WO2012043616A1 - 圧電デバイス、圧電デバイスの製造方法 - Google Patents

圧電デバイス、圧電デバイスの製造方法 Download PDF

Info

Publication number
WO2012043616A1
WO2012043616A1 PCT/JP2011/072161 JP2011072161W WO2012043616A1 WO 2012043616 A1 WO2012043616 A1 WO 2012043616A1 JP 2011072161 W JP2011072161 W JP 2011072161W WO 2012043616 A1 WO2012043616 A1 WO 2012043616A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
thin film
single crystal
support
film
Prior art date
Application number
PCT/JP2011/072161
Other languages
English (en)
French (fr)
Inventor
伊藤是清
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to EP11829169.9A priority Critical patent/EP2624451B1/en
Priority to JP2012536502A priority patent/JP5522263B2/ja
Publication of WO2012043616A1 publication Critical patent/WO2012043616A1/ja
Priority to US13/850,520 priority patent/US9647199B2/en
Priority to US15/473,661 priority patent/US10707406B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/886Additional mechanical prestressing means, e.g. springs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/01Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00055Grooves
    • B81C1/00071Channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a piezoelectric device using a thin film of a piezoelectric single crystal material and a method for manufacturing the piezoelectric device.
  • FIG. 1 is a cross-sectional view schematically showing the manufacturing process of the piezoelectric device of Patent Document 1.
  • hydrogen ions are implanted from the surface 7 side of the piezoelectric substrate 5 to form an ion implantation layer 6 at a predetermined depth d of the piezoelectric substrate 5.
  • a binder 8 is deposited on the surface 7 of the piezoelectric substrate 5 by sputtering.
  • FIG. 1C the piezoelectric substrate 5 and the support substrate 9 are bonded.
  • the bonded body of the piezoelectric substrate 5 and the support substrate 9 is subjected to heat treatment, and separation is performed using the ion implantation layer 6 as a separation surface. As a result, a piezoelectric thin film 5 ′ as shown in FIG. 1 (D) is formed on the support substrate 9.
  • the piezoelectric substrate 5 has the ion implantation layer 6 side of the piezoelectric substrate 5 convex as shown in FIG. 2 (A). Warping occurs. The reason for this warping is that the distance between crystal lattices of the piezoelectric material is expanded by the implanted ion element in the ion implanted portion of the piezoelectric substrate 5.
  • the piezoelectric material on the surface 7 on the ion implantation layer 6 side has a crystal interstitial distance between crystals before ion implantation.
  • the support substrate 9 is bonded in an extended state compared to the distance between the lattices. Therefore, when separated by the ion implantation layer after bonding to the support substrate 9, as shown in FIG. 2B, the compressive stress compressing the back surface 4 facing the surface on the piezoelectric thin film 5 'side of the support substrate 9 is piezoelectric.
  • the support substrate 9 after being separated by the thin film 5 ' is warped with the piezoelectric thin film 5' side convex.
  • the piezoelectric thin film device manufactured by the manufacturing method of Patent Document 1 has a problem in that the surface roughness of the piezoelectric thin film 5 ′ is deteriorated because the compressive stress is applied to the separation surface during the separation. Moreover, since the said compressive stress generate
  • an object of the present invention is to provide a piezoelectric device that prevents deterioration of the surface roughness of the piezoelectric thin film and cracking of the support substrate caused by ion implantation, and a method for manufacturing the piezoelectric device.
  • the piezoelectric device of the present invention has the following configuration in order to solve the above problems.
  • the piezoelectric device of the present invention is separated from a support and a piezoelectric single crystal substrate into which an ionized element has been implanted, with the portion where the concentration of the implanted element reaches a peak as a separation surface.
  • the stress layer contracts the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the shrinkage stress due to the stress layer and the compressive stress due to the piezoelectric single crystal thin film are balanced.
  • the piezoelectric single crystal thin film is obtained by separating the piezoelectric single crystal substrate into which the ionized element has been implanted, using the portion where the concentration of the injected element has a peak as a separation surface.
  • the separation forming step formed on the support the following separation is performed. That is, the separation due to the compressive stress on the separation surface by the piezoelectric single crystal thin film is not performed, but the separation due to the gasification of the implanted ion element is performed. Therefore, deterioration of the surface roughness of the piezoelectric single crystal thin film can be prevented. Further, since the compressive stress due to the piezoelectric single crystal thin film is not locally generated on the separation surface, the support is not cracked after the separation.
  • the piezoelectric device manufacturing method of this configuration it is possible to prevent the surface roughness of the piezoelectric single crystal thin film from being deteriorated and the support from being cracked.
  • the stress layer is a compressive stress film which is formed on the back surface side facing the surface on the piezoelectric single crystal thin film side of the support and compresses the surface on the piezoelectric single crystal thin film side of the support.
  • the compressive stress film compresses the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the compressive stress by the compressive stress film and the compressive stress by the piezoelectric single crystal thin film are balanced.
  • the material of the compressive stress film is silicon oxide, silicon nitride, zinc oxide, tantalum oxide, aluminum nitride or aluminum oxide.
  • the stress layer is a tensile stress film that is formed between the piezoelectric single crystal thin film and the support and pulls the piezoelectric single crystal thin film.
  • the tensile stress film pulls the piezoelectric single crystal thin film to compress the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the tensile stress caused by the tensile stress film and the compressive stress caused by the piezoelectric single crystal thin film are balanced.
  • the material of the tensile stress film is silicon oxide, silicon nitride, aluminum nitride, or aluminum oxide.
  • the support includes a support layer that supports the piezoelectric single crystal thin film, and a void layer formed between the piezoelectric single crystal thin film and the compressive stress film.
  • the tensile stress film compresses the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the tensile stress caused by the tensile stress film and the compressive stress caused by the piezoelectric single crystal thin film are balanced.
  • the electrode film is an IDT electrode.
  • the method for manufacturing a piezoelectric device of the present invention has the following configuration in order to solve the above problems.
  • the present invention relates to a method for manufacturing a piezoelectric device including a support and a piezoelectric single crystal thin film bonded to the support.
  • This method for manufacturing a piezoelectric device has at least an ion implantation step, a stress layer formation step, a support formation step, and a separation formation step.
  • a stress layer formation step an ionized element is implanted into the piezoelectric single crystal substrate, thereby forming a portion where the concentration of the element implanted into the piezoelectric single crystal substrate reaches a peak.
  • the support formation step the support is formed on the ion implantation surface side of the piezoelectric single crystal substrate.
  • the stress layer forming step a stress layer for contracting the surface of the support on the piezoelectric single crystal thin film side is formed.
  • the piezoelectric single crystal substrate is separated from the piezoelectric single crystal substrate using the portion where the concentration of the implanted element has a peak as the separation surface, and a piezoelectric single crystal thin film is formed on the support.
  • the piezoelectric thin film is formed on the support in a state where the stress layer is formed in the separation forming step.
  • the stress layer contracts the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the shrinkage stress due to the stress layer and the compressive stress due to the piezoelectric single crystal thin film are balanced. Therefore, in this manufacturing method, in the separation forming process, separation due to the compressive stress on the separation surface by the piezoelectric single crystal thin film is not performed, but separation due to gasification of the implanted ion element is performed. Therefore, deterioration of the surface roughness of the piezoelectric single crystal thin film can be prevented.
  • the support is not cracked after the separation. Therefore, according to the manufacturing method of the piezoelectric device having this configuration, it is possible to prevent the deterioration of the surface roughness of the piezoelectric single crystal thin film and the cracking of the support.
  • a compressive stress film that compresses the surface of the support on the piezoelectric single crystal thin film side is formed as a stress layer on the back side facing the surface of the support on the piezoelectric single crystal thin film side.
