.64134 0.64405 0.64386 0.64338 0.64373 0.64443 戴距 b(a=-0.00275) 0.67884 0.67826 0.67761 0.68044 0.68002 0.67965 0.67989 0.68059 λ8〇[ηηι] 430 441 441 437 440 440 440 443 λ7〇[ηΓπ] 393 397 397 396 398 397 398 399 λ5[ηπι] 349 351 352 351 353 352 353 355 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後入7〇_ 試驗(二)前λ7〇 37- I63467.doc 201245078 [表4] 實《 匕例 20 21 22 23 24 25 26 27 Si02 33.655 33.655 33.655 30.655 27.655 30.655 30.655 30.655 CaO 34.562 37.562 37.562 37.562 37.562 34.562 34.562 37.562 Nb205 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na20 K20 3.000 1.961 3.000 3.000 6.000 3.000 MgO SrO BaO 3.000 4.961 3.000 6.000 6.000 6.000 3.000 4.961 ZnO 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 4.699 4.699 4.699 4.699 y2〇3 La2〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 3.403 ai2〇3 Sbi〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 4.961 4.961 6.000 9.000 9.000 9.000 7.961 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.282 0.307 0.263 0.330 0.330 0.354 0.282 0.307 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 3.000 0.000 1.961 0.000 3.000 3.000 6.000 3.000 Mg+C a+S r+B a+Zn 39.523 42.523 40.562 45.523 45.523 42.523 39.523 42.523 nd 1.8012 1.8181 1.8051 1.8284 1.8157 1.8095 1.7915 1.8067 vd 32.1 32.3 32.3 32.0 32.3 32.2 32.4 32.4 eg,F 0.5922 0.5922 0.5912 0.5902 0.5909 0.5905 0.5901 0.5913 截距 b(a=-0.00162) 0.64422 0.64460 0.64358 0.64210 0.64331 0.64269 0.64267 0.64380 截距 b(a=-0.00275) 0.68050 0.68110 0.68008 0.67826 0.67981 0.67908 0.67928 0.68041 λ8〇[ιυηη] 437 440 436 443 443 446 428 434 λ7〇[ηηι] 397 397 395 400 396 399 392 394 λ5[ηπι] 352 354 353 353 348 351 348 350 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後λ70-試驗(二)前λ70 38 163467.doc 201245078 [表5] 實施例 28 29 30 31 32 33 34 35 Si02 30.655 27.655 30.655 30.655 30.655 30.655 30.655 30.655 CaO 37.562 37.562 37.562 37.562 34.562 34.562 37.562 37.562 Nb2〇5 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na2〇 K20 4.961 2.000 3.000 1.961 MgO SrO BaO 3.000 9.000 8.000 6.000 9.000 6.000 7.961 6.000 ZnO 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 2.699 4.699 4.699 4.699 4.699 y2〇3 La2〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W〇3 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 7.961 9.000 8.000 8.000 9.000 9.000 7.961 7.961 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.263 0.398 0.375 0.330 0.426 0.354 0.374 0.330 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 4.961 0.000 0.000 2.000 0.000 3.000 0.000 1.961 Mg+Ca+Sr+Ba+Zn 40.562 48.523 47.523 45.523 45.523 42.523 45.523 43.562 1.7948 1.8340 1.8325 1.8195 1.8283 1.8102 1.8247 1.8134 vd 32.5 32.2 32.1 32.2 32.2 32.2 32.4 32.4 9g,F 0.5892 0.5912 0.5915 0.5913 0.5912 0.5908 0.5906 0.5902 截距 b(a=-0.00162) 0.64185 0.64337 0.64351 0.64352 0.64339 0.64302 0.64315 0.64269 截距 b(a=-0.00275) 0.67857 0.67976 0.67978 0.67991 0.67978 0.67940 0.67976 0.67930 λ8〇[ηηι] 430 448 448 447 454 447 450 445 λ70[ητη] 392 400 400 397 402 397 400 398 λ5[ητη] 348 351 352 350 353 351 353 351 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後λ7〇-試驗(二)前λ,。 39- 163467.doc 201245078 .[表 6] 實施例 36 37 38 39 40 41 42 Si02 30.655 30.655 30.655 30.655 30.655 30.655 30.655 CaO 37.562 37.562 37.562 37.562 35.562 35.562 35.562 Nb205 8.718 10.679 8.718 10.718 8.718 8.718 10.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 U20 Na20 K20 3.000 3.000 3.000 3.000 3.000 3.000 3.000 MgO SrO BaO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 ZnO 3.961 1.961 3.961 1.961 1.961 B2O3 4.699 4.699 2.699 2.699 4.699 4.699 4.699 Y2〇3 La2〇3 Gd2〇3 Yb203 T&2〇5 Bi203 W03 Te02 Zr02 5.364 3.403 3.403 3.403 3.403 5.403 3.403 ai2〇3 Sb203 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 6.000 6.000 6.000 6.000 6.000 6.000 Nb+Ti 15.708 17.669 15.708 17.708 15.708 15.708 17.708 (Nb+Ba)/(Ti+Ca) 0.263 0.307 0.263 0.308 0,275 0.275 0.322 Ti/Nb 0.802 0.655 0.802 0.652 0.802 0.802 0.652 Li+Na+K+Cs 3.000 3.000 3.000 3.000 3.000 3.000 3.000 Mg+Ca+Sr+Ba+Zn 40.562 40.562 44.523 42.523 42.523 40.523 40.523 n<i 1.8130 1.8270 1.8156 1.8344 1.8114 1.8167 1,8305 Vd 32.0 30.8 32.0 30.6 31,9 31.8 30.5 6g,F 0.5911 0.5941 0.5921 0.5943 0.5915 0.5923 0.5960 載距 b(a=-0.00162) 0.64302 0.64402 0.64400 0.64393 0.64327 0.64389 0.64544 截距 b(a=-0.00275) 0.67918 0.67882 0.68016 0.67851 0.67931 0.67983 0.67991 λ8〇[ηηι] 435 452 440 459 442 444 454 λ7〇[ητη] 396 402 397 405 398 397 402 λ5[ηιη] 351 354 350 353 352 351 354 試驗(二)後透過率/ 試驗(二)前透過率 试驗(二)後λ7〇_ 試驗(二)前λ7〇 •40- 163467.doc 201245078 [表7] 比較例 A B C D Si02 28,468 14.434 5.333 9.228 CaO 30.203 24.922 29.998 28.246 Nb205 4.998 3.453 Ti02 11.431 11.012 19.050 19.825 Li20 3,804 Na20 1.630 K20 1.609 MgO 10.026 SrO 3.057 BaO 1.045 1.550 ZnO 8.163 5.907 B2O3 4.890 18.140 31.068 28.441 y2〇3 1.268 0.877 La2〇3 1.555 3.850 3.688 2.309 Gd〗〇3 Yb203 T&2〇5 Bi2〇3 wo3 0.581 Te02 Zr02 4.582 5.261 3.901 2.571 ai2o3 5.700 3.884 Sb203 0,011 0.012 0.011 0.011 總計 100.00 100.00 100.00 100.00 Ba+K 0.000 1.609 1.045 1.550 Nb+Ti 16.428 14.464 19.050 19.825 (Nb+Ba)/(Ti+Ca) 0.120 0.096 0.021 0.032 Ti/Nb 2.287 3.189 - - Li+Na+K+Cs 0.000 7.043 0.000 0.000 Mg+Ca+Sr+Ba+Zn 38.366 34.947 36.950 32.853 nd 1.8171 1.8061 1.8173 1.7884 Vd 32.1 34.2 32,6 33.2 eg,F 0.5944 0.5877 0.5950 0.5955 截距 b(a=-0.00162) 0.64635 0.64309 0.64778 0.64924 截距 b(a=-0.00275) 0.68263 0.68174 0.68462 0.68676 X8〇[nm] 461 454 478 474 λ7〇[ηπι1 408 402 422 418 λ5[ΠΠ1] 359 349 363 363 試驗(二)後透過率/ 試驗(二)前透過率 0.000 0.111 0.998 1.000 試驗(二)後入7〇· 試驗(二)前λ70 - - 1.0 2.0 •41 · 163467.doc 201245078 [表8] 實施例 43 44 45 46 47 48 49 Si02 36.655 36.655 36.655 33.655 33.655 33.655 33.655 CaO 37.562 37.562 37.562 37.562 37,562 37.562 40.562 Nb2〇5 7.718 7.204 7.204 7.204 7.204 7.204 7.204 Ti02 6.990 7.504 6.990 6.990 6.990 6.990 6.990 BaO Li2〇 3.000 Na20 3.000 K20 MgO 3.000 SrO ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 4.699 4.699 4.699 y2〇3 LS2〇3 0.514 0.514 0.514 0.514 Gd2〇3 Yb203 Τ^2〇5 Bi2〇3 W03 Zr02 4.403 4.403 4.917 4.403 4.403 4.403 4.403 ai2〇3 Sb2〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ti 14.708 14.708 14.194 14.194 14.194 14.194 14.194 (Nb+Ba)/(Ti+Ca) 0.173 0.160 0.162 0.162 0.162 0.162 0.151 Ti/Nb 0.906 1.042 0.970 0.970 0.970 0.970 0.970 Li+Na+K+Cs 0.000 0.000 0.000 3.000 3.000 0.000 0.000 Mg+Ca十 Sr+Ba+Zn 39.523 39.523 39.523 39.523 39.523 42.523 42.523 n<i 1.8047 1.8024 1.8006 1.8102 1.7996 1.8099 1.8102 Vd 32.6 32.7 33.0 33.1 33.1 33.1 33.2 〇g,F 0.5905 0.5909 0.5909 0.5891 0.5889 0.5892 0.5890 截距 b(a=*0.00162) 0.64333 0.64392 0.64439 0.64277 0.64261 0.64284 0.64281 載距 b(a=>0.00275) 0.68017 0.68087 0.68168 0.68017 0.68002 0.68025 0.68033 λ8〇[ηηι] 428 422 431 434 431 440 434 λ7〇[ηηι] 392 391 394 395 393 397 395 λ5[ηηι] 355 355 354 352 351 354 353 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後λ70-試驗(二)前λ70 163467.doc -42- ^ 201245078 [表9] 實施例 50 51 52 53 54 55 56 57 Si02 33.655 33.655 33.655 36.655 36.655 36.655 33.655 33.