WO2012043799A1 - 多層回路基板の製造方法 - Google Patents

多層回路基板の製造方法 Download PDF

Info

Publication number
WO2012043799A1
WO2012043799A1 PCT/JP2011/072575 JP2011072575W WO2012043799A1 WO 2012043799 A1 WO2012043799 A1 WO 2012043799A1 JP 2011072575 W JP2011072575 W JP 2011072575W WO 2012043799 A1 WO2012043799 A1 WO 2012043799A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
resin
resin layer
circuit board
multilayer circuit
Prior art date
Application number
PCT/JP2011/072575
Other languages
English (en)
French (fr)
Inventor
洋平 立石
伊賀 隆志
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2012536583A priority Critical patent/JP5673685B2/ja
Priority to US13/876,495 priority patent/US9615465B2/en
Publication of WO2012043799A1 publication Critical patent/WO2012043799A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09136Means for correcting warpage

Definitions

  • the present invention relates to a method for manufacturing a multilayer circuit board. More specifically, the present invention relates to a method for manufacturing a multilayer circuit board substantially free from warpage.
  • circuit boards used in electronic devices are also required to have higher density.
  • the circuit board is generally multilayered.
  • Such a multilayer circuit board is obtained by, for example, laminating an electric insulating layer on the surface of an inner layer substrate having a conductor circuit layer formed on the outermost layer, and further forming a conductor circuit layer on the electric insulating layer.
  • a multilayer wiring board in which at least an insulating resin layer and a conductor wiring layer are formed includes a coordination polymer complex between the insulating resin layer and the conductor wiring layer.
  • a method of manufacturing a multilayer wiring board by forming a ground layer is disclosed.
  • Patent Document 2 discloses an uncured or semi-cured resin layer using a curable composition containing an insulating polymer and a curing agent on an inner substrate whose outermost layer is a conductor circuit layer 1.
  • the surface of the resin layer is brought into contact with a compound having a structure capable of coordinating with metal (Process B), and then the molded body is cured to form an electrical insulating layer b (Process) C)
  • a metal thin film layer is formed on the surface of the electrical insulating layer b (step D), and then a conductor circuit layer 2 including the metal thin film layer is formed (step E). It is disclosed.
  • an object of the present invention is to provide a method for manufacturing a multilayer circuit board substantially free of warpage.
  • the present inventors formed an uncured resin layer containing a thermosetting resin and a curing agent (I) on a substrate, and the curing agent ( After contacting the curing agent (II) that functions at a lower temperature than I), the resin layer is heated at a temperature at which the curing agent (II) exhibits its function, and then the temperature is increased by the curing agent (I).
  • a multilayer circuit board obtained by completing the curing of the resin layer to form an electrical insulating layer has been found to be substantially free of warping, and the present invention has been completed.
  • An uncured or semi-cured resin layer is formed on a substrate using a curable composition containing a thermosetting resin and a curing agent (I) (step A), and then the curing agent (I ) Is brought into contact with the surface of the resin layer with a curing agent (II) that can substantially cure the thermosetting resin at a temperature at which the thermosetting resin is substantially uncurable.
  • the resin layer is heated at a temperature at which the thermosetting resin is substantially uncurable and the curing agent (II) can substantially cure the thermosetting resin (step B), and then the curing agent.
  • step C heating and curing the resin layer at a temperature at which the thermosetting resin can be substantially cured to form an electrical insulating layer
  • step C a method for producing a multilayer circuit board
  • Circuit board manufacturing method [3] The process for producing a multilayer circuit board according to [1] or [2], wherein in step A, an uncured or semi-cured resin layer is formed only on one side of the substrate, [4] In the step B, the contact of the curing agent (II) with the resin layer surface is performed by immersing the substrate on which the resin layer is formed in an aqueous solution of the curing agent (II).
  • Thermosetting resin is epoxy resin, maleimide resin, (meth) acrylic resin, diallyl phthalate resin, triazine resin, alicyclic olefin polymer, aromatic polyether polymer, benzocyclobutene polymer, cyanate ester
  • the method for manufacturing a multilayer circuit board according to the present invention uses two kinds of curing agents having different temperature ranges suitable for function expression, and heat-cures the resin layer at at least two stages to form an electrical insulating layer.
  • the method for manufacturing a multilayer circuit board according to the present invention includes the following three steps.
  • Step A A step of forming an uncured or semi-cured resin layer on a substrate using a curable composition containing a thermosetting resin and a curing agent (I).
  • Step B The curing agent (II) capable of substantially curing the thermosetting resin at a temperature at which the curing agent (I) cannot substantially cure the thermosetting resin is brought into contact with the resin layer surface.
  • Step C A step of heating and curing the resin layer at a temperature at which the curing agent (I) can substantially cure the thermosetting resin to form an electrical insulating layer. Each step will be described in detail below.
  • the substrate used in the step A is not particularly limited, but a substrate in which the conductor circuit layer a is formed on one or both of the surfaces of the electrical insulating layer a is usually used.
  • a substrate in which the conductor circuit layer a is formed on one or both of the surfaces of the electrical insulating layer a is usually used.
  • Specific examples of such a substrate include a substrate made of an electrically insulating layer and a conductor circuit layer formed on the surface thereof, such as a printed wiring board, a silicon wafer substrate, and a glass substrate.
  • the thickness of the substrate is usually 50 ⁇ m to 2 mm, preferably 60 ⁇ m to 1.6 mm, more preferably 100 ⁇ m to 1 mm.
  • the electrical insulation layer a constituting the board is mainly composed of a thermosetting resin having electrical insulation.
  • the thermosetting resin is not particularly limited.
  • the curable composition containing these thermosetting resins and a curing agent is cured to obtain the electrical insulating layer a.
  • substrate may contain the glass fiber, the resin fiber, etc. in the electrical insulation layer a from a viewpoint of an intensity
  • the material of the conductor circuit layer a constituting the substrate is usually a conductive metal.
  • An uncured or semi-cured resin layer is formed on the substrate as described above using a curable composition containing a thermosetting resin and a curing agent (I).
  • the uncured resin layer is a state in which substantially the entire resin layer can be dissolved in a solvent in which the thermosetting resin constituting the resin layer can be dissolved.
  • a semi-cured resin layer is one that has been cured to the extent that it can be further cured by heating, and is partially dissolved in a solvent in which the thermosetting resin that constitutes the resin layer can be dissolved. It is.
  • a method of forming an uncured or semi-cured resin layer by laminating a film-shaped or sheet-shaped molded product of the adhesive composition (Step A1), and containing a thermosetting resin and a curing agent (I) on the substrate The method of apply
  • a curable composition is used to improve the adhesion between the substrate on which the conductor circuit layer a is formed and the electrical insulating layer formed by curing the resin layer. It is preferable to pre-process the surface of the board
  • the pretreatment includes a method of roughening the surface by bringing an alkaline sodium chlorite aqueous solution or permanganic acid into contact with the substrate surface, a reduction after oxidizing the surface with an alkaline potassium persulfate aqueous solution or a potassium sulfide-ammonium chloride aqueous solution, etc.
  • a method of depositing and roughening the plating on the conductor circuit layer portion of the substrate a method of forming a primer layer with a thiol compound or a silane compound, and the like.
  • a method of forming a primer layer using a thiol compound such as 2-di-n-butylamino-4,6-dimercapto-s-triazine is effective when the conductor circuit layer a is made of copper. This is preferable in that high adhesion can be obtained.
  • thermosetting resin constituting the curable composition used for forming the resin layer is not limited as long as it shows thermosetting in combination with a curing agent and has electrical insulation, for example, epoxy resin , Maleimide resin, (meth) acrylic resin, diallyl phthalate resin, triazine resin, alicyclic olefin polymer, aromatic polyether polymer, benzocyclobutene polymer, cyanate ester polymer, and polyimide. These resins are used alone or in combination of two or more.
  • an alicyclic olefin polymer an aromatic polyether polymer, a benzocyclobutene polymer, a cyanate ester polymer, and a polyimide are preferable, and an alicyclic olefin polymer and an aromatic polyether polymer are more preferable.
  • an alicyclic olefin polymer is particularly preferable.
  • liquid crystal polymers can also be used as preferred thermosetting resins.
  • Liquid crystal polymers include polymers of aromatic or aliphatic dihydroxy compounds, polymers of aromatic or aliphatic dicarboxylic acids, polymers of aromatic hydroxycarboxylic acids, aromatic diamines, aromatic hydroxyamines or aromatic aminocarboxylic acids. Examples of such polymers are exemplified.
  • “(meth) acryl” means methacryl or acryl.
  • the weight average molecular weight (Mw) of the thermosetting resin is not particularly limited, but is usually 1,000 to 1,000,000, preferably 3,000 to 500,000, more preferably 4,000 to 300,000. It is.
  • the thermosetting resin component having (Mw) of 1,000 to 1,000,000 is preferably 10% by weight or more, more preferably 15% by weight or more of the entire thermosetting resin contained in the curable composition. It is preferable that it is contained in the ratio.
  • the upper limit of the ratio is 100% by weight, that is, the thermosetting resin in which all of the thermosetting resins contained in the curable composition have a weight average molecular weight (Mw) of 1,000 to 1,000,000. It may consist of ingredients.
  • the thermosetting resin may include those having a weight average molecular weight (Mw) of less than 1,000 or more than 1,000,000.
  • the weight average molecular weight (Mw) in this specification is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC) using tetrahydrofuran as an eluent.
  • the alicyclic olefin polymer is an unsaturated hydrocarbon polymer having an alicyclic structure.
  • the alicyclic structure include a cycloalkane structure and a cycloalkene structure.
  • a cycloalkane structure is preferable because the mechanical strength and heat resistance of the obtained electrical insulating layer are improved.
  • the alicyclic structure may be either a monocyclic ring or a polycyclic ring (such as a condensed polycyclic ring, a bridged ring, or a combination polycyclic ring thereof).
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15 in the range of the curable composition.
  • Various properties such as moldability and mechanical strength and heat resistance of the obtained electric insulating layer are highly balanced and suitable.
  • the alicyclic olefin polymer preferably has a polar group.
  • the polar group include a hydroxyl group, a carboxyl group, an alkoxyl group, an epoxy group, a glycidyl group, an oxycarbonyl group, a carbonyl group, an amino group, an ester group, and a carboxylic acid anhydride group. Acid anhydride groups are preferred.
  • the content of the repeating unit having a polar group in 100 mol% of all the repeating units constituting the alicyclic olefin polymer is not particularly limited, but is usually 5 to 60 mol%, preferably 10 to 50 mol%. .
  • the number of polar groups present in each repeating unit is not particularly limited, but usually 1 to 2 is preferred.
  • the alicyclic olefin polymer is usually obtained by addition polymerization or ring-opening polymerization of an alicyclic olefin monomer, and optionally hydrogenating an unsaturated bond portion or by addition polymerization of an aromatic olefin monomer. It can be obtained by hydrogenating the aromatic ring part of the obtained polymer.
  • the alicyclic olefin polymer having a polar group is, for example, 1) by introducing a polar group into the alicyclic olefin polymer by a modification reaction, and 2) copolymerizing a monomer containing the polar group.
  • alicyclic olefin monomer refers to a monomer having a carbon-carbon double bond in the alicyclic structure
  • aromatic olefin monomer refers to an aromatic A monomer composed of a chain hydrocarbon having a group and a carbon-carbon double bond.
  • Examples of the alicyclic olefin monomer used to obtain the alicyclic olefin polymer include bicyclo [2.2.1] -hept-2-ene (common name: norbornene), 5-methyl-bicyclo [ 2.2.1] -Hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] -hept-2-ene, 5-ethyl-bicyclo [2.2.1] -hept-2 -Ene, 5-butyl-bicyclo [2.2.1] -hept-2-ene, 5-hexyl-bicyclo [2.2.1] -hept-2-ene, 5-octyl-bicyclo [2.2 .1] -Hept-2-ene, 5-octadecyl-bicyclo [2.2.1] -hept-2-ene, 5-ethylidene-bicyclo [2.2.1] -hept-2-ene, 5- Methylidene-bicyclo [2.2.1]
  • Tricyclo [4.3.0.12,5] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.12,5] dec-3-ene, tricyclo [4. 4.0.12,5] undeca-3,7-diene, tricyclo [4.4.0.12,5] undeca-3,8-diene, tricyclo [4.4.0.12,5] undeca 3-ene, tetracyclo [7.4.0.110, 13.02,7] -trideca-2,4,6-11 tetraene (also known as 1,4-methano-1,4,4a, 9a-tetrahydro Fluorene), tetracyclo [8.4.0.111,14.03,8] -tetradeca-3,5,7,12,11-tetraene (also known as 1,4-methano-1,4,4a, 5, 10,10a-hexahydroanthracene),
  • Tetracyclo [4.4.0.12,5.17,10] -dodec-3-ene (common name: tetracyclododecene), 8-methyl-tetracyclo [4.4.0.12, 5.17, 10] -dodec-3-ene, 8-ethyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene, 8-methylidene-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene, 8-ethylidene-tetracyclo [4.4.0.12,5.17,10] -dodec-3-ene, 8-vinyl-tetracyclo [4.4.
  • aromatic olefin monomers examples include styrene, ⁇ -methylstyrene, and divinylbenzene.
  • the alicyclic olefin monomer and / or aromatic olefin monomer may be used alone or in combination of two or more.
  • the alicyclic olefin polymer is obtained by copolymerizing the alicyclic olefin monomer and / or aromatic olefin monomer and a monomer copolymerizable with these monomers. There may be.
  • Monomers copolymerizable with alicyclic olefin monomers or aromatic olefin monomers include ethylene; propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3 -Methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene , 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, etc.
  • Non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7-octadiene Etc.
  • These monomers can be used alone or in combination of two or more.
  • Polymerization of the alicyclic olefin monomer or aromatic olefin monomer, and hydrogenation of the obtained polymer, which is performed as desired, are not particularly limited and can be performed according to a known method.
  • alicyclic olefin polymers include ring-opening polymers of norbornene monomers and hydrogenated products thereof, addition polymers of norbornene monomers, addition weights of norbornene monomers and vinyl compounds.
  • examples thereof include a polymer, a monocyclic cycloalkene polymer, an alicyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer and a hydrogenated product thereof, and an aromatic ring hydrogenated product of an aromatic olefin polymer.
  • ring-opening polymers of norbornene monomers and hydrogenated products thereof addition polymers of norbornene monomers, addition polymers of norbornene monomers and vinyl compounds, aromatic olefin polymers
  • An aromatic ring hydrogenated product is preferable, and a hydrogenated product of a ring-opening polymer of a norbornene monomer is particularly preferable.
  • These alicyclic olefin polymers can be used alone or in combination of two or more.
  • the ring-opening polymer of norbornene monomer and its hydrogenated product which are particularly preferred polymers, are olefins represented by C n H 2n because of their structural differences. Polyolefin resins obtained by copolymerizing are classified into different polymers.
  • the “norbornene monomer” refers to an alicyclic olefin monomer having a norbornene ring structure.
