WO2012042818A1 - パターン形成方法 - Google Patents

パターン形成方法 Download PDF

Info

Publication number
WO2012042818A1
WO2012042818A1 PCT/JP2011/005382 JP2011005382W WO2012042818A1 WO 2012042818 A1 WO2012042818 A1 WO 2012042818A1 JP 2011005382 W JP2011005382 W JP 2011005382W WO 2012042818 A1 WO2012042818 A1 WO 2012042818A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
resist layer
pattern
laser
scanned
Prior art date
Application number
PCT/JP2011/005382
Other languages
English (en)
French (fr)
Inventor
朋一 梅澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN2011800466595A priority Critical patent/CN103124928A/zh
Priority to KR1020137009903A priority patent/KR20130102598A/ko
Publication of WO2012042818A1 publication Critical patent/WO2012042818A1/ja
Priority to US13/850,479 priority patent/US20130209942A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/12Developable by an organic solution

Definitions

  • the present invention relates to a pattern forming method for forming a pattern by thermal lithography.
  • photolithography is known as a method for forming a pattern in an optical disk, a master for manufacturing an optical disk, a light emitting element having unevenness on a light emitting surface, and the like.
  • Photolithography is a technique in which a photoresist layer is formed on a substrate, exposed to a desired pattern, and developed to form a pattern consisting of an exposed portion and an unexposed portion.
  • thermal lithography is known as a method capable of forming a higher resolution pattern than photolithography (see Patent Documents 1 to 3).
  • a resist layer made of a substance that is sublimated and vaporized by heat is formed on a substrate, and a portion of the resist layer to be recessed is heated and removed by applying a focused laser beam to remove a desired layer. This is a technique for forming a pattern.
  • the thermal lithography proposed in Patent Documents 1 to 3 above all forms a pattern by positive processing in which a portion heated by a laser beam becomes concave, but depending on the pattern, the formation efficiency In order to improve the above, there is a case where a negative type processing in which a portion heated by the laser beam is convex is required. However, at present, there is no technology for realizing negative working by thermal lithography.
  • an object of the present invention is to provide a pattern forming method that realizes negative working by thermal lithography.
  • the pattern forming method of the present invention is a method of forming a pattern by thermal lithography, wherein a resist layer made of an oxonol dye is formed on a substrate, and a scanning speed of 1 m / s or more and 30 m is formed on the formed resist layer. / S or less, and the resist layer scanned with the laser beam is developed with a developer containing alcohol as a main component.
  • the main component is defined as a component having a content of 50 mol% or more.
  • the developer may be diluted with a solvent such as water.
  • the scanning speed may be 3.8 m / s or more and 28 m / s or less.
  • the alcohol may be methanol or ethanol.
  • a resist layer made of an oxonol dye is formed on a substrate, and laser light is scanned on the formed resist layer at a scanning speed of 1 m / s to 30 m / s.
  • the portion of the resist layer heated by scanning the laser beam is converted into a substance having low solubility in alcohol.
  • the resist layer scanned with the laser light is developed with a developer containing alcohol as a main component. As a result, a portion of the resist layer other than the portion heated by the laser light is removed, and a pattern in which the portion heated by the laser light is convex is formed.
  • negative processing can be realized by thermal lithography.
  • Process drawing which shows the pattern formation method of this invention The figure which shows the processing state of the pattern formed by Example 1 The figure which shows the processing state of the pattern formed by Example 2 The figure which shows the processing state of the pattern formed by Example 6
  • the pattern forming method of the present invention is a pattern forming method for forming a pattern by thermal lithography, a resist layer forming step for forming a resist layer on a substrate, and a laser beam for scanning a laser beam on the formed resist layer.
  • a scanning step and a developing step of developing the resist layer scanned with the laser beam with a developer will be described in detail.
  • resist layer forming step First, as shown in FIGS. 1A and 1B, a flat substrate 10 is prepared, and a resist layer 20 made of an oxonol dye is formed on the substrate 10.
  • the resist layer 20 is formed by dissolving an oxonol dye in a solvent to prepare a coating solution, coating the prepared coating solution on the surface of the substrate 10 to form a coating film, and then drying the formed coating film. Do.
  • oxonol dye for example, those described in JP-A-2006-2127790 can be used.
  • a preferable structure of the oxonol dye there is a structure represented by the following general formula (1).
  • Za1 and Za2 each independently represent an atomic group that forms an acidic nucleus.
  • Ma1, Ma2 and Ma3 each independently represents a substituted or unsubstituted methine group.
  • ka represents an integer from 0 to 3, and when ka is 2 or more, a plurality of Ma1 and Ma2 may be the same or different.
  • Q represents an ion for neutralizing the charge, and y represents a number necessary for neutralizing the charge.
