WO2012046606A1 - 光電変換装置の製造方法 - Google Patents

光電変換装置の製造方法 Download PDF

Info

Publication number
WO2012046606A1
WO2012046606A1 PCT/JP2011/072262 JP2011072262W WO2012046606A1 WO 2012046606 A1 WO2012046606 A1 WO 2012046606A1 JP 2011072262 W JP2011072262 W JP 2011072262W WO 2012046606 A1 WO2012046606 A1 WO 2012046606A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
amorphous silicon
type amorphous
layer
semiconductor layer
Prior art date
Application number
PCT/JP2011/072262
Other languages
English (en)
French (fr)
Inventor
慎也 中野
竹内 良昭
近藤 道雄
卓矢 松井
Original Assignee
三菱重工業株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 独立行政法人産業技術総合研究所 filed Critical 三菱重工業株式会社
Priority to US13/808,738 priority Critical patent/US9012256B2/en
Priority to CN2011800357545A priority patent/CN103026508A/zh
Publication of WO2012046606A1 publication Critical patent/WO2012046606A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device, and particularly to a method for manufacturing a solar cell having a heterojunction structure.
  • a solar cell is known as a photoelectric conversion device that converts sunlight energy into electrical energy (see, for example, Patent Document 1).
  • Patent Document 1 A solar cell is known as a photoelectric conversion device that converts sunlight energy into electrical energy.
  • narrow gap materials such as germanium (Ge) or silicon (Si) -Ge-tin (Sn) alloys Development is underway.
  • Ge has a band gap of 0.66 eV, which is smaller than the band gap (1.1 eV) of crystalline Si conventionally used in the photoelectric conversion layer.
  • a p-type crystal Ge is used as a substrate, and an i-type amorphous silicon semiconductor layer and an n-type amorphous silicon semiconductor layer are formed on the substrate.
  • a solar cell in which a heterojunction cell in which is stacked in order is a photoelectric conversion layer.
  • the substrate is first cleaned with an organic solvent and a cleaning agent. Since an oxide film (GeOx) is formed on the cleaned substrate surface, after removing the oxide film by heating the substrate, the i-type amorphous silicon semiconductor layer, the n-type amorphous silicon semiconductor layer, Are sequentially stacked.
  • a solar cell having a heterojunction cell manufactured in this manner has a problem that desired power generation characteristics cannot be obtained.
  • amorphous germanium added with an n-type dopant on an insulating substrate was solid-phase grown by annealing at 350 ° C. for the purpose of optimizing the size of the unevenness on the surface of the back electrode. After that, there is one in which hemispherical fine irregularities are densely formed on the surface of the etched polycrystalline germanium layer (Patent Document 1).
  • the output current Isc is less than 20 mA / cm 2 , and there is a problem that desired power generation characteristics are not obtained.
  • the present invention has been made in view of such circumstances, and has a heterojunction cell composed of p-type crystal Ge (substrate) / i-type amorphous silicon semiconductor layer / n-type amorphous silicon semiconductor layer. It aims at providing the manufacturing method of the photoelectric conversion apparatus which can improve the electric power generation characteristic of a solar cell.
  • the present invention provides a heterojunction in which a p-type crystal Ge is used as a substrate, and an i-type amorphous silicon semiconductor layer and an n-type amorphous silicon semiconductor layer are sequentially stacked on the substrate.
  • a manufacturing method of a photoelectric conversion device provided with a cell the substrate obtained by removing the oxide film formed on the surface after a predetermined temperature, PH 3 exposure process for exposing the PH 3 gas is placed in a vacuum chamber
  • a method of manufacturing a photoelectric conversion device comprising an electrode forming step of forming a Subjected to.
  • the present inventors When the p-type crystal Ge (substrate) is heated, oxygen (O) is sublimated and the oxide film on the substrate surface is removed.
  • O oxygen
  • the present inventors have shown that the substrate surface from which the oxide film has been removed is covered with dangling bonds (dangling bonds) and has a strong p-type due to the presence of a stability order in the valence band. It was found that this is a factor that the power generation characteristics cannot be obtained.
  • PH 3 gas when the substrate from which the oxide film has been removed is subjected to PH 3 exposure treatment, PH 3 gas is adsorbed (or bonded) to the substrate surface, and the Fermi level on the substrate surface can be returned to the vicinity of the intrinsic.
  • the predetermined temperature of the substrate is 150 ° C. or higher in the PH 3 exposure treatment step.
  • the substrate temperature at the time of PH 3 exposure has an effect of improving the battery performance when the temperature is high, and the effect is improved when the substrate temperature is 150 ° C. or higher.
  • an annealing treatment step of applying heat to perform an annealing treatment after the electrode forming step is provided.
  • the power generation characteristics of the photoelectric conversion device including the heterojunction cell can be improved.
  • the annealing process is particularly effective when the predetermined temperature of the substrate during the PH 3 exposure process is set low.
  • the substrate Prior to the PH 3 exposure treatment, the substrate is brought to a predetermined temperature. If you set low predetermined temperature, it is preferable to heat the substrate by the heat source during PH 3 exposure process. When the predetermined temperature is set high, the substrate 3 can be exposed to PH 3 in a stable state at a high temperature. As a result, the power generation characteristics of the photoelectric conversion device can be improved. Further, the inventors have found that the same effect can be obtained even if annealing is performed by applying heat after the PH 3 exposure treatment. Since there is no restriction on the selection of the substrate temperature during the PH 3 exposure process by the annealing process, it is possible to omit the temperature control device in the vacuum chamber for the PH 3 exposure process. Furthermore, even if the vacuum chamber for the PH 3 exposure treatment is an n-layer deposition chamber, the heater temperature can be shared while being fixed to the n-layer deposition conditions.
  • the PH 3 exposure process step before the PH 3 exposure process step, or at least one of after the PH 3 exposure process step, it is preferable to provide an electron beam irradiation step of irradiating an electron beam on the substrate.
  • the substrate temperature can be raised. Further, the reaction between the surface of the p-type crystal Ge and PH 3 can be promoted by the energy of electrons. Thereby, the power generation characteristics of the photoelectric conversion device including the heterojunction cell can be further improved.
  • p-type crystal Ge having a thickness of 1.5 ⁇ m or more and 500 ⁇ m or less as the substrate.
  • the thickness of the p-type crystal Ge By setting the thickness of the p-type crystal Ge within the above range, the power generation amount of the photoelectric conversion device including the heterojunction cell can be increased. If the thickness of the p-type crystal Ge is 5 ⁇ m or more, it is possible to sufficiently absorb even light having a wavelength of about 1500 nm where the absorption coefficient of Ge is high. By effectively using reflection and scattering at the back electrode, The substrate thickness can be reduced to 1.5 ⁇ m. Further, when the thickness of the p-type crystal Ge is increased to 200 ⁇ m, light having a wavelength of about 1600 nm can be sufficiently absorbed.
  • the thickness of the p-type crystal Ge is thicker than 200 ⁇ m, it becomes possible to absorb light having a wavelength up to the vicinity of the band edge, so that the temperature difference in the plate thickness direction is increased while ensuring the strength of the substrate handling process.
  • the practical thickness that can be suppressed is preferably 500 ⁇ m or less.
  • a substrate having a resistivity of about 0.5 ⁇ cm or less used in a practical photoelectric conversion device has free carrier absorption in the wavelength region near the band edge, so even if light having a wavelength near the band edge is absorbed, Since an increase in current density cannot be expected, 200 ⁇ m or less is more preferable in order not to increase the substrate thickness more than necessary.
  • a p-type amorphous silicon semiconductor layer is formed on a surface of the substrate opposite to the side on which the i-type amorphous silicon semiconductor layer is formed. It is preferable to include a heterostructure forming step on the back side.
  • the electrical activity (carrier recombination) of the impurity element of the p-type crystal Ge can be reduced. Thereby, the current density and the open circuit voltage can be improved.
  • the Fermi level on the surface of the p-type crystal Ge can be returned to the intrinsic vicinity by exposing the p-type crystal Ge from which the oxide film has been removed to PH 3 .
  • the power generation characteristics of the photoelectric conversion device can be improved by stacking the i-type amorphous silicon semiconductor layer and the n-type amorphous silicon semiconductor layer on the p-type crystal Ge.
  • IPE internal photoelectron emission method
  • IPE internal photoelectron emission method
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion apparatus according to the first embodiment.
  • the photoelectric conversion device 100 is a solar cell having a heterojunction structure, and includes a heterojunction cell layer 1, a transparent electrode layer 2, a grid electrode 3, and a back electrode layer 4.
  • the heterojunction cell layer 1 includes a p-type single crystal Ge (substrate 11), an i-type amorphous silicon layer 12, and an n-type amorphous silicon layer 13.
  • the substrate 11 is made of Ga-doped p-type single crystal Ge (100) (c-Ge) grown by the Czochralski (CZ) method.
  • the thickness of c-Ge is 1.5 ⁇ m or more and 500 ⁇ m or less, preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the i-type amorphous silicon layer 12 is mainly made of amorphous silicon and has a thickness of 5 nm to 80 nm.
  • the n-type amorphous silicon layer 13 is mainly P-doped silicon containing a phosphorus component: P in amorphous silicon, and has a thickness of 4 nm to 10 nm.
  • a substrate manufactured by another crystal growth method or Ge (111) can be used as the p-type single crystal Ge (substrate 11).
  • the present invention is not limited to p-type single crystal Ge, and polycrystalline Ge can be used in the same manner by optimizing the surface treatment.
  • the transparent electrode layer 2 is a film composed mainly of a metal oxide such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO).
  • the thickness of the transparent electrode layer 2 is set to 50 nm or more and 150 nm or less from the current collecting resistance and the light reflection characteristics.
  • the grid electrode 3 is a film mainly made of Ag, a highly conductive material such as Al can be used by optimizing the film forming method. It is preferable to install so that the grid area is narrowed and the occupied area of the substrate surface is reduced so as not to prevent light incidence while suppressing the current collecting resistance.
  • the back electrode layer 4 is a film made of Al and has a thickness of 50 nm to 500 nm.
  • a film made of Ag can be used for improving the reflectance, and a film made of Cu can be used for reducing the cost. Since Ag and Cu easily react with atmospheric components (oxygen, water vapor, sulfur, etc.), the surface of Ag or Cu is further covered with Ti or N, or a sealing method for the entire photoelectric conversion device is devised. May be.
  • the solar cell manufacturing method according to the present embodiment includes a substrate cleaning step, an oxide film removing step, a heterojunction cell manufacturing step, an electrode forming step, and an annealing treatment step.
  • FIG. 2 is a flowchart for explaining the procedure of the substrate cleaning process.
  • FIG. 3 is a diagram illustrating a method for manufacturing a solar cell after substrate cleaning.
  • Substrate cleaning process FIG. First, the substrate 11 is sequentially cleaned with an organic solvent such as acetone and a cleaning agent such as semi-clean. Next, after removing the oxide film formed on the surface of the substrate 11 using hydrogen fluoride (HF), the substrate 11 is rinsed with pure water (1 second). Next, after forming the oxide film 5 on the surface of the substrate 11 using hydrogen peroxide (H 2 O 2 ), the substrate 11 is rinsed with pure water (1 second).
  • an organic solvent such as acetone
  • a cleaning agent such as semi-clean.
  • FIGS. 3 (a) and 3 (b) After carrying the substrate 11 into the vacuum chamber, the oxide film 5 formed on the surface of the substrate 11 is removed. Conditions for removing the oxide film are appropriately set according to the type of heat source to be used, the size of the substrate 11, and the like. For example, the inside of the vacuum chamber is evacuated to about 10 ⁇ 7 Torr (133 ⁇ Pa) or less, and the substrate 11 is heated for about 20 minutes using a heat source such as an infrared heater. The heat source temperature should be raised to about 450 ° C. As a result, the oxide film (GeOx) formed on the surface of the substrate 11 can be sublimated to provide a clean surface on the substrate 11. Using an infrared heater, the heater temperature was raised to 450 ° C. and the actual substrate temperature was measured with a radiation thermometer. As a result, the actual substrate temperature was about 600 ° C.
  • the heterojunction cell manufacturing process includes a PH 3 exposure treatment process, an i-layer film forming process, and an n-layer film forming process.
  • PH 3 exposure process The substrate 11 from which the oxide film has been removed is set to a predetermined temperature.
  • the predetermined temperature in the present embodiment is a steady state of the substrate 11 (actual substrate temperature of 200 ° C. or less).
  • the substrate 11 is cooled to a predetermined temperature after removing the oxide film.
  • the substrate 11 is placed in another vacuum chamber, preferably in an n-type amorphous silicon layer deposition chamber (n-layer deposition chamber) of a plasma CVD apparatus.
  • a PH 3 gas diluted with H 2 gas is introduced into the vacuum chamber, and the substrate 11 is heated using a heat source such as a sheathed heater.
  • the conditions for PH 3 exposure are appropriately set.
  • 0.6% PH 3 gas diluted with H 2 gas is introduced at 0.3 sccm / cm 2 and 0.1 Torr (13.3 Pa), and the substrate 11 is made 0.5 by using a heat source such as a sheathed heater. Heat at room temperature to about 300 ° C. for 10 minutes to 10 minutes.
  • An extremely small amount of PH 3 gas may be introduced.
  • the substrate temperature at the time of exposure is higher, there is an effect of improving the battery performance, but the substrate temperature is set to 300 ° C. or less so that the PH 3 gas is not thermally decomposed.
  • i-type amorphous silicon layer 12 and an n-type amorphous silicon layer 13 are sequentially formed on the substrate 11 using a plasma CVD apparatus.
  • Substrate temperature: Film is formed at about 150 ° C.
  • the n-type amorphous silicon layer 13 is formed in an n-type amorphous silicon layer deposition chamber (n-layer deposition chamber).
  • Source gas SiH 4 gas, H 2 gas and PH 3 gas, reduced pressure atmosphere: 1 Pa
  • the film is formed at 1000 Pa or less and the substrate temperature: about 150 ° C.
  • FIG. 3 (d) to FIG. 3 (g) The transparent electrode layer 2 is formed on the n-type amorphous silicon layer 13 by high frequency (RF) sputtering.
  • the sputtering conditions are: target: ITO sintered body, atmosphere gas: Ar, ultimate pressure: 10 ⁇ 4 Pa to 10 ⁇ 5 Pa, high frequency power: 2 W / cm 2 to 3 W / cm 2 .
  • element isolation is performed by reactive ion etching (RIE).
  • RIE reactive ion etching
  • a pattern mask plate is installed on the transparent electrode layer 2, and the grid electrode 3 is formed by a direct current (DC) sputtering method.
  • the back electrode layer 4 is formed by resistance heating vapor deposition on the back surface of the substrate 11 (the surface opposite to the side where the amorphous silicon layer is formed). Al is heated and evaporated by passing a current of 30 A through the tungsten filament.
  • FIG. 3 (g) The solar cell manufactured in the above process is heated in a vacuum and annealed.
  • the annealing treatment is preferably performed at a substrate temperature of about 150 ° C. for 8 hours so as not to adversely affect the hydrogen terminating the Si in the amorphous silicon layer.
