WO2012037861A1 - 一种叔碳酸缩水甘油酯的制备方法 - Google Patents

一种叔碳酸缩水甘油酯的制备方法 Download PDF

Info

Publication number
WO2012037861A1
WO2012037861A1 PCT/CN2011/079677 CN2011079677W WO2012037861A1 WO 2012037861 A1 WO2012037861 A1 WO 2012037861A1 CN 2011079677 W CN2011079677 W CN 2011079677W WO 2012037861 A1 WO2012037861 A1 WO 2012037861A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
carbonic acid
preparing
glycidyl
tertiary carbonic
Prior art date
Application number
PCT/CN2011/079677
Other languages
English (en)
French (fr)
Inventor
李毅
肖英
朱林
刘杨
黄超明
陈春玉
程长明
王玲
Original Assignee
西南化工研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南化工研究设计院 filed Critical 西南化工研究设计院
Publication of WO2012037861A1 publication Critical patent/WO2012037861A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals

Definitions

  • the invention relates to a process for preparing glycidyl tert-carbonate.
  • glycidyl tert-carbonate has epoxy functional end groups, which are widely used in solvent-based formulations for automotive original paints and refinishes.
  • the main advantage of using glycidyl tert-carbonate is that it can reduce the viscosity of the synthesized resin and improve the resin. Fullness, weather resistance (alkali resistance and water resistance) and adhesion, especially suitable for acrylic and polyester resins.
  • the production method of glycidyl tert-carbonate mainly has a one-step reaction system and a two-step reaction system.
  • Application number is 99811327.1
  • Patent application discloses a method for preparing a glycidyl ester of a branched carboxylic acid, which will be a-
  • the branched monocarboxylic acid tertiary carbonic acid
  • a halogen-substituted monoepoxide epichlorohydrin
  • an additional alkali metal hydroxide sodium hydroxide
  • the product purity is up to 96% .
  • the method directly reacts a tertiary carbonic acid with a halogen-substituted monoepoxide, an alkali metal hydroxide or an alkali metal alkoxide, and is a one-step reaction system.
  • the method requires an excessive amount of epichlorohydrin to increase the conversion rate, so that although the reaction yield and the purity of the product can be improved to some extent, the excess epichlorohydrin needs further recovery treatment, which increases the production cost.
  • the application number is 200710056829.3
  • the patent application discloses a method for preparing a glycidyl tert-carbonate. After heating the epichlorohydrin and the catalyst to 90 ° C, neodecanoic acid is added dropwise. After the esterification reaction is completed, the prepared NaOH is contained. The solution was added dropwise to the reaction flask. The method first reacts neodecanoic acid with epichlorohydrin and then reacts with sodium hydroxide to obtain a product, which belongs to a two-step reaction system. The method disclosed a yield of only 86% A lower yield results in an increase in the production cost of the glycidyl tert-carbonate.
  • the object of the present invention is to overcome the disadvantages of low yield and high preparation cost of the glycidyl tert-carbonate in the prior art, and to provide a method for preparing glycidyl tert-carbonate.
  • the preparation method has high yield of glycidyl tert-carbonate, high purity, and low preparation cost.
  • a method for preparing a glycidyl tert-carbonate comprising the steps of:
  • the molar ratio of the tertiary carbonic acid and the alkali metal hydroxide or the alkali metal alkoxide having a molar ratio of 1:0.1 to 0.5 is added to the molar ratio of the tertiary carbonic acid to 1 : 1.01 to 10 of epichlorohydrin, the reaction is carried out in the presence of water and an organic solvent at 45 to 110 ° C for 0.3 to 2.0 hours;
  • step A to obtain the reaction mixture to separate the aqueous phase, and then add alkali metal hydroxide or alkali metal alkoxide until steps A and B
  • the molar ratio of the total amount of alkali metal hydroxide or alkali metal alkoxide to the tertiary carbonic acid is 1.01 to 2.5:1, and then reacted at 20 to 90 ° C for 0.5 to 3.0 hours;
  • step B The reaction mixture is obtained by distillation to remove excess epichlorohydrin, solvent and water and chloride salt formed by the reaction to obtain the desired glycidyl dicarbonate.
  • the molar ratio of the tertiary carbonic acid to the alkali metal hydroxide or the alkali metal alkoxide is 1: 0.15 to 0.3.
  • the molar ratio of epichlorohydrin to tertiary carbonic acid is 1: 1.3 to 4.
  • the molar ratio of the total amount of the alkali metal hydroxide or the alkali metal alkoxide to the tertiary carbonic acid is 1.01 ⁇ 1.1:1
  • the alkali metal hydroxide is sodium hydroxide or potassium hydroxide.
  • the alkali metal alkoxide is a sodium alkoxide having 1 to 6 carbon atoms.
  • the organic solvent is an alcohol having 1 to 4 carbon atoms.
  • the alcohol having 1 to 4 carbon atoms is one or more selected from the group consisting of methanol, ethanol, isopropanol, tert-butanol and n-butanol.
  • the tertiary carbonic acid contains 5 to 20 carbon atoms.
  • the tertiary carbonic acid contains 8 to 13 carbon atoms.