  • An example of a preferable structure of the oxonol dye is a structure represented by the following general formula (2).
  • R 1, R 2, R 3 and R 4 each independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R21, R22, R23, R24, R25, R26, R27, R28, R29, R30 each independently represents a hydrogen atom or a substituent.
  • oxonol dyes A and B described below may be used as the oxonol dye.
  • oxonol dye A a compound represented by the following general formula (3) is preferable.
  • R11, R12, R13, and R14 each independently represent any of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group.
  • R21, R22 and R3 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, substituted or unsubstituted hetero Ring group, halogen atom, carboxyl group, substituted or unsubstituted alkoxycarbonyl group, cyano group, substituted or unsubstituted acyl group, substituted or unsubstituted carbamoyl group, amino group, substituted amino group, sulfo group, hydroxyl group, Nitro group, substituted or unsubstituted alkylsulfonylamino group, substituted or unsubstituted arylsulfonylamino group, substituted or unsubstituted Any of substituted carbamoylamino group, substituted or unsubstitute
  • oxonol dye B a compound represented by the following general formula (4) is preferable.
  • Za25 and Za26 are each independently an atomic group forming an acidic nucleus
  • Ma27, Ma28 and Ma29 are each independently a substituted or unsubstituted methine group.
  • Ka23 represents an integer from 0 to 3.
  • Q represents a cation that neutralizes the charge.
  • Examples of the solvent for the coating solution include esters such as butyl acetate, ethyl lactate and cellosolve acetate; ketones such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform; dimethylformamide and the like Amides; Hydrocarbons such as cyclohexane; Ethers such as tetrahydrofuran, ethyl ether, dioxane; Alcohols such as ethanol, n-propanol, isopropanol, n-butanol, diacetone alcohol; 2,2,3,3-tetrafluoropropanol Fluorinated solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and other glycol ethers Etc. can be mentioned.
  • Examples of the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, and a screen printing method.
  • the optical density (OD value) of the resist layer 20 with respect to light having a wavelength of 580 nm is preferably in the range of 0.4 to 1.0.
  • the OD value is a logarithm of the degree to which light is absorbed when passing through the resist layer 20. This is because if the OD value is too low or too high, a high resolution pattern cannot be stably formed.
  • the laser light collected by the lens of the optical system 30 is scanned on the resist layer 20.
  • the laser beam is scanned over the entire substrate 10 by moving the optical system 30 in the radial direction while rotating the disk-shaped substrate.
  • the behavior of one or both of the substrate 10 and the optical system 30 is controlled so that the relative scanning speed of the laser beam for scanning the resist layer 20 is 1 m / s or more and 30 m / s or less. If the scanning speed is too high, the part irradiated with the laser beam will sublimate and vaporize and become concave, and if it is too slow, there will be a problem that the processing time will be long, and it will be difficult to control the recording power, This is because it is difficult to obtain a stable shape.
  • the scanning speed is more preferably in the range of 3.8 m / s to 28 m / s.
  • the power Y of the laser beam is set so as to satisfy the condition of the following formula (1), where X is the scanning speed of the laser beam. If the power is too low, there will be no change in physical properties (change in solubility in alcohol) in the area irradiated with the laser beam, so no pattern will be formed. If it is too high, it will be close to the area irradiated with the laser beam. This is because a change in physical properties occurs and a high resolution pattern cannot be formed.
  • the laser beam power Y is more preferably set so as to further satisfy the condition of the following formula (2), and more preferably to satisfy the condition of the following formula (3).
  • the high resolution pattern can be formed more stably.
  • the condition of the expression (3) is satisfied, the high resolution pattern is the best. Can be formed in any shape.
  • the power Y of the laser beam may be set so as to satisfy the condition of the following formula (4) with respect to the OD value T of the resist layer 20 particularly when the scanning speed of the laser beam is 9.2 m / s. preferable.
  • the setting example of the power Y with respect to the OD value T is shown in the following table (1).
  • the resist layer scanned with the laser beam is developed with a developer containing alcohol as a main component. Then, the portion 20a irradiated with the laser beam is not dissolved in the developer, only the portion 20b not irradiated with the laser beam is dissolved and removed in the developer, and the pattern 20a that is irradiated with the laser beam becomes convex. It is formed.
  • examples of the alcohol include methanol (methyl alcohol), ethanol (ethyl alcohol), and the like.
  • a developing method there is a method of immersing a substrate with a resist layer scanned with the laser light for a predetermined time in a developer stored in a developing tank.
  • the immersion time is preferably in the range of 1 to 20 minutes. This is because if the immersion time is too short, a part of the part 20b not irradiated with the laser light remains undissolved and remains, and if it is too long, a part of the part 20ba irradiated with the laser light is dissolved.