  • the piezoelectric thin film is formed on the support in a state where the compressive stress film is formed on the back surface facing the surface on the piezoelectric single crystal thin film side of the support.
  • the compressive stress film compresses the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the compressive stress by the compressive stress film and the compressive stress by the piezoelectric single crystal thin film are balanced.
  • an ion-implanted layer is formed as a stress layer on the back side facing the surface on the piezoelectric single crystal thin film side of the support.
  • the ion-implanted layer compresses the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the compressive stress due to the ion implantation layer and the compressive stress due to the piezoelectric thin film are balanced.
  • the support forming step is performed after the stress layer forming step, In the stress layer forming step, a tensile stress film for pulling the piezoelectric single crystal thin film is formed as a stress layer on the ion implantation surface side of the piezoelectric single crystal substrate.
  • a tensile stress film and a single crystal piezoelectric thin film are laminated in this order on the surface of the support in the separation and formation step.
  • the tensile stress film pulls the piezoelectric thin film to compress the surface of the support on the piezoelectric single crystal thin film side. That is, in the support, the tensile stress caused by the tensile stress film and the compressive stress caused by the piezoelectric thin film are balanced.
  • the method for manufacturing a piezoelectric device according to the present invention includes at least an electrode film forming step.
  • an IDT (Interdigital Transducer) electrode film is formed on the piezoelectric single crystal thin film formed on the surface of the support.
  • the method for manufacturing a piezoelectric device includes at least a sacrificial layer forming step, an exposing step, and a sacrificial layer removing step.
  • a sacrificial layer is formed in a space serving as a void layer formed between the piezoelectric single crystal thin film and the support.
  • the piezoelectric crystal thin film is etched to form a hole that exposes a part of the sacrificial layer to the surface side of the piezoelectric thin film.
  • the sacrificial layer removal step the sacrificial layer is removed through the hole.
  • a piezoelectric device having a membrane structure is manufactured.
  • a tensile stress film and a single-crystal piezoelectric thin film are laminated in this order on the surfaces of the support layer and the sacrificial layer of the support in the separation forming step.
  • the tensile stress film compresses the piezoelectric single crystal thin film side of the support and the surface of the sacrificial layer. That is, in the support, the tensile stress caused by the tensile stress film and the compressive stress caused by the piezoelectric thin film are balanced.
  • FIG. 10 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device of Patent Document 1.
  • FIG. FIG. 2A is a diagram schematically showing a state in which the piezoelectric substrate is warped by the ion-implanted piezoelectric thin film.
  • FIG. 2B is a diagram schematically showing a state where the support substrate is warped by the piezoelectric thin film at the end of the separation step. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 1st Embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 6A is a diagram schematically showing a state where the piezoelectric single crystal substrate is warped by the ion-implanted piezoelectric thin film.
  • FIG. 6B is a diagram schematically showing a state in which the support substrate is warped by the piezoelectric thin film at the end of the separation process without undergoing the compressive stress film forming process.
  • FIG. 6C is a diagram schematically showing that the support substrate is not warped by the compressive stress film at the end of the separation process after the compressive stress film forming process.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3.
  • FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 3. It is a flowchart which shows the manufacturing method of the piezoelectric device which concerns on 2nd Embodiment. It is sectional drawing which shows typically the manufacturing process of the piezoelectric device shown in FIG. It is a figure which shows typically a mode that the curvature of a support substrate does not generate
  • FIG. 15 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 14. It is a figure which shows typically a mode that the curvature of a support substrate does not generate
  • FIG. 15 is a cross-sectional view schematically showing a manufacturing process of the piezoelectric device shown in FIG. 14.
  • a method for manufacturing a piezoelectric device according to the first embodiment of the present invention will be described with reference to the drawings.
  • a method for manufacturing a surface acoustic wave device will be described as an example of a method for manufacturing a piezoelectric device.
  • FIG. 3 is a flowchart showing the method for manufacturing the piezoelectric device according to the first embodiment.
  • 4, 5, 7, and 8 are cross-sectional views schematically showing the manufacturing process of the piezoelectric device according to the first embodiment.
  • FIG. 6A is a diagram schematically showing a state where the piezoelectric single crystal substrate is warped by the ion-implanted piezoelectric thin film.
  • FIG. 6B is a diagram schematically showing a state in which the support substrate is warped by the piezoelectric thin film at the end of the separation process without undergoing the compressive stress film forming process.
  • FIG. 6C is a diagram schematically showing that the support substrate is not warped by the compressive stress film at the end of the separation process after the compressive stress film forming process.
  • a piezoelectric single crystal substrate 1 having a predetermined thickness is prepared. Further, as shown in FIG. 5A described later, a support substrate 50 having a predetermined thickness is prepared.
  • the piezoelectric single crystal substrate 1 uses a lithium tantalate substrate, and the support substrate 50 uses a Si substrate.
  • the piezoelectric single crystal substrate 1 may be a lithium niobate substrate, a lithium tetraborate substrate, a langasite substrate, or a potassium niobate substrate.
  • the support substrate 50 may be made of ceramic such as glass, crystal, sapphire, or the like. More preferably, since the linear expansion coefficient can be matched, it is preferable to use the same material as the piezoelectric substrate.
  • hydrogen ions are implanted from the surface 12 side of the piezoelectric single crystal substrate 1 to form an ion implanted portion 100 in the piezoelectric single crystal substrate 1 (FIG. 3: S101).
  • a lithium tantalate substrate is used as the piezoelectric single crystal substrate 1
  • hydrogen ions are implanted at a dose of 1.0 ⁇ 10 17 atoms / cm 2 at an acceleration energy of 150 KeV, so that a position approximately 1 ⁇ m deep from the surface 12 is obtained.
  • a hydrogen distribution portion is formed, and an ion implantation portion 100 is formed.
  • the ion implanted portion 100 is a portion where the concentration of the ion element implanted into the piezoelectric single crystal substrate 1 reaches a peak.
  • the thickness of the piezoelectric single crystal substrate 1 is preferably 10 times or more the depth of the hydrogen ion layer. This is because when the thickness is not 10 times or more, the piezoelectric single crystal substrate 1 is excessively warped.
  • ion implantation is performed under conditions according to each substrate.
  • the support substrate 50 is bonded to the piezoelectric single crystal substrate 1 (FIG. 3: S102).
  • the support substrate 50 corresponds to the “support” of the present invention.
  • activation bonding called hydrophilic bonding, hydrophilic bonding, or bonding utilizing mutual diffusion through a metal layer can be used.
  • the support substrate 50 is bonded to the piezoelectric single crystal substrate 1.
  • the support substrate 50 may be formed on the piezoelectric single crystal substrate 1 by film formation or the like. .
  • the piezoelectric single crystal substrate 1 is warped with the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 projecting as shown in FIG. 6A.
  • the reason for this warping is that the distance between crystal lattices of the piezoelectric material is expanded by the implanted ion element in the ion-implanted portion of the piezoelectric single crystal substrate 1. If the piezoelectric single crystal substrate 1 and the support substrate 50 are bonded in such a warped state, the piezoelectric material of the surface 12 on the ion implantation portion 100 side has a crystal lattice distance before the ion implantation.
  • a compressive stress film 90 is formed on the back surface 15 of the support substrate 50 facing the surface 14 on the piezoelectric single crystal substrate 1 side (FIG. 3: S103).
  • the compressive stress film 90 is a film that compresses the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side, that is, a stress layer that contracts the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side.
  • the compressive stress film 90 uses, for example, silicon oxide, silicon nitride film, aluminum oxide, aluminum nitride, zinc oxide, or tantalum oxide.
  • the compressive stress film 90 is formed on the back surface 15 of the support substrate 50 facing the surface 14 on the piezoelectric single crystal substrate 1 side by vapor deposition, sputtering, CVD, or the like.
