WO2012043829A1 - ゴム組成物及びその製造方法、並びにタイヤ - Google Patents

ゴム組成物及びその製造方法、並びにタイヤ Download PDF

Info

Publication number
WO2012043829A1
WO2012043829A1 PCT/JP2011/072661 JP2011072661W WO2012043829A1 WO 2012043829 A1 WO2012043829 A1 WO 2012043829A1 JP 2011072661 W JP2011072661 W JP 2011072661W WO 2012043829 A1 WO2012043829 A1 WO 2012043829A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polybutadiene
rubber composition
composition according
group
Prior art date
Application number
PCT/JP2011/072661
Other languages
English (en)
French (fr)
Inventor
純子 松下
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010224353A external-priority patent/JP5676197B2/ja
Priority claimed from JP2010224354A external-priority patent/JP5676198B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201180052638.4A priority Critical patent/CN103189443B/zh
Priority to RU2013114472/05A priority patent/RU2574448C2/ru
Priority to EP11829382.8A priority patent/EP2623559B1/en
Priority to US13/877,071 priority patent/US9862815B2/en
Priority to BR112013007299A priority patent/BR112013007299B1/pt
Publication of WO2012043829A1 publication Critical patent/WO2012043829A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition, a method for producing the same, and a tire using the rubber composition. More specifically, the present invention is applied to a predetermined part of an automobile tire to improve the fuel efficiency of the tire and is sufficient for the tire.
  • the present invention relates to a rubber composition capable of imparting excellent wear resistance and fracture characteristics and capable of imparting good grip performance, a method for producing the same, and a tire using the rubber composition.
  • the present invention has been made in view of such circumstances, and a rubber composition that is excellent in fracture resistance without reducing durability such as wear resistance of a tire and that can achieve good workability, and
  • An object of the present invention is to provide a manufacturing method thereof and a tire using the same.
  • the inventors of the present invention achieved a blending system of polybutadiene and a rubber incompatible with the polybutadiene by increasing the specific viscosity of the polybutadiene to the same or higher level.
  • the present invention [1] A polybutadiene, a rubber component containing a diene rubber or an olefin rubber that is incompatible with the polybutadiene, and a filler, and the Mooney viscosity (ML 1 + 4/100 ° C.) of the polybutadiene is ML ( I) When the Mooney viscosity (ML 1 + 4/100 ° C.) of the diene rubber or olefin rubber that is incompatible with the polybutadiene is ML (II), the relationship of ML (I) ⁇ ML (II) A rubber composition, [2] The rubber composition according to [1], wherein the polybutadiene has a high molecular weight by a coupling treatment.
  • the content ratio (A / B) of the content A of polybutadiene in the rubber component and the content B of diene rubber or olefin rubber incompatible with the polybutadiene is 40/60 to 60 / 40, the rubber composition according to any one of [1] to [3], [5] The rubber composition according to any one of [1] to [4], wherein the polybutadiene is a modified polybutadiene, [6] The rubber composition according to any one of [1] to [5], wherein a content of the filler is 30 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • Mooney viscosity ML 1 + 4/100 ° C.
  • a rubber composition that is excellent in fracture resistance and does not deteriorate durability such as wear resistance of a tire, and that can achieve good workability, a manufacturing method thereof, and the A tire using can be provided. Furthermore, by using a modified polybutadiene as the polybutadiene, the rubber composition is excellent in fracture resistance without lowering the durability such as wear resistance of the tire, and can also reduce the rolling resistance of the tire. And a manufacturing method thereof, and a tire using the same.
  • the rubber composition of the present embodiment includes polybutadiene, a rubber component containing a diene rubber or olefin rubber that is incompatible with the polybutadiene, and a filler, and has a Mooney viscosity (ML 1 + 4 / 100 (° C.) is ML (I), and the Mooney viscosity (ML 1 + 4/100 ° C.) of the diene rubber or olefin rubber that is incompatible with the polybutadiene is ML (II), ML (I) ⁇ It has the relationship of ML (II).
  • the rubber composition of this embodiment preferably uses modified polybutadiene as the polybutadiene.
  • the modified polybutadiene is a product in which various functional groups are introduced into the active terminal or the like by reacting a predetermined modifier with the active terminal or the like of the polybutadiene having an active terminal or the like. This means that various functional groups have been introduced.
  • the active terminal and the like include both the active terminal and the main chain, and the main chain includes both the main chain and the side chain in the main chain.
  • the amount of bound rubber of the polybutadiene can be increased after kneading. It was possible to achieve both good workability and compatibility. That is, by increasing the kneading efficiency of the polybutadiene portion, the amount of bound rubber in the polybutadiene portion is increased, and the wear resistance is greatly improved.
  • diene rubber which is incompatible with polybutadiene, can improve workability by reducing Mooney viscosity relative to polybutadiene, and can greatly affect the overall characteristics by improving the reinforcement of the polybutadiene part. There is no. For this reason, the present embodiment achieves both wear resistance and fracture resistance.
  • the polybutadiene has a higher viscosity and is more likely to be subjected to torque, and the bound rubber of the polybutadiene increases. it is conceivable that.
  • the polybutadiene used in this embodiment preferably has a 1,2-vinyl bond content of 20% or less, and more preferably 5% or less.
  • the 1,2-vinyl bond amount is 20% or less, the glass transition temperature is low, the impact resilience, the wear resistance, and the low temperature characteristics are excellent, and the low heat buildup (low hysteresis loss characteristics) of the tire is improved. .
  • the modified polybutadiene suitably used in the present embodiment is one in which a functional group is introduced into the active terminal of the polybutadiene, and the modified polybutadiene is at least one selected from carbon black and an inorganic filler. It is preferably modified with a functional group having an affinity for. Here, having affinity with a filler means that it can be physically or chemically bonded to the filler.
  • the functional group is more preferably a functional group selected from the group consisting of a functional group containing nitrogen, a functional group containing silicon, a functional group containing oxygen or sulfur, and a functional group containing a metal.
  • the modified polybutadiene can have its functional group at the terminal or main chain.
  • the functional group containing nitrogen is preferably a substituted or unsubstituted amino group, amide residue, isocyanate group, imidazolyl group, indolyl group, nitrile group, biridyl group, and ketimine group.
  • substituted or unsubstituted amino group include primary alkylamines, secondary alkylamines, cyclic amines, and amino groups derived from substituted or unsubstituted imines.
  • the functional group containing silicon is preferably an organic silyl group or a siloxy group, and more specifically, an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group.
  • the functional group containing oxygen or sulfur a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a functional group derived from cyclic dithiane, an ester group, an aldehyde group, an alkoxy group, a ketone group
  • Examples include a functional group selected from the group consisting of a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group.
  • the alkoxy group may be an alcohol-derived alkoxy group derived from benzophenone.
  • the production method for obtaining the polybutadiene in the present embodiment is not particularly limited, and any of a solution polymerization method, a gas phase polymerization method, and a bulk polymerization method can be used, but a solution polymerization method is particularly preferable. Moreover, any of a batch type and a continuous type may be sufficient as the superposition
  • a modifying agent during or after the polymerization reaction of polybutadiene, modified polybutadiene having various functional groups introduced at the active terminal or the like can be obtained.
  • an organic alkali metal compound is preferably used as a polymerization initiator, and a lithium compound is more preferably used.
  • the lithium compound examples include hydrocarbyl lithium and lithium amide compounds.
  • hydrocarbyl lithium is used as the polymerization initiator, a modified polymer having a hydrocarbyl group at the polymerization initiation terminal and the other terminal being a polymerization active site is obtained.
  • a lithium amide compound is used as a polymerization initiator, a modified polymer having a nitrogen-containing functional group at the polymerization initiation terminal and a polymerization active site at the other terminal is obtained, and the polymer is modified with the modification agent. Without modification, it can be used as a modified conjugated diene polymer in the present invention.
  • the amount of lithium compound used as a polymerization initiator is preferably in the range of 0.2 to 20 mmol per 100 g of monomer.
  • hydrocarbyl lithium examples include ethyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-octyl lithium, tert-butyl lithium and the like.
  • a reaction in which polymerization is performed with a polymerization catalyst containing a rare earth element compound, particularly a lanthanum series rare earth element, in an organic solvent is preferable.
  • the anionic polymerization may be performed in the presence of a randomizer.
  • the randomizer can control the microstructure of polybutadiene, for example, can control the 1,2-vinyl bond content of polybutadiene units in a polymer using butadiene as a monomer.
  • the anionic polymerization may be performed by any of solution polymerization, gas phase polymerization, and bulk polymerization. Further, the polymerization mode is not particularly limited, and may be batch type or continuous type.
  • the polymerization temperature for the anionic polymerization is preferably in the range of 0 to 150 ° C, more preferably in the range of 20 to 130 ° C.
  • the polymerization can be carried out under a generated pressure, but it is usually preferred to carry out under a pressure sufficient to keep the monomer used in a substantially liquid phase.
  • the component (A) used for the coordination polymerization is selected from a rare earth metal compound, a complex compound of a rare earth metal compound and a Lewis base, and the like.
  • rare earth metal compounds include rare earth element carboxylates, alkoxides, ⁇ -diketone complexes, phosphates and phosphites
  • Lewis bases include acetylacetone, tetrahydrofuran, pyridine, N, N -Dimethylformamide, thiophene, diphenyl ether, triethylamine, organophosphorus compounds, monovalent or divalent alcohols, etc.
  • An example of the rare earth element of the rare earth metal compound is neodymium.
  • component (A) specifically, neodymium tri-2-ethylhexanoate, a complex compound thereof with acetylacetone, neodymium trineodecanoate, a complex compound thereof with acetylacetone, neodymium neodecanoate, neodymium triate Examples thereof include n-butoxide.
  • These (A) components may be used individually by 1 type, or 2 or more types may be mixed and used for them.
  • the component (B) used for the coordination polymerization is selected from organoaluminum compounds.
  • organoaluminum compound a trihydrocarbyl aluminum compound represented by the formula: R 3 Al, a hydrocarbyl aluminum hydride represented by the formula: R 2 AlH or RAlH 2 (wherein R is independently And hydrocarbylaluminoxane compounds having a hydrocarbon group having 1 to 30 carbon atoms.
  • the organoaluminum compound include trialkylaluminum, dialkylaluminum hydride, alkylaluminum dihydride, alkylaluminoxane (for example, methylaluminoxane), and the like. These compounds may be used alone or in combination of two or more.
  • (B) component it is preferable to use aluminoxane and another organoaluminum compound together.
  • the component (C) used in the coordination polymerization is a compound having a hydrolyzable halogen or a complex compound of these with a Lewis base, an organic halide having a tertiary alkyl halide, benzyl halide or allyl halide, a non-coordinating anion And an ionic compound comprising a counter cation.
  • Specific examples of the component (C) include alkylaluminum dichloride, dialkylaluminum chloride, silicon tetrachloride, tin tetrachloride, complexes of zinc chloride with Lewis bases such as alcohol, magnesium chloride and Lewis such as alcohol.
  • Examples thereof include complexes with bases, benzyl chloride, t-butyl chloride, benzyl bromide, t-butyl bromide, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like.
  • These components (C) may be used alone or in combination of two or more.
  • the polymerization initiator is preliminarily used, if necessary, using the same conjugated diene compound and / or non-conjugated diene compound as the polymerization monomer. May be prepared. Further, part or all of the component (A) or the component (C) may be supported on an inert solid and used. The amount of each component used can be set as appropriate, but the component (A) is usually 0.001 to 0.5 mmol per 100 g of monomer. Also, the molar ratio (B) component / (A) component is preferably 5 to 1000, and (C) component / (A) component is preferably 0.5 to 10.
  • the polymerization temperature in the coordination polymerization is preferably in the range of ⁇ 80 to 150 ° C., more preferably in the range of ⁇ 20 to 120 ° C.
  • a hydrocarbon solvent inert to the reaction exemplified in the above-mentioned anionic polymerization can be used, and the concentration of the monomer in the reaction solution is the same as in the case of anionic polymerization.
  • the reaction pressure in the coordination polymerization is the same as that in the case of anionic polymerization, and it is desirable that the raw material used for the reaction substantially removes reaction inhibitors such as water, oxygen, carbon dioxide, and protic compounds.
  • a method for producing the modified polybutadiene in the present embodiment a method of modifying the active terminal of the polybutadiene having an active terminal produced as described above with a modifying agent, and a polymerization containing a modifying group such as a lithium amide compound as described above is started.
  • a method of modifying the polymerization initiation end using an agent, a method of multi-stage modification in which the active end of polybutadiene is modified with a modifier (first-stage modification), and then the modifying group and the modifier are further reacted. Examples thereof include a method of grafting a modifier in a chain or a side chain and a method of copolymerizing with a functional group-containing monomer at the time of polymerization of polybutadiene.
  • the modifier when modifying the active terminal of the polybutadiene having an active terminal produced as described above with a modifier, the modifier may be a nitrogen-containing compound, a silicon-containing compound, an oxygen or sulfur-containing compound. Tin-containing compounds can be used.
  • the denaturing agents described in International Publication No. 2006/112450, International Publication No. 2007/040252 and JP-A-2009-242788 can be used in the same manner. More specifically, for example, azacyclopropane group, ketone group, carboxyl group, thiocarboxyl group, carbonate, carboxylic acid anhydride, carboxylic acid metal salt, acid halide, urea group described in International Publication No.
  • an alkoxysilane compound containing at least one functional group selected from (a): an epoxy group, (b): an isocyanate group, and (c): a carboxyl group described in International Publication No. 2007/040252 is used. You can also. Specific examples include epoxy group-containing alkoxysilane compounds such as 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, (2-glycidoxyethyl) methyldimethoxysilane, 3-glycidoxy.
  • Examples of the isocyanate group-containing alkoxysilane compound include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatepropylmethyldiethoxysilane, and 3-isocyanatepropyltriisopropoxysilane.
  • the carboxyl group-containing alkoxysilane compounds include 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriisosilane. And propoxysilane.
  • one hydrocarbyloxy group and one reactive group described in JP-A-2009-242788 are directly bonded to a silicon atom, and one protected primary amino group is an alkylene group. You may use the compound containing the bifunctional silicon atom couple
  • the modification reaction with the modifying agent is preferably performed by a solution reaction, and the solution may contain a monomer used at the time of polymerization.
  • the reaction mode of the modification reaction is not particularly limited, and may be a batch type or a continuous type.
  • the reaction temperature of the modification reaction is not particularly limited as long as the reaction proceeds, and the reaction temperature of the polymerization reaction may be employed as it is.
  • the amount of modifier used is preferably in the range of 0.25 to 3.0 mol, and more preferably in the range of 0.5 to 1.5 mol, with respect to 1 mol of the polymerization initiator used for the production of polybutadiene.
  • the polybutadiene in the present embodiment is preferably a polymer having a high molecular weight by a coupling treatment during the synthesis described above, from the viewpoint of cold flow suppression.
  • the coupling treatment is preferably performed by a method such as terminal modification using a polyfunctional reagent.
  • the coupling process said here reacts polymers, does not react with a filler during kneading like the above-mentioned terminal modification