  • Table 2 below shows that in the pattern forming method of the present invention, the OD value of the resist layer 20 is 0.65, and the scanning speed of the laser beam is 3.8, 9.2, 15.4, 23.0, 28. With the power fixed at 0, 30.1 (m / s), the power of the laser beam is changed to 6.5, 7.0, 7.5, ..., 40 (mW) The result of forming a pattern and evaluating the formed pattern is shown.
  • Table 2 the case where a convex shape equal to or smaller than the spot diameter of the optical system 30 can be confirmed in the resist layer portion scanned with the laser beam is indicated as ⁇ , and the convex shape is confirmed, but the case where the shape variation is large is indicated as ⁇ .
  • the optical lithography is performed by thermal lithography. It is possible to realize negative type processing with a high resolution pattern equal to or less than the spot diameter of the system 30.
  • the resist layer is made of an oxonol dye.
  • the laser light scanning condition is appropriately adjusted. It is considered that there is a possibility that negative type processing can be performed.
  • other materials include methine dyes (cyanine dyes, hemicyanine dyes, styryl dyes, oxonol dyes, merocyanine dyes, etc.), macrocyclic dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), azo dyes (azo metal) Chelating dyes), arylidene dyes, complex dyes, coumarin dyes, azole derivatives, triazine derivatives, 1-aminobutadiene derivatives, cinnamic acid derivatives, quinophthalone dyes, and the like.
  • methine dyes cyanine dyes, hemicyanine dyes, styryl dyes, oxonol dyes, merocyanine dyes, etc.
  • macrocyclic dyes phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.
  • azo dyes azo metal Chelating
  • Example 1 Formation of resist layer A coating solution prepared by dissolving 1.00 g of “oxonol dye A” represented by the following chemical formula in 100 ml of 2,2,3,3-tetrafluoropropanol on a substrate made of silicon (Si)
  • a resist layer was formed by spin coating. At this time, the resist layer was formed so that the optical density (OD value) with respect to light having a wavelength of 580 nm was 0.65.
  • a resist structure including the substrate and the resist layer formed on the substrate is formed.
  • a substrate with a resist layer scanned with a laser beam was immersed in developing methanol for 10 minutes.
  • Example 2 Processing and evaluation were performed under the same conditions as in Example 1 except that the laser beam scanning was performed under the following conditions. Scanning speed 15.4 m / s, Power 19mW, Laser pulse 17.47MHz (Duty ratio 33%) As a result of the evaluation, the resist remains only in the portion scanned with the laser beam, and the length in the laser scanning direction as shown in FIG. It was confirmed that a convex structure of 31 um was formed.
  • Example 3 The resist layer was formed to have an OD value of 0.50, and processing and evaluation were performed under the same conditions as in Example 1 except that the laser beam was scanned with a power of 19 mW. As a result of the evaluation, a resist remains only at the location where the laser beam is scanned, and a convex structure is formed in which the length in the laser scanning direction is 0.45 ⁇ m and the length in the direction perpendicular to the laser scanning direction is 0.31 ⁇ m. It has been confirmed.
  • Example 4 The resist layer was formed to have an OD value of 0.40, and processing / evaluation was performed under the same conditions as in Example 1 except that the laser beam was scanned at a power of 23 mW. As a result of the evaluation, a resist remains only at the location where the laser beam is scanned, and a convex structure is formed in which the length in the laser scanning direction is 0.43 ⁇ m and the length in the direction orthogonal to the laser scanning direction is 0.32 ⁇ m. It has been confirmed.
  • Example 5 Processing and evaluation were performed under the same conditions as in Example 1 except that the resist layer was formed to have an OD value of 0.75, and laser beam scanning was performed at a power of 14 mW. As a result of the evaluation, a resist remains only at the location where the laser beam is scanned, and a convex structure is formed in which the length in the laser scanning direction is 0.43 ⁇ m and the length in the direction perpendicular to the laser scanning direction is 0.30 ⁇ m. It has been confirmed.
  • Example 6 Processing and evaluation were performed under the same conditions as in Example 2 except that the resist layer was formed to have an OD value of 0.95 and laser beam scanning was performed at a power of 25 mW. As a result of the evaluation, the resist remains only at the location where the laser beam is scanned, and the length in the laser scanning direction as shown in FIG. It was confirmed that a convex structure of 41 um was formed.
  • Example 7 Processing and evaluation were performed under the same conditions as in Example 6 except that development was performed by immersing a substrate with a resist layer scanned with laser light in ethanol for 1 minute. As a result of the evaluation, a resist remains only at the location where the laser beam is scanned, and a convex structure with a length of 0.38 ⁇ m in the laser scanning direction and a length of 0.36 ⁇ m in the direction perpendicular to the laser scanning direction is formed. It has been confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