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 37.562 37.562 Nb205 7.204 7.204 7.204 7.718 8.718 9.218 10.204 7.204 Ti02 6.990 6.990 6.990 8.490 6,990 6.990 6.990 6.990 BaO Li20 Na2〇 K20 MgO SrO 3.000 ZnO 1.961 4.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 7.699 4.699 4.699 4.699 4.699 4.699 y2〇3 L&2〇3 0.514 0.514 0.514 0.514 0.514 Gd203 Yb203 Ta2〇5 Bi2〇3 W03 3.000 Zr02 4.403 4.403 4.403 2.903 3.403 2.903 4.403 4.403 AI2O3 Sb203 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ti 14.194 14.194 14.194 16.208 15.708 16.208 17.194 14.194 (Nb+Ba)/(Ti+Ca) 0.162 0.162 0.162 0.168 0,196 0.207 0.229 0.162 Ti/Nb 0.970 0.970 0.970 1.100 0.802 0.758 0.685 0.970 Li+Na+K+Cs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mg+Ca+Sri-Ba+Zn 42.523 42.523 39.523 39.523 39.523 39.523 39.523 39.523 na 1.8096 1.8139 1.8018 1.8068 1.8114 1.8150 1.84166 1.82164 Vd 33.2 32.8 33.2 31.9 31.9 31.6 30.5 31.8 6g,F 0.5890 0.5895 0.5893 0.5934 0.5919 0.5945 0.5931 0.5916 戴距 b(a=-0.00162) 0.64279 0.64272 0.64309 0.64511 0.64366 0.64569 0.64259 0.64315 載距 b(a=-0.00275) 0.68031 0.67979 0.68061 0.68115 0.67971 0.68140 0.67706 0.67908 λβ〇[ηηι] 433 443 436 463 445 450 440 440 λ7〇[ητη] 396 399 397 406 400 403 398 398 λ5[ηπι] 353 354 354 358 357 357 357 357 試驗(二)後透過率/ 試驗(二)前透過率 0.996 0.999 試驗(二)後λ7〇-試驗(二)前λ70 2.5 1.5 如 31者 表1〜表9所示,本發明之實施例之光學玻璃中之vd$ 之部分分散比(0g,F)為(-0.00275xvd+0.68125)以下, -43- 163467.doc 201245078 更詳細而 S,為(_0.00275xvd+0.67991)以下。又,vd>31 者 之。P分分散比(Gg,F)為(_0 0〇162xvd+〇 64622)以下,更詳 細而5 ,為(-〇.〇〇162xvd+〇 64476)以下。另一方面,本發 明之實施例之光學破璃之部分分散比(0g,F)為(_〇 〇〇162xvd+ 〇.63822)以上’更詳細而言,為(-0.00162xvd+0.64094)以 上。即’關於本申請案之實施例之玻璃之部分分散比(eg, F)與阿貝數(Vd)之關係如圖2(第1光學玻璃)及圖3(第2光學 玻璃)所不。因此’得知該等之部分分散比(eg,f)處於所期 望之範圍内。 另-方面,本發明之比較例(N〇 A〜No.D)之玻璃為Nb205 component 0 to 5 5.0% by mass and/or TiO 2 component 0 to 20.0% by mass and/or BaO component 0 to 45.0% by mass and/or Li20 component 0 to 10.0% by mass and/or Na20 component 0 to 20.0% by mass and/or Or K20 component 0 to 30.0% by mass and/or Cs20 component 0 to 25.0% by mass and/or MgO component 0 to 5.0% by mass and/or SrO component 0 to 25.0% by mass and/or ZnO component 0 to 25.0% by mass and/or Or 163467.doc •27- 201245078 P2〇5 component 0~30.0% by mass and/or Β203 component 〇~3〇.〇% by mass and/or Ge02 component 〇~20.0% by mass and/or Y2O3 component 0~30.0% by mass And / or La203 ingredients 〇 ~ 40.0 quality. /〇 and / or Gd203 composition 〇 ~4 〇. 〇 quality. /. And / or Yb203 composition 〇 ~ 40.0 mass. /. And / or Ta205 ingredients 〇 ~ 5 〇. 〇 quality. /. And / or Bi2 〇 3 ingredients 〇 ~ 50.0 mass. /〇 and / or W03 composition 〇 ~3 〇. 〇 mass% and / or Te02 composition 〇 ~ 45.0 mass 0 / 〇 and / or Zr 〇 2 components 〇 ~ 20. 〇 mass% and / or AI2O3 composition 〇 ~ 20.0 quality . 〇 / / 3.0 3.0 3.0 3.0 3.0 3.0 3.0 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学The prepared mixture is poured into platinum crucible, quartz crucible or alumina crucible for coarse melting, and then placed in a crucible, a platinum crucible, a platinum alloy crucible or a crucible, at 1100 to 1400. (: The temperature range is melted for 3 to 5 hours, stirred and homogenized, defoamed, etc., and then lowered to a temperature of ~13 〇〇, and then finely mixed, the veins are removed, and the pray is poured into the mold. The optical portion is formed by the cold portion. <Physical properties: > 163467.doc -28^ 201245078 The optical glass of the present invention preferably has a specific refractive index and dispersion (Abbe number). More specifically, The lower limit of the refractive index (nd) of the optical glass of the present invention is preferably set to 1.70, more preferably 1.75, most preferably 178. On the other hand, the upper limit of the refractive index (nd) of the optical glass of the present invention is not In particular, 'more than about 2.20 or less' is more specifically 2.1 Å or less, and more specifically 2.00 or less, and more specifically 195 or less. Further, the Abbe number (vd) of the optical glass of the present invention. The upper limit of the optical glass of the present invention is preferably set to 4 Å, more preferably 38, and most preferably 35. On the other hand, the lower limit of the Abbe number (vd) of the optical glass of the present invention is not particularly limited, and is usually about 2 Å or more. More specifically, it is 25 or more, and more specifically 27 or more. By these, optical The degree of freedom in design is expanded, and further, even if the thinning of the element is sought, a large amount of light can be obtained. Further, the optical glass of the present invention has a lower partial dispersion ratio (eg, F). More specifically, Between the partial dispersion ratio (0g, F) and the Abbe number (vd) of the optical glass of the present invention, it satisfies (_〇〇〇162xvd+O.63822)S(0g,F)$(- in the range of Vd$31. The relationship of 0.00275xvd+0.68125), and the range of vd > 31 satisfies the relationship of (-〇.〇〇i62xvd+O.63822)S(0g,F)g (-0_00162xvd+0.64622). An optical glass having a partial dispersion ratio (eg, F) close to a regular line, thereby reducing the chromatic aberration of the optical element formed by the optical glass. Here, the partial dispersion ratio of the optical glass at Vd$31 (0g, The lower limit of F) is preferably (_0.00162x vd+0.63822), more preferably (_0.00162xvd+〇.63922), and most preferably (-0.00162x vd+0.64022). On the other hand, the optical glass of 'Vd$31 The upper limit of the partial dispersion ratio (0g, F) is preferably (_〇.〇〇275xvd+0.68125), more preferably I63467.doc •29- 201245078 (•0.00275xvd+0.680 25), the best is (-〇.〇〇275xvd+0.67925). Further, the lower limit of the partial dispersion ratio (0g, F) of the optical glass at vd>3 1 is preferably (-0.00162xvd+0.63822), Good (-0.00162> <vd+0.63922), the best is (-0.00162xvd+0.64022). On the other hand, the upper limit of the partial dispersion ratio (〇g, F) of the optical glass at vd > 31 is preferably (-0.00162xvd + 0.64622), more preferably (-0.00162xvd + 0.64522), and most preferably (-0 ·00162χ vd+0.64422). Furthermore, especially in the region where the Abbe number (vd) is small, the partial dispersion ratio (0g, F) of the ordinary glass is higher than the regular line value, and the partial dispersion ratio of the ordinary glass (eg, F) and Abbe The relationship of the number (vd) is represented by a curve. However, since the approximation of the curve is difficult, in the present invention, a straight line having a different slope using vd = 3 1 as a boundary indicates that the partial dispersion ratio (0g, F) is lower than that of ordinary glass. Further, the optical glass of the