  • the method for adjusting the weight average molecular weight of the alicyclic olefin polymer may be in accordance with a conventional method, for example, ring-opening polymerization of an alicyclic olefin monomer using a titanium-based catalyst, a tungsten-based catalyst, or a ruthenium-based catalyst.
  • a molecular weight modifier such as a vinyl compound or a diene compound is added in an amount of about 0.1 to 10 mol% with respect to the total amount of monomers.
  • a relatively high Mw polymer is obtained when the amount of the molecular weight modifier is small, and a relatively low Mw polymer is obtained when it is used in a large amount.
  • Vinyl compounds used as molecular weight modifiers include ⁇ -olefin compounds such as 1-butene, 1-pentene, 1-hexene, and 1-octene; styrene compounds such as styrene and vinyltoluene; ethyl vinyl ether, isobutyl vinyl ether, and allyl Ether compounds such as glycidyl ether; halogen-containing vinyl compounds such as allyl chloride; oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol, and glycidyl methacrylate; nitrogen-containing vinyl compounds such as acrylamide;
  • diene compounds include 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 2-methyl-1,4-pentadiene, and non-conjugated dienes such as 2,5-dimethyl-1,5-hexadiene.
  • conjugated diene compounds such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene; It is done.
  • the glass transition temperature of the alicyclic olefin polymer can be appropriately selected depending on the purpose of use, but is usually 50 ° C. or higher, preferably 70 ° C. or higher, more preferably 100 ° C. or higher, and most preferably 125 ° C. or higher.
  • curing agent (I) used in the present invention there is no particular limitation on the curing agent (I) used in the present invention, and for example, an ionic curing agent, a radical curing agent, or a curing agent having both ionic and radical properties is used.
  • nitrogen-based halogen-free isocyanurate-based curing agents containing allyl groups and epoxy groups such as 1-allyl-3,5-diglycidyl isocyanurate and 1,3-diallyl-5-glycidyl isocyanurate Curing agents; bisphenols such as bisphenol A bis (ethylene glycol glycidyl ether) ether, bisphenol A bis (diethylene glycol glycidyl ether) ether, bisphenol A bis (triethylene glycol glycidyl ether) ether, and bisphenol A bis (propylene glycol glycidyl ether) ether
  • Glycidyl ether type epoxy compounds such as A-type glycidyl ether type epoxy
  • curing agents (I) can be used alone or in combination of two or more as appropriate.
  • the curing agent (I) at least one selected from the group consisting of polyvalent epoxy compounds, dicarboxylic acid derivatives, and polyol compounds is used. It is preferable to use a polyvalent epoxy compound. Curing of the curable composition proceeds by heating the composition, but the temperature range of the above curing agent (I) that can substantially cure the thermosetting resin is usually 150 to 300 ° C. Range.
  • the blending amount of the curing agent (I) in the curable composition used in the present invention is usually 1 to 500 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • a curing accelerator or the like can also be used.
  • the curing agent (I) is, for example, a polyvalent epoxy compound, a tertiary amine compound or a boron trifluoride complex compound is suitable as a curing accelerator.
  • a tertiary amine compound is used, the laminateability, insulation resistance, heat resistance, and chemical resistance of the resulting electrical insulation layer with respect to fine wiring are improved.
  • tertiary amine compounds include linear tertiary amine compounds such as benzyldimethylamine, triethanolamine, triethylamine, tributylamine, tribenzylamine, and dimethylformamide; pyrazoles, pyridines, pyrazines, Examples include pyrimidines, indazoles, quinolines, isoquinolines, imidazoles, and triazoles. Among these, imidazoles, particularly substituted imidazole compounds having a substituent are preferable.
  • substituted imidazole compound examples include 2-ethylimidazole, 2-ethyl-4-methylimidazole, bis-2-ethyl-4-methylimidazole, 1-methyl-2-ethylimidazole, 2-isopropylimidazole, 2, Alkyl-substituted imidazole compounds such as 4-dimethylimidazole and 2-heptadecylimidazole; 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-phenylimidazole, benzimidazole, 2-ethyl-4-methyl-1- (2′-cyanoethyl) imidazole, 2-ethyl-4-methyl-1- [2 ′-(3 ′′, 5 ′′ -Diaminotriazinyl) ethyl] imidazole And imidazo
  • an imidazole compound substituted with a hydrocarbon group containing a ring structure is preferable because of excellent compatibility with the alicyclic olefin polymer, and 1-benzyl-2-phenylimidazole is particularly preferable.
  • a wrinkle hardening accelerator is used individually or in combination of 2 or more types.
  • the blending amount of the curing accelerator is appropriately selected depending on the purpose of use, but is usually 0.001 to 30 parts by weight, preferably 0.01 to 10 parts by weight, based on 100 parts by weight of the thermosetting resin.
  • the amount is preferably 0.03 to 5 parts by weight.
  • the curable composition used in the present invention may contain other components as desired.
  • a compound having absorption in the wavelength region of the laser beam used when forming holes such as via holes and through holes.
  • Silica or the like is used when a carbon dioxide laser is used, and an ultraviolet absorber is used when an ultraviolet laser (for example, a UV-YAG laser) is used.
  • an ultraviolet laser for example, a UV-YAG laser
  • ultraviolet absorbers include salicylic acid compounds such as phenyl salicylate, p-tert-butylphenyl salicylate, and p-octylphenyl salicylate; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2- Hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4 Benzophenone compounds such as methoxy-5-sulfobenzophenone and bis (2-hydroxy-4-methoxybenzoylphenyl) methane;
  • a benzotriazole-based compound is preferable because it is compatible with the alicyclic olefin polymer and is excellent in stability during heat curing.
  • the blending amount of the ultraviolet absorber is usually 0.1 to 30 parts by weight, preferably 1 to 10 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • flame retardants soft polymers, heat stabilizers, weathering stabilizers, anti-aging agents, leveling agents, antistatic agents, slip agents, anti-blocking agents, anti-fogging agents, lubricants, dyes, pigments, natural oils, synthetic oils Oils, waxes, emulsions, fillers, and the like can be used as other ingredients.
  • the blending amounts thereof are appropriately selected within a range that does not impair the object of the present invention.
  • the film-like or sheet-like molded body of the curable composition used in (Step A1) is usually obtained by molding the curable composition by a solution casting method, a melt casting method, or the like. It is preferable to do this.
  • the organic solvent is dried and removed after applying the varnish to the support.
  • the support used in the solution casting method include a resin film (carrier film) and a metal foil.
  • the resin film a thermoplastic resin film is usually used. Specific examples include a polyethylene terephthalate film, a polypropylene film, a polyethylene film, a polycarbonate film, a polyethylene naphthalate film, a polyarylate film, and a nylon film.
  • a polyethylene terephthalate film and a polyethylene naphthalate film are preferable because they are excellent in heat resistance, chemical resistance, peelability after lamination, and the like.
  • the metal foil include copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil.
  • a copper foil, particularly an electrolytic copper foil or a rolled copper foil is preferred because of its good conductivity and low cost.
  • the thickness of the support is not particularly limited, but is usually 1 to 150 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 3 to 50 ⁇ m from the viewpoint of workability and the like.
  • each component can obtain by mixing each component and organic solvent which comprise a curable composition.
  • the mixing of each component may be carried out according to a conventional method, for example, stirring using a stirrer and a magnetic stirrer, high speed homogenizer, dispersion, planetary stirrer, twin screw stirrer, ball mill, three rolls, etc. It can be done by methods.
  • the temperature at the time of mixing is within a range where the reaction by the curing agent (I) does not affect the workability, and is preferably not more than the boiling point of the organic solvent used at the time of mixing from the viewpoint of safety.
  • organic solvent examples include aromatic hydrocarbon organic solvents such as toluene, xylene, ethylbenzene, trimethylbenzene, and anisole; aliphatic hydrocarbon organic solvents such as n-pentane, n-hexane, and n-heptane; Aliphatic hydrocarbon organic solvents such as cyclopentane and cyclohexane; Halogenated hydrocarbon organic solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene; Ketone organics such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone A solvent etc. can be mentioned. These organic solvents can be used alone or in combination of two or more.
  • aromatic hydrocarbon organic solvents such as toluene, xylene, ethylbenzene, trimethylbenzene, and anisole
  • aliphatic hydrocarbon organic solvents such
  • the amount of the organic solvent used is appropriately selected according to the purpose of controlling the thickness of the molded article to be obtained and improving flatness, but the solid content concentration of the varnish is usually 5 to 85% by weight, preferably 10 to 80%. It is in the range of 20% by weight, more preferably 20 to 70% by weight.
  • Examples of the coating method include dip coating, roll coating, curtain coating, die coating, and slit coating.
  • the conditions for removing and drying the organic solvent are appropriately selected depending on the type of the organic solvent, the drying temperature is usually 20 to 300 ° C., preferably 30 to 200 ° C., and the drying time is usually 30 seconds to 1 hour, preferably Is 1 to 30 minutes.
  • the curable composition When producing a film-like or sheet-like molded product of the curable composition, for example, by applying and impregnating a varnish to a fiber base material on a support, and appropriately removing the organic solvent, the curable composition is obtained.
  • the fiber base material include organic fibers such as polyamide fiber, polyaramid fiber and polyester fiber, and inorganic fibers such as glass fiber and carbon fiber.
  • the form of woven fabrics such as a plain weave and a twill weave, the form of a nonwoven fabric, etc. are mentioned.
  • the thickness of the fiber base material is preferably from 5 to 100 ⁇ m, more preferably from 10 to 50 ⁇ m, from the viewpoint of improving the ease of handling of the resulting molded product and improving the wiring embedding property.
  • the thickness of the film-like or sheet-like molded body is usually 0.1 to 150 ⁇ m, preferably 0.5 to 100 ⁇ m, more preferably 1 to 80 ⁇ m.
  • the film-like or sheet-like molded product may have a single-layer structure or a multilayer structure, and each layer may be of the same type or of different types.
  • the film or sheet is formed on the support and then peeled off from the support.
  • Step A1 in order to bond the film-shaped or sheet-shaped molded body of the curable composition onto a substrate, the film-shaped or sheet-shaped molded body with a support is usually used as a conductor circuit.
  • the thermocompression bonding is preferably performed under reduced pressure in order to improve the embedding property of the molded body into the wiring and suppress the generation of bubbles and the like.
  • the temperature during thermocompression bonding is usually 30 to 250 ° C., preferably 70 to 200 ° C.
  • the crimping force is usually 10 kPa to 20 MPa, preferably 100 kPa to 10 MPa
  • the crimping time is usually 30 seconds to 5 hours, preferably 1 minute. It is about 3 hours, and the atmosphere is reduced to usually 100 kPa to 1 Pa, preferably 40 kPa to 10 Pa.
  • Two or more molded bodies to be bonded to the substrate may be used.
  • the molded body is bonded to the substrate.
  • Another molded body may be bonded so as to be in contact with the molded body.
  • the molded bodies to be used may be the same type or different types.
  • the varnish of the curable composition described above may be applied directly on the substrate and dried.
  • the method and conditions for application and drying may be the same as those for forming a film-like or sheet-like molded body of the curable composition.
  • the resin layer may be formed on both sides of the substrate or only on one side.
  • the method for producing a multilayer circuit board according to the present invention includes a resin It is very suitable for manufacturing a multilayer circuit board by forming a layer only on one side of the board.
  • step B the curing agent (II) capable of substantially curing the thermosetting resin at a temperature at which the curing agent (I) cannot substantially cure the thermosetting resin was formed on the substrate in step A.
  • the curing agent (I) is a temperature at which the thermosetting resin cannot be substantially cured, and the curing agent (II) can substantially cure the thermosetting resin.
  • the resin layer after being brought into contact with the curing agent (II) is heated.
  • the “temperature at which the thermosetting resin cannot be substantially cured” for a given curing agent refers to the use temperature of the curing agent at which the thermosetting resin cannot be substantially cured.
  • thermosetting resin can be substantially cured for a predetermined curing agent means that when the thermosetting resin is heated at a predetermined temperature for 1 hour in the presence of the curing agent, an uncured thermosetting property is obtained. This means that the amount of dissolution after heating is 95% by weight or more compared to the amount of dissolution of the thermosetting resin before heating in a solvent in which the resin exhibits solubility.
  • a temperature at which a thermosetting resin can be substantially cured” for a given curing agent refers to a use temperature of the curing agent at which the thermosetting resin can be substantially cured.
  • the curing agent (I) and the curing agent (II), which are two kinds of curing agents having different temperature ranges capable of substantially curing the thermosetting resin, are used.
  • the temperature range of the curing agent (I) is on the high temperature side
  • the temperature range of the curing agent (II) is on the low temperature side.
  • step B the resin layer brought into contact with the curing agent (II) is heated. Under the heating conditions, the thermosetting resin does not substantially exhibit fluidity, and the shape obtained as a resin layer is usually used.
  • step C the resin layer is further heated and substantially completely cured by the curing agent (I) (preliminary curing), and the contact portion with the curing agent (II) is partially cured.
  • Main curing an electrical insulating layer is formed, but the shape of the resin layer is maintained by preliminary curing in step B.
  • main curing high temperature
  • storage of a multilayer circuit board room temperature
  • the curing agent (II) is brought into contact with the surface of the resin layer formed on the substrate in the step A.
  • the resin layer When forming a resin layer by laminating a film-like or sheet-like molded body of a curable composition on a substrate, if a molded body with a support is used, after removing the support, the resin layer The curing agent (II) is brought into contact with the surface.
  • the curing agent (II) used in the present invention is not particularly limited, but polysulfide; polymercaptan; polyamide; imidazole; and chain aliphatic polyamine, cycloaliphatic polyamine, fatty aroma from the viewpoint of effectively performing preliminary curing. It is preferable to use at least one selected from the group consisting of aromatic amines, aromatic amines, and amine complexes thereof, and it is more preferable to use chain aliphatic polyamines. Examples of chain aliphatic polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, diethylaminopropylamine, and hexamethylenediamine.
  • Examples of the cycloaliphatic polyamine include N-aminoethylpiperazine.
  • Examples of the aliphatic aromatic amine include xylenediamine, xylenediamine trimer (for example, “Amine Black” and “Shoamine Black” manufactured by Showa Denko KK), and xylenediamine derivatives (for example, “Shoamine N” manufactured by Showa Denko KK). , “Shoamine 1001”, and “Shoamine 1010”).
  • Examples of the aromatic amine include metaphenylenediamine and diaminodiphenylmethane. These can be used alone or in combination of two or more.
  • the temperature range in which the thermosetting resin of the curing agent (II) can be substantially cured is usually in the range of 20 ° C. or higher and lower than 150 ° C.