【課題】 熱リソグラフィによってネガ型のパターンを形成する。 【解決手段】 基板上に、オキソノール系色素からなるレジスト層を形成し、形成されたレジスト層上に走査速度1m/s以上30m/s以下でレーザー光を走査し、レーザー光が走査されたレジスト層を、アルコールを主成分とする現像液で現像する。

Description

パターン形成方法
 本発明は、熱リソグラフィによってパターンを形成するパターン形成方法に関するものである。
 従来、光ディスク、光ディスクを製造するための原盤、発光面に凸凹が形成される発光素子などにおけるパターンの形成方法として、フォトリソグラフィが知られている。フォトリソグラフィは、基板上にフォトレジスト層を形成し、所望のパターン状に露光し、現像することで、露光された部分と露光されていない部分からなるパターンを形成する技術である。
 また、フォトリソグラフィよりも高分解能パターンを形成することができる方法として、熱リソグラフィが知られている(特許文献1~3参照)。この方法は、基板上に、熱によって昇華・気化する物質からなるレジスト層を形成し、レジスト層の凹にすべき部分を集光したレーザー光を当てて加熱して除去することで、所望のパターンを形成する技術である。
特開2007-216263号公報 特開2009-117019号公報 国際公開2006/072859号
上記特許文献1~3に提案されている熱リソグラフィは、いずれも、レーザー光によって加熱された部分が凹となるポジ型の加工によってパターンを形成するものであるが、パターンによっては、その形成効率を向上させるため、レーザー光によって加熱された部分が凸となるネガ型の加工が求められる場合がある。しかし、現状、熱リソグラフィによってネガ型の加工を実現する技術は存在しない。
 本発明は、上記事情に鑑み、熱リソグラフィによってネガ型の加工を実現するパターン形成方法を提供することを目的とするものである。
 本発明のパターン形成方法は、熱リソグラフィによってパターンを形成する方法であって、基板上に、オキソノール系色素からなるレジスト層を形成し、該形成されたレジスト層上に走査速度1m/s以上30m/s以下でレーザー光を走査し、該レーザー光が走査されたレジスト層を、アルコールを主成分とする現像液で現像することを特徴とするものである。
 ここで、主成分とは、含量50モル%以上の成分と定義する。また、現像液を水などの溶媒で希釈しても構わない。
 上記方法において、走査速度は、3.8m/s以上28m/s以下であってもよい。
 また、アルコールは、メタノールであってもよいし、エタノールであってもよい。
 本発明のパターン形成方法では、まず、基板上に、オキソノール系色素からなるレジスト層を形成し、該形成されたレジスト層上に走査速度1m/s以上30m/s以下でレーザー光を走査する。これにより、レジスト層の、レーザー光を走査によって加熱された部分がアルコールに対する溶解性が低い物質に変換される。次に、レーザー光が走査されたレジスト層を、アルコールを主成分とする現像液で現像する。これにより、レジスト層の、レーザー光によって加熱された部分以外の部分が除去され、レーザー光によって加熱された部分が凸となるパターンが形成される。
 このように、本発明のパターン形成方法によれば、熱リソグラフィによってネガ型の加工を実現することができる。
本発明のパターン形成方法を示す工程図 実施例1によって形成されたパターンの加工状態を示す図 実施例2によって形成されたパターンの加工状態を示す図 実施例6によって形成されたパターンの加工状態を示す図
 以下、図面を参照して、本発明の実施の形態について説明する。本発明のパターン形成方法は、熱リソグラフィによってパターンを形成するパターン形成方法であって、基板上にレジスト層を形成するレジスト層形成工程と、形成されたレジスト層上にレーザー光を走査するレーザー光走査工程と、レーザー光が走査されたレジスト層を現像液で現像する現像工程とを備えている。以下、各工程について詳細に説明する。
[レジスト層形成工程]
まず、図1(a)および(b)に示すように、平坦な基板10を用意し、基板10上に、オキソノール系色素からなるレジスト層20を形成する。
 レジスト層20の形成は、オキソノール色素を溶剤に溶解させて塗布液を調製し、調整した塗布液を基板10表面に塗布して塗膜を形成した後、形成された塗膜を乾燥させることにより行う。
 オキソノール色素としては、例えば特開2006-212790号公報に記載のものを用いることができる。たとえば、オキソノール色素の好ましい構造の一例として、下記一般式(1)で表される構造がある。
Figure JPOXMLDOC01-appb-C000001
 
