WO2012043663A1 - 人体検知センサ及び自動水栓 - Google Patents
人体検知センサ及び自動水栓 Download PDFInfo
- Publication number
- WO2012043663A1 WO2012043663A1 PCT/JP2011/072252 JP2011072252W WO2012043663A1 WO 2012043663 A1 WO2012043663 A1 WO 2012043663A1 JP 2011072252 W JP2011072252 W JP 2011072252W WO 2012043663 A1 WO2012043663 A1 WO 2012043663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- light
- unit
- data
- determination
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/12—Detecting, e.g. by using light barriers using one transmitter and one receiver
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03C—DOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
- E03C1/00—Domestic plumbing installations for fresh water or waste water; Sinks
- E03C1/02—Plumbing installations for fresh water
- E03C1/05—Arrangements of devices on wash-basins, baths, sinks, or the like for remote control of taps
- E03C1/055—Electrical control devices, e.g. with push buttons, control panels or the like
- E03C1/057—Electrical control devices, e.g. with push buttons, control panels or the like touchless, i.e. using sensors
Definitions
- the present invention relates to a human body detection sensor applied to an automatic faucet, an automatic cleaning device for a urinal, and the like, and an automatic faucet using the human body detection sensor.
- An applied human body detection sensor is known.
- a human body detection sensor there is known a sensor in which a light emitting element such as an LED and a light receiving element such as a PSD (Position Sensitive Detector) are offset and arranged (for example, Patent Documents). 1).
- a light emitting element such as an LED
- a light receiving element such as a PSD (Position Sensitive Detector)
- Such a human body detection sensor specifies the position where the reflected light from the detection target is incident on the PSD, and determines whether the distance to the detection target is appropriate based on the principle of triangulation.
- the PSD is a very simple light receiving element that outputs a signal corresponding to the position of the center of gravity of incident light, and has an advantage of low power consumption.
- the conventional human body detection sensor has the following problems. That is, the amount of information that can be acquired by PSD is only position information, and there is a fact that there are few countermeasures that can be taken when ambient light is incident. Therefore, for example, when a human body detection sensor including PSD is applied to an automatic faucet or the like of a wash basin, false detection is caused by the influence of specular reflection light from the bowl surface of the wash bowl or noise disturbance light. May occur.
- reference numeral 900 denotes a human body detection sensor
- 902 denotes a light projecting element
- 904 denotes a light projecting lens
- 908 denotes a light receiving element (PSD)
- 910 denotes a light receiving lens.
- the specular reflected light from the bowl surface P1 of the wash bowl 914 may enter the light receiving element 908 at the same angle ⁇ as the reflected light from the detection target T.
- the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a human body detection sensor and an automatic water faucet that improve detection performance by suppressing erroneous detection.
- an imaging unit including an imaging device in which pixels are arrayed one-dimensionally or two-dimensionally, a light-emitting unit arranged offset in a predetermined direction with respect to the imaging unit, An imaging control unit that controls the imaging unit, and a human body detection sensor that detects a detection target by receiving reflected light generated by the light emitting unit according to light projected by the imaging unit, Based on the amount of light received by each pixel that has received the reflected light, the center-of-gravity specifying means that specifies the position of the center of gravity of the reflected light in a light receiving area that is an array region of each pixel in the imaging device; First determination means for determining whether or not the gravity center position belongs to a detection area set in a part of the light receiving area; Results of threshold processing relating to the data value of the centroid pixel corresponding to the centroid position in the filter processing data obtained by performing predetermined spatial filter processing on the received light amount of each pixel, and a threshold relating to the
- a faucet that discharges water into a bowl having a drain outlet at the bottom, the human body detection sensor of the first aspect, and the faucet according to a detection signal of the human body detection sensor.
- Water supply control means for executing switching of water discharge or adjustment of water discharge amount, It is grasped as an automatic faucet in which the bowl surface that forms the inner peripheral surface of the bowl is included in the imaging range of the imaging unit provided in the human body detection sensor.
- the human body detection sensor includes two types of determination means.
- the first determination means is means for determining whether or not the center of gravity position belongs to the detection area.
- the second determination means is a means for determining the suitability of the light reception level of the barycentric pixel.
- the human body detection sensor outputs the detection signal when both the first and second determination means make a positive determination.
- the bowl surface is included in at least a part of the imaging range of the imaging device. Therefore, when there is no detection target such as a palm or the back of the hand in the imaging range, there is a high possibility that the specular reflected light from the bowl surface is incident on the imaging element.
- the position of the center of gravity is shifted and positioned at an intermediate position between two regions having a large amount of received light inside and outside the detection area, that is, an intermediate position between the peaks of the received light amount distribution.
- a displacement of the center of gravity position cannot be determined, and if the center of gravity position is within the detection area, erroneous detection occurs.
- the second determination unit determines whether the light receiving level of the center of gravity pixel or the surrounding pixels is appropriate. . According to the second determination means, it is possible to determine whether or not the position of the center of gravity is appropriately positioned in the received light amount distribution of each pixel. According to this human body detection sensor, it is possible to determine the shift of the center of gravity as described above, and to avoid erroneous detection in advance.
- the human body detection sensor of the present invention is a human body detection sensor having excellent characteristics that realizes robust detection performance by suppressing the influence of specular reflection light, noise disturbance light, and the like.
- the automatic faucet of the present invention provided with this human body detection sensor, good operation reliability with few malfunctions is realized.
- the center-of-gravity position specified by the center-of-gravity specifying means in the present invention may be a center of gravity position calculated mathematically strictly, but it is a center of gravity position that can be easily calculated while ensuring the required position accuracy. Also good. Furthermore, the position of the pixel where the amount of received light is maximized, the position where the sum of the amounts of received light of the peripheral pixels is maximized, etc. may be used as the position of the center of gravity.
- a condition for positive determination is that the amount of light received by the center-of-gravity pixel is a predetermined value or more.
- the position of the center of gravity is shifted in the detection area according to the combination of the specular reflection light having a peak outside the detection area and the noise component generated in the detection area. It becomes possible to cope with such a situation appropriately.
- the first determination means makes a positive determination, if the amount of light received by the barycentric pixel is not sufficient, a negative determination can be made by the second determination means, and erroneous detection can be avoided.
- the spatial data processing for obtaining the degree of the total amount of received light of the peripheral pixels is performed for each pixel, and the filter processing data is acquired.
- the fact that the data value of the barycentric pixel in the filter processing data is greater than or equal to a predetermined value is set as a condition for positive determination. In this case, it is possible to determine whether or not the amount of received light is sufficient including the pixels located around the center-of-gravity pixel, and the determination accuracy by the second determination unit can be improved.
- the filter process is performed by performing a spatial filter process for obtaining a positional change degree of the light reception amount of each pixel in the predetermined direction for each pixel.
- the surface of the human body such as the hand has a surface texture with many irregularities, so that there is a high possibility that diffuse reflection will occur.
- the received light amount distribution of each pixel by diffuse reflected light tends to exhibit a gentle distribution shape.
- a range where the degree of positional change of the received light amount is small is formed over a relatively wide range.
- the filter processing data when specular reflection light or noisy disturbance light is incident there is a high possibility that a pixel exhibiting a large data value is included around the centroid pixel.
- the filter processing data when the diffusely reflected light exhibiting a gentle received light amount distribution as described above may include pixels that exhibit a large data value around the peak of the gently received light amount distribution as described above. It is low.
- the determination is made that the data value of the centroid pixel and the data values of other neighboring pixels are both within a predetermined value By doing so, specular reflection light, noisy disturbance light, and the like can be reliably removed.
- the light receiving amount of the barycentric pixel is equal to or greater than a predetermined value with respect to the above-described determination condition regarding the filter processing data in which the degree of positional change of the light receiving amount is emphasized, or the periphery of the barycentric pixel It is preferable to combine a determination condition such that the degree of the total amount of light received by the pixels is a predetermined value or more.
- the center-of-gravity specifying means included in the human body detection sensor calculates a total received light amount that is a sum of the received light amounts of the pixels arranged in the predetermined direction in the imaging element, When the accumulated light reception amount obtained by sequentially integrating the light reception amount of each pixel toward the other end from the pixel located at one end of the predetermined direction reaches half of the total light reception amount The pixel position is specified as the barycentric position.
