WO2012034438A1 - 制冷剂导管和具有该制冷剂导管的换热器 - Google Patents

制冷剂导管和具有该制冷剂导管的换热器 Download PDF

Info

Publication number
WO2012034438A1
WO2012034438A1 PCT/CN2011/076428 CN2011076428W WO2012034438A1 WO 2012034438 A1 WO2012034438 A1 WO 2012034438A1 CN 2011076428 W CN2011076428 W CN 2011076428W WO 2012034438 A1 WO2012034438 A1 WO 2012034438A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigerant conduit
wall portion
conduit
axial direction
Prior art date
Application number
PCT/CN2011/076428
Other languages
English (en)
French (fr)
Inventor
刘华钊
董洪洲
Original Assignee
三花丹佛斯(杭州)微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三花丹佛斯(杭州)微通道换热器有限公司 filed Critical 三花丹佛斯(杭州)微通道换热器有限公司
Priority to US13/822,616 priority Critical patent/US9417014B2/en
Publication of WO2012034438A1 publication Critical patent/WO2012034438A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a refrigerant conduit, and a heat exchanger having the refrigerant conduit.
  • At least one of the inlet header and the outlet header of a typical heat exchanger is provided with a refrigerant conduit that acts as a distributor in the inlet header and as a collector in the outlet header .
  • a refrigerant conduit comprising: a pipe wall, an inner cavity formed in the pipe wall; an opening formed in the pipe wall; and a refrigerant guiding wall portion, At least a portion of the edge of the refrigerant guiding wall portion is separated from the tube wall, thereby forming the opening.
  • At least a portion of the refrigerant guiding wall portion is disposed to be substantially inclined with respect to an axial direction of the duct for guiding the refrigerant passing through the opening.
  • At least an angle between a middle portion of the refrigerant guiding wall portion in a direction perpendicular to the axial direction of the refrigerant conduit and an axial direction of the refrigerant conduit is larger than
  • 0 degrees and less than 90 degrees preferably about 5 degrees to about 75 degrees, or at least a portion of the portion of the refrigerant guiding wall portion and the axial direction of the refrigerant conduit is greater than 0 degrees and less than 90 degrees, preferably The angle between about 5 degrees and about 75 degrees, or the refrigerant guiding wall portion and the refrigerant conduit axial direction is greater than 0 degrees and less than 90 degrees, preferably from about 5 degrees to about 75 degrees.
  • At least the refrigerant guiding wall portion is in the cooling a section of the middle portion of the agent conduit in the axially perpendicular direction along the axial direction of the refrigerant conduit is composed of a plurality of substantially linear portions or substantially curved, or the refrigerant guide wall portion along the refrigerant conduit
  • the axial section is composed of a plurality of substantially linear portions or is substantially curved.
  • a heat exchanger having the above refrigerant conduit.
  • FIG. 1 is a schematic view of a heat exchanger according to an embodiment of the present invention.
