TW201249769A - Optical glass, preform and optical element - Google Patents

Optical glass, preform and optical element Download PDF

Info

Publication number
TW201249769A
TW201249769A TW101111151A TW101111151A TW201249769A TW 201249769 A TW201249769 A TW 201249769A TW 101111151 A TW101111151 A TW 101111151A TW 101111151 A TW101111151 A TW 101111151A TW 201249769 A TW201249769 A TW 201249769A
Authority
TW
Taiwan
Prior art keywords
component
glass
optical glass
less
optical
Prior art date
Application number
TW101111151A
Other languages
Chinese (zh)
Inventor
Tetsuya Tsuda
Original Assignee
Ohara Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011073359A external-priority patent/JP2012206894A/en
Priority claimed from JP2011073358A external-priority patent/JP2012206893A/en
Application filed by Ohara Kk filed Critical Ohara Kk
Publication of TW201249769A publication Critical patent/TW201249769A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Abstract

Provided are: an optical glass which has improved transparency with respect to visible light and has small Abbe number (vd) and low partial dispersion ratio (θg, F), while having a refractive index (nd) within a desired range; a preform using the optical glass; and an optical element using the optical glass. This optical glass contains, in mol% relative to the total amount of glass components in the composition in terms of oxides, 10.0-60.0% (inclusive) of an SiO2 component, more than 0% but 25.0% or less of a BaO component, more than 0% but 15.0% or less of an La2O3 component, and more than 0% but 20.0% or less of an Nb2O5 component. The partial dispersion ratio (θg, F) and the Abbe number (vd) of this optical glass satisfy (-0.00162 vd + 0.63822) = (θg, F) = (-0.00275 vd + 0.68125) within the range of vd = 31, while satisfying (-0.00162 vd + 0.63822) = (θg, F) = (-0.00162 vd + 0.64622) within the range of vd > 31.

Description

201249769 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學玻璃、預成形體及光學元件。 【先前技術】 數位相機或攝像機等光學系統包含存在大小之分、稱作 像差之模糊。該像差分類為單色像差與色像差,尤其,色 像差較強地依存於光學系統中所使用之透鏡之材料特性。 通常,色像差係組合低分散之凸透鏡與高分散之凹透鏡 進行修正,但於該組合中,僅可進行紅色區域與綠色區域 之像差之修正,藍色區域之像差殘留。將該無法完全除去 之藍色區域之像差稱作二次光譜。為了修正二次光譜,需 進行考慮到藍色區域之g線(435.835 nm)之動向之光學設 計。此時’作為光學設計中所著眼之光學特性之指標,使 用部分分散比(eg,f)。於上述組合低分散之透鏡與高分 散之透鏡之光學系統中,於低分散側之透鏡中使用部分分 散比(eg,F)較大之光學材料,於高分散側之透鏡中使用 部分分散比(eg,f)較小之光學材料,藉此良好地修正二 次光譜。 部分分散比(eg,f)係藉由下式(!)表示。 0g > F = (ng-nF)/(nF-nc)......(1) 對於光學玻璃’於表示短波長域之部分分散性之部分分 散比㈣,F)與阿貝數㈤之間,存在大致直線性之關係。 表示該關係之直線係在於縱軸採用部分分散比, F)、 於橫軸採用阿貝數(vd)之正交座標上,以連接描繪^7與 163468.doc 201249769 PBM2之部分分散比及阿貝數之2點之直線表示,稱作正規 線(參照圖1)。成為正規線之基準之標準玻璃根據各光學玻 璃製造商而不同,但各公司均以大致相同之斜度與截距進 行定義。(NSL7與PBM2為股份有限公司OHARA公司製造 之光學玻璃,PBM2之阿貝數(Vd)為36.3,部分分散比(0g ’ F)為0.5828 ’ NSL7之阿貝數(Vd)為60.5,部分分散比(eg, F)為 0.5436) 此處’作為具有高分散之玻璃’例如已知如專利文獻 1〜3中所示之光學玻璃。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2009-179522號公報 [專利文獻2]日本專利特開2009-2031 ;34號公報 [專利文獻3]曰本專利特開2004-161598號公報 【發明内容】 [發明所欲解決之問題] 然而,專利文獻1〜3中所揭示之玻璃之部分分散比並不 小’對於用作修正上述二次光譜之透鏡並不充分。又,專 利文獻1~3中所揭示之玻璃中’相對於可見光之透明性並 不高,尤其,對於用於透過可見光之用途而言並不充分。 即,尋求一種阿貝數(vd)較小且為高分散、部分分散比 (0g,F)較小、並且相對於可見光之透明性較高之光學玻 璃。 本發明係鑒於上述問題而成者,其目的在於獲得一種折 163468.doc 201249769 射率(nd)處於所期望之範圍内、並且阿貝數(Vd)較小、部分 分散比(eg ’ f)較小、且相對於可見光之透明性提高之光 學玻璃,以及使用該光學玻璃之預成形體及光學元件。 [解決問題之技術手段] 本發明者等人為解決上述課題反覆進行銳意試驗研究, 結果發現,藉由併用BaO成分、La203成分及Nb205成分, 並將該等之含量設於特定之範圍内,而使玻璃之部分分散 比(eg ’ F)與阿貝數(vd)之間具有所期望之關係,最終完成 本發明。 與此同時,發現藉由併用La203成分及Nb205成分,並將 該等之含量設於特定之範圍内,可實現玻璃之高折射率 化。 又,發現藉由併用Si02成分、BaO成分及La203成分,並 將該等之含量設於特定之範圍内,可提高玻璃之穩定性, 並且玻璃之著色減輕。 又’亦發現藉由併用Si02成分、BaO成分、La203成分及 Nb2〇5成分’並將該等之含量設於特定之範圍内,而於再 加熱玻璃時不易產生著色或失透。 具體而言,本發明係提供如下所示者。 (1)一種光學玻璃,其係相對於氧化物換算組成之玻璃 總物質量’以莫耳%計,含有Si02成分10.0%以上60.0%以 下、BaO成分多於〇%且25.0%以下、La203成分多於〇%且 15.0%以下、及Nb2〇5成分多於0%且20.0%以下,於部分分 散比(eg,F)與阿貝數(vd)之間,於vd $ 3 1之範圍中滿足 163468.doc 201249769 (-0.00162xvd+0.63822)^(9g . F)^ (.〇.〇〇275xvd+0.68 125) 之關係,於vd>31之範圍中滿足(_〇.〇〇i62xvd+0.63822)< (9g,F)S(-0.00162xvd+0.64622)之關係。 (2) 如(1)之光學玻璃,其中相對於氧化物換算組成之玻 璃總物質量,以莫耳%計,含有Ba0成分多於〇%且2〇〇% 以下、及Nb205成分多於〇%且未達19 5〇/〇。 (3) 如(1)或(2)之光學玻璃,其中相對於氧化物換算組成 之玻璃總物質量,以莫耳%計,Li"成分之含量為3〇.〇% 以下。 (4) 如(1)至(3)項中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總物質量,以莫耳%計,含有U2〇成分 多於0%且30.0%以下。 (5) 如(1)至(4)項中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總物質量,以莫耳%計,Ti〇2成分之含 量未達20.0%。 (6) 如(1)至(5)項中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總物質量,以莫耳%計,Ti〇2成分之含 量為17.5%以下。 (7) 如(1)至(6)項中任一項之光學玻璃,其中氧化物換算 組成之莫耳比(Ba〇+La203)/(Nb205+Ti02)為 〇.〇5 以上。 (8) 如(1)至(7)項中任一項之光學玻璃,其中氧化物換算 組成之莫耳比Ti02/Nb205為5.0以下。 (9) 如(1)至(8)項中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總物質量,以莫耳°/。計,B2〇3成分之含 163468.doc 201249769 量為40.0%以下。 (10) 如(1)至(9)項中任一項之光學玻璃,其中相對於氧化 物換算組成之玻璃總物質量,以莫耳%計,B2〇3成分之含 量為20.0%以下。 (11) 如(1)至(10)項中任一項之光學玻璃,其中氧化物換 算組成之莫耳比Nb205/(Si02+B2〇3)為0.070以上。 (12) 如(1)至(11)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳%計,201249769 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to an optical glass, a preform, and an optical element. [Prior Art] An optical system such as a digital camera or a video camera includes blurs of a size, called aberration. The aberration is classified into monochromatic aberration and chromatic aberration, and in particular, the chromatic aberration strongly depends on the material properties of the lens used in the optical system. Generally, the chromatic aberration is combined with a low-dispersion convex lens and a highly-dispersed concave lens, but in this combination, only the aberration of the red region and the green region can be corrected, and the aberration of the blue region remains. The aberration of the blue region which cannot be completely removed is referred to as a secondary spectrum. In order to correct the secondary spectrum, an optical design that takes into account the motion of the g-line (435.835 nm) of the blue region is required. At this time, as an index of the optical characteristics of the optical design, the partial dispersion ratio (eg, f) was used. In the above optical system combining a low-dispersion lens and a highly-dispersed lens, an optical material having a large partial dispersion ratio (eg, F) is used in a lens on a low dispersion side, and a partial dispersion ratio is used in a lens on a high dispersion side. (eg, f) a smaller optical material whereby the secondary spectrum is well corrected. The partial dispersion ratio (eg, f) is represented by the following formula (!). 0g > F = (ng-nF)/(nF-nc) (1) For the optical glass 'partial dispersion ratio (4) indicating partial dispersion in the short wavelength region, F) and Abbe number (5) There is a general linear relationship between them. The straight line indicating the relationship is based on the partial dispersion ratio of the vertical axis, F), and the orthogonal coordinates of the Abbe number (vd) on the horizontal axis to connect and depict the partial dispersion ratio of the PMA2 and the 163468.doc 201249769 PBM2. A straight line of 2 points of the number of shells is called a regular line (refer to Figure 1). The standard glass that becomes the basis for the regular line varies according to each optical glass manufacturer, but each company defines it with approximately the same slope and intercept. (NSL7 and PBM2 are optical glass manufactured by OHARA Co., Ltd., the Abbe number (Vd) of PBM2 is 36.3, and the partial dispersion ratio (0g 'F) is 0.5828'. The Abbe number (Vd) of NSL7 is 60.5, partially dispersed. The ratio (eg, F) is 0.5436. Here, 'as a glass having high dispersion', for example, optical glasses as disclosed in Patent Documents 1 to 3 are known. [Prior Art Document] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2009-179522 [Patent Document 2] Japanese Patent Laid-Open Publication No. 2009-2031, No. 34 [Patent Document 3] [Problem to be Solved by the Invention] However, the partial dispersion ratio of the glass disclosed in Patent Documents 1 to 3 is not small, and it is not sufficient for the lens used for correcting the above secondary spectrum. Further, in the glass disclosed in Patent Documents 1 to 3, the transparency with respect to visible light is not high, and in particular, it is not sufficient for use for transmitting visible light. Namely, an optical glass having a small Abbe number (vd) and a high dispersion, a small partial dispersion ratio (0g, F), and a high transparency with respect to visible light is sought. The present invention has been made in view of the above problems, and its object is to obtain a folding 163468.doc 201249769, the radiance (nd) is within a desired range, and the Abbe number (Vd) is small, and the partial dispersion ratio (eg 'f) An optical glass having a small transparency and improved transparency with respect to visible light, and a preform and an optical element using the optical glass. [Means for Solving the Problems] The present inventors have conducted intensive experimental research to solve the above problems, and as a result, it has been found that the BaO component, the La203 component, and the Nb205 component are used in combination, and the contents are set within a specific range. The present invention is finally accomplished by having a desired relationship between the partial dispersion ratio (eg 'F) of the glass and the Abbe number (vd). At the same time, it has been found that the high refractive index of the glass can be achieved by using the La203 component and the Nb205 component in combination and setting the content within a specific range. Further, it has been found that by using the SiO 2 component, the BaO component and the La 203 component in combination, and the content thereof is set within a specific range, the stability of the glass can be improved, and the color of the glass can be reduced. Further, it has been found that by using the SiO 2 component, the BaO component, the La 203 component, and the Nb 2 〇 5 component in combination, and the content thereof is set within a specific range, coloring or devitrification is less likely to occur when the glass is reheated. In particular, the present invention provides the following. (1) An optical glass containing 1% by mass or more and 60.0% or less of the SiO 2 component, and more than 〇% and 25.0% of the BaO component, and the La203 component, in terms of the total mass of the glass of the oxide-converted composition. More than 〇% and 15.0% or less, and Nb2〇5 components are more than 0% and 20.0% or less, between the partial dispersion ratio (eg, F) and the Abbe number (vd), in the range of vd $ 3 1 Satisfy the relationship of 163468.doc 201249769 (-0.00162xvd+0.63822)^(9g . F)^ (.〇.〇〇275xvd+0.68 125), which satisfies in the range of vd>31 (_〇.〇〇i62xvd+0.63822 ) < (9g, F) S (-0.00162xvd + 0.64622) relationship. (2) The optical glass of (1), wherein the total mass of the glass relative to the oxide-converted composition is more than 〇% and less than 2% by weight of the Ba0 component, and the Nb205 component is more than 〇. % and less than 19 5〇/〇. (3) The optical glass of (1) or (2), wherein the content of the Li" component is 3 〇.% or less based on the total mass of the glass of the oxide-converted composition. (4) The optical glass according to any one of (1) to (3), wherein the total mass of the glass relative to the oxide-converted composition is more than 0% and 30.0% in terms of % by mole of U2〇 the following. (5) The optical glass according to any one of (1) to (4), wherein the content of the Ti〇2 component is less than 20.0% in terms of mol% relative to the total mass of the glass in terms of oxide composition. (6) The optical glass according to any one of (1) to (5), wherein the content of the Ti〇2 component is 17.5% or less in terms of mol% of the total glass composition of the oxide-converted composition. (7) The optical glass according to any one of (1) to (6), wherein the molar ratio (Ba〇+La203)/(Nb205+Ti02) of the oxide conversion composition is 〇.〇5 or more. (8) The optical glass according to any one of (1) to (7), wherein the molar ratio of the molar ratio Ti02/Nb205 is 5.0 or less. (9) The optical glass of any one of (1) to (8), wherein the mass of the glass relative to the composition of the oxide is in the range of mol/. The content of B2〇3 is 163,468.doc 201249769 The amount is 40.0% or less. (10) The optical glass according to any one of (1) to (9), wherein the content of the B2〇3 component is 20.0% or less based on the total mass of the glass in terms of the oxide conversion composition. (11) The optical glass according to any one of (1) to (10), wherein the oxide conversion composition has a molar ratio of Nb205/(Si02+B2〇3) of 0.070 or more. (12) The optical glass of any one of (1) to (11), wherein the total mass of the glass relative to the composition of the oxide is expressed in mol%,

MgO成分〇〜20.0%及/或 CaO成分0〜20.0%及/或 SrO成分〇〜20.0%及/或 ZnO成分 〇〜30.0%。 (13) 如(1)至(12)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,R〇成分(式中,R為選自 由Mg、Ca、Sr、Ba、Zn所組成之群中之1種以上)之莫耳 和為35.0%以下。 (14) 如(1)至(13)項中任一項之光學玻璃,其中氧化物換 算組成之莫耳比Ba0/R0(式中,尺為選自由Mg、^、^、 Ba、Zn所組成之群中之!種以上)為〇 2〇以上。 (15) 如(1)至(14)項中任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳%計,The MgO component 〇 is 20.0% and/or the CaO component is 0 to 20.0% and/or the SrO component is 〇 20.0% and/or the ZnO component is 〇 30.0%. (13) The optical glass according to any one of (1) to (12), wherein, in relation to the total mass of the glass of the oxide-converted composition, the R〇 component (wherein R is selected from the group consisting of Mg, Ca, Sr, The molar ratio of one or more of the group consisting of Ba and Zn is 35.0% or less. (14) The optical glass according to any one of (1) to (13), wherein the molar ratio of the molar composition is Ba0/R0 (wherein the ruler is selected from the group consisting of Mg, ^, ^, Ba, Zn) Among the group of groups, the above species are more than 2〇. (15) The optical glass of any one of (1) to (14), wherein the total mass of the glass relative to the composition of the oxide is expressed in mol%,

