WO2023112890A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2023112890A1
WO2023112890A1 PCT/JP2022/045661 JP2022045661W WO2023112890A1 WO 2023112890 A1 WO2023112890 A1 WO 2023112890A1 JP 2022045661 W JP2022045661 W JP 2022045661W WO 2023112890 A1 WO2023112890 A1 WO 2023112890A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
layer
less
weight
intermediate film
Prior art date
Application number
PCT/JP2022/045661
Other languages
English (en)
French (fr)
Inventor
美菜子 高井
敦 野原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023112890A1 publication Critical patent/WO2023112890A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres

Definitions

  • the present invention relates to an interlayer film for laminated glass used to obtain laminated glass.
  • the present invention also relates to laminated glass.
  • Laminated glass has excellent safety, as it scatters a small amount of glass fragments even if it is damaged by an external impact. Therefore, laminated glass is widely used in automobiles, railroad vehicles, aircraft, ships, buildings, and the like. Laminated glass is manufactured by sandwiching an interlayer film between a pair of glass plates.
  • an intermediate film containing an ultraviolet absorber is sometimes used to suppress the transmission of ultraviolet rays (for example, Patent Document 1 below).
  • interlayer films for laminated glass are manufactured using materials that are safe for the human body and the environment.
  • An object of the present invention is to provide an interlayer film for laminated glass that can enhance safety to the human body and the environment. Another object of the present invention is to provide a laminated glass using the interlayer film for laminated glass.
  • an interlayer film for laminated glass having a one-layer structure or a two-layer or more structure, comprising a thermoplastic resin and an ultraviolet absorber having a log Kow value of 5 or less
  • An intermediate film for laminated glass (hereinafter sometimes referred to as an intermediate film) is provided.
  • thermoplastic resin is polyvinyl acetal resin.
  • the ultraviolet absorbent has a molecular weight of 300 or less.
  • the solubility parameter of the said ultraviolet absorber is 21.2 (MPa) 0.5 or more and 24.0 (MPa) 0.5 or less.
  • the content of the ultraviolet absorbent in the layer containing the ultraviolet absorbent is based on 100 parts by weight of the thermoplastic resin in the layer containing the ultraviolet absorbent. , 0.25 parts by weight or more.
  • the intermediate film contains a plasticizer.
  • the absolute value of the difference between the solubility parameter of the plasticizer and the solubility parameter of the ultraviolet absorber is 15.0 (MPa) 0.5 or less.
  • the UV absorber has a benzotriazole skeleton.
  • the UV absorber contains a UV absorber represented by the following formula (X1).
  • R represents an alkyl group.
  • the UV absorber contains a UV absorber represented by formula (X11) or formula (X12) below.
  • the maximum transmittance of the intermediate film at a wavelength of 300 nm or more and 350 nm or less is 0.1% or less.
  • the UV transmittance Tuv of the intermediate film is 0.4% or less.
  • the yellow index YI of the interlayer film is 0.5 or less.
  • the haze of the interlayer film is 8% or less.
  • the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass described above are provided, and the first laminated glass member and the second laminated glass A laminated glass is provided in which the interlayer film for laminated glass is arranged between members.
  • the interlayer film for laminated glass according to the present invention has a one-layer structure or a two-layer or more structure.
  • the interlayer film for laminated glass according to the present invention contains a thermoplastic resin and an ultraviolet absorbent having a log Kow value of 5 or less. Since the interlayer film for laminated glass according to the present invention has the above configuration, safety to the human body and the environment can be enhanced.
  • FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • interlayer film for laminated glass The interlayer film for laminated glass according to the present invention (in this specification, may be abbreviated as "interlayer film”) is used for laminated glass.
  • the intermediate film according to the present invention has a one-layer structure or a two-layer or more structure.
  • the intermediate film according to the present invention may have a single-layer structure, or may have a structure of two or more layers.
  • the interlayer film according to the present invention may have a two-layer structure, may have a two-layer structure or more, may have a three-layer structure, or may have a three-layer structure or more.
  • the intermediate film according to the invention may comprise only the first layer.
  • the intermediate film according to the present invention may comprise a first layer and a second layer arranged on the first surface side of the first layer.
  • the intermediate film according to the present invention comprises a first layer, a second layer disposed on the first surface side of the first layer, and a layer opposite to the first surface of the first layer. and a third layer disposed on the second surface side.
  • the intermediate film according to the present invention may be a single-layer intermediate film or a multi-layer intermediate film.
  • the structure of the interlayer according to the invention may be partially different.
  • the intermediate film according to the present invention may have a portion having a single-layer structure and a portion having a multi-layer structure.
  • the intermediate film according to the present invention contains a thermoplastic resin and an ultraviolet absorber having a log Kow value of 5 or less (in this specification, it may be abbreviated as "ultraviolet absorber (X)"). Therefore, the intermediate film according to the present invention contains a thermoplastic resin and an ultraviolet absorber (X).
  • interlayer films are manufactured using materials that are safe for the human body and the environment.
  • the inventors of the present invention focused on the ultraviolet absorber among the components contained in the conventional interlayer film, and found a structure of the ultraviolet absorber that can improve the safety to the human body and the environment more than the conventional interlayer film. rice field. That is, since the interlayer film according to the present invention has the above configuration, safety to the human body and the environment can be enhanced.
  • an ultraviolet absorber (ultraviolet absorber (X)) having a log Kow value of 5 or less is used, only ultraviolet absorbers having a log Kow value of more than 5 are used. The risk of environmental contamination and the risk of accumulation to humans and other organisms can be reduced relative to the case.
  • the intermediate film preferably has a layer containing a thermoplastic resin and an ultraviolet absorber (X).
  • the intermediate film When the intermediate film is a single-layer intermediate film having a one-layer structure, the intermediate film has only the first layer containing the thermoplastic resin and the ultraviolet absorber (X).
  • the intermediate film When the intermediate film is a multilayer intermediate film having a structure of two or more layers, the intermediate film preferably comprises at least one layer containing a thermoplastic resin and an ultraviolet absorber (X).
  • at least one surface layer of the intermediate film is more preferably a layer containing a thermoplastic resin and an ultraviolet absorber (X).
  • the two surface layers of the intermediate film are layers containing a thermoplastic resin and an ultraviolet absorber (X).
  • the second layer is a surface layer of the intermediate film, and the second layer is a layer containing an ultraviolet absorber (X). is more preferable.
  • the third layer is a surface layer of the intermediate film, and the third layer is a layer containing an ultraviolet absorber (X). is more preferable.
  • all layers of the intermediate film are most preferably layers containing a thermoplastic resin and an ultraviolet absorber (X).
  • FIG. 1 is a cross-sectional view schematically showing the interlayer film for laminated glass according to the first embodiment of the present invention.
  • FIG. 1 shows a cross section of the intermediate film 11 in the thickness direction.
  • the intermediate film 11 shown in FIG. 1 is a multilayer intermediate film having a structure of two or more layers.
  • the intermediate film 11 is used to obtain laminated glass.
  • the intermediate film 11 is an intermediate film for laminated glass.
  • the intermediate film 11 comprises a first layer 1 , a second layer 2 and a third layer 3 .
  • a second layer 2 is arranged and laminated on the first surface 1a of the first layer 1 .
  • a third layer 3 is arranged and laminated on a second surface 1b of the first layer 1 opposite the first surface 1a.
  • the first layer 1 is an intermediate layer.
  • Each of the second layer 2 and the third layer 3 is a protective layer, which in this embodiment is a surface layer.
  • a first layer 1 is arranged between and sandwiched between a second layer 2 and a third layer 3 . Therefore, the intermediate film 11 has a multilayer structure in which the second layer 2, the first layer 1 and the third layer 3 are laminated in this order (second layer 2/first layer 1/third layer). layer 3).
  • the first layer 1 contains a thermoplastic resin and an ultraviolet absorber (X).
  • the second layer 2 contains a thermoplastic resin and an ultraviolet absorber (X).
  • the third layer 3 contains a thermoplastic resin and an ultraviolet absorber (X).
  • each layer provided in the intermediate film 11 contains a thermoplastic resin and an ultraviolet absorber (X).
  • Other layers may be arranged between the second layer 2 and the first layer 1 and between the first layer 1 and the third layer 3, respectively.
  • Other layers include layers containing polyethylene terephthalate and the like.
  • the second layer 2 and the first layer 1, and the first layer 1 and the third layer 3 are directly laminated.
  • FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
  • FIG. 2 shows a cross section in the thickness direction of the intermediate film 11A.
  • the intermediate film 11A shown in FIG. 2 is a single-layer intermediate film having a one-layer structure.
  • the intermediate film 11A is the first layer.
  • the intermediate film 11A is used to obtain laminated glass.
  • the intermediate film 11A is an intermediate film for laminated glass.
  • the intermediate film 11A contains a thermoplastic resin and an ultraviolet absorber (X).
  • the intermediate film contains an ultraviolet absorber (X).
  • the intermediate film has a layer containing an ultraviolet absorber (X).
  • the UV absorber (X) is a UV absorber having a log Kow value of 5 or less.
  • the first layer preferably contains an ultraviolet absorber (X).
  • the second layer preferably contains an ultraviolet absorber (X).
  • the third layer preferably contains an ultraviolet absorber (X). Only one type of ultraviolet absorber (X) may be used, or two or more types may be used in combination. Further, the ultraviolet absorber (X) contained in the first layer, the ultraviolet absorber (X) contained in the second layer, and the ultraviolet absorber (X) contained in the third layer are , may be the same or different.
  • log Kow means the octanol/water partition coefficient.
  • the value of log Kow means a value calculated using the software of "EPI Suite” "Version 4.11".
  • EPI Suite is an estimation tool that predicts and calculates the physical property values of each chemical substance based on its structure.
  • EPI Suite is available on the Internet.
  • the value of log Kow of the ultraviolet absorber (X) is 5 or less, preferably 4.8 or less, more preferably 4.5 or less.
  • the log Kow value of the ultraviolet absorber (X) may be 0 or more, or 1 or more.
  • the molecular weight of the ultraviolet absorber (X) is preferably 100 or more, more preferably 150 or more, preferably 300 or less, more preferably 280 or less.
  • the molecular weight of the ultraviolet absorber (X) is at least the above lower limit and below the above upper limit, the value of log Kow tends to be small, and therefore the safety to the human body and the environment can be further enhanced.
  • the solubility parameter (SP value) of the ultraviolet absorber (X) is preferably 21.2 (MPa) 0.5 or more, more preferably 21.3 (MPa) 0.5 or more, preferably 24.0 (MPa) 0.5 or less, more preferably 23.8 (MPa) 0.5 or less.
  • solubility parameter (SP value) of the ultraviolet absorber (X) is at least the lower limit and at most the upper limit, the compatibility between the ultraviolet absorber (X) and the thermoplastic resin, and the ultraviolet absorber (X) and plasticity compatibility with the agent can be improved.
  • the solubility parameter (SP value) of the ultraviolet absorber (X) means a value calculated using the HSP analysis software "HSPiP".
  • HSPiP is an estimation tool that predicts and calculates the physical properties of each chemical using the Hansen solubility parameter based on the structure of the chemical.
  • the ultraviolet absorber (X) preferably has a benzotriazole skeleton. In this case, the ultraviolet absorption performance can be further enhanced.
  • the ultraviolet absorbent (X) preferably contains an ultraviolet absorbent represented by the following formula (X1).
  • the value of log Kow tends to be small, so that safety to the human body and the environment can be further enhanced.
  • the ultraviolet absorption performance can be further enhanced.
  • R represents an alkyl group.
  • R may be an alkyl group having no branched structure or an alkyl group having a branched structure.
  • the number of carbon atoms in the alkyl group represented by R is preferably 1 or more, preferably 10 or less, and more preferably 4 or less.
  • the value of log Kow tends to be small, so that safety to the human body and the environment can be further enhanced.
  • the ultraviolet absorption performance can be further enhanced.
  • the alkyl group represented by R is preferably a methyl group or a t-butyl group. In this case, the value of log Kow tends to be even smaller, and therefore the safety to the human body and the environment can be further enhanced. In addition, the ultraviolet absorption performance can be further enhanced.
  • the ultraviolet absorber (X) preferably contains an ultraviolet absorber represented by the following formula (X11) or the following formula (X12).
  • X11 an ultraviolet absorber represented by the following formula (X11) or the following formula (X12).
  • the value of log Kow tends to be even smaller, and therefore the safety to the human body and the environment can be further enhanced.
  • the ultraviolet absorption performance can be further enhanced.
  • UV absorbers include “TinuvinP” and “TinuvinPS” manufactured by BASF, “JF-77” manufactured by Johoku Chemical Industry Co., Ltd., “LA-32” manufactured by ADEKA, and “Sumisorb200” manufactured by Sumitomo Chemical Co., Ltd. , “Eversorb 71” manufactured by Eiko Chemical Industry Co., Ltd., “Viosorb 520” and “Viosorb 105" manufactured by Kyodo Pharmaceutical Co., Ltd., and the like.
  • the content of the ultraviolet absorber (X) in 100% by weight of the layer (first layer, second layer or third layer) containing the ultraviolet absorber (X) is preferably 0.2% by weight or more, More preferably 0.4% by weight or more, still more preferably 0.6% by weight or more, particularly preferably 0.8% by weight or more, preferably 7% by weight or less, more preferably 6% by weight or less, still more preferably 5% by weight or less, particularly preferably 4% by weight or less.
  • the ultraviolet transmittance Tuv of the intermediate film can be further reduced, and even if the intermediate film and the laminated glass are used for a long time, visible light A decrease in transmittance can be further suppressed.
  • the content of the ultraviolet absorber (X) is 0.2% by weight or more in 100% by weight of the layer containing the ultraviolet absorber (X), even if the interlayer film and the laminated glass are used for a long period of time, A decrease in visible light transmittance can be remarkably suppressed.
  • the content of the ultraviolet absorbent (X) is at most the above upper limit, the dispersibility of the ultraviolet absorbent (X) in the layer containing the ultraviolet absorbent (X) can be further enhanced.
  • the content of the ultraviolet absorber (X) in 100% by weight of the intermediate film is preferably 0.2% by weight or more, more preferably 0.4% by weight or more, still more preferably 0.6% by weight or more, and particularly preferably is 0.8% by weight or more, preferably 7% by weight or less, more preferably 6% by weight or less, even more preferably 5% by weight or less, and particularly preferably 4% by weight or less.
  • the ultraviolet transmittance Tuv of the intermediate film can be further reduced, and even if the intermediate film and the laminated glass are used for a long time, visible light A decrease in transmittance can be further suppressed.
  • the content of the ultraviolet absorber (X) when the content of the ultraviolet absorber (X) is 0.2% by weight or more in 100% by weight of the intermediate film, the visible light transmittance is reduced even when the intermediate film and the laminated glass are used for a long period of time. can be significantly suppressed.
  • the content of the ultraviolet absorbent (X) is equal to or less than the above upper limit, the dispersibility of the ultraviolet absorbent (X) in the intermediate film can be further enhanced.
  • the content of the absorbent (X) is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, still more preferably 0.25 parts by weight or more, particularly preferably 0.3 parts by weight or more, and most preferably 0.3 parts by weight or more. It is preferably 0.5 parts by weight or more, preferably 3 parts by weight or less, more preferably 2.5 parts by weight or less, and still more preferably 2 parts by weight or less.
  • the content of the ultraviolet absorber (X) is at least the above lower limit, the ultraviolet transmittance Tuv of the intermediate film can be further reduced, and even if the intermediate film and the laminated glass are used for a long time, visible light A decrease in transmittance can be further suppressed.
  • the content of the ultraviolet absorbent (X) is at most the above upper limit, the dispersibility of the ultraviolet absorbent (X) in the layer containing the ultraviolet absorbent (X) can be further enhanced.
  • the layer containing the ultraviolet absorber represented by formula (X11) is referred to as layer (X11).
  • the content of the agent is preferably 0.47 parts by weight or more, more preferably 0.55 parts by weight or more, still more preferably 0.68 parts by weight or more, and preferably 3 parts by weight or less, more preferably 2.5 parts by weight. It is not more than 2 parts by weight, more preferably not more than 2 parts by weight.
  • the ultraviolet transmittance Tuv of the intermediate film can be further reduced, and the intermediate film and the laminated glass can be used for a long period of time. Even if it is, the decrease in visible light transmittance can be further suppressed.
  • the ultraviolet transmittance Tuv of the intermediate film can be 0.4% or less.
  • the layer containing the ultraviolet absorber represented by formula (X12) above is referred to as layer (X12).