  • film forming conditions such as a material and a film thickness are set so that a film for compressing the surface 14 on the piezoelectric single crystal substrate 1 side of the support substrate 50 is formed.
  • the surface 14 of the support substrate 50 corresponds to the “surface of the support on the piezoelectric single crystal thin film side” of the present invention.
  • the joined body of the piezoelectric single crystal substrate 1 and the support substrate 50 shown in FIG. 5B is heated (up to 500 ° C. in this embodiment), and separation is performed using the ion implanted portion 100 as a separation surface (FIG. 5).
  • S104 separation forming step of S104
  • the heating temperature can be lowered by heating in a reduced pressure atmosphere.
  • the single crystal piezoelectric thin film 10 is formed on the surface 14 of the support substrate 50 as shown in FIG.
  • the piezoelectric thin film 10 is formed on the front surface 14 with the compressive stress film 90 formed on the back surface 15 on the support substrate 50 as shown in FIG. 6C.
  • the compressive stress film 90 compresses the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side. That is, in the support substrate 50, the compressive stress due to the compressive stress film 90 and the compressive stress due to the piezoelectric thin film 10 are balanced. Therefore, the support substrate 50 is flat without warping.
  • the separation formation step separation due to the compressive stress on the separation surface by the piezoelectric thin film 10 is not performed, and separation due to gasification of the implanted ion element is performed. Therefore, deterioration of the surface roughness of the piezoelectric thin film 10 can be prevented.
  • the surface roughness Ra is 50 to 100 nm in the manufacturing method of Patent Document 1 in which the compressive stress film 90 is not formed, whereas the surface roughness Ra is set in the manufacturing method of the present embodiment in which the compressive stress film 90 is formed. It has been shown that it can be improved to 10-20 nm.
  • the support substrate 50 is not cracked after the separation.
  • the manufacturing method of the piezoelectric device of this embodiment it is possible to prevent the surface roughness of the piezoelectric thin film 10 from being deteriorated and the support substrate 50 from being cracked.
  • the piezoelectric thin film 10 as a single crystal thin film, a thin film having superior piezoelectricity than a polycrystalline thin film formed by sputtering, vapor deposition, CVD, or the like can be formed. Further, since the crystal orientation of the piezoelectric single crystal substrate 1 is the crystal orientation of the piezoelectric thin film 10, by preparing the piezoelectric single crystal substrate 1 having a crystal orientation corresponding to the characteristics of the piezoelectric device, the crystal orientation corresponding to the characteristics is prepared. Can be formed. In addition, since the single crystal thin film is formed by ion implantation, bonding, and separation, a plurality of piezoelectric thin films 10 can be formed from one piezoelectric single crystal substrate 1, thereby saving single crystal piezoelectric material. Can do.
  • the compressive stress film 90 is formed on the back surface 15 of the support substrate 50 facing the surface 14 on the piezoelectric single crystal substrate 1 side.
  • An ion implantation layer similar to that of the ion implantation portion 100 may be formed in the support substrate 50 by implanting hydrogen ions from the back surface 15 side of the support substrate 50.
  • the ion implantation layer compresses the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side. That is, in the support substrate 50, the compressive stress due to the ion implantation layer and the compressive stress due to the piezoelectric thin film 10 are balanced. Therefore, even in this case, since the support substrate 50 is flat without warping, the same effect as that of the manufacturing method of this embodiment can be obtained.
  • the surface of the separated piezoelectric thin film 10 is polished and flattened by CMP or the like (FIG. 3: S105).
  • This surface roughness is preferably 0.5 nm or less in terms of arithmetic average roughness Ra.
  • upper electrodes 60A and 60B and IDT (Interdigital Transducer) electrodes 60C having a predetermined thickness are formed on the surface of the piezoelectric thin film 10 using Al (aluminum) or the like (see FIG. 7A).
  • FIG. 3: S106 the upper electrodes 60A and 60B and the IDT electrode 60C correspond to the “electrode film” of the present invention.
  • the electrodes 60A to 60C may be made of not only Al but also Al, W, Mo, Ta, Hf, Cu, Pt, Ti, Au, etc., alone or in a stacked manner depending on the device specifications. .
  • an insulating film 70 is formed on the surface of the piezoelectric thin film 10 and the electrodes 60A to 60C (FIG. 3: S107).
  • openings 82A and 82B are formed by etching or the like in regions where the upper electrodes 60A and 60B of the insulating film 70 are exposed (FIG. 3: S108).
  • external terminals are formed (FIG. 3: S109). More specifically, bump pads 61A and 61B are formed on the upper electrodes 60A and 60B, and bumps 62A and 62B are formed on both the bump pads 61A and 61B.
  • packaging using a mold is performed through a dividing process of dividing a plurality of thin film piezoelectric devices formed on the support substrate 50 into individual thin film piezoelectric devices.
  • a thin film piezoelectric device is formed. Therefore, a plurality of thin film piezoelectric devices can be manufactured at once. Therefore, according to this embodiment, since a plurality of thin film piezoelectric devices can be manufactured at once, the manufacturing cost of the thin film piezoelectric device can be greatly reduced.
  • the piezoelectric device manufactured by the above manufacturing method is separated from the supporting substrate 50 and the piezoelectric single crystal substrate 1 into which ions have been implanted by the ion implantation portion 100 and on the supporting substrate 50.
  • the piezoelectric device includes a compressive stress film 90 that is formed on the back surface of the support substrate 50 facing the piezoelectric thin film 10 side and compresses the surface of the support substrate 50 on the piezoelectric thin film 10 side.
  • the compressive stress film 90 is formed on the support substrate 50 side of the piezoelectric thin film 10 and contracts the surface of the support substrate 50 on the piezoelectric thin film 10 side.
  • the compressive stress by the compressive stress film 90 and the compressive stress by the piezoelectric thin film 10 are balanced. Therefore, in the piezoelectric device having this configuration, in the separation forming step, separation due to the compressive stress on the separation surface by the piezoelectric single crystal thin film 10 is not performed, but separation due to gasification of the implanted ion element is performed. . Therefore, according to the piezoelectric device of this embodiment, it is possible to prevent deterioration of the surface roughness of the piezoelectric thin film 10 and cracking of the support substrate 50 during manufacturing.
  • FIG. 9 is a flowchart showing a method for manufacturing a piezoelectric device according to the second embodiment.
  • FIG. 12, and FIG. 13 are cross-sectional views schematically showing manufacturing steps of the piezoelectric device shown in FIG.
  • FIG. 11 is a diagram schematically illustrating a state in which the support substrate is not warped by the tensile stress film at the end of the separation process after the tensile stress film formation process.
  • the piezoelectric device manufacturing method of this embodiment is different from the piezoelectric device manufacturing method shown in the first embodiment in that a tensile stress film forming step (S202) is performed and then a bonding step (S203) is performed. It is. That is, S201 and S204 to S209 in FIG. 9 are the same as S101 and S104 to S109 in FIG. 3 shown in the first embodiment, respectively.
  • the piezoelectric single crystal substrate 1 that has undergone the ion implantation process of S201 is prepared.
  • a tensile stress film 91 is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 (FIG. 9: S202). Then, the surface of the tensile stress film 91 is planarized by CMP or the like.
  • the tensile stress film 91 is a film that compresses the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side, that is, a stress layer that contracts the surface 14 of the support substrate 50 on the piezoelectric single crystal substrate 1 side.
  • the tensile stress film 91 for example, silicon oxide, silicon nitride film, aluminum oxide, aluminum nitride, zinc oxide, or tantalum oxide is used.
  • the tensile stress film 91 is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 by vapor deposition, sputtering, CVD, or the like.
  • film forming conditions such as a material and a film thickness are set so that a film that pulls the surface 14 on the piezoelectric single crystal substrate 1 side of the support substrate 50 is formed.
  • the support substrate 50 is bonded to the piezoelectric single crystal substrate 1 (FIG. 9: S203).
  • This joining method is the same as that in the first embodiment.
  • the joined body of the piezoelectric single crystal substrate 1 and the support substrate 50 shown in FIG. 10C is heated (up to 500 ° C. in this embodiment), and separation is performed using the ion implanted portion 100 as a separation surface (FIG. 10). 9: S204). This separation method is the same as in the first embodiment.
  • the tensile stress film 91 and the single crystal piezoelectric thin film 10 are laminated in this order on the surface 14 of the support substrate 50 by the separation formation step of S204.