  • the predetermined temperature is set to the steady state of the substrate, but the predetermined temperature may be set higher than the steady state. Since the substrate 11 immediately after the oxide film removal step is at a high temperature, the substrate 11 is preferably placed in a vacuum chamber for PH 3 exposure processing before the substrate temperature becomes lower than a predetermined temperature. By doing so, the process time can be shortened. Alternatively, the substrate 11 cooled to a steady state may be reheated using a heat source and raised to a predetermined temperature. By applying these, it becomes possible to omit the temperature control device in the vacuum chamber for the PH 3 exposure treatment. Further, the heater temperature in the n-layer deposition chamber can be shared while being fixed to the n-layer deposition conditions.
  • the annealing treatment step can be omitted.
  • Grid electrode Ag film, average film thickness 200 nm
  • Transparent electrode layer ITO film, average film thickness 70 nm n-type amorphous silicon layer: average film thickness 7 nm
  • i-type amorphous silicon layer average film thickness 5 nm
  • Back electrode layer Al film / average film thickness 200 nm
  • p-type single crystal Ge is oriented: Ge (100), the resistance value: 0.028 ⁇ cm ⁇ 3.2 ⁇ cm, use a carrier density 7.1 ⁇ 10 14 / cm 3 ⁇ 2.6 ⁇ 10 17 / cm 3 did.
  • the raw material gas SiH 4 gas / H 2 gas (0.15 sccm / cm 2 /0.45 sccm / cm 2 ), reduced pressure atmosphere: 0
  • An i-type amorphous silicon layer was formed at 0.1 Torr (13.3 Pa) and a substrate temperature of about 150 ° C.
  • the substrate is transferred to the n-layer deposition chamber, and source gas: SiH 4 gas, H 2 gas and PH 3 gas, reduced pressure atmosphere: 0.1 Torr (13.3 Pa), substrate temperature: about 150 ° C., n-type non-type A crystalline silicon layer was formed.
  • Condition 2 (film forming the i layer with PH 3 No exposure process + i-layer deposition chamber) An i-type amorphous silicon layer and an n-type amorphous silicon layer were formed in the same manner as in Condition 1 except that the PH 3 exposure treatment was not performed.
  • Condition 4 (H 2 plasma treatment + i layer deposition in i layer deposition chamber) Instead of the PH 3 exposure treatment, an i-type amorphous silicon layer and an n-type amorphous silicon layer were formed in the same manner as in Condition 2 except that the substrate surface was irradiated with H 2 plasma for 5 seconds or 30 seconds.
  • Condition 5 (PH 3 exposure treatment + PH 3 plasma treatment + i layer deposition in i layer deposition chamber) After the PH 3 exposure treatment, the substrate surface was irradiated with PH 3 plasma for 5 seconds, and thereafter an i-type amorphous silicon layer and an n-type amorphous silicon layer were formed in the same manner as in Condition 1. However, the thickness of the i-type amorphous silicon layer was 40 nm.
  • Condition 6 (No PH 3 exposure treatment + n layer inserted between substrate and i layer) Without performing the PH 3 exposure treatment, the substrate was placed in an n-layer deposition chamber of a plasma CVD apparatus and plasma-lit for 5 seconds to form an n-type amorphous silicon layer having a thickness of 1 nm on the substrate.
  • An i-type amorphous silicon layer and another n-type amorphous silicon layer were formed on the n-type amorphous silicon layer in the same manner as in Condition 1. However, the thickness of the i-type amorphous silicon layer was 40 nm.
  • Condition 1 PH 3 exposure treatment + i layer deposition in the i layer deposition chamber
  • Condition 2 No PH 3 exposure treatment + i layer deposition in the i layer deposition chamber
  • Increased efficiency about 2.5 times it was confirmed that the conversion efficiency of the solar cell can be improved by exposing the substrate surface to PH 3 before forming the i-type amorphous silicon layer.
  • the solar cell of condition 1 has an improved electromotive force of 57%, a short circuit current of 12%, a fill factor of 36%, and a power generation efficiency of 139% compared to the solar cell of condition 2. I was able to.
  • condition 3 no PH 3 exposure treatment + i layer deposition in n layer deposition chamber
  • condition 2 no PH 3 exposure treatment + i layer deposition chamber i deposition
  • PH 3 gas is introduced into the n-layer deposition chamber. Therefore, in condition 3, PH 3 exposure treatment is not performed, but PH 3 remaining on the wall surface in the n-layer deposition chamber is transported to the vicinity of the substrate by hydrogen gas, and the same effect as PH 3 exposure treatment is obtained. Expected to be obtained. From the above results, it is presumed that there is an effect on the control of the interface band structure even if only a very small amount of PH 3 exists.
  • the power generation characteristics of the solar cells manufactured under the above conditions 4 to 6 were also evaluated. It is known that when the surface of the Si substrate is irradiated with H 2 plasma, a surface passivation effect and a surface cleaning effect can be expected. However, solar cells fabricated under condition 4 (H 2 plasma treatment + i layer deposition in the i layer deposition chamber) are solar cells under condition 2 (no PH 3 exposure treatment + i layer deposition in the i layer deposition chamber). The power generation characteristics were lower than the battery. This is presumably because the parallel resistance decreased in the H 2 plasma treated substrate and the surface characteristics of the p-type single crystal Ge deteriorated.
  • the solar cell manufactured under condition 5 was expected to have the same effect as the increase in substrate temperature by supplying energy to the substrate surface by irradiating PH 3 plasma after the PH 3 exposure treatment. Parallel resistance decreased and power generation characteristics deteriorated. From the above results, it was suggested that when the surface of p-type single crystal Ge is irradiated with PH 3 plasma, the effect of damage by the plasma is stronger than the effect of improving the interface characteristics by the PH 3 gas.
  • the solar cell fabricated under Condition 6 had low parallel resistance, conversion efficiency of less than 1%, and no power generation characteristics. From the above results, it has been found that the power generation characteristics cannot be improved even if the p-type single crystal Ge / i-type amorphous silicon layer interface is made n-layered. Further, according to the above results, it is estimated that it is important to modify the surface of the p-type single crystal Ge, which is assumed to be p-type when the surface oxide film is removed.
  • Condition 7 (B 2 H 6 exposure treatment + i layer deposition in i layer deposition chamber)
  • the i-type amorphous silicon layer and the n-type amorphous silicon were the same as in condition 1 except that 0.1% B 2 H 6 gas diluted with H 2 was introduced into the i-layer deposition chamber instead of the PH 3 exposure treatment. A quality silicon layer was formed.
  • the power generation characteristics of the solar cell on which an i-type amorphous silicon layer (film thickness: 40 nm) was formed under the conditions 1, 2 and 7 were evaluated. The results are shown in FIG. In the figure, the horizontal axis represents the voltage amount and the vertical axis represents the current amount. According to FIG. 5, even when the i-type amorphous silicon layer becomes thicker (from 5 nm to 40 nm), condition 1 (PH 3 exposure treatment + i layer deposition in the i layer deposition chamber) The conversion efficiency of the solar cell was improved as compared with the case where no PH 3 exposure treatment was performed and the i layer was formed in the i layer forming chamber.
  • the power generation characteristics were lower than those in conditions 1 and 2. This is because it is difficult to extract the current generated in the p-type single crystal Ge by exposing the p-type single crystal Ge to B 2 H 6 .
  • the current that can be extracted is because only the i-type amorphous silicon layer operates as a power generation layer.
  • the power generation characteristics of the solar cell on which an i-type amorphous silicon layer (film thickness: 80 nm) was formed under the above conditions 1, 2 and 7 were evaluated. The results are shown in FIG. In the figure, the horizontal axis represents the voltage amount and the vertical axis represents the current amount. According to FIG. 6, the i-type amorphous silicon layer becomes thicker (from 40nm to 80 nm), the solar cells prepared under the conditions 2 (film formation the i layer with PH 3 No exposure process + i-layer deposition chamber), A transition was made to a state where it was difficult to take out the current generated in the p-type single crystal Ge.
  • the surface of the p-type single crystal Ge (substrate) after the oxide film removing step is assumed to be p-type.
  • B 2 H 6 is the interface the more because of the effect of the p-type, acts as a barrier bending way of the p-type single-crystalline Ge interface bands for electrons, not electrons are beyond the barrier of the conductor, The current cannot be taken out.
  • PH 3 has the effect of making the interface more n-type, it can be determined that the p-type single crystal Ge surface is made p-type and the current can be taken out.
  • IPE internal photoemission
  • the horizontal axis represents energy amount
  • the vertical axis represents (quantum efficiency of extracted light) 2/5 .
  • 8 and FIG. 9 show a threshold value that can be attributed to a conduction band barrier, but FIG. 7 shows no threshold value.
  • the threshold was higher when treated with B 2 H 6 (condition 7). From this, it is expected that the p-type single-crystal Ge surface is promoted by B 2 H 6 exposure treatment.
  • the p-type single crystal Ge (substrate) by PH 3 exposure process alleviate p-type of p-type single crystal Ge surface, it is possible to improve the power generation characteristics of the solar cell.
  • Substrate temperature The substrate temperature in the PH 3 exposure treatment step of Condition 1 was 50 ° C., 150 ° C., and 220 ° C. The power generation characteristics of the solar cell produced above were evaluated. The results are shown in Table 1. In Table 1, the power generation characteristics of the solar cell exposed to PH 3 at a substrate temperature of 150 ° C. are displayed as a reference (1.0).
  • the difference in ITO film quality is caused by the difference in the state of the film forming apparatus during film formation. Specifically, there is a difference in the absorption coefficient of the ITO film before and after the state of the film forming apparatus changes.
  • Exposure time The PH 3 exposure time in the PH 3 exposure treatment step of Condition 1 was 0.5 minutes, 5 minutes, and 10 minutes.
  • the substrate temperature of PH 3 exposure step as 0.99 ° C., were evaluated power generation characteristics of the solar cell produced above. The results are shown in Table 2.
  • Table 2 the power generation characteristics of a solar cell with an exposure time of 5 minutes are displayed as a reference (1.0).
  • the pressure at the time of introducing PH 3 in the PH 3 exposure treatment step of Condition 1 was 1.33 Pa, 13.3 Pa, and 133 Pa.
  • the power generation characteristics of the solar cell produced above were evaluated. There was no effect on battery performance by changing the pressure.
  • FIGS. 10 shows the power generation characteristics of the solar cell before the annealing process
  • FIG. 11 shows the power generation characteristics of the solar cell after the annealing process.
  • the horizontal axis represents the voltage amount and the vertical axis represents the current amount.
  • the power generation characteristics improved as the substrate temperature during the PH 3 exposure process increased. Further, when the power generation characteristic at the substrate temperature of 150 ° C. was used as a reference, the power generation characteristic of the solar cell subjected to the annealing treatment was smaller than the reference compared with the solar cell not subjected to the annealing treatment.
  • the above results show that the reaction between the Ge interface and PH 3 is effective by annealing even after the solar cell is formed, and the solar cell is provided with an annealing process after the electrode forming step. It is possible to improve the power generation characteristics.
  • the provision of the annealing step is particularly effective when the substrate temperature is lowered for the convenience of the process and the PH 3 exposure treatment is performed.
  • FIG. 10 and FIG. 11 are compared, when the substrate temperature during the PH 3 exposure treatment is high, there is no difference in battery performance before and after the annealing treatment step. According to the above result, when the substrate temperature is set to a high temperature and the PH 3 exposure process is performed, the annealing process can be omitted. In order to maximize the effect of the annealing process, it is considered preferable that the substrate temperature is high.
  • the heating in the annealing process performed after the amorphous silicon layer is laminated is not limited to the amorphous silicon layer. Considering the influence on the temperature, it cannot be performed at a temperature exceeding 200 ° C. Therefore, it is preferable to finish the process of applying heat before forming the amorphous silicon layer, that is, in a state where only the structurally stable crystalline material is present.
  • Tables 3 and 4 show the results of evaluating the power generation characteristics with the substrate temperature in the PH 3 exposure treatment step being 150 ° C.
  • Table 3 shows the power generation characteristics of the solar cell before the annealing process
  • Table 4 shows the power generation characteristics of the solar cell after the annealing process.
  • the power generation characteristics of the solar cell with an exposure time of 5 minutes are displayed as the standard (1.0).
  • Table 4 is the same as Table 2 described above, but is described again for easy comparison of the presence or absence of the annealing process.
  • the pressure at the time of introducing the PH 3 gas was changed to produce solar cells, and the power generation characteristics of the solar cells before and after the annealing treatment step were evaluated.
  • the power generation characteristics of the solar cell that was not annealed were the best at a pressure of 133 Pa and the lowest at 1.33 Pa. This is presumably because the higher the pressure, the higher the substrate temperature.
  • the pressure at the time of introducing the PH 3 gas into the substrate can be appropriately set.
  • exposure time and pressure during PH 3 exposure treatment is preferably treatment with high becomes high pressure for a long time and thermal conductivity.
  • Grid electrode Ag film, average film thickness 200 nm
  • Transparent electrode layer ITO film, average film thickness 70 nm n-type amorphous silicon layer: average film thickness 7 nm
  • i-type amorphous silicon layer average film thickness 40 nm
  • Back electrode layer Al film / average film thickness 200 nm
  • Substrate reheating After the oxide film removal step, the substrate once cooled to 200 ° C. or lower was reheated using an infrared heater to a predetermined temperature (about 250 ° C.). Thereafter, the substrate was placed in the n-layer deposition chamber of the plasma CVD apparatus. Next, 0.6% PH 3 gas diluted with H 2 gas is introduced into the vacuum chamber at 0.3 sccm / cm 2 and 0.1 Torr (13.3 Pa), and the sheathed heater temperature is set to 200 ° C. The substrate was exposed to PH 3 gas for 5 minutes.
  • the substrate is moved into the i-layer deposition chamber, source gas: SiH 4 gas / H 2 gas (0.15 sccm / cm 2 /0.45 sccm / cm 2 ), reduced pressure atmosphere: 0.1 Torr (13.3 Pa) ), Substrate temperature: An i-type amorphous silicon layer was formed at about 150 ° C.
  • the substrate is moved into the n-layer deposition chamber, and the source gas: SiH 4 gas, H 2 gas and PH 3 gas, reduced pressure atmosphere: 0.1 Torr (13.3 Pa), substrate temperature: about 150 ° C. did.
  • Substrate non-reheating After removing the oxide film, the substrate once cooled to 200 ° C. or lower was placed in the n-layer film forming chamber of the plasma CVD apparatus without being reheated. Thereafter, a solar cell was produced in the same manner as the solar cell in which the substrate was reheated.
  • the power generation characteristics of the solar cells produced by substrate reheating and substrate non-reheating were evaluated. The results are shown in FIG. In the figure, the horizontal axis represents the voltage amount and the vertical axis represents the current amount.