- the calculation load can be reduced while ensuring the position accuracy of the center of gravity position to be calculated.
- An image pickup unit included in an automatic faucet is configured to store a light receiving element for each pixel that converts received light into an electric signal, and to store an electrical physical quantity by taking in the electric signal of the light receiving element.
- a light receiving accumulation unit provided for each pixel, an imaging data output unit that outputs the imaging data based on a physical quantity accumulated by the light receiving accumulation unit of each pixel, an accumulation state in which the physical quantity is accumulated in the light receiving accumulation unit, and An accumulation mode switching unit that alternatively sets one of the non-accumulation states that are not accumulated,
- the imaging control unit controls the imaging unit so that an intermittent operation in which an operation period and a non-operation period appear alternately is performed, In the operation period, the accumulation mode switching unit is controlled so that the accumulation state is set only when the imaging data is acquired, and the non-accumulation state is set otherwise.
- the imaging unit operates intermittently. If the imaging unit is operated intermittently, the ratio of the operation time of the imaging unit to the total operation time of the automatic faucet can be reduced, thereby reducing the average power consumption of the entire apparatus.
- an imaging device such as a CCD or a CMOS
- the imaging unit of the automatic faucet the accumulation state is set only when the imaging data is acquired, and the non-accumulation state is set otherwise. The imaging unit ends the operation period in a state where the light receiving accumulation unit is reset in accordance with a reading process for acquiring the imaging data.
- the reset state is maintained as it is. That is, when the imaging unit shifts to the operation period, the light receiving and storing unit of each pixel is in a reset state, and there is no need to perform a readout process again when acquiring the imaging data.
- the imaging unit can reduce the number of executions of the readout process per operation period, so that the operation period can be further shortened and power consumption can be further reduced.
- FIG. 1 is a perspective cross-sectional view showing a wash basin equipped with an automatic faucet in Embodiment 1.
- FIG. FIG. 2 is a cross-sectional view showing a cross-sectional structure of the sensor unit according to the first embodiment (a cross-sectional view taken along line AA in FIG. 1).
- FIG. 3 is a perspective view showing a line sensor in the first embodiment.
- 1 is a block diagram showing a system configuration of a human body detection sensor in Embodiment 1.
- FIG. FIG. 3 is an explanatory diagram illustrating a difference data generation procedure according to the first embodiment. Explanatory drawing explaining the calculation method of the gravity center position in Example 1.
- FIG. Explanatory drawing explaining the detection principle of the human body detection sensor in Example 1.
- FIG. 3 is an explanatory diagram illustrating a first incident pattern example that is not detected in the first embodiment.
- FIG. 6 is an explanatory diagram illustrating a second incident pattern example that is non-detected in the first embodiment. Explanatory drawing explaining the spatial filter process in Example 2.
- FIG. Explanatory drawing which shows the operator applied to the spatial filter process in Example 3.
- FIG. 6 is an explanatory diagram showing an example of an incident pattern that is detected in the third embodiment.
- FIG. 9 is an explanatory diagram illustrating an example of an incident pattern that is not detected in the third embodiment.
- FIG. 9 is a block diagram showing an electrical configuration of a line sensor in Embodiment 4.
- 9 is a time chart showing the operation of the sensor unit in the fourth embodiment.
- FIG. 9 is a block diagram showing an electrical configuration of a line sensor in Embodiment 4.
- FIG. 10 is a block diagram illustrating a part of the circuit configuration of another line sensor according to the fourth embodiment. 10 is a time chart showing the operation of a sensor unit including other line sensors in Example 4.
- FIG. 10 is a flowchart showing a flow of detection processing in the fifth embodiment.
- FIG. 10 is a flowchart showing a flow of simple determination processing in the fifth embodiment.
- FIG. 10 is a flowchart showing a flow of detailed determination processing in the fifth embodiment.
- FIG. FIG. 10 is a first explanatory diagram for explaining a method of detecting specular reflection in Example 6.
- FIG. 10 is a second explanatory diagram for explaining a method of detecting specular reflection in Example 6.
- FIG. 10 is a third explanatory diagram for explaining a specular reflection detection method in Embodiment 6.
- FIG. 16 is a first explanatory diagram illustrating another method of detecting specular reflection in Example 6.
- FIG. 10 is a second explanatory diagram for explaining another method of detecting specular reflection in the sixth embodiment.
- FIG. 10 is a third explanatory diagram for explaining another method of detecting specular reflection in Example 6. Explanatory drawing explaining the generation
- Example 1 the human body detection sensor 1 is applied to the faucet (automatic faucet) 16 of the washstand 15.
- the washstand 15 of the present example includes a counter 155 provided with a bowl portion (bowl) 151 that is recessed in a concave shape, and a faucet 16 provided with a water discharge port 168.
- the faucet 16 is erected on a counter top 156 that forms the upper surface of the counter 155.
- the bowl portion 151 has a drain port 152 at its deepest portion.
- the water faucet 16 has a base portion 161 that forms a pedestal for the counter top 156 and a substantially cylindrical body portion 160 that extends from the base portion 161.
- the body part 160 is supported by the base part 161 in a state where it is inclined toward the bowl part 151 side.
- a substantially cylindrical water discharge portion 162 having a water discharge port 168 opened at the tip is attached to the side surface of the body portion 160 that contacts the bowl portion 151 side.
- a filter plate 165 that forms a detection surface of the human body detection sensor 1 is disposed on the outer peripheral side surface of the body portion 160 that corresponds to the upper side of the water discharge portion 162.
- the filter plate 165 is a resin filter that selectively transmits light in the infrared region.
- the human body detection sensor 1 of this example is composed of a sensor unit 2 incorporated in a faucet 16 and a control unit 3 for controlling the sensor unit 2 as shown in FIGS.
- an automatic water supply device 10 is formed by a combination of the human body detection sensor 1 and a solenoid (water supply control means) 11 that is a water discharge valve (electromagnetic valve) provided in the water supply pipe 12.
- the sensor unit 2 is a unit in which the LED element 251 and the line sensor (imaging element) 261 are accommodated in the casing 21 and operates by receiving power supply from the control unit 3.
- the light emitting unit 25 and the imaging unit 26 are disposed so as to face the filter plate 165 of the faucet 16.
- the light emitting unit 25 that emits infrared light includes an LED element 251 and a light projecting lens 25A.
- the imaging unit 26 includes a line sensor 261 and a light receiving lens 26A.
- the light emitting unit 25 and the imaging unit 26 are arranged with a predetermined offset amount in the horizontal direction across the partition wall 211 having light shielding properties.
- the LED element 251 is a light emitting element in which the LED chip 250 mounted in the cavity of the package substrate is sealed with a transparent resin 254 as shown in FIG.
- the LED element 251 is covered with a light-shielding element case 252 provided with a longitudinal slit hole 253. According to the light emitting unit 25, it is possible to project sharp light with a divergent angle suppressed toward a detection target.
- the line sensor 261 is a one-dimensional imaging sensor in which pixels 260 that convert a received light amount into an electrical physical amount are linearly arranged.
- the line sensor 261 includes 64 pixels 260 as effective pixels.
- a light receiving area 263 is formed by these 64 pixels 260.
- the line sensor 261 is disposed so as to look at the bowl surface 150 of the bowl portion 151. If there is no obstacle such as a hand in the expected direction of the line sensor 261, the bowl surface 150 is included in the imaging range.
- the line sensor 261 outputs imaging data every time a light receiving operation is executed.
- the imaging data in this example is one-dimensional digital data in which 256-gradation pixel values representing the degree of received light amount are arranged in the order in which the pixels 260 are arranged.
- the line sensor 261 includes an electronic shutter (accumulation mode switching unit) (not shown). If the exposure time is adjusted using an electronic shutter, saturation of the amount of light received by each pixel 260 can be avoided in advance.
- the control unit 3 is a unit for controlling the sensor unit 2 and the solenoid 11 as shown in FIGS.
- the control unit 3 includes a control board 30 that controls the sensor unit 2, the solenoid 11, and the like.
- the control board 30 is provided with an imaging control unit 31 that controls the sensor unit 2, a human body detection unit 32 that executes detection processing, and a water supply control unit 33 that controls the solenoid 11 according to the detection result. .
- the imaging control unit 31 controls the line sensor 261 so that an intermittent operation in which an operation period and a non-operation period appear alternately is performed, and causes the LED element 251 to emit light in an operation period of about 1 millisecond.