  • the tensile stress film 91 pulls the piezoelectric thin film 10 to compress the surface 14 on the piezoelectric single crystal substrate 1 side of the support substrate 50. That is, in the support substrate 50, the tensile stress due to the tensile stress film 91 and the compressive stress due to the piezoelectric thin film 10 are balanced. Therefore, also in this embodiment, the support substrate 50 after separation is flat without warping. Therefore, according to the piezoelectric device manufacturing method of this embodiment, the same effects as the piezoelectric device manufacturing method of the first embodiment can be obtained.
  • a piezoelectric device having the structure shown in FIG. 13B is obtained.
  • This piezoelectric device is a single-crystal piezoelectric thin film 10 formed on a support substrate 50 by separating the support substrate 50 and the ion-implanted piezoelectric single crystal substrate 1 from the ion-implanted portion 100 on the support substrate 50.
  • the IDT electrode film 60 ⁇ / b> C formed on the piezoelectric thin film 10.
  • the piezoelectric device includes a tensile stress film 91 that is formed between the piezoelectric thin film 10 and the support substrate 50 and pulls the piezoelectric thin film 10.
  • the tensile stress film 91 is formed on the support substrate 50 side of the piezoelectric thin film 10 and contracts the surface of the support substrate 50 on the piezoelectric thin film 10 side.
  • the piezoelectric device of this embodiment after the separation forming step, the tensile stress by the tensile stress film 91 and the compressive stress by the piezoelectric thin film 10 are balanced. Therefore, in the piezoelectric device having this configuration, in the separation forming step, separation due to the compressive stress on the separation surface by the piezoelectric single crystal thin film 10 is not performed, but separation due to gasification of the implanted ion element is performed. . Therefore, according to the piezoelectric device of this embodiment, it is possible to prevent deterioration of the surface roughness of the piezoelectric thin film 10 and cracking of the support substrate 50 during manufacturing.
  • FIG. 14 is a flowchart showing a method for manufacturing a piezoelectric device according to the third embodiment.
  • 15 and 17 are cross-sectional views schematically showing the manufacturing process of the piezoelectric device shown in FIG.
  • FIG. 16 is a diagram schematically illustrating a state in which the support substrate is not warped by the tensile stress film at the end of the separation process after the tensile stress film formation process.
  • a method for manufacturing a piezoelectric device a method for manufacturing a piezoelectric device having a membrane structure such as a plate wave device (see FIG. 17) will be described as an example.
  • the steps S301, S307 to S309, and S312 in FIG. 14 are the same as the steps S201, S205 to S207, and S209 in FIG. 9, and other steps (S302 to S306, S310, S311) is different.
  • the piezoelectric single crystal substrate 1 that has undergone the ion implantation process of S301 is prepared. Then, a sacrificial layer 30 having a predetermined thickness is formed on the surface 12 on the ion implanted portion 100 side of the piezoelectric single crystal substrate 1 (FIG. 14: S302). Specifically, the sacrificial layer 30 is appropriately set according to conditions from a metal such as Ni, Cu, and Al, an insulating film such as SiO 2 , ZnO, and PSG (phosphosilicate glass), an organic film, and the like.
  • a metal such as Ni, Cu, and Al
  • an insulating film such as SiO 2 , ZnO, and PSG (phosphosilicate glass), an organic film, and the like.
  • the sacrificial layer 30 is a space that becomes the void layer 80 on the surface of the support substrate 50 by vapor deposition, sputtering, CVD, spin coating, or the like (that is, the vibration region in which the piezoelectric thin film 10 functions as a piezoelectric device and the holes 81A and 81B).
  • a film is formed in a space immediately below.
  • the sacrificial layer 30 may be formed to be a tensile stress film.
  • a support layer 40 having a predetermined film thickness is formed on the surface 12 on the ion implantation portion 100 side of the piezoelectric single crystal substrate 1 (FIG. 14: S303).
  • the support layer 40 is made of an insulating material and uses an inorganic material such as silicon oxide, nitride, aluminum oxide, or PSG, or an organic material such as a resin, and is used as an etching gas or an etchant for removing the sacrificial layer 30. Any material having strong resistance to the surface may be used.
  • the support layer 40 is formed in a certain region (a region excluding the region where the sacrificial layer 30 is formed) on the surface of the support substrate 50 by vapor deposition, sputtering, CVD, spin coating, or the like. That is, the support layer 40 is formed immediately below the non-vibrating region where the piezoelectric thin film 10 does not function as a piezoelectric device. And the film thickness of the support layer 40 is planarized according to the depth of the space
  • a tensile stress film 91 is formed on the surface of the sacrificial layer 30 and the support layer 40 of the piezoelectric single crystal substrate 1 (FIG. 14: S304). Then, the surface of the tensile stress film 91 is planarized by CMP or the like. The method of forming the tensile stress film 91 is the same as S202 in FIG.
  • the support substrate 50 is bonded to the surface of the tensile stress film 91 on the piezoelectric single crystal substrate 1 (FIG. 14: S305).
  • This joining method is the same as in the second embodiment.
  • the bonded body obtained by bonding the piezoelectric single crystal substrate 1 and the support substrate 50 shown in FIG. 15C is heated (up to 500 ° C. in this embodiment) to perform separation using the ion implanted portion 100 as a separation surface. (FIG. 14: S306).
  • This separation method is the same as in the second embodiment.
  • the single-crystal piezoelectric thin film 10 is formed on the sacrificial layer 30 of the support substrate 50 and the surface 14 'of the support layer 40 by the separation forming step of S306 (see FIG. 15D).
  • the tensile stress film 91 compresses the sacrificial layer 30 of the support substrate 50 and the surface 14 ′ of the support layer 40. That is, in the support substrate 50, the tensile stress due to the tensile stress film 91 and the compressive stress due to the piezoelectric thin film 10 are balanced. Therefore, also in this embodiment, the support substrate 50 is flat without warping. Therefore, according to the piezoelectric device manufacturing method of this embodiment, the same effects as the piezoelectric device manufacturing method of the first embodiment can be obtained.
  • polishing S307), formation of the upper electrodes 60A and 60B and the IDT electrode 60C as shown in FIG. 17 (S308), and formation of an insulating film (S309) are performed. .
  • an etching gas is introduced to form holes 81A and 81B that expose part of the sacrificial layer 30 to the surface side of the piezoelectric thin film 10 (FIG. 14: S310).
  • the sacrificial layer 30 is removed by flowing an etching gas or an etching solution through the holes 81A and 81B (FIG. 14: S311). Thereby, the space in which the sacrificial layer 30 was formed becomes a void layer 80 as shown in FIG.
  • piezoelectric device having the structure shown in FIG. 17 is obtained.
  • This piezoelectric device is a single unit formed on a support by separating it from the support substrate 50, the gap layer 80, and the support layer 40, and the ion-implanted portion 100 from the ion-implanted piezoelectric single crystal substrate 1.
  • the piezoelectric thin film 10 is a crystal thin film 10 bonded to a support, and an IDT electrode film 60C formed on the piezoelectric thin film 10.
  • the piezoelectric device includes a tensile stress film 91 that is formed between the piezoelectric thin film 10 and the support and pulls the piezoelectric thin film 10.
  • the tensile stress film 91 is formed on the support side of the piezoelectric thin film 10 and contracts the surface of the support on the piezoelectric thin film 10 side.
  • the piezoelectric device of this embodiment after the separation forming step, the tensile stress by the tensile stress film 91 and the compressive stress by the piezoelectric thin film 10 are balanced. Therefore, in the piezoelectric device having this configuration, in the separation forming step, separation due to the compressive stress on the separation surface by the piezoelectric single crystal thin film 10 is not performed, but separation due to gasification of the implanted ion element is performed. . Therefore, according to the piezoelectric device of this embodiment, it is possible to prevent deterioration of the surface roughness of the piezoelectric thin film 10 and cracking of the support substrate 50 during manufacturing.
  • a plate wave device has been described as an example.
  • the present invention is also applicable to various devices having a membrane made of a piezoelectric single crystal thin film such as a gyro, an RF switch, and a vibration power generation element.
  • a manufacturing method can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 イオン注入を起因とした、圧電薄膜の表面粗さの劣化と支持基板の割れを防ぐ圧電デバイス、及び当該圧電デバイスの製造方法を提供する。 分離形成工程において支持基板(50)には、圧縮応力膜(90)が裏面(15)に形成された状態で、圧電薄膜(10)が表面(14)に形成される。このとき、圧縮応力膜(90)が、支持基板(50)における圧電単結晶基板(1)側の面(14を圧縮し、圧電薄膜(10)が、支持基板(50)における圧電単結晶基板(1)側の面(14)に対向する裏面(15)を圧縮する。即ち、支持基板(50)では、圧縮応力膜(90)による圧縮応力と圧電薄膜(10)による圧縮応力とが釣り合った状態となる。そのため、支持基板(50)は、反りが生じず平らになる。よって、分離形成工程では、圧電薄膜(10)による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。