  • the temperature of the heat source (seeds heater) at the time of PH 3 exposure was 200 ° C., but the solar cell exposed to PH 3 after reheating the substrate to a predetermined temperature was not reheated. Power generation characteristics are improved compared to solar cells.
  • the characteristics are improved as a result of exposure treatment to PH 3 after reheating the Ge substrate to about 250 ° C., it is effective to use a high temperature in the process before the treatment. That is, since the Ge substrate immediately after removal of the surface oxide film is at a high temperature, the process time can be shortened by performing the PH 3 exposure treatment before the substrate temperature decreases.
  • Grid electrode Ag film, average film thickness 200 nm
  • Transparent electrode layer ITO film, average film thickness 70 nm n-type amorphous silicon layer: average film thickness 7 nm
  • i-type amorphous silicon layer average film thickness 40 nm
  • p-type single crystal Ge average film thickness 500 ⁇ m or 175 ⁇ m
  • Back electrode layer Al film / average film thickness 200 nm
  • the solar cell produced above was evaluated for power generation characteristics. The results are shown in FIG. In this figure, the horizontal axis represents the voltage amount, and the vertical axis represents the current amount. According to FIG. 13, the open-circuit voltage was improved by 53% by thinning the p-type single crystal Ge. From the above results, the recombination velocity of the p-type single crystal Ge surface is estimated to decrease by PH 3 exposure process can be expected to improve the open circuit voltage by further thinning. Considering the balance with light absorption, if the distance passing through the p-type single crystal Ge is about 5 ⁇ m, it is possible to sufficiently absorb light up to about 1500 nm where the absorption coefficient of Ge is high.
  • the “distance passing through the p-type single crystal Ge” is different from the thickness of the p-type single crystal Ge. Therefore, the thickness of the p-type single crystal Ge can be substantially reduced to about 1.5 ⁇ m by taking into account back surface reflection and scattering. Further, when the thickness of the p-type single crystal Ge is increased to 200 ⁇ m, light up to about 1600 nm can be sufficiently absorbed. On the other hand, if the thickness of the p-type single crystal Ge is thicker than 200 ⁇ m, it becomes possible to absorb light having a wavelength up to the vicinity of the band edge, so that the temperature difference in the plate thickness direction is ensured while ensuring the strength of the substrate handling process.
  • the thickness is 500 ⁇ m or less as a practical thickness capable of suppressing the above.
  • a substrate having a resistivity of about 0.5 ⁇ cm or less used in a practical photoelectric conversion device has free carrier absorption in the wavelength region near the band edge, so even if light having a wavelength near the band edge is absorbed, 200 ⁇ m or less is more preferable in order not to increase the substrate thickness more than necessary.
  • the thickness of the p-type single crystal Ge is 1.5 ⁇ m or more and 500 ⁇ m or less, more preferably 200 ⁇ m or less because the balance between current and voltage is good. According to the above results, thinning the p-type single crystal Ge has a greater effect of improving the open circuit voltage than improving the fill factor by reducing the series resistance.
  • the manufacturing method of the photoelectric conversion device according to the present embodiment includes the same steps as those in the first embodiment except that the method includes an electron beam irradiation step.
  • Electron beam irradiation process An electron beam is irradiated onto the substrate surface at least at any timing before or after the PH 3 exposure treatment step.
  • the electron beam irradiation conditions are set as appropriate.
  • Electron beam irradiation is performed, for example, by using a technique similar to a measurement system (acceleration voltage: 2 kV, electron current: 50 ⁇ A) that performs surface analysis using Auger Electron Spectroscopy (AES).
  • a low temperature e.g. 100 ° C.
  • the annealing process can be omitted depending on the electron beam irradiation conditions and the PH 3 exposure conditions.
  • Grid electrode Ag film, average film thickness 200 nm
  • Transparent electrode layer ITO film, average film thickness 70 nm n-type amorphous silicon layer: average film thickness 7 nm
  • i-type amorphous silicon layer average film thickness 40 nm
  • Back electrode layer Al film / average film thickness 200 nm
  • the p-type single crystal Ge one having an orientation: Ge (100), a resistance value: 0.028 ⁇ cm to 3.2 ⁇ cm, and a carrier density of 7.1 ⁇ 10 14 / cm 3 to 2.6 ⁇ 10 17 / cm 3 is used. did.
  • Condition 8 (Electron beam irradiation + PH 3 exposure treatment) After removing the oxide film, the substrate was cooled to 200 ° C. or lower and placed in the vacuum chamber of the AES apparatus. The substrate was irradiated with an electron beam at an acceleration voltage of 2 kV and an electron current of 50 ⁇ A on the surface, and then moved to the n-layer deposition chamber of the plasma CVD apparatus. Next, 0.6% PH 3 gas diluted with H 2 gas was introduced into the n-layer deposition chamber at 0.3 sccm / cm 2 and 0.1 Torr (13.3 Pa). The sheathed heater temperature was set so that the substrate temperature was about 150 ° C., and a PH 3 exposure treatment was performed for 5 minutes.
  • the substrate is moved to the i-layer deposition chamber of the plasma CVD apparatus, and the raw material gas: SiH 4 gas / H 2 gas (0.15 sccm / cm 2 /0.45 sccm / cm 2 ) and the reduced pressure atmosphere: 0.1 Torr ( 13.3 Pa), substrate temperature: An i-type amorphous silicon layer was formed at about 150 ° C.
  • the substrate is transferred to the n-layer deposition chamber, and source gas: SiH 4 gas, H 2 gas and PH 3 gas, reduced pressure atmosphere: 0.1 Torr (13.3 Pa), substrate temperature: about 150 ° C., n-type non-type A crystalline silicon layer was formed.
  • Condition 9 (PH 3 exposure treatment + electron beam irradiation) After removing the oxide film, the substrate was cooled to 200 ° C. or lower and placed in the n-layer film forming chamber of the plasma CVD apparatus. the n-layer deposition chamber, to introduce 0.6% PH 3 gas diluted with H 2 gas 0.3 sccm / cm 2, at 0.1 Torr (13.3 Pa). The sheathed heater temperature was set so that the substrate temperature was about 150 ° C., and a PH 3 exposure treatment was performed for 5 minutes. Next, the substrate was moved into the vacuum chamber of the AES apparatus.
  • the substrate was irradiated with an electron beam at an acceleration voltage of 2 kV and an electron current of 50 ⁇ A on the surface, and then moved into the i-layer deposition chamber of the plasma CVD apparatus. Thereafter, as in condition 8, the i-type amorphous silicon layer and An n-type amorphous silicon layer was formed.
  • the sheathed heater temperature was set so that the substrate temperature was about 150 ° C., and a PH 3 exposure treatment was performed for 5 minutes.
  • the substrate was moved into the vacuum chamber of the AES apparatus. After irradiating the substrate surface with an electron beam at an acceleration voltage of 2 kV and an electron current of 50 ⁇ A, the substrate surface is moved into an i-layer film forming chamber of a plasma CVD apparatus. An amorphous silicon layer was formed.
  • Condition 11 (PH 3 exposure treatment) A PH 3 exposure treatment and an i-type amorphous silicon layer and an n-type amorphous silicon layer were formed in the same process as in Condition 9 except that no electron beam irradiation was performed.
  • Condition 12 (Electron beam irradiation) Except for not performing the PH 3 exposure treatment, electron beam irradiation and film formation of an i-type amorphous silicon layer and an n-type amorphous silicon layer were performed in the same process as in Condition 8.
  • Condition 13 (No PH 3 exposure treatment + no electron beam irradiation) After removing the oxide film, the substrate is cooled to 200 ° C. or lower and placed in the i-layer film forming chamber of the plasma CVD apparatus, and the i-type amorphous silicon layer and the n-type amorphous silicon layer are formed in the same manner as in Condition 8. A film was formed.
  • FIG. 14 shows the power generation characteristics of the solar cells under conditions 10 and 11.
  • the horizontal axis represents the voltage amount and the vertical axis represents the current amount.
  • the solar cell (condition 10) irradiated with the electron beam before the PH 3 exposure treatment has improved power generation characteristics than the solar cell (condition 11) not irradiated with the electron beam. This is presumably because the same effect as that obtained by increasing the substrate temperature during exposure to PH 3 was obtained by the energy from the electron beam.
  • Table 5 shows the power generation characteristics of conditions 8 to 13.
  • the power generation characteristics of the solar cell under condition 13 are displayed as the reference (1.0).
  • the power generation characteristics under condition 13 or less were obtained in the single treatment of electron beam irradiation (condition 12).
  • condition 12 the power generation characteristics were improved under any conditions, although there was a slight difference in effect depending on the order of treatment. Specifically, when the electron beam irradiation was performed only once, the electromotive force increased by 21% to 25% and the short circuit current increased by 8% to 11%.
  • the cell characteristics of the solar cell under the condition 10 (electron beam irradiation + PH 3 exposure treatment + electron beam irradiation) were most improved, and the electromotive force was increased by 48% and the short circuit current was increased by 9%.
  • the improvement width of the power generation characteristic by performing annealing treatment was small. This is because when not irradiated with an electron beam was the same tendency as when PH 3 exposure process by increasing the substrate temperature.
  • the substrate temperature during the PH 3 exposure treatment was changed to 100 ° C., 150 ° C., and 220 ° C., respectively, and solar cells were produced.
  • the power generation characteristics of the solar cell produced above were evaluated. The results are shown in FIG. In the figure, the horizontal axis represents the voltage amount and the vertical axis represents the current amount. According to FIG. 15, the power generation characteristics are lower as the substrate temperature is higher. This is presumed that when electron beam irradiation is performed, an increase in the substrate temperature and an effect of promoting the interfacial reaction are expected, so that the reaction becomes excessive by increasing the substrate temperature.
  • the substrate temperature during the PH 3 exposure treatment is preferably set to a low temperature of about 100 ° C. Therefore, it has been found that by combining PH 3 exposure treatment and electron beam irradiation, it is possible to improve the power generation characteristics, and there is an effect similar to increasing the substrate temperature during PH 3 exposure treatment, This is an effective means when the substrate temperature cannot be raised due to the processing process.
  • FIG. 16 is a schematic diagram illustrating an example of a photoelectric conversion apparatus according to the present embodiment.
  • the photoelectric conversion device 200 is a solar cell including a heterojunction structure on both sides of a substrate, and includes a heterojunction cell layer 1, a back heterojunction layer 6, a transparent electrode layer 2, a grid electrode 3, and a back electrode layer 4.
  • the back heterojunction layer 6 includes a p-type amorphous silicon layer 21 and is provided between the substrate 11 and the back electrode layer 4.
  • the p-type amorphous silicon layer is mainly made of B-doped amorphous silicon and has a thickness of 4 nm to 30 nm.
  • An i-type amorphous silicon layer 22 is preferably disposed between the substrate 11 and the p-type amorphous silicon layer 21.
  • the i-type amorphous silicon layer 22 is mainly made of amorphous silicon and has a thickness of 4 nm to 20 nm.
  • a transparent conductive layer 23 is preferably disposed between the p-type amorphous silicon layer 21 and the back electrode layer 4.
  • the transparent conductive layer 23 is a film mainly composed of a metal oxide such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO).
  • the thickness of the transparent conductive layer 23 is 50 nm or more and 150 nm or less.
  • the manufacturing method of the photoelectric conversion device includes a back surface heterojunction layer forming step for forming a heterojunction structure between the heterojunction cell manufacturing step and the electrode forming step, and the annealing process is not performed. It is comprised from the process similar to 1st Embodiment.
  • the substrate 11 is placed in an i-type amorphous silicon layer deposition chamber (i-layer deposition chamber) of a plasma CVD apparatus. At this time, the substrate 11 is turned over.
  • source gas SiH 4 gas and H 2 gas
  • reduced pressure atmosphere 1 Pa to 1000 Pa
  • substrate temperature substrate temperature : The i-type amorphous silicon layer 22 is formed at about 150 ° C.
  • the substrate 11 is moved into a p-type amorphous silicon layer deposition chamber (p-layer deposition chamber), and a source gas: SiH 4 gas, H 2 is formed on the i-type amorphous silicon layer 22.
  • the p-type amorphous silicon layer 21 is formed at a gas and a B 2 H 5 gas, a reduced pressure atmosphere: 1 Pa to 1000 Pa, and a substrate temperature: about 150 ° C.
  • the substrate 11 is placed in a sputtering apparatus, and a transparent conductive layer 23 is formed on the p-type amorphous silicon layer 21 by a high frequency (RF) sputtering method.
  • the sputtering conditions are: target: ITO sintered body, atmosphere gas: Ar, ultimate pressure: 10 ⁇ 4 Pa to 10 ⁇ 5 Pa, high frequency power: 2 W / cm 2 to 3 W / cm 2 .
  • the solar cell double-sided heterojunction
  • Grid electrode Ag film, average film thickness 200 nm
  • Transparent electrode layer ITO film, average film thickness 70 nm n-type amorphous silicon layer: average film thickness 7 nm i-type amorphous silicon layer: average film thickness 40 nm p-type single crystal Ge: average film thickness 175 ⁇ m i-type amorphous silicon layer (back side): average film thickness 0 nm (no back side) p-type amorphous silicon layer (back side): average film thickness 15 nm
  • Transparent conductive layer ITO film, average film thickness 70 nm
  • Back electrode layer Al film / average film thickness 200 nm
  • the p-type single crystal Ge one having an orientation of Ge (100), a resistance value of 3.2 ⁇ cm, and a carrier density of 7.1 ⁇ 10 14 / cm 3 to 2.6 ⁇ 10 17 / cm 3 was used.
  • the PH 3 exposure treatment process was performed as follows. After cooling the substrate to 200 ° C. or lower, the substrate was placed in the i-layer deposition chamber. 0.6% PH 3 gas diluted with H 2 gas was introduced into the vacuum chamber at 0.3 sccm / cm 2 and 0.1 Torr (13.3 Pa). The sheathed heater temperature was set so that the substrate temperature was about 150 ° C., and a PH 3 exposure treatment was performed for 5 minutes.
  • the solar cell produced above was evaluated for power generation characteristics. The results are shown in FIG. In the figure, the horizontal axis represents the voltage amount and the vertical axis represents the current amount.
  • the solar cell (double-sided heterojunction) provided with the back surface heterojunction layer has improved short circuit current and open voltage compared to the solar cell (single-sided heterojunction) provided with only the heterojunction cell layer. This is considered to be due to the fact that the recombination on the back surface is reduced by providing the hetero junction layer on the back surface. From the above results, it was found that the short-circuit current and the open-circuit voltage can be improved by providing heterostructures on both sides of the p-type single crystal Ge.
  • the solar cell produced above is in a situation where the improvement of the fill factor (FF) is small due to the increase in series resistance, further improvement in performance can be expected by improving the connection resistance.
  • FF fill factor
  • heterojunction cell layer 2 transparent electrode layer 3 grid electrode 4 back electrode layer 5 oxide film 6 back heterojunction layer 11 substrate (p-type single crystal Ge) 12 i-type amorphous silicon semiconductor layer 13 n-type amorphous silicon semiconductor layer 100 photoelectric conversion device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