  • the content of the agent is preferably 0.77 parts by weight or more, more preferably 0.88 parts by weight or more, still more preferably 1.12 parts by weight or more, and preferably 3 parts by weight or less, more preferably 2.5 parts by weight. It is not more than 2 parts by weight, more preferably not more than 2 parts by weight.
  • the ultraviolet transmittance Tuv of the intermediate film can be further reduced, and the intermediate film and the laminated glass can be used for a long period of time. Even if it is, the decrease in visible light transmittance can be further suppressed.
  • the ultraviolet transmittance Tuv of the intermediate film can be 0.4% or less.
  • the intermediate film contains a thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin (0)).
  • the intermediate film preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (0)) as the thermoplastic resin (0).
  • the first layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin (1)).
  • the first layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (1)) as the thermoplastic resin (1).
  • the second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin (2)).
  • the second layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (2)) as the thermoplastic resin (2).
  • the third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin (3)).
  • the third layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (3)) as the thermoplastic resin (3).
  • the layer containing the ultraviolet absorber (X) preferably contains a thermoplastic resin (hereinafter sometimes referred to as thermoplastic resin (4)).
  • the layer containing the ultraviolet absorber (X) preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (4)) as the thermoplastic resin (4).
  • the thermoplastic resin (1), the thermoplastic resin (2), the thermoplastic resin (3), and the thermoplastic resin (4) may be the same or different. It is preferable that the thermoplastic resin (1) is different from the thermoplastic resin (2) and the thermoplastic resin (3), since the sound insulation is further enhanced.
  • the polyvinyl acetal resin (1), the polyvinyl acetal resin (2), the polyvinyl acetal resin (3), and the polyvinyl acetal resin (4) may be the same or different.
  • the polyvinyl acetal resin (1) is different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) because the sound insulation is further enhanced.
  • Each of the thermoplastic resin (0), the thermoplastic resin (1), the thermoplastic resin (2), the thermoplastic resin (3), and the thermoplastic resin (4) may be used alone. Well, two or more kinds may be used in combination.
  • Each of the polyvinyl acetal resin (0), the polyvinyl acetal resin (1), the polyvinyl acetal resin (2), the polyvinyl acetal resin (3), and the polyvinyl acetal resin (4) may be used alone. Well, two or more kinds may be used in combination.
  • thermoplastic resin examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, (meth)acrylic resin, polyolefin resin, ionomer resin and polyvinyl alcohol resin. be done. Thermoplastic resins other than these may be used.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with aldehyde.
  • PVA polyvinyl alcohol
  • the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
  • the polyvinyl alcohol is obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol is generally within the range of 70 mol % to 99.9 mol %.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, most preferably 2700 or more, It is preferably 5,000 or less, more preferably 4,000 or less, and still more preferably 3,500 or less.
  • the average degree of polymerization is at least the lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the average degree of polymerization is equal to or less than the upper limit, molding of the intermediate film is facilitated.
  • the average degree of polymerization of polyvinyl alcohol is determined by a method based on JIS K6726 "Polyvinyl alcohol test method".
  • the number of carbon atoms in the acetal group contained in the polyvinyl acetal resin is not particularly limited. Aldehyde used when producing the polyvinyl acetal resin is not particularly limited.
  • the acetal group in the polyvinyl acetal resin preferably has 3 to 5 carbon atoms, more preferably 3 or 4 carbon atoms. When the number of carbon atoms in the acetal group in the polyvinyl acetal resin is 3 or more, the glass transition temperature of the intermediate film becomes sufficiently low.
  • the acetal group in the polyvinyl acetal resin may have 4 or 5 carbon atoms.
  • aldehyde is not particularly limited. Generally, aldehydes having 1 to 10 carbon atoms are preferably used. Examples of the aldehyde having 1 to 10 carbon atoms include propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, and n-nonylaldehyde. , n-decylaldehyde, formaldehyde, acetaldehyde and benzaldehyde.
  • the aldehyde is preferably propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde, more preferably propionaldehyde, n-butyraldehyde or isobutyraldehyde, n-butyl Aldehydes are more preferred. Only one kind of the aldehyde may be used, or two or more kinds thereof may be used in combination.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (0) is preferably 15 mol% or more, more preferably 18 mol% or more, and preferably 40 mol% or less, more preferably 35 mol% or less. be.
  • the hydroxyl content is equal to or higher than the lower limit, the adhesive strength of the intermediate film is further increased. Further, when the hydroxyl content is equal to or less than the above upper limit, the flexibility of the intermediate film is increased, and the handling of the intermediate film is facilitated.
  • the hydroxyl content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, and preferably 28 mol% or less. It is more preferably 27 mol % or less, still more preferably 25 mol % or less, and particularly preferably 24 mol % or less.
  • the hydroxyl content is equal to or higher than the lower limit, the mechanical strength of the intermediate film is further increased.
  • the hydroxyl group content of the polyvinyl acetal resin (1) is 20 mol% or more, the reaction efficiency is high and the productivity is excellent.
  • the hydroxyl content is equal to or less than the above upper limit, the flexibility of the intermediate film is increased, and the handling of the intermediate film is facilitated.
  • the preferred range of the hydroxyl group content of the polyvinyl acetal resin (4) is the hydroxyl content of the polyvinyl acetal resin (1). Same as the preferred range.
  • the hydroxyl content (hydroxyl group amount) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and more preferably 30 mol% or more. More preferably 31.5 mol % or more, still more preferably 32 mol % or more, particularly preferably 33 mol % or more.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 38 mol% or less, more preferably 37 mol% or less, and still more preferably 36.5 mol% or less. , particularly preferably 36 mol % or less.
  • the adhesive strength of the intermediate film is further increased. Further, when the hydroxyl content is equal to or less than the above upper limit, the flexibility of the intermediate film is increased, and the handling of the intermediate film is facilitated.
  • the preferable range of the hydroxyl group content of the polyvinyl acetal resin (4) is the polyvinyl acetal resin (2) and the polyvinyl acetal resin ( It is the same as the preferred range of the hydroxyl content in 3).
  • the hydroxyl content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl content of the polyvinyl acetal resin (2).
  • the content of hydroxyl groups in the polyvinyl acetal resin (1) is preferably lower than the content of hydroxyl groups in the polyvinyl acetal resin (3).
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is defined as the absolute value A, and the hydroxyl group content of the polyvinyl acetal resin (1). and the hydroxyl content of the polyvinyl acetal resin (3).
  • the absolute value A and the absolute value B are each preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 9 mol% or more, and particularly preferably 10 mol% or more. , and most preferably at least 12 mol %.
  • Each of absolute value A and absolute value B is preferably 20 mol % or less.
  • the content of hydroxyl groups in the polyvinyl acetal resin (4) is It is preferably lower than the content of hydroxyl groups in 2).
  • the content of hydroxyl groups in the polyvinyl acetal resin (4) is It is preferably lower than the content of hydroxyl groups in 3).
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (4) and the hydroxyl group content of the polyvinyl acetal resin (2) is defined as the absolute value C, and the hydroxyl group content of the polyvinyl acetal resin (4). and the hydroxyl content of the polyvinyl acetal resin (3).
  • the absolute value C and the absolute value D are each preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 9 mol% or more, and particularly preferably 10 mol% or more. , and most preferably at least 12 mol %.
  • Each of absolute value C and absolute value D is preferably 20 mol % or less.
  • the content of hydroxyl groups in the polyvinyl acetal resin (1) is It is preferably lower than the content of hydroxyl groups in 4).
  • the hydroxyl content of the polyvinyl acetal resin (1) and the polyvinyl acetal resin ( The absolute value of the difference from the hydroxyl content of 4) is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 9 mol% or more, particularly preferably 10 mol% or more, most preferably 12 mol% or more.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (4) is preferably 20 mol % or less.
  • the content of hydroxyl groups in the polyvinyl acetal resin is the molar fraction obtained by dividing the amount of ethylene groups to which hydroxyl groups are bonded by the total amount of ethylene groups in the main chain, expressed as a percentage.
  • the amount of ethylene groups to which the hydroxyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".
  • the degree of acetylation (acetyl group content) of the polyvinyl acetal resin (0) is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and still more preferably 0.5 mol% or more. is 30 mol % or less, more preferably 25 mol % or less, still more preferably 20 mol % or less.
  • Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum.
  • the degree of acetylation is equal to or less than the upper limit, the interlayer film and the laminated glass have high humidity resistance.
  • the degree of acetylation (acetyl group content) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, still more preferably 9 mol % or more, preferably 30 mol % or less, more preferably 25 mol % or less, still more preferably 24 mol % or less, and particularly preferably 20 mol % or less.
  • Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum.
  • the degree of acetylation is equal to or less than the upper limit, the interlayer film and the laminated glass have high humidity resistance.
  • the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol % or more and 25 mol % or less, the penetration resistance is excellent.
  • the preferred range of the degree of acetylation of the polyvinyl acetal resin (4) when the layer containing the ultraviolet absorber (X) is not the surface layer of the intermediate film is the preferred range of the degree of acetylation of the polyvinyl acetal resin (1). is the same as
  • Each acetylation degree (acetyl group amount) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol % or more, more preferably 0.5 mol % or more, and preferably It is 10 mol % or less, more preferably 2 mol % or less. Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum. When the degree of acetylation is equal to or less than the upper limit, the interlayer film and the laminated glass have high humidity resistance.
  • the preferred range of the degree of acetylation of the polyvinyl acetal resin (4) is the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3 ) is the same as the preferred range of the degree of acetylation.
  • the degree of acetylation is a value expressed as a percentage of the mole fraction obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain.
  • the amount of ethylene groups to which the acetyl groups are bonded can be measured according to, for example, JIS K6728 "Polyvinyl butyral test method".
  • the degree of acetalization of the polyvinyl acetal resin (0) (degree of butyralization in the case of polyvinyl butyral resin) is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, and more It is preferably 75 mol % or less, more preferably 70 mol % or less.
  • Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the degree of acetalization is equal to or less than the upper limit, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the degree of acetalization of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, preferably 85 mol% or less, and more It is preferably 80 mol % or less, more preferably 75 mol % or less.
  • Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the degree of acetalization is equal to or less than the upper limit, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the preferred range of the degree of acetalization of the polyvinyl acetal resin (4) when the layer containing the ultraviolet absorber (X) is not the surface layer of the intermediate film is the preferred range of the degree of acetalization of the polyvinyl acetal resin (1). is the same as
  • the degree of acetalization (degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more, It is preferably 75 mol % or less, more preferably 71 mol % or less.
  • Compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the degree of acetalization is equal to or less than the upper limit, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the preferred range of the degree of acetalization of the polyvinyl acetal resin (4) is the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3 ) is the same as the preferred range of the degree of acetalization.
  • the degree of acetalization is obtained as follows. First, a value is obtained by subtracting the amount of ethylene groups to which hydroxyl groups are bonded and the amount of ethylene groups to which acetyl groups are bonded from the total amount of ethylene groups in the main chain. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. The degree of acetalization is the value of this mole fraction expressed as a percentage.
  • the content of hydroxyl groups (hydroxyl group amount), the degree of acetalization (degree of butyralization), and the degree of acetylation are preferably calculated from the results of measurements according to JIS K6728 "Polyvinyl butyral test method". However, measurement by ASTM D1396-92 may be used.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the hydroxyl content (hydroxyl group amount), the degree of acetalization (degree of butyralization), and the degree of acetylation are determined according to JIS K6728 "Polyvinyl butyral test method”. can be calculated from the results measured by
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the intermediate film is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and still more preferably 70% by weight or more, particularly preferably 80% by weight or more, most preferably 90% by weight or more.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the intermediate film is preferably 100% by weight or less.
  • the main component (50% by weight or more) of the thermoplastic resin of the intermediate film is preferably polyvinyl acetal resin.
  • the content of the polyvinyl acetal resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the first layer is preferably 100% by weight or less.
  • the main component (50% by weight or more) of the thermoplastic resin of the first layer is preferably polyvinyl acetal resin.
  • the content of the polyvinyl acetal resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the second layer is preferably 100% by weight or less.
  • the main component (50% by weight or more) of the thermoplastic resin of the second layer is preferably polyvinyl acetal resin.
  • the content of the polyvinyl acetal resin is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the third layer is preferably 100% by weight or less.
  • the main component (50% by weight or more) of the thermoplastic resin of the third layer is preferably polyvinyl acetal resin.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the layer containing the ultraviolet absorber (X) is preferably 10% by weight or more, more preferably 30% by weight or more, and even more preferably 50% by weight. % by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the content of the polyvinyl acetal resin is preferably 100% by weight or less in 100% by weight of the thermoplastic resin contained in the layer containing the ultraviolet absorber (X).
  • the main component (50% by weight or more) of the thermoplastic resin in the layer containing the ultraviolet absorber (X) is preferably polyvinyl acetal resin.
  • the intermediate film according to the present invention preferably contains a plasticizer (hereinafter sometimes referred to as plasticizer (0)).
  • the first layer preferably contains a plasticizer (hereinafter sometimes referred to as plasticizer (1)).
  • the second layer preferably contains a plasticizer (hereinafter sometimes referred to as plasticizer (2)).
  • the third layer preferably contains a plasticizer (hereinafter sometimes referred to as plasticizer (3)).
  • the layer containing the ultraviolet absorber (X) preferably contains a plasticizer (hereinafter sometimes referred to as plasticizer (4)).
  • the intermediate film is a polyvinyl acetal resin
  • the intermediate film (each layer) contains a plasticizer.
  • the layer containing polyvinyl acetal resin preferably contains a plasticizer.
  • the above plasticizer is not particularly limited. Conventionally known plasticizers can be used as the plasticizer. Only one type of the plasticizer may be used, or two or more types may be used in combination.
  • the plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, organic phosphoric acid plasticizers, and organic phosphorous acid plasticizers.
  • the plasticizer is an organic ester plasticizer.
  • the plasticizer is a liquid plasticizer.
  • Examples of the monobasic organic acid esters include glycol esters obtained by reacting glycols with monobasic organic acids.
  • examples of the glycol include triethylene glycol, tetraethylene glycol and tripropylene glycol.
  • Examples of the monobasic organic acids include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, decylic acid and benzoic acid.
  • polybasic organic acid esters examples include ester compounds of polybasic organic acids and alcohols having a linear or branched structure with 4 to 8 carbon atoms.
  • polybasic organic acids examples include adipic acid, sebacic acid and azelaic acid.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethy
  • organic phosphoric acid plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10.
  • Each of R1 and R2 in the above formula (1) is preferably an organic group having 5 to 10 carbon atoms, more preferably an organic group having 6 to 10 carbon atoms.
  • the solubility parameter (SP value) of the plasticizer is preferably 10 (MPa) 0.5 or more, more preferably 16 (MPa) 0.5 or more, preferably 25 (MPa) 0.5 or less, more preferably 17 (MPa) 0.5 or less.
  • solubility parameter (SP value) of the plasticizer is at least the above lower limit and below the above upper limit, the compatibility between the ultraviolet absorber (X) and the plasticizer can be improved.
  • the solubility parameter of the plasticizer may be larger or smaller than the solubility parameter of the ultraviolet absorber (X).
  • the solubility parameter of the plasticizer and the solubility parameter of the ultraviolet absorber (X) may be the same.
  • the solubility parameter of the plasticizer in the layer containing the ultraviolet absorber (X) may be larger than the solubility parameter of the ultraviolet absorber (X) in the layer containing the ultraviolet absorber (X), or may be smaller.
