WO2012036291A1 - 調光シート、調光体、合わせガラス用中間膜及び合わせガラス - Google Patents

調光シート、調光体、合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2012036291A1
WO2012036291A1 PCT/JP2011/071273 JP2011071273W WO2012036291A1 WO 2012036291 A1 WO2012036291 A1 WO 2012036291A1 JP 2011071273 W JP2011071273 W JP 2011071273W WO 2012036291 A1 WO2012036291 A1 WO 2012036291A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light control
laminated glass
control sheet
carbon atoms
Prior art date
Application number
PCT/JP2011/071273
Other languages
English (en)
French (fr)
Inventor
中島 大輔
和幸 矢原
努 安藤
圭吾 大鷲
和田 敦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2011546357A priority Critical patent/JP5129393B2/ja
Publication of WO2012036291A1 publication Critical patent/WO2012036291A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10513Electrochromic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1503Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing

Definitions

  • the present invention changes the light transmittance by applying a voltage, and is resistant to yellowing or fading even after long-term use, and has a light control sheet excellent in light resistance, and a light control sheet using the light control sheet
  • the present invention relates to a light, an interlayer for laminated glass, and a laminated glass using the interlayer for laminated glass.
  • a dimmer whose light transmittance is changed by applying a voltage is widely used. It has been proposed to use laminated glass using this light control as an intermediate film for laminated glass as window glass for automobiles or window glass for construction. It is considered that if such an interlayer for laminated glass is used, the light transmittance of the laminated glass can be controlled to adjust the temperature in the vehicle or in the room.
  • the light control body is roughly classified into a light control body using a liquid crystal material and a light control body using an electrochromic compound.
  • a light control using an electrochromic compound has less light scattering than a light control using a liquid crystal material, and has excellent properties such as not being affected by polarization.
  • a light control using an electrochromic compound a light control is proposed in which a light control sheet composed of an electrochromic layer and an electrolyte layer is sandwiched between a pair of opposing electrode substrates.
  • a laminate in which three layers of an electrochromic layer containing an inorganic oxide, an ion conductive layer, and an electrochromic layer containing an inorganic oxide are sequentially laminated is two sheets.
  • a dimmer is disclosed which is sandwiched between conductive substrates.
  • Patent Document 3 and Patent Document 4 disclose a light control body in which an electrochromic layer containing an organic electrochromic material and an electrolyte layer are sandwiched between a pair of electrode substrates facing each other.
  • the present invention changes the light transmittance by applying a voltage, and is resistant to yellowing or fading even after long-term use, and has a light control sheet excellent in light resistance, and a light control sheet using the light control sheet It is an object of the present invention to provide a light body, an intermediate film for laminated glass, and a laminated glass using the intermediate film for laminated glass.
  • the present invention is a light control sheet comprising an electrolyte layer and an electrochromic layer containing an electrochromic compound formed on at least one surface of the electrolyte layer, wherein the electrolyte layer comprises a binder resin, a supporting electrolyte salt, a solvent, And it is a light control sheet containing the ultraviolet absorber which has a benzotriazole structure represented by following General formula (1).
  • R 1 and R 2 each represent an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • R 1 and R 2 may be identical or different. The present invention will be described in detail below.
  • the inventors of the present invention show that the interaction between the supporting electrolyte salt contained in the electrolyte layer and the UV absorber causes yellowing when the UV absorber is blended in the electrolyte layer. It has been found that it is the cause of the fact that discoloration or fading due to irradiation can not be sufficiently prevented. That is, when the electrolyte layer contains a UV absorber containing a halogen atom, the chemical reaction or interaction between the cation or anion derived from the supporting electrolyte salt in the electrolyte layer and the halogen atom of the UV absorber occurs. As a result, the electrolyte layer is considered to turn yellow.
  • the inventors of the present invention have found that yellowing occurs when the ultraviolet absorber having a halogen atom-free benzotriazole structure represented by the above general formula (1) is selected and used as a result of further intensive studies. It has been found that it is difficult to do so and yellowing or fading due to ultraviolet irradiation can be sufficiently prevented, and the present invention has been completed.
  • the light control sheet of the present invention has an electrolyte layer and an electrochromic layer containing an electrochromic compound formed on at least one side of the electrolyte layer.
  • the electrolyte layer has a role of applying a voltage to the electrochromic layer by conducting ions and changing the light transmittance of the electrochromic layer.
  • the electrolyte layer contains a binder resin, a supporting electrolyte salt, a solvent, and a UV absorber having a benzotriazole structure represented by the general formula (1).
  • a specific ultraviolet absorber the light control sheet of the present invention is resistant to yellowing and fading even after long-term use, and is excellent in light resistance.
  • the UV absorber having a benzotriazole structure represented by the above general formula (1) is, for example, 2- (2hydroxy-5-tert-butylphenyl) -2H-benzotriazole (manufactured by BASF, T-PS), 2- (2) 3,5-Di-tert-amyl-2-hydroxyphenyl) -2H-benzotriazole (manufactured by BASF, T-328), 2- [2-Hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl]- 2H-benzotriazole (manufactured by BASF, T-234), 2- (2hydroxy-5-methylphenyl) -2H-benzotriazole (manufactured by BASF, TP), 2- [2-hydroxy-5-tert-octylephe nyl] -2H-benzotriazole (manufactured by BASF, T-329), 2- [2-Hydroxy-3,5-bis ( ⁇ , ⁇
  • the compounding quantity of the ultraviolet absorber which has a benzotriazole structure represented by the said General formula (1) in the said electrolyte layer is not specifically limited,
  • the preferable minimum with respect to 100 weight part of said binder resin is 0.05 weight part,
  • the light resistance of the light control sheet obtained will become higher as the compounding quantity of the said ultraviolet absorber is 0.05 weight part or more, and yellowing and fading by long-term ultraviolet irradiation can be prevented further.
  • the transparency of the light control sheet obtained will become high as the compounding quantity of the said ultraviolet absorber is 10 parts weight or less.
  • the lower limit of the compounding amount of the ultraviolet absorber is more preferably 0.1 parts by weight, still more preferably 0.5 parts by weight, still more preferably 5 parts by weight, and still more preferably 2 parts by weight.
  • R 1 and R 2 each represent an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • the preferable lower limit of the carbon number of the alkyl group is 1, and the preferable upper limit is 10.
  • the alkyl group may be an alkyl group having a branched structure, or may be an alkyl group having a linear structure.
  • a more preferable lower limit to the carbon number of the alkyl group is 2, a further preferable lower limit is 3, an especially preferable lower limit is 4, a more preferable upper limit is 9, a still more preferable upper limit is 8, and a particularly preferable upper limit is 7.
  • the carbon chain of the alkyl group may have a linear structure or a branched structure.
  • the carbon chain of the above-mentioned alkyl group has a branched structure because yellowing and fading do not easily occur even by long-term use, and the light resistance is excellent.
  • the alkyl group is, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, i- Examples thereof include pentyl group, sec-pentyl group, n-hexyl group, i-hexyl group, heptyl group, octyl group, nonyl group and decyl group.
  • the cycloalkyl group may be unsubstituted or substituted by one or more groups.
  • a more preferable lower limit of the number of carbon atoms forming the ring structure of the cycloalkyl group is 3, a further preferable lower limit is 5, an especially preferable lower limit is 6, a more preferable upper limit is 12, and a still more preferable upper limit is 10, particularly The preferred upper limit is eight.
  • Examples of the cycloalkyl group include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group and the like.
  • the preferred lower limit of the carbon number of the aryl group is 6, and the preferred upper limit is 14.
  • Examples of the aryl group include phenyl group, tolyl group, xylyl group, biphenyl group, naphthyl group, anthryl group, phenanthryl group, ⁇ , ⁇ -dimethylbenzylphenyl group and the like.
  • the preferred lower limit of the carbon number of the aralkyl group is 7, and the preferred upper limit is 11.
  • the aralkyl group is, for example, benzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenylpropyl group, 2-phenylpropyl group, 3-phenylpropyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, etc. Can be mentioned.
  • R 1 is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms forming a ring, an aryl group having 6 to 14 carbon atoms, or R 7 is preferably an aralkyl group having 7 to 11 carbon atoms
  • R 2 is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms forming a ring, or 6 to 14 carbon atoms. It preferably represents an aryl group or an aralkyl group having 7 to 11 carbon atoms.
  • R 1 and R 2 may be identical or different.
  • the electrolyte layer preferably further contains a compound represented by the following general formula (2) or a compound represented by the following general formula (3).
  • n represents an integer of 2 to 4
  • R 3 represents a hydrogen atom, an acyl group having an organic group having 1 to 7 carbon atoms or an organic group having 1 to 8 carbon atoms
  • R 4 represents Represents an ethylene group or a propylene group
  • R 5 represents a hydrogen atom, an acyl group having an organic group having 1 to 7 carbon atoms or an organic group having 1 to 8 carbon atoms
  • at least either R 4 or R 6 represents an acyl group Have.
  • R 6 is an organic group having 2 to 8 carbon atoms and having an oxygen atom
  • R 7 is an alkylene group having 2 to 8 carbon atoms or an arylene group having 6 to 12 carbon atoms
  • R 8 has 2 to 8 carbon atoms and represents an organic group having an oxygen atom.
  • R 6 and R 8 may be the same or different.
  • the compound represented by the general formula (2) or the compound represented by the general formula (3) may be used alone or in combination. Above all, it is represented by the above general formula (2) because a dimmer having improved durability and a shorter time from the application of a voltage to the completion of the change in light transmittance can be obtained. It is preferred to contain a compound.
  • R 3 represents a hydrogen atom, an acyl group having an organic group having 1 to 7 carbon atoms, or an organic group having 1 to 8 carbon atoms.
  • R 3 is preferably an acyl group having an organic group having 1 to 7 carbon atoms or an organic group having 1 to 8 carbon atoms, since the compatibility with the binder resin is further improved.
  • An acyl group having an organic group of ⁇ 7 is more preferable, and an acyl group having an alkyl group having 1 to 7 carbon atoms is still more preferable.
  • the preferable lower limit of the carbon number of the organic group in the acyl group having an organic group having 1 to 7 carbon atoms which represents R 3 in the general formula (2) is 2, and the preferable upper limit is 6.
  • the carbon number is 2 or more, the durability of the electrolyte layer is improved, and when it is 6 or less, a light control body having a shorter time from the application of a voltage to the completion of the change in light transmittance is obtained.
  • Be The more preferable lower limit of the carbon number is 3, the more preferable upper limit is 5, and the still more preferable upper limit is 4.
  • the organic group having 1 to 7 carbon atoms may be an organic group having a linear structure or an organic group having a branched structure, and is an alkyl group having a linear structure or an alkyl group having a branched structure Is preferred.
  • the carbon number of the branched group of the organic group or the alkyl group is preferably 3 or less, more preferably 2 or less, and 1 or less. Is more preferred.
  • the acyl group having an organic group of 1 to 7 has 1 to 7 carbon atoms, and is an acyl group having an organic group having a linear structure, or 1 to 7 carbon atoms, and has a linear structure It is preferable that it is an acyl group which has the alkyl group which has these.
  • the acyl group having an organic group of 1 to 7 is an acyl group having an organic group having 1 to 7 carbon atoms and having a branched structure, or an alkyl having 1 to 7 carbon atoms and having a branched structure It is preferably an acyl group having a group, more preferably an acyl group having an alkyl group having 1 to 7 carbon atoms and having a branched structure and having 3 or less carbon atoms in a branched chain, More preferably, it is an acyl group having an alkyl group having 1 to 7 carbon atoms, a branched structure, and a branched carbon number of 2 or less, and has 1 to 7 carbon atoms, And having a branched chain carbon number of 1 or less And particularly preferably an