 上記一般式(1)中、Za1及びZa2は各々独立に酸性核を形成する原子群を表わす。Ma1、Ma2、Ma3は各々独立に、置換または無置換のメチン基を表わす。kaは0から3までの整数を表わし、kaが2以上のとき、複数存在するMa1、Ma2は同じでも異なってもよい。また、Qは電荷を中和するイオンを表わし、yは電荷の中和に必要な数を表わす。
 また、オキソノール色素の好ましい構造の一例としては、下記一般式(2)で表される構造がある。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R1、R2、R3、R4は、各々独立に、置換または無置換のアルキル基、置換または無置換のアリール基、置換または無置換のヘテロ環基を表す。R21、R22、R23、R24、R25、R26、R27、R28、R29、R30は、各々独立に、水素原子または、置換基を表わす。
 なお、オキソノール色素として、他に、以下に説明するオキソノール系色素AおよびBを使用してもよい。オキソノール色素Aとしては、下記一般式(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R11、R12、R13、R14はそれぞれ独立に水素原子、置換または無置換のアルキル基、置換または無置換のアリール基、および置換または無置換のヘテロ環基のいずれかを表し、R21、R22、R3は水素原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、置換または無置換のアリール基、置換または無置換のアリールオキシ基、置換または無置換のヘテロ環基、ハロゲン原子、カルボキシル基、置換または無置換のアルコキシカルボニル基、シアノ基、置換または無置換のアシル基、置換または無置換のカルバモイル基、アミノ基、置換アミノ基、スルホ基、ヒドロキシル基、ニトロ基、置換または無置換のアルキルスルホニルアミノ基、置換または無置換のアリールスルホニルアミノ基、置換または無置換のカルバモイルアミノ基、置換または無置換のアルキルスルホニル基、置換または無置換のアリールスホニル基、置換または無置換のアルキルスルフィニル基、置換または無置換のアリールスルフィニル基および置換または無置換のスルファモイル基のいずれかを表す。mは0以上の整数を表し、mが2以上の場合は複数のR3は同じでも異なってもよい。Zx+は陽イオンを表し、xは1以上の整数を表す。
 オキソノール色素Bとしては、下記一般式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 
 一般式(4)中、Za25、Za26は、各々独立に、酸性核を形成する原子群であり、Ma27、Ma28、Ma29は、各々独立に、置換または無置換のメチン基である。Ka23は、0から3までの整数を表す。Qは、電荷を中和する陽イオンを表す。
 塗布液の溶剤としては、酢酸ブチル、乳酸エチル、セロソルブアセテートなどのエステル;メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン;ジクロルメタン、1,2-ジクロルエタン、クロロホルムなどの塩素化炭化水素;ジメチルホルムアミドなどのアミド;シクロヘキサンなどの炭化水素;テトラヒドロフラン、エチルエーテル、ジオキサンなどのエーテル;エタノ-ル、n-プロパノール、イソプロパノール、n-ブタノール、ジアセトンアルコールなどのアルコール;2,2,3,3―テトラフルオロプロパノールなどのフッ素系溶剤;エチレングリコールモノメチルエーテル、エチレンングリコールモノエチルエーテル、プロピレンングリコールモノメチルエーテルなどのグリコールエーテル類などを挙げることができる。
 塗布方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、スクリーン印刷法などを挙げることができる。
 なお、レジスト層20の波長580nmの光に対する光学濃度(OD値)は、0.4~1.0の範囲内であることが好ましい。ここで、OD値とは、光がレジスト層20を通過する際に吸収される度合を対数で表示したものである。OD値が低すぎたり高すぎたりすると、高分解能パターンが安定して形成できないからである。
[レーザー光走査工程]
次に、図1(c)に示すように、レジスト層20上に、光学系30のレンズで集光したレーザー光を走査させる。たとえば円盤状の基板を回転させながら、光学系30を半径方向に移動させることで、基板10全体に亘ってレーザー光を走査させる。
 この際、レジスト層20上を走査するレーザー光の相対的な走査速度が1m/s以上30m/s以下となるように、基板10および光学系30のいずれか一方または両方の挙動を制御する。走査速度が高すぎると、レーザー光が照射された部分が昇華・気化し、凹になってしまい、遅すぎると、加工時間が長くなるという問題があり、また記録パワーの制御が難しくなるため、安定した形状が得られにくいからである。また、この走査速度は、3.8m/s以上28m/s以下の範囲内であることがより好ましい。
 レーザー光のパワーYは、レーザー光の走査速度をXとしたとき、下記式(1)の条件を満たすように設定される。パワーが低すぎると、レーザー光が照射された部分に物性の変化(アルコールに対する溶解性に変化)が生じないため、パターンが形成されず、高すぎると、レーザー光が照射された部分近傍にまで物性の変化が生じ、高分解能パターンを形成することができないからである。
Figure JPOXMLDOC01-appb-M000001
 