- an interval time of 0.3 to 0.5 seconds is set as the non-operation period of the gap between the operation periods adjacent in time.
- the imaging control unit 31 sets the non-operation period of the line sensor 261 by stopping the power supply to the sensor unit 2 until the interval time elapses after the previous operation period ends, and the interval time elapses. Then, the power supply is resumed and the operation period of the line sensor 261 is set.
- the imaging control unit 31 sets two exposure periods in one operation period.
- the first exposure period is an exposure period in which the LED element 251 does not emit light.
- the second exposure period is an exposure period accompanied by light emission of the LED element 251.
- the imaging control unit 31 controls the line sensor 261 so that imaging data for each exposure period is output. The control of the sensor unit 2 by the imaging control unit 31 will be described in detail in a fourth embodiment.
- the human body detection unit 32 includes (a) difference calculation means 321, (b) centroid specifying means 322, (c) first determination means 323A, (d) second determination means 323B, and (e). A function as the detection output means 324 is provided.
- the content of each means with which the human body detection part 32 is provided is demonstrated.
- the difference calculation means 321 includes non-light-emitting data C (x) that is imaging data by the light receiving operation during the first exposure period in which the LED element 251 does not emit light, and LED light (projection light of the LED element 251).
- the data L (x) at the time of light emission by the light receiving operation in the second exposure period under the ()) is captured and stored, and then the difference data D (x) between them is obtained.
- x represents a pixel number from 0 to 63
- L (n) or the like represents the pixel value of the pixel of pixel number n.
- the difference data D (x) obtained by subtracting the non-light emitting data C (x) of only the ambient light from the light emitting data L (x) with the LED light in addition to the ambient light the influence of the ambient light is suppressed, The component of the reflected light corresponding to the LED light is extracted with high accuracy.
- the center-of-gravity specifying means 322 is a means for calculating the position of the center of gravity for the difference data D (x) in FIG.
- a simple calculation method is adopted as a calculation method of the center of gravity position in order to reduce the calculation load. This calculation method will be described with reference to FIG. 6 in which the horizontal axis represents the pixel number x and the vertical axis represents the pixel value (light reception amount) D (x).
- the difference data D (x) is integrated to obtain the sum SD of the pixel values of 64 pixels.
- This total SD corresponds to the area of the region indicated by hatching in the upward direction in FIG.
- the barycentric position is obtained by integrating the pixel values of the respective pixels 260 in order from the pixel of the pixel number zero at the left end of the light receiving area 263, and the pixel number N when the integrated value reaches SD / 2 (with a black circle) Calculated).
- the integrated value SD / 2 corresponds to the area of a region indicated by hatching with a downward slope to the right. Since this area is included in the area of the total sum SD, it is grasped as a cross hatch area in FIG.
- the nearest pixel adjacent to the pixel with pixel number N may be used as the barycentric position.
- the first determination unit 323A is a unit that determines whether or not the center of gravity specified as described above belongs to the detection area (see FIG. 6).
- the detection area is set as described below based on the principle of triangulation by the sensor unit 2.
- the positional relationship between the sensor unit 2, the bowl surface 150 of the bowl 151, and the user's hand in the wash basin 15 of this example can be schematically represented as shown in FIG.
- the incident position differs depending on the distance H to the detection target.
- the distance H is shorter, the incident position with respect to the line sensor 261 is on the left side in the figure, and as the distance H is longer, it is located on the right side. Based on the incident position of the reflected light in the light receiving area 263, the distance to be detected can be measured.
- the detection area serving as the determination criterion of the first determination unit 323A is an area set in the light receiving area 263 so as to correspond to the detection distance (see FIG. 7) to be detected. As shown in FIG. 6, the first determination unit 323A makes a positive determination when the position of the center of gravity is included in the detection area.
- the second determination means 323B is a means for executing determination according to the result of threshold processing for the pixel value D (N) (see FIG. 6) of the centroid pixel corresponding to the centroid position in the difference data D (x). is there.
- the second determination means makes a positive determination when the pixel value D (N) of the centroid pixel is equal to or greater than Ds.
- the detection output means 324 outputs a detection signal indicating that a hand as a detection target has been detected when the determinations of the first and second determination means 323A and B are both positive. As shown in FIG. 6, if the barycentric pixel is located in the detection area and the pixel value D (N) ⁇ Ds of the barycentric pixel, a detection signal is output.
- the human body detection sensor 1 of this example when the first determination condition that the center of gravity position is within the detection area and the second determination condition that the pixel value of the center of gravity pixel is equal to or greater than Ds are both positively cleared. A detection signal is output.
- the human body detection sensor 1 for example, it is possible to suppress erroneous detection due to specular reflected light from the bowl surface 150 as shown in FIG. 8 or noise disturbance light as shown in FIG.
- the specular reflection light in FIG. 8 it can be determined that the detection is not performed because the position of the center of gravity indicated by the black circle is outside the detection area.
- the pixel value of the centroid pixel is less than Ds. It can be detected.
- the hand is held in accordance with the combination of the determination results of whether or not the position of the center of gravity is appropriate and whether or not the pixel value of the center of gravity pixel is appropriate.
- the operation can be detected with high accuracy.
- threshold position determination relating to the pixel value of the centroid pixel is combined with position determination of the centroid position, thereby improving detection accuracy.
- the centroid position is calculated by simple calculation. However, the centroid position may be calculated mathematically strictly, or the centroid position may be calculated by another simple calculation.
- the value of the threshold value Ds with respect to the pixel value D (N) of the center-of-gravity pixel is not specifically illustrated, but the threshold value Ds is appropriately determined according to the characteristics of the line sensor 261, ambient brightness, and the like. Can be set.
- this example is an example in which the human body detection sensor 1 is applied to the washstand 15, it may be a kitchen faucet. Furthermore, it is also possible to apply the human body detection sensor 1 of this example as a sensor of an automatic water supply device for a toilet bowl with an automatic cleaning function. Furthermore, the human body detection sensor 1 can be applied to various automatic devices such as a hand-holding operation, lighting that is turned on in response to a human body, and an automatic door.
- the sensor unit 2 and the control unit 3 are configured separately. Instead of this, the sensor unit 2 and the control unit 3 may be configured integrally and accommodated in the faucet 16.
- Example 2 This example is an example in which the configuration of the second determination unit (reference numeral 323B in FIG. 4) is changed based on the human body detection sensor of the first embodiment. The contents will be described with reference to FIG.
- the second determination means of this example executes determination of whether or not the sum of the pixel values including the periphery of the centroid pixel is appropriate, instead of the determination of the first embodiment that the pixel value of the centroid pixel is appropriate. To do.
- the difference data D (x) (see FIG. 5) is subjected to spatial filter processing to obtain the sum of the pixel values.
- the spatial filter processing of this example is processing that uses an operator 266A having a 1 ⁇ 3 pixel size whose weighting coefficients are all 1.
- the operator 266A calculates by multiplying the multiplication value of the pixel value D (x) of each pixel and the corresponding weight coefficient.
- the operator calculates the data value F (x) of the target pixel 266.
- An operator 266A in FIG. 10 is a kind of low-pass filter operator, and acts to smooth the difference data D (x).
- the second If it is determined whether or not the data value of the barycentric pixel (the sum of the barycentric pixel and the pixel value D (x) of one neighboring pixel) of the filter processing data F (x) is equal to or greater than a predetermined value, the second There is a possibility that the certainty of the determination by the determination means can be improved. For example, the pixel value of the centroid pixel is smaller than the surroundings due to noise or the like, or a defective pixel with poor light reception efficiency hits the centroid pixel even though the situation should be determined as detection. Even in cases, a positive determination can be made.
- the size of an operator applied to the spatial filter processing can be appropriately changed.
- the operator 266A is an operator of a low-pass filter, the effect of this example can be obtained, and the weighting factor can be changed as appropriate.
- the weight coefficient may be set larger as it is closer to the center as in a normal distribution.
- the threshold value for the filter processing data F (x) is not specifically illustrated, but this threshold value depends on the characteristics of the line sensor 261, ambient brightness, noise disturbance light characteristics, and the like. Accordingly, it can be set appropriately.