p型結晶Ge(基板)/i型非晶質シリコン半導体層/n型非晶質シリコン半導体層からなるヘテロ接合セルを有する太陽電池の発電特性を向上させることのできる光電変換装置の製造方法を提供する。基板(p型結晶Ge)(11)上に、i型非晶質シリコン半導体層(12)とn型非晶質シリコン半導体層(13)とが順に積層されたヘテロ接合セル(1)を備えた光電変換装置(100)の製造方法であって、表面に形成された酸化膜を除去した基板(11)を所定温度とした後に、真空チャンバ内に配置してPHに暴露させるPH暴露処理工程と、PH暴露した基板上にi型非晶質シリコン半導体層(12)を製膜するi層製膜工程と、i型非晶質シリコン半導体層(12)上にn型非晶質シリコン半導体層(13)を製膜するn層製膜工程と、n型非晶質シリコン半導体層上及び基板(11)の裏面側の面に電極(2、3、4)を形成する電極形成工程とを備える。

Description

光電変換装置の製造方法
 本発明は、光電変換装置の製造方法に関し、特に、ヘテロ接合構造を備えた太陽電池の製造方法に関するものである。
 太陽光のエネルギーを電気エネルギーに変換する光電変換装置として、太陽電池が知られている(例えば、特許文献1参照)。近年、太陽電池の変換効率の向上を目指して、ゲルマニウム(Ge)、またはシリコン(Si)-Ge-スズ(Sn)系合金などのナローギャップ材料を用いたヘテロ接合構造を備えた太陽電池の研究開発が行われている。Geは、バンドギャップが0.66eVであり、これは、従来光電変換層に使用されている結晶Siのバンドギャップ(1.1eV)よりも小さい。このようなナローギャップ材料を使用することで、今まで利用できなかったより長波長側の光の吸収を増加させて、太陽電池の変換効率をさらに向上させることができる。
特許第2771921号公報(請求項1)
 ナローギャップ材料を用いたヘテロ接合構造を備えた太陽電池の一つとして、p型結晶Geを基板とし、該基板上に、i型非晶質シリコン半導体層とn型非晶質シリコン半導体層とが順に積層されたヘテロ接合セルを光電変換層とする太陽電池がある。
 p型結晶Geを基板とする場合、まず、該基板は有機溶剤及び洗浄剤で洗浄される。洗浄された基板表面には酸化膜(GeOx)が形成されているため、基板を加熱して上記酸化膜を除去した後に、i型非晶質シリコン半導体層とn型非晶質シリコン半導体層とを順に積層する。
 しかしながら、このようにして作製したヘテロ接合セルを有する太陽電池では、所望の発電特性が得られないという問題がある。
 また、異なる製造方法として、裏面電極表面での凹凸の大きさを適正化することを目的に、絶縁基板上にn型ドーパントが添加されたアモルファスゲルマニウムを350℃のアニール処理で固相成長させた後、エッチング処理した多結晶ゲルマニウム層の表面に半球状の微細な凹凸が緻密に形成されるものがある(特許文献1)。しかしながら、出力電流Iscは20mA/cmに満たない状況にあり、所望の発電特性が得られていないという問題がある。
 本発明は、このような事情に鑑みてなされたものであって、p型結晶Ge(基板)/i型非晶質シリコン半導体層/n型非晶質シリコン半導体層からなるヘテロ接合セルを有する太陽電池の発電特性を向上させることのできる光電変換装置の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、p型結晶Geを基板とし、該基板上に、i型非晶質シリコン半導体層とn型非晶質シリコン半導体層とが順に積層されたヘテロ接合セルを備えた光電変換装置の製造方法であって、表面に形成された酸化膜を除去した前記基板を所定温度とした後に、真空チャンバ内に配置してPHガスに暴露させるPH暴露処理工程と、前記PH暴露した基板上に、i型非晶質シリコン半導体層を製膜するi層製膜工程と、前記i型非晶質シリコン半導体層上に、n型非晶質シリコン半導体層を製膜するn層製膜工程と、前記n型非晶質シリコン半導体層上、及び、前記基板の前記i型非晶質シリコン半導体層が製膜された側と反対の面に、電極を形成する電極形成工程とを備える光電変換装置の製造方法を提供する。
 p型結晶Ge(基板)を加熱すると、酸素(O)が昇華されて基板表面の酸化膜が除去される。本発明者らは、鋭意研究の結果、酸化膜が除去された基板表面は、未結合手(ダングリングボンド)により覆われ、価電子帯内に安定順位が存在することで強いp型を示すことが、発電特性が得られない要因となっているという知見を得た。
 本発明によれば、酸化膜が除去された基板をPH暴露処理することで、PHガスが基板表面に吸着(もしくは結合)し、基板表面のフェルミレベルを真性付近に戻すことができる。このような基板上に、i型非晶質シリコン半導体層及びn型非晶質シリコン半導体層を積層することで光電変換装置の発電特性を格段に向上させることができる。
 上記発明の一態様において、前記PH暴露処理工程において、前記基板の前記所定温度を150℃以上とすることが好ましい。
 PH暴露時の基板温度は、高温であるほうが電池性能を向上させる効果があり、基板温度が150℃以上で効果が向上する。
 上記発明の一態様において、前記電極形成工程後に、熱を加えてアニール処理するアニール処理工程を備えることが好ましい。
 電極形成工程後にアニール処理することによって、ヘテロ接合セルを備えた光電変換装置の発電特性を向上させることができる。アニール処理は、特に、PH暴露処理時の基板の所定温度を低く設定した場合に有効である。
 PH暴露処理の前に、基板は所定温度とされる。所定温度を低く設定した場合は、PH暴露処理時に基板を熱源で加熱すると良い。所定温度を高く設定した場合は、基板温度が高温に安定した状態でPHに暴露させることができる。それによって、光電変換装置としたときの発電特性を向上させることができる。また、PH暴露処理後に熱を加えてアニール処理を行なっても同等の効果を得ることができるという知見を得た。アニール処理工程によりPH暴露処理時の基板温度の選定に制限がなくなるので、PH暴露処理用の真空チャンバ内の温調装置を省略することが可能となる。さらに、PH暴露処理用の真空チャンバをn層製膜室とした場合であっても、ヒータ温度をn層製膜条件に固定したまま共用することが可能となる。
 上記発明の一態様において、前記PH暴露処理工程の前、または前記PH暴露処理工程の後の少なくとも一方に、前記基板に電子線を照射する電子線照射工程を備えることが好ましい。
 電子線を併せて照射することで、基板温度を上昇させることができる。また、電子のエネルギーによりp型結晶Geの表面とPHとの反応を促進させることができる。それによって、ヘテロ接合セルを備えた光電変換装置の発電特性を更に向上させることができる。
 上記発明の一態様において、前記基板として、厚さ1.5μm以上500μm以下のp型結晶Geを用いることが好ましい。
 p型結晶Geの厚さを上記範囲とすることで、ヘテロ接合セルを備えた光電変換装置の発電量を増加させることができる。p型結晶Geの厚さが5μm以上あればGeの吸収係数が高い1500nm程度の波長の光まで十分に吸収することができるので、裏面電極での反射や散乱を効果的に利用することで、基板厚さは1.5μmまで薄くすることが可能となる。また、p型結晶Geの厚さを200μmまで増加させると、1600nm程度の波長の光まで十分に吸収することができる。一方、p型結晶Geの厚さを200μmより厚くすると、バンド端付近までの波長の光を吸収することが可能となるので、基板のハンドリング処理の強度を確保しつつ板厚方向の温度差を抑制できる実用的な厚さとして、500μm以下とすることが好ましい。しかしながら、実用的な光電変換装置に用いる0.5Ωcm程度以下の抵抗率の基板では、バンド端付近の波長領域にフリーキャリア吸収が存在するため、バンド端付近の波長の光を吸収したとしても劇的な電流密度の増加は見込めないことから、基板厚さを必要以上に厚くしないために200μm以下がより好ましい。
 上記発明の一態様において、前記電極形成工程の前に、前記基板の前記i型非晶質シリコン半導体層が製膜された側と反対の面に、p型非晶質シリコン半導体層を形成する裏面側へテロ構造形成工程を備えることが好ましい。
 裏面側にp型非晶質シリコン半導体層を形成することで、p型結晶Geの不純物元素の電気的活性度(キャリア再結合)を低減することができる。それによって、電流密度及び開放電圧を向上させることができる。
 本発明によれば、酸化膜を除去したp型結晶GeをPHに暴露することで、p型結晶Geの表面のフェルミレベルを真性付近に戻すことができる。そのようなp型結晶Ge上に、i型非晶質シリコン半導体層及びn型非晶質シリコン半導体層を積層することで光電変換装置の発電特性を向上させることができる。
第1実施形態に係る光電変換装置の構成の一例を示す概略図である。 基板の洗浄工程の手順を説明するフロー図である。 基板洗浄後の太陽電池の製造方法を説明する図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 内部光電子放出法(IPE)の測定結果を示す図である。 内部光電子放出法(IPE)の測定結果を示す図である。 内部光電子放出法(IPE)の測定結果を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 太陽電池の発電特性を示す図である。 第3実施形態に係る光電変換装置の構成の一例を示す概略図である。 太陽電池の発電特性を示す図である。
 以下に、本発明に係る光電変換装置の製造方法の一実施形態について、図面を参照して説明する。
<第1実施形態>
 図1は、第1実施形態に係る光電変換装置の構成の一例を示す概略図である。光電変換装置100は、ヘテロ接合構造を備えた太陽電池であり、ヘテロ接合セル層1、透明電極層2、グリッド電極3及び裏面電極層4を備える。
 ヘテロ接合セル層1は、p型単結晶Ge(基板11)、i型非晶質シリコン層12、及びn型非晶質シリコン層13から構成される。
 基板11には、チョクラルスキー(CZ)法で成長させたGaドープp型単結晶Ge(100)(c-Ge)が使用される。c-Geの厚さは、1.5μm以上500μm以下、好ましくは50μm以上200μm以下とされる。i型非晶質シリコン層12は、非晶質シリコンを主とし、膜厚5nm以上80nm以下とされる。n型非晶質シリコン層13は、非晶質シリコンにリン成分:Pを含有するPドープシリコンを主とし、膜厚4nm以上10nm以下とされる。
 なお、p型単結晶Ge(基板11)は、他の結晶成長法で製造した基板や、Ge(111)も使用可能である。また、p型単結晶Geに限定されるものではなく、表面処理を適正化することで、多結晶Geも同様に利用することが可能である。
 透明電極層2は、酸化インジウム錫(ITO)、酸化錫(SnO)や酸化亜鉛(ZnO)などの金属酸化物を主成分とする膜とされる。透明電極層2の厚さは、集電抵抗と光反射特性から、50nm以上150nm以下とされる。
 グリッド電極3は、主としてAgからなる膜とされるが、製膜方法を適正化することでAlなどの高導電性材料を利用することも可能である。集電抵抗を抑制しながら、光入射を妨げないよう、グリッドの幅を狭くし基板表面の占有面積を少なくなるよう設置することが好ましい。
 裏面電極層4は、Alからなる膜であり、厚さ50nm以上500nm以下とされる。反射率向上にあたりAgからなる膜を、コスト低減にあたりCuからなる膜を用いることが可能である。
 なお、AgやCuは大気成分(酸素、水蒸気、硫黄など)と反応しやすいので、AgやCuの表面をさらにTiやNで被覆したり、光電変換装置全体の封止方法を工夫するようにしてもよい。
 第1実施形態に係る光電変換装置の製造方法を説明する。本実施形態に係る太陽電池の製造方法は、基板洗浄工程と、酸化膜除去工程、ヘテロ接合セル作製工程、電極形成工程、及びアニール処理工程を備える。図2は、基板の洗浄工程の手順を説明するフロー図である。図3は、基板洗浄後の太陽電池の製造方法を説明する図である。
(1)基板洗浄工程:図2
 まず、基板11を、アセトンなどの有機溶媒及びセミコクリーンなどの洗浄剤によって順次洗浄する。次に、フッ化水素(HF)を用いて基板11の表面に形成されている酸化膜を除去した後、基板11を純水でリンス(1秒)する。次に、過酸化水素(H)を用いて基板11の表面に酸化膜5を形成させた後、基板11を純水でリンス(1秒)する。
