WO2010038597A1 - Optical glass and method for suppressing the deterioration of spectral transmittance - Google Patents

Optical glass and method for suppressing the deterioration of spectral transmittance Download PDF

Info

Publication number
WO2010038597A1
WO2010038597A1 PCT/JP2009/065920 JP2009065920W WO2010038597A1 WO 2010038597 A1 WO2010038597 A1 WO 2010038597A1 JP 2009065920 W JP2009065920 W JP 2009065920W WO 2010038597 A1 WO2010038597 A1 WO 2010038597A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
glass
optical glass
content
optical
Prior art date
Application number
PCT/JP2009/065920
Other languages
French (fr)
Japanese (ja)
Inventor
進 上原
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to CN2009801381370A priority Critical patent/CN102164866A/en
Publication of WO2010038597A1 publication Critical patent/WO2010038597A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to optical glass and a method for suppressing deterioration of spectral transmittance.
  • Such optical elements can be produced by grinding and polishing molded glass obtained by heating and softening a glass material (reheat press molding), or by grinding and polishing a gob or glass block.
  • a method precision press molding is used in which a material or a preform material formed by known flotation molding is heat-softened and pressure-molded with a mold having a highly accurate molding surface.
  • Patent Document 1 discloses an optical glass having a refractive index (n d ) of 1.63 to 1.75 and an Abbe number ( ⁇ d ) of 23 to 35.
  • Patent Document 2 discloses an optical glass having a refractive index (n d ) of 1.80 or more and an Abbe number ( ⁇ d ) of 30 or less.
  • the glasses disclosed in Patent Documents 1 and 2 have a problem of solarization in which the spectral transmittance is reduced by ultraviolet rays contained in sunlight or the like. Since the glass having a large solarization is colored by being irradiated with ultraviolet rays for a long time, it has been difficult to maintain a desired spectral transmittance at the beginning of manufacture.
  • the object of the present invention has been made in view of the above-mentioned problems, and the object of the present invention is to provide an optical glass and a method for suppressing deterioration of spectral transmittance in which deterioration of spectral transmittance with time is suppressed. There is to get.
  • the present inventors have conducted intensive test studies, and as a result, the content of the Sb 2 O 3 component contained in the optical glass is reduced, and more preferably Pt mixed in the optical glass.
  • the content of the component and / or Fe component it was found that solarization of the optical glass was reduced, and the present invention was completed.
  • the present invention provides the following.
  • the content of the Sb 2 O 3 component is 0.5% or less by mass% with respect to the total glass mass of the oxide equivalent composition, and solarization (amount of degradation of spectral transmittance at a wavelength of 450 nm) is 5.
  • Optical glass that is 0% or less.
  • the optical glass according to any one of (1) to (8) which has a glass transition point (Tg) of 400 ° C. or higher and 650 ° C. or lower.
  • the present invention by reducing the content of Sb 2 O 3 component contained in the optical glass, more preferably by adjusting the content of Pt component and / or Fe component mixed in the optical glass, It is possible to obtain an optical glass in which the solarization of the optical glass due to long-time irradiation is reduced and a method for suppressing the deterioration of spectral transmittance.
  • Sb 2 O 3 ingredient content is a diagram showing the relationship between content and solarization of Pt component. It is a figure which shows the relationship between content of Fe component, and solarization.
  • the content of Sb 2 O 3 component is 0.5% or less by mass% with respect to the total mass of the glass having an oxide equivalent composition, and solarization (amount of degradation of spectral transmittance at a wavelength of 450 nm). ) Is 5.0% or less.
  • degradation suppression method of the spectral transmittance of the glass of the present invention is to reduce the content of Sb 2 O 3 component contained in the glass.
  • Sb 2 O 3 component contained in the glass solarization of the optical glass is reduced. For this reason, it is possible to more reliably produce a lens preform or an optical element in which deterioration of the spectral transmittance over time is suppressed.
  • optical glass First, components and physical properties of the optical glass of the present invention will be described.
  • the glass used in the spectral transmittance deterioration suppressing method of the present invention is not particularly limited as long as the content of the Sb 2 O 3 component is not more than a predetermined glass, but among them, optical glass as described below is used. Preferably there is.
  • the composition range of each component constituting the optical glass of the present invention will be described below.
  • the contents of the respective components are all expressed in mass% with respect to the total glass mass of the oxide conversion composition.
  • the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted.
  • the composition represents each component contained in the glass, with the total mass of the generated oxide being 100% by mass.
  • the Sb 2 O 3 component is a component having a defoaming effect when the glass is melted, but it contributes to the enhancement of solarization of the optical glass by irradiation with ultraviolet rays.
  • the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 0.5%, more preferably 0.3%, and most preferably 0.2%.
  • the content of Sb 2 O 3 component is not particularly disadvantageous technically Within this range, as shown in FIG.
  • the content of the Sb 2 O 3 component greater than 0% thus, solarization can be reduced as compared with the case where no Sb 2 O 3 component is contained. Therefore, the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide equivalent composition is preferably more than 0%, more preferably 0.0001%, and most preferably 0.001%.
  • the Sb 2 O 3 component for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 ⁇ 5H 2 O, or the like can be used as a raw material.
  • the Pt component is a component that is mixed into the optical glass from a member such as a platinum crucible when the optical glass is manufactured, which contributes to an increase in solarization of the optical glass by irradiation with ultraviolet rays.
  • a member such as a platinum crucible when the optical glass is manufactured
  • the content of the Pt component of the optical glass is preferably 15 ppm, more preferably 10 ppm, and most preferably 7 ppm.
  • the Pt component is a component contained in the optical glass by elution from a member containing platinum, such as a platinum crucible, even if the Pt component is not included as a material. Therefore, for example, by shortening the melting time of the glass in the platinum crucible or lowering the melting temperature of the glass, the mixing amount into the optical glass can be reduced. As shown in FIG. 2, in addition to the suppression of the content of the Pt component, the suppression of the content of the Sb 2 O 3 component is simultaneously performed, so that the solarization of the optical glass is more easily reduced. Also at this time, by making the content of the Sb 2 O 3 component more than 0%, solarization can be lowered as compared with the case where the Sb 2 O 3 component is not contained.
  • the Fe component is a component mixed into the optical glass, for example, as an impurity of the raw material of the optical glass when the optical glass is manufactured, and contributes to the enhancement of solarization of the optical glass by irradiation with ultraviolet rays.
  • the upper limit of the content of the Fe component with respect to the total glass mass of the oxide conversion composition is preferably 50 ppm, more preferably 10 ppm, and most preferably 5 ppm.
  • the Fe component for example, by selecting a raw material for optical glass having a small amount of Fe component, the amount mixed into the optical glass can be reduced. In addition to suppression of the content of the Fe component, simultaneous suppression of the contents of the Sb 2 O 3 component and the Pt component makes it easier to reduce the solarization of the optical glass.
  • the SiO 2 component is an oxide that forms glass, and is a useful component for forming a glass skeleton.
  • the content of the SiO 2 component is 1.0% or more, the glass network structure increases to such an extent that a stable glass can be obtained, so that the devitrification resistance of the glass can be improved.
  • the content of SiO 2 component is preferably below 60.0%, the refractive index of the glass is hardly lowered, it is possible to easily obtain an optical glass having a desired refractive index.
  • the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 5.0%, and most preferably 10.0% as the lower limit, preferably 60.0. %, More preferably 50.0%, and most preferably 40.0%.
  • SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
  • the Nb 2 O 5 component is a component that decreases the partial dispersion ratio ( ⁇ g, F) of the glass and increases the refractive index of the glass.
  • the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 65.0%, more preferably 60.0%, and most preferably 55.0%.
  • the desired refractive index and partial dispersion ratio ( ⁇ g, F) can be easily obtained by making the content of the Nb 2 O 5 component 10.0% or more.
  • the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 15.0%, and most preferably 20.0%.
  • the Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
  • TiO 2 component increases the refractive index of the glass, a component to lower the Abbe number of the glass, an optional component of the optical glass of the present invention.
  • the content of the TiO 2 component is preferably 40.0%, more preferably 30.0%, and most preferably 20.0%.
  • the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 0.1%, and most preferably 1.0%.
  • TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
  • the B 2 O 3 component is an oxide that forms glass, is a component useful for forming a glass skeleton, and is an optional component in the optical glass of the present invention.
  • the content of the B 2 O 3 component is 40.0% or less, the refractive index of the glass is hardly lowered, and the internal transmittance in a short wavelength region of visible light is hardly deteriorated. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 40.0%, more preferably 20.0%, and most preferably 10.0%.
  • the B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material.
  • an optical glass with reduced solarization can be produced without containing the B 2 O 3 component, but the content of the B 2 O 3 component is 0.1% or more. By doing so, the optical glass with improved devitrification resistance can be obtained more easily. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
  • the GeO 2 component is a component that increases the refractive index of the glass and stabilizes the glass to reduce devitrification during molding, and is an optional component in the optical glass of the present invention.
  • the content of the GeO 2 component is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
  • the Al 2 O 3 component is a component that improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. Therefore, the upper limit of the content of the Al 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
  • the ZrO 2 component is a component that has the effect of lowering the liquidus temperature of the glass to increase the devitrification resistance, improving the chemical durability of the glass, and lowering the partial dispersion ratio ( ⁇ g, F) of the glass.
  • the chemical durability of the glass can be increased by setting the content of the ZrO 2 component to 20.0% or less. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 11.0%.
  • the ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
  • the Ta 2 O 5 component is a component that increases the refractive index of the glass and decreases the devitrification temperature of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be maintained by setting the content of the Ta 2 O 5 component to 20.0% or less. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
  • the WO 3 component is a component that increases the refractive index of the glass and decreases the devitrification temperature of the glass, and is an optional component in the optical glass of the present invention.
  • the content of the WO 3 component is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
  • the ZnO component is a component that lowers the devitrification temperature of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention.
  • the chemical durability of the glass can be enhanced by setting the content of the ZnO component to 30.0% or less.
  • the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the MgO component is a component that lowers the melting temperature of the glass and is an optional component in the optical glass of the present invention.
  • the chemical durability of the glass can be increased by setting the content of the MgO component to 20.0% or less. Therefore, the content of the MgO component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the MgO component can be contained in the glass using, for example, MgO, MgCO 3 , MgF 2 or the like as a raw material.
  • the CaO component is a component that lowers the devitrification temperature of the glass and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be improved by setting the content of the CaO component to 30.0% or less. Therefore, the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
  • the SrO component is a component that lowers the devitrification temperature of the glass and adjusts the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be enhanced by setting the content of the SrO component to 30.0% or less. Therefore, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
  • the BaO component is a component that lowers the devitrification temperature of the glass and adjusts the optical constant of the glass.
  • the devitrification resistance of the glass can be improved by setting the content of the BaO component to 30.0% or less. Therefore, the content of the BaO component with respect to the total glass mass of the oxide-converted composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
  • the RO component (wherein R is one or more selected from the group consisting of Zn, Mg, Ca, Sr, and Ba) lowers the devitrification temperature of the glass as described above, and is refracted.
  • R is one or more selected from the group consisting of Zn, Mg, Ca, Sr, and Ba
  • the total content of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%.
  • the optical glass of the present invention it is possible to produce an optical glass with reduced solarization without containing an RO component, but by making the total content of RO components 1.0% or more, Adjustment of the optical constant of the glass can be facilitated. Therefore, the total content of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
  • the Li 2 O component is a component that lowers the partial dispersion ratio ( ⁇ g, F) of the glass, lowers the devitrification temperature of the glass, and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. It is. In particular, when the content of the Li 2 O component is 20.0% or less, solarization becomes difficult to increase, so that an optical glass with reduced solarization can be easily obtained. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the total content of Li 2 O component above 0.1%
  • the glass transition point (Tg) becomes low, it is possible to obtain a glass that is easy to press-mold. Therefore, the total content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
  • the Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
  • Na 2 O component is a component for glass transition point (Tg) lower, are optional components of the optical glass of the present invention.
  • Tg glass transition point
  • the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 15.0%.
  • the total Na 2 O content component in the optical glass of the present invention, although it is possible even without containing Na 2 O component to produce a reduced optical glass solarization, the total Na 2 O content component than 0.1% By doing so, since the glass transition point (Tg) becomes low, it is possible to obtain a glass that is easy to press-mold. Therefore, the total content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 3.0%.
  • the Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
  • K 2 O component is a component for glass transition point (Tg) lower, are optional components of the optical glass of the present invention.
  • Tg glass transition point
  • the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 2.0%.
  • the K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
  • the mass sum of the contents of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 20.0% or less. preferable. By making this mass sum 20.0% or less, an increase in the devitrification temperature of the glass can be suppressed, so that vitrification can be facilitated. Therefore, the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 17.0%, and most preferably 15.0%. In the optical glass of the present invention, it is possible to produce an optical glass with reduced solarization without containing the Rn 2 O component, but the total content of the Rn 2 O component is 1.0% or more.
  • the total content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 5.0%.
  • the La 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be improved by setting the content of the La 2 O 3 component to 50.0% or less. Therefore, the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 20.0%, and most preferably 5.0%.
  • the La 2 O 3 component for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
  • the Gd 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention.
  • the devitrification resistance of the glass can be enhanced by setting the content of the Gd 2 O 3 component to 30.0% or less. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 10.0%, and most preferably 5.0%.
  • the Gd 2 O 3 component for example, Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
  • the Y 2 O 3 component while increasing the refractive index of the glass, or to enhance the devitrification resistance of the glass, an optional component of the optical glass of the present invention.
  • the content of the Y 2 O 3 component 30.0% or less, an increase in the liquidus temperature of the glass can be suppressed, so that it is difficult to devitrify the glass when the glass is produced from a molten state. Can do. Therefore, the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%.
  • the Y 2 O 3 component for example, Y 2 O 3 , YF 3 or the like can be used as a raw material.
  • the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Y, and Gd) is 30.0% or less. Is preferred. By making this mass sum 30.0% or less, the devitrification resistance of the glass can be enhanced. Therefore, the mass sum of the content of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%. .
  • Ga 2 O 3 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention.
  • the content of the Ga 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%.
  • the Ga 2 O 3 component can be contained in the glass using, for example, Ga 2 O 3 as a raw material.
  • TeO 2 component increases the refractive index of the glass is a component of glass transition point (Tg) lower, are optional components of the optical glass of the present invention.
  • Tg glass transition point
  • the content of the TeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, still more preferably 15.0%, and most preferably 10. Less than 0%.
  • the TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
  • Bi 2 O 3 component increasing the refractive index of the glass is a component of glass transition point (Tg) lower, are optional components of the optical glass of the present invention.
  • Tg glass transition point
  • the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, and even more preferably 15.0%, and most preferably It is less than 10.0%.
  • the Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
  • the CeO 2 component is a component that adjusts the optical constant of the glass and improves the solarization of the glass, and is an optional component in the optical glass of the present invention.
  • the CeO 2 component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%.
  • the CeO 2 component is not substantially contained in terms of coloring of the glass.
  • the CeO 2 component can be contained in the glass using, for example, CeO 2 as a raw material.
  • components of the fining defoaming of glass is not limited to the above Sb 2 O 3 ingredients may be used known refining agents and defoamers in the field of glass production, or a combination thereof .
  • optical glass of the present invention other components can be added as necessary within a range not impairing the properties of the glass.
  • the transition metal components such as V, Cr, Mn, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, and Nb, are colored in the glass even when each of them is contained alone or in combination. Since there is a property of causing absorption at a specific wavelength in the visible region, it is preferable that the optical glass using the wavelength in the visible region does not substantially contain.
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 and components of Th, Cd, Tl, Os, Be and Se have been refraining from being used as harmful chemical substances in recent years.
  • Environmental measures are required not only in the manufacturing process but also in the processing process and disposal after commercialization. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing.
  • the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking any special environmental measures.
  • the glass that is preferably used as the optical glass of the present invention cannot be expressed directly in the description of mol% because the composition is represented by mass% with respect to the total mass of the glass in terms of oxide composition, but is required in the present invention.
  • the composition expressed by mol% of each component present in the glass composition satisfying various properties generally takes the following values in terms of oxide conversion.
  • the optical glass of the present invention preferably has a solarization of 5.0% or less.
  • the device incorporating the optical glass is unlikely to deteriorate in color balance even after long-term use.
  • the optical glass of the present invention is particularly effective when used at a high temperature as in a vehicle.
  • the upper limit of solarization of the optical glass of the present invention is preferably 5.0%, more preferably 4.8%, and most preferably 4.5%.
  • “solarization” refers to the amount of degradation of spectral transmittance at 450 nm when glass is irradiated with ultraviolet rays, and specifically, Japanese Optical Glass Industry Standard JOGIS 04-1994 “ According to “Measurement method of solarization of optical glass”, the spectral transmittance before and after irradiation with light from a high-pressure mercury lamp is measured.
  • the optical glass of the present invention has a desired partial dispersion ratio ( ⁇ g, F) in the relational expression with the Abbe number ( ⁇ d ), and can correct the chromatic aberration of the lens with higher accuracy. More specifically, the partial dispersion ratio ( ⁇ g, F) of the optical glass of the present invention is ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ) in the range of ⁇ d ⁇ 25 with respect to the Abbe number ( ⁇ d ). ⁇ d +0.6346) ⁇ ( ⁇ g, F) ⁇ ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) and ( ⁇ 2.50 ⁇ 10 ⁇ 10) in the range of ⁇ d > 25.
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass at ⁇ d ⁇ 25 is preferably ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6346), more preferably ( ⁇ 1.60 ⁇ 10 6).
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass at ⁇ d > 25 is preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571), more preferably ( ⁇ 2.50 ⁇ 10 ⁇ ). 3 ⁇ ⁇ d +0.6591), and most preferably ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6611) is set as the lower limit.
  • the upper limit of the partial dispersion ratio ( ⁇ g, F) of the optical glass is preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207), more preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ). ( ⁇ d +0.7187), more preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7177), and most preferably ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7172).
  • the partial dispersion ratio ( ⁇ g, F) of general glass is higher than that of the normal line, and the partial dispersion ratio ( ⁇ g, F) of general glass is high.
  • the optical glass of the present invention preferably has a glass transition point (Tg) of 400 ° C. or higher and 650 ° C. or lower.
  • Tg glass transition point
  • the glass transition point (Tg) is 400 ° C. or higher, adverse effects due to frictional heat generated when polishing the glass can be reduced.
  • the glass transition point (Tg) is 650 ° C. or lower, press molding at a lower temperature becomes possible, so that the oxidation of the mold used for mold press molding is reduced to extend the life. Can do.
  • the glass transition point (Tg) of the optical glass of the present invention is preferably 400 ° C., more preferably 450 ° C., most preferably 500 ° C., preferably 650 ° C., more preferably 620 ° C., most preferably The upper limit is 600 ° C.
  • the optical glass of the present invention preferably has a yield point (At) of 450 ° C. or higher and 700 ° C. or lower.
  • the yield point (At) is one of indices indicating the softening property of glass, and is an index indicating a temperature close to the press molding temperature. Therefore, by using a glass having a yield point (At) of 450 ° C. or higher, adverse effects due to frictional heat generated when polishing the glass can be reduced. Further, by using a glass having a yield point (At) of 700 ° C. or lower, press molding at a lower temperature becomes possible, so that press molding can be performed more easily.
  • the yield point (At) of the optical glass of the present invention is preferably 450 ° C., more preferably 500 ° C., most preferably 540 ° C., preferably 700 ° C., more preferably 670 ° C., most preferably 650.
  • C is the upper limit.
  • the optical glass of the present invention preferably has a predetermined refractive index and dispersion (Abbe number). More specifically, the refractive index (n d ) of the optical glass of the present invention is preferably 1.78, more preferably 1.80, most preferably 1.82, and preferably 1.95. The upper limit is preferably 1.92, and most preferably 1.90.
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 18, more preferably 20, most preferably 22, the lower limit, preferably 30, more preferably 28, and most preferably 27. . Accordingly, the degree of freedom in optical design can be expanded, and a large amount of light refraction can be obtained even if the device is made thinner.
  • the means for reducing the content of Sb 2 O 3 component is, for example, means for reducing the content of Sb 2 O 3 component contained in the raw material used, but is not limited thereto. Further, it is more effective to use a method for reducing the Pt component and the Fe component together.
  • the optical glass of the present invention and the glass used in the spectral transmittance degradation suppressing method of the present invention are produced, for example, as follows. That is, the raw materials are uniformly mixed so that each component is within a predetermined content range. The prepared mixture is put into a quartz crucible and roughly melted, and then put into a platinum crucible or a platinum alloy crucible, melted in a predetermined temperature range for a predetermined time, homogenized by stirring, and subjected to foam breakage or the like. Next, the temperature of the molten glass is lowered, cast into a mold, and slowly cooled to produce optical glass.
  • the melting temperature of the glass is preferably 1400 ° C., more preferably 1300 ° C., most preferably 1200 ° C., and the melting time of the glass is preferably 6 hours. More preferably 4 hours, and most preferably 2 hours.
  • a glass molded body can be produced from the produced optical glass using means such as reheat press molding or precision press molding. That is, a lens preform for mold press molding is prepared from optical glass, and after reheat press molding is performed on the lens preform, polishing can be performed to prepare a glass molded body. Further, a glass molded body can be produced by precision press molding the lens preform produced by polishing. In addition, the means for producing the glass molded body is not limited to these means.
  • the glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use for optical elements such as lenses and prisms. Thereby, since the temporal degradation of the spectral transmittance of the optical element is suppressed, the color balance of the optical element can be hardly deteriorated even after long-term use.
  • compositions of Examples (No. 1 to No. 159) and Comparative Examples (No. 1 to No. 2) of the present invention concentrations of Pt component and Fe component of these glasses, refractive index ( nd ), Tables 1 to 5 show the Abbe number ( ⁇ d ), spectral transmittance at a wavelength of 450 nm before and after light irradiation, solarization, partial dispersion ratio ( ⁇ g, F), glass transition point (Tg), and yield point (At). 22 shows.
  • ⁇ d Abbe number
  • ⁇ g, F partial dispersion ratio
  • Tg glass transition point
  • At yield point 22 shows.
  • the following examples are merely for illustrative purposes, and are not limited to these examples.
  • the glass of Examples (No. 1 to No. 159) and Comparative Examples (No. 1 to No. 2) of the present invention are all oxides, hydroxides, carbonates corresponding to the raw materials of the respective components, High-purity raw materials used for ordinary optical glass such as nitrates, fluorides, hydroxides, metaphosphoric acid compounds, etc. are selected, and the composition ratios of the respective examples and comparative examples shown in Tables 1 to 22 are obtained. And weighed uniformly. Thereafter, the mixture was put into a platinum crucible, melted in an electric furnace at a temperature range of 1200 to 1350 ° C. for 2 to 4 hours according to the difficulty of melting the glass composition, and homogenized by stirring to remove bubbles. Thereafter, the temperature of the molten glass was lowered to 1100 to 1200 ° C., homogenized by stirring, cast into a mold, and slowly cooled to produce a glass.
  • High-purity raw materials used for ordinary optical glass such as nitrates, fluorides, hydrox
  • the contents of the Pt component and Fe component of the glasses of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) are the same as those of the glasses having the compositions of the examples and comparative examples.
  • the solution obtained by powdering and treating with an acid was measured using an ICP emission spectrometer (Vista-PRO manufactured by Seiko Instruments Inc.).
  • the solarization of the glass of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) is described in Japan Optical Glass Industry Association Standard JOGIS04-1994 “Measurement Method of Solarization of Optical Glass”.
  • the change (%) in light transmittance at a wavelength of 450 nm before and after light irradiation was measured.
  • the light irradiation was performed by heating an optical glass sample to 100 ° C. and irradiating light with a wavelength of 450 nm for 4 hours using an ultrahigh pressure mercury lamp.
  • the glass used in this measurement was a glass that had been treated in a slow cooling furnace at a slow cooling rate of ⁇ 25 ° C./hr.
  • the glass transition point (Tg) and the yield point (At) of the glass of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) were measured with a differential heat measuring device (manufactured by Netchgeletebau). It was determined by performing measurement using STA 409 CD).
  • the sample particle size at the time of measurement was 425 to 600 ⁇ m, and the temperature elevation rate was 10 ° C./min.
  • the optical glass of the example of the present invention has a partial dispersion ratio ( ⁇ g, F) of ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6346) or more when ⁇ d ⁇ 25, more specifically ( ⁇ 1.60 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6497) or more.
  • the partial dispersion ratio ( ⁇ g, F) is ( ⁇ 2.50 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.6571) or more, more specifically ( ⁇ 2.50 ⁇ 10 ⁇ 3).
  • the partial dispersion ratio ( ⁇ g, F) of the optical glass of the example of the present invention is ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7207) or less, more specifically ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7187) or less. Therefore, it was found that these partial dispersion ratios ( ⁇ g, F) are within a desired range.
  • the glasses of the comparative examples of the present invention all had a partial dispersion ratio ( ⁇ g, F) exceeding ( ⁇ 4.21 ⁇ 10 ⁇ 3 ⁇ ⁇ d +0.7187). Therefore, it was clarified that the optical glass of the example of the present invention has a smaller partial dispersion ratio ( ⁇ g, F) in the relational expression with the Abbe number ( ⁇ d ) than the glass of the comparative example.
  • the optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.78 or more, more specifically 1.82 or more, and the refractive index (n d ) of 1.95 or less. More specifically, it was 1.90 or less, and was within a desired range.
  • the optical glasses of the examples of the present invention all have an Abbe number ( ⁇ d ) of 18 or more, more specifically 22 or more, and this Abbe number ( ⁇ d ) of 30 or less, more specifically 27. And within the desired range.
  • the optical glasses of the examples of the present invention all have a glass transition point (Tg) of 400 ° C. or higher, more specifically 500 ° C. or higher, and this glass transition point (Tg) is 650 ° C. or lower. It was 600 degrees C or less, and was in the desired range.
  • Tg glass transition point
  • the optical glasses of the examples of the present invention all have a yield point (At) of 450 ° C. or higher, more specifically 540 ° C. or higher, and the yield point (At) is 700 ° C. or lower, more specifically. It was 650 degrees C or less, and was in the desired range.
  • the optical glass of the example of the present invention After performing reheat press molding using the optical glass of the example of the present invention, grinding and polishing were performed and processed into the shape of a lens and a prism to obtain a glass molded body. Further, a lens preform for precision press molding was formed using the optical glass of the example of the present invention, and this lens preform was precision press molded to obtain a glass molded body.
  • the content of the Sb 2 O 3 component is not more than a predetermined amount, and the obtained glass molded body has little solarization, and has a predetermined spectral transmission as a lens and a prism over a long period of time.
  • the glass molded object which can have a rate was able to be obtained.
  • the glass of the comparative example contained a predetermined or higher Sb 2 O 3 component, and the obtained glass molded body was easily colored by ultraviolet rays. Therefore, the glass molded body produced from the optical glass of the example of the present invention has a reduced solarization as compared with the glass molded body produced from the glass of the comparative example, and the spectral transmittance is deteriorated over time. It became clear that was suppressed.