  • the above acyl group having an organic group having 1 to 7 carbon atoms means that the organic group has 1 to 7 carbon atoms, and the above acyl group having an alkyl group having 1 to 7 carbon atoms is an example And means that the alkyl group has 1 to 7 carbon atoms.
  • R 3 in the general formula (2) is an organic group having 1 to 8 carbon atoms
  • the compatibility with the binder resin is further improved, so the organic group having 1 to 8 carbon atoms has 1 carbon atom It is preferable that it is an alkyl group of -8.
  • the preferable lower limit of the carbon number in the organic group having 1 to 8 carbon atoms representing R 3 in the general formula (2) is 2, and the preferable upper limit is 7.
  • the carbon number is 2 or more, the durability of the electrolyte layer is improved, and when it is 7 or less, a light control body having a shorter time from the application of a voltage to the completion of the change in light transmittance is obtained.
  • Be The more preferable lower limit of the above-mentioned carbon number is 3, the more preferable upper limit is 6, the still more preferable lower limit is 4, and the still more preferable upper limit is 5.
  • the organic group having 1 to 8 carbon atoms may be an organic group having a linear structure or an organic group having a branched structure, and is an alkyl group having a linear structure or an alkyl group having a branched structure Is preferred.
  • the carbon number of the branched group of the organic group or the alkyl group is preferably 3 or less, more preferably 2 or less, and 1 or less. Is more preferred.
  • the organic groups of 1 to 8 are preferably alkyl groups having 1 to 8 carbon atoms and having a linear structure.
  • the organic group of 1 to 8 preferably has 1 to 8 carbon atoms and is an alkyl group having a branched structure, has 1 to 8 carbon atoms, has a branched structure, and is a branched carbon
  • An alkyl group having 3 or less carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms and having a branched structure and having 2 or less carbon atoms in a branched chain is more preferable.
  • Particularly preferred is an alkyl group having 1 to 8 carbon atoms, having a branched structure, and having 1 or less carbon atoms in the branched chain.
  • R 4 represents an ethylene group or a propylene group.
  • the propylene group may be an n-propylene group or an isopropylene group. It is preferable that R 4 be an ethylene group, since a light control can be obtained which has a shorter time from the application of a voltage to the completion of the change in light transmittance.
  • R 5 represents a hydrogen atom, an acyl group having an organic group having 1 to 7 carbon atoms, or an organic group having 1 to 8 carbon atoms.
  • R 5 is preferably an acyl group having an organic group having 1 to 7 carbon atoms or an organic group having 1 to 8 carbon atoms, since the compatibility with the binder resin is further improved.
  • An acyl group having an organic group of ⁇ 7 is more preferable, and an acyl group having an alkyl group having 1 to 7 carbon atoms is still more preferable.
  • the preferable lower limit of the carbon number of the organic group in the acyl group having an organic group having 1 to 7 carbon atoms which represents R 5 in the general formula (2) is 2, and the preferable upper limit is 6.
  • the carbon number is 2 or more, the durability of the electrolyte layer is improved, and when it is 6 or less, a light control body having a shorter time from the application of a voltage to the completion of the change in light transmittance is obtained.
  • Be The more preferable lower limit of the carbon number is 3, the more preferable upper limit is 5, and the still more preferable upper limit is 4.
  • the organic group having 1 to 7 carbon atoms may be an organic group having a linear structure or an organic group having a branched structure, and is an alkyl group having a linear structure or an alkyl group having a branched structure Is preferred.
  • the carbon number of the branched group of the organic group or the alkyl group is preferably 3 or less, more preferably 2 or less, and 1 or less. Is more preferred.
  • the acyl group having an organic group of 1 to 7 has 1 to 7 carbon atoms, and is an acyl group having an organic group having a linear structure, or 1 to 7 carbon atoms, and has a linear structure It is preferable that it is an acyl group which has the alkyl group which has these.
  • the acyl group having an organic group of 1 to 7 is an acyl group having an organic group having 1 to 7 carbon atoms and having a branched structure, or an alkyl having 1 to 7 carbon atoms and having a branched structure It is preferably an acyl group having a group, more preferably an acyl group having an alkyl group having 1 to 7 carbon atoms and having a branched structure and having 3 or less carbon atoms in a branched chain, More preferably, it is an acyl group having an alkyl group having 1 to 7 carbon atoms, a branched structure, and a branched carbon number of 2 or less, and has 1 to 7 carbon atoms, And having a branched chain carbon number of 1 or less And particularly preferably an
  • the above acyl group having an organic group having 1 to 7 carbon atoms means that the organic group has 1 to 7 carbon atoms, and the above acyl group having an alkyl group having 1 to 7 carbon atoms is an example And means that the alkyl group has 1 to 7 carbon atoms.
  • R 3 or R 5 has an acyl group.
  • R 3 represents an acyl group having an alkyl group having 1 to 7 carbon atoms
  • R 4 represents an ethylene group or a propylene group
  • R 5 represents an acyl group having an alkyl group having 1 to 7 carbon atoms Is more preferred.
  • R 6 has 2 to 8 carbon atoms and represents an organic group having an oxygen atom.
  • the carbon number is 2 to 8 representing R 6 in the general formula (3), and the preferable lower limit of the carbon number of the organic group having an oxygen atom is 3, and the preferable upper limit is 7.
  • the carbon number is 3 or more, the durability of the electrolyte layer is improved, and when it is 7 or less, a light control body having a shorter time from the application of the voltage to the completion of the change in light transmittance is obtained.
  • Be The more preferable lower limit of the carbon number is 4, and the more preferable upper limit is 6.
  • R 7 represents an alkylene group having 2 to 8 carbon atoms or an arylene group having 6 to 12 carbon atoms. Among them, R 7 is preferably an alkylene group having a carbon number of 2 to 8 because the compatibility with the binder resin is further improved.
  • the preferable lower limit of the carbon number of the alkylene group having 2 to 8 carbon atoms which represents R 7 in the general formula (3) is 3, and the preferable upper limit is 7.
  • the carbon number is 3 to 7
  • the more preferable lower limit of the carbon number is 4, and the more preferable upper limit is 6.
  • the preferable upper limit of the carbon number of the arylene group having 6 to 12 carbon atoms that represents R 7 in the general formula (3) is 10.
  • the carbon number is 10 or less, it is possible to obtain a dimmer having a shorter time from the application of a voltage to the completion of the change in light transmittance.
  • a more preferable upper limit of the carbon number is eight.
  • R 8 is an organic group having 2 to 8 carbon atoms and having an oxygen atom.
  • the carbon number is 2 to 8 representing R 8 in the general formula (3), and the preferable lower limit of the carbon number of the organic group having an oxygen atom is 3, and the preferable upper limit is 7.
  • the carbon number is 3 or more, the durability of the electrolyte layer is improved, and when it is 7 or less, a light control body having a shorter time from the application of the voltage to the completion of the change in light transmittance is obtained.
  • Be The more preferable lower limit of the carbon number is 4, and the more preferable upper limit is 6.
  • thermoplastic resin is, for example, polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, acrylonitrile-butadiene-styrene copolymer, polyester, polyether, polyamide And polycarbonate, polyacrylate, polymethacrylate, polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyvinyl acetal resin, ethylene-vinyl acetate copolymer and the like.
  • polyvinyl acetal resin and ethylene-vinyl acetate copolymer are preferable, and polyvinyl acetal resin is more preferable because a highly transparent electrolyte layer is obtained, and polyvinyl butyral resin is more preferable.
  • the polyvinyl acetal resin preferably has an acetyl group content of 15 mol% or less. When the amount of acetyl groups of the polyvinyl acetal resin exceeds 15 mol%, the electrolyte layer may be whitened.
  • the polyvinyl acetal resin preferably has a hydroxyl group content of 30 mol% or less. When the amount of hydroxyl groups of the polyvinyl acetal resin exceeds 30 mol%, the compatibility with the solvent may be reduced, and the transparency of the electrolyte layer may be reduced.
  • the amount of acetyl groups and the amount of hydroxyl groups can be determined by titration according to JIS K 6728.
  • the polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol with an aldehyde.
  • the aldehyde is preferably an aldehyde having 4 or 5 carbon atoms.
  • the preferable lower limit of the average degree of polymerization of the polyvinyl alcohol is 500, and the preferable upper limit is 5000.
  • the penetration resistance of a light control body becomes it high that the average degree of polymerization of the said polyvinyl alcohol is 500 or more.
  • the average degree of polymerization of the polyvinyl alcohol is 5000 or less, the time from the application of the voltage to the completion of the change in light transmittance is further shortened.
  • the average degree of polymerization of the polyvinyl alcohol is determined by dividing the weight average molecular weight of the polyvinyl alcohol determined by polystyrene conversion by GPC method (gel permeation chromatography) by the molecular weight per one segment of polyvinyl alcohol.
  • GPC method gel permeation chromatography
  • Shodex LF-804 made by Showa Denko
  • the polyvinyl acetal resin is also referred to as a polyvinyl acetal resin having an acetyl group content of 5 mol% or more (hereinafter, also referred to as “polyvinyl acetal resin A” ), Acetalization of polyvinyl alcohol using polyvinyl acetal resin (hereinafter also referred to as “polyvinyl acetal resin B”) having a degree of acetalization of 70 to 85 mol%, or an aldehyde having 6 or more carbon atoms It is preferable that it is polyvinyl acetal resin (Hereinafter, it is also called “polyvinyl acetal resin C.”) obtained by this.
  • the preferable lower limit of the amount of acetyl groups of the polyvinyl acetal resin A is 6 mol%, and the preferable upper limit is 30 mol%.
  • the compound represented by the general formula (2) and the compound represented by the general formula (3) are further prevented from precipitating from the electrolyte layer when the amount of acetyl group is 6 mol% or more Can.
  • the manufacturing efficiency of the said polyvinyl acetal resin A can be improved as the said acetyl group content is 30 mol% or less.
  • the lower limit of the acetyl group content is preferably 8 mol%, more preferably 28 mol%, still more preferably 10 mol%, still more preferably 25 mol%, particularly preferably 12 mol%, particularly preferably 10 mol%.
  • the preferred upper limit is 23 mol%.
  • the preferable lower limit of the degree of acetalization is 50 mol%, and the preferable upper limit is 80 mol%.
  • the compound represented by the said General formula (2) and the compound represented by the said Formula (3) being further prevented from precipitating from the said electrolyte layer that the said acetalization degree is 50 mol% or more it can.
  • the manufacturing efficiency of the said polyvinyl acetal resin A can be improved as the said degree of acetalization is 80 mol% or less.
  • the lower limit of the degree of acetalization is more preferably 55 mol%, more preferably 78 mol%, still more preferably 60 mol%, still more preferably 76 mol%, particularly preferably 65 mol%, particularly preferably The preferred upper limit is 74 mol%.
  • the polyvinyl acetal resin A is preferably a polyvinyl butyral resin.
  • the preferable lower limit of the degree of acetalization of the polyvinyl acetal resin B is 71 mol%, and the preferable upper limit is 84 mol%.
  • the compound represented by the general formula (2) and the compound represented by the general formula (3) are further prevented from being precipitated from the electrolyte layer as the acetalization degree is 71 mol% or more Can.
  • the manufacturing efficiency of the said polyvinyl acetal resin B can be improved as the said degree of acetalization is 84 mol% or less.
  • the lower limit of the acetalization degree is more preferably 72 mol%, more preferably 83 mol%, still more preferably 73 mol%, still more preferably 82 mol%, particularly preferably 74 mol%, particularly preferably
  • the preferred upper limit is 81 mol%.
  • the preferable lower limit of the amount of acetyl groups is 0.1 mol%, and the preferable upper limit is 20 mol%.
  • the compound represented by the said General formula (2) and the compound represented by the said General formula (3) as the said acetyl group content is 0.1 mol% or more are further prevented from precipitating from the said electrolyte layer can do.
  • the manufacturing efficiency of said polyvinyl acetal resin B can be improved as the said acetyl group weight is 20 mol% or less.