Na20成分〇〜25.0%及/或 K2〇成分0〜25.0%及/或 Cs2〇成分 〇〜lo o。/。。 163468.doc 201249769 (16) 如(1)至(15)項令任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,RhO成分(式中,Rn為選 自由Li、Na、K、Cs所組成之群中之1種以上)之莫耳和為 30.0%以下。 (17) 如(1)至(16)項令任一項之光學玻璃,其中相對於氧 化物換算組成之玻璃總物質量,以莫耳%計, P2O5成分〇〜30.0%及/或 Ge02成分〇〜20.0%及/或 Y2〇3成分〇〜15.0%及/或 Gd203成分0〜15.0%及/或 Yb203成分0〜15.0%及/或 Ta205成分0〜15.0%及/或 Bi2〇3成分〇〜15.0%及/或 W〇3成分0〜20.0%及/或 Te02成分0〜30.0%及/或 Zr02成分0〜15.0%及/或 Al2〇3成分0〜15.0%及/或 Sb2〇3成分 〇〜1.0%。 (18) 如(1)至(17)項中任一項之光學玻璃,其中氧化物換 算組成之莫耳比(B203/Si02)為1.00以下。 (19) 如(1)至(18)項中任一項之光學玻璃,其具有丨7〇以 上1.95以下之折射率(nd) ’且具有20以上40以下之阿貝數 (vd)。 (20) 如(1)至(19)項中任一項之光學玻璃,其中分光透過 163468.doc 201249769 率顯示70%之波長(λ7〇)為500 nm以下。 (21) 如(1)至(2〇)項中任一項之光學玻璃,其中用再加熱 試驗(二)後之試驗片之波長587.56 nm之光線(d線)之透過 率除以上述再加熱試驗前之試驗片之d線之透過率所得的 值成為0.95以上, [再加熱試驗(二):再加熱試驗片15 mmx 15 mm&gt;&lt;30 mm,自室溫開始歷時i5〇分鐘升溫至較各試樣之轉移溫度 (Tg)高80°C之溫度,於上述較光學玻璃之玻璃轉移溫度 (Tg)高80°C之溫度下保溫30分鐘,其後自然冷卻至常溫為 止,將試驗片之相對向之2面研磨成厚度10 mm後,目測觀 察]。 (22) 如(1)至(21)項中任一項之光學玻璃,其中再加熱試 驗(二)前之試驗片之透過率成為70°/。之波長即λ7〇與上述再 加熱試驗後之試驗片之λ7〇之差為20 nm以下, [再加熱試驗(二):再加熱試驗片15 mmM5 mmx30 mm,自室溫開始歷時150分鐘升溫至較各試樣之轉移溫度 (Tg)高80它之溫度,於上述較光學玻璃之玻璃轉移溫度 (Tg)高80°C之溫度下保溫3〇分鐘,其後自然冷卻至常溫為 止’將試驗片之相對向之2面研磨成厚度1〇 mm後,目測觀 察]。 (23) —種研磨加工用及/或精密擠壓成形用之預成形體, 其包含如(1)至(22)項+任一項之光學玻璃。 (24) —種光學元件,其係研削及/或研磨如(1)至(22)項中 任一項之光學玻璃而成。 163468.doc 201249769 (25)—種光學元件,其係精密擠壓成形如(丨)至(22)項中 任一項之光學玻璃而成。 [發明之效果] 根據本發明,藉由併用Si02成分、BaO成分、La203成分 及Nb2〇5成分,並將該等之含量設於特定之範圍内,可實 現玻璃之向折射率及高分散化,並且可使玻璃之部分分散 比Mg ’ F)與阿貝數(Vd)之間具有所期望之關係,且玻璃之 著色減輕。因此’可獲得折射率(nd)及阿貝數(Vd)處於所期 望之範圍内、並且色像差較小、相對於可見光之透明性較 高之光學玻璃,以及使用該光學玻璃之預成形體及光學元 件。 【實施方式】 本發明之光學玻璃係相對於氧化物換算組成之玻璃總物 質量’以莫耳%計,含有Si〇2成分10.0%以上60.0%以下、 BaO成分多於〇%且25.〇%以下、La203成分多於〇%且15.0% 以下、及Nt&gt;2〇5成分多於〇%且20.0%以下,於部分分散比 (0g ’ F)與阿貝數(Vd)之間,於vd$ 31之範圍中滿足 (-0.00162xvd+0.63822)^ (0g · F)^ (-0.00275xvd+0.68125) 之關係’於vd&gt;3 1之範圍中滿足(_〇 〇〇i62xvd+〇.63822)S (eg ’ F)$ (-〇.〇〇l62xvd+0.64622)之關係。藉由併用 La2〇3 成分及Nb&gt;2〇5成分,並將該等之含量設於特定之範圍内, 可實現玻璃之高折射率化。與此同時,藉由使用Nb2〇5成 分,並將其含量設於特定之範圍内,可實現玻璃之高分散 化(低阿貝數化)。與此同時,藉由併用Ba〇成分、[七…成 163468.doc •10· 201249769 刀及Nt&gt;2〇5成刀,並將該等之含量設於特定之範圍内,可 使玻璃之部分分散比(eg,F)與阿貝數(%)之間具有所期望 之關係。與此同時,藉由併用Si〇2成分、Ba〇成分及La203 成分,並將該等之含量設於特定之範圍内,可提高玻璃之 穩疋性,並且玻璃之著色減輕β因此,可獲得折射率 處於所期望之範圍内、並且阿貝數⑹較小、部分分散比 (eg,f)較小、且相對於可見光之透明性較高之光學玻 璃,以及使用該光學玻璃之預成形體及光學元件。 另一方面,藉由併用si〇2成分、Ba0成分、La2〇3成分及 Nb2〇s成分’並將該等之含量設於特定之範圍内,而於再 加熱玻璃時不易產生著色或失透β因此,亦可獲得折射率 (nd)處於所期望之範圍内、並且阿貝數(Vd)較小、部分分散 比(0g,F)較小、相對於可見光之透明性較高、且具有較 高之擠壓成形性之光學玻璃,以及使用該光學玻璃之預成 形體及光學元件。 本發明之光學玻璃亦可相對於氧化物換算組成之玻璃總 物質量’以莫耳。/❶計,將BaO成分之含量設為20·〇❶/。以下, Nb205成分之含量設為未達19.5%。 以下,詳細說明本發明之光學玻璃之實施形態,但本發 明並不受以下實施形態之任何限定,可於本發明之目的之 範圍内適當添加變更而實施。再者,存在對於說明重複之 處適當省略說明之情況,但並不限定發明之宗旨。 [玻璃成分] 構成本發明之光學玻璃之各成分之組成範圍如下所述。 163468.doc 201249769 於本說明書中,各成分之含量於無特別說明之情況下,均 &amp;為以相對於氧化物換算組成之玻璃總物質量之莫耳%表 示者。此處,所謂「氧化物換算組成」,係如下組成:於 假定用作本發明之玻璃構成成分之原料之氧化物、複合 鹽、金屬氟化物等於熔融時全部分解而變為氧化物之情形 時’將該生成氧化物之總物質量設為1〇〇莫耳%,表述玻 璃中所含有之各成分。 〈關於必需成分、任意成分&gt;Na20 component 〇~25.0% and/or K2〇 component 0~25.0% and/or Cs2〇 component 〇~lo o. /. . </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The molar ratio of one or more of the groups consisting of K and Cs is 30.0% or less. (17) The optical glass according to any one of (1) to (16), wherein the total mass of the glass relative to the oxide-converted composition is in terms of mol%, P2O5 component 〇~30.0% and/or Ge02 component 〇20.0% and/or Y2〇3 component 〇15.0% and/or Gd203 component 0~15.0% and/or Yb203 component 0~15.0% and/or Ta205 component 0~15.0% and/or Bi2〇3 component〇 ~15.0% and/or W〇3 component 0~20.0% and/or Te02 component 0~30.0% and/or Zr02 component 0~15.0% and/or Al2〇3 component 0~15.0% and/or Sb2〇3 component 〇~1.0%. (18) The optical glass according to any one of (1) to (17), wherein the molar ratio of the oxide conversion composition (B203/SiO2) is 1.00 or less. (19) The optical glass according to any one of (1) to (18) which has a refractive index (nd)' of 1.97〇 or more and 1.95 or less and an Abbe's number (vd) of 20 or more and 40 or less. (20) The optical glass according to any one of (1) to (19), wherein the spectroscopic transmission 163468.doc 201249769 rate shows that 70% of the wavelength (λ7〇) is 500 nm or less. (21) The optical glass of any one of (1) to (2), wherein the transmittance of the light having a wavelength of 587.56 nm (d line) of the test piece after the reheating test (2) is divided by the above The value obtained by the transmittance of the d-line of the test piece before the heating test was 0.95 or more, [reheating test (2): reheating the test piece 15 mm x 15 mm&gt;&lt; 30 mm, and heating up to room temperature for 5 minutes from room temperature The temperature is 80 ° C higher than the transfer temperature (Tg) of each sample, and the temperature is maintained at a temperature 80 ° C higher than the glass transition temperature (Tg) of the optical glass for 30 minutes, and then naturally cooled to normal temperature, and the test is performed. After the two sides of the sheet were ground to a thickness of 10 mm, visual observation was performed]. (22) The optical glass of any one of (1) to (21), wherein the transmittance of the test piece before the reheating test (II) is 70°/. The difference between the wavelength λ7〇 and the λ7〇 of the test piece after the above reheating test is 20 nm or less, [reheating test (2): reheating the test piece 15 mmM5 mmx30 mm, and heating up from room temperature for 150 minutes The transfer temperature (Tg) of each sample is higher than 80, and the temperature is maintained at a temperature 80 ° C higher than the glass transition temperature (Tg) of the optical glass for 3 minutes, and then naturally cooled to normal temperature. The two surfaces were ground to a thickness of 1 〇 mm, and visual observation was performed. (23) A preform for polishing processing and/or precision extrusion molding, comprising the optical glass of any one of (1) to (22) + any one. (24) An optical element obtained by grinding and/or grinding an optical glass according to any one of (1) to (22). 163468.doc 201249769 (25) An optical element which is formed by precision extrusion of an optical glass of any one of (丨) to (22). [Effects of the Invention] According to the present invention, by using the SiO 2 component, the BaO component, the La 203 component, and the Nb 2 〇 5 component in combination, and setting the contents in a specific range, the refractive index and the high dispersion of the glass can be achieved. And the glass portion can be dispersed to have a desired relationship between Mg 'F) and Abbe number (Vd), and the color of the glass is reduced. Therefore, an optical glass having a refractive index (nd) and an Abbe number (Vd) in a desired range and having a small chromatic aberration and high transparency with respect to visible light, and a preform using the optical glass can be obtained. Body and optical components. [Embodiment] The optical glass of the present invention contains 1% by mass or more and 60.0% or less of the Si〇2 component, and more than 〇% of the BaO component with respect to the total mass of the glass of the oxide-converted composition. % or less, the La203 component is more than 〇% and 15.0% or less, and the Nt&gt;2〇5 component is more than 〇% and 20.0% or less, and is between the partial dispersion ratio (0g 'F) and the Abbe number (Vd). The relationship satisfying (-0.00162xvd+0.63822)^(0g · F)^ (-0.00275xvd+0.68125) in the range of vd$31 satisfies in the range of vd&gt;3 1 (_〇〇〇i62xvd+〇.63822) The relationship between S (eg ' F ) $ (-〇.〇〇l62xvd+0.64622). By using the La2〇3 component and the Nb&gt;2〇5 component in combination, and setting the content to a specific range, the high refractive index of the glass can be achieved. At the same time, by using Nb2〇5 component and setting the content within a specific range, high dispersion of glass (low Abbe number) can be achieved. At the same time, by using the Ba〇 component, [seven... into 163468.doc •10·201249769 knife and Nt&gt; 2〇5 into a knife, and setting the content within a specific range, the glass part can be made. There is a desirable relationship between the dispersion ratio (eg, F) and the Abbe number (%). At the same time, by using the Si〇2 component, the Ba〇 component, and the La203 component in combination, and setting the content in a specific range, the stability of the glass can be improved, and the coloring of the glass can be reduced by β. An optical glass having a refractive index within a desired range, a small Abbe number (6), a small partial dispersion ratio (eg, f), and high transparency with respect to visible light, and a preform using the optical glass And optical components. On the other hand, by using the si〇2 component, the Ba0 component, the La2〇3 component, and the Nb2〇s component in combination, and setting the content within a specific range, coloring or devitrification is less likely to occur when the glass is reheated. Therefore, the refractive index (nd) can be obtained within a desired range, and the Abbe number (Vd) is small, the partial dispersion ratio (0g, F) is small, the transparency with respect to visible light is high, and A high-extrudability optical glass, and a preform and an optical element using the optical glass. The optical glass of the present invention may also be in the form of a molar mass of the glass in terms of oxide composition. /❶, the content of the BaO component is set to 20·〇❶/. Hereinafter, the content of the Nb205 component is set to be less than 19.5%. Hereinafter, the embodiment of the optical glass of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and may be appropriately modified and implemented within the scope of the object of the present invention. Incidentally, the description of the description will be omitted as appropriate, but the purpose of the invention is not limited. [Glass Component] The composition range of each component constituting the optical glass of the present invention is as follows. 163468.doc 201249769 In the present specification, the content of each component is expressed by the % of the total mass of the glass in terms of the composition of the oxide, unless otherwise specified. Here, the "oxide-converting composition" is a composition in which an oxide, a composite salt, and a metal fluoride which are assumed to be used as a raw material of the glass constituent component of the present invention are equal to when they are all decomposed and become oxides during melting. The total mass of the produced oxide was set to 1% by mole, and each component contained in the glass was expressed. <About essential ingredients, arbitrary ingredients>

Si〇2成分係促進穩定之玻璃形成,減少作為光學玻璃欠 佳之失透(結晶物之產生)之成分。尤其藉由將Si〇2成分之 含量設為10.0%以上,而可於未大幅提高玻璃之部分分散 比之情況下獲得耐失透性優異之玻璃。又,藉此,可減少 再加熱時之失透或著色。又,藉由將3丨02成分之含量設為 60.0%以下,而使玻璃之折射率變得不易降低,藉此可容 ’且可抑制玻璃之部分分The Si 2 component promotes stable glass formation and reduces the composition of devitrification (production of crystals) which is poor as an optical glass. In particular, by setting the content of the Si 2 component to 10.0% or more, it is possible to obtain a glass excellent in devitrification resistance without greatly increasing the partial dispersion ratio of the glass. Further, by this, devitrification or coloration at the time of reheating can be reduced. Further, by setting the content of the 3丨02 component to 60.0% or less, the refractive index of the glass is not easily lowered, whereby the glass portion can be suppressed and the glass portion can be suppressed.

K2SiF6、Na2SiF6等作為原料。 易的獲得所期望之較高之折射率, 散比之上升。又,藉由蔣aK2SiF6, Na2SiF6, etc. are used as raw materials. It is easy to obtain the desired higher refractive index and increase the dispersion ratio. Again, by Chiang a

,且提咼玻璃之耐失透性之成分。 降低玻璃之部分分散 。尤其藉由含有BaO成 163468.doc •12. 201249769 :::量多於0%’而易於獲得耐失透性較高之玻璃並 實現所期望之較高之折射率與較低之部分分散比。 又,藉此,可減少再加熱時之失透或著色。另一方面,藉 由將Ba〇成分之含量設為25〇%以下,更佳為別戲以下, 可抑制由BaO成分之過剩含有引起之耐失透性或化學耐久 性之惡化。因此’相對於氧化物換算組成之玻璃總物質 量’ Ba〇成分之含量之下限較佳為設為多於〇%,更佳為 1屬’最佳為3.G%。又’該Ba〇成分之含量之上限較佳為 設為25.0%,更佳為2〇.〇%,進而更佳為15爲最佳為 1〇.〇%。BaO成分可使用BaC〇3、Ba(N〇3)2等作為原料。And the composition of the glass is resistant to devitrification. Reduce the dispersion of the glass. Especially by containing BaO into 163468.doc •12.201249769::: quantity more than 0%', it is easy to obtain a glass with high devitrification resistance and achieve a desired higher refractive index and a lower partial dispersion ratio. . Moreover, by this, devitrification or coloring at the time of reheating can be reduced. On the other hand, by setting the content of the Ba〇 component to 25 % by weight or less, it is more preferable to suppress the deterioration of the devitrification resistance or the chemical durability caused by the excessive content of the BaO component. Therefore, the lower limit of the content of the total amount of the glass relative to the oxide-converted composition is preferably more than 〇%, more preferably 1 genius, and most preferably 3. G%. Further, the upper limit of the content of the Ba 〇 component is preferably 25.0%, more preferably 2 〇.〇%, still more preferably 15 is preferably 1 〇.〇%. As the BaO component, BaC〇3, Ba(N〇3)2 or the like can be used as a raw material.

LazOs成分係提高玻璃之折射率,並且降低部分分散比 之成分。尤其藉由含有La2〇3成分之含量多於〇%,而易於 獲得耐失透性較高之玻璃,並且可實現所期望之較高之折 射率與較低之部分分散比。另一方面,藉由將匕“仏成分 之含量設為15.0%以下,可減少由La2〇3成分之過剩含有弓丨 起之玻璃之失透,且可抑制玻璃之阿貝數之上升。因此, 相對於氧化物換算組成之玻璃總物質量,La2〇3成分之含 量之下限較佳為設為多於〇%,更佳為i ,進而更佳為 1.5%,最佳為3.0%。又,該La2〇3成分之含量之上限較佳 為設為15.0%,更佳為12.0%,最佳為1〇 〇%。La2〇3成分可 使用La2〇3、La(N〇3)rXH2〇(X為任意之整數)等作為原 料。 'The LazOs component increases the refractive index of the glass and lowers the composition of the partial dispersion ratio. In particular, by containing more than 〇% of the La2〇3 component, it is easy to obtain a glass having high devitrification resistance, and a desired higher refractive index and a lower partial dispersion ratio can be achieved. On the other hand, by setting the content of the bismuth component to 15.0% or less, the devitrification of the glass containing the excessive amount of the La2〇3 component can be reduced, and the increase in the Abbe number of the glass can be suppressed. The lower limit of the content of the La2〇3 component is preferably set to more than 〇%, more preferably i, still more preferably 1.5%, most preferably 3.0%, relative to the total mass of the glass of the oxide-converted composition. The upper limit of the content of the La2〇3 component is preferably set to 15.0%, more preferably 12.0%, and most preferably 1% by weight. La2〇3, La(N〇3)rXH2〇 can be used for the La2〇3 component. (X is an arbitrary integer) and the like as a raw material.

Nb&gt;2〇5成分係提高玻璃之折射率,降低阿貝數,且降低 部分分散比之成分。尤其藉由含有Nb2〇5成分之含量多於 163468.doc •13· 201249769 〇%’可提尚玻璃之折射率,降低阿貝數,並且降低玻璃 之部分分散比。又,藉由WNb2〇5成分之含量設為2〇〇%以 下’更佳為I達19.5% ’彳抑制&amp;璃製造時之炫解溫度之 上升》因此,相對於氧化物換算組成之玻璃總物質量, Nb2〇5成分之含量之下限較佳為設為多於〇%,更佳為 1.0% ’最佳為3.5% 〇又,該灿2〇5成分之含量之上限較佳 為設為20.0%,更佳為未達19 5%,進而更佳為17 〇% ,最 佳為16.0% » Nb2〇5成分可使用Nb2〇5等作為原料。The Nb&gt;2〇5 component increases the refractive index of the glass, lowers the Abbe number, and lowers the composition of the partial dispersion ratio. In particular, by containing more than 163468.doc •13·201249769 〇%' of the Nb2〇5 component, the refractive index of the glass can be increased, the Abbe number can be lowered, and the partial dispersion ratio of the glass can be lowered. In addition, the content of the WNb2〇5 component is set to 2% or less, and it is more preferable that I is 19.5%. [彳Inhibition & increase in the brightness of the glass during the manufacture of the glass. The lower limit of the content of the total mass, the content of the Nb2〇5 component is preferably set to be more than 〇%, more preferably 1.0%, and most preferably 3.5%. Further, the upper limit of the content of the scented 〇5 〇5 component is preferably set. It is 20.0%, more preferably less than 195%, more preferably 17%, and most preferably 16.0%. Nb2〇5 can be used as a raw material.

LhO成分係提高玻璃之熔融性,且降低玻璃之部分分散 比之成分,為本發明之光學玻璃中之任意成分。尤其藉由 將LhO成分之含量設為30.〇%以下,而使易於實現高折射 率,與此同時可減少由LhO成分之過剩之含有引起之玻璃 之形成時或再加熱時之乳白化或結晶析出,提高玻璃之化 學耐久性。因此,相對於氧化物換算組成之玻璃總物質 量,LhO成分之含量之上限較佳為設為3〇 〇%,更佳為 27.0%,進而更佳為25.0%,最佳為2〇 〇%。再者,本發明 之光學玻璃就提高擠壓成形性之觀點而言,亦可不含有 LhO成分’但就可降低玻璃轉移點(Tg)、降低部分分散 比、且減少再加熱時之失透或著色之觀點而言,相對於氧 化物換算組成之玻螭總物質量,Li2〇成分之含量之下限較 佳為設為多於〇%,更佳為,進而更佳為3 〇%〇 Li2〇 成分可使用Li2C03、LiN03、LiF等作為原料。The LhO component is an optional component in the optical glass of the present invention which improves the meltability of the glass and lowers the partial dispersion ratio of the glass. In particular, by setting the content of the LhO component to 30.% or less, it is easy to achieve a high refractive index, and at the same time, it is possible to reduce the whitening or the formation of the glass caused by the excessive content of the LhO component or during reheating. Crystallization precipitates to improve the chemical durability of the glass. Therefore, the upper limit of the content of the LhO component is preferably set to 3% by mole, more preferably 27.0%, still more preferably 25.0%, and most preferably 2% by weight based on the total mass of the glass of the oxide-converted composition. . Further, the optical glass of the present invention may not contain the LhO component from the viewpoint of improving the extrusion formability, but may lower the glass transition point (Tg), lower the partial dispersion ratio, and reduce devitrification upon reheating or From the viewpoint of coloring, the lower limit of the content of the Li 2 〇 component relative to the total mass of the glass oxide composition is preferably set to more than 〇%, more preferably, more preferably 3 〇% 〇 Li2 〇 As the raw material, Li2C03, LiN03, LiF or the like can be used as a raw material.