  • the method for bringing the hardener (II) into contact with the resin layer surface is not particularly limited.
  • a dipping method in which the curing agent (II) is dissolved in water or an organic solvent to form a solution, and the substrate on which the resin layer is formed is immersed in the obtained solution, or the resin layer surface on the substrate is immersed in the solution.
  • the spray method etc. which apply
  • the contact of the curing agent (II) with the resin layer surface is preferably performed by immersing the substrate on which the resin layer is formed in an aqueous solution of the curing agent (II) from the viewpoint of effectively performing preliminary curing. is there. Moreover, it is preferable to carry out substantially over the entire surface of the resin layer.
  • the contact operation may be repeated once or twice or more.
  • the temperature at the time of contact may be arbitrarily selected in consideration of the temperature range where the thermosetting resin of the curing agent (II) can be substantially cured, the boiling point of the solvent of the solution, and the like. ° C, preferably in the range of 15-65 ° C.
  • the immersion time may be appropriately selected according to the concentration of the curing agent (II) solution, etc., but is usually 0.1 to 360 minutes, preferably 0.1 to 60 minutes. .
  • an inert gas such as nitrogen may be sprayed for the purpose of removing the excess of the curing agent (II).
  • the solvent used for preparing the solution of the curing agent (II) is not particularly limited as long as the resin layer does not dissolve easily and the curing agent (II) dissolves.
  • examples thereof include polar solvents such as water; ethers such as diethyl ether; alcohols such as ethanol and isopropanol; ketones such as acetone; cellosolves such as ethyl cellosolve acetate; and mixtures thereof.
  • the concentration of the curing agent (II) in the solution of the curing agent (II) is not particularly limited, but is usually 0.001 to 70% by weight, preferably 0.01 to 50% from the viewpoint of effectively performing preliminary curing. % By weight.
  • Pre-curing can be satisfactorily performed by immersing the substrate on which the resin layer is formed in the solution of the curing agent (II) or spraying the solution onto the surface of the resin layer on the substrate.
  • the curing agent (II) is liquid at the use temperature and there is no hindrance to the operation of contacting the curing agent (II) to the resin layer surface, the curing agent (II) is not particularly dissolved in the solvent, It is also possible to perform the contact operation using it as it is.
  • a surfactant or the like may be arbitrarily added from the viewpoint of improving the wettability between the curing agent (II) and the resin layer surface.
  • the amount of components other than the curing agent (II) is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less.
  • the resin layer is heated.
  • the heating is performed at a temperature at which the curing agent (I) cannot substantially cure the thermosetting resin and the curing agent (II) can substantially cure the thermosetting resin.
  • As heating temperature it is 20 degreeC or more and less than 150 degreeC normally.
  • the heating time is usually 0.1 to 5 hours, preferably 0.5 to 3 hours.
  • the heating of the resin layer may be performed by (i) maintaining a constant temperature for a certain period of time, (ii) performing the heating in (i) in multiple stages in a constant temperature range, iii)
  • the temperature may be raised from the lower limit to the upper limit of the constant temperature range, or irregularly, at a constant time, or (iv) (i) to (iii) may be appropriately combined.
  • Good it is preferable to perform the heating of a resin layer by said (iv) from a viewpoint of performing preliminary hardening effectively.
  • the heating method is not particularly limited, and may be performed using, for example, an oven.
  • Step C Following the above (Step B), the pre-cured resin layer is heated and cured at a temperature at which the curing agent (I) can substantially cure the thermosetting resin, thereby forming an electrical insulating layer.
  • the curing of the resin layer is usually performed by heating the resin layer (the entire substrate on which the resin layer is formed). Curing conditions may be appropriately selected according to the curing agent (I), but the heating temperature of the resin layer is usually 150 to 300 ° C., and the heating time is usually 0.1 to 5 hours, preferably 0.5 to 3 hours.
  • the heating of the resin layer can be carried out as described in (i) to (iv) as in the case of heating the resin layer after bringing the curing agent (II) into contact with the surface in Step B. From the viewpoint of effectively performing the main curing, the above (i) is preferable.
  • the heating method is not particularly limited, and may be performed using, for example, an oven.
  • the resin layer in step C the resin layer is substantially completely cured, and an electrical insulating layer is formed.
  • the thickness of the electrical insulating layer is not particularly limited, but is usually 1 to 50 ⁇ m.
  • the multilayer circuit board of the present invention is manufactured. In such a multilayer circuit board, substantially no warping occurs. Here, “substantially” means that it does not cause a practical problem.
  • a conductor circuit layer b may be further provided on the electrical insulating layer formed on the conductor circuit layer a of the board.
  • an opening for forming a via hole is formed in the electrical insulating layer before the conductor circuit layer b is formed.
  • the opening for forming the via hole can be usually formed by physical treatment such as drilling, laser, and plasma etching after the resin layer is cured to form the electrical insulating layer. From the viewpoint that a finer via hole can be formed without degrading the characteristics of the electrical insulating layer, a method using a laser such as a carbon dioxide laser, an excimer laser, and a UV-YAG laser is preferable.
  • the electrical insulating layer b As a method for forming the conductor circuit layer b on the electrical insulating layer (hereinafter sometimes referred to as electrical insulating layer b) formed on the substrate in the multilayer circuit board manufacturing method of the present invention, the electrical insulating layer b is used. There is a method of forming a conductor circuit layer by forming a metal thin film layer thereon and further growing the plating by wet plating such as electrolytic plating. The opening for forming the via hole in the electrical insulating layer b is usually performed before the metal thin film layer is formed.
  • the metal thin film layer can be formed by an electroless plating method, a sputtering method, a vacuum evaporation method, or the like, and is particularly preferably performed by an electroless plating method or a sputtering method.
  • the metal thin film layer is formed on the surface of the electrical insulating layer b and the inner wall surface of the via hole forming opening. After forming the metal thin film layer, before the plating is grown, a plating resist is formed on the metal thin film layer, after the plating is grown, the plating resist is removed, and the metal thin film layer is further etched to etch the conductor.
  • a circuit layer b is formed.
  • the conductor circuit layer b is usually composed of a metal thin film layer and plating grown thereon.
  • the formation of the electrical insulating layer by the steps A to C in the present invention and the formation of the conductor circuit layer on the electrical insulating layer are repeated, thereby further Multiple layers are also possible.
  • a multilayer circuit substrate having substantially no warpage can be obtained.
  • WLP Wafer Level Package
  • the area of the package can be reduced to the same size as the chip by forming a multilayer circuit directly on the silicon wafer substrate before cutting into individual chips.
  • the method for producing a multilayer circuit substrate of the present invention is particularly suitable.
  • the multilayer circuit board of the present invention can be used as a printed wiring board for mounting a semiconductor element such as a CPU and a memory and other mounting parts in an electronic device such as a computer or a mobile phone.
  • a semiconductor element such as a CPU and a memory and other mounting parts in an electronic device such as a computer or a mobile phone.
  • those having fine wiring are suitable as high-density printed wiring boards, high-speed computers, and wiring boards for portable terminals used in the high-frequency region.
  • Amount of monomer in polymerization solution The polymerization solution was diluted with tetrahydrofuran and measured by gas chromatography (GC) to determine the amount of monomer in the polymerization solution.
  • GC gas chromatography
  • the hydrogenation rate is the ratio of the number of moles of unsaturated bonds hydrogenated to the number of moles of unsaturated bonds in the polymer before hydrogenation. 400 MHz 1H-NMR It was determined by spectrum measurement.
  • Viscosity of varnish The dynamic viscosity at 25 ° C. was measured using a E type viscometer.
  • Warpage amount of substrate Laminate substrate on which an insulating layer is formed on one side of the substrate is placed on a flat surface with its convex surface down, and the layer that floats the highest from the flat surface. The distance to the edge of the substrate was measured as the amount of warpage of the substrate.
  • thermosetting resin As the first stage of polymerization, 35 mol parts of 5-ethylidene-bicyclo [2.2.1] hept-2-ene (hereinafter abbreviated as “EdNB”), 0.9 mol parts of 1-hexene, 340 mol parts of anisole and 4-acetoxybenzylidene (dichloro) (4,5-dibromo-1,3-dimesityl-4-imidazoline-2-ylidene) (tricyclohexylphosphine) ruthenium (C1063, manufactured by Wako Pure Chemical Industries) as a ruthenium-based polymerization catalyst 005 parts were charged into a nitrogen-substituted pressure-resistant glass reactor and subjected to a polymerization reaction at 80 ° C.
  • EdNB 5-ethylidene-bicyclo [2.2.1] hept-2-ene
  • a norbornene-based monomer ring-opening polymer hereinafter referred to as a norbornene-based ring-opening polymer.
  • Solution was obtained.
  • tetracyclo [9.2.1.02,10.03,8] tetradeca-3,5,7,12-tetraene metalhanotetrahydrofluorene, hereinafter was added to the solution obtained in the first stage of polymerization as the second stage of polymerization.
  • MTF molecular weight distribution
  • NDCA bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic anhydride
  • anisole 250 parts by mole and 0.01 part of C1063 were added, and a polymerization reaction was performed at 80 ° C. for 1.5 hours with stirring to obtain a solution of a norbornene-based ring-opening polymer.
  • this solution was measured by gas chromatography, it was confirmed that substantially no monomer remained, and the polymerization conversion rate was 99% or more.
  • the obtained ring-opening polymer solution was charged into a nitrogen-substituted autoclave equipped with a stirrer, 0.03 part of C1063 was added, and the mixture was stirred at 150 ° C. and a hydrogen pressure of 7 MPa for 5 hours to conduct a hydrogenation reaction.
  • a solution of polymer (A-1) which is a hydrogenated product of norbornene ring-opening polymer was obtained.
  • the resulting polymer (A-1) had a weight average molecular weight of 60,000, a number average molecular weight of 30,000, and a molecular weight distribution of 2.
  • the hydrogenation rate was 95%, and the content of repeating units having a carboxylic anhydride group was 30 mol%.
  • the solid content concentration of the polymer (A-1) solution was 22%.
  • the solution of the obtained ring-opening polymer was charged into an autoclave equipped with a stirrer substituted with nitrogen and stirred for 5 hours at 150 ° C. and a hydrogen pressure of 7 MPa to carry out a hydrogenation reaction, whereby hydrogen of the norbornene-based ring-opening polymer was obtained.
  • a solution of polymer (A-2) as an additive was obtained.
  • the resulting polymer (A-2) had a weight average molecular weight of 50,000, a number average molecular weight of 26,000, and a molecular weight distribution of 1.9.
  • the hydrogenation rate was 97%, and the content of repeating units having a carboxylic anhydride group was 30 mol%.
  • the solid content concentration of the polymer (A-2) solution was 22%.
  • thermosetting resin 70 mol parts of MTF, 30 mol parts of NDCA, 6 mol parts of 1-hexene, 590 mol parts of anisole, and 0.015 mol part of C1063 were charged into a pressure glass reactor purged with nitrogen and polymerized at 80 ° C. for 1 hour with stirring. The reaction was performed to obtain a norbornene-based ring-opening polymer solution. When this solution was measured by gas chromatography, it was confirmed that substantially no monomer remained, and the polymerization conversion rate was 99% or more.
  • the obtained ring-opened polymer solution was charged into an autoclave equipped with a stirrer purged with nitrogen, and a hydrogenation reaction was performed by stirring at 150 ° C. and a hydrogen pressure of 7 MPa for 5 hours.
  • the obtained hydrogenation reaction solution was concentrated to obtain a solution of a polymer (A-3) that is a hydrogenated product of a norbornene-based ring-opening polymer.
  • the resulting polymer (A-3) had a weight average molecular weight of 10,000, a number average molecular weight of 5,000, and a molecular weight distribution of 2.
  • the hydrogenation rate was 97%, and the content of repeating units having a carboxylic anhydride group was 30 mol%.
  • the solid content concentration of the polymer (A-3) solution was 55%.
  • Curable composition B-1 450 parts of the polymer (A-1) solution and 40% spherical silica (Admafine (registered trademark) SO-C1, manufactured by Admatechs, volume average particle size 0.25 ⁇ m) and the polymer (A-2) ) 150 parts of silica slurry in which 2% was dispersed in anisole was mixed and stirred with a planetary stirrer for 3 minutes.
  • a polyfunctional epoxy resin (1032H60, manufactured by Mitsubishi Chemical Co., Ltd., epoxy equivalents 163 to 175) as a curing agent (I) 4.5 parts in 70% dissolved in anisole, and 2- [2 as a laser processability improver.
  • fluorene-based epoxy resin (Ogsol (registered trademark) PG-100, manufactured by Osaka Gas Chemical Co., epoxy equivalents 163 to 175), 123 parts, bisphenol A type epoxy resin [Epicoat (registered trademark) 828EL Manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194], 28 parts, 23 parts of polyfunctional epoxy resin 1032H60, 1 part of tris (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate as an anti-aging agent, Dicyclopentadiene type novolak resin (GDP-6095LR, manufactured by Gunei Chemical Industry Co., Ltd.) 81 parts, CP-002 (mixture of fluorene phenol monomer and bisphenol A, manufactured by Osaka Gas Chemical Co., Ltd.) 50% dissolved in anisole 60 The parts were mixed and stirred with a planetary stirrer for 3 minutes.
  • Example 1 The varnish of the curable composition (B-1) was applied onto a polyethylene terephthalate film (support) having a thickness of 100 ⁇ m using a wire bar, and then dried at 130 ° C. for 90 seconds in a nitrogen atmosphere. A film with support (C-1) in which a resin layer having a thickness of 3 ⁇ m of the curable composition (B-1) for curing was formed was obtained. Next, a varnish of the curable composition (B-2) is placed on the surface of the curable composition (B-1) of the film with support (C-1), a doctor blade (manufactured by Tester Sangyo Co., Ltd.) and an auto film.
  • a doctor blade manufactured by Tester Sangyo Co., Ltd.
  • the pressure was reduced for 30 seconds at a vacuum degree of 13 hPa or less, and then the pressure-bonding temperature was 110 ° C. with the heat-resistant rubber press plate.
  • Thermocompression bonding was performed at 0.1 MPa for 60 seconds (primary press).
  • thermocompression bonding was performed for 90 seconds at a pressure bonding temperature of 110 ° C. and 1 MPa using a hydraulic press device provided with metal press plates at the top and bottom (secondary press).
  • the support body was peeled off to obtain a laminate of the resin layer of the curable composition and the substrate.
  • Example 1 A laminated substrate on which an insulating layer was formed was obtained in the same manner as in Example 1 except that ion-exchanged water was used instead of the TETA 5% aqueous solution.
  • the total thickness of the resin layer was 14 ⁇ m.
  • the amount of warpage of the obtained multilayer substrate was measured, the amount of warpage was 2.5 mm. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を、基板上に形成した(工程A)後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度において熱硬化性樹脂を実質的に硬化可能な硬化剤(II)を、前記樹脂層表面に接触させた後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱し(工程B)、次いで硬化剤(I)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱して硬化させ、電気絶縁層を形成する(工程C)、多層回路基板の製造方法。