(2)酸化膜除去工程:図3(a)及び図3(b)
 基板11を真空チャンバ内に搬入後、基板11の表面に形成された酸化膜5を除去する。酸化膜を除去する条件は、使用する熱源の種類、基板11の大きさなどに応じて適宜設定される。例えば、真空チャンバ内を10-7Torr(133μPa)程度以下まで真空引きし、赤外線ヒータなどの熱源を用いて基板11を20分程度加熱する。熱源温度は450℃程度まで昇温させると良い。それによって基板11の表面に形成された酸化膜(GeOx)を昇華させ、基板11に清浄表面を出すことができる。
 赤外線ヒータを用い、ヒータ温度を450℃まで昇温させて実基板温度を放射温度計にて測定した結果、実基板温度は600℃程度であった。
(3)ヘテロ接合セル作製工程:図3(c)
 ヘテロ接合セル作製工程は、PH暴露処理工程、i層製膜工程、及びn層製膜工程を備える。
(PH暴露処理工程)
 酸化膜を除去した基板11を所定温度とする。本実施形態における所定温度は、基板11の定常状態(実基板温度200℃以下)とされる。基板11は、酸化膜を除去した後に所定温度まで冷却される。
 次に、別の真空チャンバ内、好ましくはプラズマCVD装置のn型非晶質シリコン層の製膜室(n層製膜室)内に基板11を配置する。真空チャンバ内にHガスで希釈したPHガスを導入するとともに、シーズヒータなどの熱源を用いて基板11を加熱する。
 PH暴露の条件(PH導入量、基板温度、暴露時間、圧力など)は、適宜設定される。例えば、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入するとともに、シーズヒータなどの熱源を用いて基板11を0.5分~10分、室温~300℃程度で加熱する。n層製膜室の製膜条件での温度をそのまま使用するには、基板温度150℃程度とすることが好ましい。
 導入されるPHガス量は、極微量であってもよい。暴露時の基板温度は、高温であるほうが電池性能を向上させる効果があるが、PHガスが熱分解しないように基板温度は300℃以下とする。
(i層製膜工程及びn層製膜工程)
 基板11上に、プラズマCVD装置を用いてi型非晶質シリコン層12及びn型非晶質シリコン層13を順に製膜する。i型非晶質シリコン層12は、i型非晶質シリコン層の製膜室(i層製膜室)にて、原料ガス:SiHガス及びHガス、減圧雰囲気:1Pa以上1000Pa以下、基板温度:約150℃で製膜する。
 n型非晶質シリコン層13は、n型非晶質シリコン層の製膜室(n層製膜室)にて、原料ガス:SiHガス、Hガス及びPHガス、減圧雰囲気:1Pa以上1000Pa以下、基板温度:約150℃で製膜する。
(4)電極形成工程:図3(d)~図3(g)
 n型非晶質シリコン層13の上に、高周波(RF)スパッタリング法にて透明電極層2を形成する。スパッタリング条件は、ターゲット:ITO焼結体、雰囲気ガス:Ar、到達圧力:10-4Pa~10-5Pa、高周波電力:2W/cm~3W/cmとされる。
 次いで、反応性イオンエッチング(RIE)によって素子分離を行う。
 透明電極層2の上に、パターンマスク板を設置して、直流(DC)スパッタリング法にてグリッド電極3を形成する。スパッタリング条件は、ターゲット:Ag、雰囲気ガス:Ar、到達圧力:10-4Pa~10-5Pa、高周波電力:2W/cm~3W/cmとされる。
 基板11の裏面(非晶質シリコン層が形成された側の反対の面)に、抵抗加熱蒸着によって裏面電極層4を形成する。タングステンフィラメントに30Aの電流を流すことでAlを加熱し蒸発させる。
(5)アニール処理工程:図3(g)
 上記工程で作製した太陽電池を、真空中で加熱し、アニール処理する。アニール処理は、非晶質シリコン層のSiを終端している水素が離脱するなどの悪影響を及ぼさないよう基板温度150℃程度で8時間行うことが好ましい。
 なお、本実施形態のPH暴露処理工程において、所定温度を基板の定常状態としたが、所定温度は、定常状態より高く設定されても良い。酸化膜除去工程直後の基板11は高温であるため、基板温度が所定温度よりも低くなる前に、PH暴露処理用の真空チャンバに配置すると良い。そうすることにより、プロセス時間の短縮が可能となる。また、定常状態まで冷却した基板11を、熱源を用いて再加熱して所定温度まで上昇させても良い。これらを適用することで、PH暴露処理用の真空チャンバ内の温調装置を省略することが可能となる。また、n層製膜室のヒータ温度をn層製膜条件に固定したまま共用することが可能となる。
 また、PH暴露処理工程における所定温度または加熱後の基板温度が、基板の定常状態よりも高い場合は、アニール処理工程を省略することができる。
 次に、上記工程の条件設定の根拠を説明する。
 以下の構成を基本とした太陽電池(光電変換装置セル)を、比較用に様々な条件で作製した。特に説明がない工程については、第1実施形態に従った。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚5nm
   p型単結晶Ge:平均膜厚500μm
   裏面電極層:Al膜/平均膜厚200nm
 p型単結晶Geは、配向:Ge(100)、抵抗値:0.028Ωcm~3.2Ωcm、キャリア密度7.1×1014/cm~2.6×1017/cmのものを使用した。
(PH暴露処理の効果)
条件1:(PH暴露処理+i層製膜室でi層を製膜)
 基板を200℃以下まで冷却した後、n層製膜室内に配置した。真空チャンバ内に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入した。基板温度が約150℃となるようシーズヒータ温度を200℃に設定し、5分間PH暴露処理を行った。その後、高真空排気された搬送室を経由しi層製膜室にて、原料ガス:SiHガス/Hガス(0.15sccm/cm/0.45sccm/cm)、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃でi型非晶質シリコン層を製膜した。次に、基板をn層製膜室に移し、原料ガス:SiHガス、Hガス及びPHガス、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃でn型非晶質シリコン層を製膜した。
条件2:(PH暴露処理なし+i層製膜室でi層を製膜)
 PH暴露処理を行わなかった以外は、条件1と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
条件3:(PH暴露処理なし+n層製膜室でi層を製膜)
 PH暴露処理を行わず、且つ、n層製膜室にてi型非晶質シリコン層を製膜した以外は、条件1と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
条件4:(Hプラズマ処理+i層製膜室でi層を製膜)
 PH暴露処理に代わり、基板表面にHプラズマを5秒間、または30秒間照射した以外は、条件2と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
条件5:(PH暴露処理+PHプラズマ処理+i層製膜室でi層を製膜)
 PH暴露処理後、基板表面にPHプラズマを5秒間照射し、以降条件1と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。ただし、i型非晶質シリコン層の厚さは40nmとした。
条件6:(PH暴露処理なし+基板とi層との間にn層を挿入)
 PH暴露処理はせず、基板をプラズマCVD装置のn層製膜室に配置して、5秒間プラズマ点灯することで基板上に厚さ1nmのn型非晶質シリコン層を製膜した。n型非晶質シリコン層の上には、条件1と同様にi型非晶質シリコン層及び別のn型非晶質シリコン層を製膜した。ただし、i型非晶質シリコン層の厚さは40nmとした。
 上記条件1~条件3で作製した太陽電池について発電特性を評価した。結果を図4に示す。同図において、横軸は電圧量、縦軸は電流量である。
 図4によれば、条件1~条件3の太陽電池の変換効率は、それぞれ2.59%、1.08%、2.12%となった。条件1(PH暴露処理+i層製膜室でi層を製膜)は、条件2(PH暴露処理なし+i層製膜室でi層を製膜)と比較して、太陽電池の変換効率を約2.5倍向上させた。これによって、i型非晶質シリコン層を製膜する前に、基板表面をPHに暴露させると、太陽電池の変換効率を向上させることができることが確認された。また、条件1の太陽電池は、条件2の太陽電池と比較して、起電力が57%、短絡電流が12%、曲線因子が36%増加し、発電効率が139%の性能向上を得ることができた。
 また、条件3(PH暴露処理なし+n層製膜室でi層を製膜)も、条件2(PH暴露処理なし+i層製膜室でi層を製膜)と比較して変換効率を向上させた。n型非晶質シリコン層を製膜する際、n層製膜室にはPHガスが導入される。そのため、条件3では、PH暴露処理は行っていないが、n層製膜室内の壁面等に残留したPHが水素ガスにより基板付近へと輸送されて、PH暴露処理と同様の効果が得られたものと予想される。
 上記結果から、極微量のPHが存在するだけでも界面バンド構造制御への効果があると推察される。
 上記条件4~条件6で作製した太陽電池についても発電特性を評価した。
 Si基板表面にHプラズマを照射すると、表面パシベーション効果や表面清浄化効果が期待できることが知られている。しかしながら、条件4(Hプラズマ処理+i層製膜室でi層を製膜)で作製した太陽電池は、条件2(PH暴露処理なし+i層製膜室でi層を製膜)の太陽電池よりも発電特性が低下した。これは、Hプラズマ処理された基板において並列抵抗が減少し、p型単結晶Geの表面特性が悪化したためと考えられる。また比較条件として30秒間Hプラズマを照射した太陽電池では、5秒間Hプラズマを照射した太陽電池よりも発電特性が低かった。上記結果から、Hプラズマ照射によりp型単結晶Geの表面にダメージが加わっていると考えられる。
 条件5で作製した太陽電池は、PH暴露処理後にPHプラズマを照射することで基板表面にエネルギーを供給し、基板温度の高温化と同様の効果が期待されたが、条件4と同様に並列抵抗が減少し、発電特性が悪化した。上記結果から、p型単結晶Geの表面にPHプラズマを照射した場合、PHガスによる界面特性改善効果より、プラズマによるダメージの影響の方が強いことが示唆された。
 条件6で作製した太陽電池は、並列抵抗が低く、変換効率が1%未満となり、発電特性が出なかった。上記結果から、p型単結晶Ge/i型非晶質シリコン層界面をn層化させても発電特性を向上させることはできないことがわかった。また、上記結果によれば、表面酸化膜除去した際にp型化が想定されているp型単結晶Geの表面の改質を行うことが重要であると推定される。
 以上より、p型単結晶Geの表面処理は、界面に極微量でもP(PH)が存在することが重要であると言える。また、Hプラズマなどp型単結晶Geの表面にダメージが加わる処理は、発電特性を向上させるためのp型単結晶Geの表面処理として不適当であることが判明した。
(PH暴露処理による界面バンド構造変化の確認)
 i型非晶質シリコン層の膜厚を40nmまたは80nmとした太陽電池を、上記条件1及び条件2と以下に示す条件7で作製した。
条件7:(B暴露処理+i層製膜室でi層を製膜)
 PH暴露処理に代えてi層製膜室内にHで希釈した0.1%Bガスを導入した以外は、条件1と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
 上記条件1、条件2及び条件7でi型非晶質シリコン層(膜厚40nm)を製膜した太陽電池について発電特性を評価した。結果を図5に示す。同図において、横軸は電圧量、縦軸は電流量である。
 図5によれば、i型非晶質シリコン層が(5nmから40nmへ)厚くなった場合でも、条件1(PH暴露処理+i層製膜室でi層を製膜)は、条件2(PH暴露処理なし+i層製膜室でi層を製膜)よりも太陽電池の変換効率を向上させた。また、条件7(B暴露処理+i層製膜室でi層を製膜)で作製した太陽電池では、条件1及び条件2よりも発電特性が低くなった。これは、p型単結晶GeをBに曝すことで、p型単結晶Geで発生した電流が取り出しにくくなる。また、取り出せる電流は、i型非晶質シリコン層のみが発電層として動作しているためである。