present invention preferably has less coloration. In particular, when the optical glass of the present invention is expressed by a transmittance of glass, a wavelength of 10% of the spectral transmittance (λ7〇) of the sample having a thickness of 10 mm is 500 nm or less, more preferably 470 nm or less, and even more preferably Below 450 nm, the best is below 430 nm. Further, when the optical glass of the present invention is expressed by the transmittance of glass, the wavelength (λβο) at which the spectral transmittance is 80% is 560 nm or less, more preferably 540 nm or less, and most preferably 520. Below nm. Further, the optical glass of the present invention shows a wavelength (λ5) of a spectral transmittance of 5% of a sample having a thickness of 10 mm of 420 nm or less, more preferably 400 nm or less, and most preferably 380 nm or less. Thereby, the absorption end of the glass is located in the vicinity of the ultraviolet region, and the transparency of the glass in the visible region is improved, so that the optical glass can be preferably used as a material of an optical element such as a lens. 163467.doc -30· 201245078 Further, the optical glass of the present invention is comparative. Good extrusion molding is good. That is, the optical glass of the present invention is preferably obtained by dividing the transmittance of the light having a wavelength of 587.56 nm (d line) of the test piece after the reheating test (2) by the transmittance of the d line of the test piece before the reheating test. The value is 〇95 or more. Further, it is preferable that the difference between the transmittance of the test piece before the reheat test (2) and the wavelength of λ7 即 which is 7 〇 %, and the test piece after the reheat test is 2 〇 nm or less. Therefore, even if the reheating test of the false twist reheating extrusion process is not easy to cause devitrification and coloring, the light transmittance of the glass is not easily lost, so that the glass can be easily represented by reheat extrusion processing. Reheat treatment. Namely, since an optical element having a complicated shape can be produced by extrusion molding, it is possible to manufacture an optical element which is inexpensive and has good productivity. Here, the lower limit of the value obtained by dividing the transmittance of the light ray (d line) of the test piece after the reheating test (2) by the transmittance of the test piece before the reheating test (2) is preferably It is preferably set to 〇95, more preferably 〇%, most preferably 0.97... The upper limit of the difference between the test piece before the reheat test (2) and the λ7 of the test piece after the reheat test (2) is preferably Set to 2 〇 nm 'more preferably 18 nm, preferably 16 nm. The 'reheat test (2) is carried out by reheating the test piece 15 mm x l5 mm x 30 mm, starting from room temperature for 150 minutes To the transfer temperature of each sample (such as high temperature, the glass transition temperature (Tg) of the above optical glass is higher than 8 (the temperature of rc is kept for 3q minutes, and then naturally cooled to normal temperature). The surface was polished to a thickness of 10 mm and visually observed. [Preform and optical component] 163467.doc 201245078 The optical glass produced can be extruded by a die such as reheat extrusion or precision extrusion. Forming means to produce a glass formed body β, that is, light The glass is used to form a preform for extrusion molding, and the preform is subjected to reheat extrusion molding, followed by polishing to produce a glass molded body or, for example, precision extrusion of a preform produced by polishing. The glass molded body is formed by molding, and the means for producing the glass molded body is not limited to these means. The glass molded body thus produced is useful for various optical elements, and 'preferably used for optics such as lenses or iridium. The use of the element, whereby the blurring of the color caused by the chromatic aberration in the transmitted light of the optical system provided with the optical element is alleviated. Therefore, when the optical element is used in a camera, it can be more correctly displayed. When the optical element is used in a projector, the desired image can be projected with great excitement. [Embodiment] Embodiments of the present invention (No. ^No.y) and comparative examples (Ν〇Α~n〇D) composition, and refractive index (nd), Abbe number (Vd), partial dispersion ratio (four), F), spectral transmittance show 5%, 70%, and 80% wavelength %, ^, ^), to The variation of the transmittance before and after the reheating test (II) is shown in Table 表 to Table 9 ^, and Example 42 is cited as an example of the first optical glass. ' Further, Example 1 30 and 36 to 57 4 to 11, 13, 14, 16 to 20, and 23 are examples of the second optical glass. The following examples are merely illustrative, and the present invention is not limited to the examples. The glass of the examples of the invention and the comparative examples are each selected from the respective oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and 163467.doc •32·201245078 ordinary optical glass such as acid-inhibiting compounds. The high-purity raw materials used in the materials are used as raw materials of the respective components, and are weighed so as to be in proportion to the composition of each of the examples and the comparative examples shown in Table 9, and are uniformly mixed and then put into the time. In the exhaustion, according to the melting difficulty of the glass composition, it is melted in an electric furnace at a temperature of 1100 to 1400 ° C for 3 to 5 hours, and the mixture is homogenized. After defoaming, the temperature is lowered to! Hey ~! After 300 ° C & search and homogenization, it was cast into a mold and slowly cooled to prepare a glass. Here, the refractive index (nd), the Abbe's number (Vd), and the partial dispersion ratio (eg, F) of the glass of the examples and the comparative examples were measured based on the Sakamoto Optical Glass Industrial Standard JOGIS01-2003. Further, for the values of the obtained Abbe number and partial dispersion ratio (0g, F), the intercept in the relational expression (eg, F) = -axvd + b at a slope a of 0.00162 and 0.00275 is obtained. b» In addition, the glass used in the measurement was treated with a slow cooling rate of _25 ° c / hr and was treated by a slow cooling furnace. Further, the transmittance of the glass of the examples and the comparative examples was measured in accordance with the Japan Optical Glass Industry Association specification JOGIS02. Further, in the present invention, the presence or absence of the color of the glass is determined