  • the step A In the middle, the tertiary carbonic acid and the alkali metal hydroxide or the alkali metal alkoxide are simultaneously added, and the alkali metal hydroxide or the alkali metal alkoxide may be added after the addition of the tertiary carbonic acid.
  • the reaction is carried out at a temperature of 65 to 95 ° C for 0.5 to 1.5. Hours.
  • the temperature is from 40 to 70 ° C for 0.8 to 2.5 hours.
  • the content of the organic solvent in the reaction mixture is maintained at 1.5 to 10 mol/mol.
  • the content of the organic solvent in the reaction mixture is maintained at 1.5 to 10 mol/mol.
  • the water content of the reaction mixture is maintained at 4 to 15 mol/mol.
  • the water content of the reaction mixture is maintained at 4 to 15 mol/mol.
  • reaction principle of the present invention is as follows:
  • reaction formula A It can be seen that since the tertiary carbonic acid of the present invention is continuously added dropwise for a certain period of time, the epichlorohydrin can be tens of times, even thousands of times, in excess of the instantaneous addition of tertiary carbonic acid. Propane exists in excess form, which is beneficial to the formation of reaction intermediates; B In the present invention, by adding an alkali metal hydroxide or an alkali metal alkoxide in batches, and timely removing the sodium chloride and water in the aqueous phase, the intermediate is converted into a desired product, thereby improving the tertiary carbonic acid reaction. The goal of rate and effective product conversion rate.
  • the inventors have found through a large number of experiments that the use of tertiary carbonic acid and an alkali metal hydroxide or an alkali metal alkoxide in a continuous dropwise manner can greatly reduce the amount of epichlorohydrin and reduce the amount of deionization caused by epichlorohydrin.
  • the reaction increases the yield of the reaction.
  • the use of epichlorohydrin is the lowest 1.01mol/mol acid, alkali metal hydroxide or alkali metal alkoxide can be used at a minimum of 1.01mol/mol acid, and the organic solvent can be used at a minimum of 1.5mol/mol.
  • the content of impurities generated during the reaction is small, no corrosive substance hydrogen chloride is produced; the amount of polymer produced during distillation is low, and the yield and quality of the product are not affected, and the highest yield can be achieved. 97% The highest purity of the product can reach 99%.
  • the product is stored at room temperature for 12 months, the color is unchanged, and no decomposition or polymerization occurs.
  • the invention has the beneficial effects that the reaction of the invention is stable, the operation is simple, the amount of epichlorohydrin and the organic solvent is small, the waste liquid is less, and the preparation cost is low.
  • the yield of glycidyl tert-carbonate is high, the purity is high, and the product quality is good. The month does not deteriorate.
  • Figure 1 is a flow chart of the reaction process of the present invention.
  • Embodiment 1 As shown in FIG. 1 , a preparation method of glycidyl tert-carbonate comprises the following steps:
  • step B the reaction mixture obtained in step A is cooled to 40 ° C, the aqueous phase is separated, and 24 g of sodium hydroxide and 74 g are added. Water, then react at 40 ° C for 80 minutes;
  • step B The reaction mixture obtained in step B is distilled at a pressure of 5 KPa at a temperature of 120 ° C, and then 20 mL is added. The water is stripped to maintain a pressure of 5 KPa and a temperature of 140 °C. In minutes, excess epichlorohydrin, solvent and water and chloride salts formed by the reaction are removed to give the desired glycidyl carbonate.
  • the reaction product was discharged for analysis: the obtained product had an epoxy equivalent value of 258.1 g/mol. The yield is 90%.
  • the tertiary carbonic acid contains 5 carbon atoms.
  • the medium, the tertiary carbonic acid and the sodium hydroxide solution may be added at the same time, or the sodium carbonate solution may be added after the addition of the tertiary carbonic acid.
  • Example 2 As shown in Fig. 1, a preparation method of glycidyl tert-carbonate comprises the following steps:
  • step B the reaction mixture in step A is cooled to 60 ° C, the aqueous phase is separated, and then 93 g of sodium hydroxide and 280 g are added. Water, then react at 60 ° C for 100 minutes;
  • step B is obtained to obtain a reaction mixture at a pressure of 95.4 KPa and a temperature of 120 Distillation was carried out at ° C, and then distillation under reduced pressure was continued until the pressure was 5 KPa and the temperature was 140. At ° C, excess epichlorohydrin, solvent and water and chloride salts formed by the reaction are removed to obtain the desired glycidyl dicarbonate.
  • the reaction product was discharged for analysis: the obtained product had an epoxy equivalent value of 230 g/mol, and the yield was 96%.
  • the tertiary carbonic acid contains 8 carbon atoms.
  • the medium, the tertiary carbonic acid and the sodium hydroxide solution may be added at the same time, or the sodium carbonate solution may be added after the addition of the tertiary carbonic acid.
  • Example 3 As shown in Figure 1, a method for preparing a glycidyl tert-carbonate comprises the following steps:
  • step B The reaction mixture obtained in step A is cooled to 55 ° C, the aqueous phase is separated, and 24.0 g of potassium hydroxide and 74 g are added. Water, then react at 55 ° C for 30 minutes;
  • step B is obtained to obtain a reaction mixture at a pressure of 95.4 KPa and a temperature of 120 Distillation was carried out at ° C, and then distillation under reduced pressure was continued until the pressure was 5 KPa and the temperature was 140. At ° C, excess epichlorohydrin, solvent and water and chloride salts formed by the reaction are removed to obtain the desired glycidyl dicarbonate.
  • the reaction product was discharged for analysis: the obtained product had an epoxy equivalent value of 231 g/mol, and the yield was 95%.
  • the tertiary carbonic acid contains 20 carbon atoms.
  • the medium, the tertiary carbonic acid and the sodium hydroxide solution may be added at the same time, or the sodium carbonate solution may be added after the addition of the tertiary carbonic acid.
  • Example 4 As shown in Fig. 1, a preparation method of glycidyl tert-carbonate comprises the following steps:
  • step A The reaction mixture obtained in step A is cooled to 50 ° C, the water phase is separated into a water separator, and the reaction mixture is pumped into the reaction vessel B. , adding 330 g of sodium hydroxide and 1110 g of water to the reactor B, and then reacting at 50 ° C for 120 minutes;
  • step B is obtained, the reaction mixture is at a pressure of 12 KPa and the temperature is 97. Distillation was carried out at ° C, and then distillation under reduced pressure was continued until the pressure was 5 KPa and the temperature was 140. At ° C, excess epichlorohydrin, solvent and water and chloride salts formed by the reaction are removed to obtain the desired glycidyl dicarbonate. The reaction product was discharged for analysis: the obtained product had an epoxy equivalent value of 229 g/mol, and the yield was 97.5%.
  • the tertiary carbonic acid contains 13 carbon atoms.
  • the medium, the tertiary carbonic acid and the sodium hydroxide solution may be added at the same time, or the sodium carbonate solution may be added after the addition of the tertiary carbonic acid.
  • Embodiment 5 As shown in FIG. 1, a method for preparing a glycidyl tert-carbonate comprises the following steps:
  • step A The reaction mixture obtained in step A is cooled to 20 ° C, the water phase is separated into a water separator, and the reaction mixture is pumped into the reaction vessel B. , adding 10 mol of sodium hydroxide and 20 mol of water to the reactor B, and then reacting at 20 ° C for 180 minutes;
  • step B is obtained, the reaction mixture is at a pressure of 12 KPa and the temperature is 97. Distillation was carried out at ° C, and then distillation under reduced pressure was continued until the pressure was 5 KPa and the temperature was 140. At ° C, excess epichlorohydrin, solvent and water and chloride salts formed by the reaction are removed to obtain the desired glycidyl dicarbonate. The reaction product was discharged for analysis: the obtained product had an epoxy equivalent value of 230 g/mol, and the yield was 96.5%.
  • the tertiary carbonic acid contains 10 carbon atoms.
  • the medium, the tertiary carbonic acid and the sodium hydroxide solution may be added at the same time, or the sodium carbonate solution may be added after the addition of the tertiary carbonic acid.
  • Example 6 As shown in FIG. 1, a preparation method of glycidyl tert-carbonate comprises the following steps:
  • the organic phase is distilled at a pressure of 5 KPa and the temperature is terminated at 120 °C. Then add 20mL The water was stripped and maintained at a pressure of 5 KPa and a temperature of 140 ° C for 10 minutes. Finally, the residue at the bottom of the bottom was discharged for analysis.
  • the obtained product has an epoxy equivalent value of 258.3 g/mol, and the yield is 90.5%.
  • Example 7 As shown in Figure 1, a method for preparing a glycidyl tert-carbonate comprises the following steps:
  • the organic phase is distilled at a pressure of 5 KPa and the temperature is terminated at 120 °C. Then add 20mL The water was stripped and maintained at a pressure of 5 KPa and a temperature of 140 ° C for 10 minutes. Finally, the residue at the bottom of the bottom was discharged for analysis.
  • the obtained product has an epoxy equivalent value of 258.5 g/mol, and the yield is 95%.
  • Example 8 The procedure of Example 7 was repeated except that the added tertiary carbonic acid contained 5 carbon atoms. Epoxy equivalent value of the obtained product 234.6 g/mol, the yield was 97.21%.
  • Example 9 The procedure of Example 7 was repeated except that the added tertiary carbonic acid contained 13 carbon atoms. Epoxy equivalent value of the obtained product 239.2 g/mol, yield 97.72%.
  • Example 10 The procedure of Example 2 was repeated except that the tertiary carbonic acid was first added dropwise, followed by dropwise addition of a sodium hydroxide solution. Epoxy equivalent value of the obtained product 230.6 g / mol, the yield was 95.7%.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Description