Ti〇2成分係提高玻璃之折射率,並且降低阿貝數之成 分,為本發明之光學玻璃中之任意成分。尤其藉由將Ti〇2 I63468.doc 201249769 成分之含量設為未達20·0%’更佳為π.5°/。以下,可減少玻 璃之著色’提高玻璃之内部透過率。又,藉由將Ti〇2成分 之含量設為未達20.0°/。,更佳為17.5%以下,而使部分分散 比變得不易上升,因此可容易地獲得接近正規線之較低之 部分分散比。因此,相對於氧化物換算組成之玻璃總物質 量,Τι〇2成分之含量之上限較佳為設為未達2〇 〇%,更佳 為18.0。/。’進而更佳為17.5%,進而更佳為未達15 〇%,進 而更佳為13.0%,最佳為10.0%。另一方面,就減少著色之 觀點而言,較佳為不含有Ti〇2成分,但就獲得更高之折射 率、並且提高耐失透性之觀點而言,該Ti〇2成分之含量之 下限較佳為設為多於〇% ’更佳為〇·1%,進而更佳為 1.0%,最佳為3.0%。Ti〇2成分可使用Ti〇2等作為原料。 本發明之光學玻璃較佳為Ba0成分及La2〇3成分之含量之 和相對於Nb2〇5成分及Ti〇2成分之含量之和的比率為〇 〇5 以上。藉此,折射率提高,並且部分分散比變低,因此可 獲得所期望之較高之折射率,並且可獲得較低之部分分散 比。因此,氧化物換算組成之莫耳比(Ba〇+La2〇3)/ (NhOdTiO2)之下限較佳為設為為〇 〇5,更佳為〇 ι〇,進 而更佳為0.20,最佳為〇.30。另一方面,該莫耳比 (BaO+I^O^WhOdTiO2)之上限並無特別限定,例如多 為5.00以了 ’更具體而言為3 〇〇以下’進而更具體而言為 1 ·00以下。 又,本發明之光學玻璃較佳為氧化物換算組成之莫耳比 Ti〇2/Nb2〇5為5.〇以下。藉此,可將玻璃之阿貝數調整於所 163468.doc 15 201249769 期望之範圍内,並且部分分散比變低,因此可獲得具有所 期望之阿貝數與部分分散比之關係之光學玻璃。又,藉 此,亦可獲得著色較少之光學玻璃。因此,氧化物換算組 成之莫耳比Ti〇2/Nb2〇5之上限較佳為設為5 〇,更佳為 4.5,進而更佳為4.3 ^尤其於含有Ba〇成分及La2〇3成分作 為必需成分之本申請案發明之光學玻璃中,就進一步降低 部分分散比之觀點而言,該Ti〇2/Nb2〇5最佳為2 5以下。 B2〇3成分係促進穩定之玻璃形成,提高耐失透性,且提 高玻璃之熔解性之成分,為本發明之光學玻璃中之任意成 分。尤其藉由將B2〇3成分之含量設為40.0%以下,更佳為 20.0°/。以下’可獲得所期望之較高之折射率,與此同時可 抑制玻璃之部分分散比之上升。又,藉此,可減少玻璃之 再加熱時之失透❶因此,相對於氧化物換算組成之玻璃總 物質量’ B2〇3成分之含量之上限較佳為設為4〇 〇%,更佳 為30.0% ’進而更佳為20.0%,進而更佳為18 〇%,進而更 佳為15.0。/。’最佳為ι〇·0%。b2〇3成分可使用h3b〇3、 Na2B407、Na2B407.l〇H20、BP04等作為原料。 本發明之光學玻璃較佳為Nb2〇5成分之含量相對於Si〇2 成分及Βζ〇3成分之含量之和的比率為〇 〇7〇以上。藉此, 折射率提高’並且部分分散比變低,因此可獲得具有所期 望之範圍之折射率、並且部分分散比較小之玻璃。因此, 氧化物換算組成之莫耳比Nb205/(si02+B203)之下限較佳為 設為0.070,更佳為0.091,進而更佳為〇13〇 β另一方面, 該莫耳比Nb2〇5/(Si〇2+B2〇3)之上限並無特別限定,本發明 163468.doc ‘ 16 - 201249769 之光學玻璃之莫耳比Nb2〇5/(Si〇2+B2〇3)多為約1 〇〇〇以 下’更詳細而言為0.700以下,進而更詳細而言為〇 5〇〇以 下。The Ti 2 component is a component which increases the refractive index of the glass and lowers the Abbe number and is an arbitrary component in the optical glass of the present invention. In particular, the content of the composition of Ti〇2 I63468.doc 201249769 is set to be less than 20·0%', more preferably π.5°/. Hereinafter, the coloring of the glass can be reduced to increase the internal transmittance of the glass. Further, the content of the Ti 2 component was set to be less than 20.0 ° /. More preferably, it is 17.5% or less, and the partial dispersion ratio is not easily increased, so that a lower partial dispersion ratio close to the regular line can be easily obtained. Therefore, the upper limit of the content of the Τι〇2 component is preferably set to less than 2 〇%, more preferably 18.0, based on the total amount of the glass of the oxide-converted composition. /. Further, it is preferably 17.5%, more preferably less than 15%, and even more preferably 13.0%, and most preferably 10.0%. On the other hand, from the viewpoint of reducing coloring, it is preferred that the Ti〇2 component is not contained, but the content of the Ti〇2 component is obtained from the viewpoint of obtaining a higher refractive index and improving resistance to devitrification. The lower limit is preferably set to be more than 〇%', more preferably 〇·1%, still more preferably 1.0%, and most preferably 3.0%. As the Ti〇2 component, Ti〇2 or the like can be used as a raw material. In the optical glass of the present invention, the ratio of the sum of the content of the Ba0 component and the La2〇3 component to the sum of the contents of the Nb2〇5 component and the Ti〇2 component is preferably 〇5 or more. Thereby, the refractive index is increased, and the partial dispersion ratio becomes low, so that a desired higher refractive index can be obtained, and a lower partial dispersion ratio can be obtained. Therefore, the lower limit of the molar ratio (Ba〇+La2〇3)/(NhOdTiO2) of the oxide-converted composition is preferably set to 〇〇5, more preferably 〇ι〇, still more preferably 0.20, and most preferably 〇.30. On the other hand, the upper limit of the molar ratio (BaO+I^O^WhOdTiO2) is not particularly limited, and is, for example, 5.00 or more, more specifically 3 Å or less, and more specifically 1 00. the following. Further, the optical glass of the present invention preferably has a molar ratio of Ti〇2/Nb2〇5 of 5.5% or less in terms of oxide composition. Thereby, the Abbe number of the glass can be adjusted within the range desired by 163468.doc 15 201249769, and the partial dispersion ratio becomes low, so that an optical glass having a desired Abbe number and a partial dispersion ratio can be obtained. Further, by this, an optical glass having less coloration can be obtained. Therefore, the upper limit of the molar ratio Ti〇2/Nb2〇5 of the oxide-converted composition is preferably 5 〇, more preferably 4.5, and still more preferably 4.3 ^ especially for the Ba 〇 component and the La 2 〇 3 component. In the optical glass of the invention of the present application which is an essential component, the Ti〇2/Nb2〇5 is preferably 25 or less from the viewpoint of further reducing the partial dispersion ratio. The B2〇3 component is a component which promotes stable glass formation, improves devitrification resistance, and improves the meltability of glass, and is an arbitrary component in the optical glass of the present invention. In particular, the content of the B2〇3 component is 40.0% or less, more preferably 20.0°/. In the following, a desired higher refractive index can be obtained, and at the same time, an increase in the partial dispersion ratio of the glass can be suppressed. Further, by this, it is possible to reduce the devitrification at the time of reheating of the glass. Therefore, the upper limit of the content of the glass total mass 'B2〇3 component with respect to the oxide-converted composition is preferably set to 4% by weight, more preferably It is 30.0%', more preferably 20.0%, still more preferably 18%, and even more preferably 15.0. /. 'Best is ι〇·0%. As the raw material of b2〇3, h3b〇3, Na2B407, Na2B407.l〇H20, BP04 or the like can be used. The optical glass of the present invention preferably has a ratio of the content of the Nb2〇5 component to the sum of the contents of the Si〇2 component and the Βζ〇3 component of 〇 7〇 or more. Thereby, the refractive index is increased 'and the partial dispersion ratio becomes low, so that a glass having a refractive index within a desired range and having a relatively small partial dispersion can be obtained. Therefore, the lower limit of the molar ratio Nb205/(si02+B203) of the oxide-converted composition is preferably set to 0.070, more preferably 0.091, and still more preferably 〇13〇β, on the other hand, the molar ratio Nb2〇5 The upper limit of /(Si〇2+B2〇3) is not particularly limited, and the optical glass of the invention 163468.doc '16 - 201249769 has a molar ratio of Nb2〇5/(Si〇2+B2〇3) of about 1 〇〇〇 The following 'more details are 0.700 or less, and more specifically 〇5〇〇 or less.

MgO成分係降低玻璃之熔融溫度之成分,為本發明之光 干玻璃中之任意成分。尤其藉由將MgO成分之含量設為 20.0%以下’可獲得所期望之高折射率,並且可提高玻璃 之对失透性。又,藉此,可減少再加熱時之失透或著色。 因此,相對於氧化物換算組成之玻璃總物質量,Mg〇成分 之含量之上限較佳為設為20.0%,更佳為10_0%,最佳為 5.0%。MgO成分可使用Mg0、MgC〇3、MgF2等作為原 料。The MgO component is a component which lowers the melting temperature of the glass and is an optional component in the light dry glass of the present invention. In particular, by setting the content of the MgO component to 20.0% or less, a desired high refractive index can be obtained, and the devitrification property of the glass can be improved. Moreover, by this, devitrification or coloring at the time of reheating can be reduced. Therefore, the upper limit of the content of the Mg 〇 component is preferably 20.0%, more preferably 10 _0%, and most preferably 5.0%, based on the total mass of the glass of the oxide-converted composition. As the MgO component, Mg0, MgC3, MgF2 or the like can be used as a raw material.

CaO成分係降低玻璃之失透溫度之成分,為本發明之光 學玻璃中之任意成分。尤其藉由將Ca〇成分之含量設為 20.0%以下,可獲得所期望之高折射率,並且可抑制玻璃 之化學耐久性之惡化。又,藉此,可減少再加熱時之失透 或著色。因此,相對於氧化物換算組成之玻璃總物質量, CaO成分之含量之上限較佳為設為2〇 〇%,更佳為⑺〇%, 進而更佳為6.5%,最佳為5 〇0/〇。Ca〇成分可使用CaC〇3、 CaF2等作為原料。The CaO component is a component which lowers the devitrification temperature of the glass and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ca 〇 component to 20.0% or less, a desired high refractive index can be obtained, and deterioration of chemical durability of the glass can be suppressed. Further, by this, devitrification or coloration at the time of reheating can be reduced. Therefore, the upper limit of the content of the CaO component is preferably set to 2% by weight, more preferably (7)%, more preferably 6.5%, and most preferably 5 〇0, based on the total mass of the glass of the oxide-converted composition. /〇. As the Ca 〇 component, CaC 〇 3, CaF 2 or the like can be used as a raw material.

SrO成分係提高玻璃之折射率,提高玻璃之耐失透性之 成分,為本發明之光學玻璃中之任意成分。尤其藉由將 SrO成为之含量設為2〇 〇%以下,可抑制玻璃之化學耐久性 之惡化。因此’相對於氧化物換算組成之玻璃總物質量, δΓ〇成分之含量之上限較佳為設為20.0%,更佳為15.0%, 163468.doc 201249769 最佳為10_0。/〇。SrO成分可使用Sr(N〇3)2、SrF2等作為原 料。 、The SrO component is a component which increases the refractive index of the glass and improves the resistance to devitrification of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of SrO to 2 〇% or less, deterioration of chemical durability of the glass can be suppressed. Therefore, the upper limit of the content of the δ Γ〇 component is preferably set to 20.0%, more preferably 15.0%, and 163468.doc 201249769 is preferably 10_0 with respect to the total mass of the glass of the oxide-converted composition. /〇. As the SrO component, Sr(N〇3)2, SrF2 or the like can be used as a raw material. ,

ZnO成分係提高玻璃之耐失透性,降低玻璃轉移點 之成分,為本發明之光學玻璃中之任意成分。尤其藉由將 ZnO成分之含量設為3〇 〇%以下,可減少玻璃之再加熱時 之失透,並且可提咼玻璃之化學对久性。又,藉此,可減 少再加熱時之失透或著色。因此,相對於氧化物換算組成 之玻璃總物質量,ZnO成分之含量之上限較佳為設為 30.0%,更佳為20.0%,進而更佳為13.0%,進而更佳為 12.0%,最佳為10·0%。尤其就提高耐失透性之觀點而言, 該ZnO成分之含量亦可設為ι.〇%以下。Ζη〇成分可使用 ZnO、ZnF2等作為原料。 於本發明之光學玻璃中,RO成分(式中’R為選自由 Zn、Mg、Ca、Sr、Ba所組成之群中之!種以上)係提高玻 璃之耐失透性,並且對於調整折射率有用之成分,但若該 等RO成分之合計含量過多,則反而使玻璃之耐失透性變 得易於惡化’玻璃之化學耐久性亦變得易於惡化。因此, 相對於氧化物換算組成之玻璃總物質量,R〇成分之合計 含量之上限較佳為設為35.0%,更佳為25 〇%,進而更佳為 15.〇°/。’ 最佳為 10.0%。 於本發明之光學玻璃十,較佳為Ba0成分之含量相對於 RO成分之含量之合計的比率為0 20以上。藉此,降低部分 分散比並提高折射率作用較大之Ba〇成分之含量相對變 多,因此可容易地獲得部分分散比較小且折射率較高之光 I63468.doc 201249769 學玻璃。因此,氧化物換算組成之莫耳比Ba〇/R〇之下限 較佳為設為0.20,更佳為0.30,進而更佳為0.40,最佳為 0.50。另一方面’該莫耳比Ba〇/R〇之上限可為〗〇〇。The ZnO component improves the resistance to devitrification of the glass and lowers the composition of the glass transition point, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the ZnO component to 3 〇% or less, the devitrification of the glass during reheating can be reduced, and the chemical durability of the glass can be improved. Further, by this, devitrification or coloration at the time of reheating can be reduced. Therefore, the upper limit of the content of the ZnO component is preferably set to 30.0%, more preferably 20.0%, still more preferably 13.0%, and still more preferably 12.0%, based on the total mass of the glass of the oxide-converted composition. It is 10·0%. In particular, the content of the ZnO component may be set to ι.〇% or less from the viewpoint of improving resistance to devitrification. As the raw material, ZnO, ZnF2 or the like can be used as the Ζη〇 component. In the optical glass of the present invention, the RO component (wherein 'R is selected from the group consisting of Zn, Mg, Ca, Sr, and Ba) is used to improve the devitrification resistance of the glass, and to adjust the refraction. When the total content of the RO components is too large, the devitrification resistance of the glass is likely to be deteriorated. The chemical durability of the glass is also likely to deteriorate. Therefore, the upper limit of the total content of the R 〇 component is preferably set to 35.0%, more preferably 25% by weight, and still more preferably 15. 〇%, based on the total mass of the glass of the oxide-converted composition. The best is 10.0%. In the optical glass of the present invention, the ratio of the content of the Ba0 component to the total content of the RO component is preferably 0 or more. Thereby, the content of the Ba〇 component which lowers the partial dispersion ratio and increases the refractive index is relatively large, so that the light having a relatively small partial dispersion and a high refractive index can be easily obtained. I63468.doc 201249769. Therefore, the lower limit of the molar ratio Ba 〇 / R 氧化物 of the oxide-converted composition is preferably 0.20, more preferably 0.30, still more preferably 0.40, most preferably 0.50. On the other hand, the upper limit of the molar ratio Ba〇/R〇 can be 〇〇.

NaaO成分係提高玻璃之熔融性之成分,與此同時係降低 玻璃轉移點(Tg)之成分,為本發明之光學玻璃中之任意成 分。尤其藉由將NazO成分之含量設為25.0%以下,易於實 現高折射率,與此同時可使化學耐久性不易惡化。又,可 提高玻璃形成時之耐失透性,且可減少再加熱時之失透或 著色。因此,相對於氧化物換算組成之玻璃總物質量, 如2〇成分之含量之上限較佳為設為25 〇% 更佳為 20.0%,進而更佳為15_〇%,最佳為13 〇%。再者於本發 明中,就進一步提尚玻璃之耐失透性之觀點而言,可含有 NkO成分。於該情形時,相對於氧化物換算組成之玻璃總 物質量,NaaO成分之含量之下限較佳為設為多於〇%,更 佳為0.3% ’進而更佳為0.5〇/〇。Na2〇成分可使用Na2C〇3、 NaN03、NaF、Na2SiF6等作為原料。 成分係調整玻璃之熔融性,並且降低玻璃轉移點 (Tg)之成分,為本發明之光學玻璃中之任意成分。尤其藉 由將K2〇成分之含量設為25.0%以下,可提高玻璃形成時 之耐失透性,且可減少再加熱時之失透或著色。因此,相 對於氧化物換算組成之玻璃總物質量,Κ2〇成分之含量之 上限較佳為設為25.0%,更佳為2〇·〇。/。,進而更佳為 15.0%。此處,由於κ:2〇成分具有使部分分散比不易降低 之作用,故而尤其就獲得部分分散比較低之玻璃之觀點而 163468.doc •19· 201249769 言’該Κ2〇成分之含量之上限亦可較佳為設為1 〇 〇%,更 佳為5.0°/。,進而更佳為2.5°/。,最佳為0.1κ2〇成分可使 用 K2C03、ΚΝ〇3、KF、KHF2、K2SiF6等作為原料。The NaaO component is a component which increases the meltability of the glass, and at the same time lowers the component of the glass transition point (Tg), and is an arbitrary component in the optical glass of the present invention. In particular, by setting the content of the NazO component to 25.0% or less, it is easy to achieve a high refractive index, and at the same time, chemical durability is not easily deteriorated. Further, the devitrification resistance at the time of glass formation can be improved, and devitrification or coloration upon reheating can be reduced. Therefore, the upper limit of the content of the glass component of the oxide-converted composition is preferably set to 25 〇%, more preferably 20.0%, still more preferably 15 〇%, and most preferably 13 〇. %. Further, in the present invention, the NkO component may be contained from the viewpoint of further improving the resistance to devitrification of the glass. In this case, the lower limit of the content of the NaaO component is preferably set to more than 〇%, more preferably 0.3% Å, and still more preferably 0.5 Å/〇, based on the total mass of the glass of the oxide conversion composition. As the Na2〇 component, Na2C〇3, NaN03, NaF, Na2SiF6 or the like can be used as a raw material. The composition adjusts the meltability of the glass and lowers the component of the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, by setting the content of the K2 bismuth component to 25.0% or less, the devitrification resistance at the time of glass formation can be improved, and devitrification or coloring at the time of reheating can be reduced. Therefore, the upper limit of the content of the Κ2〇 component is preferably 25.0%, more preferably 2 〇·〇, with respect to the total mass of the glass of the oxide-converted composition. /. More preferably, it is 15.0%. Here, since the κ:2〇 component has a function of making the partial dispersion ratio less likely to be lowered, in particular, the viewpoint of obtaining a glass having a relatively low partial dispersion is 163468.doc •19·201249769 The upper limit of the content of the Κ2〇 component is also It is preferably set to 1 〇〇%, more preferably 5.0 °/. More preferably, it is 2.5°/. The optimum composition of 0.1 κ 2 可使 can be used as raw materials such as K2C03, ΚΝ〇3, KF, KHF2, K2SiF6 and the like.