  • Figure 2a is a schematic cross-sectional view of a refrigerant conduit according to a first embodiment of the present invention
  • Figure 2b is a schematic view of a refrigerant conduit according to a first embodiment of the present invention
  • Figure 3a is a schematic cross-sectional view of a refrigerant conduit according to a second embodiment of the present invention
  • Figure 3b is an enlarged schematic cross-sectional view of a refrigerant conduit according to a second embodiment of the present invention
  • Figure 4a is a third embodiment of the present invention Schematic diagram of a refrigerant conduit
  • FIG. 4b and 4c are partially enlarged schematic views of a refrigerant conduit according to a third embodiment
  • Fig. 5a is a schematic cross-sectional view of a refrigerant conduit according to a fourth embodiment of the present invention
  • Fig. 5b is a fourth embodiment of the present invention Schematic diagram of a refrigerant conduit
  • Figure 6a is a schematic front view of a refrigerant conduit according to a fifth embodiment of the present invention
  • Figure 6b is a schematic plan view of a refrigerant conduit according to a fifth embodiment of the present invention
  • Figure 6c is a fifth embodiment of the present invention
  • Figure 7a is a schematic front view of a refrigerant conduit according to a sixth embodiment of the present invention
  • Figure 7b is a schematic plan view of a refrigerant conduit according to a sixth embodiment of the present invention
  • Figure 7c is a schematic view of a refrigerant conduit
  • FIG. 8a is a schematic front view of a refrigerant conduit according to a seventh embodiment of the present invention
  • Fig. 8b is a refrigerant according to a seventh embodiment of the present invention
  • Figure 8c is a schematic perspective view of a refrigerant conduit according to a seventh embodiment of the present invention
  • Figure 9a is a schematic front view of a refrigerant conduit according to an eighth embodiment of the present invention
  • Figure 9b is a schematic view of a refrigerant conduit according to a seventh embodiment of the present invention
  • FIG. 9c is a schematic perspective view of a refrigerant conduit according to an eighth embodiment of the present invention
  • Figure 10a is a schematic front view of a refrigerant conduit according to a ninth embodiment of the present invention
  • Figure 10b is a schematic plan view of a refrigerant conduit according to a ninth embodiment of the present invention
  • Figure 10c is a ninth embodiment of the present invention
  • Figure 11a is a schematic front view of a refrigerant conduit according to a tenth embodiment of the present invention
  • Figure 1 ib is a schematic plan view of a refrigerant conduit according to a tenth embodiment of the present invention
  • 1c is a schematic perspective view of a refrigerant conduit according to a tenth embodiment of the present invention
  • FIG. 12a is a schematic cross-sectional view of a refrigerant conduit according to an eleventh embodiment of the present invention
  • Figure 12b is a schematic view of a refrigerant conduit in accordance with an eleventh embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention will be further described below in conjunction with the drawings and specific embodiments.
  • a heat exchanger 100 includes: a first header 102; a second header 101, the second header 101 and the first header 102 A predetermined distance is spaced apart; a heat pipe 103 such as a flat tube, and two ends of the heat pipe 103 are respectively connected to the first header 102 and the second header 101 so that the refrigerant passages in the heat pipe 103 are respectively
  • the first header 102 and the second header 101 are in communication; the fins 104; and the refrigerant conduit 10, wherein the refrigerant conduit is disposed in at least one of the first and second headers 10.
  • the heat exchanger can be any suitable heat exchanger, such as single row, multiple row, single loop and multiple loop heat exchangers.
  • the heat exchanger can be a microchannel heat exchanger.
  • the inner manifold portion of the inlet manifold in the multi-circuit of the microchannel heat exchanger and the manifold portion between the loops can also be used to direct and distribute the two-phase refrigerant.
  • FIGS 2a and 2b show a refrigerant conduit 10 in accordance with a first embodiment of the present invention.
  • a refrigerant conduit 10 according to a first embodiment of the present invention comprises: a pipe wall 17, in which a cavity 19 is formed, an opening l la formed in the pipe wall, and a refrigerant The guide wall portion, at least a part of the edge of the refrigerant guiding wall portion is separated from the tube wall 17, thereby forming the opening 11a.
  • At least a portion of the refrigerant guiding wall portion is disposed to be substantially inclined with respect to an axial direction of the duct for guiding the refrigerant passing through the opening 11a.
  • the refrigerant guiding wall portion It is disposed such that the direction of the refrigerant flow flowing through the opening 11a is substantially inclined with respect to the axial direction of the refrigerant conduit 10.
  • the angle between at least a portion of the refrigerant guiding wall portion and the axial direction of the conduit is greater than 0 degrees and less than 90 degrees, preferably from about 5 degrees to about 75 degrees.
  • the refrigerant guiding wall portion is disposed such that the flow of the refrigerant flowing through the opening Ua and the axial direction of the duct are greater than 0 degrees and less than 90 degrees, preferably from about 5 degrees to about 75 degrees.