  • the solubility parameter of the plasticizer in the layer containing the ultraviolet absorber (X) and the solubility parameter of the ultraviolet absorber (X) in the layer containing the ultraviolet absorber (X) may be the same. .
  • the absolute value of the difference between the solubility parameter of the plasticizer and the solubility parameter of the ultraviolet absorber (X) is preferably 15.0 (MPa) 0.5 or less, more preferably 10 (MPa) 0.5 or less. , more preferably 7 (MPa) 0.5 or less.
  • the absolute value of the difference is equal to or less than the upper limit, the compatibility between the ultraviolet absorber (X) and the plasticizer can be improved.
  • the absolute value of the difference between the solubility parameter of the plasticizer in the layer containing the ultraviolet absorber (X) and the solubility parameter of the ultraviolet absorber (X) in the layer containing the ultraviolet absorber (X) is It is preferably 15.0 (MPa) 0.5 or less, more preferably 10 (MPa) 0.5 or less, and still more preferably 7 (MPa) 0.5 or less.
  • the absolute value of the difference is equal to or less than the upper limit, the compatibility between the ultraviolet absorber (X) and the plasticizer can be improved.
  • the solubility parameter (SP value) of the plasticizer above means a value calculated using the HSP analysis software "HSPiP".
  • HSPiP is an estimation tool that predicts and calculates the physical properties of each chemical using the Hansen solubility parameter based on the structure of the chemical.
  • the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. . More preferably, the plasticizer contains triethylene glycol di-2-ethylhexanoate (3GO) or triethylene glycol di-2-ethylbutyrate (3GH), and triethylene glycol di-2-ethylhexanoate. More preferably it contains ate (3GO).
  • the content of the plasticizer (0) with respect to 100 parts by weight of the thermoplastic resin (0) in the intermediate film is defined as content (0).
  • the content (0) is preferably 5 parts by weight or more, more preferably 25 parts by weight or more, still more preferably 30 parts by weight or more, preferably 100 parts by weight or less, more preferably 60 parts by weight or less, and even more preferably is 50 parts by weight or less.
  • the content (0) is at least the lower limit, the penetration resistance of the laminated glass is further enhanced.
  • the content (0) is equal to or less than the upper limit, the transparency of the intermediate film is further enhanced.
  • the content of the plasticizer (1) with respect to 100 parts by weight of the thermoplastic resin (1) is defined as content (1).
  • the content (1) is preferably 50 parts by weight or more, more preferably 55 parts by weight or more, and still more preferably 60 parts by weight or more.
  • the content (1) is preferably 100 parts by weight or less, more preferably 90 parts by weight or less, even more preferably 85 parts by weight or less, and particularly preferably 80 parts by weight or less.
  • the content (1) is equal to or higher than the lower limit, the flexibility of the intermediate film increases, and the handling of the intermediate film becomes easy.
  • the content (1) is equal to or less than the upper limit, the penetration resistance of the laminated glass is further enhanced.
  • the plasticizer (4) with respect to 100 parts by weight of the thermoplastic resin (4)
  • the preferred range of the content of (hereinafter sometimes referred to as content (4)) is the same as the preferred range of content (1).
  • the content of the plasticizer (2) with respect to 100 parts by weight of the thermoplastic resin (2) is defined as content (2).
  • the content (3) is defined as the content of the plasticizer (3) with respect to 100 parts by weight of the thermoplastic resin (3).
  • Each of the content (2) and the content (3) is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, still more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, and particularly preferably is at least 24 parts by weight, most preferably at least 25 parts by weight.
  • Each of the content (2) and the content (3) is preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 35 parts by weight or less, particularly preferably 32 parts by weight or less, and most preferably 30 parts by weight or less.
  • the content (2) and the content (3) are at least the lower limit, the flexibility of the intermediate film is increased, and the handling of the intermediate film is facilitated.
  • the content (2) and the content (3) are equal to or less than the upper limit, the penetration resistance of the laminated glass is further enhanced.
  • the plasticizer (4) with respect to 100 parts by weight of the thermoplastic resin (4) is the same as the preferred ranges of the content (2) and the content (3).
  • the content (1) is preferably greater than the content (2), and the content (1) is preferably greater than the content (3).
  • the content (4) is preferably greater than the content (2) in order to enhance the sound insulation of the laminated glass.
  • the content (4) is preferably greater than the content (3).
  • the content (1) is preferably greater than the content (4) in order to enhance the sound insulation of the laminated glass.
  • the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more.
  • the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are preferably 80 parts by weight or less, More preferably 75 parts by weight or less, still more preferably 70 parts by weight or less.
  • the difference between the content (2) and the content (4) is from the viewpoint of further enhancing the sound insulation of the laminated glass.
  • the absolute value of the difference between the content (3) and the content (4) are preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more. be.
  • the absolute value of the difference between the content (2) and the content (4) and the absolute value of the difference between the content (3) and the content (4) are preferably 80 parts by weight or less, More preferably 75 parts by weight or less, still more preferably 70 parts by weight or less.
  • the difference between the content (4) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more.
  • the absolute value of the difference between the content (4) and the content (1) is preferably 80 parts by weight or less, more preferably 75 parts by weight or less, and even more preferably 70 parts by weight or less.
  • the intermediate film preferably contains a heat shielding substance.
  • the first layer preferably contains a heat shielding substance.
  • the second layer preferably contains a heat shielding substance.
  • the third layer preferably contains a heat shielding substance.
  • the layer containing the ultraviolet absorber (X) preferably contains a heat-shielding substance. Only one type of the above heat shielding substance may be used, or two or more types may be used in combination.
  • the heat shielding substance preferably contains at least one component X selected from phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds, or contains heat shielding particles.
  • the heat shielding substance may contain both the component X and the heat shielding particles.
  • the intermediate film preferably contains at least one component X selected from phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds.
  • the first layer preferably contains the component X described above.
  • the second layer preferably contains the component X described above.
  • the third layer preferably contains the component X described above.
  • the layer containing the ultraviolet absorber (X) preferably contains the component X.
  • the above component X is a heat shielding substance. As for the component X, only one type may be used, or two or more types may be used in combination.
  • component X is not particularly limited.
  • component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds can be used.
  • Examples of the component X include phthalocyanine, phthalocyanine derivatives, naphthalocyanine, naphthalocyanine derivatives, anthracyanine, and anthracyanine derivatives.
  • Each of the phthalocyanine compound and the phthalocyanine derivative preferably has a phthalocyanine skeleton.
  • Each of the naphthalocyanine compound and the naphthalocyanine derivative preferably has a naphthalocyanine skeleton.
  • Each of the anthracyanine compound and the anthracyanine derivative preferably has an anthracyanine skeleton.
  • the component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine, and naphthalocyanine derivatives. , phthalocyanine and derivatives of phthalocyanine.
  • the component X preferably contains vanadium atoms or copper atoms.
  • the component X preferably contains vanadium atoms, and also preferably contains copper atoms.
  • Component X is more preferably at least one of phthalocyanines containing vanadium atoms or copper atoms and derivatives of phthalocyanines containing vanadium atoms or copper atoms.
  • the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
  • the amount is preferably 0.001% by weight or more, more preferably 0.005% by weight or more, even more preferably 0.01% by weight or more, and particularly preferably 0.02% by weight or more.
  • the amount is preferably 0.2% by weight or less, more preferably 0.1% by weight or less, even more preferably 0.05% by weight or less, and particularly preferably 0.04% by weight or less.
  • the content of component X is equal to or more than the lower limit and equal to or less than the upper limit, the heat shielding property is sufficiently high, and the visible light transmittance is sufficiently high. For example, it is possible to increase the visible light transmittance to 70% or more.
  • the intermediate film preferably contains heat shielding particles.
  • the first layer preferably contains the heat shielding particles.
  • the second layer preferably contains the heat shielding particles.
  • the third layer preferably contains the heat shielding particles.
  • the layer containing the ultraviolet absorber (X) preferably contains the heat-shielding particles.
  • the heat-shielding particles are a heat-shielding substance. Infrared rays (heat rays) can be effectively blocked by using heat shielding particles. Only one type of the heat-shielding particles may be used, or two or more types may be used in combination.
  • the heat shielding particles are more preferably metal oxide particles.
  • the heat-shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
  • infrared rays have a large thermal effect, and when infrared rays are absorbed by substances, they are emitted as heat. For this reason, infrared rays are generally called heat rays.
  • heat-shielding particles By using the heat-shielding particles, infrared rays (heat rays) can be effectively blocked.
  • the heat-shielding particles mean particles capable of absorbing infrared rays.
  • heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • AZO particles aluminum-doped zinc oxide particles
  • niobium-doped titanium oxide particles sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, rubidium-doped tungsten oxide particles, tin-doped indium oxide particles (ITO particles) , tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles.
  • Heat shielding particles other than these may be used.
  • Metal oxide particles are preferred because they have a high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferred, and ITO particles or tungsten oxide particles are particularly preferred.
  • ITO particles tin-doped indium oxide particles
  • tungsten oxide particles are also preferred, since they have a high heat ray shielding function and are easily available.
  • the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
  • the above "tungsten oxide particles” include metal-doped tungsten oxide particles.
  • Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
  • Cesium-doped tungsten oxide particles are particularly preferred from the viewpoint of further increasing the heat shielding properties of the interlayer film and the laminated glass.
  • the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 from the viewpoint of further enhancing the heat shielding properties of the interlayer film and the laminated glass.
  • the average particle size of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less. If the average particle size is at least the above lower limit, the heat ray shielding property will be sufficiently high. When the average particle size is equal to or less than the above upper limit, the dispersibility of the heat shielding particles is enhanced.
  • the above “average particle size” indicates the volume average particle size.
  • the average particle size can be measured using a particle size distribution analyzer (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
  • the heat shielding particles in 100% by weight of the intermediate film or in 100% by weight of the layer containing the heat shielding particles (the first layer, the second layer, the third layer, or the layer containing the ultraviolet absorber (X)) (especially the content of tungsten oxide particles) is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, still more preferably 1% by weight or more, and particularly preferably 1.5% by weight or more. is.
  • the heat shielding particles in 100% by weight of the intermediate film or in 100% by weight of the layer containing the heat shielding particles (the first layer, the second layer, the third layer, or the layer containing the ultraviolet absorber (X)) (especially the content of tungsten oxide particles) is preferably 6% by weight or less, more preferably 5.5% by weight or less, still more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably Preferably, it is 3% by weight or less.
  • the content of the heat-shielding particles is at least the lower limit and not more than the upper limit, the heat-shielding properties are sufficiently high, and the visible light transmittance is sufficiently high.
  • the intermediate film preferably contains at least one metal salt selected from alkali metal salts and alkaline earth metal salts (hereinafter sometimes referred to as metal salt M).
  • the first layer preferably contains the metal salt M described above.
  • the second layer preferably contains the metal salt M described above.
  • the third layer preferably contains the metal salt M described above.
  • the layer containing the ultraviolet absorber (X) preferably contains the metal salt M described above.
  • Alkaline earth metals mean six kinds of metals, Be, Mg, Ca, Sr, Ba, and Ra.
  • the use of the metal salt M makes it easy to control the adhesion between the interlayer and a laminated glass member such as a glass plate or the adhesion between the layers in the interlayer. Only one kind of the metal salt M may be used, or two or more kinds thereof may be used in combination.
  • the metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • the metal salt M contained in the intermediate film preferably contains at least one metal selected from K and Mg.
  • the metal salt M an alkali metal salt of an organic acid having 2 to 16 carbon atoms and an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms can be used.
  • the metal salt M may contain a magnesium salt of a carboxylate having 2 to 16 carbon atoms or a potassium salt of a carboxylate having 2 to 16 carbon atoms.
  • magnesium salt of a carboxylic acid having 2 to 16 carbon atoms and the potassium salt of a carboxylic acid having 2 to 16 carbon atoms include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, and 2-ethylbutanoic acid.
  • Contents of Mg and K in the intermediate film containing the metal salt M or the layer containing the metal salt M is preferably 5 ppm or more, more preferably 10 ppm or more, still more preferably 20 ppm or more, preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
  • the adhesion between the interlayer film and the laminated glass member (glass plate, etc.) or the adhesion between each layer in the interlayer film can be better controlled. can.
  • the intermediate film preferably contains an antioxidant.
  • the first layer preferably contains an antioxidant.
  • the second layer preferably contains an antioxidant.
  • the third layer preferably contains an antioxidant.
  • the layer containing the ultraviolet absorber (X) preferably contains an antioxidant. Only one kind of the antioxidant may be used, or two or more kinds thereof may be used in combination.
  • antioxidants examples include phenolic antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like.
  • the phenol-based antioxidant is an antioxidant having a phenol skeleton.
  • the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
  • the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
  • the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
  • phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis-(4-methyl-6-butylphenol), 2,2′-methylenebis-(4-ethyl-6 -t-butylphenol), 4,4′-butylidene-bis-(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane , tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1,3,5-trimethyl-2,
  • Examples of the phosphorus antioxidant include tridecyl phosphite, tris(tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis(tridecyl) pentaerythritol diphosphite, bis(decyl) pentaerythritol diphosphite.
  • antioxidants examples include "IRGANOX 245" manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Sumilizer BHT” manufactured by Sumitomo Chemical, and “Sumilizer BHT” manufactured by Sakai Chemical. "H-BHT”, and “IRGANOX 1010" manufactured by BASF.
  • the content of the antioxidant is preferably 0.03% by weight or more, more preferably 0.1% by weight or more. Further, since the effect of adding the antioxidant is saturated, the content of the antioxidant in 100% by weight of the intermediate film or in 100% by weight of the layer containing the antioxidant is preferably 2% by weight or less. .
  • the intermediate film, the first layer, the second layer, the third layer, and the layer containing the ultraviolet absorber (X) each contain other components other than the components described above, if necessary. You can stay. Examples of other components include UV absorbers other than the UV absorber (X), colorants (pigments and dyes, etc.), coupling agents, dispersants, surfactants, flame retardants, antistatic agents, and metal salts other than Adhesion modifiers, moisture-resistant agents, fluorescent whitening agents, infrared absorbents, and the like can be mentioned. Each of these other components may be used alone or in combination of two or more.
  • the maximum transmittance of the intermediate film at a wavelength of 300 nm or more and 350 nm or less is preferably 0.1% or less, more preferably 0.01% or less, even more preferably 0.001% or less, and particularly preferably 0.00001%. It is below. When the maximum value of the transmittance is equal to or less than the upper limit, the visible light transmittance is even more difficult to decrease even if the interlayer film and the laminated glass are used for a long period of time.
  • the maximum transmittance of the intermediate film at a wavelength of 300 nm or more and 350 nm or less may be 0% or more.
  • the transmittance of the intermediate film at a wavelength of 390 nm is preferably 10% or more, more preferably 15% or more, preferably 40% or less, more preferably 35% or less.
  • the transmittance is equal to or higher than the lower limit, the visible light transmittance can be further increased. If the transmittance is equal to or less than the upper limit, the visible light transmittance is even less likely to decrease even if the interlayer film and the laminated glass are used for a long period of time.