Description

圧電デバイス、圧電デバイスの製造方法
 この発明は、圧電単結晶材料の薄膜を用いた圧電デバイス、及び当該圧電デバイスの製造方法に関するものである。
 現在、圧電薄膜を用いた薄膜型圧電デバイスが多く開発されている。このような薄膜型圧電デバイスを形成するための圧電薄膜の製造方法は複数あるが、例えば、特許文献1に示すように、イオン注入層を分離面として圧電基板から圧電薄膜を分離形成する方法を用いた圧電デバイスの製造方法が考案されている。
 このイオン注入層を分離面として圧電基板から圧電薄膜を分離形成する方法を用いた圧電デバイスの製造方法について、図1を用いて以下説明する。
 図1は、特許文献1の圧電デバイスの製造工程を模式的に示す断面図である。まず、図1(A)に示すように、圧電基板5の表面7側から水素イオンを注入することで、圧電基板5の所定の深さdの位置にイオン注入層6を形成する。次に、図1(B)に示すように、圧電基板5の表面7に結合材8をスパッタリングにより堆積させる。次に、図1(C)に示すように、圧電基板5と支持基板9とを接合させる。最後に、圧電基板5と支持基板9の接合体に加熱処理を施し、イオン注入層6を分離面とした分離を行う。この結果、図1(D)に示すような圧電薄膜5′が支持基板9上に形成される。
特表2002-534886号公報
 しかしながら、上記特許文献1の製造方法においてイオンを注入すると(図1(A)参照)、圧電基板5は、図2(A)に示すように、圧電基板5のイオン注入層6側を凸にして反りが生じる。この反りが生じる理由は、圧電基板5のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がるためである。
 このように反った状態で圧電基板5と支持基板9とを接合すると(図1(C)参照)、イオン注入層6側の面7の圧電材料は、結晶格子間距離がイオン注入前の結晶格子間距離に比べて伸びた状態で支持基板9と接合されることになる。そのため、支持基板9と接合した後にイオン注入層で分離した時、図2(B)に示すように、支持基板9の圧電薄膜5′側の面に対向する裏面4を圧縮する圧縮応力が圧電薄膜5′によりかかり、分離後の支持基板9は、圧電薄膜5′側を凸にして反ってしまう。
 よって、特許文献1の製造方法で製造された圧電薄膜デバイスでは、この分離時に該圧縮応力が分離面にかかるため、圧電薄膜5′の表面粗さが劣化してしまうという問題があった。また、当該圧縮応力が分離面に局所的に発生するため、分離後に支持基板9が割れ易いという問題もあった。
 したがって、本発明の目的は、イオン注入を起因とした、圧電薄膜の表面粗さの劣化と支持基板の割れを防ぐ圧電デバイス、及び当該圧電デバイスの製造方法を提供することにある。
 本発明の圧電デバイスは、上記課題を解決するために以下の構成を備えている。
(1)本発明の圧電デバイスは、支持体と、イオン化した元素を注入された圧電単結晶基板から、注入された元素の濃度がピークとなる部分を分離面とした分離を行って支持体上に形成された圧電単結晶薄膜と、圧電単結晶薄膜上に形成された電極膜と、支持体の圧電単結晶薄膜側の面を収縮させる応力層と、を備える。
 この構成では、応力層が支持体における圧電単結晶薄膜側の面を収縮させる。即ち、支持体では、応力層による収縮応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
 そのため、本発明の圧電デバイスを製造するとき、イオン化した元素を注入された圧電単結晶基板から、注入された元素の濃度がピークとなる部分を分離面とした分離を行って圧電単結晶薄膜を支持体上に形成する分離形成工程において、次のような分離が行われる。即ち、圧電単結晶薄膜による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。よって、圧電単結晶薄膜の表面粗さの劣化を防止できる。また、圧電単結晶薄膜による圧縮応力が分離面に局所的に発生することも無くなるため、分離後に支持体が割れることもない。
 従って、この構成の圧電デバイスの製造方法によれば、圧電単結晶薄膜の表面粗さの劣化と支持体の割れを防ぐことができる。
(2)上記応力層は、支持体の圧電単結晶薄膜側の面に対向する裏面側に形成されており、支持体の圧電単結晶薄膜側の面を圧縮する圧縮応力膜である。
 この構成では、圧縮応力膜が支持体における圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、圧縮応力膜による圧縮応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
(3)上記圧縮応力膜の材質は、酸化シリコン、窒化シリコン、酸化亜鉛、酸化タンタル、窒化アルミニウムまたは酸化アルミニウムである。
(4)上記応力層は、圧電単結晶薄膜と支持体との間に形成され、圧電単結晶薄膜を引っ張る引張応力膜である。
 この構成では、引張応力膜が圧電単結晶薄膜を引っ張ることにより支持体における圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、引張応力膜による引張応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
(5)上記引張応力膜の材質は、酸化シリコン、窒化シリコン、窒化アルミニウムまたは酸化アルミニウムである。
(6)上記支持体は、圧電単結晶薄膜を支持する支持層と、圧電単結晶薄膜と圧縮応力膜との間に形成された空隙層と、を有する。
 この構成では、引張応力膜が支持体の圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、引張応力膜による引張応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
(7)前記電極膜がIDT電極である。
 また、本発明の圧電デバイスの製造方法は、上記課題を解決するために以下の構成を備えている。本発明は、支持体と、支持体上に接合する圧電単結晶薄膜とを備える圧電デバイスの製造方法に関するものである。
(8)この圧電デバイスの製造方法では、少なくとも、イオン注入工程、応力層形成工程、支持体形成工程、および分離形成工程を有する。イオン注入工程は、圧電単結晶基板にイオン化した元素を注入することで、圧電単結晶基板の中に注入された元素の濃度がピークとなる部分を形成する。支持体形成工程は、支持体を圧電単結晶基板のイオン注入面側に形成する。応力層形成工程は、支持体の圧電単結晶薄膜側の面を収縮させる応力層を形成する。分離形成工程は、注入された元素の濃度がピークとなる部分を分離面とした分離を圧電単結晶基板に対して行い、圧電単結晶薄膜を支持体上に形成する。
 この製造方法では、上記分離形成工程において、応力層が形成された状態で、圧電薄膜が支持体上に形成される。このとき、応力層が支持体における圧電単結晶薄膜側の面を収縮する。即ち、支持体では、応力層による収縮応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
 よって、この製造方法では、分離形成工程において、圧電単結晶薄膜による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。そのため、圧電単結晶薄膜の表面粗さの劣化を防止できる。また、圧電単結晶薄膜による圧縮応力が分離面に局所的に発生することも無くなるため、分離後に支持体が割れることもない。
 従って、この構成の圧電デバイスの製造方法によれば、圧電単結晶薄膜の表面粗さの劣化と支持体の割れを防ぐことができる。
(9)上記応力層形成工程は、支持体の圧電単結晶薄膜側の面を圧縮する圧縮応力膜を応力層として支持体の圧電単結晶薄膜側の面に対向する裏面側に形成する。
 この製造方法では、上記分離形成工程において、圧縮応力膜が支持体の圧電単結晶薄膜側の面に対向する裏面に形成された状態で、圧電薄膜が支持体上に形成される。このとき、圧縮応力膜が支持体における圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、圧縮応力膜による圧縮応力と圧電単結晶薄膜による圧縮応力とが釣り合った状態となる。
(10)上記応力層形成工程は、応力層として支持体の圧電単結晶薄膜側の面に対向する裏面側に、イオン注入層を形成する。
 この製造方法において上記分離形成工程を経ると、イオン注入層が支持体における圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、イオン注入層による圧縮応力と圧電薄膜による圧縮応力とが釣り合った状態となる。
(11)上記支持体形成工程は、応力層形成工程の後に行われ、
 上記応力層形成工程は、圧電単結晶薄膜を引っ張る引張応力膜を応力層として圧電単結晶基板のイオン注入面側に形成する。
 この製造方法では、上記分離形成工程において支持体の表面には、引張応力膜と単結晶の圧電薄膜とがこの順に積層される。このとき、引張応力膜が圧電薄膜を引っ張ることにより支持体における圧電単結晶薄膜側の面を圧縮する。即ち、支持体では、引張応力膜による引張応力と圧電薄膜による圧縮応力とが釣り合った状態となる。
(12)この発明の圧電デバイスの製造方法では、少なくとも電極膜形成工程を有する。電極膜形成工程は、支持体の表面上に形成された圧電単結晶薄膜上にIDT(InterdigitalTransducer)電極膜を形成する。
(13)この発明の圧電デバイスの製造方法では、少なくとも、犠牲層形成工程、露出工程、および犠牲層除去工程を有する。犠牲層形成工程は、圧電単結晶薄膜と支持体との間に形成される空隙層となる空間に犠牲層を形成する。露出工程は、圧電結晶薄膜をエッチングし、犠牲層の一部を圧電薄膜の表面側に露出させる孔部を形成する。犠牲層除去工程は、孔部を介して犠牲層を除去する。
 この製造方法では、メンブレン構造を有する圧電デバイスを製造する。この製造方法では、上記分離形成工程において支持体の支持層と犠牲層の表面には、引張応力膜と単結晶の圧電薄膜とがこの順に積層される。このとき、引張応力膜が支持体の圧電単結晶薄膜側と犠牲層の面を圧縮する。即ち、支持体では、引張応力膜による引張応力と圧電薄膜による圧縮応力とが釣り合った状態となる。
 この発明によれば、圧電単結晶薄膜の表面粗さの劣化と支持体の割れを防ぐことができる。
特許文献1の圧電デバイスの製造工程を模式的に示す断面図である。 図2(A)は、イオン注入された圧電薄膜により圧電基板が反る様子を模式的に示す図である。図2(B)は、分離工程終了時に圧電薄膜により支持基板が反る様子を模式的に示す図である。 第1の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図6(A)は、イオン注入された圧電薄膜により圧電単結晶基板が反る様子を模式的に示す図である。図6(B)は、圧縮応力膜形成工程を経ていない分離工程終了時に圧電薄膜により支持基板が反る様子を模式的に示す図である。図6(C)は、圧縮応力膜形成工程を経た後の分離工程終了時に圧縮応力膜により支持基板の反りが発生しない様子を模式的に示す図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 図3に示す圧電デバイスの製造工程を模式的に示す断面図である。 第2の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図9に示す圧電デバイスの製造工程を模式的に示す断面図である。 図9に示す引張応力膜形成工程を経た後の分離工程終了時に引張応力膜により支持基板の反りが発生しない様子を模式的に示す図である。 図9に示す圧電デバイスの製造工程を模式的に示す断面図である。 図9に示す圧電デバイスの製造工程を模式的に示す断面図である。 第3の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。 図14に示す圧電デバイスの製造工程を模式的に示す断面図である。 図14に示す引張応力膜形成工程を経た後の分離工程終了時に引張応力膜により支持基板の反りが発生しない様子を模式的に示す図である。 図14に示す圧電デバイスの製造工程を模式的に示す断面図である。