- Example 3 This example is an example in which the configuration of the second determination unit (reference numeral 323B in FIG. 4) is changed based on the human body detection sensor of the first embodiment. The contents will be described with reference to FIGS.
- the second determination unit of the present example includes a pixel value D ( It is determined whether or not the positional change degree of x) is appropriate.
- the difference data D (x) is subjected to spatial filter processing using an operator 266A having a 1 ⁇ 3 pixel size with weighting factors of ⁇ 1, 0, and 1 to obtain the above degree of change.
- an operator 266A in FIG. 11 is a kind of operator of a high-pass filter, and the degree of positional change can be emphasized by differentiating the received light amount distribution of the difference data D (x) in the pixel arrangement direction.
- FIG. 12 shows an example when diffusely reflected light by a hand-holding operation is incident.
- FIG. 13 shows an example when noisy disturbance light is incident on the detection area.
- the graph of difference data D (x) to be subjected to the spatial filter processing is arranged in the upper stage, and the graph of the filter processing data F (x) after the spatial filter processing is arranged in the lower stage.
- the received light amount distribution of the difference data D (x) has a gentle curve shape close to the normal distribution.
- the data value of the filter processing data F (x) is close to zero at the center-of-gravity pixel (shown by a black circle) located near the peak of the received light amount distribution and the surrounding pixels.
- differential data D (x) when noisy disturbance light is incident, differential data D (x) as shown in FIG. 13 may be obtained.
- the received light amount distribution tends to be not smooth and jagged.
- the operator 266A applied to the spatial filter processing of this example it is possible to generate the filter processing data F (x) in which such a jaggedness of the received light amount distribution is emphasized.
- a determination condition that the absolute value of (x) does not exceed the threshold value Fs is added.
- the center of gravity position is included in the detection area, and the pixel value of the center of gravity pixel is equal to or greater than the predetermined value Ds.
- the filter processing data F (x) pixels whose data value F (x) exceeds the threshold value Fs are included in the pixels belonging to the predetermined range.
- the operator 266A can obtain the effects of this example as long as it is a high-pass filter operator, and the weighting factor can be changed as appropriate.
- the value of the threshold value Fs for the filter processing data F (x) is not specifically illustrated, but the threshold value Fs can be appropriately set as in the second embodiment.
- Example 4 This example is a specific example of control of the sensor unit 2 of the first embodiment. The contents will be described with reference to FIGS. In the following description, first, the line sensor 261 constituting the sensor unit 2 will be described with reference to FIG. 14, and then the operation of the sensor unit 2 will be described with reference to the time chart of FIG.
- each of the 64 pixels 260 constituting the line sensor 261 includes a photodiode (light receiving element) PD1 that generates a current signal in response to received light, an integration circuit (light receiving and accumulating unit) 267, and a hold.
- a circuit 266 and the like are individually provided. The physical quantity of each pixel 260 is sequentially read out by the imaging data output unit 268 and converted into a series of imaging data.
- the integration circuit 267 is a circuit that accumulates charges (physical quantities) according to the current signal generated by the photodiode PD1 and outputs a voltage corresponding to the charges.
- the hold circuit 266 is a sample hold circuit that holds the peak voltage output from the integration circuit 267 and outputs a voltage corresponding to the magnitude.
- the hold circuit 266 is electrically connected to the integration circuit 267 via the switch SW2.
- the imaging data output unit 268 is an output unit that reads out the output voltage of the hold circuit 266 of each pixel 260 one by one in order to generate and output a series of imaging data for 64 pixels.
- the switch SW1 connected in parallel to the capacitor C1 of the integration circuit 267 realizes a function as an electronic shutter (accumulation mode switching unit).
- the switch SW1 is in the closed state, even if the photodiode PD1 receives light, all charges are canceled without being stored in the capacitor C1, and the charge in the integrating circuit 267 is maintained at zero (initial value). Only when the switch SW1 is in the open state, charges corresponding to the amount of light received by the photodiode PD1 are accumulated in the integrating circuit 267.
- the closed state including the non-operation period of the line sensor 261 is set by default.
- the switch SW1 is switched to the open state according to the control of the imaging control unit 31 (FIG. 4).
- times T1 to T8 correspond to the operation period of the sensor unit 2, and periods before and after that correspond to non-operation periods.
- PWR is a power control signal for the sensor unit 2
- Hi corresponds to the power supply state and Lo corresponds to the power cut-off state.
- SW1”, “SW2”, and the like are control signals for the corresponding switches, and Hi corresponds to a closed state and Lo corresponds to an open state.
- LED is a control signal for the LED element 251, and Hi corresponds to the light emission state and Lo corresponds to the light off state.
- Video indicates imaging data including a one-dimensional digital image signal in which pixel values of each pixel 260 (brightness value corresponding to the amount of received light) are continuous.
- the switch SW1 of the integration circuit 267 is switched to the open state, and the switch SW2 on the input side of the hold circuit 266 is switched to the closed state.
- the charge output from the photodiode PD1 is accumulated in the capacitor C1, and the output voltage of the integrating circuit 267 gradually increases.
- the switch SW2 is closed, the output voltage of the integration circuit 267 is input to the hold circuit 266, and the peak voltage is held.
- the switch SW1 is switched to the closed state and the switch SW2 is switched to the open state, and the first exposure period of the photodiode PD1 ends.
- the imaging data output unit 268 generates imaging data.
- the imaging data output unit 268 outputs imaging data for 64 pixels while reading the output voltage for each pixel at each clock with a clock signal (not shown) taken from the imaging control unit 31 as a reference timing. This imaging data is captured by the human body detection unit 32 and stored as non-light emitting data under ambient light (FIG. 5).
- the imaging data output unit 268 generates and outputs imaging data based on the output voltage of the hold circuit 266 of each pixel.
- This imaging data is taken in by the human body detection unit 32 and stored as emission data (FIG. 5) under (ambient light + LED light).
- PWR becomes Lo
- power supply to the sensor unit 2 is stopped.
- the control unit 3 transfers to the low power consumption mode in which only the timing operation for measuring the transition timing to the next operation period is performed.
- the sensor unit 2 including the line sensor 261 operates intermittently. Further, the line sensor 261 of the present example has an electronic shutter function, and charges are not accumulated in each pixel 260 except when acquiring imaging data. Therefore, it is not necessary to read and reset the physical quantity accumulated in each pixel 260 of the line sensor 261 prior to acquiring the imaging data. In this automatic water supply apparatus, the operation time required for resetting each pixel 260 can be reduced, and the operation time of the line sensor 261 is further shortened.
- the physical quantity that is the difference between the physical quantity accumulated under light emission of the LED element 251 and the physical quantity accumulated under non-light emission may be directly output from each pixel 260.
- Such a configuration can be realized, for example, by the line sensor 261 having the circuit configuration of FIG.
- hold circuits 266A and B are connected to an integrating circuit 267 via switches SW21 and SW22. Further, a difference calculation circuit 269 is connected to the downstream side of the hold circuits 266A and B, and an output hold circuit 266C is connected to the downstream side thereof.
- the first exposure period without light emission of the LED element 251 (FIG. 4) is set at times T1 to T2, and the second exposure period with light emission is at times T4 to T5. It is set (the light emission period of the LED element 251 is times T3 to T6).
- the peak voltage of the integration circuit 267 is the hold circuit. 266A.
- the switches SW31 and SW33 are switched to the closed state, and this switch state is maintained until time T8.
- the output voltage (voltage value V1) of the hold circuit 266A is input to the capacitor C3 of the difference calculation circuit 269 via the switch SW31 and is held.
- the switch SW32 is switched to the closed state (the switch SW33 remains open), and this switch state is maintained until time T10.
- the output voltage (voltage value V2) of the hold circuit 266B is input to the capacitor C3 of the difference calculation circuit 269 via the switch SW32.
- the capacitor C3 of the difference calculation circuit 269 holds the difference between the voltage value V1 and the voltage value V2.
- the voltage value of the difference corresponds to a reflected light component based on the projection light of the LED element 251.
- the voltage value of the difference is taken into the hold circuit 266C at times T11 to T12, and then output as imaging data via the imaging data output unit 268 (FIG. 14, omitted in FIG. 16).
- This example employs an electronic shutter to control the length of exposure time during the light receiving operation.
- an electronic shutter is not essential and can be omitted, a mechanical shutter that physically blocks light incident on the line sensor 261 may be employed instead of the electronic shutter.