ChO成分係降低玻璃轉移點(Tg)之成分,為本發明之光 學玻璃中之任意成分。尤其藉由將CkO成分之含量設為 10.0。 /。以下’可減少由Cs2〇成分之過剩之含有引起之玻璃 之失透。因此,相對於氧化物換算組成之玻璃總物質量, CS2〇成勿之含量之上限較佳為設為10.0%,更佳為5.0%, 進而更佳為3.0%。Cs2〇成分可使用Cs2c〇3、CsN03等作為 原料。 於本發明之光學玻璃中,較佳gRhO成分(式中,Rn為 選自由Li、Na、K及Cs所組成之群中之i種以上)之含量之 和為30.0%以下。尤其藉由將該莫耳和設為3〇〇%以下可 容易地獲得所期望之高折射率,與此同時可減少玻璃之失 透。因此,相對於氧化物換算組成之玻璃總物質量,Rn2〇 成分之含量之莫耳和之上限較佳為設為3〇 〇%,更佳為 28.0。 /。,$而更佳為25.G%,最佳為22 G%。本發明之光學 玻璃亦可不含有任-Rn2〇成分,但藉由將該和設為〇」%以 上’可提高玻璃之轉性’並且可降低成形時之玻璃融液 之黏性及玻璃轉移點…藉此,可提高再加熱時之耐失 透性。因此,相對於氧化物換算組成之玻璃總物質量, Rn20成刀之合汁含量之下限較佳為設為〇 1 %,更佳為 1,〇%,進而更佳為5.0%,最佳為10.〇%。 p2〇5成分係提高玻璃之穩定性之成分,為本發明之光學 163468.doc -20- 201249769 玻璃中之任意成分。尤其藉由將P2〇5成分之含量設為 30.0%以下,由P2〇5成分之過剩之含有引起之失透傾向減 輕’因此可提高玻璃之穩定性β因此,相對於氧化物換算 組成之玻璃總物質量,Ρ2〇5成分之含量之上限較佳為設為 30.0%,更佳為20.0%,最佳為10.0% β ρ2〇5成分可使用 Α1(Ρ03)3、Ca(P〇3)2、Ba(P〇3)2、ΒΡ〇4、η3Ρ〇4 等作為原 料。 ’、The ChO component is a component which lowers the glass transition point (Tg) and is an optional component in the optical glass of the present invention. In particular, the content of the CkO component was set to 10.0. /. The following 'can reduce the devitrification of the glass caused by the excess of the Cs2 component. Therefore, the upper limit of the content of CS2 is preferably set to 10.0%, more preferably 5.0%, still more preferably 3.0%, based on the total mass of the glass of the oxide-converted composition. As the Cs2〇 component, Cs2c〇3, CsN03 or the like can be used as a raw material. In the optical glass of the present invention, the sum of the contents of the gRhO component (wherein Rn is selected from the group consisting of Li, Na, K and Cs) is 30.0% or less. In particular, by setting the molar ratio to 3% or less, the desired high refractive index can be easily obtained, and at the same time, the glass can be reduced. Therefore, the upper limit of the molar content of the Rn2〇 component is preferably set to 3 〇%, more preferably 28.0, based on the total mass of the glass of the oxide-converted composition. /. , and $ is better than 25.G%, and the best is 22 G%. The optical glass of the present invention may not contain any -Rn2〇 component, but by setting the sum to 〇"% or more", the glass transition property can be improved and the viscosity of the glass melt and the glass transition point during molding can be reduced. ... Thereby, the resistance to devitrification during reheating can be improved. Therefore, the lower limit of the mash content of the Rn20 forming knives is preferably set to 〇1%, more preferably 1, 〇%, and still more preferably 5.0%, based on the total mass of the glass of the oxide-converted composition. 10.〇%. The p2〇5 component is a component which enhances the stability of the glass and is an optional component in the optical 163468.doc -20- 201249769 glass of the present invention. In particular, when the content of the P2〇5 component is 30.0% or less, the devitrification tendency caused by the excessive content of the P2〇5 component is reduced. Therefore, the stability of the glass can be improved. Therefore, the glass is converted into an oxide composition. The upper limit of the total mass, the content of the Ρ2〇5 component is preferably set to 30.0%, more preferably 20.0%, and most preferably 10.0%. β ρ2〇5 component can be used Α1(Ρ03)3, Ca(P〇3) 2. Ba(P〇3)2, ΒΡ〇4, η3Ρ〇4, etc. are used as raw materials. ’,

Ge〇2成分係提高玻璃之折射率,減少使玻璃穩定化而成 形時之失透之成分,為本發明之光學玻璃中之任意成分。 尤其藉由將Ge〇2成分之含量設為2〇〇〇/〇以下,價格昂貴之 Ge〇2成匀之使用量減少,因此可減少玻璃之材料成本。因 此,相對於氧化物換算組成之玻璃總物質量,Ge〇2成分之 含量之上限較佳為設為2〇·〇%,更佳為丨〇 〇%,進而更佳為 5.0%,最佳為3.0%。Ge〇2成分可使用Ge〇2等作為原料。 Y2〇3成分、Gd2〇3成分及Yb2〇3成分係提高玻璃之折射率 之成分,為本發明之光學玻璃中之任意成分。尤其藉由將 丫2〇3成分、Gd2〇3成分及Yb2〇3成分之含量分別設為15 〇% =下,可提高玻璃之耐失透性,且可使玻璃之阿貝數不易 提兩。因此,相對於氧化物換算組成之玻璃總物質量, Y2〇3成分、Gd2〇3成分及Yb2〇3成分之各自之含量之上限較 ^為設為15·〇% ’更佳為10.0%,最佳為5.0%。Y2〇3成 刀Gd2〇3成分及Yb2〇3成分可使用、GdF3、丫2〇3、 YI?3、Yb2〇3等作為原料。The Ge 2 component is a component which increases the refractive index of the glass and reduces devitrification when the glass is stabilized and formed, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ge 〇 2 component to 2 〇〇〇 / 〇 or less, the use amount of the expensive Ge 〇 2 is reduced, so that the material cost of the glass can be reduced. Therefore, the upper limit of the content of the Ge〇2 component is preferably set to 2%·〇%, more preferably 丨〇〇%, and still more preferably 5.0%, based on the total mass of the glass of the oxide-converted composition. It is 3.0%. As the Ge〇2 component, Ge〇2 or the like can be used as a raw material. The Y2〇3 component, the Gd2〇3 component, and the Yb2〇3 component are components which increase the refractive index of the glass, and are arbitrary components in the optical glass of the present invention. In particular, by setting the content of the 丫2〇3 component, the Gd2〇3 component, and the Yb2〇3 component to 15 〇% = respectively, the devitrification resistance of the glass can be improved, and the Abbe number of the glass can be made difficult to mention two. . Therefore, the upper limit of the content of each of the Y2〇3 component, the Gd2〇3 component, and the Yb2〇3 component is preferably set to 15·〇%', more preferably 10.0%, based on the total mass of the glass of the oxide conversion composition. The best is 5.0%. Y2〇3 can be used as Gd2〇3 component and Yb2〇3 component, GdF3, 丫2〇3, YI?3, Yb2〇3, etc. as raw materials.

Ta2〇5成分係提高玻璃之折射率,降低玻璃之部分分散 163468.doc 201249769 比,且提高玻璃之耐失透性之成分,為本發明之光學玻璃 中之任意成分。尤其藉由將Ta2〇5成分之含量設為15 〇%以 下,作為稀有礦物資源之Ta2〇5成分之使用量減少,與此 同時玻璃變得易於在更低溫下熔解,因此可減少玻璃之生 產成本。又,藉由將丁幻〇5成分之含量設為15 〇%以下,可 維持玻璃之耐失透性。因此,相對於氧化物換算組成之玻 璃總物質量,TaA5成分之含量之上限較佳為設為15 〇%, 更佳為10.0%,最佳為5 0%。Ta2〇5成分可使用Ta2〇5等作 為原料。The Ta2〇5 component is a component which increases the refractive index of the glass and lowers the partial dispersion of the glass, and increases the resistance to devitrification of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ta2〇5 component to 15% or less, the amount of the Ta2〇5 component which is a rare mineral resource is reduced, and at the same time, the glass is easily melted at a lower temperature, thereby reducing the production of glass. cost. Further, by setting the content of the component of the dinosaur 5 as 15% or less, the devitrification resistance of the glass can be maintained. Therefore, the upper limit of the content of the TaA5 component is preferably set to 15% by weight, more preferably 10.0%, and most preferably 50%, based on the total mass of the glass of the oxide-converted composition. As the Ta2〇5 component, Ta2〇5 or the like can be used as a raw material.

Biz〇3成分係提高玻璃之折射率並降低阿貝數,且降低 玻璃轉移點(Tg)之成分,為本發明之光學玻璃中之任意成 分。尤其藉由將Bi2〇3成分之含量設為15 〇%以下,可使玻 璃之部分分散比變得不易上升。又,藉由將Bi2〇3成分之 含量設為15.0%以下,可減少玻璃之著色,可提高玻璃之 内部透過率。因此,相對於氧化物換算組成之玻璃總物質 量,BhO3成分之含量之上限較佳為設為15 〇% ,更佳為 10.0/。,最佳為5.0%。Bi2〇3成分可使用出2〇3等作為原 料。 W〇3成分係提高玻璃之折射率並降低阿貝數,提高破璃 之耐失透性,提高玻璃之熔解性之成分,為本發明之光學 玻璃中之任意成分。尤其藉由將w〇3成分之含量設為 20.0。/。以下,可使玻螭之部分分散比變得不易上升。又, 藉由將W〇3成分之含量設為则%以了,可減少玻璃之著 色,可提高玻璃之内部透過率。因此,相對於氧化物換算 I63468.doc -22· 201249769 組成之玻璃總物質量,w〇3成分之含量之上限較佳為設為 20.0/〇,更佳為i〇.〇〇/〇,最佳為5 〇%。再者由於成分 為任意成分,故而亦可不含有,但藉由含有w〇3成分〇1% 以上,可獲得阿貝數更小之玻璃。又,可提高玻璃形成時 之耐失透性,且可減少再加熱時之失透或著色。因此,相 對於氧化物換算組成之玻璃總物質量,成分之含量之 下限可較佳為設為〇. 1%,更佳為〇 5%,最佳為i 〇%。w〇3 成分可使用W03等作為原料。The Biz〇3 component is a component of the optical glass of the present invention which increases the refractive index of the glass and lowers the Abbe number, and lowers the composition of the glass transition point (Tg). In particular, by setting the content of the Bi2〇3 component to 15% by weight or less, the partial dispersion ratio of the glass can be prevented from rising. Further, by setting the content of the Bi2〇3 component to 15.0% or less, the coloring of the glass can be reduced, and the internal transmittance of the glass can be improved. Therefore, the upper limit of the content of the BhO3 component is preferably set to 15% by weight, more preferably 10.0%, based on the total amount of the glass of the oxide-converted composition. The best is 5.0%. As the Bi2〇3 component, 2〇3 or the like can be used as the raw material. The W〇3 component is a component which is an optical glass of the present invention which is a component which increases the refractive index of the glass and lowers the Abbe number, improves the devitrification resistance of the glass, and improves the meltability of the glass. In particular, the content of the w〇3 component was set to 20.0. /. Hereinafter, the partial dispersion ratio of the glass crucible can be made difficult to rise. Further, by setting the content of the W〇3 component to be %, the color of the glass can be reduced, and the internal transmittance of the glass can be improved. Therefore, the upper limit of the content of the w〇3 component is preferably set to 20.0/〇, more preferably i〇.〇〇/〇, with respect to the total mass of the glass composed of the oxide conversion I63468.doc -22· 201249769. Good is 5 〇%. Further, since the component is an optional component, it may not be contained. However, by containing 〇1% or more of the w〇3 component, a glass having a smaller Abbe number can be obtained. Further, the devitrification resistance at the time of glass formation can be improved, and devitrification or coloration upon reheating can be reduced. Therefore, the lower limit of the content of the component with respect to the total mass of the glass of the oxide-converted composition is preferably set to 0.1%, more preferably 5%, and most preferably i 〇%. For the w〇3 component, W03 or the like can be used as a raw material.

Te〇2成分係提高玻璃之折射率,降低玻璃之部分分散 比’降低玻璃轉移點(Tg)之成分,為本發明之光學玻璃中 之任意成分。尤其藉由將Te02成分之含量設為30.0%以 下’可減少玻璃之著色’可提高玻璃相對於可見光之透過 率。又,藉由減少價格昂貴之Te〇2成分之使用,可獲得材 料成本更低廉之玻璃》因此’相對於氧化物換算組成之玻 璃總物質量’ Te〇2成分之含量之上限較佳為設為3〇〇%, 更佳為20.0%,最佳為1〇 〇%。Te〇2成分可使用Te〇2等作為 原料。The Te〇2 component is a component which increases the refractive index of the glass and lowers the partial dispersion ratio of the glass, and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, the transmittance of the glass with respect to visible light can be improved by setting the content of the Te02 component to 30.0% or less to reduce the color of the glass. Further, by reducing the use of the expensive Te〇2 component, it is possible to obtain a glass having a lower material cost. Therefore, the upper limit of the content of the Te〇2 component relative to the oxide-converted composition is preferably set. It is 3〇〇%, more preferably 20.0%, and most preferably 1%. As the Te〇2 component, Te〇2 or the like can be used as a raw material.

Zr〇2成分係提高玻璃之折射率,提高耐失透性,並且降 低玻璃之部分分散比之成分,為本發明之光學玻璃中之任 意成分。尤其藉由將Zr02成分之含量設為15.0%以下,可 使玻璃易於在更低溫下熔解,且可容易地獲得更均質之玻 璃。因此’相對於氧化物換算組成之玻璃總物質量,Zr〇2 成分之含量之上限較佳為設為15 〇%,更佳為12 〇%,最佳 為10.0% °再者’亦可不含有Zr〇2成分,但藉由含有Zr〇2 163468.doc -23- 201249769 成分多於〇%,可提高玻璃之折㈣,並且可容易地進一 步降低玻璃之部分分散比。又’藉此,可減少再加熱時之 失透或著色。因此’相對於氧化物換算組成之玻璃總物質 量,Zr〇2成分之含量之下限可較佳為設為多於〇%,更佳 為1.0%,進而更佳為4.〇%,進而更佳為45%,最佳為多於 5.5〇/〇。Zr02成分可使用Zr〇2、ZrF4等作為原料。The Zr〇2 component is an optional component in the optical glass of the present invention which increases the refractive index of the glass, improves the resistance to devitrification, and lowers the partial dispersion ratio of the glass. In particular, by setting the content of the ZrO 2 component to 15.0% or less, the glass can be easily melted at a lower temperature, and a more homogeneous glass can be easily obtained. Therefore, the upper limit of the content of the Zr〇2 component is preferably set to 15%, more preferably 12%, and most preferably 10.0%, relative to the total mass of the glass in terms of oxide conversion composition. Zr〇2 component, but by containing Zr〇2 163468.doc -23- 201249769 The composition is more than 〇%, the glass fold (4) can be increased, and the partial dispersion ratio of the glass can be easily further reduced. Further, by this, devitrification or coloration upon reheating can be reduced. Therefore, the lower limit of the content of the Zr〇2 component may be preferably set to more than 〇%, more preferably 1.0%, still more preferably 4.% by weight, and further more, relative to the total mass of the glass of the oxide-converted composition. The best is 45%, and the best is more than 5.5〇/〇. As the ZrO 2 component, Zr 〇 2, ZrF 4 or the like can be used as a raw material.

Ah〇3成分係提高玻璃之化學耐久性,提高玻璃之耐失 透性之成分,為本發明之光學玻璃中之任意成分。尤其藉 由將Ah〇3成分之含量設為15.〇%以下,可減少由a丨2〇3成 分之過剩之含有引起之失透…藉此,可減少再加熱時 之失透或著色。因此,相對於氧化物換算組成之玻璃總物 質量,AU〇3成分之含量之上限較佳為設為。〇%,更佳為 10.0%,最佳為 5.0%。a12〇3成分可使用 Al2〇3、A1(〇H)3、 A1F3等作為原料。The Ah〇3 component is a component which improves the chemical durability of the glass and improves the resistance of the glass to the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the Ah 〇 3 component to 15.5% or less, the devitrification caused by the excessive content of the a 丨 2 〇 3 component can be reduced. Thereby, the devitrification or coloring at the time of reheating can be reduced. Therefore, the upper limit of the content of the AU〇3 component is preferably set to the total mass of the glass of the oxide-converted composition. 〇%, more preferably 10.0%, and most preferably 5.0%. As the raw material of a12〇3, Al2〇3, A1(〇H)3, A1F3 or the like can be used as a raw material.

Sb2〇3成分係促進玻璃之脫泡,澄清玻璃之成分,為本 發明之光學玻璃中之任意成分。相對於玻璃總物質量,藉 由將Sfc&gt;2〇3成刀之3量設為〗0〇/〇以下,可使於玻璃炫融時 不易產生過度之發泡,可使Sb203成分不易與溶解設備(尤 其Pt等貴金屬)合金化。因此,8152〇3成分之含量之上限較佳 為·•又為1.0/。’更佳為〇.8%,進而更佳為〇 6%。然而,於重 視光學玻璃對於環境之影響之情形時,較佳為不含#sb203 成刀。Sb2〇3成分可使用 Sb2〇3、Sb2〇5、Na2H2Sb2〇7.5H2〇 等 作為原料。 再者,澄清玻璃並脫泡之成分並不限定於上述%03成 163468.doc •24- 201249769 分’可使用玻璃製造之領域中公知之澄清劑或脫泡劑、或 該專之組合。 於本發明之光學玻璃中,B2〇3成分之含量相對於Si〇2成 分之含量之比率較佳為丨.00以了。si〇2成分與B2〇3成分相 比’為易於使玻璃之熔解性惡化之成分,因此藉由減小該 比率’避免高溫下之熔解,藉此可容易地獲得著色更少之 玻璃》又,藉由減小該比率,亦可提高化學耐久性或由再 加熱引起之失透性。因此,氧化物換算組成之莫耳比 (BaCVSiO2)之上限較佳為設為丨〇〇,更佳為〇 8〇,最佳為 0.50。 &lt;關於不應含有之成分&gt; 其次’說明本發明之光學玻璃中不應含有之成分、及含 有欠佳之成分。 於本發明之光學玻璃中,可於無損玻璃之特性之範圍内 視需要添加其他成分。 然而,除 Ti、Zr、Nb 以外,V、Cr、Mn、Co、Ni、 Cu、Ag及Mo等各過渡金屬成分即便於單獨或複合地少量 含有各自之情形時,亦具有使玻璃著色、吸收可見域之特 定之波長之光的性質,因此尤其於使用可見區域之波長之 光學玻璃中’較佳為實質上不含有。 進而’ Pb〇等鉛化合物及As2〇3等砷化合物、以及几、 Cd、Tl、Os、Be、Se之各成分於近年來作為有害之化學物 資,存在控制使用之傾向,不僅於玻璃之製造步驟中,於 加工步驟、及直至製品化後之處理為止均需要環境對策方 163468.doc •25- 201249769 面之措施。因此’於重顏措4在 袁境方面之影響之情形時,較佳 為除不可避免之混入以外管 貫質上不含有該等。藉此,使光The Sb2〇3 component promotes defoaming of the glass and clarifies the composition of the glass, and is an optional component in the optical glass of the present invention. By setting the amount of Sfc>2〇3 to 3 〗/〇 with respect to the total mass of the glass, it is possible to prevent excessive foaming when the glass is dazzled, and it is difficult to dissolve the Sb203 component. Equipment (especially precious metals such as Pt) is alloyed. Therefore, the upper limit of the content of the 8152〇3 component is preferably 1.0·. ‘More preferably 〇.8%, and even better 〇 6%. However, in the case of focusing on the influence of the optical glass on the environment, it is preferred that the #sb203 is not included. As the raw material, Sb2〇3, Sb2〇5, Na2H2Sb2〇7.5H2〇 or the like can be used as the Sb2〇3 component. Further, the component for clarifying the glass and defoaming is not limited to the above-mentioned %03 to 163468.doc •24 to 201249769, and a clarifying agent or a defoaming agent known in the field of glass production, or a combination thereof may be used. In the optical glass of the present invention, the ratio of the content of the B2〇3 component to the content of the Si〇2 component is preferably 丨.00. Since the si〇2 component is a component which is easy to deteriorate the meltability of the glass compared with the B2〇3 component, the melting at a high temperature is avoided by reducing the ratio, whereby the glass having less coloration can be easily obtained. By reducing the ratio, chemical durability or devitrification caused by reheating can also be improved. Therefore, the upper limit of the molar ratio (BaCVSiO2) of the oxide-converted composition is preferably set to 丨〇〇, more preferably 〇 8 〇, and most preferably 0.50. &lt;About the component which should not be contained&gt; Next, the component which should not be contained in the optical glass of the present invention and the component which is unsatisfactory are described. In the optical glass of the present invention, other components may be added as needed within the range of the characteristics of the non-destructive glass. However, in addition to Ti, Zr, and Nb, transition metal components such as V, Cr, Mn, Co, Ni, Cu, Ag, and Mo have coloring and absorbing the glass even when they are contained in a small amount individually or in combination. The nature of the light of a particular wavelength of the visible field is therefore 'preferably substantially absent, especially in optical glass using wavelengths in the visible region. Furthermore, the arsenic compounds such as lead compounds such as Pb〇 and As2〇3, and the components of several, Cd, Tl, Os, Be, and Se have been used as harmful chemical materials in recent years, and tend to be used not only in the manufacture of glass. In the step, environmental measures 163468.doc •25- 201249769 are required for the processing steps and until the post-product processing. Therefore, in the case of the influence of Yu Chongcuo 4 in terms of Yuan Jing, it is preferable that the quality is not included in the management except for the inevitable mixing. Thereby making light

學玻璃變得實質上不含有汚逛搭&amp; m L ’ /可朵環境之物質。因此,即便不 採取特殊之環境對策方面之姑缺 田疋措施,亦可製造、加工、及廢 棄該光學玻璃。 較佳地用作本發明之光學玻璃之玻璃,其組成係以相對 於氧化物換算組成之玻璃總物質量之莫耳%表示,因此並 非直接表述為質量%之記載,滿足本發明中所要求之各特 性之玻璃組成物中所存在之各成分之藉由質量%表示之組 成’以氧化物換算組成計,大致取以下值。The glass becomes essentially free of dirt and material that is used in the environment. Therefore, the optical glass can be manufactured, processed, and discarded without resorting to the lack of special environmental measures. It is preferably used as the glass of the optical glass of the present invention, and its composition is expressed by mol% of the total mass of the glass in terms of oxide composition, and therefore is not directly described as % by mass, and satisfies the requirements of the present invention. The composition represented by the mass % of each component present in the glass composition of each characteristic is approximately the following value in terms of oxide conversion composition.