Abstract

Provided are an optical glass which retains high spectral transmittance even after the lapse of a long time and a method for suppressing the deterioration of optical transmittance of glass.  The optical glass has a content of Sb2O3 components of 0.5mass% or lower relative to the whole mass of the glass in terms of oxide and a solarization (a deterioration in spectral transmittance at a wavelength of 450nm) of 5.0% or below.  The method for suppressing the deterioration of optical transmittance of glass comprises reducing the content of Sb2O3 components in glass.

Description

光学ガラス及び分光透過率の劣化抑制方法Optical glass and method for suppressing deterioration of spectral transmittance
 本発明は、光学ガラス及び分光透過率の劣化抑制方法に関する。 The present invention relates to optical glass and a method for suppressing deterioration of spectral transmittance.
 近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器をはじめとする各種光学機器に用いられる、球面レンズ等の光学素子に対して、高精度化、軽量、及び小型化の要求がますます強まっている。 In recent years, the digitization and high definition of devices that use optical systems are rapidly progressing. For optical elements such as spherical lenses used in various optical devices such as digital cameras and video cameras. Accordingly, there is an increasing demand for higher accuracy, lighter weight, and smaller size.
 こうした光学素子の製造には、ガラス材料を加熱軟化して成形(リヒートプレス成形)して得られた成形ガラスを研削及び研磨する方法や、ゴブ又はガラスブロックを切断して研削及び研磨したプリフォーム材、若しくは公知の浮上成形等により成形されたプリフォーム材を加熱軟化して、高精度な成形面を持つ金型で加圧成形する方法(精密プレス成形)が用いられている。 Such optical elements can be produced by grinding and polishing molded glass obtained by heating and softening a glass material (reheat press molding), or by grinding and polishing a gob or glass block. A method (precise press molding) is used in which a material or a preform material formed by known flotation molding is heat-softened and pressure-molded with a mold having a highly accurate molding surface.
 このようなリヒートプレス成形や精密プレス成形に用いられるガラスとして、SiO成分、並びにNb成分及び/又はTiO成分を含有する光学ガラスが知られている。このような光学ガラスとして、特許文献1及び2に代表されるような組成を有するガラス知られている。例えば、屈折率(n)が1.63~1.75、アッベ数(ν)が23~35の光学ガラスが特許文献1に示されている。また、屈折率(n)が1.80以上、アッベ数(ν)が30以下の光学ガラスが特許文献2に示されている。 As glass used for such reheat press molding and precision press molding, an optical glass containing an SiO 2 component and an Nb 2 O 5 component and / or a TiO 2 component is known. As such an optical glass, a glass having a composition represented by Patent Documents 1 and 2 is known. For example, Patent Document 1 discloses an optical glass having a refractive index (n d ) of 1.63 to 1.75 and an Abbe number (ν d ) of 23 to 35. Further, Patent Document 2 discloses an optical glass having a refractive index (n d ) of 1.80 or more and an Abbe number (ν d ) of 30 or less.
特開2002-087841号公報Japanese Patent Laid-Open No. 2002-087841 特開2004-155639号公報Japanese Patent Laid-Open No. 2004-155639
 しかしながら、特許文献1及び2で開示されたガラスでは、太陽光等に含まれる紫外線によって分光透過率が低下するソラリゼーションの問題があった。ソラリゼーションの大きいガラスは、紫外線が長時間照射されることにより着色するため、製造当初の所望の分光透過率を維持することは困難であった。 However, the glasses disclosed in Patent Documents 1 and 2 have a problem of solarization in which the spectral transmittance is reduced by ultraviolet rays contained in sunlight or the like. Since the glass having a large solarization is colored by being irradiated with ultraviolet rays for a long time, it has been difficult to maintain a desired spectral transmittance at the beginning of manufacture.
 本発明の目的は、上記問題点に鑑みてなされたものであって、その目的とするところは、分光透過率の経時的な劣化が抑制された、光学ガラス及び分光透過率の劣化抑制方法を得ることにある。 The object of the present invention has been made in view of the above-mentioned problems, and the object of the present invention is to provide an optical glass and a method for suppressing deterioration of spectral transmittance in which deterioration of spectral transmittance with time is suppressed. There is to get.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、光学ガラスに含まれるSb成分の含有量を低減し、より好ましくは光学ガラス中に混入されるPt成分及び/又はFe成分の含有量を調整することによって、光学ガラスのソラリゼーションが低減されることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。 In order to solve the above-mentioned problems, the present inventors have conducted intensive test studies, and as a result, the content of the Sb 2 O 3 component contained in the optical glass is reduced, and more preferably Pt mixed in the optical glass. By adjusting the content of the component and / or Fe component, it was found that solarization of the optical glass was reduced, and the present invention was completed. Specifically, the present invention provides the following.
 (1) 酸化物換算組成のガラス全質量に対して、質量%でSb成分の含有量が0.5%以下であり、ソラリゼーション(波長450nmにおける分光透過率の劣化量)が5.0%以下である光学ガラス。 (1) The content of the Sb 2 O 3 component is 0.5% or less by mass% with respect to the total glass mass of the oxide equivalent composition, and solarization (amount of degradation of spectral transmittance at a wavelength of 450 nm) is 5. Optical glass that is 0% or less.
 (2) Pt成分の含有量が15ppm以下である(1)記載の光学ガラス。 (2) The optical glass according to (1), wherein the content of the Pt component is 15 ppm or less.
 (3) 酸化物換算組成のガラス全質量に対して、Fe成分の含有量が50ppm以下である(1)又は(2)記載の光学ガラス。 (3) The optical glass according to (1) or (2), wherein the content of Fe component is 50 ppm or less with respect to the total mass of the glass having an oxide equivalent composition.
 (4) SiO成分及びNb成分、及び/又はTiO成分を含有する(1)から(3)のいずれか記載の光学ガラス。 (4) The optical glass according to any one of (1) to (3), which contains a SiO 2 component, a Nb 2 O 5 component, and / or a TiO 2 component.
 (5) 酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下、及びNb成分を10.0%以上65.0%以下含有し、TiO成分の含有量が40.0%以下である(4)記載の光学ガラス。 (5) 1.0% or more and 60.0% or less of SiO 2 component and 10.0% or more and 65.0% or less of Nb 2 O 5 component in mass% with respect to the total glass mass of oxide conversion composition. The optical glass according to (4), wherein the content of the TiO 2 component is 40.0% or less.
 (6) 酸化物換算組成のガラス全質量に対して、質量%で
成分  0~40.0%、及び/又は
GeO成分  0~30.0%、及び/又は
Al成分  0~15.0%、及び/又は
ZrO成分  0~20.0%、及び/又は
Ta成分  0~20.0%、及び/又は
WO成分  0~20.0%、及び/又は
ZnO成分  0~30.0%、及び/又は
MgO成分  0~20.0%、及び/又は
CaO成分  0~30.0%、及び/又は
SrO成分  0~30.0%、及び/又は
BaO成分  0~30.0%、及び/又は
LiO成分  0~20.0%、及び/又は
NaO成分  0~30.0%、及び/又は
O成分  0~20.0%
の各成分をさらに含有する(1)から(5)のいずれか記載の光学ガラス。
(6) 0 to 40.0% of B 2 O 3 component and / or 0 to 30.0% of GeO 2 component and / or Al 2 O 3 in mass% with respect to the total glass mass of the oxide equivalent composition Component 0-15.0%, and / or ZrO 2 component 0-20.0%, and / or Ta 2 O 5 component 0-20.0%, and / or WO 3 component 0-20.0%, and And / or ZnO component 0-30.0%, and / or MgO component 0-20.0%, and / or CaO component 0-30.0%, and / or SrO component 0-30.0%, and / or BaO component 0-30.0%, and / or Li 2 O component 0-20.0%, and / or Na 2 O component 0-30.0%, and / or K 2 O component 0-20.0%
The optical glass according to any one of (1) to (5), further comprising:
 (7) 酸化物換算組成のガラス全質量に対して、質量%で
La成分  0~50.0%、及び/又は
Gd成分  0~30.0%、及び/又は
成分  0~30.0%、及び/又は
Ga成分  0~20.0%、及び/又は
TeO成分  0~50.0%、及び/又は
Bi成分  0~50.0%、及び/又は
CeO成分  0~10.0%
の各成分をさらに含有する(1)から(6)のいずれか記載の光学ガラス。
(7) La 2 O 3 component 0 to 50.0% and / or Gd 2 O 3 component 0 to 30.0% and / or Y 2 in mass% with respect to the total glass mass of the oxide equivalent composition. O 3 component 0-30.0%, and / or Ga 2 O 3 component 0-20.0%, and / or TeO 2 component 0-50.0%, and / or Bi 2 O 3 component 0-50. 0% and / or CeO 2 component 0-10.0%
The optical glass according to any one of (1) to (6), further containing each component of
 (8) 部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす(1)から(7)のいずれか記載の光学ガラス。 (8) (−1.60 × 10 −3 × ν d +0.6346) ≦ (θg, F) when the partial dispersion ratio (θg, F) is in the range of ν d ≦ 25 with the Abbe number (ν d ) F) ≦ (−4.21 × 10 −3 × ν d +0.7207), and in the range of ν d > 25, (−2.50 × 10 −3 × ν d +0.6571) ≦ (θg , F) ≦ (−4.21 × 10 −3 × ν d +0.7207), the optical glass according to any one of (1) to (7).
 (9) ガラス転移点(Tg)が400℃以上650℃以下である(1)から(8)のいずれか記載の光学ガラス。 (9) The optical glass according to any one of (1) to (8), which has a glass transition point (Tg) of 400 ° C. or higher and 650 ° C. or lower.
 (10) (1)から(9)のいずれか記載の光学ガラスを母材とする光学素子。 (10) An optical element using the optical glass according to any one of (1) to (9) as a base material.
 (11) (1)から(9)のいずれか記載の光学ガラスからなるレンズプリフォーム。 (11) A lens preform made of the optical glass according to any one of (1) to (9).
 (12) (1)から(9)のいずれか記載の光学ガラスからなるモールドプレス成形用のレンズプリフォーム。 (12) A lens preform for mold press molding made of the optical glass according to any one of (1) to (9).
 (13) (11)又は(12)記載のレンズプリフォームを成形してなる光学素子。 (13) An optical element formed by molding the lens preform described in (11) or (12).
 (14) ガラスの分光透過率の劣化抑制方法であって、ガラスに含まれるSb成分の含有量を低減する分光透過率の劣化抑制方法。 (14) A method for suppressing degradation of spectral transmittance of glass, the method for suppressing degradation of spectral transmittance, which reduces the content of Sb 2 O 3 component contained in glass.
 本発明によれば、光学ガラスに含まれるSb成分の含有量を低減し、より好ましくは光学ガラス中に混入されるPt成分及び/又はFe成分の含有量を調整することによって、紫外線の長時間の照射による光学ガラスのソラリゼーションが低減された光学ガラス及び分光透過率の劣化抑制方法を得ることができる。 According to the present invention, by reducing the content of Sb 2 O 3 component contained in the optical glass, more preferably by adjusting the content of Pt component and / or Fe component mixed in the optical glass, It is possible to obtain an optical glass in which the solarization of the optical glass due to long-time irradiation is reduced and a method for suppressing the deterioration of spectral transmittance.
Sb成分の含有量とソラリゼーションの関係を示す図である。Is a diagram showing an sb 2 O 3 components of content and solarization relationship. 各Sb成分含有量における、Pt成分の含有量とソラリゼーションの関係を示す図である。In each Sb 2 O 3 ingredient content is a diagram showing the relationship between content and solarization of Pt component. Fe成分の含有量とソラリゼーションの関係を示す図である。It is a figure which shows the relationship between content of Fe component, and solarization.
 本発明の光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でSb成分の含有量が0.5%以下であり、ソラリゼーション(波長450nmにおける分光透過率の劣化量)が5.0%以下である。光学ガラスに含まれるSb成分の含有量を低減することによって、ガラスのソラリゼーションが低減される。このため、分光透過率の経時的な劣化が抑制された光学ガラス及び光学素子を得ることができる。 In the optical glass of the present invention, the content of Sb 2 O 3 component is 0.5% or less by mass% with respect to the total mass of the glass having an oxide equivalent composition, and solarization (amount of degradation of spectral transmittance at a wavelength of 450 nm). ) Is 5.0% or less. By reducing the content of the Sb 2 O 3 component contained in the optical glass, solarization of the glass is reduced. For this reason, the optical glass and the optical element in which deterioration with time of the spectral transmittance is suppressed can be obtained.
 また、本発明のガラスの分光透過率の劣化抑制方法は、ガラスに含まれるSb成分の含有量を低減するものである。ガラスに含まれるSb成分の含有量を低減することで、光学ガラスのソラリゼーションが低減される。このため、分光透過率の経時的な劣化が抑制されたレンズプリフォームや光学素子をより確実に作製することができる。 Furthermore, degradation suppression method of the spectral transmittance of the glass of the present invention is to reduce the content of Sb 2 O 3 component contained in the glass. By reducing the content of the Sb 2 O 3 component contained in the glass, solarization of the optical glass is reduced. For this reason, it is possible to more reliably produce a lens preform or an optical element in which deterioration of the spectral transmittance over time is suppressed.
 以下、本発明の光学ガラス、及び分光透過率の劣化抑制方法の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass and the spectral transmittance degradation suppressing method of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and is within the scope of the object of the present invention. However, it can implement by changing suitably. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.
[光学ガラス]
 まず、本発明の光学ガラスの成分及び物性について説明する。なお、本発明の分光透過率の劣化抑制方法で用いられるガラスは、Sb成分の含有量が所定以下のガラスである限り特に限定されないが、その中でも、以下に述べるような光学ガラスであることが好ましい。
[Optical glass]
First, components and physical properties of the optical glass of the present invention will be described. The glass used in the spectral transmittance deterioration suppressing method of the present invention is not particularly limited as long as the content of the Sb 2 O 3 component is not more than a predetermined glass, but among them, optical glass as described below is used. Preferably there is.
 以下、本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成のガラス全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」とは、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解されて酸化物へ変化すると仮定した場合に、生成した酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。 Hereinafter, the composition range of each component constituting the optical glass of the present invention will be described below. In the present specification, unless otherwise specified, the contents of the respective components are all expressed in mass% with respect to the total glass mass of the oxide conversion composition. Here, the “oxide equivalent composition” means that the oxide, composite salt, metal fluoride, etc. used as the raw material of the glass component of the present invention are all decomposed and changed into oxides when melted. The composition represents each component contained in the glass, with the total mass of the generated oxide being 100% by mass.
<含有量を抑えるべき成分について>
 まず、本発明の光学ガラスにおいて含有量を抑えるべき成分について説明する。
<Ingredients whose content should be suppressed>
First, the component which should suppress content in the optical glass of this invention is demonstrated.
 Sb成分は、ガラスを溶融する際に脱泡効果を有する成分であるが、紫外線の照射によって光学ガラスのソラリゼーションが高められる一因となる。特に、図1に示すように、Sb成分の含有量を0.5%以下にすることで、ソラリゼーションが5.0%以下に低減され易くなるため、長期間用いても分光透過率が劣化し難い光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは0.5%、より好ましくは0.3%、最も好ましくは0.2%を上限とする。なお、Sb成分の含有量は、この範囲内であれば技術的には特に不利益は無いが、図1に示すように、Sb成分の含有量を0%より多くすることで、Sb成分を含有しない場合に比べてソラリゼーションを低くすることができる。従って、酸化物換算組成のガラス全質量に対するSb成分の含有量は、好ましくは0%より多くし、より好ましくは0.0001%、最も好ましくは0.001%を下限とする。Sb成分は、原料として例えばSb、Sb、NaSb・5HO等を用いることができる。 The Sb 2 O 3 component is a component having a defoaming effect when the glass is melted, but it contributes to the enhancement of solarization of the optical glass by irradiation with ultraviolet rays. In particular, as shown in FIG. 1, when the content of the Sb 2 O 3 component is 0.5% or less, solarization is easily reduced to 5.0% or less. Thus, it is possible to easily obtain an optical glass that is difficult to deteriorate. Therefore, the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 0.5%, more preferably 0.3%, and most preferably 0.2%. Incidentally, the content of Sb 2 O 3 component is not particularly disadvantageous technically Within this range, as shown in FIG. 1, the content of Sb 2 O 3 component greater than 0% Thus, solarization can be reduced as compared with the case where no Sb 2 O 3 component is contained. Therefore, the content of the Sb 2 O 3 component with respect to the total glass mass of the oxide equivalent composition is preferably more than 0%, more preferably 0.0001%, and most preferably 0.001%. As the Sb 2 O 3 component, for example, Sb 2 O 3 , Sb 2 O 5 , Na 2 H 2 Sb 2 O 7 · 5H 2 O, or the like can be used as a raw material.