- Other configurations and operational effects are the same as those in the first embodiment.
- Example 5 This example is an example in which the content of the detection process by the human body detection unit (reference numeral 32 in FIG. 4) is changed based on the human body detection sensor of the first embodiment.
- the contents will be described with reference to FIGS.
- the human body detection unit of this example has functions of two types of processing means as detection processing execution means. In the detection processing by the human body detection unit, as shown in FIG. 18, first, simple determination by the first processing means is executed (S101). When an affirmative determination is made by the simple determination (S102: YES), a detailed determination by the second processing unit is executed (S103). When a positive determination is also made in the detailed determination (S104: YES), it is determined as detection (S105).
- step S101 if a negative determination is made in the simple determination in step S101 or the detailed determination in step S103 (S102: NO, S104: NO), the process shifts to the non-operation period according to the end of the operation period, and the next time The operation period is waited.
- step S101 S102: NO
- step S103 the detailed period determination in step S103 is not performed and the operation period ends.
- step S201 data L (x) at the time of light emission, which is imaging data under LED light, is captured (S201).
- x represents a pixel number from 0 to 63
- L (x) represents a pixel value (amount of received light) of a pixel having an image number x.
- the sum S0 of the pixel values of all pixels (some pixels are acceptable) is obtained (S202). Further, the sum S1 (previous value) of the pixel values calculated in step S202 of the simple determination process for the previous operation period is read (S203). Then,
- step S103 the non-light emission data C (x), which is imaging data under no light emission of the light emitting unit 25, is captured (S301). Then, the difference data D (x) is calculated by subtracting the non-light emission data C (x) from the light emission data L (x) captured in step S201 (FIG. 19) of the simple determination process (S302). .
- the gravity center position (incident position) is calculated for the difference data D (x).
- the center of gravity position is calculated by the same simple calculation method as in the first embodiment.
- it is determined whether or not the position of the center of gravity calculated as described above is located in the detection area (see FIG. 6 of the first embodiment) in the light receiving area 263.
- step S304 If it is determined in step S304 that the position of the center of gravity is located in the detection area and there is a detection target at a predetermined detection distance (see FIG. 7 in the first embodiment) (S304: YES), a positive determination is made (S305). ), A detection signal is output as in step S105 in FIG. On the other hand, when it is determined that the position of the center of gravity is outside the detection area (S304: NO), it is not detected and the operation period is shifted to the next operation period (S315).
- the detection is realized through the two-stage determinations of the simple determination and the detailed determination.
- the detailed determination process (FIG. 20) with a high calculation load every time, and it may be executed only when an affirmative determination is made by a simple determination.
- most operation periods of the human body detection sensor 1 only simple determination is performed, and detailed determination is executed only when a hand-holding operation is actually performed. Thereby, the calculation load and the number of execution times of the light receiving operation are reduced, and the power consumption is effectively reduced.
- the human body detection sensor 1 of this example is a sensor having excellent characteristics in which detection performance and energy saving performance are compatible.
- the automatic faucet 16 provided with the human body detection sensor 1 is an excellent product with few malfunctions and high energy saving performance.
- the light emission data L (x) is shared between the simple determination process and the detailed determination process. Thereby, the number of executions of the light receiving operation of the line sensor 261 is reduced.
- the detailed determination process is executed only once when an affirmative determination is made in the simple determination.
- the detailed determination process may be executed continuously a plurality of times. In this case, it is preferable to suppress the detection omission by executing the detailed determination based on the strict determination criterion a plurality of times while suppressing the erroneous detection by setting the determination criterion of the detailed determination each time.
- the detailed determination process may be replaced with the detection process of another embodiment. Other configurations and operational effects are the same as those in the first embodiment.
- Example 6 This example is an example of a method for eliminating specular reflection light based on the human body detection sensor of the first embodiment. The contents will be described with reference to FIGS.
- the human body detection sensor of the first example is a sensor in which the LED element is covered with an element case (symbol 252 in FIG. 2) provided with a slit hole, as in the first embodiment. The sensor with the case removed.
- each of b1 and b2 in FIG. 22 is an example of the light amount distribution of the reflected light diffusely reflected by the white detection target T having a high reflectance.
- ⁇ is the reflection angle of light by the detection target T
- S is the offset amount between the LED element 251 and the line sensor 261
- f is the focal length of the light receiving lens 26A.
- the light intensity increases as the distance L in FIG. 21 decreases, and the peak intensity increases.
- the change in peak intensity at that time corresponds to the change in the distance L, that is, the magnitude of the distance d in the X direction on the line sensor 261.
- the change is regular and changes almost along the peak intensity curve Q.
- the peak intensity is greatly increased. Therefore, if a threshold R curve is set with a margin in view of the peak intensity curve Q, specular reflection light exhibiting peak intensity exceeding the threshold R can be reliably determined (FIG. 23).
- a reflected light having a light intensity of a certain level or higher and a peak intensity lower than the threshold R is detected in the detection area of the line sensor 261, the waveform b1 of the reflected light by the detection target T within the detection distance can be detected (FIG. 24). The same applies to the waveform b2.
- a waveform b3 in the figure is an example of a light amount distribution of reflected light by diffuse reflection from the detection target T.
- a waveform a2 is an example of a light amount distribution of reflected light due to specular reflection from the bowl surface 150 of the bowl portion 150 (FIG. 1).
- two waveforms are superimposed and displayed with the value obtained by dividing the light intensity of each pixel by the peak value as the vertical axis.
- the waveform b3 has a broad waveform, while the waveform a2 has a steep and sharp shape.
- There is a large difference in the kurtosis of the waveform between the waveform b3 and the waveform a2 and two types of waveforms can be identified by paying attention to the difference in kurtosis.
- the waveform a2 can be determined to be a waveform of specular reflection light because the rising slope gradient ⁇ is larger than the threshold value ⁇ . It is also possible to identify the waveform of the specular reflection light by providing a threshold for the slope of the falling waveform.
- a second method for identifying a waveform using kurtosis is a method that focuses on the fact that the width of the waveform a2 having a steep and high kurtosis is small as shown in FIG. For example, if a threshold value U is provided for the waveform width W at half the peak intensity (height), the waveform of the specular reflection light can be identified when the width W is equal to or less than the threshold value U.
- the specular reflection light may be eliminated by using both detection based on the peak intensity of the light amount distribution of the reflected light and detection based on the waveform shape (kurtosis). Other configurations and operational effects are the same as those in the first embodiment.