  • the lower limit of the acetyl group content is preferably 0.5 mol%, more preferably 15 mol%, still more preferably 0.8 mol%, still more preferably 8 mol%, particularly preferably 1
  • An especially preferred upper limit is 7 mol%.
  • the polyvinyl acetal resin B is preferably a polyvinyl butyral resin.
  • the polyvinyl acetal resin A and the polyvinyl acetal resin B are obtained by acetalizing polyvinyl alcohol with an aldehyde.
  • the aldehyde is preferably an aldehyde having 1 to 10 carbon atoms, and more preferably an aldehyde having 4 or 5 carbon atoms.
  • the said polyvinyl acetal resin C is obtained by acetalizing polyvinyl alcohol using a C6 or more aldehyde.
  • the aldehyde having 6 or more carbon atoms is not particularly limited, and examples thereof include n-hexyl aldehyde, n-octyl aldehyde, n-nonyl aldehyde, and n-decyl aldehyde.
  • the lower limit of the degree of acetalization of the polyvinyl acetal resin C is preferably 50 mol%, and the upper limit is preferably 80 mol%.
  • the compound represented by the general formula (2) and the compound represented by the general formula (3) are further prevented from being precipitated from the electrolyte layer as the acetalization degree is 50 mol% or more Can.
  • the manufacturing efficiency of the said polyvinyl acetal resin C can be improved as the said degree of acetalization is 80 mol% or less.
  • the lower limit of the degree of acetalization is preferably 55 mol%, more preferably 78 mol%, still more preferably 60 mol%, still more preferably 76 mol%, particularly preferably 65 mol%, particularly preferably 50 mol%.
  • the preferred upper limit is 74 mol%.
  • the supporting electrolyte salt is not particularly limited, and is preferably an alkali metal salt such as a lithium salt, a potassium salt or a sodium salt.
  • the alkali metal salt is preferably a salt of an inorganic acid and an alkali metal or a salt of an organic acid and an alkali metal.
  • inorganic acid anion lithium salt, inorganic acid anion potassium salt, inorganic acid anion sodium salt etc. may be mentioned as salts of the above inorganic acid and alkali metal, and organic acid anion lithium as the above organic acid and alkali metal salt.
  • salts with organic acid anion potassium salt or organic acid anion sodium salt may be mentioned as salts of the above inorganic acid and alkali metal, and organic acid anion lithium as the above organic acid and alkali metal salt.
  • the above-mentioned supporting electrolyte salt is preferably a lithium salt, and an inorganic acid anion lithium salt such as lithium perchlorate, lithium borofluoride, lithium phosphate lithium or lithium trifluoromethane sulfonate, bis trifluoromethane sulfonate imide More preferably, it is an organic acid anion lithium salt such as lithium.
  • the supporting electrolyte salt may be a salt of ammonium cation and anion.
  • the ammonium cation is not particularly limited, and examples thereof include alkylammonium cations such as tetraethylammonium, trimethylethylammonium, methylpropylpyrrolidinium, methylbutylpyrrolidinium, methylpropylpiperidinium, methylbutylpiperidinium, and ethyl methyl methyl.
  • Imidazolium dimethylethyl imidazolium, methyl pyridinium, ethyl pyridinium, propyl pyridinium, butyl pyridinium and the like.
  • the anion is not particularly limited, and examples thereof include a perchlorate anion, a borofluoride anion, a phosphorus fluoride anion, a trifluoromethanesulfonic acid anion, and a bistrifluoromethanesulfonic acid imide anion.
  • the preferable minimum with respect to 100 weight part of said binder resin is 3 weight part, and a preferable upper limit is 60 weight part.
  • the time from the application of the voltage to the completion of the change of the light transmittance is further shortened.
  • a more preferable lower limit of the amount of the supporting electrolyte salt is 10 parts by weight, a further preferable lower limit is 20 parts by weight, a more preferable upper limit is 50 parts by weight, and a still more preferable upper limit is 40 parts by weight.
  • the above solvent is not particularly limited.
  • esters such as acetonitrile, nitromethane, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, etc.
  • Ethers such as substituted tetrahydrofurans, 1,3-dioxolane, 4,4-dimethyl-1,3-dioxolane, t-butyl ether, isobutyl ether, 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane and the like,
  • Organic solvents such as ethylene glycol, polyethylene glycol sulfolane, 3-methyl sulfolane, methyl formate, methyl acetate, N-methyl pyrrolidone, dimethylformamide and the like can be mentioned.
  • the solvent may be a plasticizer.
  • a plasticizer By using a plasticizer as the solvent, flexibility can be imparted to the electrolyte layer.
  • the plasticizer is not particularly limited. For example, triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethyl butyrate (3GH), tetraethylene glycol di-2-ethylhexano And ethe (4GO) and dihexyl adipate (DHA).
  • the compounding quantity of the solvent in the said electrolyte layer is not specifically limited,
  • the preferable minimum with respect to 100 weight part of said binder resin is 30 weight part, and a preferable upper limit is 150 weight part.
  • the compounding amount of the solvent is 30 parts by weight or more, the time from the application of the voltage to the completion of the change of the light transmittance is further shortened.
  • the penetration resistance of a light control body becomes it high that the compounding quantity of the said solvent is 150 weight part or less.
  • the more preferable lower limit of the compounding amount of the above-mentioned solvent is 50 parts by weight, and the more preferable upper limit is 100 parts by weight.
  • the electrolyte layer may contain a heat ray absorbent.
  • the heat ray absorbing agent is not particularly limited as long as it has an infrared shielding ability, but tin-doped indium oxide fine particles, antimony-doped tin oxide fine particles, zinc oxide fine particles doped with an element other than zinc, lanthanum hexaboride fine particles, At least one selected from the group consisting of zinc antimonate microparticles and an infrared absorber having a phthalocyanine structure is preferable.
  • the electrolyte layer may contain an adhesion regulator.
  • the adhesion regulator include alkali metal salts and alkaline earth metal salts. Among them, alkali metal salts and alkaline earth metal salts of carboxylic acids having 2 to 16 carbon atoms are preferable. Specifically, for example, magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, 2-ethylbutanoic acid Examples thereof include magnesium, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate and the like. These adhesion modifiers may be used alone or in combination.
  • the electrolyte layer contains a polyvinyl acetal resin as a binder resin
  • the electrolyte layer preferably contains an adhesion regulator.
  • the electrolyte layer may have a single layer structure or a multilayer structure.
  • the multilayer structure of the electrolyte layer means that the electrolyte layer is a laminated structure of two or more layers.
  • an electrolyte layer having a different content of plasticizer as the solvent is laminated, or an electrolyte layer containing a polyvinyl acetal resin having a different amount of hydroxyl groups as the binder resin is laminated.
  • an electrolyte layer having a different content of plasticizer as the solvent is laminated, or an electrolyte layer containing a polyvinyl acetal resin having a different amount of hydroxyl groups as the binder resin is laminated.
  • the thickness of the electrolyte layer is not particularly limited, but a preferable lower limit is 0.1 mm and a preferable upper limit is 3.0 mm.
  • a preferable lower limit is 0.1 mm and a preferable upper limit is 3.0 mm.
  • the thickness of the electrolyte layer is 0.1 mm or more, the light transmittance can be easily changed by applying a voltage to the electrochromic layer, and when the thickness is 3.0 mm or less The rate of change of light transmittance when a voltage is applied to the layer can be increased.
  • a more preferable lower limit of the thickness of the electrolyte layer is 0.3 mm, and a more preferable upper limit is 1.0 mm.
  • the method for forming the electrolyte layer is not particularly limited.
  • a solution obtained by dissolving the supporting electrolyte salt in the solvent is prepared, and the obtained solution is mixed with the binder resin, and then the mixture is subjected to heat press etc.
  • a method of forming an electrolyte layer by a method, a method of extruding the mixture with an extruder to form an electrolyte layer, and the like can be mentioned.
  • the electrochromic compound contained in the above electrochromic layer is not particularly limited as long as it is a compound having electrochromic properties, and may be an inorganic compound or an organic compound, and is a mixed valence complex Also, halogenated phthalocyanine may be used.
  • having electrochromic means having the property in which the transmittance
  • Examples of the inorganic compound having electrochromic property include Mo 2 O 3 , Ir 2 O 3 , NiO, V 2 O 5 , WO 3 and the like.
  • Examples of the organic compound having the electrochromic property include polypyrrole compounds, polythiophene compounds, polyparaphenylene vinylene compounds, polyaniline compounds, polyacetylene compounds, polyethylenedioxythiophene compounds, metal phthalocyanine compounds, viologen compounds, viologen salt compounds, ferrocene compounds, A dimethyl terephthalate compound, a terephthal compound, a diethyl compound etc. are mentioned. Among them, polyacetylene compounds are preferable, and polyacetylene compounds having an aromatic side chain are more preferable.
  • Examples of the mixed valence complex having the electrochromic property include a Prussian blue-type complex (KFe [Fe (CN) 6 ]) and the like.
  • the halogenated phthalocyanine is not particularly limited, but preferably contains a metal atom, and is preferably a metal atom such as copper, cobalt, nickel, iron, beryllium, magnesium, manganese, zinc, platinum, palladium, lead, bismuth, silicon or oxygen It is more preferable to contain a metal atom such as vanadium or titanium having an axial ligand such as chlorine or chlorine, and it is further preferable to contain copper.
  • the halogenated phthalocyanine contains a metal atom, the time from the application of a voltage to the completion of the change in light transmittance is extremely short, and an electrochromic light control device excellent in light resistance can be obtained.
  • the halogenated phthalocyanine is preferably a fluorinated phthalocyanine, a chlorinated phthalocyanine or a brominated phthalocyanine, and is a copper-containing fluorinated phthalocyanine, a copper-containing chlorinated phthalocyanine or a copper-containing brominated phthalocyanine. Is more preferred.
  • the polyacetylene compound having an aromatic side chain has electrochromic properties and conductivity, and the formation of an electrochromic layer is easy. Therefore, if a polyacetylene compound having an aromatic side chain is used, an electrochromic layer having excellent light control performance can be easily formed. Moreover, the polyacetylene compound which has an aromatic side chain shows the change of an absorption characteristic, when a structure changes. As a result, since the absorption spectrum extends to the near infrared wavelength region, the electrochromic layer has excellent dimming performance over a wide wavelength region.
  • the polyacetylene compound which has the said aromatic side chain is not specifically limited,
  • the polyacetylene compound etc. which have a monosubstituted or disubstituted aromatic in a side chain are suitable.
  • the substituent constituting the aromatic side chain is not particularly limited, and examples thereof include phenyl, p-fluorophenyl, p-chlorophenyl, p-bromophenyl, p-iodophenyl, p-hexylphenyl, p-octylphenyl, p -Cyanophenyl, p-acetoxyphenyl, p-acetophenyl, biphenyl, o- (dimethylphenylsilyl) phenyl, p- (dimethylphenylsilyl) phenyl, o- (diphenylmethylsilyl), p- (diphenylmethylsilyl) phenyl O- (triphen
  • the electrochromic layer may contain a heat ray absorbent or an adhesive modifier.
  • the said heat ray absorbent can use the heat ray absorbent similar to the heat ray absorbent contained in the said electrolyte layer.
  • the adhesion regulator may be the same adhesion regulator as the adhesion regulator contained in the electrolyte layer.
  • the thickness of the electrochromic layer is not particularly limited, but a preferable lower limit is 0.05 ⁇ m and a preferable upper limit is 2 ⁇ m.
  • a preferable lower limit is 0.05 ⁇ m and a preferable upper limit is 2 ⁇ m.
  • the thickness of the electrochromic layer is 0.05 ⁇ m or more, the light transmittance can be easily changed by applying a voltage to the electrochromic layer, and when it is 2 ⁇ m or less, the light control sheet or The transparency of the interlayer for laminated glass is enhanced.
  • the more preferable lower limit of the thickness of the electrochromic layer is 0.1 ⁇ m, and the more preferable upper limit is 1 ⁇ m.
  • an adhesive layer partially containing a thermoplastic resin may be formed on the above-mentioned electrochromic layer.
  • the adhesion to the conductive film can be improved without impairing the electrochromic property.
  • the shape of the partially formed adhesive layer is not particularly limited, and may be mesh, linear, or spot.
  • the thermoplastic resin contained in the adhesive layer is, for example, polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, acrylonitrile-butadiene-styrene copolymer, Examples include polyester, polyether, polyamide, polycarbonate, polyacrylate, polymethacrylate, polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyvinyl acetal resin, ethylene-vinyl acetate copolymer and the like. Among them, polyvinyl acetal resin and ethylene-vinyl acetate copolymer are preferable, and polyvinyl acetal resin is more preferable.