一种叔碳酸缩水甘油酯的制备方法
技术领域
本发明涉及一种叔碳酸缩水甘油酯的制备方法。
背景技术
叔碳酸缩水甘油酯的结构式为:
Figure PCTCN2011079677-appb-I000002
,其中 R1 、 R2 、 R3 分别表示含有 1 ~ 20 个碳原子的直链或支链结构的相同或不同的烷基,至少有一个为甲基,较常见为 R1+R2+R3=C8 。叔碳酸缩水甘油酯具有环氧官能团端基 , 广泛应用于汽车原装漆和修补漆用的溶剂型配方中,使用叔碳酸缩水甘油酯的主要优点是可以降低所合成的树脂的粘度,提高树脂的丰满度、耐候性(耐碱性与耐水性)与附着力,特别适用于丙烯酸树脂和聚酯树脂。
叔碳酸缩水甘油酯的生产方法主要有一步反应体系和两步反应体系。申请号为 99811327.1 的专利申请公开了一种制备支链羧酸的缩水甘油酯的方法,将 a- 支链的一元羧酸(叔碳酸)与卤素取代的单环氧化物(环氧氯丙烷)反应,加入另外的碱金属氢氧化物(氢氧化钠)或碱金属醇盐反应,反应的收率为 90 ~ 94% ,产品纯度最高为 96% 。该方法直接让叔碳酸和卤素取代的单环氧化物、碱金属氢氧化物或碱金属醇盐反应,属于一步反应体系。该方法需要采用加入过量的环氧氯丙烷来提高转化率,这样虽然能够一定程度上提高反应的收率和产品的纯度,但是过量的环氧氯丙烷需要进一步回收处理,增加了产生成本。
申请号为 200710056829.3 的专利申请公开了一种叔碳酸缩水甘油酯的制备方法,将环氧氯丙烷与催化剂加热至 90 ℃后,滴加新癸酸,酯化反应完成后,将配好的含有 NaOH 的溶液滴加到反应瓶中。该方法先让新癸酸和环氧氯丙烷反应,然后再与氢氧化钠反应得到产物,属于两步反应体系。该方法公开的收率仅为 86% ,较低的收率会造成叔碳酸缩水甘油酯的制备成本上升。
发明内容
本发明的目的在于克服现有技术中叔碳酸缩水甘油酯的收率低、制备成本高的不足,提供一种叔碳酸缩水甘油酯的制备方法。该制备方法的叔碳酸缩水甘油酯收率高、纯度高,制备成本低。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、将摩尔比为 1 : 0.1 ~ 0.5 的叔碳酸和碱金属氢氧化物或碱金属醇盐滴加入与叔碳酸摩尔比为 1 : 1.01 ~ 10 的环氧氯丙烷中,反应在水和有机溶剂的存在下,在 45 ~ 110 ℃条件下进行 0.3 ~ 2.0 小时;
B 、将步骤 A 得到反应混合物分离水相,再加入碱金属氢氧化物或碱金属醇盐,直至步骤 A 和 B 中加入的碱金属氢氧化物或碱金属醇盐的总量与叔碳酸的摩尔比达到 1.01 ~ 2.5:1 ,然后在 20 ~ 90 ℃下反应 0.5 ~ 3.0 小时;
C 、将步骤 B 得到反应混合物蒸馏除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。
作为优选方式,所述步骤 A 中,叔碳酸和碱金属氢氧化物或碱金属醇盐的摩尔比为 1 : 0.15 ~ 0.3 。
作为优选方式,所述步骤 A 中,环氧氯丙烷与叔碳酸摩尔比为 1 : 1.3 ~ 4 。
作为优选方式,所述步骤 B 中,碱金属氢氧化物或碱金属醇盐的总量与叔碳酸的摩尔比为 1.01 ~ 1.1:1
作为优选方式,所述碱金属氢氧化物为氢氧化钠或氢氧化钾。
作为优选方式,所述碱金属醇盐为含有 1 ~ 6 个碳原子的醇钠。
作为优选方式,所述步骤 A 中,有机溶剂为碳原子数为 1 ~ 4 的醇。
进一步优选,所述碳原子数为 1 ~ 4 的醇为甲醇、乙醇、异丙醇、叔丁醇或正丁醇中的一种或多种。
作为优选方式,所述步骤 A 中,叔碳酸含有 5 ~ 20 个碳原子。
进一步优选,所述步骤 A 中,叔碳酸含有 8 ~ 13 个碳原子。
作为优选方式,所述步骤 A 中,叔碳酸和碱金属氢氧化物或碱金属醇盐同时加入,也可先加入叔碳酸后再加入碱金属氢氧化物或碱金属醇盐。
作为优选方式,所述步骤 A 中,反应在 65 ~ 95 ℃的温度下进行 0.5 ~ 1.5 小时。
作为优选方式,所述步骤 B 中, 40 ~ 70 ℃的温度下进行 0.8 ~ 2.5 小时。
作为优选方式,所述步骤 A 中,反应混合物中有机溶剂的含量保持在 1.5 ~ 10mol/mol 叔碳酸的范围内。
作为优选方式,所述步骤 A 和 B 中,反应混合物中水的含量在保持 4 ~ 15 mol/mol 叔碳酸的范围内。
本发明的反应原理如下:
反应式 A :
Figure PCTCN2011079677-appb-I000003
反应式 B :
Figure PCTCN2011079677-appb-I000004
从反应式 A 可以看出,由于本发明的叔碳酸在一定的时间内连续滴加,这样可使环氧氯丙烷相对于瞬时加入的叔碳酸过量倍数达到数十倍,甚至上千倍,反应中环氧氯丙烷以过量形式存在,有利于反应中间体的生成;在反应 B 中,本发明通过分批加入碱金属氢氧化物或碱金属醇盐,并及时地移走水相中的氯化钠和水,有利于中间体转化为所需产品,从而达到提高叔碳酸反应率和有效产品转化率的目标。