 Pt成分は、光学ガラスを製造する際に、例えば白金坩堝等の部材から光学ガラス中に混入する成分であるが、紫外線の照射によって光学ガラスのソラリゼーションが高められる一因となる。特に、図2に示すように、光学ガラスのPt成分の含有量を15ppm以下にすることで、ソラリゼーションが低減され易くなるため、長期間用いても分光透過率が変化し難い光学ガラスを得易くすることができる。従って、光学ガラスにおけるPt成分の含有量は、好ましくは15ppm、より好ましくは10ppm、最も好ましくは7ppmを上限とする。Pt成分は、材料としてPt成分を含まなくても、白金坩堝等の白金を含有する部材からの溶出によって光学ガラス中に含まれる成分である。そのため、例えば白金坩堝におけるガラスの溶融時間を短縮し、或いはガラスの溶融温度を低くすることで、光学ガラス中への混入量を低減することができる。なお、図2に示すように、Pt成分の含有量の抑制に加えて、Sb成分の含有量の抑制を同時に行うことで、光学ガラスのソラリゼーションがより低減され易くなる。このときも、Sb成分の含有量を0%より多くすることで、Sb成分を含有しない場合に比べてソラリゼーションを低くすることができる。 The Pt component is a component that is mixed into the optical glass from a member such as a platinum crucible when the optical glass is manufactured, which contributes to an increase in solarization of the optical glass by irradiation with ultraviolet rays. In particular, as shown in FIG. 2, by making the content of the Pt component of the optical glass 15 ppm or less, solarization is likely to be reduced, so that it is easy to obtain an optical glass whose spectral transmittance hardly changes even when used for a long time. can do. Therefore, the content of the Pt component in the optical glass is preferably 15 ppm, more preferably 10 ppm, and most preferably 7 ppm. The Pt component is a component contained in the optical glass by elution from a member containing platinum, such as a platinum crucible, even if the Pt component is not included as a material. Therefore, for example, by shortening the melting time of the glass in the platinum crucible or lowering the melting temperature of the glass, the mixing amount into the optical glass can be reduced. As shown in FIG. 2, in addition to the suppression of the content of the Pt component, the suppression of the content of the Sb 2 O 3 component is simultaneously performed, so that the solarization of the optical glass is more easily reduced. Also at this time, by making the content of the Sb 2 O 3 component more than 0%, solarization can be lowered as compared with the case where the Sb 2 O 3 component is not contained.
 Fe成分は、光学ガラスを製造する際に、例えば光学ガラスの原料の不純物として光学ガラス中に混入する成分であるが、紫外線の照射によって光学ガラスのソラリゼーションが高められる一因となる。特に、図3に示すように、Fe成分の含有量を50ppm以下にすることで、ソラリゼーションが5.0%以下に低減され易くなるため、長期間用いても分光透過率が変化し難い光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するFe成分の含有量は、好ましくは50ppm、より好ましくは10ppm、最も好ましくは5ppmを上限とする。Fe成分は、例えばFe成分の少ない光学ガラスの原料を選ぶことで、光学ガラス中への混入量を低減することができる。なお、Fe成分の含有量の抑制に加えて、Sb成分及びPt成分の含有量の抑制を同時に行うことで、光学ガラスのソラリゼーションがより低減され易くなる。 The Fe component is a component mixed into the optical glass, for example, as an impurity of the raw material of the optical glass when the optical glass is manufactured, and contributes to the enhancement of solarization of the optical glass by irradiation with ultraviolet rays. In particular, as shown in FIG. 3, by making the content of the Fe component 50 ppm or less, solarization is easily reduced to 5.0% or less. Can be easily obtained. Therefore, the upper limit of the content of the Fe component with respect to the total glass mass of the oxide conversion composition is preferably 50 ppm, more preferably 10 ppm, and most preferably 5 ppm. As the Fe component, for example, by selecting a raw material for optical glass having a small amount of Fe component, the amount mixed into the optical glass can be reduced. In addition to suppression of the content of the Fe component, simultaneous suppression of the contents of the Sb 2 O 3 component and the Pt component makes it easier to reduce the solarization of the optical glass.
<必須成分、任意成分について>
 次に、本発明の光学ガラスとして好ましく用いられる、ガラスの必須成分及び任意成分について説明する。
<About essential and optional components>
Next, the essential components and optional components of the glass that are preferably used as the optical glass of the present invention will be described.
 SiO成分は、ガラスを形成する酸化物であり、ガラスの骨格を形成する為に有用な成分である。特に、SiO成分の含有量を1.0%以上にすることで、安定なガラスが得られる程度にガラスの網目構造が増加するため、ガラスの耐失透性を高めることができる。一方、SiO成分の含有量を60.0%以下にすることで、ガラスの屈折率が低下し難くなるため、所望の屈折率を有する光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するSiO成分の含有量は、好ましくは1.0%、より好ましくは5.0%、最も好ましくは10.0%を下限とし、好ましくは60.0%、より好ましくは50.0%、最も好ましくは40.0%を上限とする。SiO成分は、原料として例えばSiO、KSiF、NaSiF等を用いてガラス内に含有することができる。 The SiO 2 component is an oxide that forms glass, and is a useful component for forming a glass skeleton. In particular, when the content of the SiO 2 component is 1.0% or more, the glass network structure increases to such an extent that a stable glass can be obtained, so that the devitrification resistance of the glass can be improved. On the other hand, by setting the content of SiO 2 component below 60.0%, the refractive index of the glass is hardly lowered, it is possible to easily obtain an optical glass having a desired refractive index. Accordingly, the content of the SiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 5.0%, and most preferably 10.0% as the lower limit, preferably 60.0. %, More preferably 50.0%, and most preferably 40.0%. SiO 2 component may be contained in the glass by using as a raw material such as SiO 2, K 2 SiF 6, Na 2 SiF 6 or the like.
 Nb成分は、ガラスの部分分散比(θg,F)を低下させ、ガラスの屈折率を高める成分である。特に、Nb成分の含有量を65.0%以下にすることで、耐失透性の低下を抑えることができ、所望の分散性を有するガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは65.0%、より好ましくは60.0%、最も好ましくは55.0%を上限とする。また、本発明の光学ガラスでは、Nb成分の含有量を10.0%以上にすることで、所望の屈折率及び部分分散比(θg,F)を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するNb成分の含有量は、好ましくは10.0%、より好ましくは15.0%、最も好ましくは20.0%を下限とする。Nb成分は、原料として例えばNb等を用いてガラス内に含有することができる。 The Nb 2 O 5 component is a component that decreases the partial dispersion ratio (θg, F) of the glass and increases the refractive index of the glass. In particular, by setting the content of the Nb 2 O 5 component to 65.0% or less, it is possible to suppress a decrease in devitrification resistance and to easily obtain a glass having a desired dispersibility. Therefore, the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 65.0%, more preferably 60.0%, and most preferably 55.0%. In the optical glass of the present invention, the desired refractive index and partial dispersion ratio (θg, F) can be easily obtained by making the content of the Nb 2 O 5 component 10.0% or more. Therefore, the content of the Nb 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 15.0%, and most preferably 20.0%. The Nb 2 O 5 component can be contained in the glass using, for example, Nb 2 O 5 as a raw material.
 TiO成分は、ガラスの屈折率を高め、ガラスのアッベ数を低下させる成分であり、本発明の光学ガラス中の任意成分である。TiO成分の含有量を40.0%以下にすることで、特に可視光の短波長(500nm以下)の領域における内部透過率が悪化し難くなるため、ガラスへの着色を低減できる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは40.0%、より好ましくは30.0%、最も好ましくは20.0%を上限とする。なお、本発明の光学ガラスでは、TiO成分を含有しなくとも、ソラリゼーションの低減された光学ガラスを作製することはできるが、TiO成分を含有することで、所望の屈折率を得易くすることができる。従って、酸化物換算組成のガラス全質量に対するTiO成分の含有量は、好ましくは0%を超え、より好ましくは0.1%、最も好ましくは1.0%を下限とする。TiO成分は、原料として例えばTiO等を用いてガラス内に含有することができる。 TiO 2 component increases the refractive index of the glass, a component to lower the Abbe number of the glass, an optional component of the optical glass of the present invention. By setting the content of the TiO 2 component to 40.0% or less, the internal transmittance particularly in a short wavelength region (500 nm or less) of visible light is hardly deteriorated, so that coloring to glass can be reduced. Therefore, the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 40.0%, more preferably 30.0%, and most preferably 20.0%. In the optical glass of the present invention, without containing TiO 2 component, although it is possible to produce a reduced optical glass solarization, by containing a TiO 2 component is easier to obtain a desired refractive index be able to. Therefore, the content of the TiO 2 component with respect to the total glass mass of the oxide conversion composition is preferably more than 0%, more preferably 0.1%, and most preferably 1.0%. TiO 2 component may be contained in the glass by using as the starting material for example TiO 2 or the like.
 B成分は、ガラスを形成する酸化物であり、ガラスの骨格を形成する為に有用な成分であり、本発明の光学ガラス中の任意成分である。特に、B成分の含有量を40.0%以下にすることで、ガラスの屈折率が低下し難くなり、可視光の短波長の領域における内部透過率が悪化し難くなる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは40.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。B成分は、原料として例えばHBO、Na、Na・10HO、BPO等を用いてガラス内に含有することができる。なお、本発明の光学ガラスでは、B成分を含有しなくとも、ソラリゼーションの低減された光学ガラスを作製することはできるが、B成分の含有量を0.1%以上にすることで、耐失透性の改善された光学ガラスをより得易くすることができる。従って、酸化物換算組成のガラス全質量に対するB成分の含有量は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 The B 2 O 3 component is an oxide that forms glass, is a component useful for forming a glass skeleton, and is an optional component in the optical glass of the present invention. In particular, when the content of the B 2 O 3 component is 40.0% or less, the refractive index of the glass is hardly lowered, and the internal transmittance in a short wavelength region of visible light is hardly deteriorated. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 40.0%, more preferably 20.0%, and most preferably 10.0%. The B 2 O 3 component can be contained in the glass using, for example, H 3 BO 3 , Na 2 B 4 O 7 , Na 2 B 4 O 7 .10H 2 O, BPO 4 or the like as a raw material. In the optical glass of the present invention, an optical glass with reduced solarization can be produced without containing the B 2 O 3 component, but the content of the B 2 O 3 component is 0.1% or more. By doing so, the optical glass with improved devitrification resistance can be obtained more easily. Therefore, the content of the B 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
 GeO成分は、ガラスの屈折率を高め、ガラスを安定化させて成形時の失透を低減する成分であり、本発明の光学ガラス中の任意成分である。特に、GeO成分の含有量を30.0%以下にすることで、高価なGeO成分の使用量が低減されるため、ガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGeO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。GeO成分は、原料として例えばGeO等を用いてガラス内に含有することができる。 The GeO 2 component is a component that increases the refractive index of the glass and stabilizes the glass to reduce devitrification during molding, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the GeO 2 component to 30.0% or less, the amount of expensive GeO 2 component used is reduced, so that the material cost of the glass can be reduced. Therefore, the content of the GeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. The GeO 2 component can be contained in the glass using, for example, GeO 2 as a raw material.
 Al成分は、ガラスの化学的耐久性を改善する成分であり、本発明の光学ガラス中の任意成分である。従って、酸化物換算組成のガラス全質量に対するAl成分の含有量は、好ましくは15.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Al成分は、原料として例えばAl、Al(OH)、AlF等を用いてガラス内に含有することができる。 The Al 2 O 3 component is a component that improves the chemical durability of the glass, and is an optional component in the optical glass of the present invention. Therefore, the upper limit of the content of the Al 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 15.0%, more preferably 10.0%, and most preferably 5.0%. The Al 2 O 3 component can be contained in the glass using, for example, Al 2 O 3 , Al (OH) 3 , AlF 3 or the like as a raw material.
 ZrO成分は、ガラスの液相温度を下げて耐失透性を高め、ガラスの化学的耐久性を改善し、且つガラスの部分分散比(θg,F)を低下させる効果のある成分であり、本発明の光学ガラス中の任意成分である。特に、ZrO成分の含有量を20.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するZrO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは11.0%を上限とする。ZrO成分は、原料として例えばZrO、ZrF等を用いてガラス内に含有することができる。 The ZrO 2 component is a component that has the effect of lowering the liquidus temperature of the glass to increase the devitrification resistance, improving the chemical durability of the glass, and lowering the partial dispersion ratio (θg, F) of the glass. , An optional component in the optical glass of the present invention. In particular, the chemical durability of the glass can be increased by setting the content of the ZrO 2 component to 20.0% or less. Therefore, the content of the ZrO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 11.0%. The ZrO 2 component can be contained in the glass using, for example, ZrO 2 , ZrF 4 or the like as a raw material.
 Ta成分は、ガラスの屈折率を高め、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、Ta成分の含有量を20.0%以下にすることで、ガラスの耐失透性を維持することができる。従って、酸化物換算組成のガラス全質量に対するTa成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Ta成分は、原料として例えばTa等を用いてガラス内に含有することができる。 The Ta 2 O 5 component is a component that increases the refractive index of the glass and decreases the devitrification temperature of the glass, and is an optional component in the optical glass of the present invention. In particular, the devitrification resistance of the glass can be maintained by setting the content of the Ta 2 O 5 component to 20.0% or less. Therefore, the content of the Ta 2 O 5 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The Ta 2 O 5 component can be contained in the glass using, for example, Ta 2 O 5 as a raw material.
 WO成分は、ガラスの屈折率を高め、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、WO成分の含有量を20.0%以下にすることで、特に可視光の短波長(500nm以下)の領域における透過率を悪化し難くすることができる。従って、酸化物換算組成のガラス全質量に対するWO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。WO成分は、原料として例えばWO等を用いてガラス内に含有することができる。 The WO 3 component is a component that increases the refractive index of the glass and decreases the devitrification temperature of the glass, and is an optional component in the optical glass of the present invention. In particular, by setting the content of the WO 3 component to 20.0% or less, it is possible to make it difficult to deteriorate the transmittance particularly in the short wavelength region (500 nm or less) of visible light. Therefore, the content of the WO 3 component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The WO 3 component can be contained in the glass using, for example, WO 3 as a raw material.
 ZnO成分は、ガラスの失透温度を下げ、ガラス転移点(Tg)を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、ZnO成分の含有量を30.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するZnO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。ZnO成分は、原料として例えばZnO、ZnF等を用いてガラス内に含有することができる。 The ZnO component is a component that lowers the devitrification temperature of the glass and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. In particular, the chemical durability of the glass can be enhanced by setting the content of the ZnO component to 30.0% or less. Accordingly, the content of the ZnO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. The ZnO component can be contained in the glass using, for example, ZnO, ZnF 2 or the like as a raw material.