by measuring the transmittance of the glass. Specifically, for a parallel surface-polished product having a thickness of 10 ± 0.1 mm, the light transmittance of 200 to 800 nm is measured in accordance with JIS Z8722', and λ5 (wavelength at a transmittance of 5%) and λ7 〇 (transmittance 70%) are obtained. The wavelength of time) and x8G (wavelength at 80透过/〇 transmittance). Further, the change in transmittance before and after the reheating test of the glass of the examples and the comparative examples was carried out as follows: The light of the test piece after the reheating test (2) was 587.56 nm (d 163467. Doc 33· 201245078 line) The transmittance obtained by dividing the transmittance of the d-line of the test piece before the reheating test is the glass before and after the reheating test (2). According to the specifications of the Japan Optical Glass Industry Association J〇GIS02-2003 And proceed. Specifically, for the opposite surface parallel polishing product having a thickness of l〇±〇.l mm, the spectral transmittance of the 丄 line is measured according to JIS Z8722, and the d-line transmittance after the reheating test (2) is obtained. The d-line transmittance before the (1) test was evaluated for the change in the maximum transmittance before and after the reheat test (2). On the other hand, the transmittance of the test piece before the reheating test (II) becomes the wavelength of 70 / ❶, that is, the difference between λ7 〇 and the λ7 试验 of the test piece after the reheating test, for the glass before and after the reheating test (2) Using the above test method, 7 人 (wavelength at 70% transmittance) was obtained, and the difference between λ7 试验 of the test piece before the reheat test (2) and λ 70 of the test piece after the reheat test (2) was evaluated. Here, the 'reheating test (2) is carried out by placing a test piece of 15 mm x 15 mm x 30 mm on a concave refractory and placing it in an electric furnace for reheating 'from normal temperature for 15 minutes to a temperature The transfer temperature (TS) of the sample was 80. (: the temperature (the temperature in the refractory), after holding at this temperature for 30 minutes, cooling to normal temperature, and taking it out of the furnace, in order to be able to observe inside, the opposite surfaces were ground to a thickness of 10 mm. Thereafter, the ground glass sample was visually observed. 163467.doc 9 -34· 201245078 [Table 1] Example 1 2 3 4 5 6 7 8 Si02 33.655 33.655 33.655 33.655 36.655 33.655 33.655 36.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 37.562 37.562 Nb205 7.204 7.204 7.718 7.718 7.718 9.218 9.218 9.218 Ti02 6.990 6.990 8.490 8.490 8.490 6.990 6.990 6.990 Li20 Na2〇K20 3.000 3.000 3.000 MaO SrO BaO 3.000 3.000 2.000 3.000 2.000 ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 2.699 4.699 4.699 2.699 Y7.〇3 La2〇3 0.514 0.514 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 4.403 4.403 2.903 2.903 2.903 2.903 2.903 2.903 AI2O3 Sb,〇3 0,012 0.012 0.01 2 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100.00 100,00 100.00 100.00 100.00 100.00 Ba+K 3.000 3.000 3.000 3.000 2.000 3.000 3.000 2.000 Nb+Ti 14.194 14.194 16.208 16.208 16.208 16.208 16.208 16.208 (Nb+Ba)/(Ti+Ca) 0.162 0.229 0.168 0.233 0.211 0.207 0.274 0.252 Ti/Nb 0.970 0.970 1.100 1.100 1.100 0.758 0.758 0.758 Li+Na+K+Cs 3.000 0.000 3.000 0.000 0.000 3.000 0.000 0.000 Mg+Ca+Sr+Ba+Zn 39.523 42,523 39.523 42.523 41.523 39.523 42.523 41.523 nd 1.7907 1.8111 1.7942 1.8148 1.8119 1.8044 1.8243 1.8213 Vd 33.3 33.2 32.2 32.1 32.0 31.7 31.6 31.6 9g, F 0.5882 0.5871 0.5918 0.5927 0.5919 0.5927 0.5932 0.5930 Wearing distance b (a=-0.00162) 0.64216 0.64094 0.64398 0.64476 0.64379 0.64411 0.64444 0.64420 Wear distance b (a=-0.00275) 0.67979 0.67845 0.68036 0.68103 0.67995 0.67993 0.68015 0.67991 λ8〇『ηηι1 430 442 442 452 441 443 451 449 λ7〇Γηηι1 392 399 399 404 399 400 403 400 Xsfnm'] 351 353 354 357 357 354 356 356 Test ( 2) Post-transmission rate / test (2) pre-transmission rate After test (2) λ70-test (2) before, 〇-35-163467.doc 201245078 [Table 2] Example 9 10 11 Si02 33.655 33.655 36.655 CaO 37.562 37.562 37.562 Nb205 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 Li2〇Na20 K20 3.000 MgO SrO BaO 3.000 2.000 ZnO 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 Y2O3 La2〇3 Gd2〇3 Yb2〇3 Τ^2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0.012 Total 100.00 100.00 100.00 Ba +K 3.000 3.000 2.000 Nb+Ti 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.196 0.263 0.241 Ti/Nb 0.802 0.802 0.802 Li+Na+K+Cs 3.000 0.000 0.000 Mg+Ca+Sr+Ba+Zn 39.523 42.523 41.523 nd 1.8002 1.8216 1.8183 vd 32.1 31.9 31.9 0g, F 0.5923 0.5917 0.5929 Intercept b (a=-0.00162) 0.64439 0.64345 0.64466 Intercept b (a=-0.00275) 0.68066 0.67950 0.68071 λ80[ητη] 436 436 434 λ7〇 [ηηι] 396 397 396 λ5[ητη] 353 355 355 Test (II) Transmittance/Test (II) Front transmittance: 0.997 Test (II) After λ7〇-Test (2) Λγο 2.5 -36- 163467.doc 201245078 [Table 3] Example 12 13 14 15 16 17 18 19 Si02 30.655 30.655 33.655 30.655 33.655 33.655 33.655 33.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 40.562 34.562 Nb205 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na2〇k2o 6.000 3.000 3.000 3.000 2.000 MgO SrO BaO 3.000 2.000 3.000 5.000 3.000 3.000 6.000 ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 4.699 2.699 2.699 1.699 4.699 y2〇3 La2 〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0,012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100,00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 6.000 5.000 6.000 5.000 5.000 3.000 6.000 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+ Ba)/(Ti+Ca) 0.196 0.263 0.241 0.263 0.308 0.263 0.246 0.354 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 6.000 3.000 3.000 3.000 0.000 2.000 0.000 0.000 Mg+Ca+Sr+Ba+ Zn 39.523 42.523 41.523 42.523 44.523 42.523 45.523 42.523 n<i 1.7895 1.8088 1.8060 1.8083 1.8262 1.8118 1.8280 1.8213 Vd 32.3 32.1 32.1 32.2 32.0 32.1 32.0 32.0 eg,F 0.5900 0.5899 0.5893 0.5918 0.5920 0.5913 0.5918 0.5925 Wear distance b (a=-0.00162) 0.64234 0.64199 0.64134 0.64405 0.64386 0.64338 0.64373 0.64443 Wearing distance b (a=-0.00275) 0.67884 0.67826 0.67761 0.68044 0.68002 0.67965 0.67989 0.68059 λ8〇[ηηι] 430 441 441 437 440 440 440 443 λ7〇[ηΓπ] 393 397 397 396 398 397 398 399 Λ5[ηπι] 349 351 352 351 353 352 353 355 Test (2) Transmittance / Test (2) Front transmittance test (2) After 7 〇 _ Test (2) before λ7〇37- I63467.doc 201245078 [ Table 4] Practical example 20 21 22 23 24 25 26 27 Si02 33.655 33.655 33.655 30.655 27.655 30.655 30.655 30.655 CaO 34.562 37.562 37.562 37.562 3 7.562 34.562 34.562 37.562 Nb205 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na20 K20 3.000 1.961 3.000 3.000 6.000 3.000 MgO SrO BaO 3.000 