发明人通过大量的实验发现:采用叔碳酸和碱金属氢氧化物或碱金属醇盐同时连续滴加的方式可以大大减少环氧氯丙烷的用量,减少因环氧氯丙烷开环带来的副反应,提高反应的收率。环氧氯丙烷的使用量最低可在 1.01mol/mol 酸,碱金属氢氧化物或碱金属醇盐使用量最低可在 1.01mol/mol 酸,有机溶剂的使用量最低可在 1.5mol/mol 酸,在这样的原料配比条件下,反应过程中生成的杂质含量少,不产生腐蚀性物质氯化氢;在蒸馏过程中聚合物产生量低,不影响产品收率与质量,最高收率可达到 97% ,产品最高纯度可达到 99% ,产品在室温保存 12 个月,色度不变,不产生分解或聚合现象。
本发明的有益效果在于:本发明反应稳定、操作简单,环氧氯丙烷以及有机溶剂用量少,生成废液少,制备成本低。叔碳酸缩水甘油酯收率高、纯度高,产品质量好,可 12 个月不变质。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图 1 为本发明的反应工艺流程图。
图中标记: 1 叔碳酸储罐、 2 反应釜、 3 氢氧化钠储罐、 4 冷却器、 5 油水分离器、 6 初产品罐。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和 / 或步骤以外,均可以以任何方式组合。
实施例 1 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 1L 烧瓶中,加入 100g 乙醇、 100g 水和 69.4g 环氧氯丙烷 , 加热至 55 ℃,将 129.3g 叔碳酸和 12.3g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入烧瓶中,加料时间控制为 20 分钟,反应在 55 ℃条件下进行 2.0 小时;
B 、将步骤 A 得到反应混合物冷却至 40 ℃,分离水相,再加入 24g 氢氧化钠和 74g 水,然后在 40 ℃下反应 80 分钟;
C 、将步骤 B 得到反应混合物在压力为 5KPa ,温度为 120 ℃下进行蒸馏,然后加入 20mL 水进行汽提,保持压力为 5KPa ,温度为 140 ℃,进行 10 分钟,除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。将反应产物排出进行分析:所得产物环氧当量值为 258.1g/mol ,收率为 90% 。
所述步骤 A 中,叔碳酸含有 5 个碳原子。所述步骤 A 中,叔碳酸和氢氧化钠溶液可同时加入,也可先加入叔碳酸后再加入氢氧化钠溶液。
实施例 2 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 2L 烧瓶中,加入 400g 异丙醇、 605g 水和 300g 环氧氯丙烷 , 加热至 80 ℃,将 500g 叔碳酸和 47.6g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入烧瓶中,加料时间控制为 20 分钟,反应在 80 ℃条件下进行 100 分钟;
B 、将步骤 A 得到反应混合物冷却至 60 ℃,分离水相,再加入 93g 氢氧化钠和 280g 水,然后在 60 ℃下反应 100 分钟;
C 、将步骤 B 得到反应混合物在压力为 95.4KPa ,温度为 120 ℃下进行蒸馏,然后继续减压蒸馏,直至压力为 5KPa ,温度为 140 ℃,除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。将反应产物排出进行分析:所得产物环氧当量值为 230g/mol ,收率为 96% 。
所述步骤 A 中,叔碳酸含有 8 个碳原子。所述步骤 A 中,叔碳酸和氢氧化钠溶液可同时加入,也可先加入叔碳酸后再加入氢氧化钠溶液。
实施例 3 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 1L 烧瓶中,加入 124.9g 叔丁醇、 100g 水和 234.9g 环氧氯丙烷 , 加热至 65 ℃,将 129.3g 叔碳酸和 12.3g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入烧瓶中,加料时间控制为 20 分钟,反应在 65 ℃条件下进行 30 分钟;
B 、将步骤 A 得到反应混合物冷却至 55 ℃,分离水相,再加入 24.0g 氢氧化钾和 74g 水,然后在 55 ℃下反应 30 分钟;
C 、将步骤 B 得到反应混合物在压力为 95.4KPa ,温度为 120 ℃下进行蒸馏,然后继续减压蒸馏,直至压力为 5KPa ,温度为 140 ℃,除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。将反应产物排出进行分析:所得产物环氧当量值为 231g/mol ,收率为 95% 。
所述步骤 A 中,叔碳酸含有 20 个碳原子。所述步骤 A 中,叔碳酸和氢氧化钠溶液可同时加入,也可先加入叔碳酸后再加入氢氧化钠溶液。
实施例 4 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 10L 反应釜 A 中,由泵加入 1500g 异丙醇、 1500g 水和 1350g 环氧氯丙烷 , 加热至 75 ℃,将 1939g 叔碳酸和 249g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入反应釜 A 中,反应在 75 ℃条件下进行 40 分钟;