- SYMBOLS 1 Human body detection sensor, 10 ... Automatic water supply apparatus, 15 ... Wash-stand, 16 ... Water faucet (automatic water faucet), 11 ... Solenoid, 12 ... Water supply piping, 2 ... Sensor unit, 25 ... Light emission part, 251 ... LED element , 26: imaging unit, 260 ... pixel, 261 ... line sensor (imaging device), 267 ... integration circuit (light receiving / accumulating unit), 268 ... imaging data output unit, 3 ... control unit, 30 ... control board, 31 ... imaging control 32, human body detection unit, 321 ... difference calculation unit, 322 ... centroid specifying unit, 323A ... first determination unit, 323B ... second determination unit, 324 ... detection output unit, 33 ... water supply control unit
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Domestic Plumbing Installations (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
前記反射光を受光した各画素の受光量に基づいて、前記撮像素子における各画素の配列領域である受光エリア内の前記反射光の重心位置を特定する重心特定手段と、
前記受光エリアの一部に設定された検知エリアに前記重心位置が属しているか否かを判定する第1の判定手段と、
各画素の受光量に所定の空間フィルタ処理を施して得られたフィルタ処理データのうちの前記重心位置に当たる重心画素のデータ値に関する閾値処理の結果、及び前記重心画素の受光量の大きさに関する閾値処理の結果、のうちの少なくともいずれか一方に応じて前記重心画素の受光度合いの適否を判定する第2の判定手段と、
前記第1及び第2の判定手段がいずれも肯定的な判定を行ったときに検知対象を検知した旨を表す検知信号を出力する検知出力手段と、を備えた人体検知センサとして把握される。
前記人体検知センサが備える撮像部の撮像範囲に前記鉢の内周面をなす鉢面が含まれている自動水栓として把握される。
この場合には、例えば、前記検知エリア外にピークを持つ鏡面反射光と、前記検知エリア内で生じたノイズ成分と、の組合せに応じて、前記重心位置が前記検知エリア内にずれて位置したような状況に適切に対処可能になる。前記第1の判定手段が肯定的な判定を行ったとしても、前記重心画素の受光量が十分でなければ前記第2の判定手段による否定的な判定が可能となり、誤検知を回避できる。
該フィルタ処理データのうちの前記重心画素のデータ値が所定値以上であったこと、が肯定的な判定のための条件として設定されている。
この場合には、前記重心画素の周辺に位置する画素を含めて受光量が十分であるか否かを判定でき、前記第2の判定手段による判定精度を向上できる。
該フィルタ処理データのうちの前記重心画素のデータ値、及び前記重心画素近傍の所定範囲に属する他の画素のデータ値がいずれも所定値以内であったこと、が肯定的な判定のための条件として設定されている。
前記所定方向のいずれか一方の端に位置する画素を起点とし、他方の端に向けて各画素の受光量を順番に積算してきた積算受光量が、前記総受光量の半分に達したときの画素の位置を前記重心位置として特定する。
前記撮像制御部は、動作期間及び非動作期間が交互に現れる間欠動作が行われるように前記撮像部を制御すると共に、
前記動作期間において、前記撮像データを取得するときのみ前記蓄積状態が設定され、それ以外では前記非蓄積状態が設定されるように前記蓄積モード切換部を制御する。
一般に、CCDやCMOS等の撮像デバイスでは、撮像するに当たって、各画素に蓄積された物理量を読み出して(読み出し処理)リセットする必要がある。一方、前記自動水栓の撮像部では、前記撮像データを取得するときのみ前記蓄積状態が設定され、それ以外では前記非蓄積状態が設定されている。この撮像部は、前記撮像データを取得するための読み出し処理に応じて前記受光蓄積部がリセットされた状態で前記動作期間を終了する。また、前記非動作期間では前記受光蓄積部に物理量が蓄積されないので、そのリセット状態がそのまま維持される。つまり、前記撮像部は、前記動作期間へ移行する際、各画素の受光蓄積部がリセットされた状態になっており、前記撮像データの取得に際して改めて読み出し処理を実行する必要がない。これにより、前記撮像部では、動作期間1回当たりの読み出し処理の実行回数を少なくできるので、前記動作期間をさらに短縮でき消費電力をさらに低減できる。
(実施例1)
本例は、洗面台15の水栓(自動水栓)16に人体検知センサ1を適用した例である。この内容について、図1~9を参照して説明する。
本例の洗面台15は、図1のごとく、凹状に窪むボウル部(鉢)151を設けたカウンタ155と、吐水口168を設けた水栓16と、を備えている。水栓16は、カウンタ155の上面をなすカウンタトップ156に立設されている。ボウル部151は、その最深部に排水口152を備えている。
差分演算手段321は、図5のごとく、LED素子251の発光がない1回目の露光期間の受光動作による撮像データである無発光時データC(x)と、LED光(LED素子251の投射光)の下での2回目の露光期間の受光動作による発光時データL(x)と、を取り込んで記憶した後、両者の差分データD(x)を求める手段である。ここで、xは、0~63の画素番号を示し、L(n)等は、画素番号nの画素の画素値を表している。周囲光に加えてLED光有りの発光時データL(x)から、周囲光のみの無発光時データC(x)を、差し引いた差分データD(x)では、周囲光の影響が抑圧され、LED光に応じた反射光の成分が精度高く抽出されている。
重心特定手段322は、図5の差分データD(x)について、重心位置を計算する手段である。本例では、計算負荷の軽減のため、重心位置の計算方法として簡易的な計算方法が採用されている。この計算方法について、横軸に画素番号x、縦軸に画素値(受光量)D(x)が規定された図6を参照して説明する。
第1の判定手段323Aは、上記のように特定された重心位置が検知エリア(図6参照。)に属しているか否かを判定する手段である。本例では、センサユニット2による三角測量の原理を根拠として次に説明するように検知エリアが設定されている。
第2の判定手段323Bは、差分データD(x)のうち、重心位置に当たる重心画素の画素値D(N)(図6参照。)についての閾値処理の結果に応じて判定を実行する手段である。第2の判定手段は、重心画素の画素値D(N)がDs以上であったときに肯定的な判定を行う。
検知出力手段324は、第1及び第2の判定手段323A・Bの判定が何れも肯定的であったときに、検知対象である手などが検知された旨を表す検知信号を出力する。図6のごとく、重心画素が検知エリア内に位置し、かつ、重心画素の画素値D(N)≧Dsであれば、検知信号が出力される。
また、本例では、重心画素の画素値D(N)に対する閾値Dsの値を具体的に例示していないが、閾値Dsは、ラインセンサ261の特性や周囲の明るさ等に応じて、適宜設定できる。
本例は、実施例1の人体検知センサに基づいて、第2の判定手段(図4中の符合323B)の構成を変更した例である。この内容について、図10を用いて説明する。
本例の第2の判定手段は、重心画素の画素値が適正か否かという実施例1の判定に代えて、重心画素の周辺を含めて画素値の総和が適正か否かの判定を実行する。
本例に代えて、2近傍画素を含めた1×5画素サイズのオペレータ等、空間フィルタ処理に適用するオペレータのサイズについては適宜、変更可能である。オペレータ266Aとしては、ローパスフィルタのオペレータであれば本例の作用効果を得ることができ、その重み係数については適宜、変更可能である。正規分布のように中央に近いほど重み係数を大きく設定しても良い。
なお、本例では、フィルタ処理データF(x)に対する閾値を具体的に例示していないが、この閾値は、ラインセンサ261の特性や、周囲の明るさや、ノイズ的な外乱光の特性等に応じて、適宜設定できる。
本例は、実施例1の人体検知センサに基づいて、第2の判定手段(図4中の符合323B)の構成を変更した例である。この内容について、図11~13を用いて説明する。
本例の第2の判定手段は、重心画素の画素値D(x)(図5参照。)が適正であるか否かという実施例1の判定に加えて、重心画素周辺の画素値D(x)の位置的な変化度合いが適正であるか否かの判定を実行する。
図13の場合であれば、まず、差分データD(x)については、重心位置が検知エリアに含まれていると共に、重心画素の画素値が所定値Ds以上となっている。一方、フィルタ処理データF(x)については、所定範囲に属する画素の中にデータ値F(x)が閾値Fsを超える画素が含まれている。本例で追加されたデータ値F(x)に関する上記の判定条件に適合しないことから、図13のようなノイズ的な外乱光は検知の対象から排除される。一方、図12のような手かざし操作による拡散反射光の場合であれば、本例で追加された判定条件によっても肯定的な判定が可能である。
オペレータ266Aとしては、ハイパスフィルタのオペレータであれば本例の作用効果を得ることができ、その重み係数については適宜、変更可能である。
なお、本例では、フィルタ処理データF(x)に対する閾値Fsの値を具体的に例示していないが、閾値Fsは、実施例2と同様、適宜設定できる。
本例は、実施例1のセンサユニット2の制御の具体例である。この内容について、図4、5、14~17を参照して説明する。以下の説明では、まず、図14を参照してセンサユニット2を構成するラインセンサ261を説明し、続いて図15のタイムチャートを参照してセンサユニット2の動作を説明する。
ホールド回路266は、積分回路267が出力するピーク電圧を保持し、その大きさに応じた電圧を出力するサンプルホールド回路である。このホールド回路266は、スイッチSW2を介して積分回路267と電気的に接続されている。
撮像データ出力部268は、各画素260のホールド回路266の出力電圧を1画素ずつ順番に読み出して64画素分の一連の撮像データを生成して出力する出力部である。
なお、制御ユニット3は、使用者の検知処理や給水制御等を実行した後、次回の動作期間への移行タイミングを計るための計時動作のみが行われる低消費電力モードに移行する。
その後、時刻T9になったとき、スイッチSW32が閉状態に切り換えられ(スイッチSW33については開状態のまま)、時刻T10までこのスイッチ状態が維持される。この時刻T9~T10までの期間では、ホールド回路266Bの出力電圧(電圧値V2)がスイッチSW32を介して差分演算回路269のコンデンサC3に入力される。このとき、スイッチSW33が開状態のままであるため、差分演算回路269のコンデンサC3には、電圧値V1と電圧値V2との差分が保持されることになる。この差分の電圧値は、LED素子251の投射光に基づく反射光成分に相当している。この差分の電圧値は、時刻T11~T12でホールド回路266Cに取り込まれ、その後、撮像データ出力部268(図14。図16では略。)を介して撮像データとして出力される。