  • the transmittance at a wavelength of 300 nm or more and 350 nm or less and the transmittance at a wavelength of 390 nm of the intermediate film can be measured as follows.
  • Laminated glass A is obtained by disposing the intermediate film between two sheets of clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996.
  • the transmittance of the obtained laminated glass A at a wavelength of 300 nm or more and 350 nm or less and the transmittance at a wavelength of 390 nm are measured.
  • the transmittance at a wavelength of 300 nm or more and 350 nm or less and the transmittance at a wavelength of 390 nm of the laminated glass A are defined as the transmittance at a wavelength of 300 nm or more and 350 nm or less and the transmittance at a wavelength of 390 nm of the intermediate film, respectively.
  • the transmittance can be measured in accordance with JIS R3211:1998 using a spectrophotometer (for example, "U-4150" manufactured by Hitachi High-Tech).
  • the ultraviolet transmittance Tuv of the intermediate film is preferably 0.4% or less, more preferably 0.25% or less, and even more preferably 0.1% or less.
  • the ultraviolet transmittance Tuv of the intermediate film may be 0% or more.
  • the ultraviolet transmittance Tuv of the intermediate film can be measured as follows.
  • Laminated glass A is obtained by disposing the intermediate film between two sheets of clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996.
  • the transmittance of the obtained laminated glass A at a wavelength of 300 nm or more and 400 nm or less is measured.
  • the UV transmittance Tuv of the intermediate film is defined as a value calculated by a method conforming to ISO9050 from the transmittance of the laminated glass A at wavelengths of 300 nm or more and 400 nm or less.
  • the ultraviolet transmittance Tuv can be measured in accordance with JIS R3211:1998 using a spectrophotometer (for example, "U-4150" manufactured by Hitachi High-Tech).
  • the yellow index YI of the intermediate film is preferably 0.5 or less, more preferably 0.45 or less, and even more preferably 0.4 or less.
  • the yellow index YI of the intermediate film may be 0.01 or more, or may be 0.05 or more.
  • the yellow index YI of the intermediate film is a yellow index calculated from the total light transmittance.
  • the yellow index of the intermediate film can be measured as follows. Laminated glass A is obtained by disposing the intermediate film between two sheets of clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996. The total light transmittance of the obtained laminated glass A is measured. From the total light transmittance of laminated glass A, the yellow index YI of laminated glass A is calculated according to JIS K7373. The yellow index YI of the laminated glass A is defined as the yellow index YI of the intermediate film.
  • the total light transmittance of laminated glass A is measured as follows.
  • the laminated glass A is placed on the optical path between the light source and the integrating sphere, parallel to the normal to the optical axis and in contact with the integrating sphere so that the transmitted light is received by the integrating sphere.
  • the above total light transmittance means the visible light transmittance calculated from the spectral transmittance measured in this state.
  • the total light transmittance can be measured using a spectrophotometer (for example, "U-4150" manufactured by Hitachi High-Tech Co., Ltd.).
  • the haze of the intermediate film is preferably 8% or less, more preferably 5% or less, and even more preferably 3% or less. When the haze is equal to or less than the upper limit, the transparency of the intermediate film and the laminated glass can be enhanced.
  • the intermediate film may have a haze of 0% or more, or may be 0.1% or more.
  • the haze of the intermediate film can be measured as follows.
  • Laminated glass A is obtained by disposing the intermediate film between two sheets of clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996.
  • the haze of the obtained laminated glass A is measured using a haze meter in accordance with JIS K6714.
  • the haze of the laminated glass A is defined as the haze of the intermediate film.
  • the manufacturing method of laminated glass A is not particularly limited. An example of a method for producing laminated glass A is shown below.
  • An intermediate film is sandwiched between two sheets of clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996 to obtain a laminate.
  • the obtained laminate was placed in a rubber bag and degassed at a degree of vacuum of 2.6 kPa for 20 minutes. are pre-crimped.
  • the pre-press-bonded laminate is pressed for 20 minutes in an autoclave at 135° C. and a pressure of 1.2 MPa to obtain laminated glass A.
  • clear glass having a thickness of 2.5 mm conforming to JIS R3202:1996 may be used.
  • Clear glass other than 5 mm clear glass may be used, and laminated glass members other than clear glass may be used.
  • the intermediate film has one end and the other end opposite to the one end.
  • the one end and the other end are opposite ends of the intermediate film.
  • the intermediate film may be an intermediate film in which the thickness at the one end and the thickness at the other end are the same, or may be an intermediate film in which the thickness at the other end is greater than the thickness at the one end.
  • the intermediate film may be an intermediate film having a uniform thickness, or may be an intermediate film having a varying thickness.
  • the cross-sectional shape of the intermediate film may be rectangular or wedge-shaped.
  • the maximum thickness of the intermediate film is preferably 0.1 mm or more, more preferably 0.25 mm or more, still more preferably 0.5 mm or more, particularly preferably 0.8 mm or more, and more preferably 3.8 mm or less. is 2.0 mm or less, more preferably 1.5 mm or less.
  • the maximum thickness of the surface layer of the intermediate film is preferably 0.001 mm or more, more preferably 0.2 mm or more, and still more preferably 0.001 mm or more. 0.3 mm or more, preferably 1.0 mm or less, more preferably 0.8 mm or less.
  • the maximum thickness of the layer (intermediate layer) disposed between the two surface layers is preferably 0.001 mm or more, more preferably 0.1 mm. Above, more preferably 0.2 mm or more, preferably 0.8 mm or less, more preferably 0.6 mm or less, still more preferably 0.3 mm or less.
  • the distance between one end and the other end of the intermediate film is preferably 3.0 m or less, more preferably 2.0 m or less, particularly preferably 1.5 m or less, preferably 0.5 m or more, more preferably 0.5 m or less. 8 m or more, particularly preferably 1.0 m or more.
  • the intermediate film may be wound into a roll body of the intermediate film.
  • the roll body may include a winding core and an intermediate film wound around the outer periphery of the winding core.
  • the manufacturing method of the intermediate film is not particularly limited.
  • Examples of the method for producing the intermediate film include, in the case of a single-layer intermediate film, a method of extruding a resin composition using an extruder.
  • Examples of the method for producing the intermediate film include, in the case of a multilayer intermediate film, a method of forming each layer using each resin composition for forming each layer, and then laminating the obtained layers.
  • examples of the method for producing the intermediate film include a method of laminating each layer by co-extrusion of each resin composition for forming each layer using an extruder. The production method of extrusion is preferred, as it is suitable for continuous production.
  • the same polyvinyl acetal resin is contained in the second layer and the third layer because the production efficiency of the intermediate film is excellent. It is more preferable that the second layer and the third layer contain the same polyvinyl acetal resin and the same plasticizer because the production efficiency of the intermediate film is excellent. It is more preferable that the second layer and the third layer are made of the same resin composition because the production efficiency of the intermediate film is excellent.
  • the intermediate film has an uneven shape. More preferably, the intermediate film has an uneven surface on both sides.
  • a method for forming the uneven shape is not particularly limited, and examples thereof include a lip embossing method (melt fracture method), an embossing roll method, a calender roll method, and a profile extrusion method.
  • the intermediate film does not include a light control film.
  • the haze of the intermediate film can be made equal to or less than the upper limit described above.
  • a laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and the intermediate film described above.
  • the intermediate film is arranged between the first laminated glass member and the second laminated glass member.
  • FIG. 3 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • the laminated glass 31 shown in FIG. 3 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11.
  • the intermediate film 11 is arranged and sandwiched between the first laminated glass member 21 and the second laminated glass member 22 .
  • a first laminated glass member 21 is laminated on the first surface of the intermediate film 11 .
  • a second laminated glass member 22 is laminated on the second surface opposite to the first surface of the intermediate film 11 .
  • a first laminated glass member 21 is laminated on the outer surface of the second layer 2 .
  • a second laminated glass member 22 is laminated on the outer surface of the third layer 3 .
  • FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • a laminated glass 31A shown in FIG. 4 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11A.
  • the intermediate film 11A is arranged and sandwiched between the first laminated glass member 21 and the second laminated glass member 22 .
  • a first laminated glass member 21 is laminated on the first surface of the intermediate film 11A.
  • a second laminated glass member 22 is laminated on the second surface opposite to the first surface of the intermediate film 11A.
  • the laminated glass may be a head-up display.
  • the laminated glass When the laminated glass is a head-up display, the laminated glass has a display area of the head-up display.
  • the display area is an area in which information can be displayed satisfactorily.
  • a head-up display system can be obtained using the above head-up display.
  • a head-up display system includes the laminated glass and a light source device for irradiating the laminated glass with light for image display.
  • the light source device can be attached to a dashboard of a vehicle, for example.
  • An image can be displayed by irradiating the display region of the laminated glass with light from the light source device.
  • the first laminated glass member is preferably the first glass plate.
  • the second laminated glass member is preferably a second glass plate.
  • first and second laminated glass members include glass plates and PET (polyethylene terephthalate) films.
  • the laminated glass includes not only laminated glass in which an interlayer film is sandwiched between two glass plates, but also laminated glass in which an interlayer film is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass is a laminate including glass plates, and preferably at least one glass plate is used.
  • the first laminated glass member and the second laminated glass member are glass plates or PET films, respectively, and the laminated glass is one of the first laminated glass member and the second laminated glass member. At least one preferably comprises a glass plate. It is particularly preferable that both the first and second laminated glass members are glass plates.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat-absorbing plate glass, heat-reflecting plate glass, polished plate glass, figured glass, lined plate glass, and green glass.
  • the organic glass is a synthetic resin glass that replaces inorganic glass.
  • examples of the organic glass include a polycarbonate plate and a poly(meth)acrylic resin plate.
  • Examples of the poly(meth)acrylic resin plate include a polymethyl(meth)acrylate plate.
  • Each thickness of the first laminated glass member and the second laminated glass member is preferably 1 mm or more, preferably 5 mm or less, and more preferably 3 mm or less.
  • the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, and preferably 5 mm or less, more preferably 3 mm or less.
  • the thickness of the PET film is preferably 0.03 mm or more and preferably 0.5 mm or less.
  • the manufacturing method of the laminated glass is not particularly limited. First, an intermediate film is sandwiched between the first laminated glass member and the second laminated glass member to obtain a laminate. Next, for example, the obtained laminated body is passed through a press roll or placed in a rubber bag and vacuum-sucked to form a bond between the first laminated glass member, the second laminated glass member, and the intermediate film. Deaerate any remaining air in between. Thereafter, pre-bonding is performed at about 70° C. to 110° C. to obtain a pre-pressed laminate. Next, the pre-pressed laminate is put into an autoclave or pressed and pressed at a pressure of about 120° C.-150° C. and 1 MPa-1.5 MPa. Thus, a laminated glass can be obtained.
  • the interlayer film and the laminated glass can be used in automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the intermediate film and the laminated glass can be used for purposes other than these uses.
  • the intermediate film and laminated glass are preferably intermediate films and laminated glasses for vehicles or buildings, and more preferably intermediate films and laminated glasses for vehicles.
  • the interlayer film and the laminated glass can be used for automobile windshields, side glasses, rear glasses, roof glasses, backlight glasses, and the like.
  • the intermediate film and the laminated glass are suitably used for automobiles.
  • the interlayer film is suitably used to obtain laminated glass for automobiles.
  • n-butyraldehyde with 4 carbon atoms is used for acetalization.
  • degree of acetalization degree of butyralization
  • degree of acetylation degree of acetylation
  • content of hydroxyl groups were measured according to JIS K6728 "Polyvinyl butyral test method”.
  • ASTM D1396-92 the same numerical value as the method based on JIS K6728 "Polyvinyl butyral test method” was shown.
  • Polyvinyl acetal resin Polyvinyl butyral resin, average degree of polymerization 1700, content of hydroxyl group 30 mol%, degree of acetylation 1 mol%, degree of acetalization (degree of butyralization) 69 mol%) Polyvinyl acetal resin (polyvinyl butyral resin, average polymerization degree 3000, hydroxyl group content 22 mol%, acetylation degree 13 mol%, acetalization degree (butyralization degree) 65 mol%) Polyvinyl acetal resin (polyvinyl butyral resin, average polymerization degree 1700, hydroxyl group content 30.5 mol%, acetylation degree 1 mol%, acetalization degree (butyralization degree) 68.5 mol%)
  • UV absorber (X) UV absorber represented by the above formula (X11) ("TinuvinP” manufactured by BASF)
  • UV absorber represented by the above formula (X12) "TinuvinPS” manufactured by BASF) 2,2',4,4'-tetrahydroxybenzophenone ("Viosorb105” manufactured by Kyodo Pharmaceutical Co., Ltd.)
  • UV absorber that does not correspond to UV absorber (X): 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole (“Tinuvin234” manufactured by BASF) 2-(2′-hydroxy-5′-tert-octylphenyl)benzotriazole (“JF-83” manufactured by Johoku Chemical Co., Ltd.)
  • Metal salt M Mg mixture (50:50 (weight ratio) mixture of magnesium 2-ethylbutyrate and magnesium acetate)
  • composition for forming intermediate film Preparation of composition for forming intermediate film: The following components were blended and thoroughly kneaded with a mixing roll to obtain a composition for forming an intermediate film.
  • Polyvinyl butyral resin (average degree of polymerization 1700, content of hydroxyl group 30 mol%, degree of acetylation 1 mol%, degree of acetalization 69 mol%) 100 parts by weight Triethylene glycol di-2-ethylhexanoate (3GO) 40 weight Part 0.47 parts by weight of the ultraviolet absorber represented by the above formula (X11) Metal salt M in an amount such that the amount of magnesium in the resulting intermediate film becomes 70 ppm Antioxidant (BHT) in an amount to give 0.2% by weight in the resulting interlayer
  • Fabrication of interlayer A composition for forming an intermediate film was extruded using an extruder to prepare a single-layer intermediate film (thickness: 760 ⁇ m) having only the first layer.
  • the obtained intermediate film was sandwiched between two sheets of clear glass (300 mm long ⁇ 300 mm wide) having a thickness of 2.5 mm conforming to JIS R3202:1996 to obtain a laminate.
  • the obtained laminate was placed in a rubber bag and degassed at a degree of vacuum of 2.6 kPa for 20 minutes. was pre-crimped.
  • the pre-press-bonded laminate was press-bonded for 20 minutes in an autoclave at 135° C. and a pressure of 1.2 MPa to obtain a laminated glass.
  • the obtained laminated glass corresponds to the laminated glass A described above.
  • Example 2 and 3 and Comparative Examples 1 and 2 A single-layer intermediate film (thickness: 760 ⁇ m) was produced in the same manner as in Example 1, except that the type and content of the ultraviolet absorber were changed as shown in Table 1.
  • the metal salt M and the antioxidant were used in the same kind and amount as in Example 1.
  • Example 4 Preparation of resin composition for forming the first layer: The following components were blended and sufficiently kneaded with a mixing roll to obtain a resin composition for forming the first layer.
  • Polyvinyl butyral resin (average degree of polymerization 3000, content of hydroxyl group 22 mol%, degree of acetylation 13 mol%, degree of acetalization 65 mol%) 100 parts by weight Triethylene glycol di-2-ethylhexanoate (3GO) 40 parts by weight Part 0.47 parts by weight of the ultraviolet absorber represented by the above formula (X11) Mg mixture in an amount such that the amount of magnesium is 0.038 parts by weight (Mg in an amount such that the amount of magnesium in the obtained first layer is 60 ppm blend) Antioxidant (BHT) in an amount to give 0.2% by weight in the resulting first layer
  • Preparation of resin compositions for forming the second layer and the third layer The following components were blended and sufficiently kneaded with a mixing roll to obtain a resin composition for forming the second layer and the third layer.
  • Polyvinyl butyral resin (average degree of polymerization 1700, content of hydroxyl group 30.5 mol%, degree of acetylation 1 mol%, degree of acetalization 68.5 mol%) 100 parts by weight Triethylene glycol di-2-ethylhexanoate ( 3GO) 40 parts by weight 0.47 parts by weight of the ultraviolet absorber represented by the above formula (X11) Mg mixture in an amount such that the amount of magnesium is 0.038 parts by weight (the amount of magnesium in the resulting second and third layers is 60 ppm Mg mixture) Antioxidant (BHT) in an amount of 0.2% by weight in the resulting second and third layers
  • a laminated glass was obtained in the same manner as in Example 1, except that the obtained interlayer film was used.
  • the obtained laminated glass corresponds to the laminated glass A described above.
  • Example 5 Three-layer structure (second layer/first layer/third layer) in the same manner as in Example 4, except that the type and content of the ultraviolet absorber were changed as shown in Table 2.
  • An intermediate film (thickness 760 ⁇ m) having The metal salt M and the antioxidant were used in the same kind and amount as in Example 4.