Description

多層回路基板の製造方法
  本発明は、多層回路基板の製造方法に関する。より詳しくは、実質的に反りのない多層回路基板の製造方法に関する。
  電子機器の小型化、多機能化に伴って、電子機器に用いられている回路基板にも、より高密度化が要求されるようになってきている。回路基板を高密度化するためには、回路基板を多層化するのが一般的である。このような多層回路基板は、例えば、最外層に導電体回路層が形成された内層基板の表面に電気絶縁層を積層し、当該電気絶縁層の上にさらに導電体回路層を形成することによって得られ、所望により電気絶縁層と導電体回路層とを数段積層することもできる。
  こうした多層回路基板においては、回路基板の寿命を延ばし信頼性を確保するため、電気絶縁層と、その上に形成する導電体回路層との密着性が重要となる。密着性向上に関する技術としては、例えば、特許文献1には、少なくとも絶縁樹脂層と導体配線層が形成された多層配線基板において、前記絶縁樹脂層と導体配線層間に配位高分子錯体を含む下地層を形成して多層配線基板を製造する方法が開示されている。また、特許文献2には、最外層が導電体回路層1である内層基板上に、絶縁性重合体と硬化剤とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を形成した(工程A)後、当該樹脂層表面に、金属に配位可能な構造を有する化合物を接触させ(工程B)、次いで当該成形体を硬化させて電気絶縁層bを形成し(工程C)、この電気絶縁層bの表面に金属薄膜層を形成し(工程D)、その後、当該金属薄膜層を含む導電体回路層2を形成する(工程E)、多層回路基板の製造方法が開示されている。
特開2001-345554号公報 特開2003-158373号公報
  本発明者らは、前記特許文献に記載の方法に従って多層回路基板を得たところ、電気絶縁層と導電体回路層との密着性について実用上の問題は認められなかったが、いずれの方法においても、特に、内層基板の片面に電気絶縁層と導電体回路層とを積層させて多層回路基板を得た場合、該基板に反りが生じてしまい、例えば、マザーボード上に実装するには不適な場合があることが明らかになった。従って、本発明の課題は、実質的に反りのない多層回路基板の製造方法を提供することにある。
  本発明者らは、前記課題を解決すべく鋭意検討した結果、基板上に、熱硬化性樹脂と硬化剤(I)とを含む未硬化の樹脂層を形成し、その表面に前記硬化剤(I)よりも低温で機能する硬化剤(II)を接触させた後、硬化剤(II)がその機能を発現する温度で樹脂層を加熱し、次いで、昇温して硬化剤(I)により樹脂層の硬化を完結させて電気絶縁層を形成して得られた多層回路基板では実質的に反りが生じないことを見出し、本発明を完成させるに到った。
  すなわち、本発明によれば、
〔1〕熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を、基板上に形成した(工程A)後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度において熱硬化性樹脂を実質的に硬化可能な硬化剤(II)を、前記樹脂層表面に接触させた後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱し(工程B)、次いで硬化剤(I)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱して硬化させ、電気絶縁層を形成する(工程C)、多層回路基板の製造方法、
〔2〕工程Aにおいて、未硬化又は半硬化の樹脂層が、前記硬化性組成物のフィルム状又はシート状成形体を、前記基板の表面に貼り合わせて形成される前記〔1〕記載の多層回路基板の製造方法、
〔3〕工程Aにおいて、未硬化又は半硬化の樹脂層が基板の片面にのみ形成される前記〔1〕又は〔2〕記載の多層回路基板の製造方法、
〔4〕工程Bにおいて、硬化剤(II)の樹脂層表面への接触が、樹脂層が形成された基板を、硬化剤(II)の水溶液中に浸漬させて行われる前記〔1〕~〔3〕いずれか記載の多層回路基板の製造方法、
〔5〕熱硬化性樹脂が、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、液晶ポリマー、及びポリイミドからなる群より選択される少なくとも1種である前記〔1〕~〔4〕いずれか記載の多層回路基板の製造方法、
〔6〕硬化剤(I)が、多価エポキシ化合物、ジカルボン酸誘導体、及びポリオール化合物からなる群より選択される少なくとも1種である前記〔1〕~〔5〕いずれか記載の多層回路基板の製造方法、
〔7〕硬化剤(II)が、ポリスルフィド;ポリメルカプタン;ポリアミド;イミダゾール;並びに、鎖状脂肪族ポリアミン、環状脂肪族ポリアミン、脂肪芳香族アミン、芳香族アミン、及びそれらのアミン錯体;からなる群より選択される少なくとも1種である前記〔1〕~〔6〕いずれか記載の多層回路基板の製造方法、並びに
〔8〕前記〔1〕~〔7〕いずれかに記載の多層回路基板の製造方法により製造された多層回路基板、が提供される。
  本発明によれば、実質的に反りのない多層回路基板を効率的に製造することができる。
  本発明の多層回路基板の製造方法は、その機能発現に好適な温度域が異なる2種の硬化剤を用い、少なくとも2段階の温度で樹脂層を加熱硬化して電気絶縁層を形成することを1つの大きな特徴とする。
  本発明の多層回路基板の製造方法は、次の3つの工程を有する。
(工程A)熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を、基板上に形成する工程。
(工程B)硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度において熱硬化性樹脂を実質的に硬化可能な硬化剤(II)を、前記樹脂層表面に接触させた後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱する工程。
(工程C)硬化剤(I)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱して硬化させ、電気絶縁層を形成する工程。
  各工程について、以下に詳述する。
(工程A)
  工程Aで用いる基板は、特に限定されるものではないが、通常、電気絶縁層aの表面の一方又は両方に導電体回路層aが形成されてなる基板が用いられる。かかる基板の具体例としては、プリント配線基板、シリコンウェハー基板、及びガラス基板などの、電気絶縁層と、その表面に形成された導電体回路層とからなる基板が挙げられる。基板の厚さは、通常50μm~2mm、好ましくは60μm~1.6mm、より好ましくは100μm~1mmである。
  プリント配線基板において、基板を構成する電気絶縁層aは、電気絶縁性を有する熱硬化性樹脂を主成分としてなる。熱硬化性樹脂は特に制限されず、例えば、脂環式オレフィン重合体、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、芳香族ポリエーテル重合体、シアネートエステル重合体、及びポリイミドなどが挙げられる。通常、これらの熱硬化性樹脂と硬化剤とを含有する硬化性組成物を硬化して電気絶縁層aを得る。また、基板は、強度向上の観点から、ガラス繊維や樹脂繊維などを電気絶縁層aに含有させたものであってもよい。基板を構成する導電体回路層aの材料は、通常、導電性金属である。
  以上のような基板上に、熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を形成する。
  ここで未硬化の樹脂層とは、樹脂層を構成する熱硬化性樹脂が溶解可能な溶剤に、実質的に樹脂層全部が溶解可能な状態のものである。半硬化の樹脂層とは、加熱によって更に硬化しうる程度に硬化された状態のものであり、樹脂層を構成している熱硬化性樹脂が溶解可能な溶剤に一部が溶解する状態のものである。
  基板上に樹脂層を形成する方法に格別な制限はないが、基板の表面、詳しくは基板の導電体回路層aと接するように、熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物のフィルム状又はシート状成形体を貼り合わせて、未硬化又は半硬化の樹脂層を形成する(工程A1)方法や、基板上に熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を塗布し、乾燥させて、未硬化又は半硬化の樹脂層を形成する(工程A2)方法が挙げられる。樹脂層を硬化して得られる電気絶縁層上に所望により形成される導電体回路層との密着性の面内均一性が高くなることから、(工程A1)によって樹脂層を形成するのが好ましい。
  (工程A1)によって樹脂層を形成する場合、導電体回路層aが形成された基板と、樹脂層を硬化して形成される電気絶縁層との密着性を向上させるために、硬化性組成物のフィルム状又はシート状成形体を貼り合わせる前に、導電体回路層aが形成された基板の表面を前処理することが好ましい。前処理としては、アルカリ性亜塩素酸ナトリウム水溶液や過マンガン酸等を基板表面に接触させて表面を粗化する方法、アルカリ性過硫酸カリウム水溶液や硫化カリウム-塩化アンモニウム水溶液等により表面を酸化した後に還元する方法、及び基板の導電体回路層部分にめっきを析出させ、粗化する方法、チオール化合物やシラン化合物などによりプライマー層を形成する方法等が挙げられる。なかでも2-ジ-n-ブチルアミノ-4,6-ジメルカプト-s-トリアジンなどのチオール化合物を用いたプライマー層を形成する方法は、導電体回路層aが銅からなる場合に、銅の腐食がなく、高い密着性が得られる点で好適である。
  樹脂層を形成するのに用いる硬化性組成物を構成する熱硬化性樹脂は、硬化剤との組み合わせで熱硬化性を示し、電気絶縁性を有するものであれば制限されず、例えば、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、及びポリイミドなどが挙げられる。これらの樹脂は、それぞれ単独で、又は2種以上を組合わせて用いられる。これらの中でも、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、及びポリイミドが好ましく、脂環式オレフィン重合体、及び芳香族ポリエーテル重合体がより好ましく、脂環式オレフィン重合体が特に好ましい。これらの重合体の他に、液晶ポリマーも好ましい熱硬化性樹脂として用いることができる。液晶ポリマーとしては、芳香族または脂肪族ジヒドロキシ化合物の重合体、芳香族または脂肪族ジカルボン酸の重合体、芳香族ヒドロキシカルボン酸の重合体、芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸の重合体などが例示される。なお、本明細書において「(メタ)アクリル」とはメタクリル又はアクリルを意味する。
  熱硬化性樹脂の重量平均分子量(Mw)に格別な制限はないが、通常1,000~1,000,000、好ましくは3,000~500,000、より好ましくは4,000~300,000である。樹脂層を硬化して得られる電気絶縁層上に導電体回路層を形成する場合に無電解めっき処理を行う際、その前処理による電気絶縁層の粗化が抑制されることから、重量平均分子量(Mw)が1,000~1,000,000である熱硬化性樹脂成分が、硬化性組成物に含まれる熱硬化性樹脂全体の、好ましくは10重量%以上、より好ましくは15重量%以上の割合で含まれるのが好適である。なお、当該割合の上限は100重量%、すなわち、硬化性組成物に含まれる熱硬化性樹脂の全部が、重量平均分子量(Mw)が1,000~1,000,000である熱硬化性樹脂成分からなっていてもよい。熱硬化性樹脂としては、重量平均分子量(Mw)が1,000未満であるものや、1,000,000を超えるものが含まれていてもよい。本明細書における重量平均分子量(Mw)は、テトラヒドロフランを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)で測定されるポリスチレン換算の重量平均分子量である。
  脂環式オレフィン重合体は、脂環式構造を有する、不飽和炭化水素の重合体である。脂環式構造としては、シクロアルカン構造やシクロアルケン構造などが挙げられるが、得られる電気絶縁層の機械的強度や耐熱性などが向上することから、シクロアルカン構造が好ましい。また、脂環式構造としては、単環及び多環(縮合多環、橋架け環、これらの組み合わせ多環など)のいずれであっても良い。脂環式構造を構成する炭素原子数に格別な制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲であるときに、硬化性組成物の成形性や、得られる電気絶縁層の機械的強度及び耐熱性といった諸特性が高度にバランスされ好適である。
  脂環式オレフィン重合体は、極性基を有するものが好ましい。極性基としては、ヒドロキシル基、カルボキシル基、アルコキシル基、エポキシ基、グリシジル基、オキシカルボニル基、カルボニル基、アミノ基、エステル基、及びカルボン酸無水物基などが挙げられ、特に、カルボキシル基及びカルボン酸無水物基が好適である。脂環式オレフィン重合体を構成する全繰り返し単位100モル%中、極性基を有する繰り返し単位の含有率は、特に制限されないが、通常、5~60モル%、好ましくは10~50モル%である。なお、各繰り返し単位に存在する極性基の数は特に制限されないが、通常、1~2個が好適である。
  脂環式オレフィン重合体は、通常、脂環式オレフィン単量体を付加重合又は開環重合し、所望により不飽和結合部分を水素化することによって、或いは芳香族オレフィン単量体を付加重合し、得られた重合体の芳香環部分を水素化することによって得られる。また、極性基を有する脂環式オレフィン重合体は、例えば、1)前記脂環式オレフィン重合体に極性基を変性反応により導入することによって、2)極性基を含有する単量体を共重合成分として共重合することによって、あるいは3)エステル基などの極性基を含有する単量体を共重合成分として共重合した後、エステル基などを加水分解することによって得られる。上記1)の場合、極性基の導入量を調整することで、上記2)と3)の場合、重合の際、所望の極性基を有さない単量体を適宜用いることで、脂環式オレフィン重合体中の極性基を有する繰り返し単位の含有率を調整することができる。本明細書において、「脂環式オレフィン単量体」とは、脂環式構造内に炭素-炭素二重結合を有する単量体をいい、「芳香族オレフィン単量体」とは、芳香族基及び炭素-炭素二重結合を有する鎖式炭化水素からなる単量体をいう。
  脂環式オレフィン重合体を得るために使用される脂環式オレフィン単量体としては、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:ノルボルネン)、5-メチル-ビシクロ[2.2.1]-ヘプト-2-エン、5,5-ジメチル-ビシクロ[2.2.1]-ヘプト-2-エン、5-エチル-ビシクロ[2.2.1]-ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]-ヘプト-2-エン、5-ヘキシル-ビシクロ[2.2.1]-ヘプト-2-エン、5-オクチル-ビシクロ[2.2.1]-ヘプト-2-エン、5-オクタデシル-ビシクロ[2.2.1]-ヘプト-2-エン、5-エチリデン-ビシクロ[2.2.1]-ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]-ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]-ヘプト-2-エン、