B 、将步骤 A 得到反应混合物冷却至 50 ℃,进入油水分离器分离水相,再将反应混合物由泵打入反应釜 B ,向反应釜 B 中加入 330g 氢氧化钠和 1110g 水,然后在 50 ℃下反应 120 分钟;
C 、将步骤 B 得到反应混合物在压力为 12KPa ,温度为 97 ℃下进行蒸馏,然后继续减压蒸馏,直至压力为 5KPa ,温度为 140 ℃,除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。将反应产物排出进行分析:所得产物环氧当量值为 229g/mol ,收率为 97.5% 。
所述步骤 A 中,叔碳酸含有 13 个碳原子。所述步骤 A 中,叔碳酸和氢氧化钠溶液可同时加入,也可先加入叔碳酸后再加入氢氧化钠溶液。
实施例 5 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 10L 反应釜 A 中,由泵加入 15mol 甲醇、 70mol 水和 4mol 环氧氯丙烷 , 加热至 45 ℃,将 10mol 叔碳酸和 1mol 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入反应釜 A 中,反应在 45 ℃条件下进行 0.3 小时;
B 、将步骤 A 得到反应混合物冷却至 20 ℃,进入油水分离器分离水相,再将反应混合物由泵打入反应釜 B ,向反应釜 B 中加入 10mol 氢氧化钠和 20mol 水,然后在 20 ℃下反应 180 分钟;
C 、将步骤 B 得到反应混合物在压力为 12KPa ,温度为 97 ℃下进行蒸馏,然后继续减压蒸馏,直至压力为 5KPa ,温度为 140 ℃,除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。将反应产物排出进行分析:所得产物环氧当量值为 230g/mol ,收率为 96.5% 。
所述步骤 A 中,叔碳酸含有 10 个碳原子。所述步骤 A 中,叔碳酸和氢氧化钠溶液可同时加入,也可先加入叔碳酸后再加入氢氧化钠溶液。
实施例 6 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 1L 烧瓶中,加入 225g 异丙醇、 110g 水和 227.5g 环氧氯丙烷 ,, 加热至 95 ℃,将 129.3g 叔碳酸(含有 8 个碳原子)和 12.1g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入烧瓶中,加料时间控制为 20 分钟。将温度控制在 95 ℃,并保持 80 分钟。
B 、将反应物冷却至 70 ℃,待两相分离后,排出底部的含盐废水 45.5g ,其中含有氯化钠 7.06g 。然后加入 24g 氢氧化钠和 74g 水,将混合物于 70 ℃搅拌 60 分钟,停止搅拌,待两相分离后,除去下层水相 123.47g 其中含有氯化钠 28.4g 。加入 20g 的 50% 的氢氧化钠溶液,搅拌 20 分钟,分离水相 35.26g 。再加入 50mL 水,搅拌 20 分钟,分离水相 24.05g 。
C 、将有机相进行蒸馏,压力为 5KPa ,温度为 120 ℃终止。然后加入 20mL 水进行汽提,保持压力为 5KPa 和温度为 140 ℃,保持 10 分钟。最后将釜底剩余物排出进行分析。所得产物环氧当量值为 258.3 g/mol ,收率为 90.5% 。
实施例 7 :如图 1 所示,一种叔碳酸缩水甘油酯的制备方法,包括以下步骤:
A 、向带有搅拌,温度计以及回流的四口的 10L 反应釜 A 中,加入 1000g 异丙醇、 1000g 水和 694g 环氧氯丙烷 ,, 加热至 70 ℃,将 1293g 叔碳酸(含有 13 个碳原子)和 123g 氢氧化钠溶液 ( 氢氧化钠重量百分比为 50%) 滴加入 10L 反应釜 A 中。将温度控制在 70 ℃,并保持 65 分钟。
B 、将反应物冷却至 45 ℃,待两相分离后,排出底部的含盐废水。然后加入 240g 氢氧化钠和 740g 水,将混合物于 45 ℃搅拌 55 分钟,停止搅拌,待两相分离后,除去下层水相。加入 200g 的 50% 的氢氧化钠溶液,搅拌 15 分钟,分离水相。再加入 500mL 水,搅拌 10 分钟。
C 、将有机相进行蒸馏,压力为 5KPa ,温度为 120 ℃终止。然后加入 20mL 水进行汽提,保持压力为 5KPa 和温度为 140 ℃,保持 10 分钟。最后将釜底剩余物排出进行分析。所得产物环氧当量值为 258.5 g/mol ,收率为 95% 。
实施例 8 :重复实施例 7 的过程,不同的是所滴加的叔碳酸含有 5 个碳原子。所得产物环氧当量值为 234.6 g/mol ,收率为 97.21% 。
实施例 9 :重复实施例 7 的过程,不同的是所滴加的叔碳酸含有 13 个碳原子。所得产物环氧当量值为 239.2 g/mol ,收率为 97.72% 。
实施例 10 :重复实施例 2 的过程,不同的是先滴加叔碳酸,再滴加氢氧化钠溶液。所得产物环氧当量值为 230.6g/mol ,收率为 95.7% 。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (16)