 上記条件1、条件2及び条件7でi型非晶質シリコン層(膜厚80nm)を製膜した太陽電池について発電特性を評価した。結果を図6に示す。同図において、横軸は電圧量、縦軸は電流量である。
 図6によれば、i型非晶質シリコン層が(40nmから80nmへ)厚くなると、条件2(PH暴露処理なし+i層製膜室でi層を製膜)で作製した太陽電池が、p型単結晶Geで発生した電流を取り出しにくい状態へと遷移した。上記結果から、p型単結晶Geとi型非晶質シリコン層との界面に存在するバンド不連続による伝導帯の障壁によって電流が取り出せなくなっていると想定され、ドーパントガスであるPHガス及びBガスが界面の伝導型に影響を及ぼしていると考えられる。
 酸化膜除去工程後のp型単結晶Ge(基板)の表面は、p型化していると想定される。Bは、界面をよりp型にする作用があるため、p型単結晶Ge界面のバンドの曲がり方が電子に対して障壁として働き、電子が伝導体の障壁を超えられずに、電流が取り出せなくなる。
 一方、PHは、界面をよりn型にする作用があるため、p型単結晶Ge表面のp型化を緩和し電流の取り出しを可能にしたものと判断できる。
 上記条件1、条件2及び条件7でi型非晶質シリコン層(膜厚80nm)を製膜した太陽電池を内部光電子放出法(IPE:Internal Photoemission)により測定した。IPEとは、キャリアがバンド不連続を乗り越えるだけの光エネルギーを得た時、外部に電流として取り出されることを利用し、得られる電流の波長依存性から障壁高さを求める手法である。すなわち、順方向バイアスを印加し空乏層による電子加速の影響を打消して測定するため、閾値の存在を明確化することができる。結果を図7~図9に示す。図7が条件1、図8が条件2、図9が条件7で作製した太陽電池を用いて測定した結果である。図7~図9において、横軸はエネルギー量、縦軸は(取り出した光の量子効率)2/5である。
 図8及び図9では伝導帯の障壁に起因すると考えられる閾値が見られるが、図7では、閾値が見られなかった。また、図8(条件2)と図9(条件7)とを比較すると、Bで処理した(条件7)方が、閾値が高かった。このことから、B暴露処理することでp型単結晶Ge表面のp型化が促進されていると予想される。
 上記結果によれば、p型単結晶Ge(基板)をPH暴露処理することで、p型単結晶Ge表面のp型化を緩和し、太陽電池の発電特性を向上させることができる。
(PH暴露処理条件)
 PH暴露処理時の条件(基板温度、暴露時間、圧力)を変えて、以下の構成の太陽電池を作製した。特に説明がない工程に関しては、第1実施形態に従った。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚40nm
   p型単結晶Ge層:平均膜厚175μm
   裏面電極層:Al膜/平均膜厚200nm
基板温度:
 条件1のPH暴露処理工程における基板温度を50℃、150℃、220℃とした。
 上記で作製した太陽電池について発電特性を評価した。結果を表1に示す。表1では、基板温度150℃でPH暴露処理した太陽電池の発電特性を基準(1.0)として表示する。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、基板温度が高いほど開放電圧(Voc)及び曲線因子(FF)が向上し、基板温度を220℃とした場合に発電特性が最大となった。一方、短絡電流(Jsc)は、150℃でPH暴露処理した太陽電池で低い値となったが、これは、ITO膜の膜質差に起因するものである。ITO膜質差は製膜時の製膜装置状態の違いによって生じるものである。詳しくは、製膜装置状態が変化する前後ではITO膜の吸収係数に差が生じており、セルの反射率およびITO膜の光吸収を考慮し計算で求めた分光感度特性より、表1の差(2~3%程度)が生じ得るため、短絡電流(Jsc)の微少差は比較評価ができないものである。
 これより、PH暴露処理工程における基板温度は150℃以上とすることで、顕著な太陽電池の発電特性向上効果を得ることができる。
暴露時間:
 条件1のPH暴露処理工程におけるPH暴露時間を0.5分、5分、10分とした。
 PH暴露工程の基板温度を150℃として、上記で作製した太陽電池について発電特性を評価した。結果を表2に示す。表2では、暴露時間5分とした太陽電池の発電特性を基準(1.0)として表示する。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、PH暴露処理工程における反応時間を変えても、発電特性にほとんど差は見られなかった。
圧力:
 条件1のPH暴露処理工程におけるPH導入時の圧力を1.33Pa、13.3Pa、133Paとした。上記で作製した太陽電池について発電特性を評価した。圧力を変化させたことによる電池性能への影響はなかった。
(アニール処理工程の効果)
 上記(PH暴露処理条件)と同様に、PH暴露処理時の基板温度を変化させ、それぞれ太陽電池を作製し、アニール処理工程(真空中で基板温度を150℃程度で8時間加熱処理)前後における太陽電池の発電特性を評価した。結果を図10及び図11に示す。図10はアニール処理工程前、図11はアニール工程後の太陽電池の発電特性である。同図において、横軸は電圧量、縦軸は電流量である。
 図10及び図11によれば、アニール処理工程の有無に関わらず、PH暴露処理時の基板温度が高いほど発電特性は向上した。また、基板温度150℃の発電特性を基準とすると、アニール処理をした太陽電池の発電特性は、アニール処理をしなかった太陽電池と比べて、基準との差が小さかった。
 上記結果によれば、Ge界面とPHの反応が太陽電池を形成後においてもアニール処理をすることで有効になることを示しており、電極形成工程後にアニール処理工程を備えることで、太陽電池の発電特性を向上させることが可能である。アニール処理工程を備えることは、プロセスの都合で基板温度を低温化してPH暴露処理した場合に、特に有効である。
 また、図10及び図11を比較すると、PH暴露処理時の基板温度が高い場合は、アニール処理工程前後の電池性能の差は見られなかった。上記結果によれば、基板温度を高温としてPH暴露処理した場合は、アニール処理工程を省略することも可能である。
 また、アニール処理工程の効果を最大限に引き出すには、基板温度が高い方が好ましいと考えられるが、非晶質シリコン層を積層した後に実施するアニール処理工程における加熱は、非晶質シリコン層への影響を考慮して200℃を超える温度で行うことができない。そのため、非晶質シリコン層を製膜する前、すなわち、構造的に安定な結晶質のみの状態で熱を加える処理を終わらせてしまうことが好ましい。
 次に、上記(PH暴露処理条件)と同様に、暴露時間を変化させ、それぞれ太陽電池を作製し、アニール処理工程前後における太陽電池の発電特性を評価した。PH暴露処理工程の基板温度を150℃として、発電特性を評価した結果を表3及び表4に示す。表3はアニール処理工程前、表4はアニール処理工程後の太陽電池の発電特性である。表3及び表4では、暴露時間5分とした太陽電池の発電特性を基準(1.0)として表示する。
 表4は先述の表2と同一であるが、アニール処理工程の有無を比較し易いよう再度記載してある。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3によれば、アニール処理をしなかった太陽電池では、暴露時間0.5分とした太陽電池の発電特性が低かった。真空チャンバ内へガスを導入すると、ヒータからの熱伝導が増加し、基板温度を上昇させる効果があると推測されるが、暴露時間0.5分では上記効果を十分に得られなかったと考えられる。一方、表4によれば、アニール処理をした太陽電池では、暴露時間を変化させても発電特性にほとんど差が見られなかった。このことから、アニール処理工程を備える場合、基板をPHに暴露させる時間は適宜設定可能であることが確認された。
 次に、上記(PH暴露処理条件)と同様に、PHガス導入時の圧力を変化させ、それぞれ太陽電池を作製し、アニール処理工程前後における太陽電池の発電特性を評価した。
 アニール処理をしなかった太陽電池の発電特性は、圧力133Paで最良、1.33Paで最低となった。これは、圧力が高い方が基板温度を高温にできるためと考えられる。一方、アニール処理をした太陽電池では、圧力を変化させても発電特性にほとんど差が見られなかった。このことから、アニール処理工程を備える場合、基板をPHガス導入時の圧力は適宜設定可能であることが確認された。
 上記結果によれば、PH暴露処理時の基板温度を上昇させる観点から、PH暴露処理時の暴露時間及び圧力は、長時間及び熱伝導の高くなる高圧力で処理することが好ましい。
(PH暴露処理時の基板再加熱)
 PH暴露処理工程が異なる以外は、第1実施形態に従って以下の構成の太陽電池を作製した。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚40nm
   p型単結晶Ge:平均膜厚175μm
   裏面電極層:Al膜/平均膜厚200nm
基板再加熱:
 酸化膜除去工程後に、一度200℃以下まで冷却した基板を、赤外線ヒータを用いて再加熱し所定温度(250℃程度)とした。その後、基板をプラズマCVD装置のn層製膜室内に配置した。
 次に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で真空チャンバ内に導入するとともに、シーズヒータ温度を200℃に設定し、基板を5分間PHガスに暴露させた。
 次に、基板をi層製膜室内に移動させ、原料ガス:SiHガス/Hガス(0.15sccm/cm/0.45sccm/cm)、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃でi型非晶質シリコン層を製膜した。
 次に、基板をn層製膜室内に移動させ、原料ガス:SiHガス、Hガス及びPHガス、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃で製膜した。
基板非再加熱:
 酸化膜除去後に一度200℃以下まで冷却した基板を、再加熱せずにプラズマCVD装置のn層製膜室内に配置し、以降、基板を再加熱した太陽電池と同様に太陽電池を作製した。
 基板再加熱及び基板非再加熱によって作製した太陽電池について、発電特性を評価した。結果を図12に示す。同図において、横軸は電圧量、縦軸は電流量である。
 図12によれば、PH暴露時の熱源(シーズヒータ)の温度は共に200℃であるが、基板を所定温度に再加熱した後にPHに暴露させた太陽電池は、再加熱しなかった太陽電池と比較して発電特性が向上した。
 一方は250℃程度までGe基板を再加熱した後にPHに暴露処理を行った結果、特性が向上していることから、処理前のプロセスでの高い温度を利用することが有効である。すなわち、表面酸化膜除去直後のGe基板は高温であるため、基板温度が低下してしまう前にPH暴露処理を行うことにより、プロセス時間の短縮が可能になる。
(p型単結晶Geの厚さ)
 p型単結晶Geの板厚を変えた以外は、第1実施形態に従って以下の構成の太陽電池を作製した。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚40nm
   p型単結晶Ge:平均膜厚500μmまたは175μm
   裏面電極層:Al膜/平均膜厚200nm
 上記で作製した太陽電池について、発電特性を評価した。結果を図13に示す。同図において、同図において、横軸は電圧量、縦軸は電流量である。
 図13によれば、p型単結晶Geを薄くしたことで、開放電圧が53%向上した。上記結果から、PH暴露処理によってp型単結晶Ge表面での再結合速度が低下していると推測され、更なる薄板化により開放電圧の向上が期待できる。光吸収との兼ね合いを考慮すると、p型単結晶Ge中を通過する距離が5μm程度あれば、Geの吸収係数が高い1500nm程度までの光を十分に吸収することが可能である。「p型単結晶Ge中を通過する距離」とは、p型単結晶Geの厚さとは異なる。そのため、裏面反射や散乱を考慮することで、p型単結晶Geの厚さは実質的に1.5μm程度まで薄くすることが可能である。また、p型単結晶Geの厚さを200μmまで増加させると1600nm程度までの光を十分に吸収することが可能である。一方、p型単結晶Geの厚さを200μmより厚くすると、バンド端付近までの波長の光を吸収することが可能となるので、基板のハンドリング処理の強度を確保しつつ板厚方向の温度差を抑制できる実用的な厚さとして、500μm以下とすることが好ましい。しかしながら、実用的な光電変換装置に用いる0.5Ωcm程度以下の抵抗率の基板では、バンド端付近の波長領域にフリーキャリア吸収が存在するため、バンド端付近の波長の光を吸収したとしても劇的な電流密度の増加を見込めないことから、基板厚さを必要以上に厚くしないために200μm以下がより好ましい。このことから、p型単結晶Geの厚さを1.5μm以上500μm以下、より好ましくは200μm以下とすると、電流及び電圧のバランスが良く好適である。