5-プロペニル-ビシクロ[2.2.1]-ヘプト-2-エン、5-メトキシ-カルボニル-ビシクロ[2.2.1]-ヘプト-2-エン、5-シアノ-ビシクロ[2.2.1]-ヘプト-2-エン、5-メチル-5-メトキシカルボニル-ビシクロ[2.2.1]-ヘプト-2-エン、5-エトキシカルボニル-ビシクロ[2.2.1]-ヘプト-2-エン、ビシクロ[2.2.1]-ヘプト-5-エニル-2-メチルプロピオネイト、ビシクロ[2.2.1]-ヘプト-5-エニル-2-メチルオクタネイト、
ビシクロ[2.2.1]-ヘプト-2-エン-5,6-ジカルボン酸無水物、5-ヒドロキシメチルビシクロ[2.2.1]-ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)-ビシクロ[2.2.1]-ヘプト-2-エン、5-ヒドロキシ-i-プロピルビシクロ[2.2.1]-ヘプト-2-エン、5,6-ジカルボキシ-ビシクロ[2.2.1]-ヘプト-2-エン、ビシクロ[2.2.1]-ヘプト-2-エン-5,6-ジカルボン酸イミド、5-シクロペンチル-ビシクロ[2.2.1]-ヘプト-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]-ヘプト-2-エン、5-シクロヘキセニル-ビシクロ[2.2.1]-ヘプト-2-エン、5-フェニル-ビシクロ[2.2.1]-ヘプト-2-エン、
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン、トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン、トリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン、トリシクロ[4.4.0.12,5]ウンデカ-3-エン、テトラシクロ[7.4.0.110,13.02,7]-トリデカ-2,4,6-11-テトラエン(別名:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン)、テトラシクロ[8.4.0.111,14.03,8]-テトラデカ-3,5,7,12,11-テトラエン(別名:1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセン)、
テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-エチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-メチリデン-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-エチリデン-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-ビニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-メチル-8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-ヒドロキシメチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-カルボキシ-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、8-フェニル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン、ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ-3,10-ジエン、及びペンタシクロ[7.4.0.13,6.110,13.02,7]-ペンタデカ-4,11-ジエンのごときノルボルネン系単量体;
シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、及びシクロヘプテンのごとき単環シクロアルケン系単量体;ビニルシクロヘキセンやビニルシクロヘキサンのごときビニル系脂環式炭化水素系単量体;シクロペンタジエンやシクロヘキサジエンのごとき脂環式共役ジエン系単量体;などが挙げられる。
  芳香族オレフィン単量体としては、スチレン、α-メチルスチレン、及びジビニルベンゼンなどが挙げられる。
  脂環式オレフィン単量体及び/又は芳香族オレフィン単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
  脂環式オレフィン重合体は、前記脂環式オレフィン単量体及び/又は芳香族オレフィン単量体と、それらの単量体と共重合可能な単量体とを共重合して得られるものであってもよい。
  脂環式オレフィン単量体又は芳香族オレフィン単量体と共重合可能な単量体としては、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、及び1-エイコセンなどの炭素数3~20のα-オレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、及び1,7-オクタジエンなどの非共役ジエン;等が挙げられる。これらの単量体は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
  脂環式オレフィン単量体や芳香族オレフィン単量体の重合、及び所望により行われる、得られた重合体に対する水素添加は、格別な制限はなく、公知の方法に従って行うことができる。
  脂環式オレフィン重合体の具体例としては、ノルボルネン系単量体の開環重合体及びその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、単環シクロアルケン重合体、脂環式共役ジエン重合体、ビニル系脂環式炭化水素重合体及びその水素添加物、芳香族オレフィン重合体の芳香環水素添加物などが挙げられる。これらの中でも、ノルボルネン系単量体の開環重合体及びその水素添加物、ノルボルネン系単量体の付加重合体、ノルボルネン系単量体とビニル化合物との付加重合体、芳香族オレフィン重合体の芳香環水素添加物が好ましく、特にノルボルネン系単量体の開環重合体の水素添加物が好ましい。これらの脂環式オレフィン重合体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
  なお、脂環式オレフィン重合体のなかでも、特に好ましい重合体であるノルボルネン系単量体の開環重合体及びその水素添加物は、その構造の違いから、C2nで表されるオレフィンを共重合して得られるポリオレフィン樹脂とは異種の重合体に分類されるものである。本明細書において「ノルボルネン系単量体」とは、ノルボルネン環構造を有する脂環式オレフィン単量体をいう。
  脂環式オレフィン重合体の重量平均分子量を調整する方法は常法に従えば良く、例えば、チタン系触媒、タングステン系触媒、又はルテニウム系触媒を用いた脂環式オレフィン単量体の開環重合に際して、ビニル化合物又はジエン化合物のような分子量調整剤を、単量体全量に対して0.1~10モル%程度添加する方法が挙げられる。このとき分子量調整剤の量を少な目に用いると比較的高いMwの重合体が得られ、多めに用いると比較的低いMwの重合体が得られる。
  分子量調整剤として用いるビニル化合物としては、1-ブテン、1-ペンテン、1-ヘキセン、及び1-オクテンなどのα-オレフィン化合物;スチレンやビニルトルエンなどのスチレン化合物;エチルビニルエーテル、イソブチルビニルエーテル、及びアリルグリシジルエーテルなどのエーテル化合物;アリルクロライドなどのハロゲン含有ビニル化合物;酢酸アリル、アリルアルコール、及びグリシジルメタクリレートなどの酸素含有ビニル化合物;アクリルアミドなどの窒素含有ビニル化合物;などが挙げられる。ジエン化合物としては、1,4-ペンタジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、及び2,5-ジメチル-1,5-ヘキサジエンなどの非共役ジエン化合物;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、及び1,3-ヘキサジエンなどの共役ジエン化合物;が挙げられる。
  脂環式オレフィン重合体のガラス転移温度は、使用目的に応じて適宜選択できるが、通常50℃以上、好ましくは70℃以上、より好ましくは100℃以上、最も好ましくは125℃以上である。
  本発明に用いる硬化剤(I)に格別な限定はなく、例えば、イオン性硬化剤、ラジカル性硬化剤又はイオン性とラジカル性とを兼ね備えた硬化剤等が用いられる。例えば、1-アリル-3,5-ジグリシジルイソシアヌレートや1,3-ジアリル-5-グリシジルイソシアヌレートのごときアリル基とエポキシ基とを含有するハロゲン不含のイソシアヌレート系硬化剤などの窒素系硬化剤;ビスフェノールAビス(エチレングリコールグリシジルエーテル)エーテル、ビスフェノールAビス(ジエチレングリコールグリシジルエーテル)エーテル、ビスフェノールAビス(トリエチレングリコールグリシジルエーテル)エーテル、及びビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテルなどのビスフェノールA系グリシジルエーテル型エポキシ化合物のようなグリシジルエーテル型エポキシ化合物、フルオレン系エポキシ化合物などの脂環式エポキシ化合物、グリシジルエステル型エポキシ化合物などの多価エポキシ化合物;酸無水物やジカルボン酸化合物などのジカルボン酸誘導体;ジオール化合物、トリオール化合物、及び多価フェノール化合物などのポリオール化合物;等の硬化剤があげられる。これらの硬化剤(I)は、適宜、それぞれ単独で、又は2種以上を組合わせて用いることができる。これらの中でも、得られる電気絶縁層の機械的強度を高める観点から、硬化剤(I)としては、多価エポキシ化合物、ジカルボン酸誘導体、及びポリオール化合物からなる群より選択される少なくとも1種を用いるのが好ましく、多価エポキシ化合物を用いるのがより好ましい。
  硬化性組成物の硬化は、該組成物を加熱することにより進行するが、以上の硬化剤(I)の、熱硬化性樹脂を実質的に硬化可能な温度域は、通常、150~300℃の範囲である。
  本発明に用いる硬化性組成物への硬化剤(I)の配合量としては、熱硬化性樹脂100重量部に対して、通常、1~500重量部である。
  脂環式オレフィン重合体と硬化剤(I)との硬化反応を促進させるために、硬化促進剤等を使用することもできる。硬化剤(I)が、例えば多価エポキシ化合物の場合には、硬化促進剤として第3級アミン系化合物や三弗化ホウ素錯化合物などが好適である。なかでも、第3級アミン系化合物を使用すると、得られる電気絶縁層の微細配線に対する積層性、絶縁抵抗性、耐熱性、及び耐薬品性が向上する。
  第3級アミン系化合物の具体例としては、ベンジルジメチルアミン、トリエタノールアミン、トリエチルアミン、トリブチルアミン、トリベンジルアミン、及びジメチルホルムアミドなどの鎖状3級アミン化合物;ピラゾール類、ピリジン類、ピラジン類、ピリミジン類、インダゾール類、キノリン類、イソキノリン類、イミダゾール類、及びトリアゾール類などの化合物が挙げられる。これらの中でも、イミダゾール類、特に置換基を有する置換イミダゾール化合物が好ましい。
  置換イミダゾール化合物の具体例としては、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、ビス-2-エチル-4-メチルイミダゾール、1-メチル-2-エチルイミダゾール、2-イソプロピルイミダゾール、2,4-ジメチルイミダゾール、及び2-ヘプタデシルイミダゾールなどのアルキル置換イミダゾール化合物;2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール,1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-エチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、ベンズイミダゾール、2-エチル-4-メチル-1-(2’-シアノエチル)イミダゾール、2-エチル-4-メチル-1-[2’-(3”,5”-ジアミノトリアジニル)エチル]イミダゾール、及び1-(2-アミノエチル)-2-メチル-1H-イミダゾールなどのアリール基やアラルキル基などの環構造を含有する炭化水素基で置換されたイミダゾール化合物などが挙げられる。これらの中でも、脂環式オレフィン重合体との相溶性に優れることから、環構造を含有する炭化水素基で置換されたイミダゾール化合物が好ましく、特に、1-ベンジル-2-フェニルイミダゾールが好ましい。
  硬化促進剤は、単独で、あるいは2種以上を組み合わせて用いられる。硬化促進剤の配合量は、使用目的に応じて適宜選択されるが、熱硬化性樹脂100重量部に対して、通常0.001~30重量部、好ましくは0.01~10重量部、より好ましくは0.03~5重量部である。
  本発明に用いる硬化性組成物には、所望により、その他の成分を配合することができる。例えば、ビアホールやスルホールなどの孔を形成するときに使用されるレーザ光線の波長領域に吸収を持つ化合物を配合するのが好ましい。炭酸ガスレーザを用いる場合にはシリカなどが用いられ、紫外線レーザ(例えばUV-YAGレーザなど)を用いる場合には紫外線吸収剤が用いられる。レーザ光線の波長領域に吸収を持つ化合物を含有する硬化性組成物を用いた場合には得られる電気絶縁層に対してレーザにより容易に孔形成でき、スミアの発生なども少なくなる。
  紫外線吸収剤の具体例としては、フェニルサリシレート、p-tert-ブチルフェニルサリシレート、及びp-オクチルフェニルサリシレートなどのサリチル酸系化合物;2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、及びビス(2-ヒドロキシ-4-メトキシベンゾイルフェニル)メタンなどのベンゾフェノン系化合物;
  2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、及び2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]ベンゾトリアゾールなどのベンゾトリアゾール系化合物;2,4-ジ-tert-ブチルフェニル-3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンゾエートなどのベンゾエート系化合物;2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレート、及びエチル-2-シアノ-3,3’-ジフェニルアクリレートなどのシアノアクリレート系化合物;ビス(2,2,6,6-テトラメチルピペリジニル4)セバケートなどのヒンダードアミン系化合物;ニッケルビス(オクチルフェニル)サルファイド、及び[2,2’-チオビス(4-tert-オクチルフェノラート)]-n-ブチルアミンニッケルなどの有機金属化合物;などが挙げられる。これらの中でも、脂環式オレフィン重合体との相溶性や加熱硬化時の安定性に優れることから、ベンゾトリアゾール系化合物が好ましい。
  紫外線吸収剤の配合量は、熱硬化性樹脂100重量部に対して、通常0.1~30重量部、好ましくは1~10重量部である。