 本発明の第1の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性表面波デバイスの製造方法を例に説明する。
 図3は、第1の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図4、図5、図7、図8は、第1の実施形態に係る圧電デバイスの製造工程を模式的に示す断面図である。図6(A)は、イオン注入された圧電薄膜により圧電単結晶基板が反る様子を模式的に示す図である。図6(B)は、圧縮応力膜形成工程を経ていない分離工程終了時に圧電薄膜により支持基板が反る様子を模式的に示す図である。図6(C)は、圧縮応力膜形成工程を経た後の分離工程終了時に圧縮応力膜により支持基板の反りが発生しない様子を模式的に示す図である。
 まず、図4(A)に示すように、所定厚みからなる圧電単結晶基板1を用意する。また、後述の図5(A)に示すように、所定厚みからなる支持基板50を用意する。圧電単結晶基板1は、タンタル酸リチウム基板を利用し、支持基板50は、Si基板を利用する。ここで、圧電単結晶基板1は、タンタル酸リチウム基板の他、ニオブ酸リチウム基板、四ホウ酸リチウム基板やランガサイト基板、ニオブ酸カリウム基板、を用いても構わない。また、支持基板50は、Si基板の他、ガラス等のセラミック、水晶、又はサファイア等を用いても構わない。より好ましくは、線膨張係数を合わせることができるので、圧電基板と同じ材料を用いるのがよい。
 そして、図4(B)に示すように、圧電単結晶基板1の表面12側から水素イオンを注入することで、圧電単結晶基板1にイオン注入部分100を形成する(図3:S101)。例えば圧電単結晶基板1にタンタル酸リチウム基板を用いれば、加速エネルギー150KeVで1.0×1017atom/cm2のドーズ量により水素イオン注入を行うことにより、表面12から深さ約1μmの位置に水素分布部分が形成されて、イオン注入部分100が形成される。このイオン注入部分100は、圧電単結晶基板1に注入されたイオン元素の濃度がピークになる部分である。ここで、圧電単結晶基板1の厚みは、水素イオン層の深さに対して10倍以上の厚みであることが好ましい。この理由は、10倍以上の厚みがない場合、圧電単結晶基板1に過剰な反りが生じるためである。
 なお、圧電単結晶基板1にタンタル酸リチウム基板以外の素材を用いた場合、それぞれの基板に応じた条件でイオン注入を行う。
 次に、図5(A)に示すように、支持基板50を圧電単結晶基板1に接合する(図3:S102)。ここで、支持基板50が、本発明の「支持体」に相当する。
 なお、この接合には、直接接合と呼ばれる活性化接合や親水化接合や金属層を介した
相互拡散を利用した接合を用いることができる。また、本実施形態では、支持基板50を圧電単結晶基板1に接合しているが、実施の際は、支持基板50を、成膜等により圧電単結晶基板1上に形成しても構わない。
 ここで、上記S101のイオン注入工程においてイオンを注入すると、圧電単結晶基板1は、図6(A)に示すように、圧電単結晶基板1のイオン注入部分100側を凸にして反りが生じる。この反りが生じる理由は、圧電単結晶基板1のイオン注入部分において圧電材料の結晶格子間距離が、注入されたイオン元素によって拡がるためである。
 仮に、このように反った状態で圧電単結晶基板1と支持基板50とを接合した場合、イオン注入部分100側の面12の圧電材料は、結晶格子間距離がイオン注入前の結晶格子間距離に比べて伸びた状態で支持基板50と接合することになる。そのため、支持基板50と接合した後の分離形成工程で、イオン注入部分を分離面として分離した時、支持基板50の圧電薄膜10側の面14に対向する裏面15を圧縮する圧縮応力が圧電薄膜10にかかり、分離後の支持基板50は、図6(B)に示すように圧電薄膜10側を凸にして反ってしまう。
 そこで、図5(B)に示すように、支持基板50における圧電単結晶基板1側の面14に対向する裏面15に圧縮応力膜90を形成する(図3:S103)。圧縮応力膜90は、支持基板50における圧電単結晶基板1側の面14を圧縮する膜、即ち支持基板50における圧電単結晶基板1側の面14を収縮させる応力層である。圧縮応力膜90は、例えば酸化シリコン、シリコン窒化膜、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、酸化タンタルを利用する。圧縮応力膜90は、蒸着、スパッタリング、CVD等により、支持基板50における圧電単結晶基板1側の面14に対向する裏面15に成膜される。ただし、いずれの成膜方法でも支持基板50における圧電単結晶基板1側の面14を圧縮する膜が成膜されるよう、材料や膜厚などの成膜条件を設定する。
 なお、支持基板50の面14が、本発明の「支持体の圧電単結晶薄膜側の面」に相当する。
 次に、図5(B)に示す圧電単結晶基板1と支持基板50との接合体を(この実施形態では500℃まで)加熱し、イオン注入部分100を分離面とした分離を行う(図3:S104)。ここで、S104の分離形成工程は、減圧雰囲気下で加熱すれば、加熱温度を低くすることができる。
 S104の分離形成工程により、図5(C)に示すように、支持基板50の表面14に、単結晶の圧電薄膜10が形成される。
 ここで、S104の分離形成工程において支持基板50には、図6(C)に示すように、圧縮応力膜90が裏面15に形成された状態で、圧電薄膜10が表面14に形成される。このとき、圧縮応力膜90が支持基板50における圧電単結晶基板1側の面14を圧縮する。即ち、支持基板50では、圧縮応力膜90による圧縮応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。そのため、支持基板50は、反りが生じず平らになる。
 よって、分離形成工程では、圧電薄膜10による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。そのため、圧電薄膜10の表面粗さの劣化を防止できる。実験では、圧縮応力膜90を形成しない特許文献1の製造方法では表面粗さRaが50~100nmであるのに対し、圧縮応力膜90を形成した本実施形態の製造方法では表面粗さRaを10~20nmにまで改善できることが明らかとなっている。また、圧電薄膜10による圧縮応力が分離面に局所的に発生することも無くなるため、分離後に支持基板50が割れることもない。
 従って、この実施形態の圧電デバイスの製造方法によれば、圧電薄膜10の表面粗さの劣化と支持基板50の割れを防ぐことができる。
 また、圧電薄膜10を単結晶薄膜とすることで、スパッタ、蒸着、CVD法等で成膜される多結晶薄膜より圧電性に優れた薄膜を形成することができる。また、圧電単結晶基板1の結晶方位が圧電薄膜10の結晶方位となるため、圧電デバイスの特性に応じた結晶方位を有する圧電単結晶基板1を用意することで、該特性に応じた結晶方位を有する圧電薄膜10を形成できる。また、イオン注入、接合、分離により単結晶薄膜を形成しているため、1枚の圧電単結晶基板1から複数の圧電薄膜10を形成することができるため、単結晶の圧電材料を節約することができる。
 なお、この実施形態ではS103の圧縮応力膜形成工程において、支持基板50における圧電単結晶基板1側の面14に対向する裏面15に圧縮応力膜90を形成しているが、実施の際は、支持基板50の当該裏面15側から水素イオンを注入することで、イオン注入部分100と同様のイオン注入層を支持基板50中に形成しても構わない。この場合、イオン注入層が支持基板50における圧電単結晶基板1側の面14を圧縮する。即ち、支持基板50では、イオン注入層による圧縮応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。そのため、この場合でも支持基板50は、反りが生じず平らになるため、この実施形態の製造方法と同様の効果を奏する。
 次に、分離形成した圧電薄膜10の表面をCMP処理等により研磨して平坦化する(図3:S105)。この表面粗さは、算術平均粗さRaで0.5nm以下が好ましい。
 次に、図7(A)に示すように、圧電薄膜10の表面上に、Al(アルミニウム)等を用いて、所定膜厚の上部電極60A,60BとIDT(InterdigitalTransducer)電極60Cを形成する(図3:S106)。ここで、上部電極60A、60BとIDT電極60Cが、本発明の「電極膜」に相当する。
 なお、電極60A~60Cには、Alのみでなく、デバイスの仕様に応じて、Al,W、Mo、Ta、Hf、Cu、Pt、Ti、Au等を単体もしくは複数積層して用いてもよい。
 次に、図7(B)に示すように、圧電薄膜10及び電極60A~60Cを保護するため、圧電薄膜10及び電極60A~60Cの表面に絶縁膜70を形成する(図3:S107)。
 次に、図8(A)に示すように、絶縁膜70の上部電極60A,60Bを露出させる領域に開口部82A、82Bをエッチング等で形成する(図3:S108)。
 次に、図8(B)に示すように、外部端子を形成する(図3:S109)。詳述すると、上部電極60A、60B上にバンプパッド61A、61Bを形成し、両バンプパッド61A、61B上にバンプ62A、62Bを形成する。
 最後に、支持基板50上に形成された複数の薄膜型圧電デバイスから個別の薄膜型圧電デバイスに分割する分割工程を経て、モールド金型を用いたパッケージングを行う。このようにして薄膜型圧電デバイスを形成する。そのため、複数の薄膜型圧電デバイスを一括製造できる。従って、この実施形態によれば、複数の薄膜型圧電デバイスを一括製造できるため、薄膜型圧電デバイスの製造コストを大幅に削減できる。
 以上の製造方法で製造された圧電デバイスは、図8(B)に示すように、支持基板50と、イオンを注入された圧電単結晶基板1からイオン注入部分100で分離して支持基板50上に形成された単結晶の圧電薄膜10であって支持基板50上に接合された圧電薄膜10と、圧電薄膜10上に形成されたIDT電極膜60Cと、を備える。さらに、当該圧電デバイスは、支持基板50の圧電薄膜10側の面に対向する裏面に形成され、支持基板50の圧電薄膜10側の面を圧縮する圧縮応力膜90を備える。圧縮応力膜90は、圧電薄膜10の支持基板50側に形成され、支持基板50の圧電薄膜10側の面を収縮させる。
 この実施形態では、分離形成工程後に、圧縮応力膜90による圧縮応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。よって、この構成の圧電デバイスにおいては、分離形成工程において、圧電単結晶薄膜10による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。従って、この実施形態の圧電デバイスによれば、製造時における、圧電薄膜10の表面粗さの劣化と支持基板50の割れを防ぐことができる。