 レーザー光のパワーYは、より好ましくは下記式(2)の条件をさらに満たすように、さらに好ましくは下記式(3)の条件を満たすように設定するとよい。レーザー光のパワーYが式(2)の条件を満たす場合には、高分解能パターンをより安定して形成することができ、式(3)の条件を満たす場合には、高分解能パターンを最も良好な形状に形成することができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 また、レーザー光のパワーYは、特にレーザー光の走査速度が9.2m/sである場合、レジスト層20のOD値Tに対し、下記式(4)の条件を満たすように設定することが好ましい。なお、OD値Tに対するパワーYの設定例を下記表(1)示す。
Figure JPOXMLDOC01-appb-M000004
 
[現像工程]
最後に、図1(d)に示すように、上記レーザー光が走査されたレジスト層を、アルコールを主成分とする現像液で現像する。すると、レーザー光が照射された部分20aは現像液に溶解されず、レーザー光が照射されていない部分20bのみが現像液に溶解除去され、レーザー光が照射された部分20aが凸となるパターンが形成される。
 ここで、アルコールとしては、メタノール(メチルアルコール)、エタノール(エチルアルコール)等が挙げられる。現像方法としては、現像槽に溜めた現像液中に、上記レーザー光が走査されたレジスト層のついた基板を所定時間浸漬させる方法がある。現像液がアルコールである場合、浸漬時間は1~20minの範囲内であることが好ましい。浸漬時間が短すぎると、レーザー光が照射されていない部分20bの一部が溶けきれず残存し、長すぎると、レーザー光が照射された部分20baの一部が溶解されてしまうからである。
 下記表2は、上記本発明のパターン形成方法において、レジスト層20のOD値が0.65とし、レーザー光の走査速度を3.8、9.2、15.4、23.0、28.0、30.1(m/s)でそれぞれ固定させた状態で、レーザー光のパワーを6.5、7.0、7.5、・・・・・・、40(mW)に変化させてパターンを形成し、形成されたパターンを評価した結果を示すものである。表2では、レーザー光が走査されたレジスト層部分に光学系30のスポット径以下の凸形状が確認できた場合を○とし、凸形状は確認できたが、その形状バラツキが大きい場合を△とし、凸形状も凹形状も確認できない場合を×(a)とし、光学系30のスポット径以上の凸形状が確認できた場合を×(b)とし、メタノールによる現像無しに凹形状が確認できた場合を×(c)とした。
Figure JPOXMLDOC01-appb-T000002
 