Si〇2成分5·0〜30.0質量%Si〇2 component 5·0~30.0% by mass

BaO成分超過〇質量%〜35.〇質量〇/0 La2〇3成分超過〇質量。/。〜45·〇質量%及 Nb2〇5成分超過0質量%〜50.0質量% 以及The BaO component exceeds 〇 mass% to 35. 〇 mass 〇 / 0 La 2 〇 3 component exceeds 〇 mass. /. ~45·〇% by mass and Nb2〇5 components exceeding 0% by mass to 50.0% by mass and

Li2〇成分0〜5.0質量。/〇及/或 Ti02成分0〜15.0質量%及/或 B2O3成分〇〜30.0質量%及/或 MgO成分0〜5.0質量%及/或 CaO成分0〜1〇.〇質量。/0及/或 SrO成分0〜20.0質量%及/或 ZnO成分0〜25.0質量。/〇及/或 Na20成分0〜15.0質量%及/或 K20成分0〜25.0質量%及/或 163468.doc • 26- 201249769Li2〇 composition 0~5.0 mass. /〇 and/or Ti02 component 0 to 15.0% by mass and/or B2O3 component 〇~30.0% by mass and/or MgO component 0 to 5.0% by mass and/or CaO component 0 to 1〇. /0 and / or SrO component 0 to 20.0% by mass and / or ZnO component 0 to 25.0 mass. /〇 and/or Na20 component 0~15.0% by mass and/or K20 component 0~25.0% by mass and/or 163468.doc • 26- 201249769

CszO成分〇〜25·〇質量。/〇及/或 P2〇5成分0〜3 0.0質量%及/或 Ge02成分〇〜2〇.〇質量〇/〇及/或 Y2〇3成分0〜30·0質量。/〇及/或 Gd203成分〇〜40.0質量%及/或 Yb2〇3成分〇〜40.0質量%及/或 Ta205成分〇〜5〇.〇質量%及/或 Bi2〇3成分0〜50.0質量%及/或 WO3成分〇〜3〇.〇質量。/。及/或 Te02成分〇〜45.0質量。/0及/或 Zr〇2成分〇〜20.0質量%及/或 Al2〇3成分〇〜20.0質量%及/或 Sb»2〇3成分〇〜3.0質量〇/〇 以氧化物 再者,以下各成分之藉由質量。/〇表示之組成 換算組成計,亦可為以下範圍。CszO composition 〇 ~ 25 · 〇 quality. /〇 and/or P2〇5 component 0~3 0.0% by mass and/or Ge02 component 〇~2〇.〇Quality 〇/〇 and/or Y2〇3 component 0~30·0 mass. /〇 and/or Gd203 component 〇~40.0% by mass and/or Yb2〇3 component 〇~40.0% by mass and/or Ta205 component 〇~5〇.〇% by mass and/or Bi2〇3 component 0~50.0% by mass and / or WO3 ingredients 〇 ~ 3 〇 〇 quality. /. And / or Te02 ingredients 〇 ~ 45.0 quality. /0 and / or Zr 〇 2 components 〇 ~ 20.0% by mass and / or Al2 〇 3 components 〇 ~ 20.0% by mass and / or Sb»2 〇 3 components 〇 ~ 3.0 mass 〇 / 〇 with oxides, the following The quality of the ingredients. The composition of /〇 indicates the conversion composition, which can also be the following range.

BaO成分超過〇質量❶/〇〜3〇 〇質量%BaO composition exceeds 〇 mass ❶ / 〇 ~ 3 〇 〇 mass%

Nb205成分超過〇質量%〜5〇 〇質量 Li2〇成分0〜4.0質量%Nb205 component exceeds 〇 mass%~5〇 〇 quality Li2〇 component 0~4.0% by mass

Ti〇2成分0〜15.0質量% 62〇3成分〇~30.〇質量% 以氧化物換 又,以下各成分之藉由質量%表示之組成, 算組成計,亦可為以下範圍。Ti〇2 component 0 to 15.0% by mass 62〇3 component 〇~30. 〇% by mass. The composition of the following components by mass% may be the following range.

BaO成分超過〇質量%〜35 〇質量%BaO composition exceeds 〇 mass%~35 〇 mass%

Nb2〇5成分超過0質量%〜50.0質量% 163468.doc •27- 201249769Nb2〇5 component exceeds 0% by mass to 50.0% by mass 163468.doc •27- 201249769

Li2〇成分0〜5.0質量% Ti〇2成分0〜13.0質量% B2O3成分0〜15.0質量% [製造方法] 本發明之光學玻璃例如可以下诚 八n 述方式製作。即,以各成 刀成為特疋之含量之範圍内之方戎 J A 1句勻地混合上述原料, 將所製作之混合物投入鉑坩堝、 石央掛堝或氧化鋁坩堝中 進行粗熔融後,將其放入金坩堝、 鉑坩堝、鉑合金坩堝或 銀掛禍中,於謂〜Moot之溫度範圍中炫融3〜5小時,進 行搜拌均質化’進行消泡等後,設於1000〜喊之溫度 後’進行精㈣’除去脈紋,將㈣人模具中,進行緩冷 卻’藉此製作光學玻璃。 &lt;物性&gt; 本發明之光學玻璃較佳為具有特定之折射率及分散(阿 貝數)。更具體而言’本發明之光學玻璃之折射率⑹之下 限較佳為設為i.70,更佳為1.759,最佳為U0。另—方 面本發明之光學玻璃之折射率⑹之上限並無特別限 疋,多為約2.20以下,更具體而言為21〇以下,進而更具 體而β為2·〇〇以下。又,本發明之光學玻璃之阿貝數⑹ 之上限較佳為設為4〇,更佳為38,更佳為35,最佳為3 3。 另方面’本發明之光學玻璃之阿貝數(Vd)之下限並無特 别限定,多為約20以上,更具體而言為23以上,進而更具 體而。為25以上。藉由該等,光學設計之自由度擴大,進 而即便課求元件之薄型化亦可獲得較大之光之折射量。 163468.doc -28- 201249769 又,本發明之光學玻璃具有較低之部分分散比(eg, f)。更具體而言,於本發明之光學玻璃之部分分散比 (0g,F)與阿貝數(vd)之間,於vdS 31之範圍中滿足 (-0.00162xvd+0.63822)^ (0g » F)^ (-0.00275xvd+0.68 125) 之關係,且於vd&gt;31之範圍中滿足(·0.00162xvd+0.63822) S (eg,F)S (-0.00162xvd+0.64622)之關係。藉此,可獲得 具有接近正規線之部分分散比(0g,F)之光學玻璃,因此 可減少由該光學玻璃所形成之光學元件之色像差。此處, vdS31時之光學玻璃之部分分散比(0g,F)之下限較佳為Li2〇 component 0 to 5.0% by mass Ti〇2 component 0 to 13.0% by mass B2O3 component 0 to 15.0% by mass [Production method] The optical glass of the present invention can be produced, for example, in the following manner. In other words, the raw materials are uniformly mixed in a range of the content of each of the knives, and the prepared mixture is poured into a platinum crucible, a stone crucible, or an alumina crucible for coarse melting. It is placed in a gold crucible, platinum crucible, platinum alloy crucible or silver. In the temperature range of ~Moot, it is condensed for 3 to 5 hours, and homogenization is carried out. After defoaming, it is set at 1000~ After the temperature, 'fine (four)' removes the vein pattern, and (4) the person's mold is slowly cooled, thereby producing an optical glass. &lt;Physical Properties&gt; The optical glass of the present invention preferably has a specific refractive index and dispersion (Abbe number). More specifically, the lower limit of the refractive index (6) of the optical glass of the present invention is preferably set to i.70, more preferably 1.759, and most preferably U0. Further, the upper limit of the refractive index (6) of the optical glass of the present invention is not particularly limited, and is usually about 2.20 or less, more specifically 21 Å or less, and further more preferably β is 2 〇〇 or less. Further, the upper limit of the Abbe number (6) of the optical glass of the present invention is preferably set to 4 Å, more preferably 38, still more preferably 35, and most preferably 3 3 . On the other hand, the lower limit of the Abbe number (Vd) of the optical glass of the present invention is not particularly limited, and is usually about 20 or more, more specifically 23 or more, and furthermore. It is 25 or more. By this, the degree of freedom of the optical design is expanded, and even if the component is thinned, the amount of refraction of the larger light can be obtained. 163468.doc -28- 201249769 Further, the optical glass of the present invention has a lower partial dispersion ratio (eg, f). More specifically, between the partial dispersion ratio (0g, F) and the Abbe number (vd) of the optical glass of the present invention, it satisfies (-0.00162xvd+0.63822)^ (0g » F) in the range of vdS 31 The relationship of ^ (-0.00275xvd + 0.68 125), and satisfies the relationship of (·0.00162xvd+0.63822) S (eg, F)S (-0.00162xvd+0.64622) in the range of vd &gt; Thereby, an optical glass having a partial dispersion ratio (0g, F) close to a regular line can be obtained, so that chromatic aberration of the optical element formed of the optical glass can be reduced. Here, the lower limit of the partial dispersion ratio (0g, F) of the optical glass at the time of vdS31 is preferably