 MgO成分は、ガラスの溶融温度を低下する成分であり、本発明の光学ガラス中の任意成分である。特に、MgO成分の含有量を20.0%以下にすることで、ガラスの化学的耐久性を高めることができる。従って、酸化物換算組成のガラス全質量に対するMgO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。MgO成分は、原料として例えばMgO、MgCO、MgF等を用いてガラス内に含有することができる。 The MgO component is a component that lowers the melting temperature of the glass and is an optional component in the optical glass of the present invention. In particular, the chemical durability of the glass can be increased by setting the content of the MgO component to 20.0% or less. Therefore, the content of the MgO component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The MgO component can be contained in the glass using, for example, MgO, MgCO 3 , MgF 2 or the like as a raw material.
 CaO成分は、ガラスの失透温度を下げる成分であり、本発明の光学ガラス中の任意成分である。特に、CaO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するCaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。CaO成分は、原料として例えばCaCO、CaF等を用いてガラス内に含有することができる。 The CaO component is a component that lowers the devitrification temperature of the glass and is an optional component in the optical glass of the present invention. In particular, the devitrification resistance of the glass can be improved by setting the content of the CaO component to 30.0% or less. Therefore, the content of the CaO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. The CaO component can be contained in the glass using, for example, CaCO 3 , CaF 2 or the like as a raw material.
 SrO成分は、ガラスの失透温度を下げ、ガラスの屈折率を調整する成分であり、本発明の光学ガラス中の任意成分である。特に、SrO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するSrO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。SrO成分は、原料として例えばSr(NO、SrF等を用いてガラス内に含有することができる。 The SrO component is a component that lowers the devitrification temperature of the glass and adjusts the refractive index of the glass, and is an optional component in the optical glass of the present invention. In particular, the devitrification resistance of the glass can be enhanced by setting the content of the SrO component to 30.0% or less. Therefore, the content of the SrO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. The SrO component can be contained in the glass using, for example, Sr (NO 3 ) 2 , SrF 2 or the like as a raw material.
 BaO成分は、ガラスの失透温度を下げ、ガラスの光学定数を調整する成分である。特に、BaO成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するBaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。BaO成分は、原料として例えばBaCO、Ba(NO等を用いてガラス内に含有することができる。 The BaO component is a component that lowers the devitrification temperature of the glass and adjusts the optical constant of the glass. In particular, the devitrification resistance of the glass can be improved by setting the content of the BaO component to 30.0% or less. Therefore, the content of the BaO component with respect to the total glass mass of the oxide-converted composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. The BaO component can be contained in the glass using, for example, BaCO 3 , Ba (NO 3 ) 2 or the like as a raw material.
 本発明の光学ガラスでは、RO成分(式中、RはZn、Mg、Ca、Sr、Baからなる群より選択される1種以上)は、上述のようにガラスの失透温度を下げ、屈折率を調整するために有用な成分であるが、これらRO成分の合計含有量が多すぎると、ガラスの耐失透性がかえって悪化し易くなる。従って、酸化物換算組成のガラス全質量に対するRO成分の合計含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは10.0%を上限とする。なお、本発明の光学ガラスでは、RO成分を含有しなくともソラリゼーションの低減された光学ガラスを作製することは可能であるが、RO成分の合計含有量を1.0%以上にすることで、ガラスの光学定数の調整を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するRO成分の合計含有量は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。 In the optical glass of the present invention, the RO component (wherein R is one or more selected from the group consisting of Zn, Mg, Ca, Sr, and Ba) lowers the devitrification temperature of the glass as described above, and is refracted. Although it is a useful component for adjusting the rate, if the total content of these RO components is too large, the devitrification resistance of the glass tends to deteriorate. Therefore, the total content of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 10.0%. In the optical glass of the present invention, it is possible to produce an optical glass with reduced solarization without containing an RO component, but by making the total content of RO components 1.0% or more, Adjustment of the optical constant of the glass can be facilitated. Therefore, the total content of the RO component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%.
 LiO成分は、ガラスの部分分散比(θg,F)を低下させ、ガラスの失透温度を下げ、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、LiO成分の含有量を20.0%以下にすることで、ソラリゼーションが高まり難くなるため、ソラリゼーションの低減された光学ガラスを得易くすることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。なお、本発明の光学ガラスでは、LiO成分を含有しなくともソラリゼーションの低減された光学ガラスを作製することは可能であるが、LiO成分の合計含有量を0.1%以上にすることで、ガラス転移点(Tg)が低くなるため、プレス成形を行い易いガラスを得ることができる。従って、酸化物換算組成のガラス全質量に対するLiO成分の合計含有量は、好ましくは0.1%、より好ましくは0.5%、最も好ましくは1.0%を下限とする。LiO成分は、原料として例えばLiCO、LiNO、LiF等を用いてガラス内に含有することができる。 The Li 2 O component is a component that lowers the partial dispersion ratio (θg, F) of the glass, lowers the devitrification temperature of the glass, and lowers the glass transition point (Tg), and is an optional component in the optical glass of the present invention. It is. In particular, when the content of the Li 2 O component is 20.0% or less, solarization becomes difficult to increase, so that an optical glass with reduced solarization can be easily obtained. Therefore, the content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. In the optical glass of the present invention, although it is possible even without containing a Li 2 O component to produce a reduced optical glass solarization, the total content of Li 2 O component above 0.1% By doing so, since the glass transition point (Tg) becomes low, it is possible to obtain a glass that is easy to press-mold. Therefore, the total content of the Li 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 0.1%, more preferably 0.5%, and most preferably 1.0%. The Li 2 O component can be contained in the glass using, for example, Li 2 CO 3 , LiNO 3 , LiF or the like as a raw material.
 NaO成分は、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、NaO成分の含有量を30.0%以下にすることで、ガラスの失透温度の上昇が抑えられるため、ガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の含有量は、好ましくは30.0%、より好ましくは20.0%、最も好ましくは15.0%を上限とする。なお、本発明の光学ガラスでは、NaO成分を含有しなくともソラリゼーションの低減された光学ガラスを作製することは可能であるが、NaO成分の合計含有量を0.1%以上にすることで、ガラス転移点(Tg)が低くなるため、プレス成形を行い易いガラスを得ることができる。従って、酸化物換算組成のガラス全質量に対するNaO成分の合計含有量は、好ましくは1.0%、より好ましくは2.0%、最も好ましくは3.0%を下限とする。NaO成分は、原料として例えばNaCO、NaNO、NaF、NaSiF等を用いてガラス内に含有することができる。 Na 2 O component is a component for glass transition point (Tg) lower, are optional components of the optical glass of the present invention. In particular, when the content of the Na 2 O component is 30.0% or less, an increase in the devitrification temperature of the glass can be suppressed, and thus vitrification can be facilitated. Therefore, the content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 20.0%, and most preferably 15.0%. In the optical glass of the present invention, although it is possible even without containing Na 2 O component to produce a reduced optical glass solarization, the total Na 2 O content component than 0.1% By doing so, since the glass transition point (Tg) becomes low, it is possible to obtain a glass that is easy to press-mold. Therefore, the total content of the Na 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 3.0%. The Na 2 O component can be contained in the glass using, for example, Na 2 CO 3 , NaNO 3 , NaF, Na 2 SiF 6 or the like as a raw material.
 KO成分は、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、KO成分の含有量を20.0%以下にすることで、ガラスの失透温度の上昇が抑えられるため、ガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するKO成分の含有量は、好ましくは20.0%、より好ましくは10.0%、最も好ましくは2.0%を上限とする。KO成分は、原料として例えばKCO、KNO、KF、KHF、KSiF等を用いてガラス内に含有することができる。 K 2 O component is a component for glass transition point (Tg) lower, are optional components of the optical glass of the present invention. In particular, when the content of the K 2 O component is 20.0% or less, an increase in the devitrification temperature of the glass can be suppressed, and thus vitrification can be facilitated. Therefore, the content of the K 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 10.0%, and most preferably 2.0%. The K 2 O component can be contained in the glass using, for example, K 2 CO 3 , KNO 3 , KF, KHF 2 , K 2 SiF 6 or the like as a raw material.
 本発明の光学ガラスでは、RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の質量和が、20.0%以下であることが好ましい。この質量和を20.0%以下にすることで、ガラスの失透温度の上昇が抑えられるため、ガラス化を容易にすることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の含有量の質量和は、好ましくは20.0%、より好ましくは17.0%、最も好ましくは15.0%を上限とする。なお、本発明の光学ガラスでは、RnO成分を含有しなくともソラリゼーションの低減された光学ガラスを作製することは可能であるが、RnO成分の合計含有量を1.0%以上にすることで、ガラス転移点(Tg)が低くなるため、プレス成形を行い易いガラスを得ることができる。従って、酸化物換算組成のガラス全質量に対するRnO成分の合計含有量は、好ましくは1.0%、より好ましくは2.0%、最も好ましくは5.0%を下限とする。 In the optical glass of the present invention, the mass sum of the contents of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is 20.0% or less. preferable. By making this mass sum 20.0% or less, an increase in the devitrification temperature of the glass can be suppressed, so that vitrification can be facilitated. Therefore, the mass sum of the content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 20.0%, more preferably 17.0%, and most preferably 15.0%. In the optical glass of the present invention, it is possible to produce an optical glass with reduced solarization without containing the Rn 2 O component, but the total content of the Rn 2 O component is 1.0% or more. By doing so, since the glass transition point (Tg) becomes low, it is possible to obtain a glass that is easy to press-mold. Therefore, the total content of the Rn 2 O component with respect to the total glass mass of the oxide conversion composition is preferably 1.0%, more preferably 2.0%, and most preferably 5.0%.
 La成分は、ガラスの屈折率を高めつつ、ガラスのアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、La成分の含有量を50.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLa成分の含有量は、好ましくは50.0%、より好ましくは20.0%、最も好ましくは5.0%を上限とする。La成分は、原料として例えばLa、La(NO・XHO(Xは任意の整数)等を用いることができる。 The La 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention. In particular, the devitrification resistance of the glass can be improved by setting the content of the La 2 O 3 component to 50.0% or less. Therefore, the content of the La 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 20.0%, and most preferably 5.0%. As the La 2 O 3 component, for example, La 2 O 3 , La (NO 3 ) 3 .XH 2 O (X is an arbitrary integer) or the like can be used as a raw material.
 Gd成分は、ガラスの屈折率を高めつつ、ガラスのアッベ数を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Gd成分の含有量を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するGd成分の含有量は、好ましくは30.0%、より好ましくは10.0%、最も好ましくは5.0%を上限とする。Gd成分は、原料として例えばGd、GdF等を用いることができる。 The Gd 2 O 3 component is a component that increases the Abbe number of the glass while increasing the refractive index of the glass, and is an optional component in the optical glass of the present invention. In particular, the devitrification resistance of the glass can be enhanced by setting the content of the Gd 2 O 3 component to 30.0% or less. Therefore, the content of the Gd 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 10.0%, and most preferably 5.0%. As the Gd 2 O 3 component, for example, Gd 2 O 3 , GdF 3 or the like can be used as a raw material.
 Y成分は、ガラスの屈折率を高めつつ、ガラスの耐失透性を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Y成分の含有量を30.0%以下にすることで、ガラスの液相温度の上昇が抑えられるため、溶融状態からガラスを作製したときにガラスを失透し難くすることができる。従って、酸化物換算組成のガラス全質量に対するY成分の含有量は、好ましくは30.0%、より好ましくは15.0%、最も好ましくは5.0%を上限とする。Y成分は、原料として例えばY、YF等を用いることができる。 Y 2 O 3 component, while increasing the refractive index of the glass, or to enhance the devitrification resistance of the glass, an optional component of the optical glass of the present invention. In particular, by making the content of the Y 2 O 3 component 30.0% or less, an increase in the liquidus temperature of the glass can be suppressed, so that it is difficult to devitrify the glass when the glass is produced from a molten state. Can do. Therefore, the content of the Y 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%. For the Y 2 O 3 component, for example, Y 2 O 3 , YF 3 or the like can be used as a raw material.
 本発明の光学ガラスでは、Ln成分(式中、LnはLa、Y、Gdからなる群より選択される1種以上)の含有量の質量和が、30.0%以下であることが好ましい。この質量和を30.0%以下にすることで、ガラスの耐失透性を高めることができる。従って、酸化物換算組成のガラス全質量に対するLn成分の含有量の質量和は、好ましくは30.0%、より好ましくは15.0%、最も好ましくは5.0%を上限とする。 In the optical glass of the present invention, the mass sum of the contents of the Ln 2 O 3 component (wherein Ln is one or more selected from the group consisting of La, Y, and Gd) is 30.0% or less. Is preferred. By making this mass sum 30.0% or less, the devitrification resistance of the glass can be enhanced. Therefore, the mass sum of the content of the Ln 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 30.0%, more preferably 15.0%, and most preferably 5.0%. .
 Ga成分は、ガラスの屈折率を高める成分であり、本発明の光学ガラス中の任意成分である。特に、Ga成分の含有量を20.0%以下にすることで、高価なGa成分の使用量が低減されるため、ガラスの材料コストを低減することができる。従って、酸化物換算組成のガラス全質量に対するGa成分の含有量は、好ましくは20.0%、より好ましくは15.0%、最も好ましくは10.0%を上限とする。Ga成分は、原料として例えばGa等を用いてガラス内に含有することができる。 Ga 2 O 3 component is a component that raises the refractive index of the glass, an optional component of the optical glass of the present invention. In particular, by setting the content of the Ga 2 O 3 component to 20.0% or less, the usage amount of the expensive Ga 2 O 3 component is reduced, so that the material cost of the glass can be reduced. Therefore, the content of the Ga 2 O 3 component with respect to the total glass mass of the oxide-converted composition is preferably 20.0%, more preferably 15.0%, and most preferably 10.0%. The Ga 2 O 3 component can be contained in the glass using, for example, Ga 2 O 3 as a raw material.
 TeO成分は、ガラスの屈折率を上げ、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、TeO成分の含有量を50.0%以下にすることで、ガラスの着色を低減しつつ、ガラスの内部透過率を高めることができる。従って、酸化物換算組成のガラス全質量に対するTeO成分の含有量は、好ましくは50.0%、より好ましくは30.0%、さらに好ましくは15.0%を上限とし、最も好ましくは10.0%未満とする。TeO成分は、原料として例えばTeO等を用いてガラス内に含有することができる。 TeO 2 component increases the refractive index of the glass is a component of glass transition point (Tg) lower, are optional components of the optical glass of the present invention. In particular, by setting the content of the TeO 2 component to 50.0% or less, it is possible to increase the internal transmittance of the glass while reducing the coloring of the glass. Therefore, the content of the TeO 2 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, still more preferably 15.0%, and most preferably 10. Less than 0%. The TeO 2 component can be contained in the glass using, for example, TeO 2 as a raw material.