 表2によれば、レーザー光の走査速度が30.1m/sであるときには、レーザー光のパワーのいずれの範囲においてもレーザー光が走査されたレジスト層部分に凸形状は形成されないに対し、レーザー光の走査速度が3.8m/sであるときには、レーザー光のパワーが8.5~12mWの範囲内であるときに、レーザー光の走査速度が9.2m/sであるときには、レーザー光のパワーが11.5~17.5mWの範囲内であるときに、レーザー光の走査速度が15.4m/sであるときには、レーザー光のパワーが15.5~23.5mWの範囲内であるときに、レーザー光の走査速度が23.0m/sであるときには、レーザー光のパワーが20~30.5mWの範囲内であるときに、レーザー光の走査速度が28.0m/sであるときには、レーザー光のパワーが24~35mWの範囲内であるときには、レーザー光が走査されたレジスト層部分に光学系30のスポット径以下の凸形状は形成されることが確認できる。
 このように、少なくともレーザー光の走査速度Xが3.8m/s以上28m/s以下であって、レーザー光のパワーYが上記式(2)の条件を満たす場合には、熱リソグラフィによって、光学系30のスポット径以下の高分解能パターンの、ネガ型の加工を実現することができる。
 なお、上記実施の形態では、レジスト層がオキソノール色素からなるものである場合について説明したが、オキソノール色素以外の他の材料からなるものである場合にも、レーザー光の走査条件を適宜調節することによって、ネガ型の加工を行える可能性があると考えられる。ここで、他の材料としては、メチン色素(シアニン色素、ヘミシアニン色素、スチリル色素、オキソノール色素、メロシアニン色素など)、大環状色素(フタロシアニン色素、ナフタロシアニン色素、ポルフィリン色素など)、アゾ色素(アゾ金属キレート色素を含む)、アリリデン色素、錯体色素、クマリン色素、アゾール誘導体、トリアジン誘導体、1-アミノブタジエン誘導体、桂皮酸誘導体、キノフタロン系色素などが挙げられる。
 次に、本発明の効果を確認した実施例について説明する。
[実施例1]
・レジスト層の形成
シリコン(Si)からなる基板上に、下記化学式で表される「オキソノール色素A」1.00gを2,2,3,3-テトラフルオロプロパノール100mlに溶解させてなる塗布液をスピンコートすることにより、レジスト層を形成した。このとき、レジスト層は波長580nmの光に対する光学濃度(OD値)が0.65となるように形成した。これにより、基板と、この基板上に形成されたレジスト層とからなるレジスト構造体が形成される。
Figure JPOXMLDOC01-appb-C000005
・レーザー光の走査
レーザー露光装置(レーザー波長λ:660nm、対物レンズ開口数NA:0.60、レーザービームスポット径D:0.66um(=0.6λ/NA))を用いて、下記条件で、上記形成されたレジスト層上にレーザー光を走査させた。
走査速度                     9.2m/s、
パワー               16mW、
レーザーパルス       10.43MHz(Duty比26%)
・現像
メタノール中に、レーザー光が走査されたレジスト層のついた基板を10分間浸漬した。
・評価
現像後の、レジスト層のついた基板の表面を走査型電子顕微鏡(SEM)にて観察した。その結果、レーザー光が走査された箇所にのみレジストが残存し、図2に示すような、レーザー走査方向の長さが0.46um、レーザー走査方向と直交する方向の長さが0.31umである凸構造が形成されていることが確認された。
[実施例2]
レーザー光の走査を下記条件で行った以外は、実施例1と同条件で加工・評価を行なった。
走査速度             15.4m/s、
パワー               19mW、
レーザーパルス       17.47MHz(Duty比33%)
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、図3に示すような、レーザー走査方向の長さが0.44um、レーザー走査方向と直交する方向の長さが0.31umである凸構造が形成されていることが確認された。
[実施例3]
レジスト層をOD値が0.50となるように形成し、レーザー光の走査を19mWのパワーで行った以外は、実施例1と同条件で加工・評価を行なった。
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、レーザー走査方向の長さが0.45um、レーザー走査方向と直交する方向の長さが0.31umである凸構造が形成されていることが確認された。
[実施例4]
レジスト層をOD値が0.40となるように形成し、レーザー光の走査を23mWのパワーで行った以外は、実施例1と同条件で加工・評価を行なった。
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、レーザー走査方向の長さが0.43um、レーザー走査方向と直交する方向の長さが0.32umである凸構造が形成されていることが確認された。
[実施例5]
レジスト層をOD値が0.75となるように形成し、レーザー光の走査を14mWのパワーで行った以外は、実施例1と同条件で加工・評価を行なった。
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、レーザー走査方向の長さが0.43um、レーザー走査方向と直交する方向の長さが0.30umである凸構造が形成されていることが確認された。
[実施例6]
レジスト層をOD値が0.95となるように形成し、レーザー光の走査を25mWのパワーで行った以外は、実施例2と同条件で加工・評価を行なった。
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、図4に示すような、レーザー走査方向の長さが0.44um、レーザー走査方向と直交する方向の長さが0.41umである凸構造が形成されていることが確認された。
[実施例7]
エタノール中に、レーザー光が走査されたレジスト層のついた基板を1分間浸漬して現像を行った以外は、実施例6と同条件で加工・評価を行なった。
・評価
その結果、レーザー光が走査された箇所にのみレジストが残存し、レーザー走査方向の長さが0.38um、レーザー走査方向と直交する方向の長さが0.36umである凸構造が形成されていることが確認された。

Claims (3)

  1.  熱リソグラフィによってパターンを形成するパターン形成方法であって、
     基板上に、オキソノール系色素からなるレジスト層を形成し、
     該形成されたレジスト層上に走査速度1m/s以上30m/s以下でレーザー光を走査し、
     該レーザー光が走査されたレジスト層を、アルコールを主成分とする現像液で現像することを特徴とするパターン形成方法。
  2.  前記走査速度が、3.8m/s以上23m/s以下であることを特徴とする請求項1記載のパターン形成方法
  3.  前記アルコールが、メタノールまたはエタノールであることを特徴とする請求項1または2記載のパターン形成方法
PCT/JP2011/005382 2010-09-29 2011-09-26 パターン形成方法 WO2012042818A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800466595A CN103124928A (zh) 2010-09-29 2011-09-26 图案形成方法
KR1020137009903A KR20130102598A (ko) 2010-09-29 2011-09-26 패턴 형성 방법
US13/850,479 US20130209942A1 (en) 2010-09-29 2013-03-26 Pattern formation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010218304A JP5395022B2 (ja) 2010-09-29 2010-09-29 パターン形成方法
JP2010-218304 2010-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/850,479 Continuation US20130209942A1 (en) 2010-09-29 2013-03-26 Pattern formation method

Publications (1)

Publication Number Publication Date
WO2012042818A1 true WO2012042818A1 (ja) 2012-04-05

Family

ID=45892310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005382 WO2012042818A1 (ja) 2010-09-29 2011-09-26 パターン形成方法

Country Status (6)