  • the adhesive layer preferably further contains a plasticizer.
  • a plasticizer By containing a plasticizer, the adhesive layer becomes flexible, and the adhesion of the electrochromic layer to the conductive film can be further improved.
  • the adhesive layer preferably further contains a supporting electrolyte salt. By containing a supporting electrolyte salt, it is possible to impart ion conductivity to the adhesive layer and prevent the electrochromic property of the laminated glass from being lowered by the adhesive layer.
  • the plasticizer and the supporting electrolyte salt the same plasticizer and supporting electrolyte salt as those used for the electrolyte layer can be used.
  • the lower limit of the area of the adhesive layer with respect to the area of the electrochromic layer is 10%, and the upper limit is 90%.
  • the lower limit of the area of the adhesive layer is preferably 20%, and the upper limit is preferably 80%, and the lower limit is more preferably 30%, and the upper limit is preferably 70%.
  • the area X (%) of the adhesive layer is defined by the following equation.
  • the upper limit of the maximum thickness of the adhesive layer is 50 ⁇ m.
  • the maximum thickness of the adhesive layer refers to the maximum value of the adhesive layer thickness as measured by a 3D measurement laser microscope (LEXT OLS4000 manufactured by OLYMPAS) after the adhesive layer is formed.
  • the method for forming the adhesive layer is not particularly limited.
  • the thermoplastic resin dissolved in an appropriate organic solvent is applied on the electrochromic layer by screen printing and then dried, or dissolved in an appropriate organic solvent
  • the above-mentioned thermoplastic resin is applied onto the electrochromic layer by a spray irradiator and then dried.
  • the method for producing the light control sheet of the present invention is not particularly limited.
  • a solution in which the electrochromic compound is dissolved in an organic solvent is prepared, and the obtained solution is applied to at least one surface of the electrolyte layer. And methods of volatilizing the organic solvent.
  • An electrolyte membrane containing the binder resin, the supporting electrolyte salt, the solvent, and the ultraviolet absorber having a benzotriazole structure represented by the general formula (1) is also one of the present invention.
  • the electrolyte membrane of the present invention may be formed of only the above-mentioned electrolyte layer, or may be formed by laminating another layer on the above-mentioned electrolyte layer.
  • a light control body in which the light control sheet of the present invention is sandwiched between a pair of glass plates on which a conductive film is formed so as to be in contact with the respective conductive films is also one of the present invention.
  • the light control sheet of the present invention can be used as an intermediate film for laminated glass.
  • the interlayer film for laminated glass using the light control sheet is also one of the present invention.
  • the interlayer film for laminated glass of the present invention has, in addition to the constitution of the light control sheet of the present invention, an ultraviolet ray absorbing layer containing an ultraviolet ray absorbing agent, an infrared ray absorbing layer containing a heat ray absorbing agent, etc. May be
  • the laminated glass in which the intermediate film for laminated glass of the present invention is sandwiched between a pair of glass plates on which the conductive film is formed to be in contact with the respective conductive films is also one of the present invention.
  • the said glass plate can use the transparent plate glass generally used.
  • inorganic glass such as float sheet glass, polished sheet glass, template sheet glass, netted glass, lined sheet glass, colored sheet glass, heat ray absorbing glass, heat ray reflecting glass, green glass and the like can be mentioned.
  • organic plastic plates such as polyethylene terephthalate, polycarbonate and polyacrylate can also be used. Two or more types of glass plates may be used as the glass plate.
  • the light control body or laminated glass which clamped the light control sheet of this invention or the intermediate film for laminated glasses by transparent float plate glass and colored glass plates like green glass is mentioned.
  • the conductive film is preferably a transparent conductive film containing tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • the surface density of the light control body or the laminated glass of the present invention is not particularly limited, but is preferably 12 kg / m 2 or less.
  • the laminated glass of the present invention can be used as a side glass, a rear glass, and a roof glass when used as a glass for automobiles.
  • the light transmittance is changed by applying a voltage, and a light control sheet having excellent light resistance, which is difficult to yellow or fade even after long-term use, and using the light control sheet
  • the light control body, the intermediate film for laminated glass, and the laminated glass using the intermediate film for laminated glass can be provided.
  • Example 1 (1) Preparation of Electrolyte Layer To 2.38 g of triethylene glycol di-2-ethylhexanoate (3GO), 0.67 g of bis (trifluoromethanesulfonyl) imide lithium (LiTFSI) as a supporting electrolyte salt, 2 as an ultraviolet absorber 0.05 g of (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (manufactured by BASF, T-PS) was dissolved to prepare an electrolyte solution.
  • 3GO triethylene glycol di-2-ethylhexanoate
  • LiTFSI bis (trifluoromethanesulfonyl) imide lithium
  • 2 as an ultraviolet absorber
  • 2 0.05 g of (2-hydroxy-5-tert-butylphenyl) -2H-benzotriazole (manufactured by BASF, T-PS) was dissolved to prepare an electrolyte solution.
  • a resin composition was obtained by mixing the total amount of the obtained electrolyte solution, 5.00 g of polyvinyl butyral resin having an acetyl group content of 13 mol%, a hydroxyl group content of 22 mol%, and an average polymerization degree of 2300.
  • the obtained resin composition is sandwiched between polytetrafluoroethylene (PTFE) sheets, and pressed with a heat press at 150 ° C. and 100 kg / cm 2 for 5 minutes through a spacer with a thickness of 400 ⁇ m to a thickness of 400 ⁇ m.
  • An electrolyte layer was obtained.
  • Electrochromic Layer A solution was prepared by dissolving 0.03915 g of poly (9-ethynyl-10-n-octadecylphenanthrene) (ECP) in 1.305 g of toluene. This solution is coated on the obtained electrolyte layer using a bar coater so that the thickness after volatilization of toluene is 0.3 ⁇ m, and dried to form an electrochromic layer to obtain a light control sheet. Obtained.
  • ECP 9-ethynyl-10-n-octadecylphenanthrene
  • Example 2 A light control sheet is obtained in the same manner as in Example 1 except that the content of T-PS, which is an ultraviolet absorber containing no halogen atom, is 0.005 g, and an interlayer film for laminated glass and a laminated glass are obtained using this. Manufactured.
  • T-PS which is an ultraviolet absorber containing no halogen atom
  • Example 3 Example 1 was repeated except that 2- (3,5-Di-tert-amyl-2-hydroxyphenyl) -2H-benzotriazole (manufactured by BASF, T-328) was used as the ultraviolet absorber containing no halogen atom. In the same manner, a light control sheet was obtained, and this was used to manufacture an interlayer for laminated glass and laminated glass.
  • Example 4 As a UV absorber containing no halogen atom, except that 2- [2-Hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole (manufactured by BASF, T-234) was used. A light control sheet was obtained in the same manner as in Example 1, and an interlayer film for laminated glass and laminated glass were produced using this.
  • Example 5 A light control sheet was obtained in the same manner as in Example 1 except that the supporting electrolyte salt was changed to bis (trifluoromethanesulfonyl) imide potassium (KTFSI), and an interlayer film for laminated glass and a laminated glass were manufactured using this.
  • KTFSI bis (trifluoromethanesulfonyl) imide potassium
  • Example 6 A light control sheet was obtained in the same manner as in Example 1 except that the supporting electrolyte salt was changed to lithium perchlorate (LiClO 4 ), and an interlayer film for laminated glass and a laminated glass were manufactured using this.
  • the supporting electrolyte salt was changed to lithium perchlorate (LiClO 4 ), and an interlayer film for laminated glass and a laminated glass were manufactured using this.
  • Example 7 A light control sheet was obtained in the same manner as in Example 1 except that the electrochromic layer was formed using a Prussian blue-type complex (PB), and an interlayer film for laminated glass and a laminated glass were manufactured using this.
  • PB Prussian blue-type complex
  • Example 8 A light control sheet was obtained in the same manner as in Example 1 except that triethylene glycol dibutyrate (3 GB) was used instead of triethylene glycol di-2-ethylhexanoate (3GO), and the light control sheet was used An interlayer for glass and laminated glass were manufactured.
  • Example 9 A light control sheet is obtained in the same manner as in Example 8 except that the content of T-PS, which is a UV absorber containing no halogen atom, is changed to 0.005 g, and an interlayer film for laminated glass and laminated glass are used using this. Manufactured.
  • T-PS which is a UV absorber containing no halogen atom
  • Example 10 A light control sheet is obtained in the same manner as in Example 8 except that the content of T-PS which is a UV absorber containing no halogen atom is changed to 0.20 g, and an interlayer film for laminated glass and a laminated glass are obtained using this. Manufactured.
  • Example 11 A light control sheet is obtained in the same manner as in Example 8 except that the content of T-PS which is a UV absorber containing no halogen atom is changed to 0.50 g, and an interlayer film for laminated glass and a laminated glass are obtained using this. Manufactured.
  • Example 12 The polyvinyl butyral resin having an acetyl group content of 25 mol% and a hydroxyl group content of 22 mol% and an average polymerization degree of 3,000 was used instead of the polyvinyl butyral resin having an acetyl group content of 13 mol% and a hydroxyl group content of 22 mol% and an average polymerization degree of 2,300.
  • a light control sheet was obtained in the same manner as in Example 8, and an interlayer film for laminated glass and laminated glass were produced using this.
  • Example 13 Example instead of using a polyvinyl butyral resin having an acetyl group content of 6 mol%, a hydroxyl group content of 18 mol%, and an average polymerization degree of 2300 instead of the polyvinyl butyral resin having an acetyl group content of 13 mol% and a hydroxyl group content of 22 mol% A light control sheet was obtained in the same manner as 8 and was used to manufacture an interlayer for laminated glass and laminated glass.
  • Example 14 The polyvinyl butyral resin having an acetyl group content of 18 mol%, a hydroxyl group content of 11 mol%, and an average polymerization degree of 2300 was used instead of the polyvinyl butyral resin having an acetyl group content of 13 mol% and a hydroxyl group content of 22 mol%.
  • a light control sheet was obtained in the same manner as in Example 8, and an interlayer film for laminated glass and laminated glass were produced using this.
  • Example 1 A light control sheet was obtained in the same manner as in Example 1 except that a UV absorber containing no halogen atom (T-PS) was used, and an interlayer for laminated glass and a laminated glass were produced using this.
  • T-PS UV absorber containing no halogen atom
  • Example 6 It is carried out using 2,4-Dihydroxybenzophenone (manufactured by BASF, Uvinul 3000) having a benzophenone skeleton as a UV absorber, except that the blending amount of the UV absorber is 0.05 parts by weight with respect to 100 parts by weight of polyvinyl butyral resin.
  • a light control sheet was obtained in the same manner as in Example 1, and an interlayer film for laminated glass and laminated glass were produced using this.
  • haze value (Hz value) of the laminated glass was measured using a haze meter ("TC-H3PP type" manufactured by Tokyo Denshoku Co., Ltd.) according to JIS K 7105.
  • the laminated glass was irradiated with ultraviolet light (quartz glass mercury lamp, 750 W) for 3000 hours by a method according to JIS R 3205 using an ultraviolet irradiation device (“HLG-2S” manufactured by Suga Test Instruments Co., Ltd.).
  • the yellowness of the laminated glass after irradiation for 3000 hours of ultraviolet light is measured by a method according to JIS K 7105 using a color analyzer ("TC-1800 MK-II" manufactured by Tokyo Denshoku Co., Ltd.).
  • ⁇ Hz (Haze value after UV irradiation)-(Haze value before UV irradiation)
  • the light transmittance is changed by applying a voltage, and a light control sheet having excellent light resistance, which is difficult to yellow or fade even after long-term use, and using the light control sheet
  • the light control body, the intermediate film for laminated glass, and the laminated glass using the intermediate film for laminated glass can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、電圧を印加することにより光の透過率が変化し、かつ、長期の使用によっても黄変や退色し難く、耐光性に優れた調光シート、該調光シートを用いてなる調光体、合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することを目的とする。 本発明は、電解質層と、前記電解質層の少なくとも片面に形成されたエレクトロクロミック化合物を含有するエレクトロクロミック層を有する調光シートであって、前記電解質層は、バインダー樹脂、支持電解質塩、溶媒、及び、下記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有する調光シートである。 式(1)中、R、Rは、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表す。