 上記結果によれば、p型単結晶Geの薄板化は、直列抵抗低減による曲線因子の向上よりも、開放電圧を向上させる効果が大きい。
<第2実施形態>
 本実施形態に係る光電変換装置の製造方法は、電子線照射工程を備える以外は、第1実施形態と同様の工程から構成される。
(電子線照射工程)
 PH暴露処理工程の前または後の少なくともいずれかのタイミングで、基板表面に電子線を照射する。電子線照射条件は適宜設定される。電子線照射は、例えば、オージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて、表面分析を行う測定系(加速電圧:2kV、電子電流:50μA)と同様な手法を用いることにより行われる。
 なお、電子線照射工程を備える場合、PH暴露処理工程におけるPH暴露時の基板温度は、低温(例えば、100℃)とすると良い。また、電子線照射条件及びPH暴露条件に応じて、アニール処理工程を省略することができる。
 第2実施形態に従って、以下の構成の太陽電池を作製した。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚40nm
   p型単結晶Ge:平均膜厚500μm
   裏面電極層:Al膜/平均膜厚200nm
 p型単結晶Geは、配向:Ge(100)、抵抗値:0.028Ωcm~3.2Ωcm、キャリア密度7.1×1014/cm~2.6×1017/cmのものを使用した。
条件8:(電子線照射+PH暴露処理)
 酸化膜を除去した後、基板を200℃以下まで冷却し、AES装置の真空チャンバ内に配置した。基板は、表面に加速電圧:2kV、電子電流:50μAで電子線を照射した後、プラズマCVD装置のn層製膜室内に移動させた。次に、n層製膜室内に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入した。基板温度が約150℃となるようシーズヒータ温度を設定し、5分間PH暴露処理を行った。その後、基板をプラズマCVD装置のi層製膜室に移動させ、原料ガス:SiHガス/Hガス(0.15sccm/cm/0.45sccm/cm)、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃でi型非晶質シリコン層を製膜した。次に、基板をn層製膜室に移し、原料ガス:SiHガス、Hガス及びPHガス、減圧雰囲気:0.1Torr(13.3Pa)、基板温度:約150℃でn型非晶質シリコン層を製膜した。
条件9:(PH暴露処理+電子線照射)
 酸化膜を除去した後、基板を200℃以下まで冷却し、プラズマCVD装置のn層製膜室内に配置した。n層製膜室内に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入した。基板温度が約150℃となるようシーズヒータ温度を設定し、5分間PH暴露処理を行った。次に、基板をAES装置の真空チャンバ内に移動させた。基板は、表面に加速電圧:2kV、電子電流:50μAで電子線を照射した後、プラズマCVD装置のi層製膜室内に移動させ、以降、条件8と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
条件10:(電子線照射+PH暴露処理+電子線照射)
 酸化膜を除去した後、基板を200℃以下まで冷却し、AES装置の真空チャンバ内に配置した。基板は、表面に加速電圧:2kV、電子電流:50μAで電子線を照射した後、プラズマCVD装置のn層製膜室内に移動させた。次に、n層製膜室内に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入した。基板温度が約150℃となるようシーズヒータ温度を設定し、5分間PH暴露処理を行った。次に、基板をAES装置の真空チャンバ内に移動させた。基板表面に加速電圧:2kV、電子電流:50μAで電子線を照射した後、プラズマCVD装置のi層製膜室内に移動させ、以降、条件8と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
条件11:(PH暴露処理)
 電子線照射をしない以外は、条件9と同様の工程でPH暴露処理、i型非晶質シリコン層及びn型非晶質シリコン層の製膜を行った。
条件12:(電子線照射)
 PH暴露処理をしない以外は、条件8と同様の工程で電子線照射、i型非晶質シリコン層及びn型非晶質シリコン層の製膜を行った。
条件13:(PH暴露処理なし+電子線照射なし)
 酸化膜を除去した後、基板を200℃以下まで冷却し、プラズマCVD装置のi層製膜室内に配置させ、条件8と同様にi型非晶質シリコン層及びn型非晶質シリコン層を製膜した。
 上記条件8~条件13の太陽電池について、発電特性を評価した。
 図14に、条件10及び条件11の太陽電池の発電特性を示す。同図において、横軸は電圧量、縦軸は電流量である。図14によれば、PH暴露処理の前に電子線を照射した太陽電池(条件10)は、電子線を照射しなかった太陽電池(条件11)よりも発電特性が向上した。これは、電子線からのエネルギーにより、PH暴露時の基板温度を高めることと同様の効果が得られたものと推察される。
 表5に、条件8~条件13の発電特性を示す。表5では、条件13の太陽電池の発電特性を基準(1.0)として表示する。
Figure JPOXMLDOC01-appb-T000005
 表5によれば、電子線照射の単独処理(条件12)では、条件13以下の発電特性となった。一方、PH暴露処理と電子線照射を合わせた場合(条件8、条件9、条件10)、処理を行う順序によって多少効果の差はあるが、いずれの条件においても発電特性を向上させた。詳細には、電子線照射を1回だけ行う場合に起電力が21%~25%、短絡電流が8%~11%増加した。特に、条件10(電子線照射+PH暴露処理+電子線照射)の太陽電池のセル特性が最も向上し、起電力が48%、短絡電流が9%増加した。
 なお、電子線照射を行った場合、アニール処理を行うことによる発電特性の改善幅が小さかった。これは、電子線を照射しなかった場合に、基板温度を高くしてPH暴露処理した時と同じ傾向であった。
(基板温度依存性)
 条件8をベースとして、PH暴露処理時の基板温度を100℃、150℃、220℃と変えて、それぞれ太陽電池を作製した。
 上記で作製した太陽電池について発電特性を評価した。結果を図15に示す。同図において、横軸は電圧量、縦軸は電流量である。図15によれば、基板温度が高温であるほど発電特性は低くなった。これは、電子線照射を行った場合、基板温度の上昇や界面反応促進効果が期待されるため、基板温度を高くすることで、反応が過剰になってしまったと推測される。
 上記結果から、電子線照射処理工程を備える場合、PH暴露処理時の基板温度は100℃程度の低温とすることが好適といえる。
 従って、PH暴露処理と電子線照射を合わせたことにより、発電特性を向上させることが可能であり、PH暴露処理時の基板温度を高くすることと類似の効果があることが判明し、処理工程の都合で基板温度を高くすることが出来ない場合には、有効な手段である。
<第3実施形態>
 図16は、本実施形態に係る光電変換装置の一例を示す概略図である。光電変換装置200は、ヘテロ接合構造を基板の両面に備えた太陽電池であり、ヘテロ接合セル層1、裏面へテロ接合層6、透明電極層2、グリッド電極3及び裏面電極層4を備える。
 裏面へテロ接合層6は、p型非晶質シリコン層21を備え、基板11と裏面電極層4との間に設けられる。p型非晶質シリコン層は、Bドープされた非晶質シリコンを主とし、膜厚4nm以上30nm以下とされる。
 基板11とp型非晶質シリコン層21との間には、i型非晶質シリコン層22が配置されることが好ましい。i型非晶質シリコン層22は、非晶質シリコンを主とし、膜厚4nm以上20nm以下とされる。
 p型非晶質シリコン層21と裏面電極層4との間には、透明導電層23が配置されることが好ましい。透明導電層23は、酸化インジウム錫(ITO)、酸化錫(SnO)や酸化亜鉛(ZnO)などの金属酸化物を主成分とする膜とされる。透明導電層23の厚さは、50nm以上150nm以下とされる。
 本実施形態に係る光電変換装置の製造方法は、ヘテロ接合セル作製工程と電極形成工程との間に、ヘテロ接合構造を形成する裏面ヘテロ接合層形成工程を備え、アニール処理を行わない以外は、第1実施形態と同様の工程から構成される。
(裏面ヘテロ接合層形成工程)
 ヘテロ接合セル作製工程の後、基板11をプラズマCVD装置のi型非晶質シリコン層の製膜室(i層製膜室)内に配置する。このとき、基板11を裏返す。基板11のi型非晶質シリコン層12が製膜された側と逆の基板面上(裏面側)に、原料ガス:SiHガス及びHガス、減圧雰囲気:1Pa以上1000Pa以下、基板温度:約150℃でi型非晶質シリコン層22を製膜する。
 次に、基板11をp型非晶質シリコン層の製膜室(p層製膜室)内に移動させ、i型非晶質シリコン層22の上に、原料ガス:SiHガス、Hガス及びBガス、減圧雰囲気:1Pa以上1000Pa以下、基板温度:約150℃でp型非晶質シリコン層21を製膜する。
 次に、基板11をスパッタリング装置内に配置し、p型非晶質シリコン層21の上に、高周波(RF)スパッタリング法にて透明導電層23を形成する。スパッタリング条件は、ターゲット:ITO焼結体、雰囲気ガス:Ar、到達圧力:10-4Pa~10-5Pa、高周波電力:2W/cm~3W/cmとされる。
 第3実施形態に従って、以下の構成の太陽電池(両面ヘテロ接合)を作製した。
   グリッド電極:Ag膜、平均膜厚200nm
   透明電極層:ITO膜、平均膜厚70nm
   n型非晶質シリコン層:平均膜厚7nm
   i型非晶質シリコン層:平均膜厚40nm
   p型単結晶Ge:平均膜厚175μm
   i型非晶質シリコン層(裏面側):平均膜厚0nm(裏面側なし)
   p型非晶質シリコン層(裏面側):平均膜厚15nm
   透明導電層:ITO膜、平均膜厚70nm
   裏面電極層:Al膜/平均膜厚200nm
 また、比較対照として、裏面ヘテロ接合層を設けない構成の太陽電池(片面ヘテロ接合)を作製した。
 p型単結晶Geは、配向:Ge(100)、抵抗値:3.2Ωcm、キャリア密度7.1×1014/cm~2.6×1017/cmのものを使用した。
 PH暴露処理工程は、以下のように実施した。
 基板を200℃以下まで冷却した後、i層製膜室内に配置した。真空チャンバ内に、Hガスで希釈した0.6%PHガスを0.3sccm/cm、0.1Torr(13.3Pa)で導入した。基板温度が約150℃となるようシーズヒータ温度を設定し、5分間PH暴露処理を行った。
 上記で作製した太陽電池について、発電特性を評価した。結果を図17に示す。同図において、横軸は電圧量、縦軸は電流量である。図17によれば、裏面へテロ接合層を備えた太陽電池(両面ヘテロ接合)は、ヘテロ接合セル層のみを備える太陽電池(片面ヘテロ接合)よりも短絡電流および開放電圧が向上した。これは、裏面へテロ接合層を設けることで、裏面での再結合が低減されたことによる効果と考えられる。上記結果から、p型単結晶Geの両面にヘテロ構造を設けることで、短絡電流及び開放電圧を向上できることがわかった。
 なお、上記で作製した太陽電池は、直列抵抗の増加により曲線因子(FF)の向上が少ない状況にあるが、接続抵抗の改善により更に性能向上が期待できる。
1 ヘテロ接合セル層
2 透明電極層
3 グリッド電極
4 裏面電極層
5 酸化膜
6 裏面ヘテロ接合層
11 基板(p型単結晶Ge)
12 i型非晶質シリコン半導体層
13 n型非晶質シリコン半導体層
100 光電変換装置