Country Link
US (1) US20130209942A1 (ja)
JP (1) JP5395022B2 (ja)
KR (1) KR20130102598A (ja)
CN (1) CN103124928A (ja)
TW (1) TW201227165A (ja)
WO (1) WO2012042818A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5395023B2 (ja) * 2010-09-29 2014-01-22 富士フイルム株式会社 パターン形成方法、及び金属構造形成方法
JP6428675B2 (ja) * 2016-02-22 2018-11-28 株式会社ニコン パターン描画用の光源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292517A (ja) * 1995-04-20 1996-11-05 Minnesota Mining & Mfg Co <3M> 赤外線照射により退色し得る紫外線吸収媒体
JP2004188968A (ja) * 2002-11-29 2004-07-08 Fuji Photo Film Co Ltd 光情報記録媒体および新規オキソノール化合物
JP2006315299A (ja) * 2005-05-12 2006-11-24 Fuji Photo Film Co Ltd 光情報記録媒体
JP2010054976A (ja) * 2008-08-29 2010-03-11 Fujifilm Corp パターン形成体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925498A (en) * 1997-06-16 1999-07-20 Kodak Polychrome Graphics Llc Photosensitive polymer composition and element containing photosensitive polyamide and mixture of acrylates
US7316891B2 (en) * 2002-03-06 2008-01-08 Agfa Graphics Nv Method of developing a heat-sensitive lithographic printing plate precursor with a gum solution
DE602005008442D1 (de) * 2005-10-20 2008-09-04 Agfa Graphics Nv Verfahren zum Herstellen eines Lithographiedruckformvorläufers
EP1826021B1 (en) * 2006-02-28 2009-01-14 Agfa Graphics N.V. Positive working lithographic printing plates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292517A (ja) * 1995-04-20 1996-11-05 Minnesota Mining & Mfg Co <3M> 赤外線照射により退色し得る紫外線吸収媒体
JP2004188968A (ja) * 2002-11-29 2004-07-08 Fuji Photo Film Co Ltd 光情報記録媒体および新規オキソノール化合物
JP2006315299A (ja) * 2005-05-12 2006-11-24 Fuji Photo Film Co Ltd 光情報記録媒体
JP2010054976A (ja) * 2008-08-29 2010-03-11 Fujifilm Corp パターン形成体およびその製造方法

Also Published As

Publication number Publication date
JP5395022B2 (ja) 2014-01-22
US20130209942A1 (en) 2013-08-15
TW201227165A (en) 2012-07-01
KR20130102598A (ko) 2013-09-17
CN103124928A (zh) 2013-05-29
JP2012073431A (ja) 2012-04-12

Similar Documents

Publication Publication Date Title
DE112010003331B4 (de) Verwendung von Nahinfrarot absorbierenden Dünnschichtzusammensetzungen, mikroelektronische Struktur umfassend eine Schicht aus solchen Zusammensetzungen und Verfahren zum Strukturieren eines mikroelektronischen Substrats
CN109313398A (zh) 冲洗组合物、形成抗蚀剂图案的方法以及半导体器件的制备方法
JPH0619572B2 (ja) コントラスト増強用の光脱色性層
TW201437746A (zh) 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜及圖案形成方法
JP5395022B2 (ja) パターン形成方法
WO2009130846A1 (ja) レーザ露光方法、フォトレジスト層の加工方法およびパターン成形品の製造方法
JP2009093170A (ja) クッション性を有するグラビア版及びその製造方法
JP5395023B2 (ja) パターン形成方法、及び金属構造形成方法
KR20240003445A (ko) 이중층 포토레지스트 기반의 포토리소그래피 방법
JP4611137B2 (ja) 保護膜形成用材料、およびこれを用いたホトレジストパターン形成方法
US6027852A (en) Article having a light-controllable super-water-repellent surface and a printing machine using the article
JPH11212252A (ja) 平版印刷版
JPH11231535A (ja) 平版印刷版
WO2007029822A1 (ja) 保護膜形成用材料およびこれを用いたホトレジストパターン形成方法
JP2000039707A (ja) 感光性組成物および感光性平版印刷版材料
US7390611B2 (en) Photoresist coating composition and method for forming fine pattern using the same
JPS6240697B2 (ja)
JP5117790B2 (ja) ネガ型感光性組成物
Guan et al. Light and matter co-confined multi-photon lithography
WO2023246243A1 (zh) 一种紫外光刻胶、紫外光刻胶图案化的方法及用途
JP2009192736A (ja) 遮光材料、遮光材料の作製方法、及びフォトマスク
JP2021051305A (ja) Euvおよび/または電子ビームリソグラフィのためのフォトレジスト
CN117311088A (zh) 一种紫外光刻胶、紫外光刻胶图案化的方法及用途
JP2006005122A (ja) 露光方法および露光装置
JPH02187765A (ja) コントラスト増強用の光脱色性層用材料およびそれを用いたパターン形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046659.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137009903

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11828384

Country of ref document: EP

Kind code of ref document: A1