Description

調光シート、調光体、合わせガラス用中間膜及び合わせガラス
本発明は、電圧を印加することにより光の透過率が変化し、かつ、長期の使用によっても黄変や退色し難く、耐光性に優れた調光シート、該調光シートを用いてなる調光体、合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスに関する。
電圧を印加することにより光の透過率が変化する調光体は、広く用いられている。この調光体を合わせガラス用中間膜として用いた合わせガラスを、自動車用窓ガラスや建築用窓ガラスに用いることが提案されている。このような合わせガラス用中間膜を用いれば、合わせガラスの光線透過率を制御して、車内や室内の温度を調整することができると考えられる。
上記調光体は、液晶材料を用いた調光体と、エレクトロクロミック化合物を用いた調光体とに大別される。エレクトロクロミック化合物を用いた調光体は、液晶材料を用いた調光体に比べて光散乱が少なく、偏光の影響を受けない等の優れた性質を有している。
エレクトロクロミック化合物を用いた調光体として、対向する一対の電極基板の間に、エレクトロクロミック層と電解質層とからなる調光シートが挟み込まれている調光体が提案されている。例えば、特許文献1及び特許文献2には、無機酸化物を含有するエレクトロクロミック層、イオン伝導層、無機酸化物を含有するエレクトロクロミック層の3層が順次積層された積層体が、2枚の導電性基板間に挟み込まれている調光体が開示されている。また、特許文献3及び特許文献4には、対向する一対の電極基板の間に、有機エレクトロクロミック材料を含有するエレクトロクロミック層と電解質層とが挟み込まれている調光体が開示されている。
特開2004-062030号公報 特開2005-062772号公報 特表2002-526801号公報 特表2004-531770号公報
従来公知の調光シートを合わせガラス用中間膜として用いた場合、長期間野外で用いる等、長期に渡って紫外線照射を受けたときに合わせガラス用中間膜が変色してしまうという問題があった。これに対して、紫外線吸収剤を調光シートに用いることが試みられた。しかしながら、調光シートに紫外線吸収剤を用いると、紫外線照射による黄変や退色を充分には防止しきれないことを見出した。さらに、紫外線吸収剤が黄変を引き起こす原因であることも見出した。
本発明は、電圧を印加することにより光の透過率が変化し、かつ、長期の使用によっても黄変や退色し難く、耐光性に優れた調光シート、該調光シートを用いてなる調光体、合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することを目的とする。
本発明は、電解質層と、前記電解質層の少なくとも片面に形成されたエレクトロクロミック化合物を含有するエレクトロクロミック層を有する調光シートであって、前記電解質層は、バインダー樹脂、支持電解質塩、溶媒、及び、下記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有する調光シートである。
Figure JPOXMLDOC01-appb-C000003
一般式(1)中、R、Rは、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表す。なお、RとRとは、同一であってもよいし、異なっていてもよい。
以下に本発明を詳述する。
本発明者は、鋭意検討の結果、紫外線吸収剤を電解質層に配合した場合に、電解質層に含まれる支持電解質塩と紫外線吸収剤とが相互作用することが、黄変の原因であり、紫外線照射による変色や退色を充分には防止できないことの原因であることを見出した。即ち、電解質層がハロゲン原子を含む紫外線吸収剤を含有する場合には、電解質層中の支持電解質塩に由来するカチオンやアニオンと、紫外線吸収剤のハロゲン原子との化学的な反応や相互作用が生じるため、電解質層が黄変すると考えられる。
そして本発明者は、更に鋭意検討の結果、上記一般式(1)で表される、ハロゲン原子を含まないベンゾトリアゾール構造を有する紫外線吸収剤を選択して用いた場合には、黄変が発生しにくく、かつ、紫外線照射による黄変や退色を充分に防止できることを見出し、本発明を完成するに至った。
本発明の調光シートは、電解質層と、該電解質層の少なくとも片面に形成されたエレクトロクロミック化合物を含有するエレクトロクロミック層とを有する。
上記電解質層は、イオンを伝導することにより上記エレクトロクロミック層に電圧を印加し、エレクトロクロミック層の光の透過率を変化させる役割を有する。
上記電解質層は、バインダー樹脂、支持電解質塩、溶媒、及び、上記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有する。上記電解質層が特定の紫外線吸収剤を含有することにより、本発明の調光シートは、長期の使用によっても黄変や退色し難く、耐光性に優れる。
上記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤は、例えば、2-(2hydroxy-5-tert-butylphenyl)-2H-benzotriazole(BASF社製、T-PS)、2-(3,5-Di-tert-amyl-2-hydroxyphenyl)-2H-benzotriazole(BASF社製、T-328)、2-[2-Hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole(BASF社製、T-234)、2-(2hydroxy-5-methylphenyl)-2H-benzotriazole(BASF社製、T-P)、2-[2-Hydroxy-5-tert-octylphenyl]-2H-benzotriazole(BASF社製、T-329)、2-[2-Hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole(BASF社製、T-900)等が挙げられる。
上記電解質層中における上記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤の配合量は特に限定されないが、上記バインダー樹脂100重量部に対する好ましい下限は0.05重量部、好ましい上限は10重量部である。上記紫外線吸収剤の配合量が0.05重量部以上であると、得られる調光シートの耐光性がより高くなり、長期の紫外線照射による黄変や退色をより一層防止することができる。上記紫外線吸収剤の配合量が10重量部以下であると、得られる調光シートの透明性が高くなる。上記紫外線吸収剤の配合量のより好ましい下限は0.1重量部、更に好ましい下限は0.5重量部、より好ましい上限は5重量部、更に好ましい上限は2重量部である。
上記一般式(1)中、R、Rは、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表す。
上記アルキル基の炭素数の好ましい下限は1であり、好ましい上限は10である。上記アルキル基は分岐構造を有するアルキル基であってもよく、直鎖構造を有するアルキル基であってもよい。上記アルキル基の炭素数のより好ましい下限は2、更に好ましい下限は3、特に好ましい下限は4、より好ましい上限は9、更に好ましい上限は8、特に好ましい上限は7である。上記アルキル基の炭素鎖は直鎖構造であってもよく、分岐構造であってもよい。長期の使用によっても黄変や退色し難く、耐光性に優れることから、上記アルキル基の炭素鎖は分岐構造を有することが好ましい。
上記アルキル基は、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、i-ペンチル基、sec-ペンチル基、n-ヘキシル基、i-ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
上記シクロアルキル基は未置換であってもよく、1以上の基で置換されていてもよい。上記シクロアルキル基の環構造を形成する炭素数のより好ましい下限は3であり、更に好ましい下限は5、特に好ましい下限は6であり、より好ましい上限は12であり、更に好ましい上限は10、特に好ましい上限は8である。
上記シクロアルキル基は、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等が挙げられる。
上記アリール基の炭素数の好ましい下限は6であり、好ましい上限は14である。
上記アリール基は、フェニル基、トリル基、キシリル基、ビフェニル基、ナフチル基、アントリル基、フェナントリル基、α,α-ジメチルベンジルフェニル基等が挙げられる。
上記アラルキル基の炭素数の好ましい下限は7であり、好ましい上限は11である。上記アラルキル基は、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、2-フェニルプロピル基、3-フェニルプロピル基、1-ナフチルメチル基、2-ナフチルメチル基等が挙げられる。
即ち、上記一般式(1)中、Rは、炭素数が1~10のアルキル基、環を形成する炭素数が3~12のシクロアルキル基、炭素数が6~14のアリール基、又は炭素数が7~11のアラルキル基であることが好ましく、Rは炭素数が1~10のアルキル基、環を形成する炭素数が3~12のシクロアルキル基、炭素数が6~14のアリール基、又は炭素数が7~11のアラルキル基を表すことが好ましい。
なお、RとRとは、同一であってもよいし、異なっていてもよい。
上記電解質層は、更に、下記一般式(2)で表される化合物又は下記一般式(3)で表される化合物を含有することが好ましい。上記電解質層に上記特定の構造を有する化合物を添加することにより、更に応答性が高く、電圧を印加してから光の透過率の変化が完了するまでの時間が極めて短い調光体が得られる。
Figure JPOXMLDOC01-appb-C000004
一般式(2)中、n=2~4の整数を表し、Rは水素原子、炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基を表し、Rはエチレン基又はプロピレン基を表し、Rは水素原子、炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基を表し、少なくともR又はRの何れかはアシル基を有する。
Figure JPOXMLDOC01-appb-C000005
一般式(3)中、Rは炭素数2~8であり、酸素原子を有する有機基を表し、Rは炭素数2~8のアルキレン基又は炭素数6~12のアリーレン基を表し、Rは炭素数2~8であり、酸素原子を有する有機基を表す。R及びRは同一であってもよく、異なっていてもよい。
上記一般式(2)で表される化合物又は上記一般式(3)で表される化合物は、単独で用いてもよく、併用してもよい。なかでも、耐久性が向上し、かつ、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られることから、上記一般式(2)で表される化合物を含有することが好ましい。
上記一般式(2)中、Rは水素原子、炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基を表す。なかでも、上記バインダー樹脂との相溶性がより向上することから、Rは炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基であることが好ましく、炭素数1~7の有機基を有するアシル基であることがより好ましく、炭素数1~7のアルキル基を有するアシル基であることが更に好ましい。
上記一般式(2)中のRを表す炭素数1~7の有機基を有するアシル基における、有機基の炭素数の好ましい下限は2、好ましい上限は6である。上記炭素数が2以上であると、電解質層の耐久性が向上し、6以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は3、より好ましい上限は5であり、更に好ましい上限は4である。
上記炭素数1~7の有機基は、直鎖構造を有する有機基、又は、分岐構造を有する有機基であってもよく、直鎖構造を有するアルキル基、又は、分岐構造を有するアルキル基であることが好ましい。上記分岐構造を有する有機基又は分岐構造を有するアルキル基において、有機基又はアルキル基の分岐鎖の炭素数は3以下であることが好ましく、2以下であることがより好ましく、1以下であることが更に好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~7の有機基が直鎖構造を有する場合は、上記炭素数1~7の有機基を有するアシル基は、炭素数1~7であり、かつ、直鎖構造を有する有機基を有するアシル基、又は、炭素数1~7であり、かつ、直鎖構造を有するアルキル基を有するアシル基であることが好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~7の有機基が分岐構造を有する場合は、上記炭素数1~7の有機基を有するアシル基は、炭素数1~7であり、かつ、分岐構造を有する有機基を有するアシル基、又は、炭素数1~7であり、かつ、分岐構造を有するアルキル基を有するアシル基であることが好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が3以下であるアルキル基を有するアシル基であることがより好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が2以下であるアルキル基を有するアシル基であることが更に好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が1以下であるアルキル基を有するアシル基であることが特に好ましい。
なお、上記炭素数1~7の有機基を有するアシル基とは、該有機基の炭素数が1~7であることを意味し、上記炭素数1~7のアルキル基を有するアシル基とは、該アルキル基の炭素数が1~7であることを意味する。
上記一般式(2)中のRが炭素数1~8の有機基である場合、上記バインダー樹脂との相溶性がより向上することから、上記炭素数1~8の有機基は炭素数1~8のアルキル基であることが好ましい。
上記一般式(2)中のRを表す炭素数1~8の有機基における炭素数の好ましい下限は2、好ましい上限は7である。上記炭素数が2以上であると、電解質層の耐久性が向上し、7以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は3、より好ましい上限は6であり、更に好ましい下限は4、更に好ましい上限は5である。
上記炭素数1~8の有機基は、直鎖構造を有する有機基、又は、分岐構造を有する有機基であってもよく、直鎖構造を有するアルキル基、又は、分岐構造を有するアルキル基であることが好ましい。上記分岐構造を有する有機基又は分岐構造を有するアルキル基において、有機基又はアルキル基の分岐鎖の炭素数は3以下であることが好ましく、2以下であることがより好ましく、1以下であることが更に好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~8の有機基が直鎖構造を有する場合は、上記炭素数1~8の有機基は、炭素数1~8であり、かつ、直鎖構造を有するアルキル基であることが好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~8の有機基が分岐構造を有する場合は、上記炭素数1~8の有機基は、炭素数1~8であり、かつ、分岐構造を有するアルキル基であることが好ましく、炭素数1~8であり、分岐構造を有し、かつ、分岐鎖の炭素数が3以下であるアルキル基であることがより好ましく、炭素数1~8であり、分岐構造を有し、かつ、分岐鎖の炭素数が2以下であるアルキル基であることが更に好ましく、炭素数1~8であり、分岐構造を有し、かつ、分岐鎖の炭素数が1以下であるアルキル基であることが特に好ましい。
上記一般式(2)中、Rはエチレン基又はプロピレン基を表す。上記プロピレン基はn-プロピレン基であってもよく、イソプロピレン基であってもよい。電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られることから、Rはエチレン基であることが好ましい。
上記一般式(2)中、Rは水素原子、炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基を表す。なかでも、上記バインダー樹脂との相溶性がより向上することから、Rは炭素数1~7の有機基を有するアシル基又は炭素数1~8の有機基であることが好ましく、炭素数1~7の有機基を有するアシル基であることがより好ましく、炭素数1~7のアルキル基を有するアシル基であることが更に好ましい。
上記一般式(2)中のRを表す炭素数1~7の有機基を有するアシル基における、有機基の炭素数の好ましい下限は2、好ましい上限は6である。上記炭素数が2以上であると、電解質層の耐久性が向上し、6以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は3、より好ましい上限は5であり、更に好ましい上限は4である。
上記炭素数1~7の有機基は、直鎖構造を有する有機基、又は、分岐構造を有する有機基であってもよく、直鎖構造を有するアルキル基、又は、分岐構造を有するアルキル基であることが好ましい。上記分岐構造を有する有機基又は分岐構造を有するアルキル基において、有機基又はアルキル基の分岐鎖の炭素数は3以下であることが好ましく、2以下であることがより好ましく、1以下であることが更に好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~7の有機基が直鎖構造を有する場合は、上記炭素数1~7の有機基を有するアシル基は、炭素数1~7であり、かつ、直鎖構造を有する有機基を有するアシル基、又は、炭素数1~7であり、かつ、直鎖構造を有するアルキル基を有するアシル基であることが好ましい。
電圧を印加してから光透過率の変化が完了するまでの時間が更に一層短い調光体が得られることから、上記炭素数1~7の有機基が分岐構造を有する場合は、上記炭素数1~7の有機基を有するアシル基は、炭素数1~7であり、かつ、分岐構造を有する有機基を有するアシル基、又は、炭素数1~7であり、かつ、分岐構造を有するアルキル基を有するアシル基であることが好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が3以下であるアルキル基を有するアシル基であることがより好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が2以下であるアルキル基を有するアシル基であることが更に好ましく、炭素数1~7であり、分岐構造を有し、かつ、分岐鎖の炭素数が1以下であるアルキル基を有するアシル基であることが特に好ましい。
なお、上記炭素数1~7の有機基を有するアシル基とは、該有機基の炭素数が1~7であることを意味し、上記炭素数1~7のアルキル基を有するアシル基とは、該アルキル基の炭素数が1~7であることを意味する。
上記一般式(2)において、少なくともR又はRの何れかはアシル基を有する。これにより、上記バインダー樹脂との高い相溶性が得られる。なかでも、Rは炭素数1~7のアルキル基を有するアシル基を表し、Rはエチレン基又はプロピレン基を表し、Rは炭素数1~7のアルキル基を有するアシル基を表すことがより好ましい。
上記一般式(2)で表される化合物の具体例を下記式(2-1)~(2-28)に示す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
上記一般式(3)中、Rは炭素数2~8であり、酸素原子を有する有機基を表す。
上記一般式(3)中のRを表す炭素数2~8であり、酸素原子を有する有機基の炭素数の好ましい下限は3、好ましい上限は7である。上記炭素数が3以上であると、電解質層の耐久性が向上し、7以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は4、より好ましい上限は6である。
上記一般式(3)中、Rは炭素数2~8のアルキレン基又は炭素数6~12のアリーレン基を表す。なかでも、上記バインダー樹脂との相溶性が更に向上することから、Rは炭素数2~8のアルキレン基であることが好ましい。
上記一般式(3)中のRを表す炭素数2~8のアルキレン基の炭素数の好ましい下限は3、好ましい上限は7である。上記炭素数が3~7であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は4、より好ましい上限は6である。
上記一般式(3)中のRを表す炭素数6~12のアリーレン基の炭素数の好ましい上限は10である。上記炭素数が10以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい上限は8である。
上記一般式(3)中、Rは炭素数2~8であり、酸素原子を有する有機基を表す。
上記一般式(3)中のRを表す炭素数2~8であり、酸素原子を有する有機基の炭素数の好ましい下限は3、好ましい上限は7である。上記炭素数が3以上であると、電解質層の耐久性が向上し、7以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより短い調光体が得られる。上記炭素数のより好ましい下限は4、より好ましい上限は6である。
上記一般式(3)で表される化合物の具体例を下記式(3-1)に示す。
Figure JPOXMLDOC01-appb-C000009
上記バインダー樹脂は特に限定されないが、熱可塑性樹脂であることが好ましい。
上記熱可塑性樹脂は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-六フッ化プロピレン共重合体、ポリ三フッ化エチレン、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエステル、ポリエーテル、ポリアミド、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体等が挙げられる。なかでも、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体が好ましく、透明性が高い電解質層が得られることからポリビニルアセタール樹脂がより好ましく、ポリビニルブチラール樹脂であることが更に好ましい。
上記ポリビニルアセタール樹脂は、アセチル基量が15mol%以下であることが好ましい。上記ポリビニルアセタール樹脂のアセチル基量が15mol%を超えると、電解質層が白化することがある。
上記ポリビニルアセタール樹脂は水酸基量が30mol%以下であることが好ましい。上記ポリビニルアセタール樹脂の水酸基量が30mol%を超えると、上記溶媒との相溶性が低下し、電解質層の透明性が低下することがある。
なお、上記アセチル基量及び上記水酸基量はJIS K 6728に準拠して、滴定法により求めることができる。
上記ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドによりアセタール化することで得られる。上記アルデヒドは炭素数4又は5のアルデヒドであることが好ましい。
上記ポリビニルアルコールの平均重合度の好ましい下限は500、好ましい上限は5000である。上記ポリビニルアルコールの平均重合度が500以上であると、調光体の耐貫通性が高くなる。上記ポリビニルアルコールの平均重合度が5000以下であると、電圧を印加してから光透過率の変化が完了するまでの時間がより一層短くなる。上記ポリビニルアルコールの平均重合度は、GPC法(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算により求めた上記ポリビニルアルコールの重量平均分子量をポリビニルアルコール1セグメント当りの分子量で除して求められる。GPC法によってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
上記電解質層が上記一般式(2)で表される化合物又は上記一般式(3)で表される化合物を含有する場合には、上記一般式(2)で表される化合物及び上記一般式(3)で表される化合物が上記電解質層から析出することを防止できることから、上記ポリビニルアセタール樹脂は、アセチル基量が5モル%以上であるポリビニルアセタール樹脂(以下、「ポリビニルアセタール樹脂A」ともいう。)、アセタール化度が70~85モル%であるポリビニルアセタール樹脂(以下、「ポリビニルアセタール樹脂B」ともいう。)、又は、炭素数が6以上のアルデヒドを用いてポリビニルアルコールをアセタール化することにより得られるポリビニルアセタール樹脂(以下、「ポリビニルアセタール樹脂C」ともいう。)であることが好ましい。
上記ポリビニルアセタール樹脂Aのアセチル基量の好ましい下限は6モル%、好ましい上限は30モル%である。上記アセチル基量が6モル%以上であると、上記一般式(2)で表される化合物及び上記一般式(3)で表される化合物が上記電解質層から析出することをより一層防止することができる。上記アセチル基量が30モル%以下であると、上記ポリビニルアセタール樹脂Aの製造効率を高めることができる。上記アセチル基量のより好ましい下限は8モル%、より好ましい上限は28モル%であり、更に好ましい下限は10モル%、更に好ましい上限は25モル%であり、特に好ましい下限は12モル%、特に好ましい上限は23モル%である。
上記ポリビニルアセタール樹脂Aは、アセタール化度の好ましい下限が50モル%、好ましい上限が80モル%である。上記アセタール化度が50モル%以上であると、上記一般式(2)で表される化合物及び上記式(3)で表される化合物が上記電解質層から析出することを更に一層防止することができる。上記アセタール化度が80モル%以下であると、上記ポリビニルアセタール樹脂Aの製造効率を高めることができる。上記アセタール化度のより好ましい下限は55モル%、より好ましい上限は78モル%であり、更に好ましい下限は60モル%、更に好ましい上限は76モル%であり、特に好ましい下限は65モル%、特に好ましい上限は74モル%である。
上記ポリビニルアセタール樹脂Aは、ポリビニルブチラール樹脂であることが好ましい。
上記ポリビニルアセタール樹脂Bのアセタール化度の好ましい下限は71モル%、好ましい上限は84モル%である。上記アセタール化度が71モル%以上であると、上記一般式(2)で表される化合物及び上記一般式(3)で表される化合物が上記電解質層から析出することを更に一層防止することができる。上記アセタール化度が84モル%以下であると、上記ポリビニルアセタール樹脂Bの製造効率を高めることができる。上記アセタール化度のより好ましい下限は72モル%、より好ましい上限は83モル%であり、更に好ましい下限は73モル%、更に好ましい上限は82モル%であり、特に好ましい下限は74モル%、特に好ましい上限は81モル%である。
上記ポリビニルアセタール樹脂Bは、アセチル基量の好ましい下限が0.1モル%、好ましい上限が20モル%である。上記アセチル基量が0.1モル%以上であると、上記一般式(2)で表される化合物及び上記一般式(3)で表される化合物が上記電解質層から析出することを更に一層防止することができる。上記アセチル基量が20モル%以下であると、上記ポリビニルアセタール樹脂Bの製造効率を高めることができる。上記アセチル基量のより好ましい下限は0.5モル%、より好ましい上限は15モル%であり、更に好ましい下限は0.8モル%、更に好ましい上限は8モル%であり、特に好ましい下限は1モル%、特に好ましい上限は7モル%である。
上記ポリビニルアセタール樹脂Bは、ポリビニルブチラール樹脂であることが好ましい。
上記ポリビニルアセタール樹脂A及びポリビニルアセタール樹脂Bは、ポリビニルアルコールをアルデヒドによりアセタール化することで得られる。上記アルデヒドは炭素数1~10のアルデヒドであることが好ましく、炭素数4又は5のアルデヒドであることがより好ましい。
上記ポリビニルアセタール樹脂Cは、炭素数が6以上のアルデヒドを用いてポリビニルアルコールをアセタール化することにより得られる。上記炭素数が6以上のアルデヒドは特に限定されないが、例えば、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、又は、n-デシルアルデヒド等が挙げられる。
上記ポリビニルアセタール樹脂Cは、アセタール化度の好ましい下限が50モル%、好ましい上限が80モル%である。上記アセタール化度が50モル%以上であると、上記一般式(2)で表される化合物及び上記一般式(3)で表される化合物が上記電解質層から析出することを更に一層防止することができる。上記アセタール化度が80モル%以下であると、上記ポリビニルアセタール樹脂Cの製造効率を高めることができる。上記アセタール化度のより好ましい下限は55モル%、より好ましい上限が78モル%であり、更に好ましい下限は60モル%、更に好ましい上限は76モル%であり、特に好ましい下限は65モル%、特に好ましい上限は74モル%である。
上記支持電解質塩は特に限定されず、リチウム塩、カリウム塩又はナトリウム塩等のアルカリ金属塩であることが好ましい。上記アルカリ金属塩は、無機酸とアルカリ金属の塩又は有機酸とアルカリ金属の塩であることが好ましい。例えば、上記無機酸とアルカリ金属の塩として、無機酸アニオンリチウム塩、無機酸アニオンカリウム塩、又は、無機酸アニオンナトリウム塩等が挙げられ、上記有機酸とアルカリ金属の塩として、有機酸アニオンリチウム塩、有機酸アニオンカリウム塩、又は、有機酸アニオンナトリウム塩等が挙げられる。
なかでも、上記支持電解質塩はリチウム塩であることが好ましく、過塩素酸リチウム、ホウフッ化リチウム、リンフッ化リチウム等の無機酸アニオンリチウム塩、又は、トリフルオロメタンスルホン酸リチウム、ビストリフルオロメタンスルホン酸イミドリチウム等の有機酸アニオンリチウム塩であることがより好ましい。
上記支持電解質塩は、アンモニウムカチオンと、アニオンとの塩であってもよい。
上記アンモニウムカチオンは特に限定されず、例えば、テトラエチルアンモニウム、トリメチルエチルアンモニウム、メチルプロピルピロリジニウム、メチルブチルピロリジニウム、メチルプロピルピペリジニウム、メチルブチルピペリジニウム等のアルキルアンモニウムカチオンや、エチルメチルイミダゾリウム、ジメチルエチルイミダゾリウム、メチルピリジニウム、エチルピリジニウム、プロピルピリジニウム、ブチルピリジニウム等が挙げられる。
上記アニオンは特に限定されず、過塩素酸アニオン、ホウフッ化アニオン、リンフッ化アニオン、トリフルオロメタンスルホン酸アニオン、ビストリフルオロメタンスルホン酸イミドアニオン等が挙げられる。
上記電解質層中における上記支持電解質塩の配合量は特に限定されないが、上記バインダー樹脂100重量部に対する好ましい下限は3重量部、好ましい上限は60重量部である。上記支持電解質塩の配合量が3~60重量部であると、電圧を印加してから光透過率の変化が完了するまでの時間がより一層短くなる。上記支持電解質塩の配合量のより好ましい下限は10重量部、更に好ましい下限は20重量部であり、より好ましい上限は50重量部、更に好ましい上限は40重量部である。
上記溶媒は特に限定されず、例えば、アセトニトリル、ニトロメタン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン等のエステル類や、テトラヒドロフラン、2-メチルテトラヒドロフラン等の置換テトラヒドロフラン類や、1,3-ジオキソラン、4,4-ジメチル-1,3-ジオキソラン、t-ブチルエーテル、イソブチルエーテル、1,2-ジメトキシエタン、1,2-エトキシメトキシエタン等のエーテル類や、エチレングリコール、ポリエチレングリコールスルホラン、3-メチルスルホラン、蟻酸メチル、酢酸メチル、N-メチルピロリドン、ジメチルホルムアミド等の有機溶媒が挙げられる。
上記溶媒は、可塑剤であってもよい。可塑剤を上記溶媒として用いることにより、上記電解質層に柔軟性を付与することができる。
上記可塑剤は特に限定されず、例えば、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)、テトラエチレングリコールジ-2-エチルヘキサノエート(4GO)、ジヘキシルアジペート(DHA)等が挙げられる。
上記電解質層中における溶媒の配合量は特に限定されないが、上記バインダー樹脂100重量部に対する好ましい下限は30重量部、好ましい上限は150重量部である。上記溶媒の配合量が30重量部以上であると、電圧を印加してから光透過率の変化が完了するまでの時間がより一層短くなる。上記溶媒の配合量が150重量部以下であると、調光体の耐貫通性が高くなる。上記溶媒の配合量のより好ましい下限は50重量部、より好ましい上限は100重量部である。
上記電解質層は熱線吸収剤を含有してもよい。
上記熱線吸収剤は、赤外線を遮蔽する性能を有すれば特に限定されないが、錫ドープ酸化インジウム微粒子、アンチモンドープ酸化錫微粒子、亜鉛以外の元素がドープされた酸化亜鉛微粒子、六ホウ化ランタン微粒子、アンチモン酸亜鉛微粒子、及び、フタロシアニン構造を有する赤外線吸収剤からなる群より選択される少なくとも1種が好適である。
上記電解質層は接着力調整剤を含有してもよい。
上記接着力調整剤は、例えば、アルカリ金属塩、アルカリ土類金属塩等が挙げられる。なかでも、炭素数2~16のカルボン酸のアルカリ金属塩及びアルカリ土類金属塩が好適であり、具体的には例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチルブタン酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム、2-エチルヘキサン酸カリウム等が挙げられる。これらの接着力調整剤は単独で用いられてもよく、併用されてもよい。電解質層にバインダー樹脂としてポリビニルアセタール樹脂を含有する場合、電解質層は接着力調整剤を含有することが好ましい。
上記電解質層は単層構造であってもよく、多層構造であってもよい。上記電解質層が多層構造であるとは、上記電解質層が2層以上積層された構造であることを意味する。
上記電解質層が多層構造である場合、例えば、上記溶媒として可塑剤の含有量の異なる電解質層を積層したり、上記バインダー樹脂として水酸基量の異なるポリビニルアセタール樹脂を含有する電解質層を積層したりすることにより、得られる調光体及び合わせガラスの遮音性等を向上させることができる。
上記電解質層の厚さは特に限定されないが、好ましい下限は0.1mm、好ましい上限は3.0mmである。上記電解質層の厚さが0.1mm以上であると、上記エレクトロクロミック層に電圧を印加することにより光の透過率が容易に変化させることができ、3.0mm以下であると、上記エレクトロクロミック層に電圧を印加した場合の光の透過率の変化速度を高くすることができる。上記電解質層の厚さのより好ましい下限は0.3mm、より好ましい上限は1.0mmである。
上記電解質層を形成する方法は特に限定されず、例えば、上記溶媒に上記支持電解質塩を溶解した溶液を調製し、得られた溶液を上記バインダー樹脂と混合した後、該混合物を熱プレス等の方法により電解質層を形成する方法や、該混合物を押出機により押出成形し電解質層を形成する方法等が挙げられる。
上記エレクトロクロミック層に含有されるエレクトロクロミック化合物は、エレクトロクロミック性を有する化合物であれば特に限定されず、無機化合物であってもよく、有機化合物であってもよく、混合原子価錯体であってもよく、ハロゲン化フタロシアニンでもよい。なお、エレクトロクロミック性を有するとは、電圧を印加することにより光の透過率が変化する性質を有することを意味する。
上記エレクトロクロミック性を有する無機化合物は、例えば、Mo、Ir、NiO、V、WO等が挙げられる。
上記エレクトロクロミック性を有する有機化合物は、例えば、ポリピロール化合物、ポリチオフェン化合物、ポリパラフェニレンビニレン化合物、ポリアニリン化合物、ポリアセチレン化合物、ポリエチレンジオキシチオフェン化合物、金属フタロシアニン化合物、ビオロゲン化合物、ビオロゲン塩化合物、フェロセン化合物、テレフタル酸ジメチル化合物、テレフタル化合物、ジエチル化合物等が挙げられる。なかでも、ポリアセチレン化合物が好ましく、芳香族側鎖を有するポリアセチレン化合物がより好ましい。
上記エレクトロクロミック性を有する混合原子価錯体は、例えばプルシアンブルー型錯体(KFe[Fe(CN)])等が挙げられる。
上記ハロゲン化フタロシアニンは特に限定されないが、金属原子を含有することが好ましく、銅、コバルト、ニッケル、鉄、ベリリウム、マグネシウム、マンガン、亜鉛、白金、パラジウム、鉛、ビスマス、ケイ素等の金属原子や酸素や塩素等の軸配位子を持つバナジウムやチタン等の金属原子を含有することがより好ましく、銅を含有することが更に好ましい。上記ハロゲン化フタロシアニンが金属原子を含有することにより、電圧を印加してから光透過率の変化が完了するまでの時間が極めて短く、耐光性に優れるエレクトロクロミック調光素子が得られる。上記ハロゲン化フタロシアニンの中心金属として、上記金属原子を含有することが好ましく、上記銅を含有することがより好ましい。また、上記ハロゲン化フタロシアニンは、フッ素化フタロシアニン、塩素化フタロシアニン又は臭素化フタロシアニンであることが好ましく、銅を含有するフッ素化フタロシアニン、銅を含有する塩素化フタロシアニン又は銅を含有する臭素化フタロシアニンであることがより好ましい。
上記芳香族側鎖を有するポリアセチレン化合物は、エレクトロクロミック性と導電性とを有し、かつ、エレクトロクロミック層の形成が容易である。従って、芳香族側鎖を有するポリアセチレン化合物を用いれば、優れた調光性能を有するエレクトロクロミック層を容易に形成できる。また、芳香族側鎖を有するポリアセチレン化合物は、構造が変化することにより、吸収特性の変化を示す。その結果、吸収スペクトルが近赤外線の波長領域に及ぶため、エレクトロクロミック層は広い波長領域について優れた調光性能を有する。
上記芳香族側鎖を有するポリアセチレン化合物は特に限定されないが、例えば、一置換又は二置換の芳香族を側鎖に有するポリアセチレン化合物等が好適である。
上記芳香族側鎖を構成する置換基は特に限定されないが、例えば、フェニル、p-フルオロフェニル、p-クロロフェニル、p-ブロモフェニル、p-ヨードフェニル、p-ヘキシルフェニル、p-オクチルフェニル、p-シアノフェニル、p-アセトキシフェニル、p-アセトフェニル、ビフェニル、o-(ジメチルフェニルシリル)フェニル、p-(ジメチルフェニルシリル)フェニル、o-(ジフェニルメチルシリル)、p-(ジフェニルメチルシリル)フェニル、o-(トリフェニルシリル)フェニル、p-(トリフェニルシリル)フェニル、o-(トリルジメチルシリル)フェニル、p-(トリルジメチルシリル)フェニル、o-(ベンジルジメチルシリル)フェニル、p-(ベンジルジメチルシリル)フェニル、o-(フェネチルジメチルシリル)フェニル、p-(フェネチルジメチルシリル)フェニル等のフェニル基や、ビフェニル基や、1-ナフチル、2-ナフチル、1-(4-フルオロ)ナフチル、1-(4-クロロ)ナフチル、1-(4-ブロモ)ナフチル、1-(4-ヘキシル)ナフチル、1-(4-オクチル)ナフチル等のナフチル基や、ナフタレン基や、1-アントラセン、1-(4-クロロ)アントラセン、1-(4-オクチル)アントラセン等のアントラセン基や、1-フェナントレン等のフェナントレン基や、1-フルオレン等のフルオレン基や、1-ペリレン等のペリレン基等が挙げられる。
上記エレクトロクロミック層は、熱線吸収剤や接着力調整剤を含有してもよい。上記熱線吸収剤は、上記電解質層に含有される熱線吸収剤と同様の熱線吸収剤を用いることができる。上記接着力調整剤は、上記電解質層に含有される接着力調整剤と同様の接着力調整剤を用いることができる。
上記エレクトロクロミック層の厚さは特に限定されないが、好ましい下限は0.05μm、好ましい上限は2μmである。上記エレクトロクロミック層の厚さが0.05μm以上であると、上記エレクトロクロミック層に電圧を印加することにより光の透過率を容易に変化させることができ、2μm以下であると、調光シート又は合わせガラス用中間膜の透明性が高くなる。上記エレクトロクロミック層の厚さのより好ましい下限は0.1μm、より好ましい上限は1μmである。
本発明の調光シートは、上記エレクトロクロミック層上に部分的に熱可塑性樹脂を含有する接着層が形成されていてもよい。上記接着層を部分的に形成することにより、エレクトロクロミック性を損なうことなく、導電膜に対する密着性を向上させることができる。
上記部分的に形成された接着層の形状は特に限定されず、網目状、線状又は斑点状等が挙げられる。
上記接着層に含有される熱可塑性樹脂は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ化ビニリデン-六フッ化プロピレン共重合体、ポリ三フッ化エチレン、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエステル、ポリエーテル、ポリアミド、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体等が挙げられる。なかでも、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体が好ましく、ポリビニルアセタール樹脂がより好ましい。
上記接着層は、更に、可塑剤を含有することが好ましい。可塑剤を含有することにより、上記接着層が柔軟になり、上記エレクトロクロミック層の導電膜に対する密着性をより向上させることができる。
上記接着層は、更に、支持電解質塩を含有することが好ましい。支持電解質塩を含有することにより、上記接着剤層にイオン伝導性が付与され、上記接着剤層によって合わせガラスのエレクトロクロミック性が低下するのを防止することができる。
上記可塑剤、支持電解質塩は、上記電解質層に用いるのと同様の可塑剤、支持電解質塩を用いることができる。
上記エレクトロクロミック層の面積に対する上記接着層の面積の下限は10%、上限は90%である。上記接着層の面積が10%以上であると、充分な密着性が得られ、90%以下であると、エレクトロクロミック性が高くなり、電圧を印加することにより透過率を容易に変化させることができる。上記接着層の面積の好ましい下限は20%、好ましい上限は80%であり、より好ましい下限は30%、より好ましい上限は70%である。
なお、接着層の面積X(%)は次式で定義される。すなわち、接着層形成後のエレクトロクロミック層を光学顕微鏡で観察した時の、1平方ミリメートル当たりの接着層の存在する面積をA(平方ミリメートル)、接着層の存在しない面積をB(平方ミリメートル)とした時にX=A/(A+B)で表される。
上記接着層の最大厚みの上限は50μmである。上記接着層の最大厚みが50μm以下であると、エレクトロクロミック性が高くなり、電圧を印加することにより光の透過率を容易に変化させることができる。上記接着層の最大厚みの好ましい上限は20μmである。
なお、上記接着層の最大厚さとは、接着層形成後に接着層を3D測定レーザー顕微鏡(OLYMPAS社製 LEXT OLS4000)により測定した時の接着層厚みの最大値のことをいう。
上記接着層を形成する方法は特に限定されず、例えば、適当な有機溶剤に溶解した上記熱可塑性樹脂をスクリーン印刷によりエレクトロクロミック層上に塗布した後、乾燥する方法や、適当な有機溶剤に溶解した上記熱可塑性樹脂をスプレー照射機によりエレクトロクロミック層上に塗布した後、乾燥する方法等が挙げられる。
本発明の調光シートを製造する方法は特に限定されず、例えば、上記エレクトロクロミック化合物を有機溶剤に溶解させた溶液を調製し、得られた溶液を上記電解質層の少なくとも一方の面に塗布し、有機溶剤を揮発させる方法が挙げられる。
上記バインダー樹脂、上記支持電解質塩、上記溶媒、及び、上記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有する電解質膜もまた、本発明の1つである。
本発明の電解質膜は、上記電解質層のみで形成されてもよく、上記電解質層に他の層を積層することにより形成されてもよい。
本発明の調光シートが、導電膜が形成されている一対のガラス板の間に、それぞれの導電膜と接するように挟み込まれている調光体もまた、本発明の1つである。
本発明の調光シートは、合わせガラス用中間膜として使用することができる。上記調光シートを用いる合わせガラス用中間膜もまた、本発明の1つである。
本発明の合わせガラス用中間膜は、本発明の調光シートの構成以外に、必要に応じて、紫外線吸収剤を含有する紫外線吸収層や、熱線吸収剤を含有する赤外線吸収層等を有してもよい。
本発明の合わせガラス用中間膜が、導電膜が形成されている一対のガラス板の間に、それぞれの導電膜と接するように挟み込まれている合わせガラスもまた、本発明の1つである。
上記ガラス板は、一般に使用されている透明板ガラスを使用することができる。例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入りガラス、線入り板ガラス、着色された板ガラス、熱線吸収ガラス、熱線反射ガラス、グリーンガラス等の無機ガラスが挙げられる。また、ポリエチレンテレフタレート、ポリカーボネート、ポリアクリレート等の有機プラスチックス板を用いることもできる。
上記ガラス板として、2種類以上のガラス板を用いてもよい。例えば、透明フロート板ガラスと、グリーンガラスのような着色されたガラス板とで、本発明の調光シート又は合わせガラス用中間膜を挟持した調光体又は合わせガラスが挙げられる。また、上記ガラス板として、2種以上の厚さの異なるガラス板を用いてもよい。
上記導電膜は、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)等を含む透明導電膜が好ましい。
本発明の調光体又は合わせガラスの面密度は特に限定されないが、12kg/m以下であることが好ましい。
本発明の合わせガラスは、自動車用ガラスとして使用する場合は、サイドガラス、リアガラス、ルーフガラスとして用いることができる。
本発明によれば、電圧を印加することにより光の透過率が変化し、かつ、長期の使用によっても黄変や退色し難く、耐光性に優れた調光シート、該調光シートを用いてなる調光体、合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されない。
(実施例1)
(1)電解質層の調製
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)2.38gに、支持電解質塩としてビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)0.67g、紫外線吸収剤として2-(2hydroxy-5-tert-butylphenyl)-2H-benzotriazole(BASF社製、T-PS)0.05gを溶解して電解質溶液を調製した。得られた電解質溶液の全量と、アセチル基量13mol%、水酸基量22mol%、平均重合度が2300のポリビニルブチラール樹脂5.00gとを混合して樹脂組成物を得た。得られた樹脂組成物をポリテトラフルオロエチレン(PTFE)シートに挟み、厚さ400μmのスペーサを介して、熱プレスにて150℃、100kg/cmの条件で5分間加圧し、厚さ400μmの電解質層を得た。
(2)エレクトロクロミック層の調製
ポリ(9-エチニル-10-n-オクタデシルフェナントレン)(ECP)0.03915gを1.305gのトルエンに溶解して溶液を調製した。この溶液を、得られた電解質層上に、トルエンが揮発した後の厚さが0.3μmになるようにバーコーターを用いて塗布し、乾燥してエレクトロクロミック層を形成して調光シートを得た。
(3)合わせガラスの作製
得られた調光シートを縦5cm×横5cmのサイズに切断し、これを合わせガラス用中間膜とした。合わせガラス用中間膜を、縦5cm×横5cmの一対のITOガラス(表面抵抗120Ω)で、合わせガラス用中間膜がそれぞれの透明導電膜と接するように挟み込んで積層した。得られた積層体を、90℃の真空ラミネーターで圧着し、圧着後140℃、14MPaの条件でオートクレーブを用いて20分間圧着を行い、合わせガラスを得た。
(実施例2)
ハロゲン原子を含まない紫外線吸収剤であるT-PSの含有量を0.005gとした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例3)
ハロゲン原子を含まない紫外線吸収剤として、2-(3,5-Di-tert-amyl-2-hydroxyphenyl)-2H-benzotriazole(BASF社製、T-328)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例4)
ハロゲン原子を含まない紫外線吸収剤として、2-[2-Hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole(BASF社製、T-234)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例5)
支持電解質塩をビス(トリフルオロメタンスルホニル)イミドカリウム(KTFSI)とした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例6)
支持電解質塩を過塩素酸リチウム(LiClO)とした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例7)
エレクトロクロミック層を、プルシアンブルー型錯体(PB)を用いて形成した以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例8)
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)に代わって、トリエチレングリコールジブチラート(3GB)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例9)
ハロゲン原子を含まない紫外線吸収剤であるT-PSの含有量を0.005gとした以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例10)
ハロゲン原子を含まない紫外線吸収剤であるT-PSの含有量を0.20gとした以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例11)
ハロゲン原子を含まない紫外線吸収剤であるT-PSの含有量を0.50gとした以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例12)
アセチル基量13mol%、水酸基量22mol%、平均重合度が2300のポリビニルブチラール樹脂に代わって、アセチル基量25mol%、水酸基量22mol%、平均重合度が3000のポリビニルブチラール樹脂を用いた以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例13)
アセチル基量13mol%、水酸基量22mol%、平均重合度が2300のポリビニルブチラール樹脂に代わって、アセチル基量6mol%、水酸基量18mol%、平均重合度2300ポリビニルブチラール樹脂を用いた以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(実施例14)
アセチル基量13mol%、水酸基量22mol%、平均重合度が2300のポリビニルブチラール樹脂に代わって、アセチル基量18mol%、水酸基量11mol%、平均重合度2300のポリビニルヘキシラール樹脂を用いた以外は、実施例8と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例1)
ハロゲン原子を含まない紫外線吸収剤(T-PS)を用いなかった以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例2)
紫外線吸収剤としてハロゲン原子を含みベンゾトリアゾール骨格を有する2-(2’-Hydroxy-3’-tert-butyl-5’-methylphenyl)-5-chlorobenzotriazole(BASF社製、T-326)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例3)
紫外線吸収剤としてハロゲン原子を含みベンゾトリアゾール骨格を有するOctyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate(BASF社製、T-109)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例4)
紫外線吸収剤としてハロゲン原子を含まないがヒドロキシフェニルトリアジン骨格である2-[4-[(2-Hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine(BASF社製、T-400)を用いた以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例5)
紫外線吸収剤としてハロゲン原子を含まないが、トリアジン骨格である2-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol(CYTEC社製、UV-1164)を用い、ポリビニルブチラール樹脂100重量部に対する、紫外線吸収剤の配合量を0.05重量部とした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例6)
紫外線吸収剤としてベンゾフェノン骨格を有する2,4-Dihydroxybenzophenone(BASF社製、Uvinul 3000)を用い、ポリビニルブチラール樹脂100重量部に対する、紫外線吸収剤の配合量を0.05重量部とした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(比較例7)
紫外線吸収剤としてベンゾフェノン骨格を有する2-Hydroxy-4-octoxybenzophenone(BASF社製、Uvinul 3008)を用い、ポリビニルブチラール樹脂100重量部に対する、紫外線吸収剤の配合量を0.05重量部とした以外は、実施例1と同様にして調光シートを得、これを用いて合わせガラス用中間膜及び合わせガラスを製造した。
(評価)
実施例及び比較例で得られた合わせガラスについて、以下の方法で評価を行った。
結果を表1~3に示した。
(1)エレクトロクロミック性の評価
得られた合わせガラスの電極に+2Vの直流電圧を印加した後、-2Vの直流電圧を印加し、透過率の変化を目視にて観察した。透過率の変化が認められた場合を「○」、変化が認められなかった場合を「×]と評価した。
(2)黄色度の測定
カラーアナライザー(東京電色社製、「TC-1800MK-II」)を用いてJIS K 7105に準ずる方法により、合わせガラスの黄色度(イエローインデックス=YI)を測定した。
(3)ヘーズ値の測定
ヘーズメーター(東京電色社製「TC-H3PP型」)を用いてJIS K 7105に準ずる方法により、合わせガラスのヘーズ値(Hz値)を測定した。
(4)耐光性評価
紫外線照射装置(スガ試験機社製「HLG-2S」)を用いて、JIS R 3205に準ずる方法により、合わせガラスに紫外線(石英ガラス水銀灯、750W)を3000時間照射した。紫外線3000時間照射後の合わせガラスの黄色度を、カラーアナライザー(東京電色社製、「TC-1800MK-II」)を用いてJIS K 7105に準ずる方法により測定し、紫外線照射後の合わせガラスの黄色度の変化度(ΔYI)を下記式で算出した。
 ΔYI=(紫外線照射後の黄色度)-(紫外線照射前の黄色度)
また、紫外線3000時間照射後の合わせガラスのヘーズ値をヘーズメーター(東京電色社製、「TC-H3PP型」)を用いてJIS K 7105に準ずる方法により測定し、紫外線照射後の合わせガラスのヘーズ値の変化度(ΔHz)を下記式で算出した。
ΔHz=(紫外線照射後のヘーズ値)-(紫外線照射前のヘーズ値)
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
本発明によれば、電圧を印加することにより光の透過率が変化し、かつ、長期の使用によっても黄変や退色し難く、耐光性に優れた調光シート、該調光シートを用いてなる調光体、合わせガラス用中間膜、及び、該合わせガラス用中間膜を用いてなる合わせガラスを提供することができる。
 