 Bi成分は、ガラスの屈折率を上げ、ガラス転移点(Tg)を低くする成分であり、本発明の光学ガラス中の任意成分である。特に、Bi成分の含有量を50.0%以下にすることで、ガラスの着色を低減しつつ、ガラスの内部透過率を高めることができる。従って、酸化物換算組成のガラス全質量に対するBi成分の含有量は、好ましくは50.0%、より好ましくは30.0%、さらに好ましくは15.0%を上限とし、最も好ましくは10.0%未満とする。Bi成分は、原料として例えばBi等を用いてガラス内に含有することができる。 Bi 2 O 3 component, increasing the refractive index of the glass is a component of glass transition point (Tg) lower, are optional components of the optical glass of the present invention. In particular, by setting the content of the Bi 2 O 3 component to 50.0% or less, it is possible to increase the internal transmittance of the glass while reducing the coloration of the glass. Therefore, the content of the Bi 2 O 3 component with respect to the total glass mass of the oxide conversion composition is preferably 50.0%, more preferably 30.0%, and even more preferably 15.0%, and most preferably It is less than 10.0%. The Bi 2 O 3 component can be contained in the glass using, for example, Bi 2 O 3 as a raw material.
 CeO成分は、ガラスの光学定数を調整し、ガラスのソラリゼーションを改善する成分であり、本発明の光学ガラス中の任意成分である。特に、CeO成分の含有量を10.0%以下にすることで、ガラスのソラリゼーションを低減させることができる。従って、酸化物換算組成のガラス全質量に対するCeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、最も好ましくは1.0%を上限とする。但し、CeO成分を含有すると可視域の特定の波長に吸収が生じ易くなるため、ガラスの着色の面では、CeO成分を実質的に含まないことが好ましい。CeO成分は、原料として例えばCeO等を用いてガラス内に含有することができる。 The CeO 2 component is a component that adjusts the optical constant of the glass and improves the solarization of the glass, and is an optional component in the optical glass of the present invention. In particular, when the content of the CeO 2 component is 10.0% or less, solarization of the glass can be reduced. Therefore, the CeO 2 component content with respect to the total glass mass of the oxide conversion composition is preferably 10.0%, more preferably 5.0%, and most preferably 1.0%. However, when a CeO 2 component is contained, absorption tends to occur at a specific wavelength in the visible range. Therefore, it is preferable that the CeO 2 component is not substantially contained in terms of coloring of the glass. The CeO 2 component can be contained in the glass using, for example, CeO 2 as a raw material.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤や脱泡剤、或いはそれらの組み合わせを用いることができる。 Incidentally, components of the fining defoaming of glass is not limited to the above Sb 2 O 3 ingredients may be used known refining agents and defoamers in the field of glass production, or a combination thereof .
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be included>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
 本発明の光学ガラスには、他の成分をガラスの特性を損なわない範囲で必要に応じ、添加することができる。 In the optical glass of the present invention, other components can be added as necessary within a range not impairing the properties of the glass.
 ただし、Ti、Zr及びNbを除く、V、Cr、Mn、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視領域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 However, the transition metal components such as V, Cr, Mn, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, and Nb, are colored in the glass even when each of them is contained alone or in combination. Since there is a property of causing absorption at a specific wavelength in the visible region, it is preferable that the optical glass using the wavelength in the visible region does not substantially contain.
 さらに、PbO等の鉛化合物及びAs等のヒ素化合物、並びに、Th、Cd、Tl、Os、Be及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、これらを実質的に含有しないことが好ましい。これにより、光学ガラスに環境を汚染する物質が実質的に含まれなくなる。そのため、特別な環境対策上の措置を講じなくとも、この光学ガラスを製造し、加工し、及び廃棄することができる。 Furthermore, lead compounds such as PbO and arsenic compounds such as As 2 O 3 and components of Th, Cd, Tl, Os, Be and Se have been refraining from being used as harmful chemical substances in recent years. Environmental measures are required not only in the manufacturing process but also in the processing process and disposal after commercialization. Therefore, when importance is placed on the environmental impact, it is preferable not to substantially contain them except for inevitable mixing. As a result, the optical glass is substantially free of substances that pollute the environment. Therefore, the optical glass can be manufactured, processed, and discarded without taking any special environmental measures.
 本発明の光学ガラスとして好ましく用いられるガラスは、その組成が酸化物換算組成のガラス全質量に対する質量%で表されているため直接的にモル%の記載に表せるものではないが、本発明において要求される諸特性を満たすガラス組成物中に存在する各成分のモル%表示による組成は、酸化物換算組成で概ね以下の値をとる。
SiO成分 1.0~70.0モル%及び
Nb成分 3.0~25.0モル%
並びに
TiO成分 0~50.0モル%及び/又は
成分 0~55.0モル%及び/又は
GeO成分 0~30.0モル%及び/又は
Al成分 0~15.0モル%及び/又は
ZrO成分 0~15.0モル%及び/又は
Ta成分 0~5.0モル%及び/又は
WO成分 0~10.0モル%及び/又は
ZnO成分 0~40.0モル%及び/又は
MgO成分 0~45.0モル%及び/又は
CaO成分 0~55.0モル%及び/又は
SrO成分 0~30.0モル%及び/又は
BaO成分 0~20.0モル%及び/又は
LiO成分 0~55.0モル%及び/又は
NaO成分 0~45.0モル%及び/又は
O成分 0~20.0モル%及び/又は
La成分 0~15.0モル%及び/又は
Gd成分 0~10.0モル%及び/又は
成分 0~15.0モル%及び/又は
Ga成分 0~10.0モル%及び/又は
TeO成分 0~30.0モル%及び/又は
Bi成分 0~20.0モル%及び/又は
CeO成分 0~3.0モル%
The glass that is preferably used as the optical glass of the present invention cannot be expressed directly in the description of mol% because the composition is represented by mass% with respect to the total mass of the glass in terms of oxide composition, but is required in the present invention. The composition expressed by mol% of each component present in the glass composition satisfying various properties generally takes the following values in terms of oxide conversion.
SiO 2 component 1.0-70.0 mol% and Nb 2 O 5 component 3.0-25.0 mol%
And TiO 2 component 0 to 50.0 mol% and / or B 2 O 3 component 0 to 55.0 mol% and / or GeO 2 component 0 to 30.0 mol% and / or Al 2 O 3 component 0 to 15 0.0 mol% and / or ZrO 2 component 0 to 15.0 mol% and / or Ta 2 O 5 component 0 to 5.0 mol% and / or WO 3 component 0 to 10.0 mol% and / or ZnO component 0-40.0 mol% and / or MgO component 0-45.0 mol% and / or CaO component 0-55.0 mol% and / or SrO component 0-30.0 mol% and / or BaO component 0- 20.0 mol% and / or Li 2 O component 0-55.0 mol% and / or Na 2 O component 0-45.0 mol% and / or K 2 O component 0-20.0 mol% and / or la 2 O 3 component from 0 to 15.0 mol% and / or Gd O 3 component from 0 to 10.0 mol% and / or Y 2 O 3 component from 0 to 15.0 mol% and / or Ga 2 O 3 component from 0 to 10.0 mol% and / or TeO 2 components 0-30. 0 mol% and / or Bi 2 O 3 component 0 to 20.0 mol% and / or CeO 2 component 0 to 3.0 mol%
<物性>
 本発明の光学ガラスは、ソラリゼーションが5.0%以下であることが好ましい。これにより、光学ガラスを組み込んだ機器は、長期間の使用によってもカラーバランスが悪くなり難くなる。特に、使用温度が高いほどソラリゼーションがより大きく低減するため、車載用のように高温下で用いられる場合に、本発明の光学ガラスは特に有効である。従って、本発明の光学ガラスのソラリゼーションは、好ましくは5.0%、より好ましくは4.8%、最も好ましくは4.5%を上限とする。なお、本明細書中において「ソラリゼーション」とは、ガラスに紫外線を照射した場合の450nmにおける分光透過率の劣化量を表すものであり、具体的には、日本光学硝子工業会規格JOGIS04-1994「光学ガラスのソラリゼーションの測定方法」に従い、高圧水銀灯の光を照射した前後の分光透過率をそれぞれ測定することにより求められる。
<Physical properties>
The optical glass of the present invention preferably has a solarization of 5.0% or less. As a result, the device incorporating the optical glass is unlikely to deteriorate in color balance even after long-term use. In particular, since the solarization is greatly reduced as the use temperature is higher, the optical glass of the present invention is particularly effective when used at a high temperature as in a vehicle. Accordingly, the upper limit of solarization of the optical glass of the present invention is preferably 5.0%, more preferably 4.8%, and most preferably 4.5%. In the present specification, “solarization” refers to the amount of degradation of spectral transmittance at 450 nm when glass is irradiated with ultraviolet rays, and specifically, Japanese Optical Glass Industry Standard JOGIS 04-1994 “ According to “Measurement method of solarization of optical glass”, the spectral transmittance before and after irradiation with light from a high-pressure mercury lamp is measured.
 また、本発明の光学ガラスは、アッベ数(ν)との関係式において所望の部分分散比(θg,F)を有し、レンズの色収差をより高精度に補正できる。より具体的には、本発明の光学ガラスの部分分散比(θg,F)は、アッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、且つ、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす。これにより、低いソラリゼーションを有しつつ所望の部分分散比(θg,F)を有する光学ガラスが得られるため、光学機器におけるレンズの色収差を、長期間にわたり高精度に補正することができる。ここで、ν≦25における光学ガラスの部分分散比(θg,F)は、好ましくは(-1.60×10-3×ν+0.6346)、より好ましくは(-1.60×10-3×ν+0.6366)、最も好ましくは(-1.60×10-3×ν+0.6386)を下限とする。また、ν>25における光学ガラスの部分分散比(θg,F)は、好ましくは(-2.50×10-3×ν+0.6571)、より好ましくは(-2.50×10-3×ν+0.6591)、最も好ましくは(-2.50×10-3×ν+0.6611)を下限とする。一方で、光学ガラスの部分分散比(θg,F)の上限は、好ましくは(-4.21×10-3×ν+0.7207)、より好ましくは(-4.21×10-3×ν+0.7187)、さらに好ましくは(-4.21×10-3×ν+0.7177)、最も好ましくは(-4.21×10-3×ν+0.7172)である。なお、特にアッベ数(ν)が小さい領域では、一般的なガラスの部分分散比(θg,F)はノーマルラインよりも高い値にあり、一般的なガラスの部分分散比(θg,F)とアッベ数(ν)の関係は曲線で表される。しかしながら、この曲線の近似が困難であるため、本発明では、一般的なガラスよりも部分分散比(θg,F)が低いことを、ν=25を境に異なった傾きを有する直線を用いて表した。 The optical glass of the present invention has a desired partial dispersion ratio (θg, F) in the relational expression with the Abbe number (ν d ), and can correct the chromatic aberration of the lens with higher accuracy. More specifically, the partial dispersion ratio (θg, F) of the optical glass of the present invention is (−1.60 × 10 −3 ×) in the range of ν d ≦ 25 with respect to the Abbe number (ν d ). ν d +0.6346) ≦ (θg, F) ≦ (−4.21 × 10 −3 × ν d +0.7207) and (−2.50 × 10 × 10) in the range of ν d > 25. −3 × ν d +0.6571) ≦ (θg, F) ≦ (−4.21 × 10 −3 × ν d +0.7207). Accordingly, an optical glass having a desired partial dispersion ratio (θg, F) while having a low solarization can be obtained, so that the chromatic aberration of the lens in the optical apparatus can be corrected with high accuracy over a long period of time. Here, the partial dispersion ratio (θg, F) of the optical glass at ν d ≦ 25 is preferably (−1.60 × 10 −3 × ν d +0.6346), more preferably (−1.60 × 10 6). −3 × ν d +0.6366), most preferably (−1.60 × 10 −3 × ν d +0.6386). The partial dispersion ratio (θg, F) of the optical glass at ν d > 25 is preferably (−2.50 × 10 −3 × ν d +0.6571), more preferably (−2.50 × 10 −). 3 × ν d +0.6591), and most preferably (−2.50 × 10 −3 × ν d +0.6611) is set as the lower limit. On the other hand, the upper limit of the partial dispersion ratio (θg, F) of the optical glass is preferably (−4.21 × 10 −3 × ν d +0.7207), more preferably (−4.21 × 10 −3 ×). (ν d +0.7187), more preferably (−4.21 × 10 −3 × ν d +0.7177), and most preferably (−4.21 × 10 −3 × ν d +0.7172). In particular, in a region where the Abbe number (ν d ) is small, the partial dispersion ratio (θg, F) of general glass is higher than that of the normal line, and the partial dispersion ratio (θg, F) of general glass is high. And the Abbe number (ν d ) are represented by curves. However, since it is difficult to approximate this curve, the present invention uses a straight line having a different slope from ν d = 25 as a partial dispersion ratio (θg, F) lower than that of general glass. Expressed.
 また、本発明の光学ガラスは、400℃以上650℃以下のガラス転移点(Tg)を有することが好ましい。ガラス転移点(Tg)が400℃以上であることにより、ガラスに対して研磨加工を行う際に発生する摩擦熱による悪影響を低減することができる。一方で、ガラス転移点(Tg)が650℃以下であることにより、より低い温度でのプレス成形が可能になるため、モールドプレス成形に用いる金型の酸化を低減して長寿命化を図ることができる。従って、本発明の光学ガラスのガラス転移点(Tg)は、好ましくは400℃、より好ましくは450℃、最も好ましくは500℃を下限とし、好ましくは650℃、より好ましくは620℃、最も好ましくは600℃を上限とする。 The optical glass of the present invention preferably has a glass transition point (Tg) of 400 ° C. or higher and 650 ° C. or lower. When the glass transition point (Tg) is 400 ° C. or higher, adverse effects due to frictional heat generated when polishing the glass can be reduced. On the other hand, since the glass transition point (Tg) is 650 ° C. or lower, press molding at a lower temperature becomes possible, so that the oxidation of the mold used for mold press molding is reduced to extend the life. Can do. Accordingly, the glass transition point (Tg) of the optical glass of the present invention is preferably 400 ° C., more preferably 450 ° C., most preferably 500 ° C., preferably 650 ° C., more preferably 620 ° C., most preferably The upper limit is 600 ° C.
 また、本発明の光学ガラスは、450℃以上700℃以下の屈伏点(At)を有することが好ましい。屈伏点(At)は、ガラス転移点(Tg)と同様にガラスの軟化性を示す指標の一つであり、プレス成形温度に近い温度を示す指標である。そのため、屈伏点(At)が450℃以上のガラスを用いることにより、ガラスに対して研磨加工を行う際に発生する摩擦熱による悪影響を低減することができる。また、屈伏点(At)が700℃以下のガラスを用いることにより、より低い温度でのプレス成形が可能になるため、より容易にプレス成形を行うことができる。従って、本発明の光学ガラスの屈伏点(At)は、好ましくは450℃、より好ましくは500℃、最も好ましくは540℃を下限とし、好ましくは700℃、より好ましくは670℃、最も好ましくは650℃を上限とする。 The optical glass of the present invention preferably has a yield point (At) of 450 ° C. or higher and 700 ° C. or lower. Like the glass transition point (Tg), the yield point (At) is one of indices indicating the softening property of glass, and is an index indicating a temperature close to the press molding temperature. Therefore, by using a glass having a yield point (At) of 450 ° C. or higher, adverse effects due to frictional heat generated when polishing the glass can be reduced. Further, by using a glass having a yield point (At) of 700 ° C. or lower, press molding at a lower temperature becomes possible, so that press molding can be performed more easily. Therefore, the yield point (At) of the optical glass of the present invention is preferably 450 ° C., more preferably 500 ° C., most preferably 540 ° C., preferably 700 ° C., more preferably 670 ° C., most preferably 650. C is the upper limit.
 また、本発明の光学ガラスは、所定の屈折率及び分散(アッベ数)を有することが好ましい。より具体的には、本発明の光学ガラスの屈折率(n)は、好ましくは1.78、より好ましくは1.80、最も好ましくは1.82を下限とし、好ましくは1.95、より好ましくは1.92、最も好ましくは1.90を上限とする。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは18、より好ましくは20、最も好ましくは22を下限とし、好ましくは30、より好ましくは28、最も好ましくは27を上限とする。これらにより、光学設計の自由度を広げることができ、さらに素子の薄型化を図っても大きな光の屈折量を得ることができる。 The optical glass of the present invention preferably has a predetermined refractive index and dispersion (Abbe number). More specifically, the refractive index (n d ) of the optical glass of the present invention is preferably 1.78, more preferably 1.80, most preferably 1.82, and preferably 1.95. The upper limit is preferably 1.92, and most preferably 1.90. The Abbe number (ν d ) of the optical glass of the present invention is preferably 18, more preferably 20, most preferably 22, the lower limit, preferably 30, more preferably 28, and most preferably 27. . Accordingly, the degree of freedom in optical design can be expanded, and a large amount of light refraction can be obtained even if the device is made thinner.
[ガラスの分光透過率の劣化抑制方法]
 次に、本発明のガラスの分光透過率の劣化抑制方法について説明する。本発明の分光透過率の劣化抑制方法では、ガラスに含まれるSb成分の含有量を低減する。これにより、紫外線を照射してもガラスのソラリゼーションが低減される。このため、分光透過率の経時的な劣化が抑制された光学ガラスを得易くすることができる。ここで、Sb成分の含有量を低減する手段は、例えば原料に含まれるSb成分の含有量を低減する手段が用いられるが、これに限定されない。また、Pt成分、Fe成分を低減させる方法を併用すると、さらに有効である。
[Method of suppressing deterioration of spectral transmittance of glass]