  このほか、難燃剤、軟質重合体、耐熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス、乳剤、及び充填剤などをその他の成分として用いることができる。それらの配合量は、本発明の目的を損ねない範囲で適宜選択される。
  (工程A1)において用いる硬化性組成物のフィルム状又はシート状成形体は、通常、硬化性組成物を、溶液キャスト法や溶融キャスト法などで成形することにより得られるが、溶液キャスト法により製造するのが好ましい。溶液キャスト法により成形する場合は、ワニスを支持体に塗布した後に、有機溶剤を乾燥除去する。
  溶液キャスト法に使用する支持体として、樹脂フィルム(キャリアフィルム)や金属箔などが挙げられる。樹脂フィルムとしては、通常、熱可塑性樹脂フィルムが用いられる。具体的には、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリカーボネイトフィルム、ポリエチレンナフタレートフィルム、ポリアリレートフィルム、及びナイロンフィルムなどが挙げられる。これらの樹脂フィルム中、耐熱性、耐薬品性、及び積層後の剥離性などに優れることから、ポリエチレンテレフタレートフィルム、及びポリエチレンナフタレートフィルムが好ましい。金属箔としては、例えば、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、及び銀箔などが挙げられる。導電性が良好で安価であることから、銅箔、特に電解銅箔や圧延銅箔が好適である。支持体の厚さは特に制限されないが、作業性等の観点から、通常1~150μm、好ましくは2~100μm、より好ましくは3~50μmである。
  ワニスを得る方法に格別な制限はなく、例えば、硬化性組成物を構成する各成分と有機溶剤とを混合することにより得られる。各成分の混合は、常法に従って行なえばよく、例えば、攪拌子とマグネチックスターラーを使用した攪拌、高速ホモジナイザー、ディスパージョン、遊星式攪拌機、二軸攪拌機、ボールミル、及び三本ロールなどを使用した方法などで行うことができる。混合時の温度は、硬化剤(I)による反応が作業性に影響を及ぼさない範囲であり、さらには安全性の点から混合時に使用する有機溶剤の沸点以下が好ましい。
  有機溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、及びアニソールなどの芳香族炭化水素系有機溶剤;n-ペンタン、n-ヘキサン、及びn-ヘプタンなどの脂肪族炭化水素系有機溶剤;シクロペンタンやシクロヘキサンなどの脂環式炭化水素系有機溶剤;クロロベンゼン、ジクロロベンゼン、及びトリクロロベンゼンなどのハロゲン化炭化水素系有機溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、及びシクロヘキサノンなどのケトン系有機溶剤などを挙げることができる。これらの有機溶剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
  有機溶剤の使用量は、得られる成形体の厚みの制御や平坦性向上などの目的に応じて適宜選択されるが、ワニスの固形分濃度が、通常5~85重量%、好ましくは10~80重量%、より好ましくは20~70重量%になる範囲である。
  塗布方法として、デイップコート、ロールコート、カーテンコート、ダイコート、及びスリットコートなどの方法が挙げられる。また有機溶剤の除去乾燥の条件は、有機溶剤の種類により適宜選択され、乾燥温度は、通常20~300℃、好ましくは30~200℃であり、乾燥時間は、通常30秒~1時間、好ましくは1分~30分である。
 なお、硬化性組成物のフィルム状又はシート状成形体を製造する際、例えば、支持体上にて繊維基材にワニスを塗布、含浸させ、適宜、有機溶剤を除去することにより、硬化性組成物が繊維基材に含浸してなる、フィルム状又はシート状の複合成形体として得てもよい。前記繊維基材としては、ポリアミド繊維、ポリアラミド繊維及びポリエステル繊維等の有機繊維や、ガラス繊維やカーボン繊維等の無機繊維が挙げられる。また、繊維基材の形態としては、平織りや綾織り等の織物の形態や、不織布の形態等が挙げられる。繊維基材の厚さとしては、得られる成形体の取扱い安さや配線埋め込み性を高める観点から、5~100μmが好ましく、10~50μmの範囲がより好ましい。
  フィルム状又はシート状成形体の厚みは、通常0.1~150μm、好ましくは0.5~100μm、より好ましくは1~80μmである。フィルム状又はシート状成形体は単層構造であっても多層構造であってもよく、各層は同一種類のものからなっても相異なる種類のものからなってもよい。なお、フィルム又はシートを単独で得たい場合には、支持体上にフィルム又はシートを形成した後、支持体から剥離する。
  (工程A1)において、この硬化性組成物のフィルム状又はシート状成形体を基板上に貼り合わせるには、通常、支持体付きのフィルム状又はシート状成形体を、当該成形体が導電体回路層aに接するように重ね合わせ、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、及びロールラミネータなどの加圧機を使用して加熱圧着(ラミネーション)して、基板表面と成形体との界面に、実質的な空隙が存在しないように両者を結合させる。加熱圧着は、成形体の配線への埋め込み性を向上させ、気泡等の発生を抑えるために減圧下で行うのが好ましい。加熱圧着時の温度は、通常30~250℃、好ましくは70~200℃、圧着力は、通常10kPa~20MPa、好ましくは100kPa~10MPa、圧着時間は、通常30秒~5時間、好ましくは1分~3時間であり、通常100kPa~1Pa、好ましくは40kPa~10Paに雰囲気を減圧する。
  基板に貼り合わせる成形体は2以上であってもよく、例えば、電気絶縁層の平坦性を向上させる目的や、電気絶縁層の厚みを増す目的で、成形体が貼り合わせられた基板に、当該成形体と接するように別の成形体を貼り合わせてもよい。用いる成形体は、同一種類のものであっても、相異なる種類のものであってもよい。基板に複数の成形体を貼り合わせて、成形体を積層する場合、次の(工程B)で硬化剤(II)と接触するのは、最後に積層した成形体表面となる。
  (工程A2)によって樹脂層を形成する場合、上述した硬化性組成物のワニスを、基板上に直接塗布し、乾燥すればよい。塗布や乾燥の方法や条件などは、硬化性組成物のフィルム状又はシート状成形体を形成するのと同様でよい。
  基板上、樹脂層は、基板の両面に形成しても、片面のみに形成してもよい。従来、特に、基板の片面のみに電気絶縁層と導電体回路層とを積層して形成される多層回路基板に反りの発生が顕著であるため、本発明の多層回路基板の製造方法は、樹脂層を基板の片面のみに形成して多層回路基板を製造するのに非常に好適である。
(工程B)
  工程Bでは、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度において熱硬化性樹脂を実質的に硬化可能な硬化剤(II)を、工程Aで基板上に形成した樹脂層表面に接触させた後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で、硬化剤(II)と接触させた後の樹脂層を加熱する。
  本明細書において、所定の硬化剤につき「熱硬化性樹脂を実質的に硬化不可能」とは、該硬化剤の存在下に熱硬化性樹脂を所定の温度で1時間加熱した場合、未硬化の熱硬化性樹脂が溶解性を示す溶剤に対する、熱硬化性樹脂の加熱前の溶解量と比べて、加熱後の溶解量の減量〔硬化(架橋)して不溶化した部分に相当する溶解量の減少分〕が5重量%以内であることをいう。また、所定の硬化剤につき「熱硬化性樹脂を実質的に硬化不可能な温度」とは、熱硬化性樹脂を実質的に硬化不可能な、該硬化剤の使用温度をいう。一方、所定の硬化剤につき「熱硬化性樹脂を実質的に硬化可能」とは、該硬化剤の存在下に熱硬化性樹脂を所定の温度で1時間加熱した場合、未硬化の熱硬化性樹脂が溶解性を示す溶剤に対する、熱硬化性樹脂の加熱前の溶解量と比べて、加熱後の溶解量の減量が95重量%以上であることをいう。また、所定の硬化剤につき「熱硬化性樹脂を実質的に硬化可能な温度」とは、熱硬化性樹脂を実質的に硬化可能な、該硬化剤の使用温度をいう。
  本発明の多層回路基板の製造方法では、熱硬化性樹脂を実質的に硬化可能な温度域の異なる2種の硬化剤である、硬化剤(I)と硬化剤(II)とを用いる。両硬化剤を比べた場合、硬化剤(I)の前記温度域は高温側にあり、硬化剤(II)の前記温度域は低温側にある。工程Bでは、硬化剤(II)を接触させた樹脂層を加熱するが、その際の加熱条件では、通常、熱硬化性樹脂は実質的に流動性を示さず、樹脂層として得られた形状を保って硬化剤(II)との接触部分が部分的に硬化し(予備硬化)、続く工程Cで、樹脂層をさらに加熱し、硬化剤(I)により実質的に完全に硬化させて(本硬化)、電気絶縁層を形成するが、前記樹脂層は、工程Bでの予備硬化により形状が保持されており、例えば、本硬化時(高温)と多層回路基板の保存時(室温)で温度差が生じたとしても、得られた電気絶縁層の変形が小さく、その結果、本発明の多層回路基板では反りが生じないものと推定される。
  工程Bでは、工程Aで基板上に形成された樹脂層表面に硬化剤(II)を接触させる。基板上に硬化性組成物のフィルム状又はシート状成形体を貼り合わせて樹脂層を形成するに際し、成形体として支持体付きのもの用いた場合には、この支持体を剥がした後に、樹脂層表面に硬化剤(II)を接触させる。  
  本発明に用いる硬化剤(II)は、特に限定されないが、予備硬化を効果的に行なう観点から、ポリスルフィド;ポリメルカプタン;ポリアミド;イミダゾール;並びに、鎖状脂肪族ポリアミン、環状脂肪族ポリアミン、脂肪芳香族アミン、芳香族アミン、及びそれらのアミン錯体;からなる群より選択される少なくとも1種を用いるのが好ましく、鎖状脂肪族ポリアミンを用いるのがより好ましい。鎖状脂肪族ポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロプレンジアミン、ジエチルアミノプロピルアミン、及びヘキサメチレンジアミンなどが挙げられる。環状脂肪族ポリアミンとしては、例えば、N-アミノエチルピペラジンなどが挙げられる。脂肪芳香族アミンとしては、例えば、キシレンジアミン、キシレンジアミン三量体(例えば、昭和電工社製「アミンブラック」や「ショーアミンブラック」)、キシレンジアミン誘導体(例えば、昭和電工社製「ショーアミンN」、「ショーアミン1001」、及び「ショーアミン1010」)などが挙げられる。芳香族アミンとしては、例えば、メタフェニレンジアミンやジアミノジフェニルメタンなどが挙げられる。これらは、それぞれ単独で、又は2種以上を組合わせて用いることができる。硬化剤(II)の熱硬化性樹脂を実質的に硬化可能な温度域は、通常、20℃以上150℃未満の範囲である。
  硬化剤(II)を樹脂層表面に接触させる方法は特に制限されない。例えば、硬化剤(II)を水又は有機溶媒に溶かして溶液にした後、得られた溶液中に、樹脂層が形成された基板を浸漬するディップ法や、該溶液を基板上の樹脂層表面にスプレー等で塗布するスプレー法などが挙げられる。樹脂層表面への硬化剤(II)の接触は、予備硬化を効果的に行なう観点から、樹脂層が形成された基板を、硬化剤(II)の水溶液中に浸漬して行うのが好適である。また、実質的に樹脂層表面の全体に行なうのが好適である。接触操作は、1回でも2回以上繰り返し行ってもよい。
  接触に際しての温度は、硬化剤(II)の熱硬化性樹脂を実質的に硬化可能な温度域やその溶液の溶媒の沸点等を考慮して任意に選択すればよいが、通常、10~100℃、好ましくは15~65℃の範囲である。接触をディップ法により行う場合、浸漬時間は、硬化剤(II)溶液の濃度等に応じて適宜選択すればよいが、通常、0.1~360分、好ましくは0.1~60分である。
  硬化剤(II)の樹脂層表面への接触操作後、硬化剤(II)の過剰分を除去する目的で、窒素などの不活性ガスを吹きかける方法をとってもよい。また、かかる除去操作前に、水又は有機溶剤で基板表面を洗浄してもよい。
  硬化剤(II)の溶液の調製に用いられる溶媒は、樹脂層が容易に溶解せず、かつ硬化剤(II)が溶解するものであれば特に限定されない。例えば、水;ジエチルエーテルなどのエーテル類;エタノールやイソプロパノールなどのアルコール類;アセトンなどのケトン類;エチルセロソルブアセテートなどのセロソルブ類;などの極性溶媒、並びにこれらの混合物が挙げられる。硬化剤(II)の溶液中の硬化剤(II)の濃度は、特に制限されないが、予備硬化を効果的に行なう観点から、通常、0.001~70重量%、好ましくは0.01~50重量%である。かかる硬化剤(II)の溶液に対し、樹脂層が形成された基板を浸漬するか、又は該溶液を基板上の樹脂層表面にスプレーすることで、予備硬化を良好に実施することができる。
  なお、使用温度において硬化剤(II)が液状であり、硬化剤(II)の樹脂層表面への接触操作に支障がない場合は、硬化剤(II)を、特に溶媒に溶解することなく、そのまま用いて接触操作を行なうことも可能である。
  硬化剤(II)の溶液には、硬化剤(II)以外の成分として、硬化剤(II)と樹脂層表面との濡れ性を向上させる観点から、任意に界面活性剤等を配合してもよい。硬化剤(II)以外の成分の配合量としては、通常、10重量%以下、好ましくは5重量%以下、より好ましくは1重量%以下である。
  硬化剤(II)を樹脂層の表面に接触後、樹脂層を加熱する。加熱は、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度下であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で行なわれるが、加熱温度としては、通常、20℃以上150℃未満である。また、加熱時間は、通常、0.1~5時間、好ましくは0.5~3時間である。樹脂層の加熱は、(i)一定温度を一定時間維持して行ってもよいし、(ii)前記(i)の加熱を一定温度域で多段階に組合わせて行ってもよいし、(iii)一定温度域の下限から上限に向かって一定に若しくは変則的に一定時間で温度上昇させて行ってもよいし、(iv)前記(i)~(iii)を適宜組合わせて行ってもよい。中でも、予備硬化を効果的に行なう観点から、樹脂層の加熱は前記(iv)により行なうのが好ましい。加熱方法としては、特に制限されず、例えば、オーブンなどを用いて行えばよい。
(工程C)
  上記(工程B)に続いて、硬化剤(I)が熱硬化性樹脂を実質的に硬化可能な温度で、予備硬化を経た樹脂層を加熱して硬化させ、電気絶縁層を形成する。
  樹脂層の硬化は、通常、樹脂層(樹脂層が形成された基板全体)を加熱することにより行う。硬化剤(I)に応じて硬化条件は適宜選択すればよいが、樹脂層の加熱温度としては、通常、150~300℃であり、加熱時間は、通常、0.1~5時間、好ましくは0.5~3時間である。樹脂層の加熱は、工程Bで、硬化剤(II)をその表面に接触させた後の樹脂層を加熱するのと同様、前記(i)~(iv)の通りに行なうことができるが、本硬化を効果的に行なう観点から、前記(i)により行なうのが好ましい。加熱方法としては、特に制限されず、例えば、オーブンなどを用いて行えばよい。工程Cでの樹脂層の加熱により、樹脂層は実質的に完全に硬化し、電気絶縁層が形成される。電気絶縁層の厚さとしては、特に限定はないが、通常、1~50μmである。