  1. 一种叔碳酸缩水甘油酯的制备方法,其特征在于包括以下步骤:
    A 、将摩尔比为 1 : 0.1 ~ 0.5 的叔碳酸和碱金属氢氧化物或碱金属醇盐滴加入与叔碳酸摩尔比为 1 : 1.01 ~ 10 的环氧氯丙烷中,反应在水和有机溶剂的存在下,在 45 ~ 110℃ 条件下进行 0.3 ~ 2.0 小时;
    B 、将步骤 A 得到反应混合物分离水相,再加入碱金属氢氧化物或碱金属醇盐,直至步骤 A 和 B 中加入的碱金属氢氧化物或碱金属醇盐的总量与叔碳酸的摩尔比达到 1.01 ~ 2.5:1 ,然后在 20 ~ 90℃ 下反应 0.5 ~ 3.0 小时;
    C 、将步骤 B 得到反应混合物蒸馏除去过量的环氧氯丙烷、溶剂及反应生成的水和氯化物盐,得到所需的叔碳酸缩水甘油酯。
  2. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,叔碳酸和碱金属氢氧化物或碱金属醇盐的摩尔比为 1 : 0.15 ~ 0.3 。
  3. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,环氧氯丙烷与叔碳酸摩尔比为 1 : 1.3 ~ 4 。
  4. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 B 中,碱金属氢氧化物或碱金属醇盐的总量与叔碳酸的摩尔比为 1.01 ~ 1.1:1 。
  5. 如权利要求 1 、 2 、或 4 任一所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述碱金属氢氧化物为氢氧化钠或氢氧化钾。
  6. 如权利要求 1 、 2 、或 4 任一所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述碱金属醇盐为含有 1 ~ 6 个碳原子的醇钠。
  7. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,有机溶剂为碳原子数为 1 ~ 4 的醇。
  8. 如权利要求 7 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述碳原子数为 1 ~ 4 的醇为甲醇、乙醇、异丙醇或正丁醇中的一种或多种。
  9. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,叔碳酸含有 5 ~ 20 个碳原子。
  10. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,叔碳酸含有 8 ~ 13 个碳原子。
  11. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,叔碳酸和碱金属氢氧化物或碱金属醇盐同时加入,也可先加入叔碳酸后再加入碱金属氢氧化物或碱金属醇盐。
  12. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,反应在 65 ~ 95℃ 的温度下进行 0.5 ~ 1.5 小时。
  13. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 B 中, 40 ~ 70℃ 的温度下进行 0.8 ~ 2.5 小时。
  14. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,反应混合物中有机溶剂的含量保持在 1.5 ~ 10mol/mol 叔碳酸的范围内。
  15. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 和 B 中,反应混合物中水的含量在保持 4 ~ 15mol/mol 叔碳酸的范围内。
  16. 如权利要求 1 所述的一种叔碳酸缩水甘油酯的制备方法,其特征在于:所述步骤 A 中,水的含量为 7 ~ 12mol/mol 叔碳酸。
PCT/CN2011/079677 2010-09-26 2011-09-15 一种叔碳酸缩水甘油酯的制备方法 WO2012037861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010291671.X 2010-09-26
CN201010291671.XA CN102408396B (zh) 2010-09-26 2010-09-26 一种叔碳酸缩水甘油酯的制备方法