  • the Mooney viscosity of the polybutadiene is preferably 50 or more and 90 or less, and more preferably 50 or more and 75 or less.
  • compatible and incompatible are defined as follows. That is, in the temperature dispersion measurement of the dynamic elastic modulus, when the tan ⁇ peak of each polymer contained in the sample is obtained separately and separately, each polymer is incompatible, and when the tan ⁇ peak is obtained as a single peak Each polymer is compatible.
  • the dynamic elastic modulus was measured with a dynamic viscoelasticity measuring device (Ares, manufactured by TA Instruments) in a temperature range of ⁇ 110 to 80 ° C.
  • the weight average molecular weight (Mw) of the polybutadiene rubber is preferably 250,000 or more and 400,000 or less, and more preferably 250,000 or more and 350,000 or less.
  • the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8020) using a refractometer as a detector, and converted into polystyrene using monodisperse polystyrene as a standard. Indicated.
  • the column is GMHXL (manufactured by Tosoh Corporation) and the eluent is tetrahydrofuran.
  • the diene rubber or olefin rubber in this embodiment is a rubber incompatible with the polybutadiene as described above.
  • the diene rubber include at least one of natural rubber (NR) and synthetic diene rubber, and the rubber component may be subjected to prior operations such as viscosity reduction and chemical treatment.
  • NR natural rubber
  • synthetic diene rubber those synthesized by emulsion polymerization or solution polymerization are preferable.
  • the synthetic diene rubber examples include polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylic resin. Roni little-butadiene rubber (NBR) and the like.
  • natural rubber Preferably, natural rubber, polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), halogenated (Br) butyl rubber, etc., more preferably natural rubber or polyisoprene rubber (IR),
  • natural rubber is more preferable in terms of low heat build-up, wear resistance, crack growth resistance, tear resistance, and the like.
  • olefin rubber for example, ethylene propylene rubber (EPDM, EPM), maleic acid modified ethylene propylene rubber (M-EPM), butyl rubber (IIR), co-polymer of isobutylene and aromatic vinyl or diene monomer.
  • EPDM ethylene propylene rubber
  • M-EPM maleic acid modified ethylene propylene rubber
  • IIR butyl rubber
  • co-polymer of isobutylene and aromatic vinyl or diene monomer examples include coalescence, acrylic rubber (ACM), ionomer, and the like. Of these, EPDM is preferred.
  • diene rubbers and olefin rubbers may be used alone or in a blend of two or more.
  • the polybutadiene and a rubber containing a diene rubber or an olefin rubber that is incompatible with the polybutadiene are used as the rubber component.
  • the polybutadiene content mass A in the rubber component and the polybutadiene and the non-phase are not compatible with each other.
  • the content ratio (A / B) to the content B of the diene rubber or olefin rubber that is a solution is preferably in the range of 40/60 to 60/40.
  • the content ratio (A / B) is more preferably in the range of 45/55 to 55/45.
  • the polybutadiene has a Mooney viscosity (ML 1 + 4/100 ° C.) higher than that of the diene rubber or olefin rubber. It is necessary to use what has.
  • the Mooney viscosity of the diene rubber or olefin rubber is preferably set to be low. Specifically, the Mooney viscosity of the diene rubber or olefin rubber is preferably 45 or more and 75 or less, and more preferably 50 or more and 65 or less.
  • the method for cleaving the molecular chain in the molecule in the rubber include a method of blending a peptizer and masticating, a method of oxidizing and introducing a functional group, and the like.
  • the peptizer include aromatic mercaptan compounds, disulfide compounds and zinc salts thereof, organic peroxides, nitro compounds, nitroso compounds, and the like.
  • the kneading machine include a roll machine, a closed kneader, a Gordon plasticizer, and the like. For these kneading machines, the rotational speed, kneading temperature, An optimal range such as kneading time is selected.
  • the rubber composition of this embodiment contains a filler.
  • the filler include carbon black, silica, clay, talc, calcium carbonate, aluminum hydroxide and the like.
  • the type of these fillers is not particularly limited, and any of those conventionally used as fillers for rubber can be selected and used. However, it contains at least one of carbon black and inorganic fillers. However, it is preferable for enhancing durability such as abrasion resistance, and it is more preferable to use silica as the inorganic filler. Moreover, when using inorganic fillers, such as a silica, you may use a silane coupling agent together.
  • the said filler in addition to carbon black and a silica, is general formula (I).
  • nM ⁇ xSiO y ⁇ zH 2 O (I) [Wherein, M is selected from metals selected from aluminum, magnesium, titanium, calcium and zirconium, and oxides or hydroxides of these metals, hydrates thereof, and carbonates of the metals.
  • N, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10, respectively.
  • the reinforcing effect can be enhanced efficiently, and the wear resistance and low heat build-up when used as a tire ( (Low fuel consumption) can be achieved. Moreover, even when carbon black and silica are used in combination, it is possible to achieve both wear resistance and low heat generation (low fuel consumption).
  • the carbon black those usually used in the rubber industry can be used.
  • various grades of carbon black such as SAF, HAF, ISAF, FEF, GPF can be used alone or in combination.
  • the silica is not particularly limited, but wet silica, dry silica, and colloidal silica are preferable. These can be used alone or in combination.
  • the inorganic filler represented by the general formula (I) include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, and alumina monohydrate (Al 2 such as boehmite and diaspore). O 3 .H 2 O), Gibbsite, Bayerite, etc.
  • the content of the filler is preferably 30 to 70 parts by mass with respect to 100 parts by mass of the rubber component. By making the addition amount in the above range, it is possible to achieve both the reinforcing property and the low heat generation property (low fuel consumption) when used in a tire, and the workability and the like can be improved.
  • the content is more preferably 30 parts by mass or more and 65 parts by mass or less.
  • oils such as process oil, vulcanizing agents, vulcanization accelerators, anti-aging agents, softening agents, zinc oxide, and ozone deterioration prevention
  • a compounding material for rubber that is usually used in the rubber industry such as an agent, a colorant, an antistatic agent, a lubricant, an antioxidant, a coupling agent, a foaming agent, a foaming aid, and stearic acid is harmful to the purpose of this embodiment. It can select suitably and mix
  • these compounding agents commercially available products can be suitably used.
  • the oil content of the process oil or the like is not particularly limited and can be appropriately selected and used according to the purpose.
  • examples of the oil include aromatic oils, naphthenic oils, paraffinic oils, ester oils, solution conjugated diene rubbers, solution hydrogenated conjugated diene rubbers, and the like.
  • the vulcanizing agent in addition to conventional sulfur, at least one of an organic thiosulfate compound (for example, sodium 1,6-hexamethylenedithiosulfate dihydrate) and a bismaleimide compound (for example, phenylene bismaleimide). Seeds can be used in combination.
  • an organic thiosulfate compound for example, sodium 1,6-hexamethylenedithiosulfate dihydrate
  • a bismaleimide compound for example, phenylene bismaleimide
  • vulcanization accelerator examples include thiuram compounds such as tetrakis-2-ethylhexyl thiuram disulfide, tetrakis-2-isopropyl thiuram disulfide, tetrakis-dodecyl thiuram disulfide, and tetrakis-benzyl thiuram disulfide; Dithiocarbamate compounds such as zinc hexyldithiocarbamate, zinc dodecyldithiocarbamate, and zinc benzyldithiocarbamate; and dibenzothiazyl disulfide, 4,4′-dimethyldibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazyl- Sulfenamide, Nt-butyl-2-benzothiazyl-sulfenamide, Nt-butyl-2-benzothiazyl-sulfenimide,
  • examples of the antioxidant include 3C (N-isopropyl-N′-phenyl-p-phenylenediamine, 6C [N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine], Examples thereof include AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), a high-temperature condensate of diphenylamine and acetone.
  • the rubber composition of the present embodiment selects the polybutadiene as a rubber component, and a diene rubber or olefin rubber that is incompatible with the polybutadiene and has a Mooney viscosity lower than that of the polybutadiene, and these and a rubber filler. Furthermore, the above-mentioned other compounding agents, etc., which are appropriately selected as necessary, can be produced by kneading, heating, extruding and vulcanizing.
  • the kneading conditions are not particularly limited and depend on various conditions such as the amount of each component charged into the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, and the type of the kneading apparatus. It can be selected as appropriate.
  • the kneading apparatus examples include a single-screw kneading extruder and a multi-screw kneading extruder (continuous kneading apparatus) generally used for kneading a rubber composition, a meshing type such as a Banbury mixer, an intermix, a kneader, or the like. Examples thereof include a kneader and a roll (batch type kneader) having a meshing rotary rotor. You may use combining these two or more.
  • the rubber composition of the present embodiment is vulcanized after being kneaded using the kneader, after being molded, and used for tires such as tire treads, under treads, carcass, sidewalls, and bead parts.
  • tires such as tire treads, under treads, carcass, sidewalls, and bead parts.
  • low-heat-generating tires with excellent balance of low heat resistance, wear resistance, and breaking strength, large-sized tires It is suitably used as a rubber for sidewalls and treads for tires and high performance tires.
  • the tire according to this embodiment uses the rubber composition described above. That is, the pneumatic tire of the present embodiment includes the rubber composition in any of tire constituent members. Examples of the tire component include tread, undertread, sidewall, carcass coating rubber, belt coating rubber, bead filler rubber, chafer, bead coating rubber, and cushion rubber.
  • a bead filler member or a side reinforcing rubber for a run flat tire is produced by an extruder or a calendar, and these are formed on a molding drum.
  • a green tire can be produced by pasting with another member, etc., and the green tire can be placed in a tire mold and vulcanized while applying pressure from the inside. Further, the tire of the present embodiment can be filled with nitrogen or inert gas in addition to air.
  • the pneumatic tire As an example of the pneumatic tire, a pair of bead portions, a carcass continuous in a toroidal shape with the bead portion, a pneumatic tire having a belt and a tread for tightening the crown portion of the carcass, and the like are preferable. It is mentioned in. Note that the pneumatic tire of the present embodiment may have a radial structure or a bias structure. The pneumatic tire of the present embodiment thus obtained is excellent in reinforcement, wear resistance, breakage resistance, and the like, and is reduced in weight.
  • the column is GMHXL (manufactured by Tosoh Corporation) and the eluent is tetrahydrofuran.
  • Comparative Example 1 or Example 12 The bound rubber amount of Comparative Example 1 or Example 12 was taken as 100 and displayed as an index. (5) Evaluation of workability The workability was evaluated based on rubber skin, cut-off, and the like after the kneaded rubber after the masterbatch was passed through a roll at 50 ° C. The case where the workability is good is indicated by ⁇ .
  • a glass bottle with a rubber stopper of about 1 L volume is dried and purged with nitrogen, and then the purified butadiene cyclohexane solution and dry cyclohexane are added to the glass bottle, respectively, and 400 g of a 12% by mass concentration cyclohexane solution is charged. It was. Next, the prepared catalyst solution was charged, and polymerization was carried out in a 50 ° C. water bath for 1 hour. The input amounts were 1.17 mL (BR-1), 1.35 mL (BR-2), and 1.56 mL (BR-3), respectively. Thereafter, the reaction was stopped at 50 ° C.
  • BR-4 Using a catalyst solution and a monomer solution prepared in the same manner as BR-1 to 3, 1.85 mL of the catalyst solution was put into a glass bottle with a rubber bottle and polymerized in a 50 ° C. water bath for 1 hour. Subsequently, a dioctyltin bisoctimarate solution (0.2 mol / L) was added in an amount equivalent to 1.1 neodymium, and the mixture was reacted at 50 ° C. for 30 minutes. Thereafter, 2 mL of 5% by weight isopropanol NS-5 solution was added at 50 ° C. to stop the polymerization reaction, and then reprecipitated in isopropanol containing a small amount of NS-5, and then dried with a drum dryer. Thus, BR-4 was obtained with a yield of almost 100%.
  • ⁇ BR-5 In a pressure-resistant glass container with an internal volume of about 900 ml that is dried and purged with nitrogen, 28.3 g of cyclohexane, 50 g of 1,3-butadiene monomer, 0.0057 mmol of 2,2-ditetrahydrofurylpropane and 0.513 mmol of hexamethylamine are added. Each was injected as a cyclohexane solution, and 0.57 mmol of n-butyllithium (BuLi) was added thereto, followed by polymerization in a 50 ° C. warm water bath equipped with a stirrer for 4.5 hours. The polymerization conversion rate was almost 100%.
  • BuLi n-butyllithium
  • tin tetrachloride 0.100 mmol was added as a cyclohexane solution and stirred at 50 ° C. for 30 minutes. Thereafter, 0.5 mL of a 5% by mass solution of 2,6-di-tert-butyl-p-cresol (BHT) in 5% by mass of isopropanol was added to stop the reaction, followed by drying according to a conventional method to obtain BR-5. It was.
  • BHT 2,6-di-tert-butyl-p-cresol
  • tin tetrachloride 0.100 mmol was added as a cyclohexane solution and stirred at 50 ° C. for 30 minutes. Thereafter, 0.5 mL of a 5% solution of 2,6-di-t-butylparacresol (BHT) in isopropanol was added to stop the reaction, followed by drying according to a conventional method to obtain BR-6.
  • BHT 2,6-di-t-butylparacresol
  • a glass bottle with a rubber stopper of about 1 L volume is dried and purged with nitrogen, and then the purified butadiene cyclohexane solution and dry cyclohexane are added to the glass bottle, respectively, and 400 g of a 12% strength by weight cyclohexane solution is charged. It was. Next, the prepared catalyst solution was charged, and polymerization was carried out in a 50 ° C. water bath for 1 hour. Thereafter, the reaction was stopped at 50 ° C. by adding 2 mL of a 5% solution of an anti-aging agent 2,2′-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) in isopropanol. After reprecipitating in isopropanol containing NS-5, it was dried on a drum to obtain BR-12 in a yield of almost 100%.
  • ⁇ BR-11 In a pressure-resistant glass container with an internal volume of about 900 ml that is dried and purged with nitrogen, 28.3 g of cyclohexane, 50 g of 1,3-butadiene monomer, 0.0057 mmol of 2,2-ditetrahydrofurylpropane and 0.513 mmol of hexamethylamine are added. Each was injected as a cyclohexane solution, and 0.57 mmol of n-butyllithium (BuLi) was added thereto, followed by polymerization in a 50 ° C. warm water bath equipped with a stirrer for 4.5 hours. The polymerization conversion rate was almost 100%.
  • n-butyllithium BuLi
  • RSS3 is used as the natural rubber, and o, o'-dibenzamide diphenyl disulfide (Noctizer SS, manufactured by Ouchi Shinsei Chemical Co., Ltd.) is used as a chelating agent for 100 parts by mass of this natural rubber (NR-1). 0.06 parts by mass, and kneading conditions were started at a temperature of 110 ° C. with a Banbury mixer, and kneading times were adjusted to 60 seconds, 120 seconds, and 240 seconds, respectively. -4. The molecular weight and Mooney viscosity (workability) of the resulting kneaded rubber were measured by the above methods.
  • NR-1 to NR-4 are shown in both Table 1 and Table 2.
  • Mn number average molecular weight
  • Examples 1 to 6 and Comparative Examples 1 and 2 The mixture having the formulation shown in Table 3 below was kneaded using a Banbury mixer to obtain an unvulcanized rubber composition, sheeted to a thickness of 2 mm, and vulcanized at 145 ° C. for 30 minutes. The obtained vulcanized rubber was evaluated for rubber physical properties by the above-described method. Moreover, about the said Example and the comparative example, it knead
  • Examples 7 to 12 and Comparative Example 3 The mixture having the formulation shown in Table 4 below was kneaded using a Banbury mixer to obtain an unvulcanized rubber composition, sheeted to a thickness of 2 mm, and vulcanized at 145 ° C. for 30 minutes. The obtained vulcanized rubber was evaluated for rubber physical properties by the above-described method. Moreover, about the said Example and the comparative example, it knead
  • the rubber composition kneaded in a combination in which the Mooney viscosity of the polybutadiene of the example is higher than the Mooney viscosity of the natural rubber can only achieve both wear resistance and fracture resistance. In addition, good workability was obtained.
  • the rubber composition of the comparative example kneaded with a combination in which the natural rubber has a Mooney viscosity higher than the polybutadiene has a lower abrasion resistance and fracture resistance than the examples.
  • the rubber composition kneaded in a combination in which the Mooney viscosity of the modified polybutadiene of the example is higher than the Mooney viscosity of the natural rubber achieves both wear resistance and fracture resistance.
  • good results were obtained with respect to low loss.
  • the rubber compositions of Examples 7 to 11 kneaded with a combination using a modified polybutadiene were compared with the rubber composition of Example 12 kneaded with a combination using an unmodified polybutadiene in terms of wear resistance and resistance. As a result, the destructibility was further improved.