本例は、実施例1の人体検知センサを基にして、人体検知部(図4の符合32)による検知処理の内容を変更した例である。この内容について、図18~20を参照して説明する。
本例の人体検知部は、検知処理の実行手段として2種類の処理手段の機能を備えている。この人体検知部による検知処理では、図18のごとく、まず、第1の処理手段による簡易判定が実行される(S101)。簡易判定により肯定的な判定がなされた場合には(S102:YES)、第2の処理手段による詳細判定が実行される(S103)。詳細判定においても肯定的な判定がなされたとき(S104:YES)、検知と判定される(S105)。
続くステップS304では、上記のように計算された重心位置について、受光エリア263内の検知エリア(実施例1の図6参照。)に位置しているか否かが判定される。
さらに、本例の人体検知センサ1では、簡易判定処理と詳細判定処理との間で発光時データL(x)が共用されている。これにより、ラインセンサ261の受光動作の実行回数が低減されている。
さらに、詳細判定処理については、他の実施例の検知処理に置き換えることも良い。
なお、その他の構成及び作用効果については、実施例1と同様である。
本例は、実施例1の人体検知センサを基にして、鏡面反射光を排除する方法の例である。この内容について、図1、21~27を参照して説明する。第1例の人体検知センサは、実施例1と同様、スリット孔を設けた素子ケース(図2中の符合252)でLED素子を覆ったセンサであり、第2例の人体検知センサは、素子ケースを取り外したセンサである。
なお、反射光の光量分布のピーク強度に基づく検出と、波形の形状(尖度)に基づく検出と、を併用して鏡面反射光を排除することも良い。なお、その他の構成及び作用効果については、実施例1と同様である。
Claims (13)
- 1次元あるいは2次元的に画素が配列された撮像素子を含む撮像部と、該撮像部に対して所定方向にオフセットして配設された発光部と、前記撮像部を制御する撮像制御部と、を備え、発光部が投射する光に応じて生じた反射光を撮像部で受光して検知対象を検知する人体検知センサであって、
前記反射光を受光した各画素の受光量に基づいて、前記撮像素子における各画素の配列領域である受光エリア内の前記反射光の重心位置を特定する重心特定手段と、
前記受光エリアの一部に設定された検知エリアに前記重心位置が属しているか否かを判定する第1の判定手段と、
各画素の受光量に所定の空間フィルタ処理を施して得られたフィルタ処理データのうちの前記重心位置に当たる重心画素のデータ値に関する閾値処理の結果、及び前記重心画素の受光量の大きさに関する閾値処理の結果、のうちの少なくともいずれか一方に応じて前記重心画素の受光度合いの適否を判定する第2の判定手段と、
前記第1及び第2の判定手段がいずれも肯定的な判定を行ったときに検知対象を検知した旨を表す検知信号を出力する検知出力手段と、を備えた人体検知センサ。 - 請求項1において、前記第2の判定手段では、前記重心画素の受光量が所定値以上であったこと、が肯定的な判定のための条件として設定されている人体検知センサ。
- 請求項1において、前記第2の判定手段では、周辺画素の受光量の総和の度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値が所定値以上であったこと、が肯定的な判定のための条件として設定されている人体検知センサ。 - 請求項2において、前記第2の判定手段では、前記所定方向における各画素の受光量の位置的な変化度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値、及び前記重心画素近傍の所定範囲に属する他の画素のデータ値がいずれも所定値以内であったこと、が肯定的な判定のための条件として設定されている人体検知センサ。 - 請求項3において、前記第2の判定手段では、前記所定方向における各画素の受光量の位置的な変化度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値、及び前記重心画素近傍の所定範囲に属する他の画素のデータ値がいずれも所定値以内であったこと、が肯定的な判定のための条件として設定されている人体検知センサ。 - 請求項1~5のいずれか1項において、前記重心特定手段は、前記撮像素子において前記所定方向に配列された各画素の受光量の総和である総受光量を算出すると共に、
前記所定方向のいずれか一方の端に位置する画素を起点とし、他方の端に向けて各画素の受光量を順番に積算してきた積算受光量が、前記総受光量の半分に達したときの画素の位置を前記重心位置として特定する人体検知センサ。 - 底部に排水口を設けた鉢の内部に吐水する水栓、1次元あるいは2次元的に画素が配列された撮像素子を含む撮像部と、該撮像部に対して所定方向にオフセットして配設された発光部と、前記撮像部を制御する撮像制御部と、を備え、発光部が投射する光に応じて生じた反射光を撮像部で受光して検知対象を検知する人体検知センサ、及び該人体検知センサの検知信号に応じて、前記水栓の吐止水の切替、あるいは吐水量の調整を実行する給水制御手段、を備えた自動水栓であって、
前記人体検知センサは、前記反射光を受光した各画素の受光量に基づいて、前記撮像素子における各画素の配列領域である受光エリア内の前記反射光の重心位置を特定する重心特定手段と、
前記受光エリアの一部に設定された検知エリアに前記重心位置が属しているか否かを判定する第1の判定手段と、
各画素の受光量に所定の空間フィルタ処理を施して得られたフィルタ処理データのうちの前記重心位置に当たる重心画素のデータ値に関する閾値処理の結果、及び前記重心画素の受光量の大きさに関する閾値処理の結果、のうちの少なくともいずれか一方に応じて前記重心画素の受光度合いの適否を判定する第2の判定手段と、
前記第1及び第2の判定手段がいずれも肯定的な判定を行ったときに検知対象を検知した旨を表す検知信号を出力する検知出力手段と、を備えており、
前記撮像部の撮像範囲に前記鉢の内周面をなす鉢面が含まれている自動水栓。 - 請求項7において、前記第2の判定手段では、前記重心画素の受光量が所定値以上であったこと、が肯定的な判定のための条件として設定されている自動水栓。
- 請求項7において、前記第2の判定手段では、周辺画素の受光量の総和の度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値が所定値以上であったこと、が肯定的な判定のための条件として設定されている自動水栓。 - 請求項8において、前記第2の判定手段では、前記所定方向における各画素の受光量の位置的な変化度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値、及び前記重心画素近傍の所定範囲に属する他の画素のデータ値がいずれも所定値以内であったこと、が肯定的な判定のための条件として設定されている自動水栓。 - 請求項9において、前記第2の判定手段では、前記所定方向における各画素の受光量の位置的な変化度合いを画素毎に求める空間フィルタ処理が施されて前記フィルタ処理データが取得されると共に、
該フィルタ処理データのうちの前記重心画素のデータ値、及び前記重心画素近傍の所定範囲に属する他の画素のデータ値がいずれも所定値以内であったこと、が肯定的な判定のための条件として設定されている自動水栓。 - 請求項7~11の何れか1項において、前記重心特定手段は、前記撮像素子において前記所定方向に配列された各画素の受光量の総和である総受光量を算出すると共に、
前記所定方向のいずれか一方の端に位置する画素を起点とし、他方の端に向けて各画素の受光量を順番に積算してきた積算受光量が、前記総受光量の半分に達したときの画素の位置を前記重心位置として特定する自動水栓。 - 請求項7において、前記撮像部は、受けた光を電気信号に変換する画素毎の受光素子と、該受光素子の電気信号を取り込んで電気的な物理量を蓄積するように画素毎に設けられた受光蓄積部と、各画素の受光蓄積部が蓄積した物理量に基づく撮像データを出力する撮像データ出力部と、前記受光蓄積部に物理量が蓄積される蓄積状態、及び蓄積されない非蓄積状態のうちの一方の状態を択一的に設定する蓄積モード切換部と、を有し、
前記撮像制御部は、動作期間及び非動作期間が交互に現れる間欠動作が行われるように前記撮像部を制御すると共に、
前記動作期間において、前記撮像データを取得するときのみ前記蓄積状態が設定され、それ以外では前記非蓄積状態が設定されるように前記蓄積モード切換部を制御する自動水栓。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180046164.2A CN103119475B (zh) | 2010-09-30 | 2011-09-28 | 感测人体感应器及自动水龙头 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-221514 | 2010-09-30 | ||
JP2010221514A JP5678318B2 (ja) | 2010-09-30 | 2010-09-30 | 自動給水装置及び測距センサ |
JP2011074465A JP5775721B2 (ja) | 2011-03-30 | 2011-03-30 | 自動給水装置 |
JP2011-074465 | 2011-03-30 | ||
JP2011092193 | 2011-04-18 | ||
JP2011-092175 | 2011-04-18 | ||
JP2011092175A JP5722688B2 (ja) | 2011-04-18 | 2011-04-18 | 人体検知センサ及び自動水栓 |
JP2011-092193 | 2011-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012043663A1 true WO2012043663A1 (ja) | 2012-04-05 |
Family
ID=45893102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072252 WO2012043663A1 (ja) | 2010-09-30 | 2011-09-28 | 人体検知センサ及び自動水栓 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103119475B (ja) |
TW (1) | TWI592545B (ja) |
WO (1) | WO2012043663A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014050225A1 (ja) * | 2012-09-28 | 2014-04-03 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
JP2014070380A (ja) * | 2012-09-28 | 2014-04-21 | Lixil Corp | 人体検知センサ及び自動水栓 |
CN103887317A (zh) * | 2012-12-20 | 2014-06-25 | 阿自倍尔株式会社 | 光电传感器 |
WO2014097941A1 (ja) * | 2012-12-20 | 2014-06-26 | 株式会社アルファ | フォトセンサユニット |