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

人体及び環境への安全性を高めることができる合わせガラス用中間膜を提供する。 本発明に係る合わせガラス用中間膜は、1層の構造又は2層以上の構造を有する合わせガラス用中間膜であって、熱可塑性樹脂と、logKowの値が5以下である紫外線吸収剤とを含む。

Description

合わせガラス用中間膜及び合わせガラス
 本発明は、合わせガラスを得るために用いられる合わせガラス用中間膜に関する。また、本発明は、合わせガラスに関する。
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。合わせガラスは、一対のガラス板の間に中間膜を挟み込むことにより、製造されている。
 また、紫外線の透過を抑制するために、紫外線吸収剤を含む中間膜が用いられることがある(例えば、下記の特許文献1)。
WO2015/059829A1
 従来、合わせガラス用中間膜は、人体及び環境への安全性に配慮された材料を用いて製造されている。しかしながら、人体及び環境への安全性は高いほど望ましい。
 本発明の目的は、人体及び環境への安全性を高めることができる合わせガラス用中間膜を提供することである。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスを提供することも目的とする。
 本発明の広い局面によれば、1層の構造又は2層以上の構造を有する合わせガラス用中間膜であって、熱可塑性樹脂と、logKowの値が5以下である紫外線吸収剤とを含む、合わせガラス用中間膜(以下、中間膜と記載することがある)が提供される。
 本発明に係る中間膜のある特定の局面では、前記熱可塑性樹脂が、ポリビニルアセタール樹脂である。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤の分子量が、300以下である。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤の溶解度パラメーターが、21.2(MPa)0.5以上24.0(MPa)0.5以下である。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤を含む層中の前記熱可塑性樹脂100重量部に対して、前記紫外線吸収剤を含む層中の前記紫外線吸収剤の含有量が、0.25重量部以上である。
 本発明に係る中間膜のある特定の局面では、前記中間膜は、可塑剤を含む。
 本発明に係る中間膜のある特定の局面では、前記可塑剤の溶解度パラメーターと、前記紫外線吸収剤の溶解度パラメーターとの差の絶対値が、15.0(MPa)0.5以下である。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤が、ベンゾトリアゾール骨格を有する。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤が、下記式(X1)で表される紫外線吸収剤を含む。
Figure JPOXMLDOC01-appb-C000004
 前記式(X1)中、Rは、アルキル基を表す。
 本発明に係る中間膜のある特定の局面では、前記紫外線吸収剤が、下記式(X11)又は下記式(X12)で表される紫外線吸収剤を含む。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明に係る中間膜のある特定の局面では、中間膜の波長300nm以上350nm以下における透過率の最大値が、0.1%以下である。
 本発明に係る中間膜のある特定の局面では、中間膜の紫外線透過率Tuvが、0.4%以下である。
 本発明に係る中間膜のある特定の局面では、中間膜のイエローインデックスYIが、0.5以下である。
 本発明に係る中間膜のある特定の局面では、中間膜のヘイズが、8%以下である。
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラスが提供される。
 本発明に係る合わせガラス用中間膜は、1層の構造又は2層以上の構造を有する。本発明に係る合わせガラス用中間膜は、熱可塑性樹脂と、logKowの値が5以下である紫外線吸収剤とを含む。本発明に係る合わせガラス用中間膜では、上記の構成が備えられているので、人体及び環境への安全性を高めることができる。
図1は、本発明の第1の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。 図2は、本発明の第2の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。 図3は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。 図4は、図2に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。
 以下、本発明の詳細を説明する。
 (合わせガラス用中間膜)
 本発明に係る合わせガラス用中間膜(本明細書において、「中間膜」と略記することがある)は、合わせガラスに用いられる。
 本発明に係る中間膜は、1層の構造又は2層以上の構造を有する。本発明に係る中間膜は、1層の構造を有していてもよく、2層以上の構造を有していてもよい。本発明に係る中間膜は、2層の構造を有していてもよく、2層以上の構造を有していてもよく、3層の構造を有していてもよく、3層以上の構造を有していてもよい。本発明に係る中間膜は、第1の層のみを備えていてもよい。本発明に係る中間膜は、第1の層と、上記第1の層の第1の表面側に配置された第2の層とを備えていてもよい。本発明に係る中間膜は、第1の層と、上記第1の層の第1の表面側に配置された第2の層と、上記第1の層の該第1の表面とは反対の第2の表面側に配置された第3の層とを備えていてもよい。本発明に係る中間膜は、単層の中間膜であってもよく、多層の中間膜であってもよい。本発明に係る中間膜の構造は、部分的に異なっていてもよい。例えば、本発明に係る中間膜は、1層の構造を有する部分と、多層の構造を有する部分とを有していてもよい。
 本発明に係る中間膜は、熱可塑性樹脂と、logKowの値が5以下である紫外線吸収剤(本明細書において、「紫外線吸収剤(X)」と略記することがある)とを含む。したがって、本発明に係る中間膜は、熱可塑性樹脂と、紫外線吸収剤(X)とを含む。
 従来、中間膜は、人体及び環境への安全性に配慮された材料を用いて製造されている。本発明者らは、従来の中間膜に含まれる成分のうち、紫外線吸収剤に着目し、従来の中間膜よりも、人体及び環境への安全性を高めることができる紫外線吸収剤の構成を見出した。すなわち、本発明に係る中間膜では、上記の構成が備えられているので、人体及び環境への安全性を高めることができる。本発明に係る中間膜では、logKowの値が5以下である紫外線吸収剤(紫外線吸収剤(X))が用いられているので、logKowの値が5を超える紫外線吸収剤のみが用いられている場合と比べて、環境汚染のリスク、並びに、ヒト及びその他の生物に対する蓄積性のリスクを下げることができる。
 上記中間膜は、熱可塑性樹脂と紫外線吸収剤(X)とを含む層を備えることが好ましい。上記中間膜が1層の構造を備える単層の中間膜である場合に、該中間膜は、熱可塑性樹脂と紫外線吸収剤(X)とを含む第1の層のみを備える。上記中間膜が2層以上の構造を備える多層の中間膜である場合に、該中間膜は、熱可塑性樹脂と紫外線吸収剤(X)とを含む層を少なくとも1層備えることが好ましい。上記中間膜が2層以上の構造を備える多層の中間膜である場合に、中間膜の少なくとも一方の表面層が、熱可塑性樹脂と紫外線吸収剤(X)とを含む層であることがより好ましく、中間膜の2つの表面層が、熱可塑性樹脂と紫外線吸収剤(X)とを含む層であることが更に好ましい。上記中間膜が2層以上の構造を備える多層の中間膜である場合に、上記第2の層が中間膜の表面層であり、該第2の層が、紫外線吸収剤(X)を含む層であることがより好ましい。上記中間膜が3層以上の構造を備える多層の中間膜である場合に、上記第3の層が中間膜の表面層であり、該第3の層が、紫外線吸収剤(X)を含む層であることがより好ましい。上記中間膜が2層以上の構造を備える多層の中間膜である場合に、中間膜の全ての層が、熱可塑性樹脂と紫外線吸収剤(X)とを含む層であることが最も好ましい。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の第1の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。図1では、中間膜11の厚み方向の断面が示されている。
 図1に示す中間膜11は、2層以上の構造を有する多層の中間膜である。中間膜11は、合わせガラスを得るために用いられる。中間膜11は、合わせガラス用中間膜である。中間膜11は、第1の層1と、第2の層2と、第3の層3とを備える。第1の層1の第1の表面1aに、第2の層2が配置されており、積層されている。第1の層1の第1の表面1aとは反対の第2の表面1bに、第3の層3が配置されており、積層されている。第1の層1は中間層である。第2の層2及び第3の層3はそれぞれ、保護層であり、本実施形態では表面層である。第1の層1は、第2の層2と第3の層3との間に配置されており、挟み込まれている。従って、中間膜11は、第2の層2と第1の層1と第3の層3とがこの順で積層された多層構造(第2の層2/第1の層1/第3の層3)を有する。
 第1の層1は、熱可塑性樹脂と紫外線吸収剤(X)とを含む。第2の層2は、熱可塑性樹脂と紫外線吸収剤(X)とを含む。第3の層3は、熱可塑性樹脂と紫外線吸収剤(X)とを含む。中間膜11では、中間膜11に備えられている各層が、熱可塑性樹脂と紫外線吸収剤(X)とを含む。
 なお、第2の層2と第1の層1との間、及び、第1の層1と第3の層3との間にはそれぞれ、他の層が配置されていてもよい。他の層として、ポリエチレンテレフタレート等を含む層が挙げられる。第2の層2と第1の層1、及び、第1の層1と第3の層3とはそれぞれ、直接積層されていることが好ましい。
 図2は、本発明の第2の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。図2では、中間膜11Aの厚み方向の断面が示されている。
 図2に示す中間膜11Aは、1層の構造を有する単層の中間膜である。中間膜11Aは、第1の層である。中間膜11Aは、合わせガラスを得るために用いられる。中間膜11Aは、合わせガラス用中間膜である。中間膜11Aは、熱可塑性樹脂と紫外線吸収剤(X)とを含む。
 以下、本発明に係る中間膜を構成する上記第1の層、上記第2の層及び上記第3の層の詳細、並びに上記第1の層、上記第2の層及び上記第3の層に含まれる各成分の詳細を説明する。
 <logKowの値が5以下である紫外線吸収剤(紫外線吸収剤(X))>
 上記中間膜は、紫外線吸収剤(X)を含む。上記中間膜は、紫外線吸収剤(X)を含む層を備える。紫外線吸収剤(X)は、logKowの値が5以下である紫外線吸収剤である。上記第1の層は、紫外線吸収剤(X)を含むことが好ましい。上記第2の層は、紫外線吸収剤(X)を含むことが好ましい。上記第3の層は、紫外線吸収剤(X)を含むことが好ましい。紫外線吸収剤(X)は、1種のみが用いられてもよく、2種以上が併用されてもよい。また、上記第1の層に含まれる紫外線吸収剤(X)と、上記第2の層に含まれる紫外線吸収剤(X)と、上記第3の層に含まれる紫外線吸収剤(X)とは、同一であってもよく、異なっていてもよい。
 logKowとは、オクタノール/水分配係数を意味する。本発明において、logKowの値は、「EPI Suite」の「Version4.11」のソフトウェアを用いて計算される値を意味する。「EPI Suite」は、化学物質の構造をもとに各化学物質の物性値を予測及び算出する推算ツールである。「EPI Suite」は、インターネットで入手することができる。
 紫外線吸収剤(X)のlogKowの値は、5以下であり、好ましくは4.8以下、より好ましくは4.5以下である。紫外線吸収剤(X)のlogKowの値が小さいほど、人体及び環境への安全性を高めることができる。なお、紫外線吸収剤(X)のlogKowの値は、0以上であってもよく、1以上であってもよい。
 紫外線吸収剤(X)の分子量は、好ましくは100以上、より好ましくは150以上、好ましくは300以下、より好ましくは280以下である。紫外線吸収剤(X)の分子量が上記下限以上及び上記上限以下であると、logKowの値が小さくなりやすく、従って、人体及び環境への安全性をより一層高めることができる。
 紫外線吸収剤(X)の溶解度パラメーター(SP値)は、好ましくは21.2(MPa)0.5以上、より好ましくは21.3(MPa)0.5以上、好ましくは24.0(MPa)0.5以下、より好ましくは23.8(MPa)0.5以下である。紫外線吸収剤(X)の溶解度パラメーター(SP値)が上記下限以上及び上記上限以下であると、紫外線吸収剤(X)と熱可塑性樹脂との相溶性、及び、紫外線吸収剤(X)と可塑剤との相溶性を良好にすることができる。
 紫外線吸収剤(X)の溶解度パラメーター(SP値)は、HSP解析ソフトウェア「HSPiP」を用いて計算される値を意味する。「HSPiP」は、化学物質の構造をもとに各化学物質の物性値をハンセンの溶解度パラメーターを用いて予測及び算出する推算ツールである。
 紫外線吸収剤(X)は、ベンゾトリアゾール骨格を有することが好ましい。この場合には、紫外線吸収性能をより一層高めることができる。
 紫外線吸収剤(X)は、下記式(X1)で表される紫外線吸収剤を含むことが好ましい。この場合には、logKowの値が小さくなりやすく、従って、人体及び環境への安全性をより一層高めることができる。また、紫外線吸収性能をより一層高めることができる。
Figure JPOXMLDOC01-appb-C000007
 上記式(X1)中、Rは、アルキル基を表す。
 上記式(X1)中、Rは、分岐構造を有さないアルキル基であってもよく、分岐構造を有するアルキル基であってもよい。
 上記式(X1)中、Rである上記アルキル基の炭素数は、好ましくは1以上、好ましくは10以下、より好ましくは4以下である。上記アルキル基の炭素数が上記下限以上及び上記上限以下であると、logKowの値が小さくなりやすく、従って、人体及び環境への安全性をより一層高めることができる。また、紫外線吸収性能をより一層高めることができる。上記式(X1)中、Rである上記アルキル基は、メチル基又はt-ブチル基であることが好ましい。この場合には、logKowの値がより一層小さくなりやすく、従って、人体及び環境への安全性をより一層高めることができる。また、紫外線吸収性能をより一層高めることができる。
 紫外線吸収剤(X)は、下記式(X11)又は下記式(X12)で表される紫外線吸収剤を含むことが好ましい。この場合には、logKowの値がより一層小さくなりやすく、従って、人体及び環境への安全性をより一層高めることができる。また、紫外線吸収性能をより一層高めることができる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 紫外線吸収剤(X)の市販品としては、BASF社製「TinuvinP」及び「TinuvinPS」、城北化学工業社製「JF-77」、ADEKA社製「LA-32」、住友化学社製「Sumisorb200」、永光化学工業社製「Eversorb71」、共同薬品社製「Viosorb520」及び「Viosorb105」等が挙げられる。
 紫外線吸収剤(X)を含む層(第1の層、第2の層又は第3の層)100重量%中、紫外線吸収剤(X)の含有量は、好ましくは0.2重量%以上、より好ましくは0.4重量%以上、更に好ましくは0.6重量%以上、特に好ましくは0.8重量%以上であり、好ましくは7重量%以下、より好ましくは6重量%以下、更に好ましくは5重量%以下、特に好ましくは4重量%以下である。紫外線吸収剤(X)の含有量が上記下限以上であると、中間膜の紫外線透過率Tuvをより一層低くすることができ、また、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下をより一層抑えることができる。特に、紫外線吸収剤(X)を含む層100重量%中、紫外線吸収剤(X)の含有量が0.2重量%以上であることにより、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下を顕著に抑制できる。紫外線吸収剤(X)の含有量が上記上限以下であると、紫外線吸収剤(X)を含む層中での紫外線吸収剤(X)の分散性をより一層高めることができる。
 上記中間膜100重量%中、紫外線吸収剤(X)の含有量は、好ましくは0.2重量%以上、より好ましくは0.4重量%以上、更に好ましくは0.6重量%以上、特に好ましくは0.8重量%以上であり、好ましくは7重量%以下、より好ましくは6重量%以下、更に好ましくは5重量%以下、特に好ましくは4重量%以下である。紫外線吸収剤(X)の含有量が上記下限以上であると、中間膜の紫外線透過率Tuvをより一層低くすることができ、また、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下をより一層抑えることができる。特に、上記中間膜100重量%中、紫外線吸収剤(X)の含有量が0.2重量%以上であることにより、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下を顕著に抑制できる。紫外線吸収剤(X)の含有量が上記上限以下であると、上記中間膜中での紫外線吸収剤(X)の分散性をより一層高めることができる。
 紫外線吸収剤(X)を含む層(第1の層、第2の層又は第3の層)中の熱可塑性樹脂100重量部に対して、該紫外線吸収剤(X)を含む層中の紫外線吸収剤(X)の含有量は、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、更に好ましくは0.25重量部以上、特に好ましくは0.3重量部以上、最も好ましくは0.5重量部以上であり、好ましくは3重量部以下、より好ましくは2.5重量部以下、更に好ましくは2重量部以下である。紫外線吸収剤(X)の含有量が上記下限以上であると、中間膜の紫外線透過率Tuvをより一層低くすることができ、また、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下をより一層抑えることができる。紫外線吸収剤(X)の含有量が上記上限以下であると、紫外線吸収剤(X)を含む層中での紫外線吸収剤(X)の分散性をより一層高めることができる。
 上記式(X11)で表される紫外線吸収剤を含む層を、層(X11)とする。層(X11)(第1の層、第2の層又は第3の層)中の熱可塑性樹脂100重量部に対して、該層(X11)中の上記式(X11)で表される紫外線吸収剤の含有量は、好ましくは0.47重量部以上、より好ましくは0.55重量部以上、更に好ましくは0.68重量部以上であり、好ましくは3重量部以下、より好ましくは2.5重量部以下、更に好ましくは2重量部以下である。上記式(X11)で表される紫外線吸収剤の含有量が上記下限以上であると、中間膜の紫外線透過率Tuvをより一層低くすることができ、また、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下をより一層抑えることができる。特に、上記式(X11)で表される紫外線吸収剤の含有量が0.47重量部以上であると、中間膜の紫外線透過率Tuvを0.4%以下とすることができる。上記式(X11)で表される紫外線吸収剤の含有量が上記上限以下であると、層(X11)を含む層中での該紫外線吸収剤の分散性をより一層高めることができる。
 上記式(X12)で表される紫外線吸収剤を含む層を、層(X12)とする。層(X12)(第1の層、第2の層又は第3の層)中の熱可塑性樹脂100重量部に対して、該層(X12)中の上記式(X12)で表される紫外線吸収剤の含有量は、好ましくは0.77重量部以上、より好ましくは0.88重量部以上、更に好ましくは1.12重量部以上であり、好ましくは3重量部以下、より好ましくは2.5重量部以下、更に好ましくは2重量部以下である。上記式(X12)で表される紫外線吸収剤の含有量が上記下限以上であると、中間膜の紫外線透過率Tuvをより一層低くすることができ、また、中間膜及び合わせガラスが長期間使用されても、可視光線透過率の低下をより一層抑えることができる。特に、上記式(X12)で表される紫外線吸収剤の含有量が0.77重量部以上であると、中間膜の紫外線透過率Tuvを0.4%以下とすることができる。上記式(X12)で表される紫外線吸収剤の含有量が上記上限以下であると、層(X12)を含む層中での該紫外線吸収剤の分散性をより一層高めることができる。
 (熱可塑性樹脂)
 中間膜は、熱可塑性樹脂(以下、熱可塑性樹脂(0)と記載することがある)を含む。中間膜は、熱可塑性樹脂(0)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(0)と記載することがある)を含むことが好ましい。上記第1の層は、熱可塑性樹脂(以下、熱可塑性樹脂(1)と記載することがある)を含むことが好ましい。上記第1の層は、熱可塑性樹脂(1)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(1)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(以下、熱可塑性樹脂(2)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(2)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(2)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(以下、熱可塑性樹脂(3)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(3)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(3)と記載することがある)を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、熱可塑性樹脂(以下、熱可塑性樹脂(4)と記載することがある)を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、熱可塑性樹脂(4)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(4)と記載することがある)を含むことが好ましい。上記熱可塑性樹脂(1)と上記熱可塑性樹脂(2)と上記熱可塑性樹脂(3)と上記熱可塑性樹脂(4)とは、同一であってもよく、異なっていてもよい。遮音性がより一層高くなることから、上記熱可塑性樹脂(1)は、上記熱可塑性樹脂(2)及び上記熱可塑性樹脂(3)と異なっていることが好ましい。上記ポリビニルアセタール樹脂(1)と上記ポリビニルアセタール樹脂(2)と上記ポリビニルアセタール樹脂(3)と上記ポリビニルアセタール樹脂(4)とは、同一であってもよく、異なっていてもよい。遮音性がより一層高くなることから、上記ポリビニルアセタール樹脂(1)は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)と異なっていることが好ましい。上記熱可塑性樹脂(0)、上記熱可塑性樹脂(1)、上記熱可塑性樹脂(2)、上記熱可塑性樹脂(3)及び上記熱可塑性樹脂(4)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記ポリビニルアセタール樹脂(0)、上記ポリビニルアセタール樹脂(1)、上記ポリビニルアセタール樹脂(2)、上記ポリビニルアセタール樹脂(3)及び上記ポリビニルアセタール樹脂(4)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル酸共重合体樹脂、ポリウレタン樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂、アイオノマー樹脂及びポリビニルアルコール樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコール(PVA)をアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に70モル%~99.9モル%の範囲内である。
 上記ポリビニルアルコール(PVA)の平均重合度は、好ましくは200以上、より好ましくは500以上、より一層好ましくは1500以上、更に好ましくは1600以上、特に好ましくは2600以上、最も好ましくは2700以上であり、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記平均重合度が上記上限以下であると、中間膜の成形が容易になる。
 上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。
 上記ポリビニルアセタール樹脂に含まれるアセタール基の炭素数は特に限定されない。上記ポリビニルアセタール樹脂を製造する際に用いるアルデヒドは特に限定されない。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は3~5であることが好ましく、3又は4であることがより好ましい。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数が3以上であると、中間膜のガラス転移温度が充分に低くなる。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は4又は5であってもよい。
 上記アルデヒドは特に限定されない。一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、ホルムアルデヒド、アセトアルデヒド及びベンズアルデヒド等が挙げられる。上記アルデヒドは、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドであることが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドであることがより好ましく、n-ブチルアルデヒドであることが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ポリビニルアセタール樹脂(0)の水酸基の含有率(水酸基量)は、好ましくは15モル%以上、より好ましくは18モル%以上であり、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。
 上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、好ましくは17モル%以上、より好ましくは20モル%以上、更に好ましくは22モル%以上であり、好ましくは28モル%以下、より好ましくは27モル%以下、更に好ましくは25モル%以下、特に好ましくは24モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の機械強度がより一層高くなる。特に、上記ポリビニルアセタール樹脂(1)の水酸基の含有率が20モル%以上であると反応効率が高く生産性に優れ、また28モル%以下であると、合わせガラスの遮音性がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合の上記ポリビニルアセタール樹脂(4)の水酸基の含有率の好ましい範囲は、上記ポリビニルアセタール樹脂(1)の水酸基の含有率の好ましい範囲と同じである。
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の含有率(水酸基量)は、好ましくは25モル%以上、より好ましくは28モル%以上、より好ましくは30モル%以上、より一層好ましくは31.5モル%以上、更に好ましくは32モル%以上、特に好ましくは33モル%以上である。上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の含有率(水酸基量)は、好ましくは38モル%以下、より好ましくは37モル%以下、更に好ましくは36.5モル%以下、特に好ましくは36モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合の上記ポリビニルアセタール樹脂(4)の水酸基の含有率の好ましい範囲は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の含有率の好ましい範囲と同じである。
 遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(2)の水酸基の含有率よりも低いことが好ましい。遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(3)の水酸基の含有率よりも低いことが好ましい。上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値を絶対値Aとし、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値を絶対値Bとする。遮音性を更に一層高める観点からは、絶対値A及び絶対値Bはそれぞれ、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。絶対値A及び絶対値Bはそれぞれ、好ましくは20モル%以下である。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合に、遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(4)の水酸基の含有率は、上記ポリビニルアセタール樹脂(2)の水酸基の含有率よりも低いことが好ましい。上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合に、遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(4)の水酸基の含有率は、上記ポリビニルアセタール樹脂(3)の水酸基の含有率よりも低いことが好ましい。上記ポリビニルアセタール樹脂(4)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値を絶対値Cとし、上記ポリビニルアセタール樹脂(4)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値を絶対値Dとする。遮音性を更に一層高める観点からは、絶対値C及び絶対値Dはそれぞれ、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。絶対値C及び絶対値Dはそれぞれ、好ましくは20モル%以下である。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合に、遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(4)の水酸基の含有率よりも低いことが好ましい。上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合に、遮音性を更に一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(4)の水酸基の含有率との差の絶対値は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(4)の水酸基の含有率との差の絶対値は、好ましくは20モル%以下である。
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 上記ポリビニルアセタール樹脂(0)のアセチル化度(アセチル基量)は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、更に好ましくは0.5モル%以上であり、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。
 上記ポリビニルアセタール樹脂(1)のアセチル化度(アセチル基量)は、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、より一層好ましくは7モル%以上、更に好ましくは9モル%以上、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは24モル%以下、特に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。特に、上記ポリビニルアセタール樹脂(1)のアセチル化度が0.1モル%以上25モル%以下であると、耐貫通性に優れる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合の上記ポリビニルアセタール樹脂(4)のアセチル化度の好ましい範囲は、上記ポリビニルアセタール樹脂(1)のアセチル化度の好ましい範囲と同じである。
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の各アセチル化度(アセチル基量)は、好ましくは0.01モル%以上、より好ましくは0.5モル%以上であり、好ましくは10モル%以下、より好ましくは2モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合の上記ポリビニルアセタール樹脂(4)のアセチル化度の好ましい範囲は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)のアセチル化度の好ましい範囲と同じである。
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。
 上記ポリビニルアセタール樹脂(0)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは60モル%以上、より好ましくは63モル%以上であり、好ましくは85モル%以下、より好ましくは75モル%以下、更に好ましくは70モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。
 上記ポリビニルアセタール樹脂(1)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは47モル%以上、より好ましくは60モル%以上であり、好ましくは85モル%以下、より好ましくは80モル%以下、更に好ましくは75モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合の上記ポリビニルアセタール樹脂(4)のアセタール化度の好ましい範囲は、上記ポリビニルアセタール樹脂(1)のアセタール化度の好ましい範囲と同じである。
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは55モル%以上、より好ましくは60モル%以上であり、好ましくは75モル%以下、より好ましくは71モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合の上記ポリビニルアセタール樹脂(4)のアセタール化度の好ましい範囲は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)のアセタール化度の好ましい範囲と同じである。
 上記アセタール化度は、以下のようにして求める。先ず、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を求める。得られた値を、主鎖の全エチレン基量で除算してモル分率を求める。このモル分率を百分率で示した値がアセタール化度である。
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。但し、ASTM D1396-92による測定を用いてもよい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、上記アセタール化度(ブチラール化度)及び上記アセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。
 上記中間膜中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記中間膜中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは100重量%以下である。上記中間膜の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。
 上記第1の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記第1の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは100重量%以下である。上記第1の層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。
 上記第2の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記第2の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは100重量%以下である。上記第2の層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。
 上記第3の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記第3の層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは100重量%以下である。上記第3の層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。
 上記紫外線吸収剤(X)を含む層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記紫外線吸収剤(X)を含む層中に含まれる熱可塑性樹脂100重量%中、ポリビニルアセタール樹脂の含有量は、好ましくは100重量%以下である。上記紫外線吸収剤(X)を含む層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。
 (可塑剤)
 中間膜の接着力をより一層高める観点からは、本発明に係る中間膜は、可塑剤(以下、可塑剤(0)と記載することがある)を含むことが好ましい。上記第1の層は、可塑剤(以下、可塑剤(1)と記載することがある)を含むことが好ましい。上記第2の層は、可塑剤(以下、可塑剤(2)と記載することがある)を含むことが好ましい。上記第3の層は、可塑剤(以下、可塑剤(3)と記載することがある)を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、可塑剤(以下、可塑剤(4)と記載することがある)を含むことが好ましい。中間膜に含まれている熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、中間膜(各層)は、可塑剤を含むことが特に好ましい。ポリビニルアセタール樹脂を含む層は、可塑剤を含むことが好ましい。
 上記可塑剤は特に限定されない。上記可塑剤として、従来公知の可塑剤を用いることができる。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、有機リン酸可塑剤及び有機亜リン酸可塑剤等が挙げられる。上記可塑剤は有機エステル可塑剤であることが好ましい。上記可塑剤は液状可塑剤であることが好ましい。
 上記一塩基性有機酸エステルとしては、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸、デシル酸及び安息香酸等が挙げられる。
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。上記有機エステル可塑剤として、これら以外の有機エステル可塑剤を用いてもよい。また、アジピン酸エステルとして、上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、R1及びR2はそれぞれ、炭素数2~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数5~10の有機基であることが好ましく、炭素数6~10の有機基であることがより好ましい。
 上記可塑剤の溶解度パラメーター(SP値)は、好ましくは10(MPa)0.5以上、より好ましくは16(MPa)0.5以上、好ましくは25(MPa)0.5以下、より好ましくは17(MPa)0.5以下である。可塑剤の溶解度パラメーター(SP値)が上記下限以上及び上記上限以下であると、紫外線吸収剤(X)と可塑剤との相溶性を良好にすることができる。
 上記可塑剤の溶解度パラメーターは、上記紫外線吸収剤(X)の溶解度パラメーターよりも大きくてもよく、小さくてもよい。上記可塑剤の溶解度パラメーターと、紫外線吸収剤(X)の溶解度パラメーターとは、同じであってもよい。
 上記紫外線吸収剤(X)を含む層中の上記可塑剤の溶解度パラメーターは、上記紫外線吸収剤(X)を含む層中の上記紫外線吸収剤(X)の溶解度パラメーターよりも大きくてもよく、小さくてもよい。上記紫外線吸収剤(X)を含む層中の上記可塑剤の溶解度パラメーターと、上記紫外線吸収剤(X)を含む層中の紫外線吸収剤(X)の溶解度パラメーターとは、同じであってもよい。
 上記可塑剤の溶解度パラメーターと、上記紫外線吸収剤(X)の溶解度パラメーターとの差の絶対値は、好ましくは15.0(MPa)0.5以下、より好ましくは10(MPa)0.5以下、更に好ましくは7(MPa)0.5以下である。上記差の絶対値が上記上限以下であると、紫外線吸収剤(X)と可塑剤との相溶性を良好にすることができる。
 上記紫外線吸収剤(X)を含む層中の上記可塑剤の溶解度パラメーターと、上記紫外線吸収剤(X)を含む層中の上記紫外線吸収剤(X)の溶解度パラメーターとの差の絶対値は、好ましくは15.0(MPa)0.5以下、より好ましくは10(MPa)0.5以下、更に好ましくは7(MPa)0.5以下である。上記差の絶対値が上記上限以下であると、紫外線吸収剤(X)と可塑剤との相溶性を良好にすることができる。
 上記可塑剤の溶解度パラメーター(SP値)は、HSP解析ソフトウェア「HSPiP」を用いて計算される値を意味する。「HSPiP」は、化学物質の構造をもとに各化学物質の物性値をハンセンの溶解度パラメーターを用いて予測及び算出する推算ツールである。
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)又はトリエチレングリコールジ-2-エチルプロパノエートを含むことが好ましい。上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)又はトリエチレングリコールジ-2-エチルブチレート(3GH)を含むことがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)を含むことが更に好ましい。
 上記中間膜における上記熱可塑性樹脂(0)100重量部に対する上記可塑剤(0)の含有量を、含有量(0)とする。上記含有量(0)は、好ましくは5重量部以上、より好ましくは25重量部以上、更に好ましくは30重量部以上であり、好ましくは100重量部以下、より好ましくは60重量部以下、更に好ましくは50重量部以下である。上記含有量(0)が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記含有量(0)が上記上限以下であると、中間膜の透明性がより一層高くなる。
 上記第1の層において、上記熱可塑性樹脂(1)100重量部に対する上記可塑剤(1)の含有量を、含有量(1)とする。上記含有量(1)は、好ましくは50重量部以上、より好ましくは55重量部以上、更に好ましくは60重量部以上である。上記含有量(1)は、好ましくは100重量部以下、より好ましくは90重量部以下、更に好ましくは85重量部以下、特に好ましくは80重量部以下である。上記含有量(1)が上記下限以上であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。上記含有量(1)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合に、上記紫外線吸収剤(X)を含む層において、上記熱可塑性樹脂(4)100重量部に対する上記可塑剤(4)の含有量(以下、含有量(4)と記載することがある)の好ましい範囲は、含有量(1)の好ましい範囲と同じである。
 上記第2の層において、上記熱可塑性樹脂(2)100重量部に対する上記可塑剤(2)の含有量を、含有量(2)とする。上記第3の層において、上記熱可塑性樹脂(3)100重量部に対する上記可塑剤(3)の含有量を、含有量(3)とする。上記含有量(2)及び上記含有量(3)はそれぞれ、好ましくは5重量部以上、より好ましくは10重量部以上、より一層好ましくは15重量部以上、更に好ましくは20重量部以上、特に好ましくは24重量部以上、最も好ましくは25重量部以上である。上記含有量(2)及び上記含有量(3)はそれぞれ、好ましくは45重量部以下、より好ましくは40重量部以下、更に好ましくは35重量部以下、特に好ましくは32重量部以下、最も好ましくは30重量部以下である。上記含有量(2)及び上記含有量(3)が上記下限以上であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。上記含有量(2)及び上記含有量(3)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合に、上記紫外線吸収剤(X)を含む層において、上記熱可塑性樹脂(4)100重量部に対する上記可塑剤(4)の含有量(以下、含有量(4)と記載することがある)の好ましい範囲は、上記含有量(2)及び上記含有量(3)の好ましい範囲と同じである。
 合わせガラスの遮音性を高めるために、上記含有量(1)は上記含有量(2)よりも多いことが好ましく、上記含有量(1)は上記含有量(3)よりも多いことが好ましい。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合に、合わせガラスの遮音性を高めるために、上記含有量(4)は上記含有量(2)よりも多いことが好ましく、上記含有量(4)は上記含有量(3)よりも多いことが好ましい。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合に、合わせガラスの遮音性を高めるために、上記含有量(1)は上記含有量(4)よりも多いことが好ましい。
 合わせガラスの遮音性をより一層高める観点からは、上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層ではない場合に、合わせガラスの遮音性をより一層高める観点からは、上記含有量(2)と上記含有量(4)との差の絶対値、並びに上記含有量(3)と上記含有量(4)との差の絶対値はそれぞれ、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。上記含有量(2)と上記含有量(4)との差の絶対値、並びに上記含有量(3)と上記含有量(4)との差の絶対値はそれぞれ、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。
 上記紫外線吸収剤(X)を含む層が中間膜の表面層である場合に、合わせガラスの遮音性をより一層高める観点からは、上記含有量(4)と上記含有量(1)との差の絶対値は、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。上記含有量(4)と上記含有量(1)との差の絶対値は、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。
 (遮熱性物質)
 上記中間膜は、遮熱性物質を含むことが好ましい。上記第1の層は、遮熱性物質を含むことが好ましい。上記第2の層は、遮熱性物質を含むことが好ましい。上記第3の層は、遮熱性物質を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、遮熱性物質を含むことが好ましい。上記遮熱性物質は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記遮熱性物質は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むか、又は遮熱粒子を含むことが好ましい。この場合に、上記遮熱性物質は、上記成分Xと上記遮熱粒子との双方を含んでいてもよい。
 成分X:
 上記中間膜は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むことが好ましい。上記第1の層は、上記成分Xを含むことが好ましい。上記第2の層は、上記成分Xを含むことが好ましい。上記第3の層は、上記成分Xを含むことが好ましい。上記紫外線吸収剤(X)を含む層は、上記成分Xを含むことが好ましい。上記成分Xは遮熱性物質である。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記成分Xは特に限定されない。成分Xとして、従来公知のフタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物を用いることができる。
 上記成分Xとしては、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン、ナフタロシアニンの誘導体、アントラシアニン及びアントラシアニンの誘導体等が挙げられる。上記フタロシアニン化合物及び上記フタロシアニンの誘導体はそれぞれ、フタロシアニン骨格を有することが好ましい。上記ナフタロシアニン化合物及び上記ナフタロシアニンの誘導体はそれぞれ、ナフタロシアニン骨格を有することが好ましい。上記アントラシアニン化合物及び上記アントラシアニンの誘導体はそれぞれ、アントラシアニン骨格を有することが好ましい。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、上記成分Xは、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも1種であることが好ましく、フタロシアニン及びフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。
 遮熱性を効果的に高め、かつ長期間にわたり可視光線透過率をより一層高いレベルで維持する観点からは、上記成分Xは、バナジウム原子又は銅原子を含有することが好ましい。上記成分Xは、バナジウム原子を含有することが好ましく、銅原子を含有することも好ましい。上記成分Xは、バナジウム原子又は銅原子を含有するフタロシアニン及びバナジウム原子又は銅原子を含有するフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。中間膜及び合わせガラスの遮熱性を更に一層高くする観点からは、上記成分Xは、バナジウム原子に酸素原子が結合した構造単位を有することが好ましい。
 上記中間膜100重量%中又は上記成分Xを含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)100重量%中、上記成分Xの含有量は、好ましくは0.001重量%以上、より好ましくは0.005重量%以上、更に好ましくは0.01重量%以上、特に好ましくは0.02重量%以上である。上記中間膜100重量%中又は上記成分Xを含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)100重量%中、上記成分Xの含有量は、好ましくは0.2重量%以下、より好ましくは0.1重量%以下、更に好ましくは0.05重量%以下、特に好ましくは0.04重量%以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。例えば、可視光線透過率を70%以上にすることが可能である。
 遮熱粒子:
 上記中間膜は、遮熱粒子を含むことが好ましい。上記第1の層は、上記遮熱粒子を含むことが好ましい。上記第2の層は、上記遮熱粒子を含むことが好ましい。上記第3の層は、上記遮熱粒子を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、上記遮熱粒子を含むことが好ましい。上記遮熱粒子は遮熱性物質である。遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。上記遮熱粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 合わせガラスの遮熱性をより一層高める観点からは、上記遮熱粒子は、金属酸化物粒子であることがより好ましい。上記遮熱粒子は、金属の酸化物により形成された粒子(金属酸化物粒子)であることが好ましい。
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質に吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。なお、遮熱粒子とは、赤外線を吸収可能な粒子を意味する。
 上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子、ルビジウムドープ酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子、珪素ドープ酸化亜鉛粒子等の金属酸化物粒子や、六ホウ化ランタン(LaB)粒子等が挙げられる。これら以外の遮熱粒子を用いてもよい。熱線の遮蔽機能が高いため、金属酸化物粒子が好ましく、ATO粒子、GZO粒子、IZO粒子、ITO粒子又は酸化タングステン粒子がより好ましく、ITO粒子又は酸化タングステン粒子が特に好ましい。特に、熱線の遮蔽機能が高く、かつ入手が容易であるので、錫ドープ酸化インジウム粒子(ITO粒子)が好ましく、酸化タングステン粒子も好ましい。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、酸化タングステン粒子は、金属ドープ酸化タングステン粒子であることが好ましい。上記「酸化タングステン粒子」には、金属ドープ酸化タングステン粒子が含まれる。上記金属ドープ酸化タングステン粒子としては、具体的には、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子及びルビジウムドープ酸化タングステン粒子等が挙げられる。
 中間膜及び合わせガラスの遮熱性をより一層高くする観点からは、セシウムドープ酸化タングステン粒子が特に好ましい。中間膜及び合わせガラスの遮熱性を更に一層高くする観点からは、該セシウムドープ酸化タングステン粒子は、式:Cs0.33WOで表される酸化タングステン粒子であることが好ましい。
 上記遮熱粒子の平均粒子径は、好ましくは0.01μm以上、より好ましくは0.02μm以上であり、好ましくは0.1μm以下、より好ましくは0.05μm以下である。平均粒子径が上記下限以上であると、熱線の遮蔽性が充分に高くなる。平均粒子径が上記上限以下であると、遮熱粒子の分散性が高くなる。
 上記「平均粒子径」は、体積平均粒子径を示す。平均粒子径は、粒度分布測定装置(日機装社製「UPA-EX150」)等を用いて測定できる。
 上記中間膜100重量%中又は上記遮熱粒子を含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)100重量%中、上記遮熱粒子の含有量(特に酸化タングステン粒子の含有量)は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、更に好ましくは1重量%以上、特に好ましくは1.5重量%以上である。上記中間膜100重量%中又は上記遮熱粒子を含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)100重量%中、上記遮熱粒子の含有量(特に酸化タングステン粒子の含有量)は、好ましくは6重量%以下、より好ましくは5.5重量%以下、更に好ましくは4重量%以下、特に好ましくは3.5重量%以下、最も好ましくは3重量%以下である。上記遮熱粒子の含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。
 (金属塩)
 上記中間膜は、アルカリ金属塩及びアルカリ土類金属塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含むことが好ましい。上記第1の層は、上記金属塩Mを含むことが好ましい。上記第2の層は、上記金属塩Mを含むことが好ましい。上記第3の層は、上記金属塩Mを含むことが好ましい。上記紫外線吸収剤(X)を含む層は、上記金属塩Mを含むことが好ましい。なお、アルカリ土類金属とは、Be、Mg、Ca、Sr、Ba、及びRaの6種の金属を意味する。上記金属塩Mの使用により、中間膜とガラス板などの合わせガラス部材との接着性又は中間膜における各層間の接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記金属塩Mは、Li、Na、K、Rb、Cs、Mg、Ca、Sr及びBaからなる群から選択された少なくとも1種の金属を含むことが好ましい。中間膜中に含まれている金属塩Mは、K及びMgの内の少なくとも1種の金属を含むことが好ましい。