Abstract

 本発明は、ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを含み、該ポリブタジエンのムーニー粘度(ML1+4/100℃)をML(I)、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)をML(II)としたとき、ML(I)≧ML(II)の関係にあるゴム組成物であり、タイヤの耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れ、かつ良好な作業性をも達成することが可能であり、さらにはタイヤの転がり抵抗の低減をも達成することが可能なゴム組成物及びその製造方法、並びにそれを用いたタイヤを提供する。

Description

ゴム組成物及びその製造方法、並びにタイヤ
 本発明は、ゴム組成物及びその製造方法並びに該ゴム組成物を用いたタイヤに関し、詳細には、自動車用タイヤの所定部位に適用して、タイヤの低燃費性を向上させ、かつタイヤに十分な耐摩耗性及び破壊特性を付与することが可能である上、良好なグリップ性能も付与し得るゴム組成物及びその製造方法、並びにそれを用いたタイヤに関する。
 近年、省エネルギーの社会的な要請に伴い、自動車においても、タイヤ用ゴムの発熱を減じること、及び燃料消費を低減することが強く求められている。そのため、タイヤのトレッド等に使用するゴム組成物として、tanδが低く(以下、「低ロス性」と称する場合がある)、低発熱性に優れたゴム組成物が求められている。また、トレッド用のゴム組成物においては、低ロス性に加え、安全性及び経済性の観点から、耐摩耗性や破壊特性及びグリップ性能に優れることが求められる。
 この問題に対し、従来、ゴム組成物に使用されるポリブタジエンに末端変性基を導入させることで、変性基とフィラーとが反応しフィラーとの親和性が改良され、バウンドラバー量が増加し、その結果、耐摩耗性が向上することがわかっている(例えば、特許文献1参照)。
 しかしながら、このようなゴム組成物では、十分な耐摩耗性は得られるものの、高コストな変性ポリマーを用いなければならず、作業性も悪化するという問題があった。
国際公開第2006/112450号パンフレット
 本発明はかかる状況に鑑みなされたもので、タイヤの耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れ、かつ良好な作業性をも達成することが可能なゴム組成物及びその製造方法、並びにそれを用いたタイヤを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ポリブタジエン及び該ポリブタジエンと非相溶なゴムのブレンド系において、ポリブタジエンの比粘度を同程度もしくは高くすることで、混練中でのポリブタジエン相にかかるトルクを上げる(ポリブタジエンの練り効率を向上させる)ことができ、ポリブタジエンのバウンドラバーを増加させたゴム組成物をタイヤ部材に用いることで、耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れ、かつ良好な作業性をも達成することが可能であることを見出し、本発明を完成させるに至った。
すなわち、本発明は、
〔1〕 ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを含み、該ポリブタジエンのムーニー粘度(ML1+4/100℃)をML(I)、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)をML(II)としたとき、ML(I)≧ML(II)の関係にあるゴム組成物、
〔2〕 前記ポリブタジエンが、カップリング処理によって高分子量化したものである〔1〕に記載のゴム組成物、
〔3〕 前記ポリブタジエンと非相溶であるジエン系ゴムが、天然ゴム又はポリイソプレンゴムである〔1〕又は〔2〕に記載のゴム組成物、
〔4〕 前記ゴム成分におけるポリブタジエンの含有質量Aと、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムの含有質量Bとの含有質量比(A/B)が、40/60~60/40の範囲である〔1〕~〔3〕のいずれかに記載のゴム組成物、
〔5〕 前記ポリブタジエンが、変性ポリブタジエンである〔1〕~〔4〕のいずれかに記載のゴム組成物、
〔6〕 前記充填剤の含有量が、前記ゴム成分100質量部に対して30質量部以上70質量部以下である〔1〕~〔5〕のいずれかに記載のゴム組成物、
〔7〕 前記充填剤が、カーボンブラック及び無機充填剤から選ばれる少なくとも1種である〔1〕~〔6〕のいずれかに記載のゴム組成物、
〔8〕 前記変性ポリブタジエンが、カーボンブラック及び無機充填剤から選ばれる少なくとも1種と親和性を有する官能基で変性されている〔5〕~〔7〕のいずれかに記載のゴム組成物、
〔9〕 前記ポリブタジエンにおける1,2-ビニル結合含有量が、20%以下である〔1〕~〔8〕のいずれかに記載のゴム組成物、
〔10〕 〔1〕~〔9〕のいずれかに記載のゴム組成物を用いたタイヤ、
〔11〕 〔1〕~〔9〕のいずれかに記載のゴム組成物の製造方法であって、
 ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを混練する工程を有し、該ポリブタジエンとして、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴム以上のムーニー粘度(ML1+4/100℃)を有するものを用いるゴム組成物の製造方法、
〔12〕 前記ポリブタジエンが、変性ポリブタジエンである〔11〕に記載のゴム組成物の製造方法、
〔13〕 前記ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)が45以上75以下である〔11〕又は〔12〕に記載のゴム組成物の製造方法、及び
〔14〕 前記変性ポリブタジエンが、カーボンブラック及び無機充填剤から選ばれる少なくとも1種と親和性を有する官能基で変性されている請求項5~7のいずれかに記載のゴム組成物、
を提供するものである。
 本発明によれば、タイヤの耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れ、かつ良好な作業性をも達成することが可能なゴム組成物及びその製造方法、並びにそれを用いたタイヤを提供することができる。
 さらに、ポリブタジエンとして変性ポリブタジエンを用いることにより、タイヤの耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れ、かつタイヤの転がり抵抗の低減をも達成することが可能なゴム組成物及びその製造方法、並びにそれを用いたタイヤを提供することができる。
 以下、本発明を実施形態により説明する。
<ゴム組成物及びその製造方法>
 本実施形態のゴム組成物は、ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを含み、該ポリブタジエンのムーニー粘度(ML1+4/100℃)をML(I)、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)をML(II)としたとき、ML(I)≧ML(II)の関係にあることを特徴とする。
 本実施形態のゴム組成物は、ポリブタジエンとして、変性ポリブタジエンを用いることが好ましい。ここで、変性ポリブタジエンとは、活性末端等を有するポリブタジエンの該活性末端等に、所定の変性剤を反応させて、活性末端等に種々の官能基が導入されたもの及びポリブタジエンの重合開始末端に種々の官能基が導入されたものを意味する。活性末端等とは、活性末端及び主鎖中の双方を包含し、主鎖中とは、主鎖内及び主鎖中の側鎖の双方を包含するものである。
 本発明者らは、ポリブタジエンと天然ゴム等の該ポリブタジエンと非相溶なゴムとの混練において、ブレンドされる各々の粘度特性と物性との関係を調べた結果、非相溶なゴムのブレンド系では、混練前により高いムーニー粘度を有すると、バウンドラバー(ゴムとカーボンブラックとを混練した際に形成されるカーボンゲル)が形成されやすくなり、またポリブタジエンのバウンドラバー量が多いほど、耐摩耗性が改良されることを見出した。
 さらに、変性ポリブタジエン部分に混練中、トルクが効果的に加わる場合、変性によるフィラー分散効果も改良されることが見出された。
 したがって、何らかの方法により、ポリブタジエンのムーニー粘度を、用いるポリブタジエンと非相溶な重合体のムーニー粘度に対して高くすることにより、混練後にポリブタジエンのバウンドラバー量を増加させることができるため、耐久性と良好な作業性との両立を図ることが可能となった。すなわち、ポリブタジエン部分の練り効率を上げることにより、ポリブタジエン部分のバウンドラバーの量が増加し、耐摩耗性が大幅に向上する。
 一方、ポリブタジエンと非相溶なジエン系ゴム等は、ポリブタジエンに対してムーニー粘度を低下させることで作業性を改良でき、ポリブタジエン部分の補強性を改良することで全体の特性に大きな影響を与えることがない。このような理由から、本実施形態では、前記耐摩耗性と耐破壊性との両立が達成される。
 なお、前記ポリブタジエンのムーニー粘度を比較的高くすることにより、混練時に混合された重合体成分のうち、ポリブタジエンのほうが、粘度が高く、トルクがかかりやすく、ポリブタジエンのバウンドラバーが増加することとなるためと考えられる。
(ゴム成分)
-ポリブタジエン-
 本実施形態に用いられるポリブタジエンは、1,2-ビニル結合量が20%以下であることが好ましく、5%以下であることがより好ましい。1,2-ビニル結合量が20%以下であると、ガラス転移温度が低く、反発弾性、耐摩耗性、低温特性に優れ、タイヤの低発熱性(低ヒステリシスロス特性)が向上するためである。
 前記のように、本実施形態において好適に用いられる変性ポリブタジエンは、ポリブタジエンの活性末端等に官能基を導入したものであるが、該変性ポリブタジエンが、カーボンブラック及び無機充填剤から選ばれる少なくとも1種と親和性を有する官能基で変性されていることが好ましい。ここで、充填剤と親和性を有するとは、該充填剤と物理結合又は化学結合し得ることをいう。該官能基としては、窒素を含む官能基、ケイ素を含む官能基、酸素又は硫黄を含む官能基、及び金属を含む官能基からなる群から選択された官能基であることがさらに好ましい。変性ポリブタジエンはその官能基を末端或いは主鎖中に有することができる。
 前記窒素を含む官能基としては、置換もしくは非置換のアミノ基、アミド残基、イソシアネート基、イミダゾリル基、インドリル基、ニトリル基、ビリジル基、及びケチミン基であることが好ましい。置換もしくは非置換のアミノ基としては、第一アルキルアミン、第二アルキルアミン又は環状アミンあるいは、置換もしくは非置換のイミンから誘導されるアミノ基が挙げられる。
 また、前記ケイ素を含む官能基としては、有機シリル基またはシロキシ基であることが好ましく、より詳細には、アルコキシシリル基、アルキルハロシリル基、シロキシ基、アルキルアミノシリル基、及びアルコキシハロシリル基からなる群から選択された官能基が挙げられる。
 さらに、前記酸素または硫黄を含む官能基としては、水酸基、カルボキシル基、エポキシ基、グリシドキシ基、ジグリシジルアミノ基、サイクリックジチアン由来の官能基、エステル基、アルデヒド基、アルコキシ基、ケトン基、チオカルボキシル基、チオエポキシ基、チオグリシドキシ基、チオジグリシジルアミノ基、チオエステル基、チオアルデヒド基、チオアルコキシ基及びチオケトン基からなる群から選択された官能基が挙げられる。前記アルコキシ基としては、ペンゾフェノンから誘導されたアルコール由来のアルコキシ基であっても良い。
 本実施形態におけるポリブタジエンを得るための製造方法については、特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであっても良い。ポリブタジエンの重合反応中あるいは重合反応後に変性剤を反応させることにより、活性末端等に種々の官能基が導入された変性ポリブタジエン得ることができる。
 前記ポリブタジエンをアニオン重合で製造する場合、重合開始剤としては、有機アルカリ金属化合物を用いるのが好ましく、リチウム化合物を用いるのが更に好ましい。該リチウム化合物としては、ヒドロカルビルリチウム及びリチウムアミド化合物等が挙げられる。重合開始剤としてヒドロカルビルリチウムを用いる場合、重合開始末端にヒドロカルビル基を有し、他方の末端が重合活性部位である変性ポリマーが得られる。一方、重合開始剤としてリチウムアミド化合物を用いる場合、重合開始末端に窒素含有官能基を有し、他方の末端が重合活性部位である変性ポリマーが得られ、該重合体は、変性剤で変性することなく、本発明における変性共役ジエン系ポリマーとして用いることができる。なお、重合開始剤としてのリチウム化合物の使用量は、単量体100g当り0.2~20mmolの範囲が好ましい。
 上記ヒドロカルビルリチウムとしては、エチルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、tert-ブチルリチウム等が挙げられる。