 次に、第2の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。なお、以下の説明では、圧電デバイスの製造方法として弾性表面波デバイスの製造方法を例に説明する。
 図9は、第2の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図10、図12、図13は、図9に示す圧電デバイスの製造工程を模式的に示す断面図である。図11は、引張応力膜形成工程を経た後の分離工程終了時に引張応力膜により支持基板の反りが発生しない様子を模式的に示す図である。
 この実施形態の圧電デバイスの製造方法が第1の実施形態に示した圧電デバイスの製造方法と相違する点は、引張応力膜形成工程(S202)を行い、その後に接合工程(S203)を行う点である。即ち、図9のS201、S204~S209は、それぞれ第1の実施形態に示した図3のS101、S104~S109と同じである。
 詳述すると、まず、S201のイオン注入工程を経た圧電単結晶基板1を用意する。
 次に、図10(A)に示すように、引張応力膜91を圧電単結晶基板1のイオン注入部分100側の面12に形成する(図9:S202)。そして、引張応力膜91の表面をCMP等により平坦化処理する。引張応力膜91は、支持基板50における圧電単結晶基板1側の面14を圧縮する膜、即ち支持基板50における圧電単結晶基板1側の面14を収縮させる応力層である。引張応力膜91は、例えば酸化シリコン、シリコン窒化膜、酸化アルミニウム、窒化アルミニウム、酸化亜鉛、酸化タンタルを利用する。引張応力膜91は、蒸着、スパッタリング、CVD等により、圧電単結晶基板1のイオン注入部分100側の面12に成膜される。ただし、いずれの成膜方法でも支持基板50における圧電単結晶基板1側の面14を引っ張る膜が成膜されるよう、材料や膜厚などの成膜条件を設定する。
 次に、図10(B)に示すように、支持基板50を圧電単結晶基板1に接合する(図9:S203)。なお、この接合方法は、第1の実施形態と同じである。
 次に、図10(C)に示す圧電単結晶基板1と支持基板50との接合体を(この実施形態では500℃まで)加熱し、イオン注入部分100を分離面とした分離を行う(図9:S204)。なお、この分離方法は、第1の実施形態と同じである。
 ここで、上記S204の分離形成工程により、支持基板50の表面14には、引張応力膜91と単結晶の圧電薄膜10とがこの順に積層される。このとき、図11に示すように、引張応力膜91が圧電薄膜10を引っ張ることにより支持基板50における圧電単結晶基板1側の面14を圧縮する。即ち、支持基板50では、引張応力膜91による引張応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。そのため、この実施形態においても分離後の支持基板50は、反りが生じず平らになる。
 従って、この実施形態の圧電デバイスの製造方法によれば、第1の実施形態の圧電デバイスの製造方法と同様の効果を奏する。
 以後、S204の分離形成工程以降の全工程を経ると、図13(B)に示す構造を有する圧電デバイスが得られる。この圧電デバイスは、支持基板50と、イオンを注入された圧電単結晶基板1からイオン注入部分100で分離して支持基板50上に形成された単結晶の圧電薄膜10であって支持基板50上に接合された圧電薄膜10と、圧電薄膜10上に形成されたIDT電極膜60Cと、を備える。さらに、当該圧電デバイスは、圧電薄膜10と支持基板50との間に形成され、圧電薄膜10を引っ張る引張応力膜91を備える。引張応力膜91は、圧電薄膜10の支持基板50側に形成され、支持基板50の圧電薄膜10側の面を収縮させる。
 この実施形態では、分離形成工程後に、引張応力膜91による引張応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。よって、この構成の圧電デバイスにおいては、分離形成工程において、圧電単結晶薄膜10による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。従って、この実施形態の圧電デバイスによれば、製造時における、圧電薄膜10の表面粗さの劣化と支持基板50の割れを防ぐことができる。
 次に、第3の実施形態に係る圧電デバイスの製造方法について、図を参照して説明する。
 図14は、第3の実施形態に係る圧電デバイスの製造方法を示すフローチャートである。図15、図17は、図13に示す圧電デバイスの製造工程を模式的に示す断面図である。図16は、引張応力膜形成工程を経た後の分離工程終了時に引張応力膜により支持基板の反りが発生しない様子を模式的に示す図である。なお、以下の説明では、圧電デバイスの製造方法として、板波デバイス(図17参照)などのメンブレン構造を持つ圧電デバイスの製造方法を例に説明する。
 この実施形態の圧電デバイスの製造方法は、図14のS301、S307~S309、S312の工程が図9のS201、S205~S207、S209の工程と共通し、その他の工程(S302~S306、S310、S311)が相違するものである。
 まず、S301のイオン注入工程を経た圧電単結晶基板1を用意する。
 そして、圧電単結晶基板1におけるイオン注入部分100側の面12に、所定膜厚の犠牲層30を形成する(図14:S302)。犠牲層30は、具体的には、Ni,Cu,Al等の金属や、SiO、ZnO、PSG(リンケイ酸ガラス)等の絶縁膜や、有機膜等から、条件に応じて適宜設定する。犠牲層30は、蒸着、スパッタリング、CVD、スピン塗布等により、支持基板50の表面上における空隙層80となる空間(即ち、圧電薄膜10が圧電デバイスとして機能する振動領域および孔部81A、81Bの直下の空間)に、成膜される。なお、実施の際は、犠牲層30を引張応力膜となるよう形成しても構わない。
 次に、圧電単結晶基板1におけるイオン注入部分100側の面12に、図15(A)に示すように、所定膜厚の支持層40を形成する(図14:S303)。支持層40は、絶縁性材料からなり、シリコン酸化物や窒化物、アルミニウム酸化物、PSG等の無機物や、樹脂等の有機物を利用し、犠牲層30の除去のためのエッチングガスやエッチング液に対して強い耐性を有するものであればよい。支持層40は、蒸着、スパッタリング、CVD、スピン塗布等により、支持基板50の表面の一定領域(犠牲層30を形成する領域を除外した領域)に成膜される。即ち、この支持層40は、圧電薄膜10が圧電デバイスとして機能しない非振動領域の直下に形成される。そして、支持層40の膜厚は、メンブレンの中空領域を構成する空隙層80の深さに応じて平坦化される。
 なお、支持層40は、圧電単結晶基板1や犠牲層30に対して、線膨張係数を加味した上で材質を決定するとよりよい。
 次に、図15(B)に示すように、引張応力膜91を圧電単結晶基板1の犠牲層30及び支持層40の表面に形成する(図14:S304)。そして、引張応力膜91の表面をCMP等により平坦化処理する。引張応力膜91の形成方法は、図9のS202と同じである。
 次に、図15(C)に示すように、支持基板50を圧電単結晶基板1上の引張応力膜91の表面に接合する(図14:S305)。なお、この接合方法は、第2の実施形態と同じである。
 次に、図15(C)に示す圧電単結晶基板1と支持基板50とを接合した接合体を(この実施形態では500℃まで)加熱し、イオン注入部分100を分離面とした分離を行う(図14:S306)。なお、この分離方法は、第2の実施形態と同じである。
 ここで、上記S306の分離形成工程により、支持基板50の犠牲層30及び支持層40の表面14′には、単結晶の圧電薄膜10が形成される(図15(D)参照)。このとき、図16に示すように、引張応力膜91が支持基板50の犠牲層30及び支持層40の面14′を圧縮する。即ち、支持基板50では、引張応力膜91による引張応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。そのため、この実施形態においても支持基板50は、反りが生じず平らになる。
 従って、この実施形態の圧電デバイスの製造方法によれば、第1の実施形態の圧電デバイスの製造方法と同様の効果を奏する。
 次に、第2の実施形態の製造方法と同様に、ポリッシング(S307)、図17に示すような上部電極60A,60BとIDT電極60Cの形成(S308)、絶縁膜の形成(S309)を行う。
 次に、フォトリソグラフィ技術を用いてレジスト膜をパターニングした後、エッチングガスを流入させることで、犠牲層30の一部を圧電薄膜10の表面側に露出させる孔部81A,81Bを形成する(図14:S310)。
 そして、エッチングガスもしくはエッチング液を孔部81A,81Bを介して流入させることで、犠牲層30を除去する(図14:S311)。これにより、犠牲層30が形成されていた空間は、図17に示すような空隙層80となる。
 次に、第2の実施形態の圧電デバイスの製造方法と同様に、外部端子を形成する(図14:S312)。
 最後に、支持基板50上に形成された複数の薄膜型圧電デバイスから個別の薄膜型圧電デバイスに分割する分割工程を経て、モールド金型を用いたパッケージングを行う。これにより、図17に示す構造を有する圧電デバイスが得られる。この圧電デバイスは、支持基板50と空隙層80と支持層40とからなる支持体と、イオンを注入された圧電単結晶基板1からイオン注入部分100で分離して支持体上に形成された単結晶の圧電薄膜10であって支持体上に接合された圧電薄膜10と、圧電薄膜10上に形成されたIDT電極膜60Cと、を備える。さらに、当該圧電デバイスは、圧電薄膜10と支持体との間に形成され、圧電薄膜10を引っ張る引張応力膜91を備える。引張応力膜91は、圧電薄膜10の支持体側に形成され、支持体の圧電薄膜10側の面を収縮させる。
 この実施形態では、分離形成工程後に、引張応力膜91による引張応力と圧電薄膜10による圧縮応力とが釣り合った状態となる。よって、この構成の圧電デバイスにおいては、分離形成工程において、圧電単結晶薄膜10による分離面への圧縮応力を起因とした分離が行われず、注入イオン元素のガス化を起因とした分離が行われる。従って、この実施形態の圧電デバイスによれば、製造時における、圧電薄膜10の表面粗さの劣化と支持基板50の割れを防ぐことができる。
 なお、上述の実施形態では、板波デバイスを例に説明したが、他に、ジャイロ、RFスイッチ、振動発電素子等、圧電単結晶薄膜からなりメンブレンを有する各種デバイスに対しても、本発明の製造方法を適用することができる。
 また、上述の各実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1  圧電単結晶基板
 4  裏面
 5  圧電基板
 6  イオン注入層
 7  表面
 8  結合材
 9  支持基板
 10  圧電薄膜
 20  下部電極膜
 21  誘電体膜
 22  接合膜
 30  犠牲層
 40  支持層
 50  支持基板
 60A、60B  上部電極膜
 60C  IDT電極膜
 61A、61B  バンプパッド
 62A、61B  バンプ
 63A  引き回し配線
 63B、63C  上部電極膜
 70  絶縁膜
 80  空隙層
 81A,81B  孔部
 82A  開口部
 90  圧縮応力膜
 91  引張応力膜
 100  イオン注入部分