Publications (1)

Publication Number Publication Date
WO2012037861A1 true WO2012037861A1 (zh) 2012-03-29

Family

ID=45873434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079677 WO2012037861A1 (zh) 2010-09-26 2011-09-15 一种叔碳酸缩水甘油酯的制备方法

Country Status (2)

Country Link
CN (1) CN102408396B (zh)
WO (1) WO2012037861A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017076A (ja) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 高透明アダマンタンカルボン酸グリシジルエステル化合物
KR101650528B1 (ko) * 2015-04-24 2016-08-23 대달산업주식회사 알파-분지형 지방족 모노카르복시산의 글리시딜 에스테르의 제조 방법
WO2017077846A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102850299B (zh) * 2012-09-03 2015-04-29 西南化工研究设计院有限公司 一种(甲基)丙烯酸缩水甘油酯的制备方法
CN104761517B (zh) * 2015-04-15 2017-04-26 西南化工研究设计院有限公司 一种叔碳酸缩水甘油酯的连续精制方法
CN108484532B (zh) * 2018-04-25 2020-04-28 江苏正丹化学工业股份有限公司 一种偏苯三甲酸三缩水甘油酯的合成工艺
CN108484531B (zh) * 2018-04-25 2020-06-30 江苏正丹化学工业股份有限公司 一种对苯二甲酸二缩水甘油酯的合成工艺
JP2023518264A (ja) * 2020-03-20 2023-04-28 インジェヴィティ・サウス・カロライナ・エルエルシー トール油由来のグリシジルエステルおよびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169873A (ja) * 1989-11-28 1991-07-23 Idemitsu Petrochem Co Ltd 脂肪族第三級カルボン酸のグリシジルエステルの製造方法
CN1325392A (zh) * 1998-09-23 2001-12-05 荷兰解决方案研究有限公司 制备支链羧酸的缩水甘油酯的方法
CN101245053A (zh) * 2007-02-15 2008-08-20 天津市四友精细化学品有限公司 叔碳酸缩水甘油酯的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252046C (zh) * 2004-05-09 2006-04-19 张展洪 甲基丙烯酸缩水甘油酯的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169873A (ja) * 1989-11-28 1991-07-23 Idemitsu Petrochem Co Ltd 脂肪族第三級カルボン酸のグリシジルエステルの製造方法
CN1325392A (zh) * 1998-09-23 2001-12-05 荷兰解决方案研究有限公司 制备支链羧酸的缩水甘油酯的方法
CN101245053A (zh) * 2007-02-15 2008-08-20 天津市四友精细化学品有限公司 叔碳酸缩水甘油酯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG, QING'AN ET AL.: "Preparation of glycidyl tertiary carbonate", PAINT & COATINGS INDUSTRY, 1982, pages 1 - 3 AND 25 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017076A (ja) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 高透明アダマンタンカルボン酸グリシジルエステル化合物
KR101650528B1 (ko) * 2015-04-24 2016-08-23 대달산업주식회사 알파-분지형 지방족 모노카르복시산의 글리시딜 에스테르의 제조 방법
WO2017077846A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物
JPWO2017077846A1 (ja) * 2015-11-05 2018-08-23 日産化学株式会社 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物

Also Published As

Publication number Publication date
CN102408396B (zh) 2014-09-10
CN102408396A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2012037861A1 (zh) 一种叔碳酸缩水甘油酯的制备方法
JP5588130B2 (ja) メチレンビス(ベンゾトリアゾリルフェノール)化合物の製造方法
US20070078283A1 (en) Method of preparing memantine hydrochloride
CN114702425B (zh) (s)-2-氨基-(s)-3-[吡咯烷酮-2’]丙氨酸衍生物及中间体的制备方法
CN113233958B (zh) 一种2-(反式-4-正丙基环己基)丙烷-1,3-二醇的制备方法
CN110903188B (zh) 一种制备三溴新戊醇乙酸酯的方法
EP3250556B1 (en) Processes for the preparation of compounds, such as 3-arylbutanals, useful in the synthesis of medetomidine
US20150274624A1 (en) Process for the preparation of ospemifene
CN110615767B (zh) 一种合成5-氟胞嘧啶的方法
JP2743461B2 (ja) 1―メチル―3―アルキル―5―ピラゾールカルボン酸エステル類の製造法
CN107382885B (zh) 1h-1,2,3-三氮唑的制备方法
CN111825593B (zh) 3-氨基吡咯-2-甲酰胺类化合物的合成方法
CA1068302A (en) Process for the preparation of an acetonitrile derivative
CN110790650A (zh) 反-4’-(4-烷基苯基)(1,1’-联环己烷)-4-酮的合成方法
EP1215192A2 (en) Preparation process of dicarboxylic acid compounds
CN101289436B (zh) 糠醛的制备方法
CN113387845B (zh) 一种苯甲基磺酰氟的制备方法
CN113979854B (zh) 一种电化学制备2-苯基丙酸的方法
JP3944876B2 (ja) クエン酸エステル類の製造方法
US20230265084A1 (en) Method for preparing intermediate of uracil compound containing isoxazoline
CN116063179A (zh) 一种4-甲氧基乙酰乙酸甲酯的合成方法
KR910009234B1 (ko) 2-(4-아미노페닐)-2-메틸프로필 알코올의 제조방법
KR100466693B1 (ko) 페녹시아세트아미드 유도체의 제조방법
JPH0243734B2 (zh)
CN118126033A (zh) 一种4-甲基-1,2,3-噻二唑-5-甲酸酯一步合成甲噻诱胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826388

Country of ref document: EP

Kind code of ref document: A1