 また、前記の所定量以下の1,2-ビニル結合量を有するポリブタジエンを得るためには、有機溶媒中で希土類元素化合物、特にランタン系列希土類元素を含む重合触媒によって重合させる反応が好ましい。
 上記アニオン重合は、ランダマイザーの存在下で実施してもよい。該ランダマイザーは、ポリブタジエンのミクロ構造を制御することができ、例えば、単量体としてブタジエンを用いた重合体のポリブタジエン単位の1,2-ビニル結合含量を制御することができる。
 上記アニオン重合は、溶液重合、気相重合、バルク重合のいずれで実施してもよい。また、重合形式は特に限定されず、回分式でも連続式でもよい。
 上記アニオン重合の重合温度は、0~150℃の範囲が好ましく、20~130℃の範囲が更に好ましい。また、該重合は、発生圧力下で実施できるが、通常は、使用する単量体を実質的に液相に保つのに十分な圧力下で行なうのが好ましい。ここで、重合反応を発生圧力より高い圧力下で実施する場合、反応系を不活性ガスで加圧するのが好ましい。また、重合に使用する単量体、重合開始剤、溶媒等の原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を予め除去したものを用いるのが好ましい。
 一方、配位重合で前記ポリブタジエンを製造する場合、重合開始剤としては、希土類金属化合物を用いるのが好ましく、下記(A)成分、(B)成分、(C)成分を組み合わせて用いるのが更に好ましい。該配位重合により、重合活性部位を有するポリブタジエンが得られる。
 上記配位重合に用いる(A)成分は、希土類金属化合物、及び希土類金属化合物とルイス塩基との錯化合物等から選択される。ここで、希土類金属化合物としては、希土類元素のカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩及び亜リン酸塩等が挙げられ、ルイス塩基としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N、N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、1価又は2価のアルコール等が挙げられる。上記希土類金属化合物の希土類元素としては、ネオジムが挙げられる。また、(A)成分として、具体的には、ネオジムトリ-2-エチルヘキサノエート、それとアセチルアセトンとの錯化合物、ネオジムトリネオデカノエート、それとアセチルアセトンとの錯化合物、ネオジムネオデカノエート、ネオジムトリn-ブトキシド等が挙げられる。これら(A)成分は一種単独で用いても、二種以上を混合して用いてもよい。
 上記配位重合に用いる(B)成分は、有機アルミニウム化合物から選択される。該有機アルミニウム化合物として、具体的には、式:R3Alで表されるトリヒドロカルビルアルミニウム化合物、式:R2AlH又はRAlH2で表されるヒドロカルビルアルミニウム水素化物(式中、Rは、それぞれ独立して炭素数1~30の炭化水素基である)、炭素数1~30の炭化水素基をもつヒドロカルビルアルミノキサン化合物等が挙げられる。該有機アルミニウム化合物として、具体的には、トリアルキルアルミニウム、ジアルキルアルミニウムヒドリド、アルキルアルミニウムジヒドリド、アルキルアルミノキサン(例えば、メチルアルミノキサン)等が挙げられる。これらの化合物は一種単独で用いても、二種以上を混合して用いてもよい。なお、(B)成分としては、アルミノキサンと他の有機アルミニウム化合物とを併用するのが好ましい。
 上記配位重合に用いる(C)成分は、加水分解可能なハロゲンを有する化合物又はこれらとルイス塩基の錯化合物、三級アルキルハライド、ベンジルハライド又はアリルハライドを有する有機ハロゲン化物、非配位性アニオン及び対カチオンからなるイオン性化合物等から選択される。かかる(C)成分として、具体的には、アルキルアルミニウム二塩化物、ジアルキルアルミニウム塩化物、四塩化ケイ素、四塩化スズ、塩化亜鉛とアルコール等のルイス塩基との錯体、塩化マグネシウムとアルコール等のルイス塩基との錯体、塩化ベンジル、塩化t-ブチル、臭化ベンジル、臭化t-ブチル、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。これら(C)成分は一種単独で用いても、二種以上を混合して用いてもよい。
 上記重合開始剤は、上記の(A)、(B)、(C)成分以外に、必要に応じて、重合用単量体と同じ共役ジエン化合物及び/又は非共役ジエン化合物を用いて予備的に調製してもよい。また、(A)成分又は(C)成分の一部又は全部を不活性な固体上に担持して用いてもよい。上記各成分の使用量は、適宜設定することができるが、通常、(A)成分は単量体100g当たり0.001~0.5mmolである。また、モル比で(B)成分/(A)成分は5~1000、(C)成分/(A)成分は0.5~10が好ましい。
 上記配位重合における重合温度は、-80~150℃の範囲が好ましく、-20~120℃の範囲が更に好ましい。また、配位重合に用いる溶媒としては、上述のアニオン重合で例示した反応に不活性な炭化水素溶媒を用いることができ、反応溶液中の単量体の濃度もアニオン重合の場合と同様である。更に、配位重合における反応圧力もアニオン重合の場合と同様であり、反応に使用する原材料も、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を実質的に除去したものが望ましい。
 本実施形態における変性ポリブタジエンを製造する方法としては、上述のように製造された活性末端を有するポリブタジエンの活性末端を変性剤で変性する方法、上述のようにリチウムアミド化合物等の変性基含有重合開始剤を用いて重合開始側の末端を変性する方法、ポリブタジエンの活性末端を変性剤で変性(第1段変性)した後に更にその変性基と変性剤とを反応させる多段変性の方法、ポリブタジエンの主鎖中もしくは側鎖中に変性剤をグラフトさせる方法及びポリブタジエンの重合時に官能基含有モノマーと共重合する方法等が挙げられる。
 前記変性ポリブタジエンを製造するために、上述のように製造された活性末端を有するポリブタジエンの活性末端を変性剤で変性する場合、変性剤としては、窒素含有化合物、ケイ素含有化合物、酸素又は硫黄含有化合物、スズ含有化合物等を用いることができる。
 前記変性剤としては、国際公開2006/112450号、国際公開2007/040252号及び特開2009-242788号公報に記載の変性剤を同様に用いることができる。
 より具体的には、例えば国際公開2006/112450号に記載のアザシクロプロパン基、ケトン基,カルボキシル基、チオカルボキシル基、炭酸塩、カルボン酸無水物、カルボン酸金属塩、酸ハロゲン化物、ウレア基、チオウレア基、アミド基、チオアミド基、イソシアネート基、チオイソシアネート基、ハロゲン化イソシアノ基、エポキシ基、チオエポキシ基、イミン基、及びM-Z結合(ただしMはSn、Si、Ge,P、Zはハロゲン原子)の中から選ばれる少なくとも一種の官能基を含むものであって、かつポリマー末端の活性有機金属部位を失活させるような活性プロトン及びオニウム塩を含まないもの等を挙げることができる。
 また、国際公開2007/040252号に記載の(a);エポキシ基、(b);イソシアネート基、および(c);カルボキシル基から選ばれた少なくとも1種の官能基を含有するアルコキシシラン化合物を用いることもできる。具体例としては、エポキシ基含有アルコキシシラン化合物として、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、(2-グリシドキシエチル)メチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシランを好ましく挙げることができる。
 また、イソシアネート基含有アルコキシシラン化合物としては、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリイソプロポキシシランなどが挙げられる。
 さらに、カルボキシル基含有アルコキシシラン化合物としては、3-メタクリロイロキシプロピルトリエトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-メタクリロイロキシプロピルメチルジエトキシシラン、3-メタクリロイロキシプロピルトリイソプロポキシシランなどが挙げられる。
 さらに、特開2009-242788号公報に記載の1個のヒドロカルビルオキシ基と、1個の反応性基とが直接にケイ素原子に結合し、かつ1個の保護された第一アミノ基がアルキレン基を介して該ケイ素原子に結合してなる2官能性ケイ素原子を含む化合物を用いてもよい。
 前記変性剤による変性反応は、溶液反応で行うのが好ましく、該溶液中には、重合時に使用した単量体が含まれていてもよい。また、変性反応の反応形式は特に制限されず、バッチ式でも連続式でもよい。更に、変性反応の反応温度は、反応が進行する限り特に限定されず、重合反応の反応温度をそのまま採用してもよい。なお、変性剤の使用量は、ポリブタジエンの製造に使用した重合開始剤1molに対し、0.25~3.0molの範囲が好ましく、0.5~1.5molの範囲が更に好ましい。
 また、本実施形態におけるポリブタジエンとしては、上述の合成時に、カップリング処理により高分子量化されたものであることが、コールドフロー抑制の点で好適である。
 上記カップリング処理としては、多官能試薬を用いた末端変性などの方法により行うことが好ましい。なお、ここで言うカップリング処理は、ポリマー同士を反応させるものであり、前述の末端変性のように混練中にフィラーと反応するものではなく、ポリマー分岐による高分子量化を意図するものである。
 前記ポリブタジエンとしては、後述のポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムより高いムーニー粘度(ML1+4/100℃)を有するものを用いる必要がある。具体的には、該ポリブタジエンのムーニー粘度は50以上90以下であることが好ましく、50以上75以下であることがより好ましい。
 本実施形態において、「相溶」「非相溶」は以下のように定義される。すなわち、動的弾性率の温度分散測定において、試料に含まれる各ポリマーのtanδピークが分かれて別々に得られる場合前記各ポリマーは非相溶であり、tanδピークが単一ピークとして得られる場合前記各ポリマーは相溶である。
 なお、上記動的弾性率の測定は、動的粘弾性測定装置(Ares、TAインスツルメント社製)にて、-110~80℃の温度範囲で行った。
 また、前記高いムーニー粘度とするためには、ポリブタジエンゴムの重量平均分子量(Mw)は25万以上40万以下とすることが好ましく、25万以上35万以下とすることがより好ましい。
 なお、上記重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC、東ソー(株)製、HLC-8020)により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示した。なお、カラムはGMHXL(東ソー(株)製)で、溶離液はテトラヒドロフランである。
-ジエン系ゴム、オレフィン系ゴム-
 本実施形態におけるジエン系ゴム又はオレフィン系ゴムは、前述のように、上記ポリブタジエンと非相溶なゴムである。
 上記ジエン系ゴムとしては、天然ゴム(NR)及び合成ジエン系ゴムの内の少なくとも一種が挙げられ、ゴム成分としては、粘度低減や化学的処理などの事前操作を施してもよい。ここで、合成ジエン系ゴムとしては、乳化重合又は溶液重合で合成されたものが好ましい。
 前記合成ジエン系ゴムとして、具体的には、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)等が挙げられる。好ましくは、天然ゴム、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ハロゲン(Br)化ブチルゴム等であり、さらに好ましくは、天然ゴム又はポリイソプレンゴム(IR)であり、特に天然ゴムが、低発熱性、耐摩耗性、耐亀裂成長性、耐引裂き性などの点でさらに好ましい。
 一方、前記オレフィン系ゴムとしては、例えば、エチレンプロピレンゴム(EPDM、EPM)、マレイン酸変性エチレンプロピレンゴム(M-EPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニル又はジエン系モノマーとの共重合体、アクリルゴム(ACM)、アイオノマー等を挙げることができる。これらの中では、EPDMが好ましい。
 これらのジエン系ゴム、オレフィン系ゴムは、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。
 本実施形態では、前記ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴムをゴム成分として用いるが、該ゴム成分におけるポリブタジエンの含有質量Aと、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムの含有質量Bとの含有質量比(A/B)は、40/60~60/40の範囲であることが好ましい。含有質量比(A/B)が上記範囲にあることにより、耐摩耗性等の耐久性を低下させることなく耐破壊性にも優れたゴム組成物とすることができる。