WO2014192231A1 (ja) * | 2013-05-31 | 2014-12-04 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
WO2014192230A1 (ja) * | 2013-05-31 | 2014-12-04 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
EP2940492A4 (en) * | 2012-12-28 | 2016-08-03 | Lixil Corp | BODY DETECTION SENSOR AND AUTOMATIC VALVE |
CN109729289A (zh) * | 2017-10-31 | 2019-05-07 | 欧姆龙株式会社 | 光学式传感器及检测方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017056478A1 (ja) * | 2015-09-30 | 2017-04-06 | パナソニックIpマネジメント株式会社 | 自動水栓及び自動水栓用センサブロック |
JP6812661B2 (ja) * | 2016-05-13 | 2021-01-13 | Toto株式会社 | 水栓装置 |
CN109487877B (zh) * | 2018-12-25 | 2021-05-28 | 重庆蓝岸通讯技术有限公司 | 厕所自动冲水系统及控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0829542A (ja) * | 1993-09-21 | 1996-02-02 | Omron Corp | 光学装置及び受光方法 |
JP2004239729A (ja) * | 2003-02-05 | 2004-08-26 | Sumitomo Osaka Cement Co Ltd | 動き検出装置 |
JP2010112891A (ja) * | 2008-11-07 | 2010-05-20 | Inax Corp | 光センサ |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002031689A (ja) * | 2000-07-14 | 2002-01-31 | Noritz Corp | 人体検出センサ |
CN101387512B (zh) * | 2008-08-28 | 2010-06-09 | 上海科勒电子科技有限公司 | 距离检测感应装置 |
-
2011
- 2011-09-28 WO PCT/JP2011/072252 patent/WO2012043663A1/ja active Application Filing
- 2011-09-28 CN CN201180046164.2A patent/CN103119475B/zh not_active Expired - Fee Related
- 2011-09-29 TW TW100135288A patent/TWI592545B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0829542A (ja) * | 1993-09-21 | 1996-02-02 | Omron Corp | 光学装置及び受光方法 |
JP2004239729A (ja) * | 2003-02-05 | 2004-08-26 | Sumitomo Osaka Cement Co Ltd | 動き検出装置 |
JP2010112891A (ja) * | 2008-11-07 | 2010-05-20 | Inax Corp | 光センサ |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014070380A (ja) * | 2012-09-28 | 2014-04-21 | Lixil Corp | 人体検知センサ及び自動水栓 |
JP2014081349A (ja) * | 2012-09-28 | 2014-05-08 | Lixil Corp | 人体検知センサ及び自動水栓 |
WO2014050225A1 (ja) * | 2012-09-28 | 2014-04-03 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
US10072403B2 (en) | 2012-09-28 | 2018-09-11 | Lixil Corporation | Human body detection sensor and automatic faucet |
CN103887317A (zh) * | 2012-12-20 | 2014-06-25 | 阿自倍尔株式会社 | 光电传感器 |
WO2014097941A1 (ja) * | 2012-12-20 | 2014-06-26 | 株式会社アルファ | フォトセンサユニット |
US9841504B2 (en) | 2012-12-20 | 2017-12-12 | Alpha Corporation | Photosensor unit with a condensing lens including a plurality of light-emitting convex lens |
JPWO2014097941A1 (ja) * | 2012-12-20 | 2017-01-12 | 株式会社アルファ | フォトセンサユニット |
JP5947404B2 (ja) * | 2012-12-20 | 2016-07-06 | 株式会社アルファ | フォトセンサユニット |
EP2940492A4 (en) * | 2012-12-28 | 2016-08-03 | Lixil Corp | BODY DETECTION SENSOR AND AUTOMATIC VALVE |
US9758952B2 (en) | 2012-12-28 | 2017-09-12 | Lixil Corporation | Human body detection sensor and automatic faucet |
WO2014192231A1 (ja) * | 2013-05-31 | 2014-12-04 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
EP3006966A4 (en) * | 2013-05-31 | 2017-01-04 | Lixil Corporation | Proximity sensor and automatic faucet |
CN105229493A (zh) * | 2013-05-31 | 2016-01-06 | 骊住株式会社 | 人体检测传感器及自动水栓 |
EP3006967A4 (en) * | 2013-05-31 | 2017-01-18 | LIXIL Corporation | Proximity sensor and automatic faucet |
US9664791B2 (en) | 2013-05-31 | 2017-05-30 | Lixil Corporation | Person-detecting sensor and automatic water faucet |
US9677255B2 (en) | 2013-05-31 | 2017-06-13 | Lixil Corporation | Person-detecting sensor and automatic water faucet |
JP2014235057A (ja) * | 2013-05-31 | 2014-12-15 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
JP2014234620A (ja) * | 2013-05-31 | 2014-12-15 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
WO2014192230A1 (ja) * | 2013-05-31 | 2014-12-04 | 株式会社Lixil | 人体検知センサ及び自動水栓 |
CN109729289A (zh) * | 2017-10-31 | 2019-05-07 | 欧姆龙株式会社 | 光学式传感器及检测方法 |
EP3483627A1 (en) * | 2017-10-31 | 2019-05-15 | Omron Corporation | Optical sensor and detection method |
Also Published As
Publication number | Publication date |
---|---|
CN103119475A (zh) | 2013-05-22 |
TWI592545B (zh) | 2017-07-21 |
TW201215746A (en) | 2012-04-16 |
CN103119475B (zh) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012043663A1 (ja) | 人体検知センサ及び自動水栓 | |
US10072403B2 (en) | Human body detection sensor and automatic faucet | |
US9758952B2 (en) | Human body detection sensor and automatic faucet | |
JP6219602B2 (ja) | 人体検知センサ及び自動水栓 | |
JP6169935B2 (ja) | 自動水栓 | |
WO2014192230A1 (ja) | 人体検知センサ及び自動水栓 | |
JP5722688B2 (ja) | 人体検知センサ及び自動水栓 | |
JP6284465B2 (ja) | 自動水栓およびキッチン | |
JP6029229B2 (ja) | 人体検知センサ及び自動水栓 | |
JP5775721B2 (ja) | 自動給水装置 | |
JP6008540B2 (ja) | 人体検知センサ及び自動水栓 | |
JP7391711B2 (ja) | 給水装置 | |
JP5909170B2 (ja) | 人体検知センサ及び自動水栓 | |
JP6847373B2 (ja) | 物体検知センサ及び電気機器ユニット | |
JP4543433B2 (ja) | 水栓制御システム | |
JP5947739B2 (ja) | 自動水栓 | |
JP2014070429A (ja) | 人体検知センサ及び自動水栓 | |
JP2020052800A (ja) | 異常検知装置、異常検知方法、プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180046164.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11829216 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12013500575 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11829216 Country of ref document: EP Kind code of ref document: A1 |