  • the refrigerant conduit 10 further includes a protruding wall portion 24 that protrudes toward the outside of the inner cavity 19, and at least the first end portion 241 of the one side of the refrigerant wall of the protruding wall portion 24 in the axial direction of the tube
  • the walls 17 are separated from each other, thereby forming the opening la.
  • the protruding wall portion 24 constitutes an example of a refrigerant guiding wall portion.
  • At least the middle portion 24a of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit or the protruding wall portion 24 is inclined with respect to the axial direction of the refrigerant conduit 10, or at least the protruding wall A portion of the portion 2424 is inclined with respect to the axial direction of the refrigerant conduit 10.
  • the second end portion 242 of the protruding wall portion 24 is closer to the axis 15 of the refrigerant conduit 10 than the first end portion 241 opposite the second end portion 242.
  • the central portion 24a extends from the first end portion 241 to the second end portion 242 in the axial direction of the refrigerant conduit 10.
  • a slit having a certain depth is cut in a cutting direction perpendicular to the axial direction of the circular tube, and the slit is made
  • the wall of one of the tubes in the axial direction protrudes.
  • the cornea 11a and the protruding wall portion 24 are formed.
  • the orientation of the slit is determined by two directions: one is the depth direction of the slit (ie, the direction of the slit in the depth), the depth of the slit is in the radial direction of the tube (up and down direction in FIG. 1a), and the other is the cutting direction, the cutting direction.
  • the depth of the slit may be less than 90 degrees from the radial direction of the tube, and the cutting direction may be less than 90 degrees from the axial direction of the tube.
  • the incision can be an incision in any suitable orientation.
  • the length of the slit in the circumferential direction on the circumference corresponding to the inner diameter of the refrigerant conduit 10, that is, the length of the arc of the separating portion 12 in which the first end portion 241 and the tube wall 17 are separated from each other is L
  • the adjacent opening pitch is dl.
  • the ratio of the arc length L of the separating portion 12 in which the first end portion 241 and the tube wall 17 are separated from each other to the circumference of the portion of the tube wall 17 corresponding to the separating portion 12 The range can be between 0.05 and 0.8.
  • the pitch dl of the opening 11a can be gradually decreased along the refrigerant flow direction in the refrigerant conduit 10.
  • the spacing of the plurality of openings 1 1a Dl can be equal.
  • At least the middle portion 24a of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit 10 is substantially linear or straight in cross section along the axial direction of the refrigerant conduit. At least the angle of inclination of the central portion 24a of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit with respect to the axial direction of the refrigerant conduit 10 is ⁇ .
  • the cross section of the protruding wall portion 24 in the axial direction of the refrigerant conduit is substantially linear or straight, and the inclination angle of the protruding wall portion 24 with respect to the axial direction of the refrigerant conduit 10 is ⁇ .
  • At least the angle ⁇ of the central portion 24a of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit and the axial direction of the refrigerant conduit 10 is greater than 0 degrees and less than 90 degrees, preferably It is about 5 to 75 degrees, or the angle ⁇ between the protruding wall portion 24 and the axial direction of the refrigerant conduit 10 is more than 0 degrees and less than 90 degrees, preferably about 5 to 75 degrees.
  • the refrigerant conduit 10 when used as a dispenser, at least a portion of the number of the protruding wall portions 24 are designed to flow along the refrigerant flow direction in the refrigerant conduit 10, at least the projection wall portion 24 is
  • the inclination angle ⁇ of the central portion 24a in the axially perpendicular direction of the refrigerant conduit or the protruding wall portion 24 with respect to the axial direction of the refrigerant conduit 10 may be gradually increased.
  • the refrigerant conduit 10 thus designed can also be used as a collector in the outlet header 101.
  • the end portion 31 of the refrigerant tube 10 will be connected to the refrigerant line, whether the refrigerant conduit 10 is used as a distributor in the inlet header 102 or as a collector in the outlet header 101.
  • the other end 33 will not be connected to the refrigerant line.