 上記含有質量比(A/B)は45/55~55/45の範囲とすることがより好ましい。
 前記のように、これらのジエン系ゴムやオレフィン系ゴムと前記ポリブタジエンとを混練する場合、該ポリブタジエンとしては、当該ジエン系ゴムやオレフィン系ゴムより高いムーニー粘度(ML1+4/100℃)を有するものを用いる必要がある。この場合、上記ジエン系ゴムやオレフィン系ゴムのムーニー粘度は、逆に低く設定することが好ましい。具体的には、該ジエン系ゴムやオレフィン系ゴムのムーニー粘度は45以上75以下とすることが好ましく、50以上65以下とすることがより好ましい。
 ジエン系ゴムやオレフィン系ゴムのムーニー粘度を、上記範囲に低く設定するためには、混練前において、予めこれらを構成する分子の分子鎖を切断し、低粘度化を図ることが好ましい。
 上記ゴム中の分子における分子鎖を切断する方法としては、例えば、しゃっ解剤を配合して素練りを行う、酸化させ官能基を導入して切断する等の方法が挙げられる。
 一例として、天然ゴムにしゃっ解剤を配合して素練りを行う方法に関して説明する。しゃっ解剤としては、芳香族メルカプタン系化合物、ジスルフィド系化合物及びそれらの亜鉛塩、有機過酸化物、ニトロ化合物、ニトロソ化合物等を好ましく挙げることができ、その配合量は、天然ゴム100質量部に対し、0.01質量部以上5質量部以下程度とするのが好ましい。この配合量が少な過ぎると所望の効果が得られなくなるおそれがあり、多過ぎると機械的物性が低下してしまう。
 素練り機械としては、例えば、ロール機、密閉型混練機、ゴードンプラスチケーター等が挙げられ、これらの素練り機械に対して、前記ムーニー粘度が好適となるように回転数、素練り温度、素練り時間など最適な範囲が選択される。
(充填剤)
 本実施形態のゴム組成物は充填剤を含む。該充填剤としては、カーボンブラック、シリカ、クレー、タルク、炭酸カルシウム、水酸化アルミニウム等を挙げることができる。これら充填剤の種類としては特に制限なく、従来ゴムの充填剤として慣用されているものの中から任意のものを選択して用いることができるが、カーボンブラック及び無機充填剤の少なくともいずれかを含むことが、耐摩耗性等の耐久性をより高める上で好ましく、無機充填剤としてはシリカを用いることがより好ましい。また、シリカ等の無機充填剤を用いる場合には、シランカップリング剤を併用しても良い。
 また本実施形態においては、前記充填剤が、カーボンブラック及びシリカに加えて、一般式(I)
      nM・xSiOy・zH2O  ・・・(I)
[式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる金属、並びに、これらの金属の酸化物又は水酸化物、それらの水和物及び前記金属の炭酸塩の中から選ばれる少なくとも一種であり、n、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。]
で表される無機充填剤の中から選ばれる少なくとも一種を用いることが好適である。
 カーボンブラック及びシリカに加えて、上記一般式(I)で表される無機充填剤を用いることにより、補強効果を効率的に高めることができ、タイヤとしたときの耐摩耗性及び低発熱性(低燃費性)の両立を図ることができる。
 また、カーボンブラックとシリカとを併用した場合でも耐摩耗性及び低発熱性(低燃費性)の両立を達成することができる。
 ここで、前記カーボンブラックとしては、通常ゴム工業に用いられるものが使用でき、例えば、SAF、HAF、ISAF、FEF、GPFなど種々のグレードのカーボンブラックを単独に又は混合して使用することができる。
 また前記シリカは、特に限定されないが、湿式シリカ、乾式シリカ、コロイダルシリカが好ましい。これらは単独に又は混合して使用することができる。
 前記一般式(I)で表わされる無機充填剤としては、具体的には、γ-アルミナ、α-アルミナ等のアルミナ(Al23)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al23・H2O)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3]、炭酸アルミニウム[Al2(CO32]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al23)、クレー(Al23・2SiO2)、カオリン(Al23・2SiO2・2H2O)、パイロフィライト(Al23・4SiO2・H2O)、ベントナイト(Al23・4SiO2・2H2O)、ケイ酸アルミニウム(Al2SiO5 、Al4・3SiO4・5H2O等)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸カルシウム(Ca2・SiO4等)、ケイ酸アルミニウムカルシウム(Al23・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO32]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。
 また、一般式(I)で表される無機充填剤としては、Mがアルミニウム金属、アルミニウムの酸化物又は水酸化物、それらの水和物、及びアルミニウムの炭酸塩から選ばれる少なくとも一種のものが好ましい。
 前記充填剤の含有量としては、ゴム成分100質量部に対して、充填剤を30質量部以上70質量部以下で使用するのが好ましい。添加量を上記範囲とすることにより、タイヤに用いたときの補強性及び低発熱性(低燃費性)の両立を図ることができ、さらに作業性等も改善することができる。
 上記含有量は、より好ましくは30質量部以上65質量部以下である。
 本実施形態のゴム組成物には、ゴム成分、カーボンブラック等の充填剤の他、プロセスオイル等の油分、加硫剤、加硫促進剤、老化防止剤、軟化剤、酸化亜鉛、オゾン劣化防止剤、着色剤、帯電防止剤、滑剤、酸化防止剤、カップリング剤、発泡剤、発泡助剤及びステアリン酸等のゴム業界で通常使用されるゴム用配合材料を、本実施形態の目的を害しない範囲内で適宜選択し配合することができる。これら配合剤は、市販品を好適に使用できる。
 前記プロセスオイル等の油分としては、特に制限はなく、目的に応じて適宜選択して使用可能である。前記油分としては、アロマティックオイル、ナフテン系オイル、パラフィン系オイル、エステル系オイル、溶液状共役ジエンゴム、及び溶液状水素添加共役ジエンゴム等が挙げられる。油分がゴム組成物に含まれていると該ゴム組成物の流動性をコントロールできるため、加硫前のゴム組成物の粘度を低下させて流動性を高めることにより、極めて良好にゴム組成物の押出を行うことができる点で有利である。
 また、前記加硫剤として、従来の硫黄に加えて、有機チオスルフェート化合物(例えば1,6-ヘキサメチレンジチオ硫酸ナトリウム・2水和物)、ビスマレイミド化合物(例えばフェニレンビスマレイミド)の少なくとも1種を併用することができる。
 また、前記加硫促進剤としては、テトラキス-2-エチルへキシルチウラムジスルフィド、テトラキス-2-イソプロピルチウラムジスルフィド、テトラキス-ドデシルチウラムジスルフィド、及びテトラキス-ベンジルチウラムジスルフィド等のチウラム化合物;ジ-2-エチルへキシルジチオカルバメート亜鉛、ドデシルジチオカルバメート亜鉛、及びベンジルジチオカルバメート亜鉛等のジチオカルバミン酸塩類化合物;並びにジベンゾチアジルジスルフィド、4,4'-ジメチルジベンゾチアジルジスルフィド、N-シクロへキシル-2-ベンソチアジル-スルフェンアミド、N-t-ブチル-2-ベンゾチアジル-スルフェンアミド、N-t-ブチル-2-ベンゾチアジル-スルフェンイミド、N-オキシジエチレン-ベンゾチアジル-スルフェンアミド、及びN,N'-ジシクロへキシル-2-ベンゾチアジル-スルフェンアミド等のベンゾチアゾリル加硫促進剤;などが挙げられる。
 更に、前記老化防止剤としては、例えば3C(N-イソプロピル-N'-フェニル-p-フェニレンジアミン、6C[N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン]、AW(6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン)、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。
 本実施形態のゴム組成物は、ゴム成分として前記のポリブタジエンと、該ポリブタジエンと非相溶であり、該ポリブタジエンよりムーニー粘度が低いジエン系ゴム又はオレフィン系ゴムとを選択し、これらとゴム充填剤、さらに必要に応じて適宜選択した前記その他の配合剤等を、混練り、熱入れ、押出、及び加硫等することにより製造することができる。
 前記混練りの条件としては、特に制限はなく、混練り装置への各成分の投入量、ローターの回転速度、ラム圧、混練り温度、混練り時間、混練り装置の種類等の諸条件によって適宜選択できる。前記混練り装置としては、一般にゴム組成物の混練りに用いる単軸混練押出機及び多軸混練押出機(連続式混練装置)や、バンバリーミキサー、インターミックス、及びニーダー等の噛合い式又は非噛合い式回転ローターを有する混練機やロール(バッチ式混練装置)などが挙げられる。これらを複数組み合わせて用いてもよい。
 本実施形態のゴム組成物は、前記混練り機を用いた混練り後、成形加工後、加硫を行い、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部などのタイヤ用途を始め、防振ゴム、防舷材,ベルト、ホースその他の工業品などの用途に用いることができるが、特に、低発熱性、耐摩耗性、破壊強度のバランスに優れた、低燃費用タイヤ、大型タイヤ、高性能タイヤのサイドウォール用ゴムやトレッド用ゴムとして好適に使用される。
<タイヤ>
 本実施形態のタイヤは、前記のゴム組成物を用いたものである。すなわち、本実施形態の空気入りタイヤは、前記ゴム組成物をタイヤ構成部材のいずれかに含有させてなる。該タイヤ構成部材としては、例えば、トレッド、アンダートレッド、サイドウォール、カーカスコーティングゴム、ベルトコーティングゴム、ビードフィラーゴム、チェーファー、ビードコーティングゴム、クッションゴム等が挙げられる。
 本実施形態のゴム組成物を用いて空気入りタイヤを製造する場合は、例えば、押し出し機やカレンダー等によりビードフィラー部材、又は、ランフラットタイヤ用サイド補強ゴムを作製し、これらを成型ドラム上で他の部材と張り合わせること等でグリーンタイヤを作製し、このグリーンタイヤをタイヤモールドに収め、内側から圧を加えながら加硫する方法などにより行うことができる。また、本実施形態のタイヤの内部には、空気の他に窒素や不活性ガスを充填することができる。
 前記空気入りタイヤの一例としては、一対のビード部、該ビード部にトロイド状をなして連なるカーカス、該カーカスのクラウン部をたが締めするベルト及びトレッドを有してなる空気入りタイヤなどが好適に挙げられる。なお、本実施形態の空気入りタイヤは、ラジアル構造を有していてもよいし、バイアス構造を有していてもよい。
 このようにして得られた本実施形態の空気入りタイヤは、補強性、耐摩耗性、耐破壊性などに優れ、かつ軽量化が図られている。
 以上、実施形態により本発明を説明したが、本発明は、上記の形態に限定されず、その発明の目的から逸脱しない範囲内において、任意の変更、改変を行うことができる。
 以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。なお以下において、特に断りのない限り、「部」は質量部を、「%」は質量%を各々意味する。
 なお、諸特性は下記の方法にしたがって測定した。
<混練前のゴムの物性>
(1)重量平均分子量(Mw)の測定
 GPC(東ソー(株)製、HLC-8020)により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示した。なお、カラムはGMHXL(東ソー(株)製)で、溶離液はテトラヒドロフランである。
(2)ムーニー粘度ML1+4(100℃)の測定
 JIS K6300-1:2001に従って、ローターレスムーニー装置により測定した。
(3)ポリブタジエンの構造の分析法
 フーリエ変換赤外分光光度計(商品名「FT/IR-4100」、日本分光(株)製)を使用し、特開2005-015590号公報に記載されたフーリエ変換赤外分光法によって、ポリブタジエンにおける1,2-ビニル結合量(%)を測定した。
<ゴム組成物特性及びタイヤ性能>
(1)耐破壊性
 加硫ゴムシートについて、JIS K 6251:2004に準拠し、室温(25℃)にて切断時張力(TSb)を測定し、第3表においては比較例1の数値を100として、第4表においては実施例12の数値を100として、それぞれ指数表示し、耐破壊性を求めた。指数の値が大きいほど良好である。
(2)耐摩耗性