Next, a method for suppressing the deterioration of the spectral transmittance of the glass of the present invention will be described. In the spectral transmittance deterioration suppressing method of the present invention, the content of the Sb 2 O 3 component contained in the glass is reduced. Thereby, solarization of the glass is reduced even when irradiated with ultraviolet rays. For this reason, it is possible to easily obtain an optical glass in which deterioration of the spectral transmittance over time is suppressed. Here, it means for reducing the content of Sb 2 O 3 component is, for example, means for reducing the content of Sb 2 O 3 component contained in the raw material used, but is not limited thereto. Further, it is more effective to use a method for reducing the Pt component and the Fe component together.
[ガラス及びガラス成形体の作製]
 本発明の光学ガラス、及び本発明の分光透過率の劣化抑制方法で用いられるガラスは、例えば以下のように作製される。すなわち、各成分が所定の含有量の範囲内になるように原料を均一に混合する。作製した混合物を石英坩堝に投入して粗溶融した後、白金坩堝又は白金合金坩堝に入れて所定の温度範囲で所定時間にわたり溶融し、攪拌により均質化して泡切れ等を行う。次いで、溶融ガラスの温度を下げ、金型に鋳込んで徐冷することにより、光学ガラスが作製される。ここで、白金坩堝を用いて材料を溶融した場合、高温でのガラスの溶融が可能になるため、溶解温度の高いガラス、例えば上述のSiO成分及びNb成分、及び/又はTiO成分を含有するガラスであっても効率よく溶解することができるが、白金坩堝からガラスにPt成分が溶出し易くなる。従って、ガラスへのPt成分の溶出を低減するには、ガラスの溶解温度は好ましくは1400℃、より好ましくは1300℃、最も好ましくは1200℃を上限とし、ガラスの溶融時間は好ましくは6時間、より好ましくは4時間、最も好ましくは2時間とする。
[Production of glass and glass molded body]
The optical glass of the present invention and the glass used in the spectral transmittance degradation suppressing method of the present invention are produced, for example, as follows. That is, the raw materials are uniformly mixed so that each component is within a predetermined content range. The prepared mixture is put into a quartz crucible and roughly melted, and then put into a platinum crucible or a platinum alloy crucible, melted in a predetermined temperature range for a predetermined time, homogenized by stirring, and subjected to foam breakage or the like. Next, the temperature of the molten glass is lowered, cast into a mold, and slowly cooled to produce optical glass. Here, when the material is melted using a platinum crucible, it becomes possible to melt the glass at a high temperature. Therefore, a glass having a high melting temperature, for example, the above-described SiO 2 component and Nb 2 O 5 component, and / or TiO 2. Even glass containing the component can be efficiently dissolved, but the Pt component is easily eluted from the platinum crucible into the glass. Therefore, in order to reduce the elution of the Pt component into the glass, the melting temperature of the glass is preferably 1400 ° C., more preferably 1300 ° C., most preferably 1200 ° C., and the melting time of the glass is preferably 6 hours. More preferably 4 hours, and most preferably 2 hours.
 作製された光学ガラスから、例えばリヒートプレス成形や精密プレス成形等の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスからモールドプレス成形用のレンズプリフォームを作製し、このレンズプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製できる。また、研磨加工を行って作製したレンズプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることもできる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。 A glass molded body can be produced from the produced optical glass using means such as reheat press molding or precision press molding. That is, a lens preform for mold press molding is prepared from optical glass, and after reheat press molding is performed on the lens preform, polishing can be performed to prepare a glass molded body. Further, a glass molded body can be produced by precision press molding the lens preform produced by polishing. In addition, the means for producing the glass molded body is not limited to these means.
 このようにして作製されるガラス成形体は、様々な光学素子に有用であるが、その中でも特に、レンズやプリズム等の光学素子の用途に用いることが好ましい。これにより、光学素子の分光透過率の経時的な劣化が抑制されるため、長期間の使用によっても光学素子のカラーバランスを悪くなり難くすることができる。 The glass molded body produced in this manner is useful for various optical elements, and among them, it is particularly preferable to use for optical elements such as lenses and prisms. Thereby, since the temporal degradation of the spectral transmittance of the optical element is suppressed, the color balance of the optical element can be hardly deteriorated even after long-term use.
 本発明の実施例(No.1~No.159)及び比較例(No.1~No.2)の組成、並びに、これらのガラスのPt成分及びFe成分の濃度、屈折率(n)、アッベ数(ν)、光照射の前後における波長450nmの分光透過率、ソラリゼーション、部分分散比(θg,F)、ガラス転移点(Tg)、並びに屈伏点(At)の結果を表1~表22に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples (No. 1 to No. 159) and Comparative Examples (No. 1 to No. 2) of the present invention, concentrations of Pt component and Fe component of these glasses, refractive index ( nd ), Tables 1 to 5 show the Abbe number (ν d ), spectral transmittance at a wavelength of 450 nm before and after light irradiation, solarization, partial dispersion ratio (θg, F), glass transition point (Tg), and yield point (At). 22 shows. The following examples are merely for illustrative purposes, and are not limited to these examples.
 本発明の実施例(No.1~No.159)及び比較例(No.1~No.2)のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、水酸化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度の原料を選定し、表1~表22に示した各実施例及び比較例の組成の割合になるように秤量して均一に混合した。その後、混合物を白金坩堝に投入し、ガラス組成の熔融の難易度に応じて電気炉で1200~1350℃の温度範囲で2~4時間溶解し、攪拌により均質化して泡切れ等を行った。その後、溶融ガラスの温度を1100~1200℃に下げ、攪拌により均質化してから金型に鋳込み、徐冷してガラスを作製した。 The glass of Examples (No. 1 to No. 159) and Comparative Examples (No. 1 to No. 2) of the present invention are all oxides, hydroxides, carbonates corresponding to the raw materials of the respective components, High-purity raw materials used for ordinary optical glass such as nitrates, fluorides, hydroxides, metaphosphoric acid compounds, etc. are selected, and the composition ratios of the respective examples and comparative examples shown in Tables 1 to 22 are obtained. And weighed uniformly. Thereafter, the mixture was put into a platinum crucible, melted in an electric furnace at a temperature range of 1200 to 1350 ° C. for 2 to 4 hours according to the difficulty of melting the glass composition, and homogenized by stirring to remove bubbles. Thereafter, the temperature of the molten glass was lowered to 1100 to 1200 ° C., homogenized by stirring, cast into a mold, and slowly cooled to produce a glass.
 ここで、実施例(No.1~No.159)及び比較例(No.1~No.2)のガラスのPt成分及びFe成分の含有量は、実施例及び比較例の組成を有するガラスを粉末状にし、酸で処理することにより得られた溶液について、ICP発光分析装置(セイコーインスツルメンツ社製 Vista-PRO)を用いて測定した。 Here, the contents of the Pt component and Fe component of the glasses of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) are the same as those of the glasses having the compositions of the examples and comparative examples. The solution obtained by powdering and treating with an acid was measured using an ICP emission spectrometer (Vista-PRO manufactured by Seiko Instruments Inc.).
 また、実施例(No.1~No.159)及び比較例(No.1~No.2)のガラスのソラリゼーションは、日本光学硝子工業会規格JOGIS04-1994「光学ガラスのソラリゼーションの測定方法」に準じて、光照射前後における波長450nmの光透過率の変化(%)を測定した。ここで、光の照射は、光学ガラス試料を100℃に加熱し、超高圧水銀灯を用いて波長450nmの光を4時間照射することにより行った。 Further, the solarization of the glass of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) is described in Japan Optical Glass Industry Association Standard JOGIS04-1994 “Measurement Method of Solarization of Optical Glass”. Similarly, the change (%) in light transmittance at a wavelength of 450 nm before and after light irradiation was measured. Here, the light irradiation was performed by heating an optical glass sample to 100 ° C. and irradiating light with a wavelength of 450 nm for 4 hours using an ultrahigh pressure mercury lamp.
 また、実施例(No.1~No.159)及び比較例(No.1~No.2)のガラスの屈折率(n)、アッベ数(ν)、及び部分分散比(θg,F)は、日本光学硝子工業会規格JOGIS01―2003に基づいて測定した。そして、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、関係式(θg,F)=-a×ν+bにおける、傾きaが0.0016、0.0020及び0.00421のときの切片bを求めた。なお、本測定に用いたガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。 Further, the refractive index (n d ), Abbe number (ν d ), and partial dispersion ratio (θg, F) of the glass of Examples (No. 1 to No. 159) and Comparative Examples (No. 1 to No. 2). ) Was measured based on Japan Optical Glass Industry Association Standard JOGIS01-2003. Then, regarding the obtained Abbe number (ν d ) and partial dispersion ratio (θg, F), the slope a in the relational expression (θg, F) = − a × ν d + b is 0.0016, 0.0020. And the intercept b at 0.00421 was obtained. The glass used in this measurement was a glass that had been treated in a slow cooling furnace at a slow cooling rate of −25 ° C./hr.
 また、実施例(No.1~No.159)及び比較例(No.1~No.2)のガラスのガラス転移点(Tg)及び屈伏点(At)は、示差熱測定装置(ネッチゲレテバウ社製 STA 409 CD)を用いた測定を行うことで求めた。ここで、測定を行う際のサンプル粒度は425~600μmとし、昇温速度は10℃/minとした。 Further, the glass transition point (Tg) and the yield point (At) of the glass of the examples (No. 1 to No. 159) and the comparative examples (No. 1 to No. 2) were measured with a differential heat measuring device (manufactured by Netchgeletebau). It was determined by performing measurement using STA 409 CD). Here, the sample particle size at the time of measurement was 425 to 600 μm, and the temperature elevation rate was 10 ° C./min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1~表22に表されるように、本発明の実施例の光学ガラスは、いずれもソラリゼーションが5.0%以下、より詳細には4.3%以下であり、所望の範囲内であった。一方で、比較例のガラスは、ソラリゼーションが5.0%より大きかった。従って、本発明の実施例の光学ガラスは、比較例のガラスに比べて、紫外線の長時間の照射による光学ガラスのソラリゼーションが低減されていることが明らかになった。 As shown in Tables 1 to 22, all of the optical glasses of the examples of the present invention have a solarization of 5.0% or less, more specifically 4.3% or less, and are within a desired range. It was. On the other hand, the glass of the comparative example had a solarization greater than 5.0%. Therefore, it became clear that the optical glass of the example of the present invention has reduced solarization of the optical glass due to the long-time irradiation of ultraviolet rays as compared with the glass of the comparative example.
 本発明の実施例の光学ガラスは、ν≦25のものは部分分散比(θg,F)が(-1.60×10-3×ν+0.6346)以上、より詳細には(-1.60×10-3×ν+0.6497)以上であった。また、ν>25のものは、部分分散比(θg,F)が(-2.50×10-3×ν+0.6571)以上、より詳細には(-2.50×10-3×ν+0.6670)以上であった。その反面で、本発明の実施例の光学ガラスの部分分散比(θg,F)は(-4.21×10-3×ν+0.7207)以下、より詳細には(-4.21×10-3×ν+0.7187)以下であった。そのため、これらの部分分散比(θg,F)が所望の範囲内にあることがわかった。一方、本発明の比較例のガラスは、いずれも部分分散比(θg,F)が(-4.21×10-3×ν+0.7187)を超えていた。従って、本発明の実施例の光学ガラスは、比較例のガラスに比べ、アッベ数(ν)との関係式において部分分散比(θg,F)が小さいことが明らかになった。 The optical glass of the example of the present invention has a partial dispersion ratio (θg, F) of (−1.60 × 10 −3 × ν d +0.6346) or more when ν d ≦ 25, more specifically (− 1.60 × 10 −3 × ν d +0.6497) or more. In the case of ν d > 25, the partial dispersion ratio (θg, F) is (−2.50 × 10 −3 × ν d +0.6571) or more, more specifically (−2.50 × 10 −3). × ν d +0.6670) or more. On the other hand, the partial dispersion ratio (θg, F) of the optical glass of the example of the present invention is (−4.21 × 10 −3 × ν d +0.7207) or less, more specifically (−4.21 × 10 −3 × ν d +0.7187) or less. Therefore, it was found that these partial dispersion ratios (θg, F) are within a desired range. On the other hand, the glasses of the comparative examples of the present invention all had a partial dispersion ratio (θg, F) exceeding (−4.21 × 10 −3 × ν d +0.7187). Therefore, it was clarified that the optical glass of the example of the present invention has a smaller partial dispersion ratio (θg, F) in the relational expression with the Abbe number (ν d ) than the glass of the comparative example.
 また、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.78以上、より詳細には1.82以上であるとともに、この屈折率(n)は1.95以下、より詳細には1.90以下であり、所望の範囲内であった。 The optical glasses of the examples of the present invention all have a refractive index (n d ) of 1.78 or more, more specifically 1.82 or more, and the refractive index (n d ) of 1.95 or less. More specifically, it was 1.90 or less, and was within a desired range.
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が18以上、より詳細には22以上であるとともに、このアッベ数(ν)は30以下、より詳細には27以下であり、所望の範囲内であった。 The optical glasses of the examples of the present invention all have an Abbe number (ν d ) of 18 or more, more specifically 22 or more, and this Abbe number (ν d ) of 30 or less, more specifically 27. And within the desired range.
 また、本発明の実施例の光学ガラスは、いずれもガラス転移点(Tg)が400℃以上、より詳細には500℃以上であるとともに、このガラス転移点(Tg)は650℃以下、より詳細には600℃以下であり、所望の範囲内であった。 The optical glasses of the examples of the present invention all have a glass transition point (Tg) of 400 ° C. or higher, more specifically 500 ° C. or higher, and this glass transition point (Tg) is 650 ° C. or lower. It was 600 degrees C or less, and was in the desired range.
 また、本発明の実施例の光学ガラスは、いずれも屈伏点(At)が450℃以上、より詳細には540℃以上であるとともに、この屈伏点(At)は700℃以下、より詳細には650℃以下であり、所望の範囲内であった。 In addition, the optical glasses of the examples of the present invention all have a yield point (At) of 450 ° C. or higher, more specifically 540 ° C. or higher, and the yield point (At) is 700 ° C. or lower, more specifically. It was 650 degrees C or less, and was in the desired range.
 さらに、本発明の実施例の光学ガラスを用いてリヒートプレス成形を行った後で研削及び研磨を行い、レンズ及びプリズムの形状に加工してガラス成形体を得た。また、本発明の実施例の光学ガラスを用いて、精密プレス成形用のレンズプリフォームを形成し、このレンズプリフォームを精密プレス成形加工してガラス成形体を得た。その結果、本発明の実施例の光学ガラスは、Sb成分の含有量が所定量以下であり、得られたガラス成形体はソラリゼーションが少なく、長期間にわたりレンズ及びプリズムとして所定の分光透過率を有することが可能なガラス成形体を得ることができた。一方で、比較例のガラスは、所定以上のSb成分が含まれており、得られたガラス成形体は紫外線によって容易に着色した。このため、本発明の実施例の光学ガラスから作製されるガラス成形体は、比較例のガラスから作製されるガラス成形体に比べて、ソラリゼーションが低減されており、分光透過率の経時的な劣化が抑制されていることが明らかになった。 Furthermore, after performing reheat press molding using the optical glass of the example of the present invention, grinding and polishing were performed and processed into the shape of a lens and a prism to obtain a glass molded body. Further, a lens preform for precision press molding was formed using the optical glass of the example of the present invention, and this lens preform was precision press molded to obtain a glass molded body. As a result, in the optical glass of the example of the present invention, the content of the Sb 2 O 3 component is not more than a predetermined amount, and the obtained glass molded body has little solarization, and has a predetermined spectral transmission as a lens and a prism over a long period of time. The glass molded object which can have a rate was able to be obtained. On the other hand, the glass of the comparative example contained a predetermined or higher Sb 2 O 3 component, and the obtained glass molded body was easily colored by ultraviolet rays. Therefore, the glass molded body produced from the optical glass of the example of the present invention has a reduced solarization as compared with the glass molded body produced from the glass of the comparative example, and the spectral transmittance is deteriorated over time. It became clear that was suppressed.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (14)