  • the refrigerant conduit 10 can be designed to be in the direction from the end portion 31 of the refrigerant conduit 10 to be connected to the refrigerant line to the other end portion 33 of the opposite refrigerant conduit 10, that is, from the end portion 31 to the other end portion 33, the spacing dl of the opening Ua may be gradually reduced, and for at least a portion of the number of the protruding wall portions 24 or the entire number of the protruding wall portions 24, at least the protruding wall portion 24 is in contact with the refrigerant
  • the inclination angle ⁇ of the central portion 24a or the protruding wall portion 24 in the axial direction of the catheter in the axial direction may be gradually increased with respect to the axial direction of the refrigerant conduit 10.
  • a row of openings l la may be provided along the axial direction of the refrigerant conduit 10, or a plurality of rows of openings l la may be provided, for example, two or three rows.
  • the refrigerant conduit 10 may be formed of a circular tube, or may be formed of a tube having other cross-sectional shapes such as an elliptical shape or a rectangular shape, and the refrigerant conduit 10 may also be formed by a reduced diameter tube.
  • Refrigerant conduit 10 can also be made of any suitable tube known in the art.
  • the refrigerant conduit 10 described above flows along the interior of the refrigerant conduit, and the protruding wall portion 24 mainly serves as a refrigerant for guiding the refrigerant. Sprayed along the surface of the protruding wall portion 24 into the inner cavity of the collecting pipe, the resistance loss is small, part of the refrigerant can be directly injected into the inner cavity of the flat pipe 103, and the remaining refrigerant is flushed to the collecting pipe 101-end and then reversely flowed, so that The refrigerant is evenly distributed into the remaining flat tubes 103.
  • the refrigerant is mixed in the header 101 so that the gas-liquid mixture is uniform and no delamination occurs.
  • FIGS 3a and 3b show a refrigerant conduit 10 in accordance with a second embodiment of the present invention.
  • the structure of the refrigerant conduit 10 of this embodiment may be substantially the same as that of the refrigerant conduit 10 of the first embodiment except for the portions described below.
  • the raised wall portion 24 is bent from the tube wall 17 by an angle greater than 90 degrees. Except that the second end portion 242 is joined to the tube wall 17, the edges of the other protruding wall portions 24 are separated from the tube wall 17, thereby forming an opening l la.
  • This protruding wall portion 24 constitutes an example of a refrigerant guiding wall portion.
  • FIGS. 4a, 4b and 4c show the structure of a refrigerant conduit 10 according to a third embodiment of the present invention.
  • the refrigerant conduit 10 of the third embodiment is different from the refrigerant conduit 10 of the second embodiment in that a surface of the projection wall portion 24 facing the opening 11a is provided with a plurality of projections. 25, a plurality of protrusions 25 can be disturbed when the refrigerant is ejected, so that the two-phase refrigerant is more uniformly mixed.
  • the projections 25 can be pointed or, as shown in Figure 4c, the projections 25 can be dome shaped.
  • FIGS 5a and 5b show schematic views of a refrigerant conduit 10 in accordance with a fourth embodiment of the present invention.
  • the refrigerant conduit 10 of the fourth embodiment may be the same as the refrigerant conduit 10 of the first embodiment except for the contents described below.
  • the refrigerant conduit 10 of the fourth embodiment At least a portion of the central portion 24a of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit 10 in the axial direction of the refrigerant conduit 10 is substantially straight or a plurality of straight portions
  • the partial configuration, or the cross section of the protruding wall portion 24 in the axial direction of the refrigerant conduit 10 is composed of a plurality of substantially straight portions or a plurality of substantially straight portions.
  • the middle portion 24a extends from the first end portion .241 to the second end portion 242 in the axial direction of the refrigerant conduit 10.
  • At least the middle portion 226 of the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit 10 in the axial direction of the refrigerant conduit 10 is constituted by an arc-like portion, or A section of the protruding wall portion 24 in the axial direction of the refrigerant conduit 10 is constituted by an arc-like portion.