  以上のようにして、本発明の多層回路基板が製造される。かかる多層回路基板では実質的に反りが生じない。ここで、「実質的に」とは、実用上問題にならない程度との意味である。なお、本発明の多層回路基板において、基板の導電体回路層aの上に形成された電気絶縁層上には、さらに導電体回路層bを設けてもよい。その場合、導電体回路層aと導電体回路層bとを接続するため、導電体回路層bを形成する前に、電気絶縁層にビアホール形成用の開口を形成する。このビアホール形成用の開口は、通常、樹脂層を硬化させて電気絶縁層を形成した後、ドリル、レーザ、及びプラズマエッチング等の物理的処理により形成することができる。電気絶縁層の特性を低下させず、より微細なビアホールを形成することができるという観点から、炭酸ガスレーザ、エキシマレーザ、及びUV-YAGレーザ等のレーザによる方法が好ましい。
  本発明の多層回路基板の製造方法において基板上に形成された電気絶縁層(以下、電気絶縁層bという場合がある。)上に導電体回路層bを形成する方法としては、電気絶縁層bを形成した後、その上に金属薄膜層を形成し、さらに電解めっき等の湿式めっきによりめっきを成長させて導電体回路層を形成する方法が挙げられる。電気絶縁層bへのビアホール形成用の開口の形成は、通常、金属薄膜層を形成する前に行なわれる。金属薄膜層の形成は、無電解めっき法、スパッタリング法、及び真空蒸着法等により行なうことができ、特に無電解めっき法又はスパッタリング法により行なうのが好ましい。金属薄膜層は電気絶縁層b表面とビアホール形成用開口の内壁面に形成される。金属薄膜層を形成後、めっきを成長させる前に、金属薄膜層上にめっきレジストを形成し、めっきを成長させた後、めっきレジストを除去し、さらにエッチングにより金属薄膜層をエッチングして導電体回路層bを形成する。この導電体回路層bは、通常、金属薄膜層と、その上に成長させためっきとからなる。
  このようにして得られた多層回路基板を基板として、本発明における工程A~Cによる電気絶縁層の形成と、当該電気絶縁層上への導電体回路層の形成とを繰り返すことで、更なる多層化も可能である。
  本発明によれば、基板の片面にのみ多層回路を形成する場合であっても、実質的に反りのない多層回路基板を得ることができる。そのため、個別チップに切り分ける前のシリコンウエハー基板に直接、多層回路を形成することで、パッケージの面積をチップと同等に抑えられる「ウエハー・レベル・パッケージ(WLP:Wafer Level Package)」技術において、シリコンウエハー基板上に多層回路を形成する方法として、本発明の多層回路基板の製造方法は特に好適である。
  本発明の多層回路基板は、コンピューターや携帯電話等の電子機器において、CPUやメモリなどの半導体素子、その他の実装部品を実装するためのプリント配線板として使用できる。特に、微細配線を有するものは高密度プリント配線基板として、高速コンピューターや、高周波領域で使用する携帯端末の配線基板として好適である。
  以下に実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部および%は、特段の事情がない限り、重量基準である。各種の物性については、以下の方法に従って評価した。
(1)重合溶液中の単量体量:重合溶液をテトラヒドロフランで希釈し、ガス・クロマトグラフィー(GC)により測定し、重合溶液中の単量体量を求めた。
(2)重合体の数平均分子量(Mn)、重量平均分子量(Mw):テトラヒドロフランを展開溶媒として、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、ポリスチレン換算値として求めた。
(3)重合体の水素添加率:水素添加率は、水素添加前における重合体中の不飽和結合のモル数に対する水素添加された不飽和結合のモル数の比率をいい、400MHzの1H-NMRスペクトル測定により求めた。
(4)重合体のカルボン酸無水物基を有する繰り返し単位の含有率:重合体中の総単量体単位モル数に対するカルボン酸無水物基を有する繰り返し単位のモル数の割合をいい、400MHzの1H-NMRスペクトル測定により求めた。
(5)ワニスの粘度: E型粘度計を用いて、25℃での動的粘度を測定した。
(6)基板の反り量:基板上の片面に絶縁層が形成されてなる積層基板を、その凸面が下になるように平らな面に置き、平らな面から、最も高く反って浮いた積層基板端部までの距離を、基板の反り量として測定した。
〔熱硬化性樹脂の合成例1〕
  重合1段目として5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(以下、「EdNB」と略記する)35モル部、1-ヘキセン0.9モル部、アニソール340モル部およびルテニウム系重合触媒として4-アセトキシベンジリデン(ジクロロ)(4,5-ジブロモ-1,3-ジメシチル-4-イミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウム(C1063、和光純薬社製)0.005部を、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で30分間の重合反応を行ってノルボルネン系単量体の開環重合体(以下、ノルボルネン系開環重合体という。)の溶液を得た。
  次いで、重合2段目として重合1段目に得た溶液中にテトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(メタノテトラヒドロフルオレン、以下、「MTF」と略記する。)35モル部、ビシクロ[2.2.1]ヘプト-2-エン-5,6-ジカルボン酸無水物(以下、「NDCA」と略記する)30モル部、アニソール250モル部およびC1063  0.01部を追加し、攪拌下に80℃で1.5時間の重合反応を行ってノルボルネン系開環重合体の溶液を得た。この溶液について、ガスクロマトグラフィーを測定したところ、実質的に単量体が残留していないことが確認され、重合転化率は99%以上であった。
  次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、C1063  0.03部を追加し、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行って、ノルボルネン系開環重合体の水素添加物である重合体(A-1)の溶液を得た。得られた重合体(A-1)の重量平均分子量は60,000、数平均分子量は30,000、分子量分布は2であった。また、水素添加率は95%であり、カルボン酸無水物基を有する繰り返し単位の含有率は30モル%であった。重合体(A-1)の溶液の固形分濃度は22%であった。
〔熱硬化性樹脂の合成例2〕
  MTF  70モル部、NDCA  30モル部、1-ヘキセン0.9モル部、アニソール590モル部およびC1063  0.015モル部を、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で1時間の重合反応を行ってノルボルネン系開環重合体の溶液を得た。この溶液について、ガスクロマトグラフィーを測定したところ、実質的に単量体が残留していないことが確認され、重合転化率は99%以上であった。
  次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行って、ノルボルネン系開環重合体の水素添加物である重合体(A-2)の溶液を得た。得られた重合体(A-2)の重量平均分子量は50,000、数平均分子量は26,000、分子量分布は1.9であった。また、水素添加率は97%であり、カルボン酸無水物基を有する繰り返し単位の含有率は30モル%であった。重合体(A-2)の溶液の固形分濃度は22%であった。
〔熱硬化性樹脂の合成例3〕
    MTF  70モル部、NDCA  30モル部、1-ヘキセン6モル部、アニソール590モル部およびC1063  0.015モル部を、窒素置換した耐圧ガラス反応器に仕込み、攪拌下に80℃で1時間の重合反応を行ってノルボルネン系開環重合体の溶液を得た。この溶液について、ガスクロマトグラフィーを測定したところ、実質的に単量体が残留していないことが確認され、重合転化率は99%以上であった。
  次いで、窒素置換した攪拌機付きオートクレーブに、得られた開環重合体の溶液を仕込み、150℃、水素圧7MPaで、5時間攪拌させて水素添加反応を行った。次いで、得られた水素化反応溶液を濃縮して、ノルボルネン系開環重合体の水素添加物である重合体(A-3)の溶液を得た。得られた重合体(A-3)の重量平均分子量は10,000、数平均分子量は5,000、分子量分布は2であった。また、水素添加率は97%であり、カルボン酸無水物基を有する繰り返し単位の含有率は30モル%であった。重合体(A-3)の溶液の固形分濃度は55%であった。
〔製造例1:硬化性組成物B-1〕
  前記重合体(A-1)の溶液450部、および球状シリカ(アドマファイン(登録商標)SO-C1、アドマテックス社製、体積平均粒径0.25μm)40%と前記重合体(A-2)2%とをアニソールに分散したシリカスラリー150部を混合し、遊星式攪拌機で3分間攪拌した。
  これに、硬化剤(I)として多官能エポキシ樹脂(1032H60、三菱化学社製、エポキシ当量163~175)をアニソールに70%溶解した溶液4.5部、レーザー加工性向上剤として2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール1部、老化防止剤としてトリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート1部、エラストマーとして液状エポキシ化ポリブタジエン(Ricon(登録商標)657、サートマー・ジャパン社製)をアニソールに80%溶解した溶液3部、およびアニソール370部を混合し、遊星式攪拌機で3分間攪拌した。
  さらにこれに、硬化促進剤として1-(2-アミノエチル)-2-メチル-1H-イミダゾールをアニソールに1%溶解した溶液70部を混合し、遊星式攪拌機で5分間攪拌して硬化性組成物(B-1)のワニスを得た。ワニスの粘度は、230mPa・secであった。
〔製造例2:硬化性組成物B-2〕
  前記重合体(A-2)の溶液44部、前記重合体(A-3)の溶液32部、および表面処理球状シリカ(アドマファインSC-2500-SXJ、アドマテックス社製、アミノシランタイプシランカップリング剤処理)78%と前記重合体(A-3)2%とをアニソールに混合し、高圧ホモジナイザーで15分間処理し、分散させたシリカスラリー863部を混合し、遊星式攪拌機で3分間攪拌した。
  これに、硬化剤(I)としてフルオレン系エポキシ樹脂(オグソール(登録商標)PG-100、大阪ガスケミカル社製、エポキシ当量163~175)123部、ビスフェノールA型エポキシ樹脂〔エピコート(登録商標)828EL、三菱化学社製、エポキシ当量184~194〕28部、多官能エポキシ樹脂1032H60  23部、老化防止剤としてトリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート1部、ジシクロペンタジエン型ノボラック樹脂(GDP-6095LR、群栄化学工業社製)81部、CP-002(フルオレン系フェノールモノマーとビスフェノールAの混合物、大阪ガスケミカル社製)をアニソールに50%溶解した溶液60部を混合し、遊星式攪拌機で3分間攪拌した。さらにこれに、硬化促進剤として1-べンジル-2-フェニルイミダゾールをアニソールに5%溶解した溶液25部を混合し、遊星式攪拌機で5分間攪拌して硬化性組成物(B-2)のワニスを得た。ワニスの粘度は、2300mPa・secであった。
〔実施例1〕
  硬化性組成物(B-1)のワニスを、厚さ100μmのポリエチレンテレフタレートフィルム(支持体)上にワイヤーバーを用いて塗布し、次いで、窒素雰囲気下、130℃で90秒間乾燥させて、未硬化の硬化性組成物(B-1)の厚みが3μmの樹脂層が形成された支持体付きフィルム(C-1)を得た。
  次に、支持体付きフィルム(C-1)の硬化性組成物(B-1)の面に、硬化性組成物(B-2)のワニスを、ドクターブレード(テスター産業社製)とオートフィルムアプリケーター(テスター産業社製)を用いて塗布し、次いで、窒素雰囲気下、80℃で10分間乾燥させて、硬化性組成物の総厚みが13μmの樹脂層が形成された支持体付きフィルム(C-2)を得た。支持体付きフィルム(C-2)は、支持体、硬化性組成物(B-1)の樹脂層、硬化性組成物(B-2)の樹脂層の順で形成された。
  基板として直径4インチの円形ガラス基板(D263、ショット社製、厚み150μm)の片方の面に、上記で得られた支持体付きフィルム(C-2)を、硬化性組成物(B-2)の樹脂層の面が基板と重なるようにして、重ね合わせた。これを、耐熱ゴム製プレス板を上下に備えた真空ラミネータ(名機製作所社製)を用いて、真空度13hPa以下で30秒間減圧した後、耐熱ゴム製プレス板で圧着温度110℃、圧着圧力0.1MPaで60秒間加熱圧着した(一次プレス)。さらに、金属製プレス板を上下に備えた油圧プレス装置を用いて、圧着温度110℃、1MPaで90秒間、加熱圧着した(二次プレス)。次いで支持体を剥がすことにより、硬化性組成物の樹脂層と基板との積層体を得た。
  この積層体を、硬化剤(II)としてトリエチレンテトラミン(以下、「TETA」と略記する。)の5%水溶液に25℃で1時間浸漬した後、エアーガンで余分な溶液を除去した。次いで、積層体を基板側を下にしてオーブン用プレートに置き、オーブン(INH-9CD、光洋リンドバーグ社製)で60~120℃まで1時間かけて昇温加熱した。次いで120℃で30分間加熱した後、120~180℃まで1時間かけて昇温加熱した。さらに180℃で30分間加熱し、硬化性組成物の樹脂層を硬化させて、絶縁層が形成された積層基板を得た。得られた積層基板について反り量を測定したところ、反り量は1.5mmであった。結果を表1に示す。
〔比較例1〕
  TETA5%水溶液に替えてイオン交換水としたこと以外は、実施例1と同じ方法で絶縁層が形成された積層基板を得た。なお、樹脂層の総厚みは14μmとなった。得られた積層基板について反り量を測定したところ、反り量は2.5mmであった。結果を表1に示す。
  〔比較例2〕
  硬化性組成物の樹脂層と基板との積層体を、TETA5%水溶液に浸漬した後、多段階の加熱処理を行なうことなく、オーブンにて180℃で60分間加熱して樹脂層を完全硬化させたこと以外は、実施例1と同じ方法で絶縁層が形成された積層基板を得た。なお、樹脂層の総厚みは14μmとなった。得られた積層基板について反り量を測定したところ、反り量は3mmであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
  表1より、基板上に、熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて樹脂層を形成した後、硬化剤(II)を前記樹脂層表面に接触させて所定温度で加熱し、次いで前記樹脂層を加熱して硬化させることにより絶縁層を形成した積層基板では、反り量が小さく抑えられることが分かる(実施例1)。これに対し、硬化剤(II)を樹脂層表面に接触させなかったり(比較例1)、硬化剤(II)を樹脂層表面に接触させても、所定温度で加熱しなかった(比較例2)場合、積層基板の反り量が大きくなることが分かる。