 加硫ゴムシートについて、ランボーン型摩耗試験機を用い、スリップ率が25%の摩耗量を測定し、第3表においては比較例1の数値の逆数を100として、第4表においては実施例12の数値の逆数を100として指数表示し、それぞれ指数表示した。測定温度は室温とした。指数が大きいほど、良好である
(3)低ロス性能(tanδ)
 レオメトリックス社製の粘弾性率測定装置を用いて、温度50℃、周波数15Hz、歪5%の条件で、損失正接tanδを測定し、比較例1又は実施例12のゴム組成物を100として以下の式により指数表示した。低ロス性能(tanδ)においては、指数値が低いほど、低ロス性能が高い。
  低ロス性能の指数=(供試ゴム組成物の損失正接tanδ/比較例1又は実施例12のゴム組成物の損失正接tanδ)×100
(4)バウンドラバー量の測定
 混練後の未加硫ゴム0.4gを2mm角に切り出し、トルエン50mLとともにサンプル管に入れ、48時間室温にて静置させた。その後、グラスフィルターにて抽出し、トルエン溶液部分とゴム部分とをそれぞれ乾燥させた。そして前記フィルター上のゴム部分の重さを算出し、バウンドラバー量とした。さらに乾燥させたトルエン溶液部分をクロロホルムに溶かし、プロトンNMRにてポリブタジエンの割合を算出し、この値を用いて実際の配合部数から逆算することにより、ポリブタジエンのバウンドラバー量を求めた。比較例1又は実施例12のバウンドラバー量を100として指数表示した。
(5)作業性の評価
 マスターバッチ後の練りゴムを、50℃のロールに通した後の、ゴム肌、取切れ等により、作業性を評価した。作業性が良好であった場合を○と表記する。
<ポリブタジエン、天然ゴム>
(ポリブタジエン(BR-1~BR-6)の製造)
・BR-1~3
 乾燥・窒素置換されたゴム詮付き100mLのガラスびんに、ブタジエンのシクロヘキサン溶液(15.2質量%)7.11g、ネオジムネオデカエートのシクロヘキサン溶液(0.56モル/L)0.59mL、メチルアミノキサンMAO(東ソーアクゾ社製、PMAO)のトルエン溶液(アルミニウム濃度として3.23モル/L)10.32mL、及び水素化ジイソブチルアルミ(関東化学社製)のヘキサン溶液(0.90モル/L)7.77mLを各々この順番に投入し、室温で2分間熟成した後、塩素化ジエチルアルミ(関東化学社製)のヘキサン溶液(0.95モル/L)1.45mLを加え、室温で時折攪拌しながら15分間熟成した。こうして得られた触媒溶液中のネオジムの濃度は0.011モル/Lであった。
 約1L容積のゴム栓付きガラスびんを乾燥・窒素置換し、該ガラスびんに乾燥精製したブタジエンのシクロへキサン溶液・乾燥シクロヘキサンを各々投入し、12質量%濃度のシクロヘキサン溶液が400g投入された状態とした。次いで、前記調製した触媒溶液を投入し、50℃の水浴中で1時間重合を行った。なお、投入量は各々1.17mL(BR-1)、1.35mL(BR-2)、1.56mL(BR-3)とした。
 その後、50℃にて老化防止剤2,2'-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)のイソプロパノール5%溶液2mLを加えて反応を停止させ、さらに微量のNS-5を含むイソプロパノール中で再沈殿させた後、ドラムにて乾燥させることで、ほぼ100%の収率でBR-1~3を得た。
・BR-4
 BR-1~3と同様に調製した触媒溶液及びモノマー溶液を用い、該触媒溶液1.85mLをゴム詮付きガラスびんに投入し、50℃の水浴中で1時間重合を行った。続いてジオクチルスズビスオクチマレート溶液(0.2モル/L)をネオジム対比1.1当量添加し、50℃にて30分間反応させた。その後、50℃にて老化防止剤NS-5のイソプロパノール5質量%溶液2mLを加えて重合反応の停止を行い、さらに微量のNS-5含むイソプロパノール中で再沈殿させた後、ドラムドライヤーにて乾燥し、ほぼ100%の収率でBR-4を得た。
・BR-5
 乾燥し、窒素置換された内容積約900ミリリットルの耐圧ガラス容器に、シクロヘキサン28.3g、1,3-ブタジエンモノマー50g、2,2-ジテトラヒドロフリルプロパン0.0057mmol及びヘキサメチルアミン0.513mmolをそれぞれシクロヘキサン溶液として注入し、これに0.57mmolのn-ブチルリチウム(BuLi)を加えた後、撹拌装置を備えた50℃温水浴中で4.5時間重合を行なった。重合転化率は、ほぼ100%であった。この重合系に、四塩化錫0.100mmolをシクロヘキサン溶液として加え、50℃において30分間攪拌した。その後さらに、2,6-ジ-tert-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5mLを加えて反応停止をおこない、さらに、常法に従い乾燥することによりBR-5を得た。
・BR-6
 乾燥し、窒素置換された内容積900mlの耐圧ガラス容器に、シクロヘキサン28.3g、1,3-ブタジエンモノマー50g、2,2-ジテトラヒドロフリルプロパン0.0057mmolをそれぞれシクロヘキサン溶液として注入し、これに0.57mmolのn-ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行った。重合転化率はほぼ100%であった。この重合系に四塩化錫0.100mmolをシクロヘキサン溶液として加え、50℃において30分間攪拌した。その後さらに、2,6-ジ-t-ブチルパラクレゾール(BHT)のイソプロパノール5%溶液0.5mLを加えて反応停止を行い、さらに常法に従い乾燥することによりBR-6を得た。
 (変性ポリブタジエン(BR-7~BR-11)、ポリブタジエン(BR-12)の製造)
・BR-12
 乾燥・窒素置換されたゴム詮付き100mLのガラスびんに、ブタジエンのシクロヘキサン溶液(15.2質量%)7.11g、ネオジムネオデカエートのシクロヘキサン溶液(0.56モル/L)0.59mL、メチルアミノキサンMAO(東ソーアクゾ社製、PMAO)のトルエン溶液(アルミニウム濃度として3.23モル/L)10.32mL、及び水素化ジイソブチルアルミ(関東化学社製)のヘキサン溶液(0.90モル/L)7.77mLを各々この順番に投入し、室温で2分間熟成した後、塩素化ジエチルアルミ(関東化学社製)のヘキサン溶液(0.95モル/L)1.45mLを加え、室温で時折攪拌しながら15分間熟成した。こうして得られた触媒溶液中のネオジムの濃度は0.011モル/Lであった。
 約1L容積のゴム栓付きガラスびんを乾燥・窒素置換し、該ガラスびんに乾燥精製したブタジエンのシクロへキサン溶液・乾燥シクロヘキサンを各々投入し、12質量%濃度のシクロヘキサン溶液が400g投入された状態とした。次いで、前記調製した触媒溶液を投入し、50℃の水浴中で1時間重合を行った。その後、50℃にて老化防止剤2,2'-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)のイソプロパノール5%溶液2mLを加えて反応を停止させ、さらに微量のNS-5を含むイソプロパノール中で再沈殿させた後、ドラムにて乾燥させることで、ほぼ100%の収率でBR-12を得た。
・BR-7~BR-10
 BR-12と同様に調製した触媒溶液及びモノマー溶液を用い、該触媒溶液1.85mLをゴム詮付きガラスびんに投入し、50℃の水浴中で1時間重合を行った。なお、触媒投入量は各々1.17mL(BR-7)、1.35mL(BR-8)、1.56mL(BR-9)、1.35mL(BR-10)とした。続いて第2表に示した変性剤を各々添加して徐々に加熱して各重合温度の水浴中で攪拌した。その後、各変性剤0.2モル/Lをネオジム対比1当量添加し、50℃にて30分間反応させた。その後、50℃にて老化防止剤NS-5のイソプロパノール5質量%溶液2mLを加えて重合反応の停止を行い、さらに微量のNS-5含むイソプロパノール中で再沈殿させた後、ドラムドライヤーにて乾燥し、ほぼ100%の収率でBR-7~BR-10を得た。
・BR-11
乾燥し、窒素置換された内容積約900ミリリットルの耐圧ガラス容器に、シクロヘキサン28.3g、1,3-ブタジエンモノマー50g、2,2-ジテトラヒドロフリルプロパン0.0057mmol及びヘキサメチルアミン0.513mmolをそれぞれシクロヘキサン溶液として注入し、これに0.57mmolのn-ブチルリチウム(BuLi)を加えた後、撹拌装置を備えた50℃温水浴中で4.5時間重合を行なった。重合転化率は、ほぼ100%であった。この重合系に、四塩化錫0.100mmolをシクロヘキサン溶液として加え、50℃において30分間攪拌した。その後さらに、2,6-ジ-tert-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液0.5mLを加えて反応停止をおこない、さらに、常法に従い乾燥することによりBR-11を得た。
(天然ゴム(NR)の調製)
 天然ゴムはRSS3号を使用し、この天然ゴム(NR-1)100質量部に対し、しゃっ解剤として o,o’-ジベンズアミドジフェニルジスルフィド(ノクタイザーSS、大内新興化学(株)製)を0.06質量部配合し、バンバリーミキサーにて温度110℃で素練り条件をスタートし、各々素練り時間を60秒、120秒、240秒としたものを調製しこれらをNR-2~NR-4とした。得られた素練りゴムの分子量及びムーニー粘度(加工性)を前記方法により測定した。
 これらのゴムの特性をまとめて第1表及び第2表に示す。NR-1~NR-4は、第1表及び第2表の双方に示す。
 なお、第1表及び第2表のBR-1~BR-12において、数平均分子量(Mn)として「360」とあるのは「360000」の略記である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例1~6及び比較例1~2>
 下記第3表に示す配合処方とした混合物を、バンバリーミキサーを使用して混練りし、未加硫のゴム組成物を得、厚さ2mmにシーティングした後、145℃で30分間加硫した。得られた加硫ゴムに対して、前記の方法でのゴム物性を評価した。
 また、上記実施例、比較例について、第3表に示した処方からカーボンブラックを除いた配合で同様に混練り、加硫を行った。得られたシートを用いて、前述の方法により耐摩耗性、耐破壊性の評価を行った。なお作業性については、前記混練りの段階で評価した。結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
[注]
 1) カーボンブラック:ISAF、旭カ-ボン(株)製、商品名「旭#80」
2) 老化防止剤6C:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、精工化学(株)製、商品名「オゾノン 6C」
3) 老化防止剤224:2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、大内新興化学工業(株)製、商品名「ノクラック224」
 4) 加硫促進剤CZ: N-シクロヘキシル-2-ベンゾジアゾリルスルフェンアミド、大内新興化学工業(株)製、商品名「ノクセラー CZ」
 5) 加硫促進剤DM:ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業(株)製、商品名「ノクセラー DM」
<実施例7~12及び比較例3>
 下記第4表に示す配合処方とした混合物を、バンバリーミキサーを使用して混練りし、未加硫のゴム組成物を得、厚さ2mmにシーティングした後、145℃で30分間加硫した。得られた加硫ゴムに対して、前記の方法でのゴム物性を評価した。
 また、上記実施例、比較例について、第4表に示した処方からカーボンブラックを除いた配合で同様に混練り、加硫を行った。得られたシートを用いて、前述の方法により耐摩耗性、耐破壊性及び低ロス性の評価を行った。結果を第4表にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
[注]
1)~5)は、第3表と同じである。
 第3表に示す結果から明らかなように、実施例のポリブタジエンのムーニー粘度が天然ゴムのムーニー粘度より高い組み合わせで混練したゴム組成物では、耐摩耗性及び耐破壊性の両立を図ることができるだけでなく、作業性についても良好な結果となった。
 一方、天然ゴムのムーニー粘度がポリブタジエンのムーニー粘度より高い組み合わせで混練した比較例のゴム組成物では、耐摩耗性及び耐破壊性をともに実施例より劣る結果となった。
 また、第4表に示す結果から明らかなように、実施例の変性ポリブタジエンのムーニー粘度が天然ゴムのムーニー粘度より高い組み合わせで混練したゴム組成物では、耐摩耗性及び耐破壊性の両立を図ることができるだけでなく、低ロス性についても良好な結果となった。また、変性ポリブタジエンを用いた組み合わせで混練した実施例7~11のゴム組成物では、未変性のポリブタジエンを用いた組み合わせで混練した実施例12のゴム組成物と比較して、耐摩耗性及び耐破壊性がさらに良好となる結果となった。
 一方、天然ゴムのムーニー粘度が変性ポリブタジエンのムーニー粘度より高い組み合わせで混練した比較例のゴム組成物では、耐摩耗性及び耐破壊性をともに実施例より劣る結果となった。