 また、上記金属塩Mとして、炭素数2~16の有機酸のアルカリ金属塩、及び炭素数2~16の有機酸のアルカリ土類金属塩を用いることができる。上記金属塩Mは、炭素数2~16のカルボン酸マグネシウム塩、又は、炭素数2~16のカルボン酸カリウム塩を含んでいてもよい。
 上記炭素数2~16のカルボン酸マグネシウム塩及び上記炭素数2~16のカルボン酸カリウム塩としては、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチル酪酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム及び2-エチルヘキサン酸カリウム等が挙げられる。
 上記金属塩Mを含む中間膜、又は上記金属塩Mを含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)におけるMg及びKの含有量の合計は、好ましくは5ppm以上、より好ましくは10ppm以上、更に好ましくは20ppm以上であり、好ましくは300ppm以下、より好ましくは250ppm以下、更に好ましくは200ppm以下である。Mg及びKの含有量の合計が上記下限以上及び上記上限以下であると、中間膜と合わせガラス部材(ガラス板等)との接着性又は中間膜における各層間の接着性をより一層良好に制御できる。
 (酸化防止剤)
 上記中間膜は、酸化防止剤を含むことが好ましい。上記第1の層は、酸化防止剤を含むことが好ましい。上記第2の層は、酸化防止剤を含むことが好ましい。上記第3の層は、酸化防止剤を含むことが好ましい。上記紫外線吸収剤(X)を含む層は、酸化防止剤を含むことが好ましい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記酸化防止剤としては、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤はフェノール骨格を有する酸化防止剤である。上記硫黄系酸化防止剤は硫黄原子を含有する酸化防止剤である。上記リン系酸化防止剤はリン原子を含有する酸化防止剤である。
 上記酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。
 上記フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。
 上記リン系酸化防止剤としては、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。
 上記酸化防止剤の市販品としては、例えばBASF社製「IRGANOX 245」、BASF社製「IRGAFOS 168」、BASF社製「IRGAFOS 38」、住友化学工業社製「スミライザーBHT」、堺化学工業社製「H-BHT」、並びにBASF社製「IRGANOX 1010」等が挙げられる。
 中間膜及び合わせガラスの高い可視光線透過率を長期間に渡り維持するために、上記中間膜100重量%中又は酸化防止剤を含む層(第1の層、第2の層、第3の層又は紫外線吸収剤(X)を含む層)100重量%中、上記酸化防止剤の含有量は0.03重量%以上であることが好ましく、0.1重量%以上であることがより好ましい。また、酸化防止剤の添加効果が飽和するので、上記中間膜100重量%中又は上記酸化防止剤を含む層100重量%中、上記酸化防止剤の含有量は2重量%以下であることが好ましい。
 (他の成分)
 上記中間膜、上記第1の層、上記第2の層、上記第3の層及び上記紫外線吸収剤(X)を含む層はそれぞれ、必要に応じて、上述した成分以外の他の成分を含んでいてもよい。上記他の成分としては、紫外線吸収剤(X)以外の紫外線吸収剤、着色剤(顔料及び染料等)、カップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、金属塩以外の接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等が挙げられる。これらの他の成分はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (合わせガラス用中間膜の他の詳細)
 上記中間膜の波長300nm以上350nm以下における透過率の最大値は、好ましくは0.1%以下、より好ましくは0.01%以下、更に好ましくは0.001%以下、特に好ましくは0.00001%以下である。上記透過率の最大値が上記上限以下であると、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記中間膜の波長300nm以上350nm以下における透過率の最大値は、0%以上であってもよい。
 上記中間膜の波長390nmにおける透過率は、好ましくは10%以上、より好ましくは15%以上、好ましくは40%以下、より好ましくは35%以下である。上記透過率が上記下限以上であると、可視光線透過率をより一層高めることができる。上記透過率が上記上限以下であると、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。
 上記中間膜の波長300nm以上350nm以下における透過率、及び波長390nmにおける透過率は、以下のようにして測定することができる。上記中間膜を、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス2枚の間に配置して合わせガラスAを得る。得られた合わせガラスAの波長300nm以上350nm以下における透過率、及び波長390nmにおける透過率を測定する。合わせガラスAにおける波長300nm以上350nm以下における透過率、及び波長390nmにおける透過率をそれぞれ、上記中間膜における波長300nm以上350nm以下における透過率、及び波長390nmにおける透過率と定義する。上記透過率は、分光光度計(例えば、日立ハイテク社製「U-4150」)を用いて、JIS R3211:1998に準拠して測定することができる。
 上記中間膜の紫外線透過率Tuvは、好ましくは0.4%以下、より好ましくは0.25%以下、更に好ましくは0.1%以下である。上記紫外線透過率Tuvが上記上限以下であると、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。なお、上記中間膜の紫外線透過率Tuvは、0%以上であってもよい。
 上記中間膜の紫外線透過率Tuvは、以下のようにして測定することができる。上記中間膜を、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス2枚の間に配置して合わせガラスAを得る。得られた合わせガラスAの波長300nm以上400nm以下における透過率を測定する。合わせガラスAの波長300nm以上400nm以下における透過率から、ISO9050に準拠した方法で算出した値を、上記中間膜の紫外線透過率Tuvと定義する。上記紫外線透過率Tuvは、分光光度計(例えば、日立ハイテク社製「U-4150」)を用いて、JIS R3211:1998に準拠して測定することができる。
 上記中間膜のイエローインデックスYIは、好ましくは0.5以下、より好ましくは0.45以下、更に好ましくは0.4以下である。上記中間膜のイエローインデックスYIが上記上限以下であると、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。なお、上記中間膜のイエローインデックスYIは、0.01以上であってもよく、0.05以上であってもよい。
 上記中間膜のイエローインデックスYIは、全光線透過率から算出されるイエローインデックスである。上記中間膜におけるイエローインデックスは、以下のようにして測定することができる。上記中間膜を、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス2枚の間に配置して合わせガラスAを得る。得られた合わせガラスAの全光線透過率を測定する。合わせガラスAの全光線透過率から、JIS K7373に準拠して、合わせガラスAのイエローインデックスYIを算出する。合わせガラスAのイエローインデックスYIを、上記中間膜のイエローインデックスYIと定義する。
 なお、合わせガラスAの全光線透過率は以下のようにして測定される。
 分光光度計を用いて、透過した光が積分球へ受光するように、光源と積分球との光路上で光軸の法線に平行に、かつ積分球に接する位置に、上記合わせガラスAを設置する。上記全光線透過率は、この状態で測定された分光透過率から算出された可視光線透過率を意味する。上記全光線透過率は、分光光度計(例えば、日立ハイテク社製「U-4150」)を用いて測定することができる。
 上記中間膜のヘイズは、好ましくは8%以下、より好ましくは5%以下、更に好ましくは3%以下である。上記ヘイズが上記上限以下であると、中間膜及び合わせガラスの透明性を高めることができる。なお、上記中間膜のヘイズは、0%以上であってもよく、0.1%以上であってもよい。
 上記中間膜のヘイズは、以下のようにして測定することができる。上記中間膜を、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス2枚の間に配置して合わせガラスAを得る。得られた合わせガラスAのヘイズを、JIS K6714に準拠して、ヘイズメーターを用いて測定する。合わせガラスAのヘイズを、上記中間膜のヘイズと定義する。
 合わせガラスAの作製方法は特に限定されない。合わせガラスAの作製方法の一例を以下に示す。
 JIS R3202:1996に準拠した厚み2.5mmのクリアガラス2枚の間に中間膜を挟み、積層体を得る。得られた積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着する。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラスAを得る。
 なお、本発明に係る中間膜を用いて、合わせガラス製品を得る際に、JIS R3202:1996に準拠した厚み2.5mmのクリアガラスを用いてもよく、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス以外のクリアガラスを用いてもよく、クリアガラス以外の合わせガラス部材を用いてもよい。
 上記中間膜は、一端と、上記一端の反対側に他端とを有する。上記一端と上記他端とは、中間膜において対向し合う両側の端部である。
 上記中間膜は、上記一端の厚みと上記他端の厚みとが同じである中間膜であってもよく、上記他端の厚みが上記一端の厚みよりも大きい中間膜であってもよい。上記中間膜は、厚みが均一な中間膜であってもよく、厚みが変化している中間膜であってもよい。上記中間膜の断面形状は矩形であってもよく、楔形であってもよい。
 上記中間膜の最大厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上、更に好ましくは0.5mm以上、特に好ましくは0.8mm以上であり、好ましくは3.8mm以下、より好ましくは2.0mm以下、更に好ましくは1.5mm以下である。
 実用面の観点、及び接着力及び耐貫通性を充分に高める観点からは、上記中間膜の表面層の最大厚みは、好ましくは0.001mm以上、より好ましくは0.2mm以上、更に好ましくは0.3mm以上であり、好ましくは1.0mm以下、より好ましくは0.8mm以下である。
 実用面の観点、及び耐貫通性を充分に高める観点からは、2つの表面層の間に配置される層(中間層)の最大厚みは、好ましくは0.001mm以上、より好ましくは0.1mm以上、更に好ましくは0.2mm以上であり、好ましくは0.8mm以下、より好ましくは0.6mm以下、更に好ましくは0.3mm以下である。
 上記中間膜の一端と他端との距離は、好ましくは3.0m以下、より好ましくは2.0m以下、特に好ましくは1.5m以下であり、好ましくは0.5m以上、より好ましくは0.8m以上、特に好ましくは1.0m以上である。
 中間膜は、巻かれて、中間膜のロール体とされてもよい。ロール体は、巻き芯と、該巻き芯の外周に巻かれた中間膜とを備えていてもよい。
 上記中間膜の製造方法は特に限定されない。上記中間膜の製造方法としては、単層の中間膜の場合に、樹脂組成物を押出機を用いて押出する方法が挙げられる。上記中間膜の製造方法としては、多層の中間膜の場合に、例えば、各層を形成するための各樹脂組成物を用いて各層をそれぞれ形成した後に、得られた各層を積層する方法が挙げられる。さらに、上記中間膜の製造方法としては、各層を形成するための各樹脂組成物を押出機を用いて共押出することにより、各層を積層する方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。
 中間膜の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂が含まれていることが好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂及び同一の可塑剤が含まれていることがより好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とが同一の樹脂組成物により形成されていることが更に好ましい。
 上記中間膜は、両側の表面の内の少なくとも一方の表面に凹凸形状を有することが好ましい。上記中間膜は、両側の表面に凹凸形状を有することがより好ましい。上記の凹凸形状を形成する方法としては特に限定されず、例えば、リップエンボス法(メルトフラクチャー法)、エンボスロール法、カレンダーロール法、及び異形押出法等が挙げられる。
 上記中間膜は、調光フィルムを備えないことが好ましい。上記中間膜が調光フィルムを備えないことにより、上記中間膜のヘイズを上述した上限以下とすることができる。
 (合わせガラス)
 本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した中間膜とを備える。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記中間膜が配置されている。
 図3は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。
 図3に示す合わせガラス31は、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11とを備える。中間膜11は、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。
 中間膜11の第1の表面に、第1の合わせガラス部材21が積層されている。中間膜11の第1の表面とは反対の第2の表面に、第2の合わせガラス部材22が積層されている。第2の層2の外側の表面に第1の合わせガラス部材21が積層されている。第3の層3の外側の表面に第2の合わせガラス部材22が積層されている。
 図4は、図2に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。
 図4に示す合わせガラス31Aは、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11Aとを備える。中間膜11Aは、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。
 中間膜11Aの第1の表面に、第1の合わせガラス部材21が積層されている。中間膜11Aの第1の表面とは反対の第2の表面に、第2の合わせガラス部材22が積層されている。
 上記合わせガラスは、ヘッドアップディスプレイであってもよい。上記合わせガラスがヘッドアップディスプレイである場合には、該合わせガラスは、ヘッドアップディスプレイの表示領域を有する。上記表示領域は、情報を良好に表示させることができる領域である。
 上記ヘッドアップディスプレイを用いて、ヘッドアップディスプレイシステムを得ることができる。ヘッドアップディスプレイシステムは、上記合わせガラスと、画像表示用の光を合わせガラスに照射するための光源装置とを備える。上記光源装置は、例えば、車両において、ダッシュボードに取り付けることができる。上記光源装置から、上記合わせガラスの上記表示領域に光を照射することで、画像表示を行うことができる。
 上記第1の合わせガラス部材は、第1のガラス板であることが好ましい。上記第2の合わせガラス部材は、第2のガラス板であることが好ましい。
 上記第1,第2の合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。上記合わせガラスには、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。上記合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第1の合わせガラス部材及び上記第2の合わせガラス部材がそれぞれ、ガラス板又はPETフィルムであり、かつ上記合わせガラスは、上記第1の合わせガラス部材及び上記第2の合わせガラス部材の内の少なくとも一方として、ガラス板を備えることが好ましい。上記第1,第2の合わせガラス部材の双方がガラス板であることが特に好ましい。
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、線入り板ガラス及びグリーンガラス等が挙げられる。上記有機ガラスは、無機ガラスに代わる合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
 上記第1の合わせガラス部材及び上記第2の合わせガラス部材の各厚みは、好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。また、上記合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは0.5mm以上、より好ましくは0.7mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。上記合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上であり、好ましくは0.5mm以下である。
 上記合わせガラスの製造方法は特に限定されない。先ず、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、中間膜を挟んで、積層体を得る。次に、例えば、得られた積層体を押圧ロールに通したり又はゴムバックに入れて減圧吸引したりすることにより、上記第1の合わせガラス部材と上記第2の合わせガラス部材と中間膜との間に残留する空気を脱気する。その後、約70℃~110℃で予備接着して予備圧着された積層体を得る。次に、予備圧着された積層体をオートクレーブに入れたり、又はプレスしたりして、約120℃~150℃及び1MPa~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。
 上記中間膜及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記中間膜及び上記合わせガラスは、これらの用途以外にも使用できる。上記中間膜及び上記合わせガラスは、車両用又は建築物用の中間膜及び合わせガラスであることが好ましく、車両用の中間膜及び合わせガラスであることがより好ましい。上記中間膜及び上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス、ルーフガラス又はバックライト用ガラス等に使用できる。上記中間膜及び上記合わせガラスは、自動車に好適に用いられる。上記中間膜は、自動車の合わせガラスを得るために好適に用いられる。
 以下に実施例及び比較例を掲げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。
 用いたポリビニルアセタール樹脂では、アセタール化に、炭素数4のn-ブチルアルデヒドが用いられている。ポリビニルアセタール樹脂に関しては、アセタール化度(ブチラール化度)、アセチル化度及び水酸基の含有率はJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定した。なお、ASTM D1396-92により測定した場合も、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法と同様の数値を示した。
 以下の材料を用意した。
 (熱可塑性樹脂)
 ポリビニルアセタール樹脂(ポリビニルブチラール樹脂、平均重合度1700、水酸基の含有率30モル%、アセチル化度1モル%、アセタール化度(ブチラール化度)69モル%)
 ポリビニルアセタール樹脂(ポリビニルブチラール樹脂、平均重合度3000、水酸基の含有率22モル%、アセチル化度13モル%、アセタール化度(ブチラール化度)65モル%)
 ポリビニルアセタール樹脂(ポリビニルブチラール樹脂、平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度(ブチラール化度)68.5モル%)
 (可塑剤)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
 (紫外線吸収剤)
 紫外線吸収剤(X):
 上記式(X11)で表される紫外線吸収剤(BASF社製「TinuvinP」)
 上記式(X12)で表される紫外線吸収剤(BASF社製「TinuvinPS」)
 2,2’,4,4’-テトラヒドロキシベンゾフェノン(共同薬品社製「Viosorb105」)
 紫外線吸収剤(X)に相当しない紫外線吸収剤:
 2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール(BASF社製「Tinuvin234」)
 2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール(城北化学社製「JF-83」)
 なお、各紫外線吸収剤のlogKowの値及び溶解度パラメーター(SP値)は、表に示した。
 (金属塩M)
 Mg混合物(2-エチル酪酸マグネシウムと酢酸マグネシウムとの50:50(重量比)混合物)
 (酸化防止剤)
 BHT(2,6-ジ-t-ブチル-p-クレゾール)
 (実施例1)
 中間膜を形成するための組成物の作製:
 以下の成分を配合し、ミキシングロールで充分に混練し、中間膜を形成するための組成物を得た。
 ポリビニルブチラール樹脂(平均重合度1700、水酸基の含有率30モル%、アセチル化度1モル%、アセタール化度69モル%)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部
 上記式(X11)で表される紫外線吸収剤0.47重量部
 得られる中間膜中でマグネシウム量が70ppmとなる量の金属塩M
 得られる中間膜中で0.2重量%となる量の酸化防止剤(BHT)
 中間膜の作製:
 中間膜を形成するための組成物を、押出機を用いて押出しすることにより、第1の層のみを備える単層の中間膜(厚み760μm)を作製した。
 合わせガラスの作製:
 得られた中間膜を、JIS R3202:1996に準拠した厚み2.5mmのクリアガラス(縦300mm×横300mm)2枚の間に挟み、積層体を得た。得られた積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラスを得た。得られた合わせガラスは、上述した合わせガラスAに相当する。
 (実施例2,3及び比較例1,2)
 紫外線吸収剤の種類及びその含有量を表1に示すように変更したこと以外は、実施例1と同様にして、単層の中間膜(厚み760μm)を作製した。なお、金属塩M及び酸化防止剤は、実施例1と同一の種類及び配合量で用いた。
 (実施例4)
 第1の層を形成するための樹脂組成物の作製:
 以下の成分を配合し、ミキシングロールで充分に混練し、第1の層を形成するための樹脂組成物を得た。
 ポリビニルブチラール樹脂(平均重合度3000、水酸基の含有率22モル%、アセチル化度13モル%、アセタール化度65モル%)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部
 上記式(X11)で表される紫外線吸収剤0.47重量部
 マグネシウム量が0.038重量部となる量のMg混合物(得られる第1の層中でマグネシウム量が60ppmとなる量のMg混合物)
 得られる第1の層中で0.2重量%となる量の酸化防止剤(BHT)
 第2の層及び第3の層を形成するための樹脂組成物の作製:
 下記の成分を配合し、ミキシングロールで充分に混練し、第2の層及び第3の層を形成するための樹脂組成物を得た。
 ポリビニルブチラール樹脂(平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度68.5モル%)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部
 上記式(X11)で表される紫外線吸収剤0.47重量部
 マグネシウム量が0.038重量部となる量のMg混合物(得られる第2,第3の層中でマグネシウム量が60ppmとなる量のMg混合物)
 得られる第2,第3の層中で0.2重量%となる量の酸化防止剤(BHT)
 中間膜の作製:
 第1の層を形成するための樹脂組成物と、第2,第3の層を形成するための樹脂組成物とを、共押出機を用いて共押出することにより、3層の構造(第2の層/第1の層/第3の層)を有する中間膜(厚み760μm)を得た。
 合わせガラスの作製:
 得られた中間膜を用いたこと以外は、実施例1と同様にして、合わせガラスを得た。得られた合わせガラスは、上述した合わせガラスAに相当する。
 (実施例5)
 紫外線吸収剤の種類及びその含有量を表2に示すように変更したこと以外は、実施例4と同様にして、3層の構造(第2の層/第1の層/第3の層)を有する中間膜(厚み760μm)を作製した。なお、金属塩M及び酸化防止剤は、実施例4と同一の種類及び配合量で用いた。
 (評価)
 (1)中間膜の波長300nm以上350nm以下における透過率
 分光光度計(日立ハイテク社製「U-4150」)を用いて、上述した方法により、得られた合わせガラス(合わせガラスA)の波長300nm以上350nm以下における透過率を測定することにより、中間膜の波長300nm以上350nm以下における透過率の最大値を求めた。
 (2)中間膜の波長390nmにおける透過率
 分光光度計(日立ハイテク社製「U-4150」)を用いて、上述した方法により、得られた合わせガラス(合わせガラスA)の波長390nmにおける透過率を測定することにより、中間膜の波長390nmにおける透過率を求めた。
 (3)中間膜の紫外線透過率Tuv
 分光光度計(日立ハイテク社製「U-4150」)を用いて、上述した方法により、得られた合わせガラス(合わせガラスA)の波長300nm以上400nm以下における透過率を測定することにより、中間膜の紫外線透過率Tuvを求めた。
 (4)中間膜のイエローインデックスYI
 分光光度計(日立ハイテク社製「U-4150」)を用いて、上述した方法により、得られた合わせガラス(合わせガラスA)の全光線透過率を測定することにより、中間膜のイエローインデックスYIを求めた。
 (5)中間膜のヘイズ
 ヘイズメーター(東京電色社製「TC-HIIIDPK」)を用いて、上述した方法により、得られた合わせガラス(合わせガラスA)のヘイズをJIS K6714に準拠して測定することにより、中間膜のヘイズを求めた。
 (6)人体及び環境への安全性
 実施例1~5で得られた中間膜では、logKowの値が5以下である紫外線吸収剤(紫外線吸収剤(X))が用いられているので、環境汚染の危険性を低く抑えることができ、人体及び環境への安全性を高めることができる。なお、表中では、紫外線吸収剤(X)が用いられている実施例1~5の評価結果を「〇」で示し、logKowの値が5を超える紫外線吸収剤が用いられている比較例1,2の評価結果を「×」で示した。
 中間膜の構成及び結果を下記の表1,2に示す。なお、表中、透過率の測定結果の「E」は10の乗数を意味する。例えば、「1.6E-02」は、「1.6×10-2」を意味する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 1…第1の層
 1a…第1の表面
 1b…第2の表面
 2…第2の層
 3…第3の層
 11,11A…中間膜
 21…第1の合わせガラス部材
 22…第2の合わせガラス部材
 31,31A…合わせガラス