Claims (9)

  1. 電解質層と、前記電解質層の少なくとも片面に形成されたエレクトロクロミック化合物を含有するエレクトロクロミック層を有する調光シートであって、
    前記電解質層は、バインダー樹脂、支持電解質塩、溶媒、及び、下記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有する
    ことを特徴とする調光シート。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、R、Rは、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表す。
  2. 紫外線吸収剤の含有量は、ポリビニルアセタール樹脂100重量部に対して0.05~10重量部であることを特徴とする請求項1記載の調光シート。
  3. 電解質層は、バインダー樹脂100重量部に対して支持電解質塩3~60重量部、溶媒30~150重量部を含有し、前記バインダー樹脂は、ポリビニルアセタール樹脂であることを特徴とする請求項1又は2記載の調光シート。
  4. エレクトロクロミック化合物は、芳香環を側鎖に有するポリアセチレン化合物であることを特徴とする請求項1、2又は3記載の調光シート。
  5. エレクトロクロミック化合物は、プルシアンブルー型錯体であることを特徴とする請求項1、2又は3記載の調光シート。
  6. 請求項1、2、3、4又は5記載の調光シートが、導電膜が形成されている一対のガラス板の間に、それぞれの導電膜と接するように挟み込まれていることを特徴とする調光体。
  7. 請求項1、2、3、4又は5記載の調光シートを用いることを特徴とする合わせガラス用中間膜。
  8. バインダー樹脂、支持電解質塩、溶媒、及び、下記一般式(1)で表されるベンゾトリアゾール構造を有する紫外線吸収剤を含有することを特徴とする電解質膜。
    Figure JPOXMLDOC01-appb-C000002
    一般式(1)中、R、Rは、アルキル基、シクロアルキル基、アリール基、又はアラルキル基を表す。
  9. 請求項7記載の合わせガラス用中間膜が、導電膜が形成されている一対のガラス板の間に、それぞれの導電膜と接するように挟み込まれていることを特徴とする合わせガラス。
PCT/JP2011/071273 2010-09-16 2011-09-16 調光シート、調光体、合わせガラス用中間膜及び合わせガラス WO2012036291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546357A JP5129393B2 (ja) 2010-09-16 2011-09-16 調光シート、調光体、合わせガラス用中間膜及び合わせガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208285 2010-09-16
JP2010208285 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036291A1 true WO2012036291A1 (ja) 2012-03-22

Family

ID=45831743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071273 WO2012036291A1 (ja) 2010-09-16 2011-09-16 調光シート、調光体、合わせガラス用中間膜及び合わせガラス

Country Status (2)

Country Link
JP (2) JP5129393B2 (ja)
WO (1) WO2012036291A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315821A (zh) * 2018-03-28 2019-10-11 Skc株式会社 光致变色中间膜、透光性层叠体及汽车用摄像系统
WO2022246027A1 (en) * 2021-05-20 2022-11-24 University Of Connecticut Electrochromic materials; preparation and use thereof
CN116264837A (zh) * 2021-10-14 2023-06-16 韩国技术教育大学校产学协力团 具有光透射性、高柔性以及高耐湿性的电致变色元件用组合物及电致变色部件的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089724B2 (ja) * 2017-04-26 2022-06-23 国立研究開発法人産業技術総合研究所 エレクトロクロミック素子及びそれを用いた調光部材
WO2023112890A1 (ja) * 2021-12-13 2023-06-22 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214539A (ja) * 1990-12-13 1992-08-05 Sekisui Chem Co Ltd エレクトロクロミック素子
JP2007526926A (ja) * 2003-06-17 2007-09-20 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング エレクトロクロミックガラス製品用のイオン伝導性の熱可塑性組成物
JP2009516759A (ja) * 2005-11-22 2009-04-23 ハンツマン アドバンスト マテリアルズ (スイッツァランド) ゲーエムベーハー 耐候性エポキシ樹脂系

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441543A (ja) * 1990-06-08 1992-02-12 Asahi Chem Ind Co Ltd 熱可塑性樹脂組成物
JPH07216349A (ja) * 1991-09-06 1995-08-15 Donnelly Corp エレクトロケミクロミック溶液、その製法及び使用法、並びにそれを用いて製造された装置
US6407847B1 (en) * 2000-07-25 2002-06-18 Gentex Corporation Electrochromic medium having a color stability
US7595011B2 (en) * 2004-07-12 2009-09-29 Ciba Specialty Chemicals Corporation Stabilized electrochromic media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214539A (ja) * 1990-12-13 1992-08-05 Sekisui Chem Co Ltd エレクトロクロミック素子
JP2007526926A (ja) * 2003-06-17 2007-09-20 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング エレクトロクロミックガラス製品用のイオン伝導性の熱可塑性組成物
JP2009516759A (ja) * 2005-11-22 2009-04-23 ハンツマン アドバンスト マテリアルズ (スイッツァランド) ゲーエムベーハー 耐候性エポキシ樹脂系

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315821A (zh) * 2018-03-28 2019-10-11 Skc株式会社 光致变色中间膜、透光性层叠体及汽车用摄像系统
CN110315821B (zh) * 2018-03-28 2021-11-02 Skc株式会社 光致变色中间膜、透光性层叠体及汽车用摄像系统
WO2022246027A1 (en) * 2021-05-20 2022-11-24 University Of Connecticut Electrochromic materials; preparation and use thereof
US11932813B2 (en) 2021-05-20 2024-03-19 University Of Connecticut Electrochromic materials; preparation and use thereof
CN116264837A (zh) * 2021-10-14 2023-06-16 韩国技术教育大学校产学协力团 具有光透射性、高柔性以及高耐湿性的电致变色元件用组合物及电致变色部件的制造方法

Also Published As

Publication number Publication date
JPWO2012036291A1 (ja) 2014-02-03
JP2013060363A (ja) 2013-04-04
JP5129393B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
CN112189164A (zh) 改进耐溶剂性的塑料涂层
US11048112B2 (en) Glass structure
KR20150043428A (ko) 전기적으로 스위치가능한 광학 특성을 갖는 복합 판유리
JP5129393B2 (ja) 調光シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2013246374A (ja) 調光体
JP4961057B2 (ja) エレクトロクロミック調光素子、調光シート、合わせガラス用中間膜及び合わせガラス
JP2011178655A (ja) 合わせガラス用中間膜及び合わせガラス
JP2010230758A (ja) 調光フィルム、合わせガラス用中間膜及び合わせガラス
JP2010100512A (ja) 合わせガラス用中間膜及び合わせガラス
JP2009244367A (ja) 調光合わせガラス用中間膜及び調光合わせガラス
JP2011126733A (ja) 合わせガラス用中間膜及び合わせガラス
CN111757860B (zh) 夹层玻璃用中间膜及夹层玻璃
JP4751968B1 (ja) 調光体、調光シート、合わせガラス用中間膜及び合わせガラス
JP4937419B1 (ja) 調光フィルム及び調光体
JP2013250529A (ja) 調光体、調光シート、合わせガラス用中間膜及び合わせガラス
JP2012068410A (ja) 調光シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2012214742A (ja) 調光材料、調光シート、電解質シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2012083748A (ja) エレクトロクロミックシート、調光シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2012083697A (ja) エレクトロクロミックシート、調光シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2011257492A (ja) 調光シート、調光体、合わせガラス用中間膜及び合わせガラス
JP2011068537A (ja) 合わせガラス用中間膜及び合わせガラス
JP2013217981A (ja) 調光体
JP2011144105A (ja) 合わせガラス用中間膜及び合わせガラス
JP6108395B2 (ja) 調光材料及び調光フィルム
JP2013250528A (ja) 調光体、調光シート、電解質膜、合わせガラス用中間膜及び合わせガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011546357

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825289

Country of ref document: EP

Kind code of ref document: A1