4.961 3.000 6.000 6.000 6.000 3.000 4.961 ZnO 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 4.699 4.699 4.699 4.699 y2〇3 La2〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W03 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 3.403 ai2〇3 Sbi〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 4.961 4.961 6.000 9.000 9.000 9.000 7.961 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.282 0.307 0.263 0.330 0.330 0.354 0.282 0.307 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 3.000 0.000 1.961 0.000 3.000 3.000 6.000 3.000 Mg+C a+S r+B a+Zn 39.523 42.523 40.562 45.523 45.523 42.523 39.523 42.523 nd 1.8012 1.8181 1.8051 1.8284 1.8157 1.8095 1.7915 1.8067 vd 32.1 32.3 32.3 32.0 32.3 32.2 32.4 32.4 eg,F 0.5922 0.5922 0.5912 0.5902 0.5909 0.5905 0.5901 0.5913 Intercept b (a=- 0.00162) 0.64422 0.64460 0.64358 0.64210 0.64331 0.64269 0.64267 0.64380 Intercept b (a=-0.00275) 0.68050 0.68110 0.68008 0.67826 0.67981 0.67908 0.67928 0.68041 λ8〇[ιυηη] 437 440 436 443 443 446 428 434 λ7〇[ηηι] 397 397 395 400 396 399 392 394 λ5[ηπι] 352 354 353 353 348 351 348 350 Test (2) Transmittance / Test (2) Front transmittance test (2) After λ70 - Test (2) Before λ70 38 163467.doc 201245078 [Table 5] Example 28 29 30 31 32 33 34 35 Si02 30.655 27.655 30.655 30.655 30.655 30.655 30.655 30.655 CaO 37.562 37.562 37.562 37.562 34.562 34.562 37.562 37.562 Nb2〇5 8.718 8.718 8.718 8.718 8.718 8.718 8.718 8.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 6.990 Li20 Na2〇K20 4.961 2.000 3.00 0 1.961 MgO SrO BaO 3.000 9.000 8.000 6.000 9.000 6.000 7.961 6.000 ZnO 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 2.699 2.699 4.699 4.699 4.699 4.699 y2〇3 La2〇3 Gd2〇3 Yb203 Ta2〇5 Bi203 W〇3 Te02 Zr02 3.403 3.403 3.403 3.403 3.403 3.403 3.403 3.403 Al2〇3 Sb2〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100,00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 7.961 9.000 8.000 8.000 9.000 9.000 7.961 7.961 Nb+Ti 15.708 15.708 15.708 15.708 15.708 15.708 15.708 15.708 (Nb+Ba)/(Ti+Ca) 0.263 0.398 0.375 0.330 0.426 0.354 0.374 0.330 Ti/Nb 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 Li+Na+K+Cs 4.961 0.000 0.000 2.000 0.000 3.000 0.000 1.961 Mg+Ca +Sr+Ba+Zn 40.562 48.523 47.523 45.523 45.523 42.523 45.523 43.562 1.7948 1.8340 1.8325 1.8195 1.8283 1.8102 1.8247 1.8134 vd 32.5 32.2 32.1 32.2 32.2 32.2 32.4 32.4 9g, F 0.5892 0.5912 0.5915 0.59 13 0.5912 0.5908 0.5906 0.5902 Intercept b(a=-0.00162) 0.64185 0.64337 0.64351 0.64352 0.64339 0.64302 0.64315 0.64269 Intercept b(a=-0.00275) 0.67857 0.67976 0.67978 0.67991 0.67978 0.67940 0.67976 0.67930 λ8〇[ηηι] 430 448 448 447 454 447 450 445 λ70[ητη] 392 400 400 397 402 397 400 398 λ5[ητη] 348 351 352 350 353 351 353 351 Test (2) Transmittance / Test (2) Front transmittance test (2) After λ7〇-test (2) Before λ,. 39-163467.doc 201245078 . [Table 6] Example 36 37 38 39 40 41 42 Si02 30.655 30.655 30.655 30.655 30.655 30.655 30.655 CaO 37.562 37.562 37.562 37.562 35.562 35.562 35.562 Nb205 8.718 10.679 8.718 10.718 8.718 8.718 10.718 Ti02 6.990 6.990 6.990 6.990 6.990 6.990 6.990 U20 Na20 K20 3.000 3.000 3.000 3.000 3.000 3.000 3.000 MgO SrO BaO 3.000 3.000 3.000 3.000 3.000 3.000 3.000 ZnO 3.961 1.961 3.961 1.961 1.961 B2O3 4.699 4.699 2.699 2.699 4.699 4.699 4.699 Y2〇3 La2〇3 Gd2〇3 Yb203 T&2〇 5 Bi203 W03 Te02 Zr02 5.364 3.403 3.403 3.403 3.403 5.403 3.403 ai2〇3 Sb203 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 6.000 6.000 6.000 6.000 6.000 6.000 6.000 Nb+Ti 15.708 17.669 15.708 17.708 15.708 15.708 17.708 (Nb+Ba)/(Ti+Ca) 0.263 0.307 0.263 0.308 0,275 0.275 0.322 Ti/Nb 0.802 0.655 0.802 0.652 0.802 0.802 0 .652 Li+Na+K+Cs 3.000 3.000 3.000 3.000 3.000 3.000 3.000 Mg+Ca+Sr+Ba+Zn 40.562 40.562 44.523 42.523 42.523 40.523 40.523 n<i 1.8130 1.8270 1.8156 1.8344 1.8114 1.8167 1,8305 Vd 32.0 30.8 32.0 30.6 31 , 9 31.8 30.5 6g, F 0.5911 0.5941 0.5921 0.5943 0.5915 0.5923 0.5960 Load distance b (a=-0.00162) 0.64302 0.64402 0.64400 0.64393 0.64327 0.64389 0.64544 Intercept b (a=-0.00275) 0.67918 0.67882 0.68016 0.67851 0.67931 0.67983 0.67991 λ8〇[ηηι ] 435 452 440 459 442 444 454 λ7〇[ητη] 396 402 397 405 398 397 402 λ5[ηιη] 351 354 350 353 352 351 354 Test (2) Transmittance / Test (2) Front transmittance test (2) After λ7〇_ test (b) before λ7〇•40-163467.doc 201245078 [Table 7] Comparative Example ABCD Si02 28,468 14.434 5.333 9.228 CaO 30.203 24.922 29.998 28.246 Nb205 4.998 3.453 Ti02 11.431 11.012 19.050 19.825 Li20 3,804 Na20 1.630 K20 1.609 MgO 10.026 SrO 3.057 BaO 1.045 1.550 ZnO 8.163 5.907 B2O3 4.890 18.140 31.068 28.441 y2〇3 1.268 0.877 La2〇3 1.555 3.850 3.688 2.309 Gd〗 〇3 Yb203 T&2〇5 Bi2〇3 wo3 0.581 Te02 Zr02 4.582 5.261 3.901 2.571 ai2o3 5.700 3.884 Sb203 0,011 0.012 0.011 0.011 Total 100.00 100.00 100.00 100.00 Ba+K 0.000 1.609 1.045 1.550 Nb+ Ti 16.428 14.464 19.050 19.825 (Nb+Ba)/(Ti+Ca) 0.120 0.096 0.021 0.032 Ti/Nb 2.287 3.189 - - Li+Na+K+Cs 0.000 7.043 0.000 0.000 Mg+Ca+Sr+Ba+Zn 38.366 34.947 36.950 32.853 nd 1.8171 1.8061 1.8173 1.7884 Vd 32.1 34.2 32,6 33.2 eg,F 0.5944 0.5877 0.5950 0.5955 Intercept b(a=-0.00162) 0.64635 0.64309 0.64778 0.64924 Intercept b(a=-0.00275) 0.68263 0.68174 0.68462 0.68676 X8〇[nm ] 461 454 478 474 λ7〇[ηπι1 408 402 422 418 λ5[ΠΠ1] 359 349 363 363 Test (2) Transmittance / Test (2) Front transmittance 0.000 0.111 0.998 1.000 Test (2) After 7 〇 · Test (b) Pre-λ70 - - 1.0 2.0 •41 · 163467.doc 201245078 [Table 8] Example 43 44 45 46 47 48 49 Si02 36.655 36.655 36.655 33.655 33.655 33.655 33.655 CaO 37.562 37.562 3 7.562 37.562 37,562 37.562 40.562 Nb2〇5 7.718 7.204 7.204 7.204 7.204 7.204 7.204 Ti02 6.990 7.504 6.990 6.990 6.990 6.990 6.990 BaO Li2〇3.000 Na20 3.000 K20 MgO 3.000 SrO ZnO 1.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 4.699 4.699 4.699 4.699 4.699 y2 〇3 LS2〇3 0.514 0.514 0.514 0.514 Gd2〇3 Yb203 Τ^2〇5 Bi2〇3 W03 Zr02 4.403 4.403 4.917 4.403 4.403 4.403 4.403 ai2〇3 Sb2〇3 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ti 14.708 14.708 14.194 14.194 14.194 14.194 14.194 (Nb+Ba)/(Ti+Ca) 0.173 0.160 0.162 0.162 0.162 0.162 0.151 Ti/Nb 0.906 1.042 0.970 0.970 0.970 0.970 0.970 Li +Na+K+Cs 0.000 0.000 0.000 3.000 3.000 0.000 0.000 Mg+Ca 十 Sr+Ba+Zn 39.523 39.523 39.523 39.523 39.523 42.523 42.523 n<i 1.8047 1.8024 1.8006 1.8102 1.7996 1.8099 1.8102 Vd 32.6 32.7 33.0 33.1 33.1 33.1 33.2 〇g, F 0.5905 0.5909 0.5909 0.5891 0.5889 0.5892 0.5890 Intercept b (a=*0.00162) 0.64333 0.64392 0.64439 0.64277 0.64261 0.64284 0.64281 Carrying distance b (a=>0.00275) 0.68017 0.68087 0.68168 0.68017 0.68002 0.68025 0.68033 λ8〇[ηηι] 428 422 431 434 431 440 434 λ7〇[ηηι] 392 391 394 395 393 397 395 λ5[ηηι] 355 355 354 352 351 354 353 Test (2) Transmittance / Test (2) Pre-transmission test (2) after λ70-test (2) before λ70 163467.doc -42-^ 201245078 [Table 9] Example 50 51 52 53 54 55 56 57 Si02 33.655 33.655 33.655 36.655 36.655 36.655 33.655 33.655 CaO 37.562 37.562 37.562 37.562 37.562 37.562 37.562 37.562 Nb205 7.204 7.204 7.204 7.718 8.718 9.218 10.204 7.204 Ti02 6.990 6.990 6.990 8.490 6,990 6.990 6.990 6.990 BaO Li20 Na2〇K20 MgO SrO 3.000 ZnO 1.961 4.961 1.961 1.961 1.961 1.961 1.961 1.961 B2O3 4.699 4.699 7.699 4.699 4.699 4.699 4.699 4.699 Y2〇3 L&2〇3 0.514 0.514 0.514 0.514 0.514 Gd203 Yb203 Ta2〇5 Bi2〇3 W03 3.000 Zr02 4.403 4.403 4.403 2.903 3.403 2.903 4.403 4.403 AI2O3 Sb203 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 Ba+ K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nb+Ti 14.194 14.194 14.194 16.208 15.708 16.208 17.194 14.194 (Nb+Ba)/(Ti+Ca) 0.162 0.162 0.162 0.168 0,196 0.207 0.229 0.162 Ti/Nb 0.970 0.970 0.970 1.100 0.802 0.758 0.685 0.970 Li+Na+K+Cs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mg+Ca+Sri-Ba+Zn 42.523 42.523 39.523 39.523 39.523 39.523 39.523 39.523 na 1.8096 1.8139 1.8018 1.8068 1.8114 1.8150 1.84166 1.82164 Vd 33.2 32.8 33.2 31.9 31.9 31.6 30.5 31.8 6g, F 0.5890 0.5895 0.5893 0.5934 0.5919 0.5945 0.5931 0.5916 Wearing distance b (a=-0.00162) 0.64279 0.64272 0.64309 0.64511 0.64366 0.64569 0.64259 0.64315 Carrying distance b (a=-0.00275) 0.68031 0.67979 0.68061 0.68115 0.679 71 0.68140 0.67706 0.67908 λβ〇[ηηι] 433 443 436 463 445 450 440 440 λ7〇[ητη] 396 399 397 406 400 403 398 398 λ5[ηπι] 353 354 354 358 357 357 357 357 Test (2) Transmittance / Test (b) pre-transmission rate 0.996 0.999 test (2) after λ7 〇-test (b) before λ70 2.5 1.5 as shown in Table 1 to Table 9, part of the vd$ in the optical glass of the embodiment of the present invention The dispersion ratio (0g, F) is (-0.00275xvd+0.68125) or less, -43-163467.doc 201245078 is more detailed and S is (_0.00275xvd+0.67991) or less. Also, vd>31. The P-part dispersion ratio (Gg, F) is (_0 0 〇 162 x vd + 〇 64622) or less, and is more detailed, and is (-〇.〇〇162xvd+〇 64476). On the other hand, the partial dispersion ratio (0g, F) of the optical glass of the embodiment of the present invention is (_〇 〇〇 162xvd + 638.63822) or more ‘more specifically, it is (-0.00162xvd+0.64094) or more. That is, the relationship between the partial dispersion ratio (eg, F) and the Abbe number (Vd) of the glass of the embodiment of the present application is as shown in Fig. 2 (first optical glass) and Fig. 3 (second optical glass). Therefore, it is known that the partial dispersion ratio (eg, f) is within the expected range. On the other hand, the glass of the comparative example (N〇 A to No. D) of the present invention is

Vd>31 ’ 且部分分散比(eg, F)超過(-0.00i62xvd+0.64622)。 因此’得知本發明之實施例之光學玻璃與比較例之玻璃相 比,於與阿貝數(Vd)之關係式中部分分散比(0匕F)較小。 又,本發明之實施例之光學玻璃之折射率(nd)均為丨7〇 以上,更詳細而言為1.78以上,與此同時該折射率(nd)為 2.20以下,更詳細而言為185以下,處於所期望之範圍 内。 又,本發明之實施例之光學玻璃之阿貝數(Vd)均為2〇以 上,更詳細而言為30以上,與此同時該阿貝數(v<j)為4〇以 下’更詳細而言為34以下,處於所期望之範圍内。另一方 面’本發明之比較例(No.B)之玻璃之Vd超過34。因此,得 知本發明之實施例之光學玻璃與比較例(N〇 B)之玻璃相 比,阿貝數(vd)較小。 又,本發明之實施例之光學玻璃之用再加熱試驗(二)後 J63467.doc -44· 201245078 之試驗片td線之透過率除以再加熱試驗前之試驗片之d線 之透過率所得的值均為〇95以上,更詳細而言為Ο.”以 上,處於所期望之範圍内。&,本發明之實施例之光學玻 璃之再加熱試驗(二)前後之試驗片之透過率之差為2〇 nm以下,更詳細而言為〗5 nm以下,處於所期望之範圍 内。另一方面,本發明之比較例(N〇 A、N〇B)之玻璃之用 再加熱試驗(二)後之試驗片之d線之透過率除以再加熱試驗 前之試驗片之d線之透過率所得的值未達〇.95,於再加熱 試驗(二)後,相對於可見光之所有波長而透過率均未達 70%。因此,得知本發明之實施例之光學玻璃與比較例 (No.A、No.B)之玻璃相比,不易產生由再加熱引起之著色 或失透。 又’本發明之實施例之光學玻璃之kQ(透過率7〇%時之 波長)均為500 nm以下,更詳細而言為407 nm以下。又, 本發明之實施例之光學玻璃之λ〆透過率5%時之波長)均為 420 nm以下,更詳細而言為359 nm以下。又,本發明之實 施例之光學玻璃之λ8〇(透過率80°/。時之波長)均為560 nm以 下’更洋細而言為463 nm以下。因此,得知本發明之實施 例之光學玻璃相對於可見光之透過率較高、且不易著色。 因此,得知本發明之實施例之光學玻璃之折射率(…)及 阿貝數(vd)處於所期望之範圍内,並且相對於可見光之透 過率較高’且色像差較小,且具有較高之擠壓成形性。 以上,於例示之目的下詳細說明了本發明,但望理解的 是’本實施例之目的僅為例示,各從業人員可於不脫離本 163467.doc -45- 201245078 發明之思想及範圍之情況下施加諸多改變。 【圖式簡單說明】 圖1係表示部分分散比0g,F)為縱軸且阿貝數(Vd)為橫軸 之正交座標中所表示之正規線之圖。 圖2係表示關於本申請案之第1光學玻璃之實施例之部分 分散比(Gg,F)與阿貝數(vd)之關係之圖。 圖3係表示關於本申請案之第2光學玻璃之實施例之部分 分散比(0g,F)與阿貝數(Vd)之關係之圖。 163467.doc 46Vd > 31 ' and the partial dispersion ratio (eg, F) exceeds (-0.00i62xvd + 0.64622). Therefore, it has been found that the optical glass of the embodiment of the present invention has a smaller partial dispersion ratio (0 匕 F) in the relational expression with the Abbe number (Vd) than the glass of the comparative example. Further, the refractive index (nd) of the optical glass of the embodiment of the present invention is 丨7〇 or more, more specifically 1.78 or more, and at the same time, the refractive index (nd) is 2.20 or less, and more specifically 185. Below, it is within the desired range. Further, the Abbe number (Vd) of the optical glass of the embodiment of the present invention is 2 Å or more, and more specifically 30 or more, and at the same time, the Abbe number (v < j) is 4 Å or less'. In the case of 34 or less, it is within the desired range. On the other hand, the glass of Comparative Example (No. B) of the present invention has a Vd exceeding 34. Therefore, it is understood that the optical glass of the embodiment of the present invention has a smaller Abbe number (vd) than the glass of Comparative Example (N〇B). Moreover, the transmittance of the test piece td line of the test piece of the optical glass used in the reheating test of the optical glass of the embodiment of the present invention (2) is divided by the transmittance of the d line of the test piece before the reheating test. The values are all above 95, more specifically Ο." above, within the desired range. &, the transmittance of the test piece before and after the reheating test (2) of the optical glass of the embodiment of the present invention The difference is 2 〇 nm or less, more specifically 〖5 nm or less, within a desired range. On the other hand, the glass of the comparative example (N〇A, N〇B) of the present invention is reheated. (2) The transmittance of the d-line of the subsequent test piece divided by the transmittance of the d-line of the test piece before the reheating test is less than 9595, after the reheating test (2), relative to visible light The transmittance of all the wavelengths was less than 70%. Therefore, it was found that the optical glass of the embodiment of the present invention is less likely to cause coloring or loss due to reheating than the glass of the comparative example (No. A, No. B). Further, the kQ of the optical glass of the embodiment of the present invention (the transmittance is 7〇%) The lengths are all below 500 nm, more specifically 407 nm or less. Further, the wavelength of λ 〆 transmittance of the optical glass of the embodiment of the present invention is 420 nm or less, and more specifically 359. Further, the λ8 光学 (wavelength at a transmittance of 80°/.) of the optical glass of the embodiment of the present invention is 560 nm or less, and is 463 nm or less in more detail. Therefore, the present invention is