(-0.00162xvd+0.63822) ’ 更佳為(_〇.〇〇i62xvd+0.63922), 最佳為(-0.00162xvd+0.64022)。另一方面,Vd$ 31 時之光 學玻璃之部分分散比(0g ’ F)之上限較佳為(-0.00275 X vd+0.68125) ’ 更佳為(-〇.〇〇275xvd+(K68025),最佳為 (-0.00275χν&lt;1+0·67925)。又,Vd&gt;3l時之光學玻璃之部分分 散比(0g,F)之下限較佳為(-〇.〇〇i62xvd+0.63822),更佳為 (-0.00162xvd+0.63922) ’ 最佳為(_〇 〇〇162xvd+〇 64〇22)。 另一方面,Vd&gt;31時之光學玻璃之部分分散比(0g,F)之上 限較佳為(-0.00162xvd+0.64622),更佳為(_〇.〇〇i62xvd+ 0.64522),最佳為(-〇.〇〇i62xvd+〇.64422)。再者,尤其於 阿貝數(vd)較小之區域中,普通玻璃之部分分散比,F) 處於高於正規線之值,普通玻璃之部分分散比(0g,^與 阿貝數(vd)之關係係以曲線表示。然而,由於該曲線之近 似較為困難,故而於本發明中,使用以為分界而具 有不同斜度之直線表示部分分散比(eg,F)低於普通玻 163468.doc •29· 201249769 璃。 又,本發明之光學玻璃較佳為著色較少。尤其本發明之 光學玻璃若以玻璃之透過率表示,則以厚度10 mm之試樣 顯示为光透過率70%之波長(λ?。)為500 nm以下,更佳為470 nm以下,進而更佳為450 nm以下,最佳為43〇 nm以下。 又本發明之光學玻璃右以玻璃之透過率表示,則以厚度 10 mm之試樣顯示分光透過率80%之波長(九8())為56() nm以 下’更佳為540 nm以下’最佳為520 nm以下。又,本發明 之光學玻璃以厚度10 mm之試樣顯示分光透過率5%之波長 (λ5)為420 nm以下’更佳為400 nm以下,最佳為380 nm以 下。藉此,玻璃之吸收端位於紫外區域之附近,可見域中 之玻璃之透明性提高’因此該光學玻璃可較佳地用作透鏡 等光學元件之材料。 又’本發明之光學玻璃較佳為擠壓成形性良好。即,本 發明之光學玻璃較佳為用再加熱試驗(二)後之試驗片之波 長587.56 nm之光線(d線)之透過率除以再加熱試驗前之試 驗片之d線之透過率所得的值為095以上。又,較佳為再 加熱試驗(二)前之試驗片之透過率成為7〇0/〇之波長即λ7〇與 再加熱試驗後之試驗片之λ?。的差為20 nm以下。藉此,即 便進行假定再熱擠壓加工之再加熱試驗亦不易引起失透及 著色,藉此玻璃之光線透過率不易喪失,因此可容易地對 玻璃進行以再熱擠壓加工為代表之再加熱處理。即,由於 可利用擠壓成形製作複雜形狀之光學元件,故而可實現製 造成本低廉、且生產性良好之光學元件製造。 163468.doc •30· 201249769 此處,用再加熱試驗(二)後之試驗片 &lt;波長587 56⑽之 光線(d線)之透過率除以再加熱試驗(二)前之試驗片之d線 之透過率所得的值之下限較佳為設為0·95’更佳為〇96, 最佳為〇·97。X,再加熱試驗(二)前之試驗片之^與再加 •熱試驗(二)後之試驗片之“之差之上限較佳為設為20 • nm ’更佳為18 nm ’最佳為16 nm。 再者,再加熱試驗(二)係藉由如下方式進行:再加熱試 驗片15 mmxl5 mmx30 mm,自室溫開始歷時15〇分鐘升溫 至較各試樣之轉移溫度(Tg)高8(rc之溫度,於上述較光學 玻璃之玻璃轉移溫度(Tg)高80t之溫度下保溫3〇分鐘,其 後自然冷卻至常溫為止,將試驗片之相對向之2面研磨成 厚度10 mm後,目測觀察。 [預成形體及光學元件] 可由所製作之光學玻璃,例如使用再熱擠壓成形或精密 擠壓成形等模具擠壓成形之手段,製作玻璃成形體。即, 可由光學玻璃製作模具擠壓成形用之預成形體,對該預成 形體進行再熱擠壓成形後,進行研磨加工,製作玻璃成形 體’或者例如對於進行研磨加工所製作之預成形體進行精 • 密擠壓成形,製作玻璃成形體。再者,製作玻璃成形體之 - 手段並不限定於該等手段。 如此所製作之玻璃成形體對於各種光學元件有用,其 中’尤佳為用於透鏡或稜鏡等光學元件之用途。藉此,設 置有光學元件之光學系統之透過光中之由色像差引起之色 之模糊減輕。因此,於將該光學元件用於相機中之情形 163468.doc 31 201249769 時 了更正確地顯現出攝影對象物,於將該光學元件用於 才又影儀中之情形時,可高精彩地投影出所期望之影像。 [實施例] 將本發明之實施例(No.l〜No.33)及比較例(n〇.a〜No.d) 之組成、及折射率(nd)、阿貝數(Vd)、部分分散比(0g, F)、分光透過率顯示5%、70%及80%之波長(λ5、人7〇、 λβο)、以及再加熱試驗(二)前後之透過率之變動示於表卜 表6。再者,以下實施例之目的僅為例示,本發明並不限 定於該等實施例。 本發明之實施例(1^〇.1〜&gt;1〇.33)及比較例(]^0.八〜1^0.1))之 玻璃均選定各自相當之氧化物、氫氧化物、碳酸鹽、硕酸 鹽、II化物、氫氧化物、偏填酸化合物等通常光學玻璃中 所使用之高純度之原料作為各成分之原料,以成為表〗〜表 6中所示之各實施例及比較例之組成之比例之方式秤量, 並均勻地混合後,將其投入鉑坩堝中,根據玻璃組成之熔 融難易度,利用電爐於1100〜1400t之溫度範圍内熔解3〜5 小時,進行攪拌均質化,進行消泡等後,設於 1000〜1400°C並進行攪拌均質化後,將其鑄入模具中,進 行緩冷卻而製作玻璃。 此處’實施例(No.l〜No.33)及比較例(No.A〜No.D)之玻 璃之折射率(以)、阿貝數(vd)及部分分散比(0g,F)係基於 曰本光學硝子工業會規格jOGIS01-2〇03而測定。並且,對 於所求出之阿貝數(vd)及部分分散比(eg,F)之值,求出關 係式(eg,F)=-axvd+b中之於斜度a為0·00162及〇 〇〇275時之 163468.doc -32- 201249769 截距b。再者,本測定中所使用之玻璃係使用將緩冷卻降 溫速度設為-25°C /hr、利用緩冷卻爐進行有處理者。 又’實施例(No. 1〜No.33)及比較例(No.A〜No.D)之玻璃 之透過率係依據曰本光學硝子工業會規格J〇GIS〇2而測 定。再者,於本發明中,藉由測定玻璃之透過率,求出玻 璃之著色之有無與程度》具體而言,對於厚度丨〇±〇」mm 之相對面平行研磨品,依據JISZ8722,測定2〇〇〜8〇〇⑽之 分光透過率,求出透過率5%時之波長)、λ7〇(透過率7〇% 時之波長)及λ8〇(透過率80%時之波長)。 又,實施例(No.1〜No.33)及比較例(No.A〜No.D)之玻璃 之再加熱試驗(二)前後之透過率之變動係以如下方式進行 測定。 用再加熱試驗(二)後之試驗片之波長587,56 nm之光線 線)之透過率除以再加熱試驗前之試驗片之d線之透過率所 得的值係對於再加熱試驗(二)前後之玻璃,依據日本光學 硝子工業會規格jOGIS02_2003而進行。具體而言,對於厚 度10±0.1 mm之相對面平行研磨品,依據JISZ8722測定丄線 之分光透過率,求出(再加熱試驗(二)後之d線透過率)/(再 加熱試驗(二)前之d線透過率),評價再加熱試驗(二)前後 之最大透過率之變化。 另一方面,再加熱試驗(二)前之試驗片之透過率成為 70〇/〇之波長即人7〇與再加熱試驗後之試驗片之之差係對於 再加熱試驗(二)前後之玻璃,利用上述試驗方法求出 ?w〇(透過率70°/。時之波長),評價再加熱試驗(二)前之試驗 163468.doc •33· 201249769 片之λ7〇與再加熱試驗(二)後之試驗片之λ7〇之差。 此處,再加熱試驗(二)係利用如下方法進行:將i 5 mmxl5 mmx30 mm之試驗片載置於凹型耐火物上,放入電 爐中進行再加熱,自常溫開始歷時15〇分鐘升溫至較各試 樣之轉移溫度(Tg)高8(TC之溫度(陷入耐火物中之溫度), 於該溫度下保溫30分鐘後,冷卻至常溫為止,取出至爐 外’為了能夠於内部觀察,將相對向之2面研磨成厚度1〇 mm後,目測觀察經研磨之玻璃試樣。 163468.doc • 34_ 201249769 [表l] 實施例 1 2 3 4 5 6 7 8 Si02 36.50 36.50 36.50 36.50 36.50 36.50 32.80 36.50 BaO 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 L&amp;2〇3 6,40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 Nb2〇5 9.60 9.60 11.52 7.68 3.84 9.60 9.60 15.36 Li20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 Ti02 9.60 9.60 7.68 11.52 15.36 9.60 9.60 3.84 Na20 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 K20 MgO CaO SrO ZnO P2〇5 B】03 4.50 4.50 4.50 4.50 4.50 4.50 8.20 4.50 Y203 Gd2〇3 Yb203 T&amp;2〇5 Bi203 W〇3 Zr02 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 ai,o3 Sb203 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 總計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.667 0,667 0.667 Ti/Nb 1.000 1.000 0.667 1.500 4.000 1.000 1.000 0.250 Nb/(Si+B) 0.234 0.234 0.281 0.187 0.094 0.234 0.234 0.375 Li+Na+K 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Mg+Ca+Sr+Ba+Zn 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 Ba/(Mg+Ca+Sr+Ba+Zn) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 B/Si 0.123 0.123 0.123 0.123 0.123 0.123 0.250 0.123 nd 1.83890 1.83898 1.84757 1.82983 1.81075 1.83892 1.83835 1.86402 Vd 30.1 30.1 29,7 30.5 31.4 30.1 30.0 29.0 6g * F 0.5939 0.5944 0.5958 0,5942 0.5930 0.5956 0.5953 0.5985 載距 b(a=-0.〇〇162) 0.64267 0.64324 0.64391 0.64361 0.64390 0.64438 0.64394 0.64550 截距 1^=-0.00275) 0.67668 0.67725 0.67747 0.67807 0.67939 0.67840 0.67784 0.67827 λβοΓητη] 472 460 460 456 454 481 475 475 λ7〇[ητη1 411 405 404 404 405 414 412 407 λ5[ηηι1 353 351 351 352 353 353 353 349 試驗(二)後透過率/ 試驗(二)&amp;透過座 試驗㈡後λ70-試驗(二)前 163468.doc -35- 201249769 [表2] 實《 包例 9 10 11 12 13 14 15 16 Si02 32.80 36.50 36.50 36.50 36.50 34.50 36.50 36.50 BaO 6.40 6.40 6.40 6.40 6.40 6.40 4.40 8.40 La2〇3 6.40 6.40 640 6.40 6.40 6.40 6.40 4.40 Nb2〇s 15.36 9.60 11.52 9.60 9.60 9.60 9.60 11.52 Li20 9.00 9.00 9.00 7.00 9.00 9.00 9.00 9.00 Ti02 3.84 9.60 7.68 9.60 9.60 9.60 9.60 7.68 Na20 11.00 11.00 11.00 11.00 9.00 11.00 11.00 11.00 K20 MgO CaO SrO ZnO P2〇5 B2O3 8.20 4.50 4.50 6.50 6.50 6.50 6.50 4.50 y2〇3 Gd203 Yb2〇3 T&amp;2〇5 Bi203 W03 Zr〇2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 Al2〇3 Sb2〇3 0.01 0.01 0.01 .0.01 0.01 0.01 0.01 0.01 總計 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.667 0.563 0.667 Ti/Nb 0.250 1.000 0.667 1.000 1.000 1.000 1.000 0.667 Nb/(Si+B) 0.375 0.234 0.281 0.223 0.223 0.234 0.223 0.281 Li+Na+K 20.00 20.00 20.00 18.00 18.00 20.00 20.00 20.00 Mg+Ca+Sr+Ba+Zn 6.40 6.40 6.40 6.40 6.40 6.40 4.40 8.40 Ba/(Mg+Ca+SH-Ba+Zn) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 B/Si 0.250 0.123 0.123 0.178 0.178 0.188 0.178 0.123 nd 1.86360 1.83875 1.84764 1.83524 1.83997 1.83789 1.83267 1.84020 Vd 28.9 30.1 29.7 29.9 30.0 30.0 30.0 29.3 0g,F 0.5981 0.5944 0.5952 0.5924 0.5939 0.5927 0.5933 0.5960 截距 b(a=-0.00162) 0.64501 0.64324 0.64335 0.64091 0.64253 0.64137 0.64197 0.64349 載距 b(a=-0.00275) 0.67767 0.67725 0.67691 0.67470 0.67643 0.67527 0,67587 0.67659 λ8〇Γητη] 489 462 468 455 459 454 452 470 λ7〇[ητη] 413 405 405 402 404 402 402 411 λ5[ηηι] 350 352 351 353 353 351 352 353 試驗(二)後透過率/ 試驗(二)前透過率 試驗(二)後λ7〇_ 試驗(二)前λ70 -36- 163468.doc 201249769 [表3] 實施例 17 18 19 20 21 22 23 24 Si02 36.50 38.50 40.50 41.50 43.00 46.00 46.00 43.55 BaO 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.06 L&amp;2〇3 6,40 6.40 6.40 6.40 6.40 8.40 6.40 7.96 Nb205 9.60 9.60 9.60 9.60 9.60 7.60 7.60 7.19 Li20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 18.76 Ti02 9.60 9.60 9.60 9.60 9.60 9.60 9.60 9.09 Na20 9.00 9.00 9.00 9.00 9.00 6.00 6.00 0.75 K20 MgO CaO 2.00 SrO ZnO P2〇5 b2o3 6.50 4.50 2.50 1.50 Y2〇3 Gd2〇3 Yb2〇3 T&amp;2〇5 Bi2〇3 W〇3 Zr02 7.00 7.00 7.00 7.00 7.00 7.00 7.00 6.63 Al2〇3 Sb2〇3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 總計 100.0 100.0 100.0 100,0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.860 0.744 0.861 Ti/Nb 1.000 1.000 1.000 1.000 1.000 1.263 1.263 1.264 Nb/(Si+B) 0.223 0.223 0.223 0.223 0.223 0.165 0.165 0.165 Li+Na+K 18.00 18.00 18.00 18.00 18.00 15.00 15.00 19.51 . Mg+Ca十 SrfBa+Zn 6.40 6.40 6.40 6.40 6.40 6.40 8.40 6.06 EJa/(Mg+Ca+Sr+Ba+Zn) 1.000 1.000 1.000 1.000 1.000 1.000 0.762 1.000 B/Si 0.178 0.117 0.062 0.036 0.000 0.000 0.000 0.000 nd 1.84019 1.84049 1.84064 1.84059 1.84069 1.83232 1.82436 1.83885 vd 30.0 30.0 30.0 30.1 30.1 31.8 31.5 32.4 0g 1 F 0.5960 0.5957 0.5927 0,5947 0.5946 0.5902 0.5904 0.5893 載距 b(a=-0.00162) 0.64460 0.64439 0.64139 0.64354 0.64340 0.64180 0.64147 0.64184 載距 b(a=-0.00275) 0.67850 0.67829 0.67529 0.67755 0.67741 0.67773 0.67706 0.67845 λ8〇[ηιη] 465 464 472 462 466 422 429 446 λ7〇[ηπι] 408 406 407 407 406 387 390 394 λ5[ηιτι] 354 353 353 354 353 351 352 349 試驗(二)後透過率/ 試驗(二)前透過‘ 試驗㈡後λ70-試驗(二)前λ70 •37 · 163468.doc 201249769 [表4] 實施例 25 26 Si02 43.21 39.75 BaO 6.01 6.06 L&amp;2〇3 7.90 5.96 Nb2〇5 7.14 9.19 Li20 20.14 18.76 Ti02 9.02 5.89 Na20 0.75 K2〇 MgO CaO 2.00 SrO ZnO P2〇5 B2〇3 3.00 Y2〇3 Gd2〇3 Yb2〇3 Taj〇5 Bi2〇3 W〇3 2.00 Zr02 6.58 6.63 Al2〇3 Sb2〇3 0.01 0.01 總計 100.0 100.0 La+Ba/Nb+Ti 0.861 0.797 Ti/Nb 1.264 0.641 Nb/(Si+B) 0.165 0.215 Li+Na+K 20.14 19.51 Mg+Ca+S r+B a+Zn 6.01 8.06 Ba/(Mg+Ca+Sr+Ba+Zn) 1.000 0.752 B/Si 0.000 0.075 nd 1.83921 1.84081 Vd 32.5 31.5 0g · F 0.5887 0.5907 截距 b(a=-0.00162) 0.64143 0.64180 截距 b(a=-0.00275) 0.67816 0.67740 λ8〇[ητη] 444 461 λ7〇[ηηι] 395 403 λ5[ηηι] 349 350 試驗(二)後透過率/試驗(二)前透過率 試驗(二)後λ7£Γ試驗(二)前λ70 ·38· 163468.doc 201249769 [表5] 實施例 27 28 29 30 31 32 33 Si02 40.552 40.552 40.552 39.752 40.552 40.552 37.889 BaO 6.060 6.060 8.060 8.060 8.060 8.060 8.310 La2〇3 5.958 5.376 5,958 5.958 5.376 5.376 5.842 Nb2〇5 9.192 9.192 9,192 9.192 9.192 9,192 9.476 Li20 18.761 18.761 18.761 18.761 18.761 14.761 17.279 Ti02 6.126 5.672 6.126 5.890 5.672 5.672 5.341 Na20 0.745 0.745 0,745 0.745 0.745 4.745 2.830 K20 MgO CaO 2.000 2.000 SrO ZnO P2〇5 B2O3 3.000 3.000 3.000 3.000 3.000 3.000 3.093 y2〇3 Gd2〇3 Yb203 Τ^2〇5 Bi203 WO3 2.000 2.000 2.000 2.000 2.000 2.000 3.093 Zr02 5.595 6.631 5.595 6.631 6.631 6.631 6.836 AI2O3 Sb203 0.010 0.010 0.010 0.010 0.010 0.010 0.010 總計 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Ba/Nb+Ti 0.785 0.769 0.915 0.929 0.904 0.904 0.955 Ti/Nb 0.666 0.617 0.666 0.641 0.617 0.617 0.564 Nb/(Si+B) 0.211 0.211 0.211 0.215 0.211 0.211 0.231 Li+Na+K 19.506 19.506 19.506 19.506 19.506 19.506 19.506 Mg+Ca+Sr+Ba+Zn 8.060 8.060 8.060 8.060 8.060 8.060 8.060 Ba/(Mg+Ca+SrfBa+Zn) 0.752 0.752 1.000 1.000 1.000 1.000 1.000 B/Si 0.074 0.074 0.074 0.075 0.074 0,074 0.082 n&lt;j 1.83663 1.83465 1.83693 1.84087 1.83417 1.82625 1.84363 vd 31.6 31.6 31.6 31.6 31.7 31-6 31.3 0g ’ F 0.5913 0.5910 0.5910 0.5903 0.5907 0.5906 0.5911 戴距 b(a=-0.00162) 0.64251 0.64219 0.64227 0.64150 0.64209 0.64186 0.64188 戴距 b(a=-0.00275) 0.67822 0.67790 0.67798 0.67721 0.67791 0.67757 0.67725 λ8〇[ηπι] 458 454 458 460 462 453 457 λ7〇[ηιτι] 402 398 401 402 401 399 402 Xs[rm] 350 350 350 350 350 349 351 試驗(二)後透過率/試驗(二)前透過率 0.995 1.000 0.993 0.996 1.000 試驗(二)後λ7(Γ試驗(二)前λ70 2.0 1.5 1.5 -9,0 0Ό 163468.doc -39- 201249769 [表6] 比較例 A B C D Si02 28.47 14.43 5.33 9.23 BaO 1.04 1.55 La2〇3 1.55 3.85 3.69 2.31 Nb205 5.00 3.45 Li20 3.80 Ti02 11.43 11.01 19.05 19.83 Na20 1.63 K20 1.61 MgO 10.03 CaO 30.20 24.92 30.00 28.25 SrO 3.06 ZnO 8.16 5.91 P2〇5 B2O3 4.89 18.14 31.07 28.44 Y2O3 1.27 0.88 Gd:〇3 Yb203 Ta205 Bi2〇3 W03 0.58 Zr02 4.58 5.26 3.90 2.57 ai2〇3 5.70 3.88 Sb2〇3 0.01 0.01 0.01 0.01 總計 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.095 0.266 0.248 0.195 Ti/Nb 2.287 3.189 - - Nb/(Si+B) 0.150 0.106 0.000 0.000 Li+Na+K 0.00 7.04 0.00 0.00 Mg+Ca+Sr+Ba+Zn 38.37 34.95 36.95 32.85 Ba/(Mg+Ca+SH-Ba+Zn) 0.000 0.000 0.028 0.047 B/Si 0.172 1.257 5.825 3.082 n&lt;i 1.81714 1.80608 1.81728 1.78840 Vd 32.1 34.2 32.6 33.2 0g 1 F 0.5944 0.5877 0.59450 0.5955 截距 b(a=-0.00162) 0.64635 0.64309 0.64778 0.64924 截距 b(a=-0.00275) 0.68263 0.68174 0.68462 0.68676 λ80[ηηι] 461 454 478 474 λ7〇[ηηι] 408 402 422 418 λ5[ηηι] 359 349 363 363 試驗(二)後透過率/試驗(二)前透過率 0.000 0.111 0.998 1.000 試驗(二)後λ7〇-試驗(二)前λ70 - - 1.0 2.0 I63468.doc • 40- 201249769 如表1〜表6中所示’本發明之實施例之光學玻璃之 vds 31者之部分分散比,〇為卜〇 〇〇275xvd+〇 68125)以 下’更詳細而言,為(-〇.〇〇275xvd+0.67850)以下。又, vd&gt;31 者之部分分散比(0g,F)為(_〇 〇〇162xvd+〇 64622)以 下’更詳細而言,為(-〇.〇〇162xvd+0.64390)以下。另一方 面’本發明之實施例之光學玻璃之部分分散比(0g,F)為 (-0.00162xvd+0.63822)以上,更詳細而言,為(_0 00162x vd+0.64091)以上。即’關於本申請案之實施例之玻璃之部 分分散比(eg,F)與阿貝數(vd)之關係如圖2所示。因此, 得知該等之部分分散比(eg,F)處於所期望之範圍内。另 一方面’本發明之比較例(N〇.A、No.C、No.D)之玻璃為 vd&gt;31 ’ 部分分散比(0g,F)超過(_〇 〇〇162xvd+〇 64622)。 因此’得知本發明之實施例之光學玻璃與比較例(N〇. A、 No.C、No.D)之玻璃相比,部分分散比,F)較小β 又’本發明之實施例之光學玻璃之折射率(nd)均為17〇 以上,更詳細而言,為1.81以上,與此同時,該折射率 (nd)為2,20以下,更詳細而言,為187以下,處於所期望之 範圍内。 又,本發明之實施例之光學玻璃之阿貝數(Vd)均為2〇以 上,更詳細而言為28以上,與此同時,該阿貝數(、)為4〇 以下,更詳細而言為33以下,處於所期望之範圍内。另一 方面’本發明之比較例(N〇B)之玻璃之^超過34。因此, 得知本發明之實施例之光學玻璃與比較例(No.B)之玻璃相 比’阿貝數(vd)較小。 163468.doc 41 - 201249769 又’本發明之實施例之光學玻璃之λ7〇(透過率70%時之 波長)均為500 nm以下’更詳細而言為414 nm以下,進而 更詳細而言為407 nm以下。又’本發明之實施例之光學玻 璃之λ〆透過率5%時之波長)均為420 nm以下,更詳細而言 為359 nm以下,進而更詳細而言為355 nm以下〇又,本發 明之實施例之光學玻璃之λ8〇(透過率80%時之波長)均為56〇 nm以下,更詳細而言為489 nm以下,進而更詳細而言為 463 nm以下。因此,得知本發明之實施例之光學玻璃相對 於可見光之透過率較高且不易著色。 因此,得知本發明之實施例之光學玻璃之折射率(η。及 阿貝數(vd)處於所期望之範圍内,並且相對於可見光之透 過率較高’且色像差較小。 又,本發明之實施例之光學玻璃之用再加熱試驗(二)後 之試驗片之d線之透過率除以再加熱試驗前之試驗片之丄線 之透過率所得的值均為Q 95以上,更詳細而言為〇 ^以 上,處於所期望之範圍内…本發明之實施例之光學玻 璃之再加熱試驗(二)前後之試驗片t透過率^之差為2〇 nm以下’更詳細而·r為15⑽以下,處於所期望之範圍 内。另一方面’本發明之比較例(No.A、No.B)之玻璃之用 再加熱試驗(二)後之試驗片之d線之透過率除以再加熱試驗 前之忒驗片之d線之透過率所得的值未達〇 95,於再加熱 試驗(二)後,相對於 J見光之所有波長而透過率未遠 70〇/〇。因此,亦得知太 — 發月之貫施例之光學玻璃與比較例 (Νο.Α、Νο·Β)之玻璃相屮 a 邗比,不易產生由再加熱引起之著色 163468.doc -42- 201249769 或失透。 以上,於例示之目的τΛ μ 卜洋細說明了本發明,但望理解的 疋本實施例之目的僅為例示,各從業人員可於不脫離本 發明之,¾想及範®之情況τ施加諸多改變。 【圖式簡單說明】 圖1係表不部分分散比(eg,f)為縱軸且阿貝數(Vd)為橫 軸之正交座標中所表示之正規線之圖。 圖2係表示關於本申請案之實施例之玻璃之部分分散比 (Gg ’ F)與阿貝數(vd)之關係之圖。 163468.doc •43·(-0.00162xvd+0.63822) ‘ More preferably (_〇.〇〇i62xvd+0.63922), the best is (-0.00162xvd+0.64022). On the other hand, the upper limit of the partial dispersion ratio (0g 'F) of the optical glass at Vd$31 is preferably (-0.00275 X vd + 0.68125) 'better (-〇.〇〇275xvd+(K68025), the best It is (-0.00275χν&lt;1+0·67925). Further, the lower limit of the partial dispersion ratio (0g, F) of the optical glass at Vd&gt;3l is preferably (-〇.〇〇i62xvd+0.63822), more preferably (-0.00162xvd+0.63922) 'Best is (_〇〇〇162xvd+〇64〇22). On the other hand, the upper limit of the partial dispersion ratio (0g, F) of the optical glass at Vd&gt;31 is preferably (- 0.00162xvd+0.64622), more preferably (_〇.〇〇i62xvd+ 0.64522), the best is (-〇.〇〇i62xvd+〇.64422). Furthermore, especially in areas with small Abbe number (vd) , the partial dispersion ratio of ordinary glass, F) is higher than the regular line value, and the partial dispersion ratio of ordinary glass (0g, ^ and Abbe number (vd) is represented by a curve. However, since the curve is approximated Difficult, so in the present invention, a straight line having a different slope as a boundary indicates that the partial dispersion ratio (eg, F) is lower than that of ordinary glass 163468.doc •29·201249769 Further, the optical glass of the present invention is preferably less colored. In particular, the optical glass of the present invention, when expressed by the transmittance of glass, exhibits a wavelength of 70% of light transmittance (λ? The thickness of 500 nm or less is more preferably 470 nm or less, more preferably 450 nm or less, and most preferably 43 Å or less. Further, the optical glass of the present invention is expressed by the transmittance of glass, and the thickness is 10 mm. The sample shows a wavelength at which the spectral transmittance is 80% (9: 8) is below 56 () nm, more preferably below 540 nm, and most preferably below 520 nm. Further, the optical glass of the present invention has a thickness of 10 mm. The sample shows a wavelength of 5% of the light transmittance (λ5) of 420 nm or less, preferably 400 nm or less, and most preferably 380 nm or less. Thereby, the absorption end of the glass is located near the ultraviolet region, and the glass in the visible region is visible. The transparency is improved. Therefore, the optical glass can be preferably used as a material of an optical element such as a lens. Further, the optical glass of the present invention preferably has good extrusion moldability. That is, the optical glass of the present invention is preferably reheated. After the test (2), the test piece has a wavelength of 587.56 nm. The transmittance of (d line) divided by the transmittance of the d line of the test piece before the reheating test is 095 or more. Further, it is preferable that the transmittance of the test piece before the reheating test (2) becomes 7〇. The wavelength of 0/〇 is λ7〇 and the λ? of the test piece after the reheating test. The difference is below 20 nm. Therefore, even if the reheating test of the assumed reheat extrusion processing is performed, the devitrification and coloring are less likely to occur, whereby the light transmittance of the glass is not easily lost, so that the glass can be easily represented by reheat extrusion processing. Heat treatment. Namely, since an optical element having a complicated shape can be produced by extrusion molding, it is possible to manufacture an optical element which is inexpensive and has good productivity. 