  1.  酸化物換算組成のガラス全質量に対して、質量%でSb成分の含有量が0.5%以下であり、ソラリゼーション(波長450nmにおける分光透過率の劣化量)が5.0%以下である光学ガラス。 The content of Sb 2 O 3 component is 0.5% or less in terms of mass% with respect to the total glass mass of oxide conversion composition, and solarization (amount of degradation of spectral transmittance at a wavelength of 450 nm) is 5.0% or less. Optical glass that is.
  2.  Pt成分の含有量が15ppm以下である請求項1記載の光学ガラス。 The optical glass according to claim 1, wherein the content of the Pt component is 15 ppm or less.
  3.  酸化物換算組成のガラス全質量に対して、Fe成分の含有量が50ppm以下である請求項1又は2記載の光学ガラス。 The optical glass according to claim 1 or 2, wherein the content of the Fe component is 50 ppm or less with respect to the total mass of the glass having an oxide equivalent composition.
  4.  SiO成分及びNb成分、及び/又はTiO成分を含有する請求項1から3のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, comprising a SiO 2 component, a Nb 2 O 5 component, and / or a TiO 2 component.
  5.  酸化物換算組成のガラス全質量に対して、質量%でSiO成分を1.0%以上60.0%以下、及びNb成分を10.0%以上65.0%以下含有し、TiO成分の含有量が40.0%以下である請求項4記載の光学ガラス。 Containing 1.0% or more and 60.0% or less of SiO 2 component and 10.0% or more and 65.0% or less of Nb 2 O 5 component in mass% with respect to the total glass mass of oxide conversion composition, The optical glass according to claim 4, wherein the content of the TiO 2 component is 40.0% or less.
  6.  酸化物換算組成のガラス全質量に対して、質量%で
    成分  0~40.0%、及び/又は
    GeO成分  0~30.0%、及び/又は
    Al成分  0~15.0%、及び/又は
    ZrO成分  0~20.0%、及び/又は
    Ta成分  0~20.0%、及び/又は
    WO成分  0~20.0%、及び/又は
    ZnO成分  0~30.0%、及び/又は
    MgO成分  0~20.0%、及び/又は
    CaO成分  0~30.0%、及び/又は
    SrO成分  0~30.0%、及び/又は
    BaO成分  0~30.0%、及び/又は
    LiO成分  0~20.0%、及び/又は
    NaO成分  0~30.0%、及び/又は
    O成分  0~20.0%
    の各成分をさらに含有する請求項1から5のいずれか記載の光学ガラス。
    B 2 O 3 component 0 to 40.0% and / or GeO 2 component 0 to 30.0% and / or Al 2 O 3 component 0 to 0% by mass with respect to the total mass of the glass in oxide equivalent composition 15.0% and / or ZrO 2 component 0 to 20.0% and / or Ta 2 O 5 component 0 to 20.0% and / or WO 3 component 0 to 20.0% and / or ZnO Component 0-30.0% and / or MgO component 0-20.0% and / or CaO component 0-30.0% and / or SrO component 0-30.0% and / or BaO component 0 -30.0% and / or Li 2 O component 0-20.0% and / or Na 2 O component 0-30.0% and / or K 2 O component 0-20.0%
    The optical glass according to claim 1, further comprising:
  7.  酸化物換算組成のガラス全質量に対して、質量%で
    La成分  0~50.0%、及び/又は
    Gd成分  0~30.0%、及び/又は
    成分  0~30.0%、及び/又は
    Ga成分  0~20.0%、及び/又は
    TeO成分  0~50.0%、及び/又は
    Bi成分  0~50.0%、及び/又は
    CeO成分  0~10.0%
    の各成分をさらに含有する請求項1から6のいずれか記載の光学ガラス。
    La 2 O 3 component 0 to 50.0% and / or Gd 2 O 3 component 0 to 30.0% and / or Y 2 O 3 component in mass% with respect to the total mass of the glass in oxide conversion composition 0 to 30.0%, and / or Ga 2 O 3 component 0 to 20.0%, and / or TeO 2 component 0 to 50.0%, and / or Bi 2 O 3 component 0 to 50.0%, And / or CeO 2 component 0-10.0%
    The optical glass according to claim 1, further comprising:
  8.  部分分散比(θg,F)がアッベ数(ν)との間で、ν≦25の範囲において(-1.60×10-3×ν+0.6346)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たし、ν>25の範囲において(-2.50×10-3×ν+0.6571)≦(θg,F)≦(-4.21×10-3×ν+0.7207)の関係を満たす請求項1から7のいずれか記載の光学ガラス。 (−1.60 × 10 −3 × ν d +0.6346) ≦ (θg, F) ≦ within the range where the partial dispersion ratio (θg, F) is Abbe number (ν d ) and v d ≦ 25. (−4.21 × 10 −3 × ν d +0.7207) is satisfied, and in the range of ν d > 25, (−2.50 × 10 −3 × ν d +0.6571) ≦ (θg, F) The optical glass according to any one of claims 1 to 7, wherein a relationship of ≦ (−4.21 × 10 −3 × ν d +0.7207) is satisfied.
  9.  ガラス転移点(Tg)が400℃以上650℃以下である請求項1から8のいずれか記載の光学ガラス。 The optical glass according to any one of claims 1 to 8, wherein the glass transition point (Tg) is 400 ° C or higher and 650 ° C or lower.
  10.  請求項1から9のいずれか記載の光学ガラスを母材とする光学素子。 An optical element using the optical glass according to any one of claims 1 to 9 as a base material.
  11.  請求項1から9のいずれか記載の光学ガラスからなるレンズプリフォーム。 A lens preform comprising the optical glass according to any one of claims 1 to 9.
  12.  請求項1から9のいずれか記載の光学ガラスからなるモールドプレス成形用のレンズプリフォーム。 A lens preform for mold press molding comprising the optical glass according to any one of claims 1 to 9.
  13.  請求項11又は12記載のレンズプリフォームを成形してなる光学素子。 An optical element formed by molding the lens preform according to claim 11 or 12.
  14.  ガラスの分光透過率の劣化抑制方法であって、
     ガラスに含まれるSb成分の含有量を低減する分光透過率の劣化抑制方法。
    A method for suppressing deterioration of spectral transmittance of glass,
    A method for suppressing degradation of spectral transmittance, which reduces the content of Sb 2 O 3 component contained in glass.
PCT/JP2009/065920 2008-09-30 2009-09-11 Optical glass and method for suppressing the deterioration of spectral transmittance WO2010038597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801381370A CN102164866A (en) 2008-09-30 2009-09-11 Optical glass and method for suppressing the deterioration of spectral transmittance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008255791 2008-09-30
JP2008-255791 2008-09-30
JP2009-185320 2009-08-07
JP2009185320A JP2010105902A (en) 2008-09-30 2009-08-07 Optical glass and method for suppressing deterioration of spectral transmittance