known. The optical glass of the embodiment has a high transmittance with respect to visible light and is not easily colored. Therefore, it is known that the refractive index (...) and the Abbe number (vd) of the optical glass of the embodiment of the present invention are within a desired range. Further, the transmittance is higher with respect to visible light, and the chromatic aberration is small, and the extrusion property is high. The present invention has been described in detail above for the purpose of illustration, but it is understood that the present embodiment is The purpose is only for the sake of illustration, and various practitioners can apply many changes without departing from the idea and scope of the invention of 163467.doc -45-201245078. [Simplified illustration] Figure 1 shows the partial dispersion ratio 0g, F) The vertical axis and the Abbe number (Vd) are the horizontal axis Fig. 2 is a view showing the relationship between the partial dispersion ratio (Gg, F) and the Abbe number (vd) in the embodiment of the first optical glass of the present application. 3 is a diagram showing the relationship between the partial dispersion ratio (0g, F) and the Abbe number (Vd) of the embodiment of the second optical glass of the present application. 163467.doc 46

Claims (1)

201245078 七、申請專利範圍: 1. 一種光學玻璃,其係相對於氧化物換算組成之玻璃總物 質量,以莫耳%計,含有Si02成分20.0%以上60.0%以 下、及CaO成分多於20.0%且50.0%以下,Nb205成分之 含量為30.0%以下’於部分分散比(0g,F)與阿貝數(vd)之 間’於vd$31之範圍中滿足(-〇.〇〇l62><vd+〇.63822)s(0g F) $ (-0.00275 xvd+0.68 125)之關係,於 vd>3 1 之範圍中滿 足(-0.00162xvd+0.63822)$(eg,F)S(-〇.〇〇i62xvd+0.64622) 之關係。 2. 如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,BaO成分及K2〇成分之含量之和多於〇% 且20.0%以下。 3·如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計,含有Ti〇2成分〇〜2〇 〇%。 4·如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計,含有Ti〇2成分〇〜1〇〇〇/。。 5. 如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,NhO5成分及Ti〇2成分之含量之和為 10.0%以上40.0%以下。 6. 如請求項丨之光學玻璃,其中相對於氧化物換算组成之 玻璃總物質量,以莫耳%計,含有Ba〇成分〇〜25〇%。 7. 如4求項1之光學玻璃,其中相對於氧化物換算电成之 玻璃總物質量,以莫耳%計,含有Ba〇成分〇〜2〇〇%。 8·如請求们之光學玻璃,其中氧化物換算組成之莫耳比 163467.doc 201245078 (Nb2〇5+Ba〇)/(Ti02+CaO)為 0.100 以上。 9.如請求们之光學玻璃’其中氧化物換算組成 比 Ti〇2/Nb2〇5為 5·〇〇以下。 A如請求们之光學玻璃,其中氧化物換算組成之莫耳比 丁1〇2/灿2〇5為3 〇〇以下。 U.如請求項1之光學玻璃’其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計, Li2〇成分〇〜25·〇%及/或 Na2〇成分〇〜25.0%及/或 κ2〇成分〇〜25.0%及/或 Cs2〇成分 〇〜1〇.〇〇/0。 12.如請求項丨之光學玻璃,其 玻璃她物哲县 ”目對於氧化物換算組成之 玻璃總物質量,RkO成分(式 K、T &為選自由Li、Na、 K、Cs所組成之群中之丨種以上 11 L咕+、 )吴耳和為30.0〇/〇以下〇 13·如请求項丨之光學玻璃, 玻璃Μ哲县“ 氧化物換算組成之 圾磲總物質量,以莫耳%計, Mg〇成分0〜20.0%及/或 Sr〇成分0〜20.0°/。及/或 ZnO成分 〇〜30 〇〇/。。 14.如請求項丨之光學玻璃,其 玻璃總物質量’RO成分(式:對二氧:㈣ &、Ba、Zn所組成之群中之 為選自由lea、 以上60·〇%以下。 以上)之莫耳和為20·0°/〇 15.如請求項1之光學玻璃 其中相對於敦化物換算組成之 I63467.doc 201245078 玻璃總物質量,以莫耳%計, P205成分〇〜30.0%及/或 B2O3成分〇〜40.0%及/或 Ge02成分0-20.0%及/或 • Υ2〇3成分0〜15.0%及/或 • La2〇3成分〇〜15.0%及/或 Gd203成分0〜15.0%及/或 Yb203成分0〜15.0%及/或 Ta2〇5成分 〇~15.0%及/或 Bi2〇3成分0〜15.0%及/或 W03成分〇〜20.0%及/或 Te02成分〇〜30.0%及/或 Zr〇2成分0~15.0%及/或 a12〇3成分0〜15.0%及/或 Sb2〇3成分 0〜1.0% » 16.如請求項丨之光學玻璃,其具有17〇以上22〇以下之折射 率(nd),且具有20以上40以下之阿貝數(vd)。 如凊求項1之光學玻璃,其中分光透過率顯示之波長 . (λ7°)為 5〇〇 nm以下。 • 青求項1之光學玻璃,其中用下述再加熱試驗(二)後之 °式驗片之波長587.56 nm之光線(d線)之透過率除以上述 再加熱試驗前之試驗片之d線之透過率所得的值成為0.95 以上, [再加熱試驗(二):將試驗片15 mmxl5 mm><30 mm再 163467.doc 201245078 加熱,自室溫開始歷時1 50分鐘升溫至較各試樣之轉移 溫度(Tg)高80°C之溫度’於上述較光學玻璃之玻璃轉移 溫度(Tg)高80。〇之溫度下保溫30分鐘,其後自然冷卻至 常溫為止,將試驗片之相對向之2面研磨成厚度mm 後,目測觀察]。 19·如請求項1之光學玻璃,其中下述再加熱試驗(二)前之試 驗片之透過率成為70%之波長即λ7〇與上述再加熱試驗後 之武驗片之人7〇之差為20ηπι以下, [再加熱試驗(二).將試驗片1 5 mmx 15 mm><30 mm再 加熱’自室溫開始歷時150分鐘升溫至較各試樣之轉移 溫度(Tg)高80°C之溫度’於上述較光學玻璃之玻璃轉移 inn·度(Tg)南80(3之溫度下保溫30分鐘,其後自然冷卻至 常溫為止,將試驗片之相對向之2面研磨成厚度1〇 mm 後,目測觀察]。 20. —種研磨加工用及/或精密擠壓成形用之預成形體,其包 含如請求項1至19項中任一項之光學玻璃。 21. —種光學元件,其係研削及/或研磨如請求項丨至19項中 任一項之光學玻璃而成。 22. —種光學元件,其係精密擠壓成形如請求項1至19項中 任一項之光學玻璃而成》 -4- 163467.doc S201245078 VII. Patent application scope: 1. An optical glass which is based on the total mass of the glass in terms of oxide conversion, containing 20.0% or more and 60.0% or less of the SiO2 component and more than 20.0% of the CaO component. And 50.0% or less, the content of the Nb205 component is 30.0% or less 'between the partial dispersion ratio (0g, F) and the Abbe number (vd) in the range of vd$31 (-〇.〇〇l62>< Vd+〇.63822)s(0g F) $ (-0.00275 xvd+0.68 125), which satisfies (-0.00162xvd+0.63822)$(eg,F)S(-〇.〇 in the range of vd>3 1 〇i62xvd+0.64622) relationship. 2. The optical glass of claim 1, wherein the sum of the contents of the BaO component and the K2 bismuth component is more than 〇% and 20.0% or less with respect to the total mass of the glass of the oxide-converted composition. 3. The optical glass according to claim 1, wherein the total mass of the glass relative to the oxide-converted composition is 〇% to 2% 〇% in terms of mol%. 4. The optical glass of the claim ,, wherein the total mass of the glass relative to the oxide-converted composition contains, in % by mole, a Ti〇2 component 〇~1〇〇〇/. . 5. The optical glass of the claim ,, wherein the sum of the contents of the NhO5 component and the Ti〇2 component is 10.0% or more and 40.0% or less with respect to the total mass of the glass of the oxide conversion composition. 6. The optical glass of claim 1, wherein the mass of the glass relative to the composition of the oxide is 5% to 25% by weight based on the mole % of the Ba. 7. The optical glass of claim 1, wherein the total mass of the glass converted to the oxide is 含有% to 2% by mass based on the mole %. 8. The optical glass of the request, wherein the molar ratio of the molar ratio is 163467.doc 201245078 (Nb2〇5+Ba〇)/(Ti02+CaO) is 0.100 or more. 9. The optical glass of the requester has an oxide conversion composition ratio of Ti 〇 2 / Nb 2 〇 5 of 5 〇〇 or less. A. For example, the optical glass of the requester, wherein the oxide conversion composition of the molar ratio of 1 〇 2 / 灿 2 〇 5 is less than 3 。. U. The optical glass of claim 1, wherein the mass of the glass relative to the composition of the oxide is in terms of mol%, Li2〇 composition 〇~25·〇% and/or Na2〇 composition 〇~25.0% and/or Or κ2〇 composition 〇~25.0% and/or Cs2〇 composition 〇~1〇.〇〇/0. 12. For the optical glass of the request item, the glass of her material is the total mass of the glass composed of oxides, and the RkO component (formula K, T & is selected from the group consisting of Li, Na, K, Cs). In the group, the above species are 11 L咕+, ) Wuer and 30.0〇/〇 below 〇13·If the optical glass of the request item is ,, the glass Μ哲县Mohr%, Mg〇 component 0~20.0% and/or Sr〇 component 0~20.0°/. And / or ZnO composition 〇 ~ 30 〇〇 /. . 