Claims (13)

  1.  支持体と、
     イオン化した元素を注入された圧電単結晶基板から、注入された元素の濃度がピークとなる部分を分離面とした分離を行って前記支持体上に形成された圧電単結晶薄膜と、
     前記圧電単結晶薄膜上に形成された電極膜と、
     前記支持体の前記圧電単結晶薄膜側の面を収縮させる応力層と、を備える圧電デバイス。
  2.  前記応力層は、前記支持体の前記圧電単結晶薄膜側の面に対向する裏面側に形成されており、前記支持体の前記圧電単結晶薄膜側の面を圧縮する圧縮応力膜である、請求項1に記載の圧電デバイス。
  3.  前記圧縮応力膜の材質は、酸化シリコン、窒化シリコン、酸化亜鉛、酸化タンタル、窒化アルミニウムまたは酸化アルミニウムである、請求項2に記載の圧電デバイス。
  4.  前記応力層は、前記圧電単結晶薄膜と前記支持体との間に形成され、前記圧電単結晶薄膜を引っ張る引張応力膜である、請求項1に記載の圧電デバイス。
  5.  前記引張応力膜の材質は、酸化シリコン、窒化シリコン、窒化アルミニウムまたは酸化アルミニウムである、請求項4に記載の圧電デバイス。
  6.  前記支持体は、前記圧電単結晶薄膜を支持する支持層と、前記圧電単結晶薄膜と前記圧縮応力膜との間に形成された空隙層と、を有する、請求項1から3のいずれか1項に記載の圧電デバイス。
  7.  前記電極膜がIDT電極である、請求項1から6のいずれか1項に記載の圧電デバイス。
  8.  支持体と、前記支持体上に形成する圧電単結晶薄膜とを備える、圧電デバイスの製造方法であって、
     圧電単結晶基板にイオン化した元素を注入することで、前記圧電単結晶基板の中に注入された元素の濃度がピークとなる部分を形成するイオン注入工程と、
     前記支持体を前記圧電単結晶基板のイオン注入面側に形成する支持体形成工程と、
     前記支持体の前記圧電単結晶薄膜側の面を収縮させる応力層を形成する応力層形成工程と、
     前記注入された元素の濃度がピークとなる部分を分離面とした分離を前記圧電単結晶基板に対して行い、前記圧電単結晶薄膜を前記支持体上に形成する分離形成工程と、を有する圧電デバイスの製造方法。
  9.  前記応力層形成工程は、前記支持体の前記圧電単結晶薄膜側の面を圧縮する圧縮応力膜を前記応力層として前記支持体の前記圧電単結晶薄膜側の面に対向する裏面側に形成する、請求項8に記載の圧電デバイスの製造方法。
  10.  前記応力層形成工程は、前記応力層として、前記支持体の前記圧電単結晶薄膜側の面に対向する裏面側に、イオン注入層を形成する、請求項8に記載の圧電デバイスの製造方法。
  11.  前記支持体形成工程は、前記応力層形成工程の後に行われ、
     前記応力層形成工程は、前記圧電単結晶薄膜を引っ張る引張応力膜を前記応力層として前記圧電単結晶基板の前記イオン注入面側に形成する、請求項8に記載の圧電デバイスの製造方法。
  12.  前記圧電単結晶薄膜上にIDT電極膜を形成する電極膜形成工程を有する、請求項8から11のいずれか1項に記載の圧電デバイスの製造方法。
  13.  前記圧電単結晶薄膜と前記支持体との間に形成される空隙層となる空間に犠牲層を形成する犠牲層形成工程と、
     前記圧電結晶薄膜をエッチングし、前記犠牲層の一部を前記圧電薄膜の表面側に露出させる孔部を形成する露出工程と、
     前記孔部を介して前記犠牲層を除去する犠牲層除去工程と、を有する、請求項8から12のいずれか1項に記載の圧電デバイスの製造方法。
PCT/JP2011/072161 2010-09-28 2011-09-28 圧電デバイス、圧電デバイスの製造方法 WO2012043616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11829169.9A EP2624451B1 (en) 2010-09-28 2011-09-28 Method for manufacturing piezoelectric device
JP2012536502A JP5522263B2 (ja) 2010-09-28 2011-09-28 圧電デバイス、圧電デバイスの製造方法
US13/850,520 US9647199B2 (en) 2010-09-28 2013-03-26 Piezoelectric device and method for manufacturing piezoelectric device
US15/473,661 US10707406B2 (en) 2010-09-28 2017-03-30 Method for manufacturing piezoelectric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-216936 2010-09-28
JP2010216936 2010-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/850,520 Continuation US9647199B2 (en) 2010-09-28 2013-03-26 Piezoelectric device and method for manufacturing piezoelectric device

Publications (1)

Publication Number Publication Date
WO2012043616A1 true WO2012043616A1 (ja) 2012-04-05

Family

ID=45893055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072161 WO2012043616A1 (ja) 2010-09-28 2011-09-28 圧電デバイス、圧電デバイスの製造方法

Country Status (4)

Country Link
US (2) US9647199B2 (ja)
EP (1) EP2624451B1 (ja)
JP (1) JP5522263B2 (ja)
WO (1) WO2012043616A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780776A (zh) * 2015-11-20 2018-11-09 环球晶圆股份有限公司 使半导体表面平整的制造方法
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
CN112467024A (zh) * 2020-11-24 2021-03-09 上海新微科技集团有限公司 一种异质结构薄膜衬底的制备方法
JP2021511682A (ja) * 2018-03-14 2021-05-06 レイセオン カンパニー ボンディングされたウェハ内の応力補償とリリーフ
JP7439415B2 (ja) 2019-08-28 2024-02-28 住友金属鉱山株式会社 圧電性基板、圧電性基板の製造方法、及び複合基板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288110B2 (ja) * 2013-12-27 2018-03-07 株式会社村田製作所 弾性波装置
US9978582B2 (en) * 2015-12-16 2018-05-22 Ostendo Technologies, Inc. Methods for improving wafer planarity and bonded wafer assemblies made from the methods
US10483248B2 (en) * 2017-03-23 2019-11-19 Skyworks Solutions, Inc. Wafer level chip scale filter packaging using semiconductor wafers with through wafer vias
TWI780103B (zh) * 2017-05-02 2022-10-11 日商日本碍子股份有限公司 彈性波元件及其製造方法
EP3675604B1 (en) * 2017-08-24 2023-02-22 Amosense Co.,Ltd Method for producing ceramic substrate, and ceramic substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330882A (ja) * 1995-06-02 1996-12-13 Sumitomo Electric Ind Ltd 表面弾性波素子基板及びその製造方法
JP2002534886A (ja) 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
WO2010082571A1 (ja) * 2009-01-15 2010-07-22 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091663A (ja) * 1998-09-17 2000-03-31 Osaka Gas Co Ltd シリコンマイクロデバイス加工方法
FR2789518B1 (fr) * 1999-02-10 2003-06-20 Commissariat Energie Atomique Structure multicouche a contraintes internes controlees et procede de realisation d'une telle structure
JP2000244030A (ja) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp 圧電体薄膜素子
JP4830418B2 (ja) * 2005-09-16 2011-12-07 株式会社デンソー 半導体装置
JP2007181185A (ja) * 2005-12-01 2007-07-12 Sony Corp 音響共振器およびその製造方法
FR2924273B1 (fr) * 2007-11-28 2010-02-19 Commissariat Energie Atomique Procede de moderation de deformation
JP4743258B2 (ja) * 2008-10-31 2011-08-10 株式会社村田製作所 圧電デバイスの製造方法
US8058769B2 (en) * 2008-12-17 2011-11-15 Sand9, Inc. Mechanical resonating structures including a temperature compensation structure
WO2011004665A1 (ja) * 2009-07-07 2011-01-13 株式会社村田製作所 弾性波デバイスおよび弾性波デバイスの製造方法
JP5429200B2 (ja) * 2010-05-17 2014-02-26 株式会社村田製作所 複合圧電基板の製造方法および圧電デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330882A (ja) * 1995-06-02 1996-12-13 Sumitomo Electric Ind Ltd 表面弾性波素子基板及びその製造方法
JP2002534886A (ja) 1998-12-30 2002-10-15 タレス 分子結合剤によってキャリヤ基板に結合された圧電材料の薄層中で案内される表面弾性波のためのデバイスおよび製造方法
JP2003017967A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 弾性表面波素子及びその製造方法
WO2010082571A1 (ja) * 2009-01-15 2010-07-22 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624451A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780776A (zh) * 2015-11-20 2018-11-09 环球晶圆股份有限公司 使半导体表面平整的制造方法
JP2019501523A (ja) * 2015-11-20 2019-01-17 グローバルウェーハズ カンパニー リミテッドGlobalWafers Co.,Ltd. 滑らかな半導体表面の製造方法
CN108780776B (zh) * 2015-11-20 2023-09-29 环球晶圆股份有限公司 使半导体表面平整的制造方法
WO2019054238A1 (ja) * 2017-09-15 2019-03-21 日本碍子株式会社 弾性波素子およびその製造方法
JPWO2019054238A1 (ja) * 2017-09-15 2019-11-07 日本碍子株式会社 弾性波素子およびその製造方法
US11632093B2 (en) 2017-09-15 2023-04-18 Ngk Insulators, Ltd. Acoustic wave devices and a method of producing the same
JP2021511682A (ja) * 2018-03-14 2021-05-06 レイセオン カンパニー ボンディングされたウェハ内の応力補償とリリーフ
JP7052081B2 (ja) 2018-03-14 2022-04-11 レイセオン カンパニー ボンディングされたウェハ内の応力補償とリリーフ
JP7439415B2 (ja) 2019-08-28 2024-02-28 住友金属鉱山株式会社 圧電性基板、圧電性基板の製造方法、及び複合基板
CN112467024A (zh) * 2020-11-24 2021-03-09 上海新微科技集团有限公司 一种异质结构薄膜衬底的制备方法
CN112467024B (zh) * 2020-11-24 2023-04-07 上海新硅聚合半导体有限公司 一种异质结构薄膜衬底的制备方法

Also Published As

Publication number Publication date
JPWO2012043616A1 (ja) 2014-02-24
US20170200882A1 (en) 2017-07-13
EP2624451A1 (en) 2013-08-07
US9647199B2 (en) 2017-05-09
US10707406B2 (en) 2020-07-07
US20130307372A1 (en) 2013-11-21
EP2624451A4 (en) 2015-03-11
JP5522263B2 (ja) 2014-06-18
EP2624451B1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP5522263B2 (ja) 圧電デバイス、圧電デバイスの製造方法
JP5447682B2 (ja) 圧電デバイスの製造方法
US9508918B2 (en) Method for manufacturing piezoelectric device with a composite piezoelectric substrate
US9240540B2 (en) Piezoelectric device
JP5510465B2 (ja) 圧電デバイス、圧電デバイスの製造方法
JP6043717B2 (ja) 圧電材料の埋め込み方法
JP5152410B2 (ja) 圧電デバイスの製造方法
JP5796316B2 (ja) 圧電デバイスの製造方法
WO2013031747A1 (ja) 圧電バルク波装置及びその製造方法
JP5182379B2 (ja) 複合基板の製造方法
JP5277999B2 (ja) 複合基板の製造方法
WO2011074329A1 (ja) 圧電デバイスの製造方法
WO2022176689A1 (ja) 複合ウェーハおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829169

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011829169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011829169

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012536502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE