WO2012042942A1 - Dc-dcコンバータ - Google Patents

Dc-dcコンバータ Download PDF

Info

Publication number
WO2012042942A1
WO2012042942A1 PCT/JP2011/057098 JP2011057098W WO2012042942A1 WO 2012042942 A1 WO2012042942 A1 WO 2012042942A1 JP 2011057098 W JP2011057098 W JP 2011057098W WO 2012042942 A1 WO2012042942 A1 WO 2012042942A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
switch element
signal
capacitor
Prior art date
Application number
PCT/JP2011/057098
Other languages
English (en)
French (fr)
Inventor
村瀬元規
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012536238A priority Critical patent/JP5445685B2/ja
Priority to DE112011103253T priority patent/DE112011103253T5/de
Priority to CN2011800319933A priority patent/CN102959844A/zh
Publication of WO2012042942A1 publication Critical patent/WO2012042942A1/ja
Priority to US13/735,154 priority patent/US8482272B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • G05F1/595Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load semiconductor devices connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC-DC converter that includes a master-slave switch element and an inductor, and converts an input DC voltage into a desired DC voltage and outputs it by alternately turning on and off the main switch element and the slave switch element. Is.
  • a step-down chopper circuit type DC-DC converter as shown in Patent Document 1 is known as one of power supply circuits provided inside a portable electronic device or the like.
  • Such a step-down chopper circuit type DC-DC converter is provided with a circuit for preventing a reverse current flowing from the capacitor to the ground through the inductor at the time of light load (hereinafter referred to as “reverse current of the inductor current”).
  • FIG. 1 is a circuit diagram of a DC-DC converter 3 disclosed in Patent Document 1.
  • the DC-DC converter 3 includes a first switch 11, a second switch 15, an inductor 12, a capacitor 13, and a diode 14.
  • the voltage integration control circuit 23 detects the input voltage Vi and the output voltage Vo, and converts the voltages Vi and Vo as they are, or converts the voltage obtained by addition / subtraction processing into a current, thereby generating an induced current IL.
  • a voltage-current conversion circuit 31 that generates a current according to the change amount dIL / dt, a current-voltage conversion capacitor 32 that accumulates and converts the output current of the voltage-current conversion circuit 31 into a voltage, and an output voltage of the current-voltage conversion capacitor 32
  • the voltage / current conversion circuit 31 includes a comparator 33 that compares Vc with a reference voltage Vref1 having a predetermined value, and a power supply 34 that generates the reference voltage Vref1 and inputs the reference voltage Vref1.
  • a current proportional to Vi ⁇ Vo is generated based on the input voltage Vi and the output voltage Vo, and the current-voltage conversion capacitor is generated. Pour into sensor 32.
  • the voltage-current conversion circuit 31 draws a current proportional to the output voltage Vo from the current-voltage conversion capacitor 32.
  • the voltage Vc across the current-voltage conversion capacitor 32 changes in proportion to the forward current IL flowing through the induction element 12. Therefore, the time point at which the reverse current starts to flow through the induction element 12 can be detected as the time point when the both-end voltage Vc becomes 0V.
  • the comparator 33 compares the both-end voltage Vc and the reference voltage Vref1 and instructs the control circuit 21 to shut off the second switch 15 before the both-end voltage Vc becomes 0 [V]
  • induction is performed.
  • the second switch 15 can be cut off. With this configuration, an attempt is made to prevent backflow of the inductor current.
  • the conventional DC-DC converter shown in FIG. 1 has a configuration in which the comparator detects that the capacitance potential is 0 V, the frequency becomes high and the propagation delay time in the comparator cannot be ignored. That is, since the output of the comparator has a response delay corresponding to the propagation delay time, a current flows backward at a light load due to this delay, and a loss occurs. If a comparator with a short propagation delay time is used, the current backflow time can be shortened. However, a high-speed comparator with a short propagation delay time generally consumes a large amount of power, so that the efficiency of the entire DC-DC converter decreases. Further, a delay compensation method using the offset reference voltage Vref1 as shown in FIG. 1 is known, but the compensation becomes incomplete because the delay time varies depending on the operation conditions. Also, Vref1 must be composed of a stable voltage circuit such as a band gap, and there is a problem to be solved such as requiring a circuit area.
  • an object of the present invention is to provide a high-efficiency DC-DC converter by preventing backflow of inductor current without using a comparator.
  • the DC-DC converter includes a series circuit of a main switch element and a sub switch element, an inductor and a capacitor, which are connected in series to a power supply input section to which a DC voltage is input, and the main switch A smoothing circuit provided between a connection point between the element and the sub switch element and the power output unit, A drive circuit that outputs a drive signal to the main switch element and the slave switch element, a pulse generation circuit that outputs a pulse signal to the drive circuit, and a backflow of a current flowing through the inductor at a light load is prevented.
  • a slave switch control signal generating circuit for generating a slave switch control signal for The sub-switch control signal generation circuit is based on a detection capacitor, a charge / discharge circuit that charges / discharges the detection capacitor according to a switching period of the main switch element and the sub-switch element, and a potential of the detection capacitor. And a slave switch control signal output circuit for outputting the slave switch control signal.
  • the capacitor potential is directly used for the input of the next logic circuit without using a comparator, so that it is possible to prevent power consumption due to the use of a high-speed comparator with a small delay time, which has been conventionally required. Since the comparator itself is not necessary, the power efficiency can be improved.
  • the DC-DC converter according to the second aspect of the present invention includes a level shift circuit that inputs a potential of the capacitor and outputs a level-shifted voltage signal. According to this configuration, the capacitance of the capacitor and the current value of the current source used for charging / discharging can be reduced, and the circuit can be reduced in size and power consumption.
  • the DC-DC converter according to the third aspect of the present invention is characterized by including a logic circuit that converts a capacitor voltage signal into a logic level signal and outputs the signal as the slave switch control signal.
  • the slave switch control signal given to the pulse generation circuit is given as a logic level signal, so that more stable control can be performed.
  • a smoothing circuit including the inductor and the capacitor is connected between a connection point between the main switch element and the sub switch element and a power supply output unit (that is, a step-down circuit).
  • a power supply output unit that is, a step-down circuit.
  • Type DC-DC converter When the voltage input to the power supply input unit is represented by Vi and the voltage output from the power supply output unit is represented by Vo, a first current source that generates a current substantially proportional to Vi and a current substantially proportional to Vo A second current source for generating, The potential of the capacitor changes in the first direction due to the difference current between the first current source and the second current source during the on period of the main switch element, and the second current source during the on period of the slave switch element. The first current source and the second current source are connected so that the potential of the capacitor changes in the second direction.
  • the DC-DC converter according to the fifth aspect of the present invention is characterized in that the voltage-current conversion rate of the second current source is substantially equal to or smaller than the voltage-current conversion rate of the first current source.
  • the inductor is connected between a connection point between the main switch element and the sub switch element and a power supply input section (that is, a step-up DC-DC converter).
  • a power supply input section that is, a step-up DC-DC converter.
  • the DC-DC converter according to the seventh aspect of the present invention is characterized in that the voltage-current conversion rate of the second current source is substantially equal to or smaller than the voltage-current conversion rate of the first current source.
  • the capacitor potential is used as it is for the input of the next logic circuit without using a comparator, it is possible to prevent power consumption due to the use of a high-speed comparator with a small delay time, which is conventionally necessary. In addition, the power consumption of the comparator itself becomes unnecessary, and the power efficiency can be improved.
  • FIG. 1 is a circuit diagram of a DC-DC converter 3 disclosed in Patent Document 1.
  • FIG. 2 is an overall circuit diagram of the DC-DC converter 301 according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram of the slave switch control signal generation circuit 60.
  • FIG. 4A is a simplified representation of the charge / discharge circuit for capacitor C11 shown in FIG.
  • FIG. 4B is a waveform diagram of the PGATE signal, the NGATE signal, the current I (L1) flowing through the inductor L1, and the NCTL signal.
  • FIG. 5 is a waveform diagram of the PGATE signal, the NGATE signal, the inductor L1 current I (L1), and the NCTL signal when the load fluctuates.
  • FIG. 4A is a simplified representation of the charge / discharge circuit for capacitor C11 shown in FIG.
  • FIG. 4B is a waveform diagram of the PGATE signal, the NGATE signal, the current I (L1) flowing through the inductor L1, and the
  • FIG. 6A is a simplified diagram of a charge / discharge circuit for the capacitor C21 of the slave switch control signal generation circuit of the DC-DC converter according to the second embodiment.
  • FIG. 6B is a waveform diagram of the PGATE signal, the NGATE signal, the voltage V (C21) of the capacitor C21, and the NCTL signal.
  • FIG. 7A is a simplified diagram of a charge / discharge circuit for the capacitor C21 of the slave switch control signal generation circuit of the DC-DC converter according to the third embodiment.
  • FIG. 7B is a waveform diagram of the PGATE signal, the NGATE signal, the voltage V (C31) of the capacitor C31, and the NCTL signal.
  • FIG. 8A is a simplified diagram of a charge / discharge circuit for the capacitor C41 of the slave switch control signal generation circuit of the DC-DC converter according to the fourth embodiment.
  • FIG. 8B is a waveform diagram of the PGATE signal, the NGATE signal, the voltage V (C21) of the capacitor C21, and the NCTL signal.
  • FIG. 9 is an overall circuit diagram of the DC-DC converter according to the fifth embodiment.
  • FIG. 10 is a circuit diagram of the slave switch control signal generation circuit 80.
  • FIG. 11A is a simplified diagram of the charge / discharge circuit for capacitor C31 shown in FIG.
  • FIG. 11B is a waveform diagram of the PGATE signal, the NGATE signal, the current I (L1) flowing through the inductor L1, and the PCTL signal.
  • FIG. 12 is a diagram showing a partial configuration of a slave switch control signal generating circuit of the DC-DC converter according to the sixth embodiment.
  • FIG. 13 is a diagram showing a partial configuration of a slave switch control signal generation circuit of another DC-DC converter according to the sixth embodiment.
  • FIG. 2 is an overall circuit diagram of the DC-DC converter 301 according to the first embodiment of the present invention.
  • the DC-DC converter 301 includes a series circuit of a main switch element Q11 and a sub switch element Q12, a main switch element Q11 and a sub switch element Q12, which are connected in series to a power input unit Vi to which a predetermined DC voltage is input. And a smoothing circuit including an inductor L1 and a capacitor C1 provided between the connection point and the power output unit Vo.
  • This DC-DC converter is a step-down chopper type DC-DC converter that supplies power from a power supply output unit Vo to a load with a constant DC voltage.
  • the pulse generation circuit 50 includes resistors R3 and R4, an error amplifier EA, a reference voltage generation circuit VREF, a ramp waveform signal generation circuit RAMP, a comparator COMP2, and a PWM / PFM signal generation circuit 51.
  • the error amplifier EA amplifies an error voltage between the voltage obtained by dividing the output voltage of the power supply output unit Vo by the resistors R3 and R4 and the reference voltage VREF by the reference voltage generation circuit VREF.
  • the comparator COMP2 compares the output voltage of the error amplifier EA with the ramp waveform signal from the ramp waveform signal generation circuit RAMP and outputs a PWM control signal.
  • the PWM / PFM signal generation circuit 51 outputs a PC signal to the drive circuit 70. With this PC signal, PWM control is performed under heavy load, and PFM control is performed under light load.
  • the slave switch control signal generating circuit 60 includes a PGATE signal applied to the gate of the main switch element Q11, an NGATEB signal that is an inverted signal of the NGATE signal applied to the gate of the slave switch element Q12, the voltage (Vi) of the power input unit Vi, and The voltage (Vo) of the power output unit Vo is input, and the slave switch control signal NCTL is output.
  • the drive circuit 70 includes inverters (NOT gates) IN1 to IN6, a NOR gate NOR1, inverters IN7 to IN12, and NOR gates NOR2 and NOR3.
  • Inverters (NOT gates) IN1 to IN6 and a NOR gate NOR1 are connected to the gate of the main switch element Q11.
  • the main switch element Q11 is controlled by the PGATE signal generated from the PC signal and the NGATE signal through these logic circuits.
  • inverters IN7 to IN12 and NOR gates NOR2 and NOR3 are connected to the gate of the sub switch element Q12.
  • the slave switch element Q12 is controlled by the NGATE signal generated from the PC signal, the PGATE inverted signal, and the NCTL signal through these logic circuits.
  • main switch element Q11 is a P-channel MOS-FET, it is turned on when the PGATE signal is low level. Since the slave switch element Q12 is an N-channel MOS-FET, it is turned on when the NGATE signal is at high level.
  • FIG. 3 is a circuit diagram of the slave switch control signal generation circuit 60.
  • the slave switch control signal generation circuit 60 includes a voltage dividing circuit using resistors R11 and R12, a voltage dividing circuit using resistors R21 and R22, voltage-current conversion circuits 61 and 64, and current mirror circuits 62, 63, and 65. And a capacitor C11.
  • the voltage-current conversion circuit 61 is composed of P-channel MOS-FETs P3 and P4, N-channel MOS-FETs N1, N2, N5 and N6 and a resistor R13, and inputs the divided output voltage of the resistors R11 and R12 in a non-inverted manner. The voltage drop across the resistor R13 is inverted and input.
  • the current mirror circuit 62 is composed of P-channel MOS-FETs P7, P8, and P9.
  • the current mirror circuit 63 is composed of N-channel MOS-FETs N10 and N11. If the current ratio of the current mirror circuit 63 is 1: 1, the current I1 flows through the MOS-FET N11.
  • the voltage-current conversion circuit 64 is composed of P-channel MOS-FETs P23 and P24, N-channel MOS-FETs N21, N22, N25, and N26 and a resistor R23, and inputs the divided output voltage of the resistors R21 and R22 in a non-inverted manner. The voltage drop across the resistor R23 is inverted and input.
  • the current mirror circuit 65 includes P-channel MOS-FETs P27, P28, P29, and P30.
  • the voltage drop of the resistor R23 is negatively fed back, and the output of the voltage-current conversion circuit 64 is output to the gate of N26. As a result, the voltage drop of R23 and the divided voltage of the resistors R21 and R22 are equal. Therefore, a current I2 proportional to the voltage Vo of the power supply output unit Vo flows on the left side of the current mirror circuit 65. If the current ratio of the current mirror circuit 65 is 1: 1, the current I2 flows on the right side of the current mirror circuit 65 when the MOS-FET P29 or P30 is on.
  • the voltage of the capacitor C11 is output as an NCTL signal. If the threshold value of the input that causes the state transition of the output of the NOR gate NOR3 shown in FIG. 2 from the L level to the H level is VtL, when the voltage of the NCTL signal exceeds the threshold value VtL, the NGATE signal becomes L At the level, the sub switch element Q12 is forcibly turned off.
  • the relationship is as follows.
  • FIG. 4A is a simplified diagram of the charge / discharge circuit for the capacitor C11 shown in FIG.
  • the first current source CS11 is a circuit including the voltage-current conversion circuit 61 and the current mirror circuits 62 and 63 shown in FIG. 3, and is turned on when the PGATE signal is at the L level.
  • the second current source CS12 is a circuit composed of the voltage-current conversion circuit 64 and the current mirror circuit 65 shown in FIG. 3, and is turned on when the PGATE signal or the NGATEB signal is at L level.
  • the voltage-current conversion rate of the first current source CS11 is a and the voltage-current conversion rate of the second current source CS12 is b
  • FIG. 4B is a waveform diagram of the PGATE signal, the NGATE signal, the current I (L1) flowing through the inductor L1, and the NCTL signal.
  • the PGATE signal becomes L level at time t0
  • the main switch element Q11 is turned on.
  • the current flowing through the inductor L1 rises.
  • the initial value of the charging voltage of the capacitor C11 shown in FIGS. 3 and 4A is VtL
  • the voltage of the capacitor C11 continues to decrease from VtL during the on period ⁇ 1 of the main switch element Q11.
  • the switch-off timing of Q12 is advanced by NCTL, and the capacitor C11 is gradually charged even during normal load or heavy load, and the slave switch is forcibly turned off. End up. For this reason, the synchronous rectification time is reduced and the time for flowing through the body diode of the slave switch element is increased, which causes a reduction in efficiency and instability of control. Therefore, it is desirable that the voltage-current conversion rate b of the second current source is slightly smaller than the voltage-current conversion rate a of the first current source in advance. As a result, the potential of the capacitor C11 changes in a direction in which the turn-off timing of the slave switch element is delayed.
  • FIG. 5 is a waveform diagram of the PGATE signal, the NGATE signal, the inductor L1 current I (L1), and the NCTL signal when the load fluctuates.
  • Times t1, t2, t3 and times ⁇ 1, ⁇ 2 in FIG. 5 correspond to times t1, t2, t3 and times ⁇ 1, ⁇ 2 in FIG. 4B, respectively.
  • the main switch element Q11 and the slave switch element Q12 operate in a current discontinuous mode in which both are turned off. The stabilization of the output voltage at this light load is performed by the PFM control described above.
  • the main switch element Q11 and the slave switch element Q12 are alternately turned on / off, and operate in a continuous current mode in which the inductor current I (L1) flows continuously.
  • the stabilization of the output voltage at the normal load is performed by the PWM control described above.
  • FIG. 6A is a simplified diagram of a charge / discharge circuit for the capacitor C21 of the slave switch control signal generation circuit of the DC-DC converter according to the second embodiment.
  • the overall configuration of the DC-DC converter is the same as that shown in FIG. Therefore, the operation of each part of the DC-DC converter will be described using the reference numerals shown in FIG.
  • a capacitor C11 is provided on the ground potential side, and the voltage of the capacitor C11 is output as an NCTL signal.
  • a capacitor C21 is provided on the power supply potential side, and a voltage that is lower than the power supply voltage Vi by the voltage of the capacitor C21 is output as an NCTL signal.
  • the first current source CS21 is turned on when the PGATE signal is at L level.
  • the second current source CS22 is turned on when the PGATE signal or the NGATEB signal is at L level.
  • FIG. 6B is a waveform diagram of the PGATE signal, the NGATE signal, the voltage V (C21) of the capacitor C21, and the NCTL signal.
  • the main switch element Q11 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 increases.
  • the initial value of the charging voltage of the capacitor C21 shown in FIG. 6A is (Vi-VtL)
  • the voltage of the capacitor C11 changes from (Vi-VtL) to aVi in the period ⁇ 1 in which the PGATE signal is L level.
  • the main switch element Q11 is turned off and the slave switch element Q12 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 decreases.
  • the capacitor C21 is discharged with a slope proportional to bVo.
  • the NCTL signal is a voltage obtained by subtracting the voltage V (C21) of the capacitor C21 from the voltage Vi of the power supply input portion Vi, the waveform of V (C21) is reversed in the increase / decrease direction as shown in FIG.
  • FIG. 7A is a simplified representation of a charge / discharge circuit for the capacitor C31 of the slave switch control signal generation circuit of the DC-DC converter according to the third embodiment. Since the entire configuration of the DC-DC converter is the same as that shown in FIG. 2, the operation of each part of the DC-DC converter will be described using the reference numerals shown in FIG. However, in the third embodiment, the drive circuit 70 assumes that the NGATE signal becomes L level when the NCTL signal becomes H level. This can be realized, for example, by inserting an inverter in the NCTL signal input section of NOR3.
  • the first current source CS31 is turned on when the PGATE signal is at L level.
  • the second current source CS32 is turned on when the PGATE signal or the NGATEB signal is at L level.
  • FIG. 7B is a waveform diagram of the PGATE signal, the NGATE signal, and the NCTL signal.
  • the main switch element Q11 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 increases.
  • the voltage of the capacitor C31 increases with a slope proportional to aVi ⁇ bVo.
  • the main switch element Q11 is turned off and the slave switch element Q12 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 decreases.
  • the capacitor C31 is discharged with a slope proportional to bVo.
  • FIG. 8A is a simplified diagram of a charge / discharge circuit for the capacitor C41 of the slave switch control signal generation circuit of the DC-DC converter according to the fourth embodiment. Since the entire configuration of the DC-DC converter is the same as that shown in FIG. 2, the operation of each part of the DC-DC converter will be described using the reference numerals shown in FIG. However, in the fourth embodiment, as in the third embodiment, the drive circuit 70 assumes that the NGATE signal becomes L level when the NCTL signal becomes H level.
  • the first current source CS41 is turned on when the PGATE signal is at L level.
  • the second current source CS42 is turned on when the PGATE signal or the NGATEB signal is at L level.
  • the voltage-current conversion rate of the first current source CS41 is a
  • the voltage-current conversion rate of the second current source CS42 is b.
  • FIG. 8B is a waveform diagram of the PGATE signal, the NGATE signal, the voltage V (C41) of the capacitor C41, and the NCTL signal.
  • the main switch element Q11 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 increases.
  • the capacitor C41 is discharged with a slope proportional to bVo ⁇ aVi.
  • the main switch element Q11 is turned off and the sub switch element Q12 (see FIG. 2) is turned on.
  • the current flowing through the inductor L1 decreases.
  • the capacitor C41 is charged with a slope proportional to bVo.
  • V (C41) Since the NCTL signal is a voltage obtained by subtracting the voltage V (C41) of the capacitor C41 from the voltage Vi of the power input portion Vi, as shown in FIG. 8B, V (C41) has a waveform in which the increase / decrease direction is inverted. Become.
  • the NCTL signal becomes substantially L level, and the slave switch element Q12 is forcibly turned off. This prevents backflow of the inductor current.
  • FIG. 9 is an overall circuit diagram of the DC-DC converter according to the fifth embodiment.
  • the DC-DC converter 305 includes a power input unit Vi to which a predetermined DC voltage is input, a power output unit Vo to which a DC voltage is output, a series circuit of a main switch element Q21 and a sub switch element Q22, a main switch element Q21, An inductor L1 having a first end connected to a connection point with the sub switch element Q22 and a second end connected to Vi, and a capacitor C1 provided between the power supply output unit Vo and the ground are provided.
  • the DC-DC converter 305 is a step-up chopper type DC-DC converter that supplies power from the power supply output unit Vo to a load with a constant DC voltage.
  • the pulse generation circuit 50 includes resistors R3 and R4, an error amplifier EA, a reference voltage generation circuit VREF, a ramp waveform signal generation circuit RAMP, a comparator COMP2, and a PWM / PFM signal generation circuit 51. Has been.
  • the slave switch control signal generation circuit 80 receives the PGATE signal that is the gate signal of the slave switch element Q22, the inverted signal NGATEB signal of the NGATE signal that is the gate signal of the master switch element Q21, and the voltage (Vi) of the power input section Vi.
  • the slave switch control signal PCTL is output.
  • the drive circuit 90 outputs a PGATE signal and an NGATE signal based on the PC signal and the PCTL signal.
  • the main switch element Q21 is an N-channel MOS-FET and the slave switch element Q22 is a P-channel MOS-FET. Therefore, when the NGATE signal is at a high level, the main switch element Q21 is turned on, and when the PGATE signal is at a low level, the slave switch element Q22 is turned on.
  • the drive circuit 90 has a configuration similar to that of the drive circuit 70 shown in FIG. 2, and when the PCTL signal becomes substantially L level and transitions to the subsequent stage, the PGATE signal is set to H level. That is, the slave switch element Q22 is forcibly turned off when the PCTL signal becomes L level.
  • FIG. 10 is a circuit diagram of the slave switch control signal generation circuit 80.
  • the slave switch control signal generation circuit 80 includes a voltage dividing circuit using resistors R11 and R12, a voltage dividing circuit using resistors R21 and R22, voltage-current conversion circuits 61 and 64, and current mirror circuits 62, 63, and 65. And a capacitor C31.
  • the voltage-current conversion circuit 61 is composed of P-channel MOS-FETs P3 and P4, N-channel MOS-FETs N1, N2, N5 and N6 and a resistor R13, and inputs the divided output voltage of the resistors R11 and R12 in a non-inverted manner. The voltage drop across the resistor R13 is inverted and input.
  • the current mirror circuit 62 is composed of P-channel MOS-FETs P7, P8, and P9.
  • the voltage drop of the resistor R13 is negatively fed back, and the output of the voltage-current conversion circuit 61 is output to the gate of N6. Consequently, the voltage drop of the resistor R13 and the divided voltage of the resistors R11 and R12 are equal. Therefore, a current I2 proportional to the voltage Vo of the power supply output unit Vo flows on the left side of the current mirror circuit 62. If the current ratio of the current mirror circuit 62 is 1: 1, the current I2 flows on the right side of the current mirror circuit 62 when the MOS-FET P9 is on.
  • the current mirror circuit 63 is composed of N-channel MOS-FETs N10 and N11. If the current ratio of the current mirror circuit 63 is 1: 1, a current I2 flows through the MOS-FET N11.
  • the voltage-current converter circuit 64 is composed of P-channel MOS-FETs P23 and P24, N-channel MOS-FETs N21, N22, N25, and N26 and a resistor R23, and inputs the divided output voltages of the resistors R21 and R22 in a non-inverted manner. The voltage drop across the resistor R23 is inverted and input.
  • the current mirror circuit 65 includes P-channel MOS-FETs P27, P28, P29, and P30.
  • the voltage drop of the resistor R23 is negatively fed back, and the output of the voltage-current conversion circuit 64 is output to the gate of N26.
  • the voltage of the resistor R23 and the divided voltage of the resistors R21 and R22 are equal. Therefore, a current I1 proportional to the voltage Vi of the power input portion Vi flows on the left side of the current mirror circuit 65. If the current ratio of the current mirror circuit 65 is 1: 1, the current I1 flows on the right side of the current mirror circuit 65 when the MOS-FET P29 or P30 is on.
  • the capacitor C31 is charged with the current I1 during the ON period of the MOS-FET P30, and is discharged with the current (I2-I1) during the ON period of the MOS-FETs P29 and P9.
  • the voltage of the capacitor C31 is output as a PCTL signal.
  • the PGATE signal, NGATEB signal, MOS-FETs P9, P29, and P30 of the slave switch control signal generation circuit 80 shown in FIG. 10, the state of the main switch element Q21 and the slave switch element Q22 shown in FIG. 9, and the current flowing through the capacitor C31 The relationship is as follows.
  • FIG. 11 (A) is a simplified diagram of the charge / discharge circuit for capacitor C31 shown in FIG.
  • a current source CS32 is a circuit including the voltage-current conversion circuit 61 and the current mirror circuits 62 and 63 shown in FIG. 10, and is turned on when the PGATE signal is at L level.
  • the current source CS31 is a circuit including the voltage-current conversion circuit 64 and the current mirror circuit 65 shown in FIG. 10, and is turned on when the PGATE signal or the NGATEB signal is at L level.
  • the potential of the capacitor C31 rises with a slope proportional to the current I1 during the on period of the main switch element Q21, and during the on period of the sub switch element Q22.
  • the charging potential drops with a slope proportional to I1 ⁇ I2.
  • FIG. 11B is a waveform diagram of the PGATE signal, the NGATE signal, the current I (L1) flowing through the inductor L1, and the PCTL signal.
  • the NGATE signal becomes H level at time t0
  • the main switch element Q21 is turned on.
  • the current flowing through the inductor L1 rises.
  • the initial value of the charging voltage of the capacitor C31 shown in FIGS. 10 and 11A is VtH
  • the voltage of the capacitor C31 rises from VtH during the ON period ⁇ 1 of the main switch element Q21.
  • FIG. 12 shows a portion where the level shift circuit 71 and the inverter (NOT gate) IN31 are connected to the capacitor C11.
  • This capacitor C11 corresponds to the capacitor C11 shown in FIG. 3 in the first embodiment.
  • the level shift circuit 71 includes a MOS-FET P31, a resistor R31, and a MOS-FET N31.
  • a constant DC bias voltage B that is turned on is applied to the gate of the high-side MOS-FET P31.
  • the level shift circuit 71 inputs the voltage of the capacitor C11 to the gate of the MOS-FET N31, and outputs the voltage after the level shift from the connection point between the MOS-FET P31 and the resistor R31.
  • an inverter (NOT gate) IN31 is connected to the subsequent stage of the level shift circuit 71, and this output is used as an NCTL signal.
  • FIG. 13 shows a portion where the level shift circuit 72 is connected to the capacitor C11.
  • This capacitor C11 corresponds to the capacitor C11 shown in FIG. 3 in the first embodiment.
  • the level shift circuit 72 is composed of MOS-FETs P31 and P32.
  • a constant DC bias voltage B that is turned on is applied to the gate of the high-side MOS-FET P32.
  • the level shift circuit 72 is configured to input the voltage of the capacitor C11 to the gate of the MOS-FET P31 and to output the NCTL signal after the level shift from the connection point between the MOS-FETs P31 and P32.
  • the level can be shifted to a voltage change exceeding a threshold value required for state transition of the subsequent logic circuit. Therefore, the current value of the current source used for charging and discharging the capacitor and the capacitor area can be reduced, and the circuit can be reduced in size and power consumption.
  • capacitor C11 is provided on the ground potential side.
  • a capacitor may be provided on the power supply potential side so that a voltage that is lower than the power supply voltage by the voltage of the capacitor is level-shifted. Good.
  • Power supply output section Vo Output voltage VREF ... Reference voltage generator VtH, VtL ... threshold voltage 50 ... pulse generation circuit 51 ... PWM / PFM signal generation circuit 60 ... slave switch control signal generation circuits 61, 64 ... voltage-current conversion circuits 62, 63, 65 ... current mirror circuit 70 ... drive circuit 71 ... Level shift circuit 80 ... Slave switch control signal generation circuit 90 ... Drive circuits 301, 305 ... DC-DC converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 DC-DCコンバータ(301)は、主スイッチ素子(Q11)、従スイッチ素子(Q12)、インダクタ(L1)及びキャパシタ(C1)によって降圧チョッパー動作する。従スイッチ制御信号発生回路(60)は、PGATE信号が"L"レベルのとき、内部のキャパシタを、電源入力部(Vi)の電圧Viと電源出力部(Vo)の電圧Voとの差に比例した電圧(Vo-Vi)で放電し、NGATE信号が"H"レベルのとき、内部のキャパシタを、電源出力部(Vo)の電圧Voに比例した電圧で充電する。このキャパシタの電圧をNCTL信号として発生することにより、軽負荷時でも従スイッチ素子(Q12)が強制的にターンオフしてインダクタ電流の逆流が防止される。これにより、高速比較器及び比較器そのものを用いることなくインダクタ電流の逆流を防止して高効率なDC-DCコンバータを構成する。

Description

DC-DCコンバータ
 本発明は、主従のスイッチ素子とインダクタを備え、主スイッチ素子と従スイッチ素子とを交互にオンオフすることによって、入力されたDC電圧を所望のDC電圧に変換して出力するDC-DCコンバータに関するものである。
 携帯電子機器等の内部に設けられる電源回路の一つとして、例えば特許文献1に示されるような降圧チョッパー回路方式のDC-DCコンバータが知られている。このような降圧チョッパー回路方式のDC-DCコンバータにおいては、軽負荷時にキャパシタからインダクタを通してグランドへ流れる逆電流(以下、「インダクタ電流の逆流」という。)を防ぐための回路を備えている。
 図1は特許文献1に示されているDC-DCコンバータ3の回路図である。このDC-DCコンバータ3は第1スイッチ11、第2スイッチ15,インダクタ12,キャパシタ13、ダイオード14を備えている。
 図1において、電圧積分コントロール回路23は、入力電圧Viと出力電圧Voとを検知して、両電圧Vi、Voをそのまま、または、加減算処理した電圧を電流へ変換することによって、誘導電流ILの変化量dIL/dtに応じた電流を生成する電圧電流変換回路31と、電圧電流変換回路31の出力電流を蓄積して電圧へ変換する電流電圧変換コンデンサ32と、電流電圧変換コンデンサ32の出力電圧Vcを所定の値の基準電圧Vref1と比較するコンパレータ33と、上記基準電圧Vref1を生成してコンパレータ33へ入力する電源34と、を備えている
 電圧電流変換回路31は、第1スイッチ11が導通している間、入力電圧Viおよび出力電圧Voに基づいて、Vi-Voに比例した電流を生成し、電流電圧変換コンデンサ32へ流し込む。一方、第1スイッチ11が遮断されている間、電圧電流変換回路31は、出力電圧Voに比例した電流を上記電流電圧変換コンデンサ32から引き抜く。
 これにより、電流電圧変換コンデンサ32の両端電圧Vcは、誘導素子12に流れる順方向電流ILに比例して変化する。したがって、誘導素子12に逆電流が流れ始める時点を、両端電圧Vcが0Vになる時点として検出できる。この結果、コンパレータ33が、両端電圧Vcと、基準電圧Vref1とを比較して、両端電圧Vcが0〔V〕になる前に、第2スイッチ15の遮断をコントロール回路21へ指示すれば、誘導素子12に逆方向電流が流れる前に、第2スイッチ15を遮断できる。この構成により、インダクタ電流の逆流を防止しようとするものである。
特開平11-235022号公報
 ところが、図1に示される従来のDC-DCコンバータは、容量電位が0Vになることを比較器により検知する構成であるため、周波数が高くなるとともに比較器における伝搬遅延時間が無視できなくなる。すなわち、比較器の出力は伝搬遅延時間分だけ応答遅れがあるので、この遅れ分に起因して軽負荷時に電流の逆流が生じで損失が発生する。伝搬遅延時間の短い比較器を用いれば電流の逆流時間は短縮化されるが、伝搬遅延時間の短い高速比較器は一般に消費電力が非常に大きいのでDC-DCコンバータ全体の効率が低下する。また、図1のようにオフセットさせた基準電圧Vref1を用いた遅延補償方法が既知であるが、動作条件ごとに遅延時間が異なるため補償が不完全になる。またVref1はバンドギャップなどの安定電圧回路で構成しなければならず、回路面積を要するなどの解決すべき課題がある。
 そこで本発明は、比較器を用いることなくインダクタ電流の逆流を防止して高効率なDC-DCコンバータを提供することを目的としている。
 本発明の第1の態様のDC-DCコンバータは、直流電圧が入力される電源入力部に直列接続された、主スイッチ素子及び従スイッチ素子の直列回路と、インダクタ及びキャパシタを含み、前記主スイッチ素子と前記従スイッチ素子との接続点と電源出力部との間に設けられた平滑回路と、を備え、
 前記主スイッチ素子及び前記従スイッチ素子に対して駆動信号を出力するドライブ回路と、前記ドライブ回路に対してパルス信号を出力するパルス生成回路と、軽負荷時に前記インダクタに流れる電流の逆流を防止するための従スイッチ制御信号を発生する従スイッチ制御信号発生回路とを有し、
 前記従スイッチ制御信号発生回路は、検出用キャパシタと、この検出用キャパシタを前記主スイッチ素子及び前記従スイッチ素子のスイッチング期間に応じて充放電する充放電回路と、前記検出用キャパシタの電位を基に前記従スイッチ制御信号を出力する従スイッチ制御信号出力回路とを備えたことを特徴とする。
 この構成によれば、コンパレータを用いないで、容量電位をそのまま次の論理回路の入力に用いるので、遅延時間の少ない高速比較器を用いることによる電力消費を防ぐことができるとともに、従来必要であった比較器そのものも不要となるため、電力効率を向上できる。
 本発明の第2の態様のDC-DCコンバータは、前記キャパシタの電位を入力してレベルシフトした電圧信号を出力するレベルシフト回路を備えたことを特徴とする。この構成によれば、前記キャパシタのキャパシタンスや充放電に用いる電流源の電流値を小さくでき、回路を小型化、低消費電力化できる。
 本発明の第3の態様のDC-DCコンバータは、キャパシタ電圧信号を論理レベルの信号に変換して前記従スイッチ制御信号として出力する論理回路を備えたことを特徴とする。この構成によれば、パルス発生回路へ与える従スイッチ制御信号を論理レベルの信号で与えることになり、より安定した制御を行える。
 本発明の第4の態様のDC-DCコンバータは、前記主スイッチ素子と前記従スイッチ素子との接続点と電源出力部との間に、前記インダクタ及びキャパシタによる平滑回路が接続され、(すなわち降圧型DC-DCコンバータであり、)
 前記電源入力部に入力される電圧をVi、前記電源出力部から出力される電圧をVoで表すと、Viにほぼ比例した電流を発生する第1の電流源と、Voにほぼ比例した電流を発生する第2の電流源と、を備え、
 前記主スイッチ素子のオン期間に第1の電流源と第2の電流源との差電流で前記キャパシタの電位が第1方向へ変化し、前記従スイッチ素子のオン期間に第2の電流源で前記キャパシタの電位が第2方向へ変化するように、前記第1の電流源および前記第2の電流源が接続されたことを特徴とする。
 本発明の第5の態様のDC-DCコンバータは、前記第2の電流源の電圧電流変換率を前記第1の電流源の電圧電流変換率とほぼ等しくもしくは小さくしたことを特徴とする。
 この構成により、誤差要因によって通常負荷時や重負荷時に従スイッチ素子のボディダイオードに電流が流れる現象を防止できる。
 本発明の第6の態様のDC-DCコンバータは、前記主スイッチ素子と前記従スイッチ素子との接続点と電源入力部との間に、前記インダクタが接続され、(すなわち昇圧型DC-DCコンバータであり、)
 前記電源入力部に入力される電圧をVi、前記電源出力部から出力される電圧をVoで表すと、Viにほぼ比例した電流を発生する第1の電流源と、Voにほぼ比例した電流を発生する第2の電流源と、を備え、
 前記主スイッチ素子のオン期間に第1の電流源で前記キャパシタの電位が第1方向へ変化し、前記従スイッチ素子のオン期間に第1の電流源と第2の電流源との差電流で前記キャパシタの電位が第2方向へ変化するように、前記第1の電流源および前記第2の電流源が接続されたことを特徴とする。
 本発明の第7の態様のDC-DCコンバータは、前記第2の電流源の電圧電流変換率を前記第1の電流源の電圧電流変換率とほぼ等しくもしくは小さくしたことを特徴とする。
 この構成により、誤差要因によって通常負荷時や重負荷時に従スイッチ素子のボディダイオードに電流が流れる現象を防止できる。
 本発明によれば、コンパレータを用いないで、容量電位をそのまま次の論理回路の入力に用いるので、遅延時間の少ない高速比較器を用いることによる電力消費を防ぐことができるとともに、従来必要であった比較器自体の電力消費も不要となり、電力効率を向上できる。
図1は特許文献1に示されているDC-DCコンバータ3の回路図である。 図2は、本発明の第1の実施形態に係るDC-DCコンバータ301の全体の回路図である。 図3は従スイッチ制御信号発生回路60の回路図である。 図4(A)は、図3に示したキャパシタC11に対する充放電回路を簡略化して表した図である。図4(B)は、PGATE信号、NGATE信号、インダクタL1に流れる電流I(L1)、およびNCTL信号の波形図である。 図5は、負荷が変動したときの、PGATE信号、NGATE信号、インダクタL1電流I(L1)、およびNCTL信号の波形図である。 図6(A)は第2の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC21に対する充放電回路を簡略化して表した図である。図6(B)は、PGATE信号、NGATE信号、キャパシタC21の電圧V(C21)、およびNCTL信号の波形図である。 図7(A)は第3の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC21に対する充放電回路を簡略化して表した図である。図7(B)は、PGATE信号、NGATE信号、キャパシタC31の電圧V(C31)、およびNCTL信号の波形図である。 図8(A)は第4の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC41に対する充放電回路を簡略化して表した図である。図8(B)は、PGATE信号、NGATE信号、キャパシタC21の電圧V(C21)、およびNCTL信号の波形図である。 図9は、第5の実施形態に係るDC-DCコンバータの全体の回路図である。 図10は従スイッチ制御信号発生回路80の回路図である。 図11(A)は、図10に示したキャパシタC31に対する充放電回路を簡略化して表した図である。図11(B)は、PGATE信号、NGATE信号、インダクタL1に流れる電流I(L1)、およびPCTL信号の波形図である。 図12は第6の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路の一部構成を表す図である。 図13は第6の実施形態に係る別のDC-DCコンバータの従スイッチ制御信号発生回路の一部構成を表す図である。
《第1の実施形態》
 本発明の第1の実施形態に係るDC-DCコンバータについて各図を参照して説明する。
 図2は、本発明の第1の実施形態に係るDC-DCコンバータ301の全体の回路図である。このDC-DCコンバータ301は、所定の直流電圧が入力される電源入力部Viに直列接続された、主スイッチ素子Q11及び従スイッチ素子Q12の直列回路と、主スイッチ素子Q11と従スイッチ素子Q12との接続点と電源出力部Voとの間に設けられたインダクタL1及びキャパシタC1から構成される平滑回路と、を備えている。このDC-DCコンバータは電源出力部Voから負荷へ一定の直流電圧で電力を供給する降圧チョッパー型のDC-DCコンバータである。
 図2において、パルス生成回路50は、抵抗R3,R4、誤差増幅器EA、基準電圧発生回路VREF、ランプ波形信号発生回路RAMP、コンパレータCOMP2及びPWM/PFM信号発生回路51で構成されている。誤差増幅器EAは、電源出力部Voの出力電圧が抵抗R3,R4で分圧された電圧と基準電圧発生回路VREFによる基準電圧VREFとの誤差電圧を増幅する。コンパレータCOMP2は誤差増幅器EAの出力電圧とランプ波形信号発生回路RAMPによるランプ波形信号とを比較し、PWM制御信号を出力する。PWM/PFM信号発生回路51はドライブ回路70に対してPC信号を出力する。このPC信号によって、重負荷時においてはPWM制御となり、軽負荷においてはPFM制御となる。
 従スイッチ制御信号発生回路60は、主スイッチ素子Q11のゲートに与えられるPGATE信号、従スイッチ素子Q12のゲートに与えられるNGATE信号の反転信号であるNGATEB信号、電源入力部Viの電圧(Vi)および電源出力部Voの電圧(Vo)を入力し、従スイッチ制御信号NCTLを出力する。
 ドライブ回路70は、インバータ(NOTゲート)IN1~IN6、NORゲートNOR1、インバータIN7~IN12、及びNORゲートNOR2,NOR3を備えている。
 主スイッチ素子Q11のゲートには、インバータ(NOTゲート)IN1~IN6及びNORゲートNOR1が接続されている。主スイッチ素子Q11はこれらの論理回路を介してPC信号及びNGATE信号より生成されるPGATE信号によって制御される。
 また、従スイッチ素子Q12のゲートには、インバータIN7~IN12及びNORゲートNOR2,NOR3が接続されている。従スイッチ素子Q12はこれらの論理回路を介してPC信号、PGATE反転信号及びNCTL信号より生成されるNGATE信号によって制御される。
 主スイッチ素子Q11はPチャンネルMOS-FETであるので、PGATE信号がローレベルのときオンする。従スイッチ素子Q12はNチャンネルMOS-FETであるので、NGATE信号がハイレベルのときオンする。
 主スイッチ素子Q11のオン期間(このとき従スイッチ素子Q12はオフ)に電源入力部Viから電源出力部Vo方向へインダクタL1に電流が流れる。その後、主スイッチ素子Q11がオフし、従スイッチ素子Q12がオンすると、インダクタL1の電流は従スイッチ素子Q12を介して流れる。
 図3は前記従スイッチ制御信号発生回路60の回路図である。
 図3に示すように、従スイッチ制御信号発生回路60は、抵抗R11,R12による分圧回路、抵抗R21,R22による分圧回路、電圧電流変換回路61,64、カレントミラー回路62,63,65、およびキャパシタC11を備えている。
 電圧電流変換回路61はPチャンネルMOS-FET P3,P4、NチャンネルMOS-FET N1,N2,N5,N6および抵抗R13により構成されていて、抵抗R11,R12の分圧出力電圧を非反転入力し、抵抗R13の降下電圧を反転入力する。
 カレントミラー回路62は、PチャンネルMOS-FET P7,P8,P9で構成されている。
 抵抗R13の降下電圧は負帰還され、この電圧電流変換回路61の出力がN6のゲートへ出力されるので、結局、抵抗R13の降下電圧と、抵抗R11,R12の分圧電圧は等しい電圧となる。そのため、カレントミラー回路62の左辺には電源入力部Viの電圧Viに比例した電流I1が流れる。このカレントミラー回路62の電流比を1:1とすれば、MOS-FET P9がオンのとき、カレントミラー回路62の右辺に電流I1が流れる。
 カレントミラー回路63は、NチャンネルMOS-FET N10,N11で構成されている。このカレントミラー回路63の電流比を1:1とすれば、MOS-FET N11に電流I1が流れる。
 電圧電流変換回路64はPチャンネルMOS-FET P23,P24、NチャンネルMOS-FETN21,N22,N25,N26および抵抗R23により構成されていて、抵抗R21,R22の分圧出力電圧を非反転入力し、抵抗R23の降下電圧を反転入力する。
 カレントミラー回路65は、PチャンネルMOS-FET P27,P28,P29、P30で構成されている。
 抵抗R23の降下電圧は負帰還され、この電圧電流変換回路64の出力がN26のゲートへ出力されるので、結局、R23の電圧降下と、抵抗R21,R22の分圧電圧は等しい電圧となる。そのため、カレントミラー回路65の左辺には電源出力部Voの電圧Voに比例した電流I2が流れる。このカレントミラー回路65の電流比を1:1とすれば、MOS-FET P29またはP30がオンのとき、カレントミラー回路65の右辺に電流I2が流れる。
 キャパシタC11の電圧はNCTL信号として出力される。図2に示したNORゲートNOR3の出力をLレベルからHレベルへの状態遷移させる入力のしきい値をVtLとすれば、NCTL信号の電圧がしきい値VtLを超えたとき、NGATE信号がLレベルとなって、従スイッチ素子Q12が強制的にターンオフする。
 図3に示した従スイッチ制御信号発生回路60のPGATE信号、NGATEB信号、MOS-FET P9,P29,P30、図2に示した主スイッチ素子Q11、従スイッチ素子Q12の状態およびキャパシタC11に流れる電流の関係は次のとおりである。
[表1]
____________________________
 PGATE NGATEB   Q11 Q12  P9 P29 P30 C11電流
____________________________
  L    H    on off  on on  off I2-I1
  H    L    off on  off off  on  I2
____________________________
 したがって、主スイッチ素子Q11のオン期間にキャパシタC11が電流(I1-I2)で放電され、従スイッチ素子Q12のオン期間にキャパシタC11が電流I2で充電される。
 図4(A)は、図3に示したキャパシタC11に対する充放電回路を簡略化して表した図である。図4(A)において第1の電流源CS11は、図3に示した電圧電流変換回路61およびカレントミラー回路62,63による回路であり、PGATE信号がLレベルのときオンする。また、第2の電流源CS12は、図3に示した電圧電流変換回路64およびカレントミラー回路65による回路であり、PGATE信号またはNGATEB信号がLレベルのときオンする。
 ここで、第1の電流源CS11の電圧電流変換率をa、第2の電流源CS12の電圧電流変換率をb、とすると、I1=aVi、I2=bVoの関係で表される。したがって、キャパシタC11は、主スイッチ素子Q11のオン期間に、bVo - aVi(<0)に対応する傾きで電位が下降し、従スイッチ素子Q12のオン期間に、bVoに対応する傾きで電位が上昇することになる。
 図4(B)は、PGATE信号、NGATE信号、インダクタL1に流れる電流I(L1)、およびNCTL信号の波形図である。
 時刻t0でPGATE信号がLレベルになると主スイッチ素子Q11がターンオンする。このPGATE信号がLレベルである期間τ1で、インダクタL1に流れる電流が上昇する。図3、図4(A)に示したキャパシタC11の充電電圧の初期値がVtLであるとすると、主スイッチ素子Q11のオン期間τ1で、キャパシタC11の電圧はVtLから低下を続ける。
 その後、時刻t1で、PGATE信号がHレベル、NGATE信号がHレベル(NGATEB信号がLレベル)になると、主スイッチ素子Q11がターンオフし、従スイッチ素子Q12がターンオンする。このNGATE信号がHレベル(NGATEB信号がLレベル)である期間τ2で、インダクタL1に流れる電流I(L1)が下降する。また、キャパシタC11の充電電圧は、時刻t1での電圧から上昇を続ける。
 時刻t2で、キャパシタC11の電圧がVtLを超えたとき、NCTL信号が実質的にHレベルとなって、従スイッチ素子Q12が強制的にターンオフされる。すなわち、既に述べたように、図2に示したNORゲートNOR3の入力信号のLレベルからHレベルへの状態遷移のしきい値はVtLであるので、NCTL信号の電圧がVtLに達したとき、NGATE信号がLレベルになるので、従スイッチ素子Q12が強制的にターンオフする。τ1の区間ではインダクタ電流はVi - Voに比例して増加し、τ2の区間では- Vo(<0)に比例して減少する。a=bとすると、インダクタ電流が0となる時刻とNCTLがVtLに達する時刻が一致する。従って逆流が防止される。
 前記第1の電流源CS11の電圧電流変換率aと、第2の電流源CS12の電圧電流変換率bは、a≧bの関係とする。a=bであれば、図4(B)に示したとおり、t2でNCTL信号はVtLに達する。また図5に示すように重負荷側に動作が動くとNCTLは低電位側に動き、従スイッチ制御信号発生回路60は機能しなくなる。こうして、逆流防止は軽負荷時のみ機能し、通常負荷時/重負荷時は最小限のデッドタイムでPWM動作する。しかし、何らかの誤差要因でa<bとなるとNCTLによりQ12のスイッチオフタイミングが早まると共に、通常負荷時や重負荷時にあっても、キャパシタC11が徐々に充電され、従スイッチの強制オフ制御を行ってしまう。このため、同期整流時間が減って従スイッチ素子のボディダイオードを流れる時間が増えるので、効率低下や制御の不安定性の要因となる。そこで、第2の電流源の電圧電流変換率bを前記第1の電流源の電圧電流変換率aより予め少し小さくしておくことが望ましい。このことにより、従スイッチ素子のターンオフタイミングが遅くなる方向にキャパシタC11の電位が変化するので、誤差要因によって通常負荷時や重負荷時に従スイッチ制御信号発生回路60の機能が確実に無効になる。なお、厳密には、a>bとすると軽負荷時に逆流が生じるが、a=bからのずれがわずかであるため、逆流による損失は軽微である。
 この電圧電流変換率のバランス関係の設定については後に示す他の実施形態に関しても同様である。
 図5は、負荷が変動したときの、PGATE信号、NGATE信号、インダクタL1電流I(L1)、およびNCTL信号の波形図である。
 図5での時刻t1,t2,t3、時間τ1,τ2は、図4(B)での時刻t1,t2,t3、時間τ1,τ2にそれぞれ対応している。軽負荷では、主スイッチ素子Q11および従スイッチ素子Q12が共にオフする電流不連続モードで動作する。この軽負荷での出力電圧の安定化は前述したPFM制御によって行われる。負荷が通常負荷になると、主スイッチ素子Q11と従スイッチ素子Q12が交互にオン/オフして、インダクタ電流I(L1)が連続的に流れる電流連続モードで動作する。この通常負荷での出力電圧の安定化は前述したPWM制御によって行われる。
《第2の実施形態》
 図6(A)は第2の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC21に対する充放電回路を簡略化して表した図である。DC-DCコンバータ全体の構成は図2に示したものと同じである。したがって、DC-DCコンバータ各部の動作については図2中に示した符号を用いて説明する。
 第1の実施形態では図4に示したように、グランド電位側にキャパシタC11を設け、そのキャパシタC11の電圧をNCTL信号として出力するように構成した。第2の実施形態では、電源電位側にキャパシタC21を設け、電源電圧ViからキャパシタC21の電圧分だけ下がった電圧をNCTL信号として出力する。
 図6(A)において第1の電流源CS21は、PGATE信号がLレベルのときオンする。また、第2の電流源CS22は、PGATE信号またはNGATEB信号がLレベルのときオンする。ここで、第1の電流源CS21の電圧電流変換率をa、第2の電流源CS22の電圧電流変換率をb、とすると、I1=aVi、I2=bVoの関係で表される。したがって、キャパシタC21は、主スイッチ素子Q11のオン期間に、aVi - bVoに対応する傾きで充電され、従スイッチ素子Q12のオン期間に、bVoに比例した傾きで放電されることになる。
 図6(B)は、PGATE信号、NGATE信号、キャパシタC21の電圧V(C21)、およびNCTL信号の波形図である。
 時刻t0でPGATE信号がLレベルになると主スイッチ素子Q11(図2参照)がターンオンする。このPGATE信号がLレベルである期間τ1で、インダクタL1(図2参照)に流れる電流が上昇する。図6(A)に示したキャパシタC21の充電電圧の初期値が(Vi-VtL)であるとすると、PGATE信号がLレベルである期間τ1で、キャパシタC11の電圧は(Vi-VtL)からaVi - bVoに比例した傾きで上昇する。
 その後、時刻t1で、PGATE信号がHレベル、NGATE信号がHレベル(NGATEB信号がLレベル)になると、主スイッチ素子Q11がターンオフし、従スイッチ素子Q12(図2参照)がターンオンする。このNGATE信号がHレベル(NGATEB信号がLレベル)である期間τ2で、インダクタL1に流れる電流が下降する。また、キャパシタC21はbVoに比例した傾きで放電される。
 NCTL信号は電源入力部Viの電圧ViからキャパシタC21の電圧V(C21)を差し引いた電圧であるので、図8に示したようにV(C21)とは増減方向を反転した波形となる。
 時刻t2で、キャパシタC21の電圧が(Vi-VtL)まで低下したとき、NCTL信号が実質的にHレベルとなって、従スイッチ素子Q12が強制的にターンオフされる。すなわち、既に述べたように、図2に示したNORゲートNOR3の入力信号のLレベルからHレベルへの状態遷移のしきい値はVtLであるので、NCTL信号の電圧がVtLを超えたとき、NGATE信号がLレベルとなって、従スイッチ素子Q12が強制的にターンオフする。これによりインダクタ電流の逆流が防止される。
《第3の実施形態》
 図7(A)は第3の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC31に対する充放電回路を簡略化して表した図である。DC-DCコンバータ全体の構成は図2に示したものと同じであるので、DC-DCコンバータ各部の動作については図2中に示した符号を用いて説明する。但し、第3の実施形態ではドライブ回路70は、NCTL信号がHレベルになったときにNGATE信号がLレベルになるものとする。これは例えばNOR3のNCTL信号入力部にインバータを挿入することで実現できる。
 図7(A)において第1の電流源CS31は、PGATE信号がLレベルのときオンする。また、第2の電流源CS32は、PGATE信号またはNGATEB信号がLレベルのときオンする。ここで、第1の電流源CS31の電圧電流変換率をa、第2の電流源CS32の電圧電流変換率をb、とすると、I1=aVi、I2=bVoの関係で表される。したがって、キャパシタC31は、主スイッチ素子Q11のオン期間に、aVi - bVoに対応する傾きで充電され、従スイッチ素子Q12のオン期間に、bVoに比例した傾きで放電されることになる。
 図7(B)は、PGATE信号、NGATE信号、およびNCTL信号の波形図である。
 時刻t0でPGATE信号がLレベルになると主スイッチ素子Q11(図2参照)がターンオンする。このPGATE信号がLレベルである期間τ1で、インダクタL1(図2参照)に流れる電流が上昇する。また、キャパシタC31の電圧はaVi - bVoに比例した傾きで上昇する。
 その後、時刻t1で、PGATE信号がHレベル、NGATE信号がHレベル(NGATEB信号がLレベル)になると、主スイッチ素子Q11がターンオフし、従スイッチ素子Q12(図2参照)がターンオンする。このNGATE信号がHレベル(NGATEB信号がLレベル)である期間τ2で、インダクタL1に流れる電流が下降する。また、キャパシタC31はbVoに比例した傾きで放電される。
 時刻t2で、キャパシタC31の電圧がVtHまで低下したとき、NCTL信号が実質的にLレベルとなって、従スイッチ素子Q12が強制的にターンオフされる。これによりインダクタ電流の逆流が防止される。
《第4の実施形態》
 図8(A)は第4の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路のキャパシタC41に対する充放電回路を簡略化して表した図である。DC-DCコンバータ全体の構成は図2に示したものと同じであるので、DC-DCコンバータ各部の動作については図2中に示した符号を用いて説明する。但し、第4の実施形態では第3の実施形態同様、ドライブ回路70は、NCTL信号がHレベルになったときにNGATE信号がLレベルになるものとする。
 図8(A)において第1の電流源CS41は、PGATE信号がLレベルのときオンする。また、第2の電流源CS42は、PGATE信号またはNGATEB信号がLレベルのときオンする。ここで、第1の電流源CS41の電圧電流変換率をa、第2の電流源CS42の電圧電流変換率をbとする。
 図8(B)は、PGATE信号、NGATE信号、キャパシタC41の電圧V(C41)、およびNCTL信号の波形図である。
 時刻t0でPGATE信号がLレベルになると主スイッチ素子Q11(図2参照)がターンオンする。このPGATE信号がLレベルである期間τ1で、インダクタL1(図2参照)に流れる電流が上昇する。PGATE信号がLレベルである期間τ1で、キャパシタC41はbVo - aViに比例した傾きで放電される。
 その後、時刻t1で、PGATE信号がHレベル、NGATE信号がHレベル(NGATEB信号がLレベル)になると、主スイッチ素子Q11がターンオフし、従スイッチ素子Q12(図2参照)がターンオンする。このNGATE信号がHレベル(NGATEB信号がLレベル)である期間τ2で、インダクタL1に流れる電流が下降する。また、キャパシタC41はbVoに比例した傾きで充電される。
 NCTL信号は電源入力部Viの電圧ViからキャパシタC41の電圧V(C41)を差し引いた電圧であるので、図8(B)に示したようにV(C41)とは増減方向を反転した波形となる。
 時刻t2でNCTL信号が実質的にLレベルとなって、従スイッチ素子Q12が強制的にターンオフされる。これによりインダクタ電流の逆流が防止される。
《第5の実施形態》
 図9は、第5の実施形態に係るDC-DCコンバータの全体の回路図である。このDC-DCコンバータ305は、所定の直流電圧が入力される電源入力部Vi、直流電圧が出力される電源出力部Vo、主スイッチ素子Q21及び従スイッチ素子Q22の直列回路、主スイッチ素子Q21と従スイッチ素子Q22との接続点に第1端が接続され第2端がViに接続されたインダクタL1、電源出力部Voとグランドとの間に設けられたキャパシタC1とを備えている。このDC-DCコンバータ305は、電源出力部Voから負荷へ一定の直流電圧で電力を供給する昇圧チョッパー型のDC-DCコンバータである。
 パルス生成回路50は、図2に示した例と同様に、抵抗R3,R4、誤差増幅器EA、基準電圧発生回路VREF、ランプ波形信号発生回路RAMP、コンパレータCOMP2及びPWM/PFM信号発生回路51で構成されている。
 従スイッチ制御信号発生回路80は、従スイッチ素子Q22のゲート信号であるPGATE信号、主スイッチ素子Q21のゲート信号であるNGATE信号の反転信号NGATEB信号、および電源入力部Viの電圧(Vi)を入力し、従スイッチ制御信号PCTLを出力する。
 ドライブ回路90はPC信号及びPCTL信号に基づいてPGATE信号及びNGATE信号を出力する。
 図2に示した降圧チョッパー型のDC-DCコンバータとは逆に、主スイッチ素子Q21がNチャンネルMOS-FET、従スイッチ素子Q22がPチャンネルMOS-FETである。したがって、NGATE信号がハイレベルのとき主スイッチ素子Q21がオンし、PGATE信号がローレベルのとき従スイッチ素子Q22がオンする。
 主スイッチ素子Q21のオン期間(このとき従スイッチ素子Q22はオフ)に電源入力部ViからインダクタL1に電流が流れる。その後、主スイッチ素子Q21がオフし、従スイッチ素子Q22がオンすると、インダクタL1の電流は従スイッチ素子Q22を介して電源出力部Vo方向へ電流が流れる。
 ドライブ回路90は図2に示したドライブ回路70と類似の構成であり、PCTL信号が実質的にLレベルになって後段を遷移させたときPGATE信号をHレベルにする。すなわち、PCTL信号がLレベルになることによって従スイッチ素子Q22が強制的にターンオフされる。
 図10は前記従スイッチ制御信号発生回路80の回路図である。
 図10に示すように、従スイッチ制御信号発生回路80は、抵抗R11,R12による分圧回路、抵抗R21,R22による分圧回路、電圧電流変換回路61,64、カレントミラー回路62,63,65、およびキャパシタC31を備えている。
 電圧電流変換回路61はPチャンネルMOS-FET P3,P4、NチャンネルMOS-FET N1,N2,N5,N6および抵抗R13により構成されていて、抵抗R11,R12の分圧出力電圧を非反転入力し、抵抗R13の降下電圧を反転入力する。
 カレントミラー回路62は、PチャンネルMOS-FET P7,P8,P9で構成されている。
 抵抗R13の降下電圧は負帰還され、この電圧電流変換回路61の出力がN6のゲートへ出力されるので、結局、抵抗R13の降下電圧と抵抗R11,R12の分圧電圧は等しい電圧となる。そのため、カレントミラー回路62の左辺には電源出力部Voの電圧Voに比例した電流I2が流れる。このカレントミラー回路62の電流比を1:1とすれば、MOS-FET P9がオンのとき、カレントミラー回路62の右辺に電流I2が流れる。
 カレントミラー回路63は、NチャンネルMOS-FET N10,N11で構成されている。このカレントミラー回路63の電流比を1:1とすれば、MOS-FET N11に電流I2が流れる。
 電圧電流変換回路64はPチャンネルMOS-FET P23,P24、NチャンネルMOS-FET N21,N22,N25,N26および抵抗R23により構成されていて、抵抗R21,R22の分圧出力電圧を非反転入力し、抵抗R23の降下電圧を反転入力する。
 カレントミラー回路65は、PチャンネルMOS-FET P27,P28,P29、P30で構成されている。
 抵抗R23の降下電圧は負帰還され、この電圧電流変換回路64の出力がN26のゲートへ出力されるので、結局、抵抗R23の電圧と、抵抗R21,R22の分圧電圧は等しい電圧となる。そのため、カレントミラー回路65の左辺には電源入力部Viの電圧Viに比例した電流I1が流れる。このカレントミラー回路65の電流比を1:1とすれば、MOS-FET P29またはP30がオンのとき、カレントミラー回路65の右辺に電流I1が流れる。
 キャパシタC31はMOS-FET P30のオン期間に電流I1で充電され、MOS-FET P29,P9のオン期間に電流(I2-I1)で放電される。このキャパシタC31の電圧がPCTL信号として出力される。
 図10に示した従スイッチ制御信号発生回路80のPGATE信号、NGATEB信号、MOS-FET P9,P29,P30、図9に示した主スイッチ素子Q21、従スイッチ素子Q22の状態およびキャパシタC31に流れる電流の関係は次のとおりである。
[表2]
____________________________
 PGATE N GATEB   Q21 Q22 P9 P29 P30 C31電流
____________________________
  H    L    on  off off off on  I1
  L    H    off  on on  on off I1-I2
____________________________
 したがって、主スイッチ素子Q21のオン期間にキャパシタC31が電流-I1で充電され、従スイッチ素子Q22のオン期間にキャパシタC31が電流I1 - I2で充電(I2 - I1で放電)される。
 図11(A)は、図10に示したキャパシタC31に対する充放電回路を簡略化して表した図である。図11において電流源CS32は、図10に示した電圧電流変換回路61およびカレントミラー回路62,63による回路であり、PGATE信号がLレベルのときオンする。また、電流源CS31は、図10に示した電圧電流変換回路64およびカレントミラー回路65による回路であり、PGATE信号またはNGATEB信号がLレベルのときオンする。
 電流I1はViに比例し、電流I2はVoに比例するので、キャパシタC31は、主スイッチ素子Q21のオン期間に、電流I1に比例した傾きで電位が上昇し、従スイッチ素子Q22のオン期間に、I1 - I2に比例した傾きで充電電位が下降することになる。
 図11(B)は、PGATE信号、NGATE信号、インダクタL1に流れる電流I(L1)、およびPCTL信号の波形図である。
 時刻t0でNGATE信号がHレベルになると主スイッチ素子Q21がターンオンする。このNGATE信号がHレベルである期間τ1で、インダクタL1に流れる電流が上昇する。図10、図11(A)に示したキャパシタC31の充電電圧の初期値がVtHであるとすると、主スイッチ素子Q21のオン期間τ1で、キャパシタC31の電圧はVtHから上昇する。
 その後、時刻t1で、NGATE信号がLレベル(NGATEB信号がHレベル)、PGATE信号がLレベルになると、主スイッチ素子Q21がターンオフし、従スイッチ素子Q22がターンオンする。このNGATE信号がLレベル(NGATEB信号がHレベル)である期間τ2で、インダクタL1に流れる電流が下降する。また、キャパシタC31の充電電圧は、時刻t1での電圧から下降を続ける。
 時刻t2で、キャパシタC31の電圧がVtHを下回ったとき、PCTL信号が実質的にLレベルであるので、従スイッチ素子Q22が強制的にターンオフされる。したがって、a=bとすることでインダクタ電流の逆流が防止される。また第1の実施形態と同様、a>bとしてもよい。
《第6の実施形態》
 図12、図13は第6の実施形態に係るDC-DCコンバータの従スイッチ制御信号発生回路の一部構成を表す図である。以上に示した各実施形態では、充放電により変化するキャパシタ(C11,C21,C31,C41)の電圧を従スイッチ制御信号(NCTL信号またはPCTL信号)として用いる例を示した。第6の実施形態ではキャパシタの電圧をレベルシフトして従スイッチ制御信号を発生する例を示す。
 図12はキャパシタC11にレベルシフト回路71およびインバータ(NOTゲート)IN31を接続した部分を表している。このキャパシタC11は第1の実施形態で図3に示したキャパシタC11に相当する。レベルシフト回路71は、図12に示すように、MOS-FET P31、抵抗R31、およびMOS-FET N31で構成されている。ハイサイドのMOS-FET P31のゲートにはオンするような一定のDCバイアス電圧Bが印加される。このレベルシフト回路71は、キャパシタC11の電圧をMOS-FET N31のゲートに入力し、MOS-FET P31と抵抗R31との接続点から、レベルシフト後の電圧を出力する。この例では、レベルシフト回路71の後段にインバータ(NOTゲート)IN31を接続し、この出力をNCTL信号としている。
 また、図13は、キャパシタC11にレベルシフト回路72を接続した部分を表している。このキャパシタC11は第1の実施形態で図3に示したキャパシタC11に相当する。レベルシフト回路72は、MOS-FET P31,P32で構成されている。ハイサイドのMOS-FET P32のゲートにはオンするような一定のDCバイアス電圧Bが印加される。このレベルシフト回路72は、キャパシタC11の電圧をMOS-FET P31のゲートに入力し、MOS-FET P31とP32との接続点から、レベルシフト後のNCTL信号を出力するように構成されている。
 これらの構成によれば、充放電によるキャパシタC11の電圧変化が小さくても、後段の論理回路を状態遷移させるに要するしきい値を超える電圧変化にレベルシフトできる。そのため、キャパシタの充放電に用いる電流源の電流値やキャパシタ面積を小さくでき、回路を小型化、低消費電力化できる。
 図12、図13ではグランド電位側にキャパシタC11を設けた例を示したが、電源電位側にキャパシタを設け、電源電圧からキャパシタの電圧分だけ下がった電圧をレベルシフトするように構成してもよい。
C1…キャパシタ
C11…キャパシタ
C21…キャパシタ
C31…キャパシタ
C41…キャパシタ
COMP2…コンパレータ
CS11,CS12…電流源
CS21,CS22…電流源
CS31,CS32…電流源
CS41,CS42…電流源
EA…誤差増幅器
L1…インダクタ
NCTL…従スイッチ制御信号
PCTL…従スイッチ制御信号
Q11…主スイッチ素子
Q12…従スイッチ素子
Q21…主スイッチ素子
Q22…従スイッチ素子
RAMP…ランプ波形信号発生回路
Vi…電源入力部
Vi…入力電圧
Vo…電源出力部
Vo…出力電圧
VREF…基準電圧発生回路
VtH,VtL…しきい値電圧
50…パルス生成回路
51…PWM/PFM信号発生回路
60…従スイッチ制御信号発生回路
61,64…電圧電流変換回路
62,63,65…カレントミラー回路
70…ドライブ回路
71…レベルシフト回路
80…従スイッチ制御信号発生回路
90…ドライブ回路
301,305…DC-DCコンバータ

Claims (7)

  1.  直流電圧が入力される電源入力部と、直流電圧が出力される電源出力部と、主スイッチ素子及び従スイッチ素子による直列回路と、前記主スイッチ素子と前記従スイッチ素子との接続点に一端が接続されたインダクタと、前記電源出力部に接続されたキャパシタと、を備え、前記電源入力部に入力されるDC電圧を変換して前記電源出力部に接続される負荷へDC電圧を供給するDC-DCコンバータにおいて、
     前記主スイッチ素子及び前記従スイッチ素子に対して駆動信号を出力するドライブ回路と、前記ドライブ回路に対してパルス信号を出力するパルス生成回路と、軽負荷時に前記インダクタに流れる電流の逆流を防止するための従スイッチ制御信号を発生する従スイッチ制御信号発生回路とを有し、
     前記従スイッチ制御信号発生回路は、検出用キャパシタと、この検出用キャパシタを前記主スイッチ素子及び前記従スイッチ素子のスイッチング期間に応じて充放電する充放電回路と、前記検出用キャパシタの電位を基に前記従スイッチ制御信号を出力する従スイッチ制御信号出力回路とを備えた、DC-DCコンバータ。
  2.  前記従スイッチ制御信号出力回路は、前記検出用キャパシタの電位を入力してレベルシフトした電圧信号を出力するレベルシフト回路を備えた、請求項1に記載のDC-DCコンバータ。
  3.  前記従スイッチ制御信号出力回路は、前記検出用キャパシタの電圧信号を論理レベルの信号に変換して前記従スイッチ制御信号として出力する論理回路を備えた、請求項1または2に記載のDC-DCコンバータ。
  4.  前記主スイッチ素子と前記従スイッチ素子との接続点と電源出力部との間に、前記インダクタ及びキャパシタによる平滑回路が接続され、
     前記電源入力部に入力される電圧をVi、前記電源出力部から出力される電圧をVoで表すと、Viにほぼ比例した電流を発生する第1の電流源と、Voにほぼ比例した電流を発生する第2の電流源と、を備え、
     前記主スイッチ素子のオン期間に第1の電流源と第2の電流源との差電流で前記検出用キャパシタの電位が第1方向へ変化し、前記従スイッチ素子のオン期間に第2の電流源の電流で前記検出用キャパシタの電位が第2方向へ変化するように、前記第1の電流源および前記第2の電流源が接続された、請求項1~3のいずれかに記載のDC-DCコンバータ。
  5.  前記第2の電流源の電圧電流変換率をa前記第1の電流源の電圧電流変換率をbとしたとき、aをbとほぼ等しくもしくは小さくした、請求項4に記載のDC-DCコンバータ。
  6.  前記主スイッチ素子と前記従スイッチ素子との接続点と電源入力部との間に、前記インダクタが接続され、
     前記電源入力部に入力される電圧をVi、前記電源出力部から出力される電圧をVoで表すと、Viにほぼ比例した電流を発生する第1の電流源と、Voにほぼ比例した電流を発生する第2の電流源と、を備え、
     前記主スイッチ素子のオン期間に第1の電流源の電流で前記キャパシタの電位が第1方向へ変化し、前記従スイッチ素子のオン期間に第1と第2の電流源の差電流で前記キャパシタの電位が第2方向へ変化するように、前記第1の電流源および前記第2の電流源が接続された、請求項1~3のいずれかに記載のDC-DCコンバータ。
  7.  前記第2の電流源の電圧電流変換率をa前記第1の電流源の電圧電流変換率をbとしたとき、aをbとほぼ等しくもしくは小さくした、請求項6に記載のDC-DCコンバータ。
PCT/JP2011/057098 2010-09-28 2011-03-24 Dc-dcコンバータ WO2012042942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012536238A JP5445685B2 (ja) 2010-09-28 2011-03-24 Dc−dcコンバータ
DE112011103253T DE112011103253T5 (de) 2010-09-28 2011-03-24 DC/DC-Wandler
CN2011800319933A CN102959844A (zh) 2010-09-28 2011-03-24 Dc-dc转换器
US13/735,154 US8482272B2 (en) 2010-09-28 2013-01-07 DC-DC converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010217249 2010-09-28
JP2010-217249 2010-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/735,154 Continuation US8482272B2 (en) 2010-09-28 2013-01-07 DC-DC converter

Publications (1)

Publication Number Publication Date
WO2012042942A1 true WO2012042942A1 (ja) 2012-04-05

Family

ID=45892425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057098 WO2012042942A1 (ja) 2010-09-28 2011-03-24 Dc-dcコンバータ

Country Status (5)

Country Link
US (1) US8482272B2 (ja)
JP (1) JP5445685B2 (ja)
CN (1) CN102959844A (ja)
DE (1) DE112011103253T5 (ja)
WO (1) WO2012042942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194817A (ja) * 2016-04-20 2017-10-26 エスアイアイ・セミコンダクタ株式会社 バンドギャップリファレンス回路及びこれを備えたdcdcコンバータ
JP2020014281A (ja) * 2018-07-13 2020-01-23 シャープ株式会社 電源装置、及びこれを備えたled照明器具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209022B2 (ja) * 2013-08-27 2017-10-04 リコー電子デバイス株式会社 スイッチングレギュレータ
DK178680B1 (en) * 2015-04-10 2016-11-07 Pr Electronics As Zero drift, limitless and adjustable reference voltage generation
WO2016194626A1 (ja) * 2015-05-29 2016-12-08 株式会社村田製作所 Dc-dcコンバータ、スイッチングic、及びインダクタ装置
US10551859B2 (en) * 2016-05-17 2020-02-04 Texas Instruments Incorporated Methods and apparatus for overshoot, undershoot and delay reduction of a voltage regulator output by dynamically offsetting a reference voltage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235022A (ja) * 1998-02-10 1999-08-27 Sharp Corp 同期整流回路
WO2006123738A1 (ja) * 2005-05-20 2006-11-23 Torex Device Co., Ltd. Dc/dcコンバータ
JP2008035641A (ja) * 2006-07-28 2008-02-14 Fuji Electric Device Technology Co Ltd Dc−dcコンバータの制御回路及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277034B1 (en) * 1993-06-01 2001-08-21 Spalding Sports Worldwide, Inc. Three piece golf ball with a spherical metal center
US7372238B1 (en) * 2004-04-29 2008-05-13 National Semiconductor Corporation Apparatus and method for step-down switching voltage regulation
JP2006158097A (ja) * 2004-11-30 2006-06-15 Renesas Technology Corp 電源制御用半導体集積回路および電子部品並びに電源装置
JP4671275B2 (ja) * 2005-01-26 2011-04-13 ルネサスエレクトロニクス株式会社 電源制御装置、電源用電子部品及び電源装置
JP2006288156A (ja) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Dc−dcコンバータ
JP4661524B2 (ja) * 2005-10-26 2011-03-30 Tdk株式会社 Dc−dcコンバータとその制御方法
US7936160B1 (en) * 2007-04-25 2011-05-03 National Semiconductor Corporation Apparatus and method for valley emulated current mode control
US7646189B2 (en) * 2007-10-31 2010-01-12 Semiconductor Components Industries, L.L.C. Power supply controller and method therefor
JP4720821B2 (ja) * 2007-12-14 2011-07-13 ミツミ電機株式会社 Dc−dcコンバータおよび電源制御用半導体集積回路
US7800351B2 (en) * 2008-03-24 2010-09-21 Active-Semi, Inc. High efficiency voltage regulator with auto power-save mode
JP5422922B2 (ja) * 2008-05-29 2014-02-19 富士電機株式会社 同期整流型dc−dcコンバータの逆流防止回路
US8299764B2 (en) * 2009-04-24 2012-10-30 Intersil Americas Inc. System and method for determining output voltage level information from phase voltage for switched mode regulator controllers
US8450989B2 (en) * 2010-07-26 2013-05-28 Texas Instruments Incorporated Tracking current through switching devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235022A (ja) * 1998-02-10 1999-08-27 Sharp Corp 同期整流回路
WO2006123738A1 (ja) * 2005-05-20 2006-11-23 Torex Device Co., Ltd. Dc/dcコンバータ
JP2008035641A (ja) * 2006-07-28 2008-02-14 Fuji Electric Device Technology Co Ltd Dc−dcコンバータの制御回路及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194817A (ja) * 2016-04-20 2017-10-26 エスアイアイ・セミコンダクタ株式会社 バンドギャップリファレンス回路及びこれを備えたdcdcコンバータ
JP2020014281A (ja) * 2018-07-13 2020-01-23 シャープ株式会社 電源装置、及びこれを備えたled照明器具
JP7114378B2 (ja) 2018-07-13 2022-08-08 シャープ株式会社 電源装置、及びこれを備えたled照明器具

Also Published As

Publication number Publication date
US20130119953A1 (en) 2013-05-16
US8482272B2 (en) 2013-07-09
JP5445685B2 (ja) 2014-03-19
DE112011103253T5 (de) 2013-08-14
JPWO2012042942A1 (ja) 2014-02-06
CN102959844A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP3614156B2 (ja) 電源回路
JP5014714B2 (ja) スイッチングレギュレータ及びスイッチングレギュレータの制御回路
JP4997891B2 (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
JP5422922B2 (ja) 同期整流型dc−dcコンバータの逆流防止回路
JP5445685B2 (ja) Dc−dcコンバータ
JP5326421B2 (ja) Dc−dcコンバータの異常電流防止回路
US7944721B2 (en) Switching control circuit for multi-channels and multi-phases power converter operated at continuous current mode
US20070159155A1 (en) Constant voltage circuit and constant current source, amplifier, and power supply circuit using the same
JP4674661B2 (ja) Dc/dcコンバータ
WO2014038684A1 (en) Switching regulator and control method thereof
JP2008206214A (ja) スイッチングレギュレータ
US20080197827A1 (en) Reverse Current Comparator Circuit and Method for Switching Regulators
US20090243577A1 (en) Reverse current reduction technique for dcdc systems
JP2010022186A (ja) Dc/dcコンバータ制御回路、およびdc/dcコンバータ制御方法
JP2004096982A (ja) Dc−dcコンバータ
US20140111168A1 (en) Synchronous Switching Power Converter with Zero Current Detection, and Method Thereof
JP2000197348A (ja) Dc―dcコンバ―タ回路
JP3637904B2 (ja) 電源回路
US8653803B2 (en) Voltage generation circuit
JP2007189771A (ja) 電源装置
JP5515390B2 (ja) スイッチング電源装置
WO2023032577A1 (ja) スイッチング電源装置
US10608538B1 (en) Detection of low output voltages for power converters
JP2012010448A (ja) Dc−dcコンバータ
JP5050527B2 (ja) 放電回路、電源回路、及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031993.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112011103253

Country of ref document: DE

Ref document number: 1120111032536

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828504

Country of ref document: EP

Kind code of ref document: A1