14. The optical glass of the claim ,, wherein the glass total mass 'RO component (formula: p-diox: (tetra) &, Ba, Zn is selected from the group consisting of lea and above 60. The above is the temperature of 20·0°/〇15. The optical glass of claim 1 is composed of I63467.doc 201245078. The total mass of the glass, in mol%, P205 composition 〇~30.0 % and / or B2O3 components 〇 ~ 40.0% and / or Ge02 components 0 - 20.0% and / or • Υ 2 〇 3 components 0 ~ 15.0% and / or • La2 〇 3 components 〇 ~ 15.0% and / or Gd203 components 0 ~ 15.0% and/or Yb203 component 0~15.0% and/or Ta2〇5 component 〇~15.0% and/or Bi2〇3 component 0~15.0% and/or W03 component 〇~20.0% and/or Te02 component 〇~30.0 % and/or Zr〇2 component 0~15.0% and/or a12〇3 component 0~15.0% and/or Sb2〇3 component 0~1.0% » 16. As claimed in the optical glass, it has 17〇 or more A refractive index (nd) of 22 Å or less and an Abbe number (vd) of 20 or more and 40 or less. For example, the optical glass of item 1 wherein the wavelength of the spectral transmittance is displayed (λ7°) is 5 〇〇 nm or less. • The optical glass of claim 1, wherein the transmittance of the light at the wavelength of 587.56 nm (d line) of the ° test piece after the reheat test (2) described below is divided by the test piece before the above reheat test. The value obtained by the transmittance of the line is 0.95 or more. [Reheating test (2): The test piece is heated at 15 mm x 15 mm>< 30 mm and then 163467.doc 201245078, and the temperature is raised from room temperature for 1 to 50 minutes to each sample. The temperature at which the transfer temperature (Tg) is 80 ° C higher is 80 higher than the glass transition temperature (Tg) of the above optical glass. The mixture was kept at a temperature of 30 minutes, and then naturally cooled to room temperature. The opposite sides of the test piece were ground to a thickness of mm, and visual observation was carried out. 19. The optical glass of claim 1, wherein the transmittance of the test piece before the reheating test (2) is 70% of the wavelength, that is, the difference between the λ7 〇 and the person after the reheating test. 20 ππι or less, [reheat test (2). Test piece 1 5 mm x 15 mm>< 30 mm reheating 'temperature rise from room temperature for 150 minutes to 80 ° C higher than the transfer temperature (Tg) of each sample The temperature 'in the above-mentioned glass of the optical glass is transferred to the south of the optical glass (Tg) for 30 minutes at a temperature of 3, and then naturally cooled to normal temperature, and the opposite sides of the test piece are ground to a thickness of 1 〇. After mm, visual observation] 20. A preform for grinding and/or precision extrusion comprising the optical glass of any one of claims 1 to 19. 21. , which is obtained by grinding and/or grinding the optical glass of any one of the items 19 to 22. 22. An optical element which is precisely extruded as claimed in any one of claims 1 to 19. Optical glass" -4- 163467.doc S
TW101111150A 2011-03-29 2012-03-29 Optical glass, preform, and optical element TW201245078A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073357A JP2012206892A (en) 2011-03-29 2011-03-29 Optical glass, perform, and optical device
JP2011073356A JP2012206891A (en) 2011-03-29 2011-03-29 Optical glass, perform, and optical device

Publications (1)

Publication Number Publication Date
TW201245078A true TW201245078A (en) 2012-11-16

Family

ID=46931136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111150A TW201245078A (en) 2011-03-29 2012-03-29 Optical glass, preform, and optical element

Country Status (3)

Country Link
CN (1) CN103476722A (en)
TW (1) TW201245078A (en)
WO (1) WO2012133420A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321312B1 (en) * 2016-07-28 2018-05-09 旭硝子株式会社 Optical glass and optical components
CN106365440A (en) * 2016-09-05 2017-02-01 成都光明光电股份有限公司 Dense lanthanum flint glass
CN107555784B (en) * 2017-08-04 2020-06-23 苏州端景光电仪器有限公司 Cesium-containing optical glass and preparation method and application thereof
CN109956666B (en) * 2017-12-22 2023-01-06 Hoya株式会社 Optical glass and optical element
CN113165954A (en) * 2018-11-30 2021-07-23 日本光硝子株式会社 Optical glass, optical element, optical system, interchangeable lens, and optical device
CN111892298A (en) * 2020-09-08 2020-11-06 成都光明光电股份有限公司 Optical glass, optical preform and optical element
CN111977974A (en) * 2020-09-08 2020-11-24 成都光明光电股份有限公司 Optical glass, optical preform, optical element and optical instrument
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026605C2 (en) * 1980-07-14 1983-07-07 Schott Glaswerke, 6500 Mainz Acid-proof, hydrolytically stable optical and ophthalmic borosilicate glass of low density
BR8605356A (en) * 1985-11-29 1987-08-04 Corning Glass Works GLASS FOR OPTICAL AND / OR OPHTHALMIC APPLICATIONS
FR2590888A1 (en) * 1985-11-29 1987-06-05 Corning Glass Works LOW-DENSITY, HIGH-REFRACTIVE LOW-DISPERSION OPHTHALMIC LENSES
JP5545917B2 (en) * 2008-01-31 2014-07-09 株式会社オハラ Optical glass
JP5357429B2 (en) * 2008-01-31 2013-12-04 Hoya株式会社 Optical glass, glass material for press molding, optical element and method for producing the same, and method for producing optical element blank
CN102471130A (en) * 2009-08-07 2012-05-23 株式会社小原 Optical glass

Also Published As

Publication number Publication date
CN103476722A (en) 2013-12-25
WO2012133420A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
TWI637929B (en) Optical glass, optical element and preform
TW201245078A (en) Optical glass, preform, and optical element
TWI564263B (en) Optical glass, optical elements and preforms
TW201223907A (en) Optical glass, preform material, and optical element
TWI789340B (en) Optical glass, preforms and optical components
TW200831428A (en) Optical glass
KR20160038780A (en) Glass, glass material for press molding, optical element blank, and optical element
JP7226927B2 (en) Glasses, optical glasses and optical elements
TW201733941A (en) Optical glass, preform and optical element
TW201139319A (en) Optical glass, preform and optical element
JP2023017903A (en) Optical glass and optical element
JP6046376B2 (en) Optical glass
JP6804264B2 (en) Optical glass, preforms and optics
TW202113397A (en) Optical glass and optical element in which the optical glass has a desired optical constant and excellent stability upon reheating
JP6669663B2 (en) Optical glass, optical element and optical glass material
JP2016074566A (en) Optical glass, lens preform and optical element
TW201731785A (en) Optical glass, preform material and optical element
JP2017088485A (en) Optical glass, preform and optical element
JP2017088486A (en) Optical glass, preform and optical element
JP2014015384A (en) Optical glass, preform and optical element
TW201249769A (en) Optical glass, preform and optical element
JP6161352B2 (en) Optical glass, lens preform and optical element
TW201815713A (en) Optical glass, preform material and optical element
JP2014111521A (en) Optical glass, preform, and optical element
JP2014015383A (en) Optical glass, preform and optical element