Claims (14)

  1.  ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを含み、該ポリブタジエンのムーニー粘度(ML1+4/100℃)をML(I)、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)をML(II)としたとき、ML(I)≧ML(II)の関係にあるゴム組成物。
  2.  前記ポリブタジエンが、カップリング処理によって高分子量化したものである請求項1に記載のゴム組成物。
  3.  前記ポリブタジエンと非相溶であるジエン系ゴムが、天然ゴム又はポリイソプレンゴムである請求項1又は2に記載のゴム組成物。
  4.  前記ゴム成分におけるポリブタジエンの含有質量Aと、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムの含有質量Bとの含有質量比(A/B)が、40/60~60/40の範囲である請求項1~3のいずれかに記載のゴム組成物。
  5.  前記ポリブタジエンが、変性ポリブタジエンである請求項1~4のいずれかに記載のゴム組成物。
  6.  前記充填剤の含有量が、前記ゴム成分100質量部に対して30質量部以上70質量部以下である請求項1~5のいずれかに記載のゴム組成物。
  7.  前記充填剤が、カーボンブラック及び無機充填剤から選ばれる少なくとも1種である請求項1~6のいずれかに記載のゴム組成物。
  8.  前記変性ポリブタジエンが、カーボンブラック及び無機充填剤から選ばれる少なくとも1種と親和性を有する官能基で変性されている請求項5~7のいずれかに記載のゴム組成物。
  9.  前記ポリブタジエンにおける1,2-ビニル結合含有量が、20%以下である請求項1~8のいずれかに記載のゴム組成物。
  10.  請求項1~9のいずれかに記載のゴム組成物を用いたタイヤ。
  11.  請求項1~9のいずれかに記載のゴム組成物の製造方法であって、
    ポリブタジエン及び該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムを含有するゴム成分と、充填剤とを混練する工程を有し、
    該ポリブタジエンとして、該ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴム以上のムーニー粘度(ML1+4/100℃)を有するものを用いるゴム組成物の製造方法。
  12.  前記ポリブタジエンが、変性ポリブタジエンである請求項11に記載のゴム組成物の製造方法。
  13.  前記ポリブタジエンと非相溶であるジエン系ゴム又はオレフィン系ゴムのムーニー粘度(ML1+4/100℃)が、45以上75以下である請求項11又は12に記載のゴム組成物の製造方法。
  14.  前記変性ポリブタジエンが、カーボンブラック及び無機充填剤から選ばれる少なくとも1種と親和性を有する官能基で変性されている請求項5~7のいずれかに記載のゴム組成物。
PCT/JP2011/072661 2010-10-01 2011-09-30 ゴム組成物及びその製造方法、並びにタイヤ WO2012043829A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180052638.4A CN103189443B (zh) 2010-10-01 2011-09-30 橡胶组合物及其制造方法和轮胎
RU2013114472/05A RU2574448C2 (ru) 2010-10-01 2011-09-30 Резиновая смесь, способ ее получения и покрышка
EP11829382.8A EP2623559B1 (en) 2010-10-01 2011-09-30 Rubber composition and method of producing same, and tire
US13/877,071 US9862815B2 (en) 2010-10-01 2011-09-30 Rubber composition and method of producing same, and tire
BR112013007299A BR112013007299B1 (pt) 2010-10-01 2011-09-30 composição de borracha, método para produzir a mesma e pneu