163468.doc •30· 201249769 Here, the transmittance of the test piece after the reheating test (2) &lt;wavelength of wavelength 587 56 (10) (d line) is divided by the d line of the test piece before the reheating test (2) The lower limit of the value obtained by the transmittance is preferably set to 0.95', more preferably 〇96, and most preferably 〇97. X, the upper limit of the test piece before the reheat test (2) and the test piece after the reheat test (2) is preferably set to 20 • nm 'better 18 nm 'best Further, the reheating test (2) was carried out by reheating the test piece 15 mm x 15 mm x 30 mm, and heating from room temperature for 15 minutes to a temperature higher than the transfer temperature (Tg) of each sample. (The temperature of rc is kept at a temperature 80t higher than the glass transition temperature (Tg) of the optical glass for 3 minutes, and then naturally cooled to normal temperature, and the opposite sides of the test piece are ground to a thickness of 10 mm. Visual observation. [Preform and optical element] A glass molded body can be produced by a method of extrusion molding of an optical glass to be produced, for example, by re-extrusion molding or precision extrusion molding, that is, it can be made of optical glass. A preform for mold extrusion molding, which is subjected to reheat extrusion molding, and then subjected to a polishing process to produce a glass molded body or, for example, a precision compaction of a preform produced by polishing. Forming, Further, the glass molded body is not limited to these means. The glass molded body thus produced is useful for various optical elements, among which 'especially for optical elements such as lenses or iridium. The use of the optical system provided with the optical element reduces the blurring of the color caused by the chromatic aberration. Therefore, when the optical element is used in a camera, 163468.doc 31 201249769 When the photographic object is correctly displayed, when the optical element is used in the photographic device, the desired image can be projected with great brilliance. [Embodiment] Embodiments of the present invention (No. 1 to No) .33) and comparative examples (n〇.a to No.d), and refractive index (nd), Abbe number (Vd), partial dispersion ratio (0g, F), spectral transmittance show 5%, 70 The fluctuations of the transmittances of % and 80% (λ5, human 7〇, λβο), and before and after the reheating test (2) are shown in Table 6. Further, the following examples are merely illustrative, the present invention It is not limited to the embodiments. Embodiments of the invention (1^〇. 1~&gt;1〇.33) and the comparative examples (]^0.8~1^0.1)) are all selected from the respective oxides, hydroxides, carbonates, sulphates, II compounds, and hydroxides. A high-purity raw material used in a usual optical glass such as a substance or an acid-filled compound is used as a raw material of each component, and is weighed so as to become a ratio of the composition of each of the examples and the comparative examples shown in Tables to Table 6, and After uniformly mixing, it is put into a platinum crucible, and melted in an electric furnace at a temperature of 1100 to 1400 t for 3 to 5 hours according to the melting difficulty of the glass composition, and stirred and homogenized, and after defoaming, etc., it is set at 1000. After homogenization by stirring at 1400 ° C, it was cast into a mold and slowly cooled to prepare a glass. Here, the refractive index (in), Abbe's number (vd), and partial dispersion ratio (0g, F) of the glass of the examples (No. 1 to No. 33) and the comparative examples (No. A to No. D) It is measured based on the specifications of the 光学本光光子工业会jOGIS01-2〇03. Further, for the values of the obtained Abbe number (vd) and the partial dispersion ratio (eg, F), the relationship (eg, F) = -axvd + b is obtained, and the slope a is 0·00162 and 〇〇〇275 hours 163468.doc -32- 201249769 Intercept b. Further, the glass used in the measurement was subjected to a slow cooling rate of -25 ° C /hr, and was treated by a slow cooling furnace. Further, the transmittances of the glass of the examples (No. 1 to No. 33) and the comparative examples (No. A to No. D) were measured in accordance with the specifications of the 光学 光学 硝 。 。 。 。 。 。 。 。 。. Further, in the present invention, the presence or absence of the color of the glass is determined by measuring the transmittance of the glass. Specifically, the opposite surface of the thickness is 丨〇±〇"mm, and the article is measured in accordance with JIS Z8722. The light transmittance of 〇〇8〇〇(10) is determined as the wavelength at which the transmittance is 5%), λ7〇 (the wavelength at which the transmittance is 7〇%), and λ8〇 (the wavelength at which the transmittance is 80%). Further, the changes in transmittance before and after the reheating test (2) of the glass of Examples (No. 1 to No. 33) and Comparative Examples (No. A to No. D) were measured as follows. The transmittance obtained by dividing the transmittance of the test piece after the reheating test (2) with the wavelength of 587, 56 nm by the transmittance of the d line of the test piece before the reheating test is for the reheating test (2) The glass before and after is carried out according to the specifications of the Japan Optical Glass Industry Association jOGIS02_2003. Specifically, for the opposite surface parallel polished product having a thickness of 10 ± 0.1 mm, the spectral transmittance of the ridge line is measured in accordance with JIS Z8722, and the (d-line transmittance after reheating test (2)) is obtained (reheating test (two) The d-line transmittance of the front) was evaluated for the change in the maximum transmittance before and after the reheating test (2). On the other hand, the transmittance of the test piece before the reheating test (II) becomes 70 〇 / 波长, that is, the difference between the 7 〇 and the test piece after the reheating test is the glass before and after the reheating test (2) Using the above test method to determine ?w〇 (wavelength at 70°/. transmittance), and evaluate the test before reheat test (2) 163468.doc •33·201249769 λ7〇 and reheat test (2) The difference between the λ7〇 of the subsequent test piece. Here, the reheating test (2) is carried out by placing a test piece of i 5 mm×l5 mm×30 mm on a concave refractory, placing it in an electric furnace for reheating, and heating from a normal temperature for 15 minutes. The transfer temperature (Tg) of each sample is 8 (the temperature of TC (the temperature in the refractory), and after holding at this temperature for 30 minutes, it is cooled to normal temperature and taken out to the outside of the furnace. After grinding to a thickness of 1 〇 mm on both sides, the ground glass sample was visually observed. 163468.doc • 34_ 201249769 [Table 1] Example 1 2 3 4 5 6 7 8 Si02 36.50 36.50 36.50 36.50 36.50 36.50 32.80 36.50 BaO 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 L&2〇3 6,40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 Nb2〇5 9.60 9.60 11.52 7.68 3.84 9.60 9.60 15.36 Li20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 Ti02 9.60 9.60 7.68 11.52 15.36 9.60 9.60 3.84 Na20 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 K20 MgO CaO SrO ZnO P2〇5 B]03 4.50 4.50 4.5 0 4.50 4.50 4.50 8.20 4.50 Y203 Gd2〇3 Yb203 T&2〇5 Bi203 W〇3 Zr02 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 ai,o3 Sb203 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.667 0,667 0.667 Ti/Nb 1.000 1.000 0.667 1.500 4.000 1.000 1.000 0.250 Nb/(Si+B) 0.234 0.234 0.281 0.187 0.094 0.234 0.234 0.375 Li+Na+K 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Mg+Ca+Sr+Ba+Zn 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 Ba/(Mg+Ca+Sr+Ba+Zn) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 B/Si 0.123 0.123 0.123 0.123 0.123 0.123 0.250 0.123 nd 1.83890 1.83898 1.84757 1.82983 1.81075 1.83892 1.83835 1.86402 Vd 30.1 30.1 29,7 30.5 31.4 30.1 30.0 29.0 6g * F 0.5939 0.5944 0.5958 0,5942 0.5930 0.5956 0.5953 0.5985 Load distance b (a=-0.〇〇162) 0.64267 0.64324 0.64391 0.64361 0.64390 0.64438 0.64394 0.64550 Intercept 1^=-0.00275) 0.67668 0.6772 5 0.67747 0.67807 0.67939 0.67840 0.67784 0.67827 λβοΓητη] 472 460 460 456 454 481 475 475 λ7〇[ητη1 411 405 404 404 405 414 412 407 λ5[ηηι1 353 351 351 352 353 353 353 349 Test (II) Post-transmission rate / test ( 2) &amp; pass-through test (2) after λ70-test (2) before 163468.doc -35- 201249769 [Table 2] Real "Package example 9 10 11 12 13 14 15 16 Si02 32.80 36.50 36.50 36.50 36.50 34.50 36.50 36.50 BaO 6.40 6.40 6.40 6.40 6.40 6.40 4.40 8.40 La2〇3 6.40 6.40 640 6.40 6.40 6.40 6.40 4.40 Nb2〇s 15.36 9.60 11.52 9.60 9.60 9.60 9.60 11.52 Li20 9.00 9.00 9.00 7.00 9.00 9.00 9.00 9.00 Ti02 3.84 9.60 7.68 9.60 9.60 9.60 9.60 7.68 Na20 11.00 11.00 11.00 11.00 9.00 11.00 11.00 11.00 K20 MgO CaO SrO ZnO P2〇5 B2O3 8.20 4.50 4.50 6.50 6.50 6.50 6.50 4.50 y2〇3 Gd203 Yb2〇3 T&amp;2〇5 Bi203 W03 Zr〇2 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 Al2〇 3 Sb2〇3 0. 01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.667 0.563 0.667 Ti/Nb 0.250 1.000 0.667 1.000 1.000 1.000 1.000 0.667 Nb/(Si+B 0.375 0.234 0.281 0.223 0.223 0.234 0.223 0.281 Li+Na+K 20.00 20.00 20.00 18.00 18.00 20.00 20.00 20.00 Mg+Ca+Sr+Ba+Zn 6.40 6.40 6.40 6.40 6.40 6.40 4.40 8.40 Ba/(Mg+Ca+SH-Ba+ Zn) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 B/Si 0.250 0.123 0.123 0.178 0.178 0.188 0.178 0.123 nd 1.86360 1.83875 1.84764 1.83524 1.83997 1.83789 1.83267 1.84020 Vd 28.9 30.1 29.7 29.9 30.0 30.0 30.0 29.3 0g,F 0.5981 0.5944 0.5952 0.5924 0.5939 0.5927 0.5933 0.5960 Intercept b(a=-0.00162) 0.64501 0.64324 0.64335 0.64091 0.64253 0.64137 0.64197 0.64349 Load distance b(a=-0.00275) 0.67767 0.67725 0.67691 0.67470 0.67643 0.67527 0,67587 0.67659 λ8〇Γητη] 489 462 468 455 459 454 452 470 λ7〇 [ητη] 413 405 405 402 404 402 402 411 λ5[ηηι] 350 352 351 353 353 351 352 353 After the test (2) transmittance / test (2) before the transmittance test (2) after λ7 〇 _ test (b) before λ70 -36- 163468.doc 201249769 [Table 3] Example 17 18 19 20 21 22 23 24 Si02 36.50 38.50 40.50 41.50 43.00 46.00 46.00 43.55 BaO 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.06 L&amp;2〇3 6,40 6.40 6.40 6.40 6.40 8.40 6.40 7.96 Nb205 9.60 9.60 9.60 9.60 9.60 7.60 7.60 7.19 Li20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 18.76 Ti02 9.60 9.60 9.60 9.60 9.60 9.60 9.60 9.09 Na20 9.00 9.00 9.00 9.00 9.00 6.00 6.00 0.75 K20 MgO CaO 2.00 SrO ZnO P2〇5 b2o3 6.50 4.50 2.50 1.50 Y2〇3 Gd2〇3 Yb2〇3 T&amp;2〇5 Bi2〇3 W〇3 Zr02 7.00 7.00 7.00 7.00 7.00 7.00 7.00 6.63 Al2〇3 Sb2〇3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Total 100.0 100.0 100.0 100,0 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.667 0.667 0.667 0.667 0.667 0.860 0.744 0.861 Ti/Nb 1.000 1.000 1.000 1.000 1.000 1.263 1.263 1. 264 Nb/(Si+B) 0.223 0.223 0.223 0.223 0.223 0.165 0.165 0.165 Li+Na+K 18.00 18.00 18.00 18.00 18.00 15.00 15.00 19.51 . Mg+Ca 十 SrfBa+Zn 6.40 6.40 6.40 6.40 6.40 6.40 8.40 6.06 EJa/(Mg+ Ca+Sr+Ba+Zn) 1.000 1.000 1.000 1.000 1.000 1.000 0.762 1.000 B/Si 0.178 0.117 0.062 0.036 0.000 0.000 0.000 0.000 nd 1.84019 1.84049 1.84064 1.84059 1.84069 1.83232 1.82436 1.83885 vd 30.0 30.0 30.0 30.1 30.1 31.8 31.5 32.4 0g 1 F 0.5960 0.5957 0.5927 0,5947 0.5946 0.5902 0.5904 0.5893 Load distance b(a=-0.00162) 0.64460 0.64439 0.64139 0.64354 0.64340 0.64180 0.64147 0.64184 Load distance b(a=-0.00275) 0.67850 0.67829 0.67529 0.67755 0.67741 0.67773 0.67706 0.67845 λ8〇[ηιη] 465 464 472 462 466 422 429 446 λ7〇[ηπι] 408 406 407 407 406 387 390 394 λ5[ηιτι] 354 353 353 354 353 351 352 349 After the test (2) transmittance / test (2) before the 'test (2) λ70- Test (2) before λ70 • 37 · 163468.doc 201249769 [Table 4] Example 25 26 Si02 43.21 39.75 BaO 6.01 6.06 L&amp;2〇3 7.90 5.9 6 Nb2〇5 7.14 9.19 Li20 20.14 18.76 Ti02 9.02 5.89 Na20 0.75 K2〇MgO CaO 2.00 SrO ZnO P2〇5 B2〇3 3.00 Y2〇3 Gd2〇3 Yb2〇3 Taj〇5 Bi2〇3 W〇3 2.00 Zr02 6.58 6.63 Al2〇3 Sb2〇3 0.01 0.01 Total 100.0 100.0 La+Ba/Nb+Ti 0.861 0.797 Ti/Nb 1.264 0.641 Nb/(Si+B) 0.165 0.215 Li+Na+K 20.14 19.51 Mg+Ca+S r+B a +Zn 6.01 8.06 Ba/(Mg+Ca+Sr+Ba+Zn) 1.000 0.752 B/Si 0.000 0.075 nd 1.83921 1.84081 Vd 32.5 31.5 0g · F 0.5887 0.5907 Intercept b (a=-0.00162) 0.64143 0.64180 Intercept b ( a=-0.00275) 0.67816 0.67740 λ8〇[ητη] 444 461 λ7〇[ηηι] 395 403 λ5[ηηι] 349 350 Test (2) Transmittance / Test (2) Front transmittance test (2) After λ7 £Γ Test (b) before λ70 · 38 · 163468.doc 201249769 [Table 5] Example 27 28 29 30 31 32 33 Si02 40.552 40.552 40.552 39.752 40.552 40.552 37.889 BaO 6.060 6.060 8.060 8.060 8.060 8.060 8.310 La2〇3 5.958 5.376 5,958 5.958 5.376 5.376 5.842 Nb2〇5 9.192 9.192 9,192 9.192 9.192 9,192 9.476 Li 20 18.761 18.761 18.761 18.761 18.761 14.761 17.279 Ti02 6.126 5.672 6.126 5.890 5.672 5.672 5.341 Na20 0.745 0.745 0,745 0.745 0.745 4.745 2.830 K20 MgO CaO 2.000 2.000 SrO ZnO P2〇5 B2O3 3.000 3.000 3.000 3.000 3.000 3.000 3.093 y2〇3 Gd2〇3 Yb203 Τ ^2〇5 Bi203 WO3 2.000 2.000 2.000 2.000 2.000 2.000 3.093 Zr02 5.595 6.631 5.595 6.631 6.631 6.631 6.836 AI2O3 Sb203 0.010 0.010 0.010 0.010 0.010 0.010 0.010 Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 La+Ba/Nb+Ti 0.785 0.769 0.915 0.929 0.904 0.904 0.955 Ti/Nb 0.666 0.617 0.666 0.641 0.617 0.617 0.564 Nb/(Si+B) 0.211 0.211 0.211 0.215 0.211 0.211 0.231 Li+Na+K 19.506 19.506 19.506 19.506 19.506 19.506 19.506 Mg+Ca+Sr+Ba+Zn 8.060 8.060 8.060 8.060 8.060 8.060 8.060 Ba/(Mg+Ca+SrfBa+Zn) 0.752 0.752 1.000 1.000 1.000 1.000 1.000 B/Si 0.074 0.074 0.074 0.075 0.074 0,074 0.082 n&lt;j 1.83663 1.83465 1.83693 1.84087 1.83 417 1.82625 1.84363 vd 31.6 31.6 31.6 31.6 31.7 31-6 31.3 0g ' F 0.5913 0.5910 0.5910 0.5903 0.5907 0.5906 0.5911 Wearing distance b (a=-0.00162) 0.64251 0.64219 0.64227 0.64150 0.64209 0.64186 0.64188 Wearing distance b (a=-0.00275) 0.67822 0.67790 0.67798 0.67721 0.67791 0.67757 0.67725 λ8〇[ηπι] 458 454 458 460 462 453 457 λ7〇[ηιτι] 402 398 401 402 401 399 402 Xs[rm] 350 350 350 350 350 349 351 Test (2) Transmittance / Test ( 2) Pre-transmission rate 0.995 1.000 0.993 0.996 1.000 Test (2) After λ7 (Γ test (2) before λ70 2.0 1.5 1.5 -9,0 0Ό 163468.doc -39- 201249769 [Table 6] Comparative example ABCD Si02 28.47 14.43 5.33 9.23 BaO 1.04 1.55 La2〇3 1.55 3.85 3.69 2.31 Nb205 5.00 3.45 Li20 3.80 Ti02 11.43 11.01 19.05 19.83 Na20 1.63 K20 1.61 MgO 10.03 CaO 30.20 24.92 30.00 28.25 SrO 3.06 ZnO 8.16 5.91 P2〇5 B2O3 4.89 18.14 31.07 28.44 Y2O3 1.27 0.88 Gd: 〇3 Yb203 Ta205 Bi2〇3 W03 0.58 Zr02 4.58 5.26 3.90 2.57 ai2〇3 5.70 3.88 Sb2〇3 0.01 0.01 0.01 0.01 Total 100.0 100.0 100.0 100.0 La+Ba/Nb+Ti 0.095 0.266 0.248 0.195 Ti/Nb 2.287 3.189 - - Nb/(Si+B) 0.150 0.106 0.000 0.000 Li+Na+K 0.00 7.04 0.00 0.00 Mg+Ca+Sr+Ba+Zn 38.37 34.95 36.95 32.85 Ba/(Mg+Ca+SH-Ba+Zn) 0.000 0.000 0.028 0.047 B/Si 0.172 1.257 5.825 3.082 n&lt;i 1.81714 1.80608 1.81728 1.78840 Vd 32.1 34.2 32.6 33.2 0g 1 F 0.5944 0.5877 0.59450 0.5955 Intercept b (a=-0.00162) 0.64635 0.64309 0.64778 0.64924 Intercept b (a=-0.00275) 0.68263 0.68174 0.68462 0.68676 λ80[ηηι] 461 454 478 474 λ7〇[ηηι] 408 402 422 418 λ5 [ηηι] 359 349 363 363 Test (II) Transmittance/Test (II) Front transmittance 0.000 0.111 0.998 1.000 Test (II) After λ7〇-Test (II) Before λ70 - - 1.0 2.0 I63468.doc • 40- 201249769 As shown in Tables 1 to 6, the partial dispersion ratio of the optical glass vds 31 of the embodiment of the present invention is hereinafter referred to as 〇〇〇 275xvd + 〇 68125 below. In more detail, it is (-〇. 〇〇 275xvd + 0.67850) below. Further, the partial dispersion ratio (0g, F) of vd &gt; 31 is (_〇 〇〇 162xvd + 〇 64622) or lower, and more specifically, (-〇.〇〇162xvd+0.64390) or less. On the other hand, the partial dispersion ratio (0g, F) of the optical glass of the embodiment of the present invention is (-0.00162xvd + 0.63822) or more, and more specifically, (_0 00162x vd + 0.64091) or more. That is, the relationship between the partial dispersion ratio (eg, F) and the Abbe number (vd) of the glass of the embodiment of the present application is as shown in Fig. 2. Therefore, it is known that the partial dispersion ratios (eg, F) are within the desired range. On the other hand, the glass of the comparative example (N〇.A, No. C, No. D) of the present invention is vd&gt;31' partial dispersion ratio (0g, F) exceeds (_〇 〇〇 162xvd + 〇 64622). Therefore, it is understood that the optical glass of the embodiment of the present invention has a partial dispersion ratio, F) is smaller than that of the glass of the comparative example (N〇.A, No.C, No.D), and the embodiment of the present invention The refractive index (nd) of the optical glass is 17 Å or more, and more specifically, 1.81 or more. At the same time, the refractive index (nd) is 2, 20 or less, and more specifically, 187 or less. Within the expected range. Further, the optical glass of the embodiment of the present invention has an Abbe number (Vd) of 2 Å or more, more specifically 28 or more, and at the same time, the Abbe number (,) is 4 Å or less, and more specifically The statement is 33 or less and is within the expected range. On the other hand, the glass of the comparative example (N〇B) of the present invention exceeds 34. Therefore, it is found that the optical glass of the embodiment of the present invention has a smaller Abbe number (vd) than the glass of the comparative example (No. B). 163468.doc 41 - 201249769 Further, the λ7 光学 (wavelength at a transmittance of 70%) of the optical glass of the embodiment of the present invention is 500 nm or less 'more specifically 414 nm or less, and more specifically 407. Below nm. Further, the wavelength of the λ 〆 transmittance of the optical glass of the embodiment of the present invention is 420 nm or less, more specifically 359 nm or less, and more specifically 355 nm or less. Further, the present invention The λ8 光学 (wavelength at a transmittance of 80%) of the optical glass of the examples is 56 〇 nm or less, more specifically 489 nm or less, and more specifically 463 nm or less. Therefore, it is known that the optical glass of the embodiment of the present invention has a high transmittance with respect to visible light and is not easily colored. Therefore, it is known that the refractive index (η and the Abbe number (vd) of the optical glass of the embodiment of the present invention are within a desired range and the transmittance with respect to visible light is high' and the chromatic aberration is small. The transmittance of the d-line of the test piece after the reheating test (2) of the optical glass of the embodiment of the present invention is divided by the transmittance of the test line of the test piece before the reheating test, and the values obtained by the test are all above Q 95. More specifically, it is above ,^, and is within the desired range... The reheating test of the optical glass of the embodiment of the present invention (II) before and after the test piece t transmittance is less than 2 〇 nm. And r is 15 (10) or less, which is within the desired range. On the other hand, the d-line of the test piece after the reheating test (2) of the glass of the comparative example (No. A, No. B) of the present invention The transmittance is divided by the transmittance of the d-line of the test piece before the reheating test, and the value obtained is less than ,95. After the reheating test (2), the transmittance is not farther than 70 for all wavelengths of light. /〇. Therefore, I also know that the optical glass and ratio of the application of the moon The glass phase 屮 a 邗 ratio of the case (Νο.Α, Νο·Β) is not easy to produce the coloring caused by reheating 163468.doc -42- 201249769 or devitrification. Above, for the purpose of illustration τΛ μ The present invention is intended to be understood as being merely illustrative, and various practitioners may apply various changes without departing from the scope of the invention. [FIG. 1 is a simplified description] The partial dispersion ratio (eg, f) is the vertical axis and the Abbe number (Vd) is the normal line indicated by the orthogonal coordinates of the horizontal axis. Fig. 2 is a view showing a portion of the glass relating to the embodiment of the present application. A plot of the relationship between the dispersion ratio (Gg 'F) and the Abbe number (vd). 163468.doc •43·

Claims (1)

201249769 七、申請專利範圍: 1. 一種光學玻璃,其係相對於氧化物換算組成之玻璃總物 質量,以莫耳%計,含有Si02成分10.0%以上60.0%以 下、BaO成分多於0%且25.0%以下、La2〇3成分多於0〇/〇且 15.0%以下、及Nb205成分多於0%且20·0°/〇以下,於部分 分散比,F)與阿貝數(vd)之間,於vdS 31之範圍中滿足 (-0.00162xvd+0.63822)^ (0g &gt; F)^ (-0.00275xvd+0.68125) 之關係,於vd&gt;31之範圍中滿足(·〇.〇〇i62xvd+0.63822)S (eg,F)g(-0.00162xvd+0.64622)之關係。 2·如請求項1之光學玻璃’其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計,含有Ba〇成分多於0%且 20.0%以下、及Nb2〇5成分多於0%且未達19.5%。 3·如請求項1之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計,LhO成分之含量為3〇〇%以 下。 4 ·如請求項1之 玻璃總物質#,以莫耳%計,含有⑽成分多於〇%且 30.0%以下。 5·如請求们之光學玻璃’其中相對於氧化物換算植成之 玻璃總物質量,以莫耳%計,Ti〇2成分之 20.0%。 置禾達 6.如請求们之光學玻璃,其中相對於氧化物換 二璃總物質量,以莫耳%計,吨成分之含量為㈣以 163468.doc 201249769 7. 如請求項1之光學玻璃,#中氧化物換算組成之莫耳比 (Ba0+La203)/(Nb205+Ti02)為 〇.05 以上。 ' 8. 如請求項1之光學玻璃,其中氧化物換算組成之莫耳比 Ti02/Nb2〇5為 5.0以下。 、 9. 如請求項1之光學纟璃,纟中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計,b2〇3成分之含量為4〇心以 下。 10. 如請求項丨之光學玻璃,其中相對於氧化物換算组成之 玻璃總物質量,以莫耳%計,B2〇3成分之含量為2〇〇%以 下。 11. 如請求項丨之光學玻璃,其中氧化物換算組成之莫耳比 Nb205/(Si〇2+B203)為 0.070以上。 12. 如請求項丨之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,以莫耳〇/〇計, Mg〇成分0〜20.0%及/或 CaO成分〇〜20.0%及/或 SrO成分〇〜20.0%及/或 ZnO成分 〇〜30.0%。 13. 如請求項!之光學玻璃,纟中相對於氧化物換算組成之 玻璃總物質量,RO成分(式中,尺為選自由Mg、U、 Sr、Ba、Zn所組成之群中之丨種以上)之莫耳和為35〇% 以下。 14. 如請求項丨之光學玻璃,其中氧化物換算組成之莫耳比 Ba〇/R〇(式中,R為選自由Mg、Ca、〜 ' 以、組成 163468.doc 201249769 之群中之1種以上)為0.20以上。 15. 如請求们之光學玻璃,其中相對於氧化物換算組成之 玻璃總物質量,以莫耳%計, Na2〇成分〇〜25.0%及/或 , K2〇成分0〜25.0%及/或 • Cs2〇成分 〇〜10.0%。 16. 如請求们之光學玻璃’其中相對於氧化物換算組成之 玻璃總物質量,Rn20成分(式中,⑽選自由u、Na、 K、Cs所組成之群中之丨種以上)之莫耳和為3〇〇%以下。 17. 如磧求们之光學玻璃’其中相對於氡化物換算組成之 玻璃總物質量,以莫耳%計, p2〇5成分〇〜30.0%及/或 Ge〇2成分0〜20.0°/。及/或 γ2〇3成分0〜15.0%及/或 Gd2〇3成分0〜15.0%及/或 Yb2〇3成分0〜15.0%及/或 Ta2〇5成分0〜15.0%及/或 Bi2〇3成分0〜15.0%及/或 * W〇3成分〇〜20 0%及/或 . Te〇2成分0〜30.0%及/或 Zr〇2成分0〜15.0%及/或 A12〇3成分 0~15.0%及/或 Sb2〇3 成分 0~1.0°/〇。 18.如請求们之光學玻璃’其中氧化物換算組成之莫耳比 163468.doc 201249769 (B2〇3/Si02)為 1.00以下。 19. 如請求項!之光學玻璃,其具有17〇以上195以下之折射 率(nd),且具有20以上40以下之阿貝數(vd)。 20. 如請求項丨之光學玻璃,其中分光透過率顯示7〇%之波長 (λ7〇)為 500 nm以下。 21. 如請求項丨之光學玻璃,其中用再加熱試驗(二)後之試驗 片之波長587.56 nm之光線(d線)之透過率除以上述再加 熱s式驗前之试驗片之d線之透過率所得的值成為095以 上, [再加熱試驗(二):將試驗片15 mmxl5 mmx30 mm再 加熱’自室溫開始歷時1 5 0分鐘升溫至較各試樣之轉移 溫度(Tg)高80°C之溫度’於上述較光學玻璃之玻璃轉移 溫度(Tg)高80 C之溫度下保溫3 0分鐘,其後自然冷卻至 常溫為止,將試驗片之相對向之2面研磨成厚度10 mm 後,目測觀察]。 22. 如請求項1之光學玻璃,其中再加熱試驗(二)前之試驗片 之透過率成為70%之波長即λ·7〇與上述再加熱試驗後之試 驗片之λ70之差為20 nm以下, [再加熱試驗(一).將试驗片15 mnixl5 mm&gt;&lt;30 mm再 加熱,自室溫開始歷時15 0分鐘升溫至較各試樣之轉移 溫度(Tg)高80°C之溫度’於上述較光學玻璃之玻璃轉移 溫度(Tg)高80°C之溫度下保溫30分鐘,其後自然冷卻至 常溫為止,將試驗片之相對向之2面研磨成厚度1〇 m m 後,目測觀察]。 163468.doc 201249769 23. 24. 25. 種研磨加工用及/或精密擠壓成形用之預成形體,其包 含如請求項1至22項中任一項之光學玻璃。 一種光學元件,其係研削及/或研磨如請求項i至項中 任一項之光學玻璃而成。 一種光學元件,其係精密擠壓成形如請求項i至22項中 任一項之光學玻璃而成。 163468.doc201249769 VII. Patent application scope: 1. An optical glass containing SiO2 component of 10.0% or more and 60.0% or less and BaO component of more than 0%, based on the total mass of the glass in terms of oxide conversion composition. 25.0% or less, La2〇3 component is more than 0〇/〇 and 15.0% or less, and Nb205 component is more than 0% and 20·0°/〇 or less, in partial dispersion ratio, F) and Abbe number (vd) In the range of vdS 31, the relationship of (-0.00162xvd+0.63822)^(0g &gt; F)^ (-0.00275xvd+0.68125) is satisfied, and is satisfied in the range of vd &gt; 31 (·〇.〇〇i62xvd+ 0.63822) S (eg, F) g (-0.00162xvd + 0.64622) relationship. 2. The optical glass of claim 1, wherein the total mass of the glass relative to the oxide-converted composition is more than 0% and 20.0% or less, and the Nb2〇5 component is more than 0% by mol%. % and less than 19.5%. 3. The optical glass according to claim 1, wherein the content of the LhO component is not less than 3 % by mol based on the total mass of the glass of the oxide conversion composition. 4. The total amount of the glass of the claim 1 is in the range of more than 〇% and 30.0% or less in terms of mol%. 5. The optical glass of the requester, wherein the total mass of the glass which is planted in terms of oxide is 20.0% of the Ti〇2 component in terms of mol%.禾禾达 6. As requested by the optical glass, which is based on the total mass of the oxide, in terms of mole %, the content of the ton component is (iv) to 163468.doc 201249769 7. Optical glass according to claim 1 The molar ratio (Ba0+La203)/(Nb205+Ti02) of the oxide conversion composition in ## is 〇.05 or more. 8. The optical glass of claim 1, wherein the molar ratio of the molar ratio Ti02/Nb2〇5 is 5.0 or less. 9. The optical glass of claim 1, wherein the content of the b2〇3 component is 4 〇 or less based on the total mass of the glass in terms of oxide conversion. 10. The optical glass of claim 1, wherein the content of the B2〇3 component is 2% or less based on the total mass of the glass in terms of oxide conversion. 11. The optical glass of claim ,, wherein the molar ratio of the molar ratio Nb205/(Si〇2+B203) is 0.070 or more. 12. The optical glass of claim 3, wherein the mass of the glass relative to the oxide-converted composition is 0 to 20.0% and/or the CaO composition 〇 20.0% and/or in terms of moir/〇 The SrO component is 220.0% and/or the ZnO component 〇30.0%. 13. As requested! The optical glass, the total mass of the glass in the bismuth relative to the composition of the oxide, and the RO component (wherein the ruler is selected from the group consisting of Mg, U, Sr, Ba, and Zn) And the sum is 35〇% or less. 14. The optical glass of claim 1 wherein the oxide is converted to a molar ratio of Ba 〇 / R 〇 (wherein R is selected from the group consisting of Mg, Ca, 〜 ', and consisting of 163468.doc 201249769 The above species is 0.20 or more. 15. The optical glass of the request, wherein the mass of the glass relative to the composition of the oxide is in terms of mole %, Na2〇 composition 〇~25.0% and/or, K2〇 composition 0~25.0% and/or Cs2〇 composition 〇~10.0%. 16. For the optical glass of the requester, the Rn20 component (wherein (10) is selected from the group consisting of u, Na, K, and Cs) The ear sum is below 3〇〇%. 17. The mass of the glass of the optical glass of the composition of the present invention, in terms of mol%, in terms of mol%, p2〇5 component 〇~30.0% and/or Ge〇2 component 0~20.0°/. And/or γ2〇3 component 0~15.0% and/or Gd2〇3 component 0~15.0% and/or Yb2〇3 component 0~15.0% and/or Ta2〇5 component 0~15.0% and/or Bi2〇3 Component 0~15.0% and/or * W〇3 component 〇~20 0% and/or. Te〇2 component 0~30.0% and/or Zr〇2 component 0~15.0% and/or A12〇3 component 0~ 15.0% and/or Sb2〇3 ingredients 0~1.0°/〇. 18. The Mohr ratio of 163468.doc 201249769 (B2〇3/Si02) of the optical glass of the requester is 1.00 or less. 19. As requested! The optical glass has a refractive index (nd) of 17 Å or more and 195 or less, and has an Abbe number (vd) of 20 or more and 40 or less. 20. The optical glass of claim ,, wherein the spectral transmittance shows that the wavelength of 7〇% (λ7〇) is 500 nm or less. 21. The optical glass of claim ,, wherein the transmittance of the light at the wavelength of 587.56 nm (d line) of the test piece after the reheating test (2) is divided by the test piece of the reheated s test before the test The value obtained by the transmittance of the line is 095 or more. [Reheating test (2): Reheating the test piece 15 mm x 15 mm x 30 mm 'The temperature is raised from room temperature for 150 minutes to a temperature higher than the transfer temperature (Tg) of each sample. The temperature of 80 ° C was kept at a temperature 80 ° higher than the glass transition temperature (Tg) of the optical glass for 30 minutes, and then naturally cooled to normal temperature, and the opposite sides of the test piece were ground to a thickness of 10 After mm, visual observation]. 22. The optical glass of claim 1, wherein the transmittance of the test piece before the reheat test (2) is 70%, that is, the difference between λ·7〇 and the λ70 of the test piece after the reheat test is 20 nm. Hereinafter, [reheating test (1). The test piece 15 mnixl5 mm&gt;&lt;30 mm was reheated, and the temperature was raised from room temperature for 15 minutes to a temperature higher than the transfer temperature (Tg) of each sample by 80 °C. 'The temperature is maintained at a temperature 80 ° C higher than the glass transition temperature (Tg) of the optical glass for 30 minutes, and then naturally cooled to room temperature, and the opposite sides of the test piece are ground to a thickness of 1 〇 mm, and then visually observed. Observed]. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. An optical component formed by grinding and/or grinding an optical glass according to any one of claims 1 to 3. An optical element formed by precisely extruding an optical glass according to any one of claims 1 to 22. 163468.doc
TW101111151A 2011-03-29 2012-03-29 Optical glass, preform and optical element TW201249769A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073359A JP2012206894A (en) 2011-03-29 2011-03-29 Optical glass, perform, and optical device
JP2011073358A JP2012206893A (en) 2011-03-29 2011-03-29 Optical glass, perform, and optical device

Publications (1)

Publication Number Publication Date
TW201249769A true TW201249769A (en) 2012-12-16

Family

ID=46931137

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111151A TW201249769A (en) 2011-03-29 2012-03-29 Optical glass, preform and optical element

Country Status (2)

Country Link
TW (1) TW201249769A (en)
WO (1) WO2012133421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621599B (en) * 2013-04-05 2018-04-21 Ohara Kk Optical glass, preforms and optical components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128007B (en) * 2017-07-03 2022-07-15 成都光明光电股份有限公司 Heavy lanthanum flint optical glass
US11787729B2 (en) 2020-05-18 2023-10-17 Corning Incorporated Glass compositions with high refractive indexes and low densities

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8605356A (en) * 1985-11-29 1987-08-04 Corning Glass Works GLASS FOR OPTICAL AND / OR OPHTHALMIC APPLICATIONS
JP3270022B2 (en) * 1998-04-30 2002-04-02 ホーヤ株式会社 Optical glass and optical products
JP5357429B2 (en) * 2008-01-31 2013-12-04 Hoya株式会社 Optical glass, glass material for press molding, optical element and method for producing the same, and method for producing optical element blank
WO2011016566A1 (en) * 2009-08-07 2011-02-10 株式会社オハラ Optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621599B (en) * 2013-04-05 2018-04-21 Ohara Kk Optical glass, preforms and optical components
TWI659004B (en) * 2013-04-05 2019-05-11 日商小原股份有限公司 Optical glass, preforms and optical components

Also Published As

Publication number Publication date
WO2012133421A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP4351730B2 (en) Optical glass
TW201223907A (en) Optical glass, preform material, and optical element
JP2006327926A (en) Optical glass
TW201231427A (en) Optical glass, preform, and optical element
JP6603449B2 (en) Glass, glass material for press molding, optical element blank, and optical element
TW201219333A (en) having a refractivity (nd) greater than 1.80 and an Abbe number (vd) ranging from 35 to 50
TWI612019B (en) Optical glass, preforms and optical components
TW201236993A (en) Optical glass, preform, and optical element
TWI789340B (en) Optical glass, preforms and optical components
TW201245078A (en) Optical glass, preform, and optical element
JP5271483B2 (en) Optical glass
JP2015024952A (en) Optical glass, optical element and method for producing glass molded body
JP2009203135A (en) Optical glass, optical element and preform for precision press molding
TW201139319A (en) Optical glass, preform and optical element
JP2023017903A (en) Optical glass and optical element
JP6396622B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6046376B2 (en) Optical glass
JP6280284B1 (en) Glass, glass material for press molding, optical element blank, and optical element
JP6804264B2 (en) Optical glass, preforms and optics
JP2018104283A (en) Glass, glass material for press molding, optical element blank and optical element
TW202113397A (en) Optical glass and optical element in which the optical glass has a desired optical constant and excellent stability upon reheating
TW201249769A (en) Optical glass, preform and optical element
TW201731785A (en) Optical glass, preform material and optical element
JP6163620B1 (en) Optical glass and optical element
TWI549920B (en) Optical glass, preform and optical element