Publications (1)

Publication Number Publication Date
WO2010038597A1 true WO2010038597A1 (en) 2010-04-08

Family

ID=42073368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065920 WO2010038597A1 (en) 2008-09-30 2009-09-11 Optical glass and method for suppressing the deterioration of spectral transmittance

Country Status (4)

Country Link
JP (1) JP2010105902A (en)
KR (1) KR20110065490A (en)
CN (2) CN102164866A (en)
WO (1) WO2010038597A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016566A1 (en) * 2009-08-07 2011-02-10 株式会社オハラ Optical glass
CN102241478A (en) * 2010-04-09 2011-11-16 株式会社小原 Optical glass and method of suppressing deterioration of spectral transmittance
JPWO2018235725A1 (en) * 2017-06-23 2020-04-23 Agc株式会社 Optical glass and optical components
US11787729B2 (en) 2020-05-18 2023-10-17 Corning Incorporated Glass compositions with high refractive indexes and low densities

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126096A1 (en) * 2009-04-30 2010-11-04 株式会社オハラ Optical glass
JP2011037660A (en) * 2009-08-07 2011-02-24 Ohara Inc Optical glass, lens preform and optical element
JP5706231B2 (en) * 2010-06-23 2015-04-22 株式会社オハラ Optical glass, preform and optical element
JP5721534B2 (en) * 2010-06-23 2015-05-20 株式会社オハラ Optical glass, preform and optical element
JP6014301B2 (en) * 2010-06-24 2016-10-25 株式会社オハラ Optical glass, preform and optical element
JP5761549B2 (en) * 2010-08-30 2015-08-12 日本電気硝子株式会社 Optical glass
JP5863745B2 (en) * 2012-12-07 2016-02-17 株式会社オハラ Optical glass, preform and optical element
CN103145331B (en) * 2013-04-03 2016-02-17 成都尤利特光电科技有限公司 High dioptrics glass and manufacture method thereof
TWI616414B (en) * 2013-04-30 2018-03-01 Ohara Kk Optical glass, preforms and optical components
CN105565656B (en) * 2014-10-17 2023-01-03 株式会社小原 Optical glass
KR102464029B1 (en) 2015-07-17 2022-11-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
CN105948482B (en) * 2016-04-25 2019-09-10 湖北新华光信息材料有限公司 Optical glass and preparation method thereof
CN111263737A (en) * 2017-10-25 2020-06-09 Agc株式会社 Optical glass, optical component and wearable device
CN111320384A (en) * 2019-04-04 2020-06-23 株式会社小原 Method for producing optical glass
JP7433830B2 (en) * 2019-10-02 2024-02-20 光ガラス株式会社 Optical glass, optical element using optical glass, optical system, interchangeable lens, optical device, and method for manufacturing optical glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169176A (en) * 1998-10-02 2000-06-20 Ohara Inc Spectacle and optical glass
JP2004123525A (en) * 2002-09-30 2004-04-22 Carl Zeiss:Fa Borosilicate glass and its use
JP2007126297A (en) * 2005-10-31 2007-05-24 Ohara Inc Method of and device for producing optical glass
JP2007169157A (en) * 2005-12-23 2007-07-05 Schott Ag Optical glass

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225812A (en) * 1975-08-20 1977-02-26 Sumita Optical Glass Optical flint glass of low density
JP2512366B2 (en) * 1992-03-17 1996-07-03 株式会社オハラ High dispersion optical glass
JP3190212B2 (en) * 1994-08-05 2001-07-23 株式会社オハラ Optical glass
JP3791946B2 (en) * 1995-09-01 2006-06-28 株式会社オハラ High dispersion optical glass
ES2172280T3 (en) * 1998-10-02 2002-09-16 Ohara Kk OPTICAL AND OPTICAL GLASSES.
JP2001342035A (en) * 2000-05-29 2001-12-11 Minolta Co Ltd Optical glass
JP4663166B2 (en) * 2000-07-14 2011-03-30 Hoya株式会社 Optical glass, precision press molding materials and optical components
JP4138366B2 (en) * 2001-05-29 2008-08-27 株式会社オハラ Optical glass
JP4169622B2 (en) * 2002-04-02 2008-10-22 株式会社オハラ Optical glass
EP1350770A1 (en) * 2002-04-02 2003-10-08 Kabushiki Kaisha Ohara Optical glass
JP2004315280A (en) * 2003-04-15 2004-11-11 Asahi Techno Glass Corp Glass for fluorescent lamp
US7528083B2 (en) * 2003-06-10 2009-05-05 Kabushiki Kaish Ohara Optical glass
WO2006075785A2 (en) * 2005-01-17 2006-07-20 Kabushiki Kaisha Ohara Glass
JP4446982B2 (en) * 2005-09-21 2010-04-07 Hoya株式会社 Optical glass, glass gob for press molding, glass molded body, optical element and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169176A (en) * 1998-10-02 2000-06-20 Ohara Inc Spectacle and optical glass
JP2004123525A (en) * 2002-09-30 2004-04-22 Carl Zeiss:Fa Borosilicate glass and its use
JP2007126297A (en) * 2005-10-31 2007-05-24 Ohara Inc Method of and device for producing optical glass
JP2007169157A (en) * 2005-12-23 2007-07-05 Schott Ag Optical glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016566A1 (en) * 2009-08-07 2011-02-10 株式会社オハラ Optical glass
CN102471130A (en) * 2009-08-07 2012-05-23 株式会社小原 Optical glass
CN102241478A (en) * 2010-04-09 2011-11-16 株式会社小原 Optical glass and method of suppressing deterioration of spectral transmittance
JPWO2018235725A1 (en) * 2017-06-23 2020-04-23 Agc株式会社 Optical glass and optical components
EP3643690A4 (en) * 2017-06-23 2021-03-17 AGC Inc. Optical glass and optical component
US11554985B2 (en) 2017-06-23 2023-01-17 AGC Inc. Optical glass and optical component
US11787729B2 (en) 2020-05-18 2023-10-17 Corning Incorporated Glass compositions with high refractive indexes and low densities

Also Published As

Publication number Publication date
CN106587599B (en) 2021-07-06
JP2010105902A (en) 2010-05-13
CN102164866A (en) 2011-08-24
CN106587599A (en) 2017-04-26
KR20110065490A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2010038597A1 (en) Optical glass and method for suppressing the deterioration of spectral transmittance
JP5827067B2 (en) Optical glass and optical element
JP5731388B2 (en) Optical glass
JP5727689B2 (en) Optical glass, optical element and optical instrument
TWI594966B (en) Optical glass, preform and optical element
JP5917791B2 (en) Optical glass, preform material and optical element
JP6014301B2 (en) Optical glass, preform and optical element
WO2012099168A1 (en) Optical glass, preform, and optical element
JP2016104695A (en) Manufacturing method of optical glass, optical element and glass molding
JP2011219313A (en) Optical glass and deterioration suppression method for spectral transmittance
WO2012014839A1 (en) Optical glass, preform material and optical element
TW201331146A (en) Optical glass, preform, and optical element
JP6664826B2 (en) Optical glass and optical element
JP2015059060A (en) Optical glass and optical element
JP5956117B2 (en) Optical glass, preform and optical element
JP2023017903A (en) Optical glass and optical element
JP6292877B2 (en) Optical glass
JP5865579B2 (en) Optical glass, preform material and optical element
JP6086941B2 (en) Optical glass and method for suppressing deterioration of spectral transmittance
JP2013087009A (en) Optical glass, preform and optical element
JP2012091983A (en) Optical glass and optical element
JP6626298B2 (en) Optical glass, preform and optical element
JP2019182716A (en) Optical glass and optical element
JP7320110B2 (en) Optical glasses and optical elements
JP7305317B2 (en) Optical glasses, optical element blanks and optical elements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138137.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007609

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09817634

Country of ref document: EP

Kind code of ref document: A1