Claims (8)

  1.   熱硬化性樹脂と硬化剤(I)とを含有する硬化性組成物を用いて、未硬化又は半硬化の樹脂層を、基板上に形成した(工程A)後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度において熱硬化性樹脂を実質的に硬化可能な硬化剤(II)を、前記樹脂層表面に接触させた後、硬化剤(I)が熱硬化性樹脂を実質的に硬化不可能な温度であって、硬化剤(II)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱し(工程B)、次いで硬化剤(I)が熱硬化性樹脂を実質的に硬化可能な温度で前記樹脂層を加熱して硬化させ、電気絶縁層を形成する(工程C)、多層回路基板の製造方法。
  2.   工程Aにおいて、未硬化又は半硬化の樹脂層が、前記硬化性組成物のフィルム状又はシート状成形体を、前記基板の表面に貼り合わせて形成される請求項1記載の多層回路基板の製造方法。
  3.   工程Aにおいて、未硬化又は半硬化の樹脂層が基板の片面にのみ形成される請求項1又は2記載の多層回路基板の製造方法。  
  4.   工程Bにおいて、硬化剤(II)の樹脂層表面への接触が、樹脂層が形成された基板を、硬化剤(II)の水溶液中に浸漬させて行われる請求項1~3いずれか記載の多層回路基板の製造方法。
  5.   熱硬化性樹脂が、エポキシ樹脂、マレイミド樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、トリアジン樹脂、脂環式オレフィン重合体、芳香族ポリエーテル重合体、ベンゾシクロブテン重合体、シアネートエステル重合体、液晶ポリマー、及びポリイミドからなる群より選択される少なくとも1種である請求項1~4いずれか記載の多層回路基板の製造方法。
  6.   硬化剤(I)が、多価エポキシ化合物、ジカルボン酸誘導体、及びポリオール化合物からなる群より選択される少なくとも1種である請求項1~5いずれか記載の多層回路基板の製造方法。
  7.   硬化剤(II)が、ポリスルフィド;ポリメルカプタン;ポリアミド;イミダゾール;並びに、鎖状脂肪族ポリアミン、環状脂肪族ポリアミン、脂肪芳香族アミン、芳香族アミン、及びそれらのアミン錯体;からなる群より選択される少なくとも1種である請求項1~6いずれか記載の多層回路基板の製造方法。
  8.   請求項1~7いずれかに記載の多層回路基板の製造方法により製造された多層回路基板。
PCT/JP2011/072575 2010-09-30 2011-09-30 多層回路基板の製造方法 WO2012043799A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012536583A JP5673685B2 (ja) 2010-09-30 2011-09-30 多層回路基板の製造方法
US13/876,495 US9615465B2 (en) 2010-09-30 2011-09-30 Method of production of multilayer circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010223318 2010-09-30
JP2010-223318 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043799A1 true WO2012043799A1 (ja) 2012-04-05

Family

ID=45893236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072575 WO2012043799A1 (ja) 2010-09-30 2011-09-30 多層回路基板の製造方法

Country Status (3)

Country Link
US (1) US9615465B2 (ja)
JP (1) JP5673685B2 (ja)
WO (1) WO2012043799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120688A (ja) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd 積層体、積層板、多層積層板、プリント配線板、多層プリント配線板及び積層板の製造方法
JP2014127644A (ja) * 2012-12-27 2014-07-07 Ajinomoto Co Inc 粗化硬化体、積層体、プリント配線板及び半導体装置
JP2020074475A (ja) * 2020-02-05 2020-05-14 味の素株式会社 プリント配線板の製造方法及び半導体装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627838B2 (ja) * 2017-09-29 2020-01-08 日亜化学工業株式会社 透光性シートの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028225A (ja) * 2004-07-12 2006-02-02 Nippon Zeon Co Ltd 熱硬化性樹脂組成物、電気絶縁膜、積層体及び多層回路基板
JP2006229038A (ja) * 2005-02-18 2006-08-31 Nippon Zeon Co Ltd 多層プリント配線板の製造方法
JP2006278922A (ja) * 2005-03-30 2006-10-12 Nippon Zeon Co Ltd 多層回路基板の製造方法
JP2007227567A (ja) * 2006-02-22 2007-09-06 Nippon Zeon Co Ltd 金属薄膜層の形成方法および多層プリント配線板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826020B2 (ja) 2000-03-29 2011-11-30 凸版印刷株式会社 多層配線基板の製造方法
JP3862009B2 (ja) 2001-09-05 2006-12-27 日本ゼオン株式会社 多層回路基板の製造方法
WO2005025857A1 (ja) * 2003-09-10 2005-03-24 Zeon Corporation 樹脂複合フィルム
CN101296977A (zh) * 2005-08-26 2008-10-29 日本瑞翁株式会社 复合树脂成型体、叠层体、多层电路基板和电子机器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028225A (ja) * 2004-07-12 2006-02-02 Nippon Zeon Co Ltd 熱硬化性樹脂組成物、電気絶縁膜、積層体及び多層回路基板
JP2006229038A (ja) * 2005-02-18 2006-08-31 Nippon Zeon Co Ltd 多層プリント配線板の製造方法
JP2006278922A (ja) * 2005-03-30 2006-10-12 Nippon Zeon Co Ltd 多層回路基板の製造方法
JP2007227567A (ja) * 2006-02-22 2007-09-06 Nippon Zeon Co Ltd 金属薄膜層の形成方法および多層プリント配線板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120688A (ja) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd 積層体、積層板、多層積層板、プリント配線板、多層プリント配線板及び積層板の製造方法
JP2014127644A (ja) * 2012-12-27 2014-07-07 Ajinomoto Co Inc 粗化硬化体、積層体、プリント配線板及び半導体装置
JP2020074475A (ja) * 2020-02-05 2020-05-14 味の素株式会社 プリント配線板の製造方法及び半導体装置の製造方法
JP7120261B2 (ja) 2020-02-05 2022-08-17 味の素株式会社 プリント配線板の製造方法及び半導体装置の製造方法

Also Published As

Publication number Publication date
US20130180767A1 (en) 2013-07-18
JPWO2012043799A1 (ja) 2014-02-24
JP5673685B2 (ja) 2015-02-18
US9615465B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
JP5590245B2 (ja) 硬化性樹脂組成物、フィルム、プリプレグ、積層体、硬化物、及び複合体
JP6056760B2 (ja) 絶縁性接着フィルム、積層体、硬化物、及び複合体
JP5673685B2 (ja) 多層回路基板の製造方法
KR20050107489A (ko) 다층 프린트 배선판의 제조방법 및 다층 프린트 배선판
WO2014091750A1 (ja) 硬化性樹脂組成物、絶縁フィルム、プリプレグ、硬化物、複合体、及び、電子材料用基板
JP5691977B2 (ja) 絶縁性接着フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2014133877A (ja) 硬化性樹脂組成物及び硬化物
JP5630262B2 (ja) 硬化性樹脂組成物、硬化物、積層体、多層回路基板、及び電子機器
JP6528226B2 (ja) 硬化性樹脂組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2013087165A (ja) 絶縁性接着フィルム、積層体、硬化物、及びプリント配線板
JP2012214606A (ja) 硬化性樹脂組成物、フィルム、積層体、及び硬化物
JP3810311B2 (ja) プリント基板及びその製造方法
JP2007269929A (ja) 硬化性樹脂組成物およびその利用
JP2015138921A (ja) 電子材料用基板
JP6451280B2 (ja) 多層プリント配線板の製造方法
JP2015138922A (ja) 電子材料用基板及び電子材料用基板の製造方法
JP4300389B2 (ja) 多層回路基板の製造方法
WO2001063990A1 (fr) Materiau composite et procede de fabrication de carte a circuit imprime multicouche
JP2003101231A (ja) 多層回路基板の製造方法
JP2014185228A (ja) 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
JP2003022711A (ja) 電気絶縁膜、回路基板及び硬化性組成物
JP4061457B2 (ja) 電気絶縁層の形成方法及びその利用
WO2015016165A1 (ja) 電子材料用基板
JP2010155934A (ja) 硬化性樹脂組成物
JP2003046254A (ja) 回路基板および回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536583

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13876495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829352

Country of ref document: EP

Kind code of ref document: A1