Claims (15)

  1.  1層の構造又は2層以上の構造を有する合わせガラス用中間膜であって、
     熱可塑性樹脂と、logKowの値が5以下である紫外線吸収剤とを含む、合わせガラス用中間膜。
  2.  前記熱可塑性樹脂が、ポリビニルアセタール樹脂である、請求項1に記載の合わせガラス用中間膜。
  3.  前記紫外線吸収剤の分子量が、300以下である、請求項1又は2に記載の合わせガラス用中間膜。
  4.  前記紫外線吸収剤の溶解度パラメーターが、21.2(MPa)0.5以上24.0(MPa)0.5以下である、請求項1~3のいずれか1項に記載の合わせガラス用中間膜。
  5.  前記紫外線吸収剤を含む層中の前記熱可塑性樹脂100重量部に対して、前記紫外線吸収剤を含む層中の前記紫外線吸収剤の含有量が、0.25重量部以上である、請求項1~4のいずれか1項に記載の合わせガラス用中間膜。
  6.  可塑剤を含む、請求項1~5のいずれか1項に記載の合わせガラス用中間膜。
  7.  前記可塑剤の溶解度パラメーターと、前記紫外線吸収剤の溶解度パラメーターとの差の絶対値が、15.0(MPa)0.5以下である、請求項6に記載の合わせガラス用中間膜。
  8.  前記紫外線吸収剤が、ベンゾトリアゾール骨格を有する、請求項1~7のいずれか1項に記載の合わせガラス用中間膜。
  9.  前記紫外線吸収剤が、下記式(X1)で表される紫外線吸収剤を含む、請求項1~8のいずれか1項に記載の合わせガラス用中間膜。
    Figure JPOXMLDOC01-appb-C000001
     前記式(X1)中、Rは、アルキル基を表す。
  10.  前記紫外線吸収剤が、下記式(X11)又は下記式(X12)で表される紫外線吸収剤を含む、請求項1~9のいずれか1項に記載の合わせガラス用中間膜。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  11.  中間膜の波長300nm以上350nm以下における透過率の最大値が、0.1%以下である、請求項1~10のいずれか1項に記載の合わせガラス用中間膜。
  12.  中間膜の紫外線透過率Tuvが、0.4%以下である、請求項1~11のいずれか1項に記載の合わせガラス用中間膜。
  13.  中間膜のイエローインデックスYIが、0.5以下である、請求項1~12のいずれか1項に記載の合わせガラス用中間膜。
  14.  中間膜のヘイズが、8%以下である、請求項1~13のいずれか1項に記載の合わせガラス用中間膜。
  15.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項1~14のいずれか1項に記載の合わせガラス用中間膜とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
PCT/JP2022/045661 2021-12-13 2022-12-12 合わせガラス用中間膜及び合わせガラス WO2023112890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201778 2021-12-13
JP2021-201778 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023112890A1 true WO2023112890A1 (ja) 2023-06-22

Family

ID=86774729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045661 WO2023112890A1 (ja) 2021-12-13 2022-12-12 合わせガラス用中間膜及び合わせガラス

Country Status (2)

Country Link
TW (1) TW202337700A (ja)
WO (1) WO2023112890A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060363A (ja) * 2010-09-16 2013-04-04 Sekisui Chem Co Ltd 調光シート、調光体、合わせガラス用中間膜及び合わせガラス
WO2015059829A1 (ja) 2013-10-25 2015-04-30 株式会社クラレ 複層フィルム及びそれからなる合わせガラス用中間膜
JP2015116680A (ja) * 2013-12-17 2015-06-25 株式会社クラレ 積層体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060363A (ja) * 2010-09-16 2013-04-04 Sekisui Chem Co Ltd 調光シート、調光体、合わせガラス用中間膜及び合わせガラス
WO2015059829A1 (ja) 2013-10-25 2015-04-30 株式会社クラレ 複層フィルム及びそれからなる合わせガラス用中間膜
JP2015116680A (ja) * 2013-12-17 2015-06-25 株式会社クラレ 積層体

Also Published As

Publication number Publication date
TW202337700A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP6613141B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP6434937B2 (ja) 合わせガラス
JP6871061B2 (ja) 合わせガラス用中間膜、ロール体及び合わせガラス
JP5220956B2 (ja) 合わせガラス用中間膜及び合わせガラス
WO2012108537A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2017135448A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2019194113A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2017170727A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2019189740A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021261507A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021200964A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2023112890A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP6382669B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP7154447B1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2023112889A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021241592A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021261523A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2023100928A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021010402A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021010403A1 (ja) 合わせガラス用中間膜及び合わせガラス
JPWO2017043624A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2016183076A (ja) 合わせガラス用中間膜及び合わせガラス
JP2016183077A (ja) 合わせガラス用中間膜及び合わせガラス
WO2019189738A1 (ja) 合わせガラス用中間膜及び合わせガラス
KR20240009412A (ko) 분산액, 수지 조성물, 접합 유리용 중간막 및 접합 유리

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023517885

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907414

Country of ref document: EP

Kind code of ref document: A1