Claims (7)

  1.  p型結晶Geを基板とし、該基板上に、i型非晶質シリコン半導体層とn型非晶質シリコン半導体層とが順に積層されたヘテロ接合セルを備えた光電変換装置の製造方法であって、
     表面に形成された酸化膜を除去した前記基板を所定温度とした後に、真空チャンバ内に配置してPHガスに暴露させるPH暴露処理工程と、
     前記PH暴露した基板上に、i型非晶質シリコン半導体層を製膜するi層製膜工程と、
     前記i型非晶質シリコン半導体層上に、n型非晶質シリコン半導体層を製膜するn層製膜工程と、
     前記n型非晶質シリコン半導体層上、及び、前記基板の前記i型非晶質シリコン半導体層が製膜された側と反対の面に、電極を形成する電極形成工程と、
    を備える光電変換装置の製造方法。
  2.  前記PH暴露処理工程において、前記基板の前記所定温度を150℃以上とする請求項1に記載の光電変換装置の製造方法。
  3.  前記電極形成工程後に、熱を加えてアニール処理するアニール処理工程を備える請求項1または請求項2に記載の光電変換装置の製造方法。
  4.  前記PH暴露処理工程の前、または前記PH暴露処理工程の後の少なくとも一方に、前記基板に電子線を照射する電子線照射工程を備える請求項1乃至請求項3に記載の光電変換装置の製造方法。
  5.  前記基板として、厚さ1.5μm以上500μm以下のp型結晶Geを用いる請求項1乃至請求項4に記載の光電変換装置の製造方法。
  6.  前記電極形成工程の前に、前記基板の前記i型非晶質シリコン半導体層が製膜された側と反対の面に、p型非晶質シリコン半導体層を形成する裏面側へテロ構造形成工程を備える請求項1乃至請求項5に記載の光電変換装置の製造方法。
  7.  請求項1乃至請求項6のいずれかに記載の方法で製造した光電変換装置。
PCT/JP2011/072262 2010-10-06 2011-09-28 光電変換装置の製造方法 WO2012046606A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/808,738 US9012256B2 (en) 2010-10-06 2011-09-28 Process for producing photovoltaic device
CN2011800357545A CN103026508A (zh) 2010-10-06 2011-09-28 光电转换装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226840A JP5622231B2 (ja) 2010-10-06 2010-10-06 光電変換装置の製造方法
JP2010-226840 2010-10-06

Publications (1)

Publication Number Publication Date
WO2012046606A1 true WO2012046606A1 (ja) 2012-04-12

Family

ID=45927601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072262 WO2012046606A1 (ja) 2010-10-06 2011-09-28 光電変換装置の製造方法

Country Status (5)

Country Link
US (1) US9012256B2 (ja)
JP (1) JP5622231B2 (ja)
CN (1) CN103026508A (ja)
TW (1) TWI481055B (ja)
WO (1) WO2012046606A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847449B (zh) * 2018-06-21 2021-11-02 江苏日御光伏新材料科技有限公司 一种新型异质结光伏电池及其制备方法
TWI751681B (zh) * 2020-09-04 2022-01-01 凌巨科技股份有限公司 薄膜太陽能電池的對位標記及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168759A (ja) * 1990-11-01 1992-06-16 Fujitsu Ltd 半導体装置及びリードフレームとその製造方法
WO1998043304A1 (fr) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Element photovoltaique et procede de fabrication dudit element
JP2011181852A (ja) * 2010-03-03 2011-09-15 Kaneka Corp 薄膜光電変換装置と薄膜光電変換装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226897A (en) * 1977-12-05 1980-10-07 Plasma Physics Corporation Method of forming semiconducting materials and barriers
DE3280026D1 (en) * 1981-05-29 1989-12-21 Kanegafuchi Chemical Ind Process for preparing amorphous silicon semiconductor
US4910167A (en) 1987-11-13 1990-03-20 Kopin Corporation III-V Semiconductor growth initiation on silicon using TMG and TEG
JP2829653B2 (ja) * 1989-01-21 1998-11-25 キヤノン株式会社 光起電力素子
JP2719230B2 (ja) * 1990-11-22 1998-02-25 キヤノン株式会社 光起電力素子
JP2771921B2 (ja) 1992-02-19 1998-07-02 三洋電機株式会社 光起電力装置
JP3926800B2 (ja) 2002-04-09 2007-06-06 株式会社カネカ タンデム型薄膜光電変換装置の製造方法
JP5572307B2 (ja) * 2007-12-28 2014-08-13 株式会社半導体エネルギー研究所 光電変換装置の製造方法
US8309446B2 (en) * 2008-07-16 2012-11-13 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a doping layer mask
CN101834221B (zh) * 2009-03-13 2012-08-22 北京北方微电子基地设备工艺研究中心有限责任公司 薄膜太阳能电池吸收层的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168759A (ja) * 1990-11-01 1992-06-16 Fujitsu Ltd 半導体装置及びリードフレームとその製造方法
WO1998043304A1 (fr) * 1997-03-21 1998-10-01 Sanyo Electric Co., Ltd. Element photovoltaique et procede de fabrication dudit element
JP2011181852A (ja) * 2010-03-03 2011-09-15 Kaneka Corp 薄膜光電変換装置と薄膜光電変換装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDENORI MIMURA: "Study on the Properties of Hydrogenated Amorphous Silicon-Single Crystaline Silicon Heterojunctions", NATIONAL UNIVERSITY CORPORATION SHIZUOKA UNIVERSITY HAKUSHI RONBUN, 20 March 1987 (1987-03-20), pages 128 - 133 *
YOSHINORI HATANAKA: "Heterostructures with hydrogenated amorphous silicon for use in imaging devices", APPLIED SURFACE SCIENCE, vol. 48-49, 1991, pages 457 - 463, XP024656261 *

Also Published As

Publication number Publication date
TW201244143A (en) 2012-11-01
US20130109130A1 (en) 2013-05-02
TWI481055B (zh) 2015-04-11
US9012256B2 (en) 2015-04-21
JP5622231B2 (ja) 2014-11-12
CN103026508A (zh) 2013-04-03
JP2012084559A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5456168B2 (ja) 光電変換装置の製造方法
Gall et al. Polycrystalline silicon thin-film solar cells on glass
JP3926800B2 (ja) タンデム型薄膜光電変換装置の製造方法
TWI474494B (zh) 多晶矽發射極太陽能電池所用的圖案化摻雜
EP2077584A2 (en) Passivation layer structure of solar cell and fabricating method thereof
JP5490231B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
JP2004014958A (ja) 薄膜多結晶太陽電池とその製造方法
JP2010239139A (ja) 光起電力装置
JP5058184B2 (ja) 光起電力装置の製造方法
JP2005197608A (ja) 光電変換装置
Onyegam et al. Exfoliated, thin, flexible germanium heterojunction solar cell with record FF= 58.1%
Zhang et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy
JP2009038064A (ja) 光電変換装置及びその製造方法
JP6990764B2 (ja) 太陽電池およびその製造方法
JP5622231B2 (ja) 光電変換装置の製造方法
JP5623131B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
JP4215697B2 (ja) 光電変換装置およびその製造方法
Li et al. Application of room temperature sputtered Al-doped zinc oxide in silicon heterojunction solar cells
EP4162534A1 (en) Methodology for efficient hole transport layer using transition metal oxides
Montgomery et al. Development of ZnO-InP heterojunction solar cells for thin film photovoltaics
JP5770294B2 (ja) 光電変換装置およびその製造方法
JP5975841B2 (ja) 光起電力素子の製造方法及び光起電力素子
JP5980059B2 (ja) 太陽電池
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
JP2013074038A (ja) 光電変換装置の製造方法及び光電変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035754.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808738

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830539

Country of ref document: EP

Kind code of ref document: A1