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010224353A JP5676197B2 (ja) 2010-10-01 2010-10-01 ゴム組成物及びその製造方法、並びにタイヤ
JP2010224354A JP5676198B2 (ja) 2010-10-01 2010-10-01 ゴム組成物及びその製造方法、並びにタイヤ
JP2010-224354 2010-10-01
JP2010-224353 2010-10-01

Publications (1)

Publication Number Publication Date
WO2012043829A1 true WO2012043829A1 (ja) 2012-04-05

Family

ID=45893266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072661 WO2012043829A1 (ja) 2010-10-01 2011-09-30 ゴム組成物及びその製造方法、並びにタイヤ

Country Status (5)

Country Link
US (1) US9862815B2 (ja)
EP (1) EP2623559B1 (ja)
CN (1) CN103189443B (ja)
BR (1) BR112013007299B1 (ja)
WO (1) WO2012043829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181776A1 (ja) * 2013-05-07 2014-11-13 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115211A1 (ja) * 2011-02-23 2012-08-30 株式会社ブリヂストン ゴム組成物、それを用いたタイヤ、及びゴム組成物の製造方法
US9296880B2 (en) * 2011-12-12 2016-03-29 Bridgestone Corporation Rubber composition for conveyor belts, conveyor belt, and belt conveyor
JP2018515658A (ja) * 2015-05-13 2018-06-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH シラン変性ポリブタジエンによるジエンゴムタイヤの転がり抵抗の改良
US10654995B2 (en) 2017-08-30 2020-05-19 The Goodyear Tire & Rubber Company Pneumatic tire
CN114907628A (zh) * 2022-04-29 2022-08-16 山东玲珑轮胎股份有限公司 耐磨轮胎用橡胶组合物
CN115181342B (zh) * 2022-08-22 2023-09-26 四川远星橡胶有限责任公司 一种高回弹性高模量低生热胎唇护胶及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215640A (ja) * 1985-03-20 1986-09-25 Denki Kagaku Kogyo Kk 耐衝撃性スチレン系樹脂
JPH06190083A (ja) * 1992-12-25 1994-07-12 Sumitomo Rubber Ind Ltd ゴルフボール用のゴム組成物
JP2000212213A (ja) * 1999-01-22 2000-08-02 Ube Ind Ltd 変性ポリブタジエンの製造方法、変性ポリブタジエン、及びゴム組成物
JP2001139633A (ja) * 1999-11-12 2001-05-22 Jsr Corp 共役ジエン系重合体の製造方法およびゴム組成物
JP2002241407A (ja) * 2001-02-16 2002-08-28 Bridgestone Corp しゃっ解剤
JP2005015590A (ja) 2003-06-25 2005-01-20 Bridgestone Corp ブタジエン系重合体及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ
JP2006097024A (ja) * 2004-09-23 2006-04-13 Goodyear Tire & Rubber Co:The 航空機用タイヤ
WO2006112450A1 (ja) 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2007040252A1 (ja) 2005-10-05 2007-04-12 Jsr Corporation 変性共役ジエン系重合体の製造方法、その方法によって得られた変性共役ジエン系重合体とそのゴム組成物
JP2009242788A (ja) 2008-03-10 2009-10-22 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB672992A (en) * 1948-10-01 1952-05-28 Standard Oil Dev Co Improvements in or relating to synthetic rubber
US5859101A (en) 1996-03-04 1999-01-12 The Yokohama Rubber Co. Ltd. Rubber composition for tire
US6166140A (en) * 1998-03-11 2000-12-26 The Goodyear Tire & Rubber Company Elastomer blend and use in tires
CN1137190C (zh) * 2001-02-19 2004-02-04 青岛化工学院 高反式-1,4-聚异戊二烯和高乙烯基聚丁二烯并用的轮胎胎面胶料
US20030127169A1 (en) * 2001-10-30 2003-07-10 Bridgestone/Firestone, Inc. Elastomers with long chain crosslinks to increase abrasion resistance
US20050272852A1 (en) * 2004-06-02 2005-12-08 Sandstrom Paul H Natural rubber-rich composition and tire with tread thereof
JP2007191611A (ja) * 2006-01-20 2007-08-02 Bridgestone Corp 変性ポリブタジエンゴム配合ゴム組成物及びタイヤ
US7594528B2 (en) * 2007-03-08 2009-09-29 The Goodyear Tire & Rubber Company Tire with sidewall comprised of emulsion styrene/butadiene rubber, cis 1,4-polyisoprene rubber and cis 1,4-polybutadiene rubber
WO2009113499A1 (ja) 2008-03-10 2009-09-17 株式会社ブリヂストン タイヤベースゴム用ゴム組成物、及び該ゴム組成物を用いてなる空気入りタイヤ
CN101608030A (zh) * 2008-06-20 2009-12-23 青岛科技大学 高反式-1,4-聚异戊二烯改性中乙烯基聚丁二烯橡胶
JP4635080B2 (ja) * 2008-08-11 2011-02-16 住友ゴム工業株式会社 タイヤの製造方法
SG184296A1 (en) 2010-03-31 2012-11-29 Jsr Corp Process for production of modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
CN102933608B (zh) 2010-06-08 2014-11-19 Jsr株式会社 改性共轭二烯系橡胶、其制造方法、以及橡胶组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215640A (ja) * 1985-03-20 1986-09-25 Denki Kagaku Kogyo Kk 耐衝撃性スチレン系樹脂
JPH06190083A (ja) * 1992-12-25 1994-07-12 Sumitomo Rubber Ind Ltd ゴルフボール用のゴム組成物
JP2000212213A (ja) * 1999-01-22 2000-08-02 Ube Ind Ltd 変性ポリブタジエンの製造方法、変性ポリブタジエン、及びゴム組成物
JP2001139633A (ja) * 1999-11-12 2001-05-22 Jsr Corp 共役ジエン系重合体の製造方法およびゴム組成物
JP2002241407A (ja) * 2001-02-16 2002-08-28 Bridgestone Corp しゃっ解剤
JP2005015590A (ja) 2003-06-25 2005-01-20 Bridgestone Corp ブタジエン系重合体及びその製造方法、並びにそれを用いたゴム組成物及びタイヤ
JP2006097024A (ja) * 2004-09-23 2006-04-13 Goodyear Tire & Rubber Co:The 航空機用タイヤ
WO2006112450A1 (ja) 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
WO2007040252A1 (ja) 2005-10-05 2007-04-12 Jsr Corporation 変性共役ジエン系重合体の製造方法、その方法によって得られた変性共役ジエン系重合体とそのゴム組成物
JP2009242788A (ja) 2008-03-10 2009-10-22 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623559A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181776A1 (ja) * 2013-05-07 2014-11-13 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JPWO2014181776A1 (ja) * 2013-05-07 2017-02-23 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
US9873778B2 (en) 2013-05-07 2018-01-23 Bridgestone Corporation Rubber composition and tire using the same

Also Published As

Publication number Publication date
BR112013007299B1 (pt) 2020-01-28
CN103189443A (zh) 2013-07-03
EP2623559B1 (en) 2015-11-18
EP2623559A4 (en) 2014-04-02
RU2013114472A (ru) 2014-10-10
US20130274375A1 (en) 2013-10-17
US9862815B2 (en) 2018-01-09
BR112013007299A2 (pt) 2016-07-05
CN103189443B (zh) 2016-03-09
EP2623559A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5756248B2 (ja) タイヤ
JP5914572B2 (ja) タイヤ
CA2624423C (en) Process for producing modified conjugated diene polymer, modified conjugated diene polymer obtained by the process, and rubber composition containing the same
US20110112212A1 (en) Tire
JP5499498B2 (ja) ゴム組成物及び空気入りタイヤ
JP2000344955A (ja) 変性ジエン系ゴム組成物
WO2012043829A1 (ja) ゴム組成物及びその製造方法、並びにタイヤ
JP2017145342A (ja) 空気入りタイヤ
WO2008050845A1 (fr) Procédé de production de polymères diènes conjugués modifiés, polymères diènes conjugués modifiés produits par ce procédé, compositions de caoutchouc et pneus
JPWO2003048216A1 (ja) 変性重合体の製造方法、その方法で得られた変性重合体及びゴム組成物
JP5727137B2 (ja) ゴム組成物及びそれを用いたタイヤ
JP2011088998A (ja) ゴム組成物及びタイヤ
JP2007262206A (ja) タイヤトレッド用ゴム組成物及びそれを用いた空気入りタイヤ
JP2006274049A (ja) ゴム組成物及びそれを用いた空気入りタイヤ
JP5217378B2 (ja) 変性共役ジエン系重合体の製造方法
BR112014027915B1 (pt) Polímeros de dieno, processo para a preparação de polímeros de dieno,uso de polímeros de dieno, composições vulcanizáveis de borracha, uso dascomposições vulcanizáveis de borracha, pneus e objetos moldados
JP4901101B2 (ja) 変性重合体、ゴム組成物及びタイヤ
JP6575464B2 (ja) ゴム組成物
JP5548615B2 (ja) ゴム組成物及びそれを用いたタイヤ
JP5676197B2 (ja) ゴム組成物及びその製造方法、並びにタイヤ
JP5363239B2 (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP6425922B2 (ja) ゴム組成物
JP5676198B2 (ja) ゴム組成物及びその製造方法、並びにタイヤ
JP2011111497A (ja) タイヤ
JP4134732B2 (ja) ゴム組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180052638.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011829382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013114472

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13877071

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007299

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007299

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130327