  • the protruding wall portion 24 is in the axial direction in the direction perpendicular to the axial direction of the refrigerant conduit 10 and the axial direction of the refrigerant conduit 10
  • the angle may be gradually reduced, or the angle of the protruding wall portion 24 from the axial direction of the refrigerant conduit 10 may be gradually reduced.
  • the angle ⁇ between the second end portion 242 of the protruding wall portion 24 and the axial direction of the catheter may be greater than 0 degrees and less than 45 degrees, and the protruding wall portion
  • the angle ⁇ between the first end 241 of the tube 24 and the axial direction of the catheter may be greater than 45 degrees and less than 90 degrees.
  • the angle ⁇ between the second end portion 242 of the protruding wall portion 24 and the axial direction of the catheter may be greater than 0 degrees and less than 45 degrees
  • the protruding wall portion 24 The angle ⁇ between the first end portion 241 and the axial direction of the catheter may be greater than 45 degrees and less than 90 degrees.
  • At least the middle portion 24a of the protruding wall portion 24 in the axial direction perpendicular to the refrigerant conduit 10 is substantially curved, curved or curved in cross section along the axial direction of the refrigerant conduit 10.
  • the cross section of the protruding wall portion 24 in the axial direction of the refrigerant conduit 10 is substantially curved, curved or curved.
  • the central portion 24a extends from the first end portion 241 to the second end portion 242 in the axial direction of the refrigerant conduit 10.
  • the angle between the tangent of the surface of the second end portion 242 of the protruding wall portion facing the opening 11a and the axial direction of the duct 10 is taken as the angle "The angle "" between the second end portion 242 of the protruding wall portion and the axial direction of the duct 10" may be greater than 0 degrees and less than 45 degrees, and the tangent of the surface of the first end portion 241 facing the opening 11a
  • the axial angle ⁇ of the duct 10 (this angle is referred to as "the angle between the first end portion 241 and the axial direction of the duct 10") may be greater than 45 degrees and less than 90 degrees; or
  • the portion 24, the angle between the tangent to the surface of the second end portion 242 of the protruding wall portion 242 facing the opening 11a and the axial direction of the catheter 10 may be greater than 0 degrees and less than 45 degrees, and the first end portion 241 The angle tangential to the axis of the opening of
  • the refrigerant conduit 10 can be designed to be in the direction from the end portion 31 of the refrigerant conduit 10 to be connected to the refrigerant line to the other end portion 33 of the opposite refrigerant conduit 10, that is, from From the end portion 31 to the other end portion 33, for at least a portion of the number of the protruding wall portions 24 or the entire number of the protruding wall portions 24, the above-mentioned angle ⁇ and the angle ⁇ may be gradually increased.
  • the arcuate or arc-like shape is provided by the protruding wall portion 24, which is advantageous in reducing the resistance of the refrigerant flowing through the opening. Further, if the refrigerant flows outward from the inner chamber 19, that is, when the refrigerant conduit 10 functions as a distributor, the refrigerant first contacts the second end portion 242 of the protruding wall portion 24 as it flows through the port 11a, along The surface of the protruding wall portion 24 flows and finally flows out from the first end portion 242 of the protruding wall portion 24. At 0 ° ⁇ ⁇ ⁇ 45 °, the resistance loss caused by the refrigerant flow is small, and at 45 ° ⁇ ⁇ ⁇ 90 °, the refrigerant is guided and distributed better.
  • a tangential or tangential angle with respect to a curved portion of a portion of the refrigerant guiding wall portion such as the protruding wall portion 24 and the axial direction of the duct 10 from the portion of the refrigerant guiding wall portion toward the opening and the duct 10 The axial angle is defined.
  • At least a portion of the central portion 24a of the refrigerant guiding wall portion such as the protruding wall portion 24 in the direction perpendicular to the axial direction of the refrigerant conduit 10 is substantially linear or straight in the axial direction of the refrigerant conduit, the middle portion
  • the angle of inclination of 24a with respect to the axial direction of the refrigerant conduit 10 is ⁇ .
  • a cross section of the refrigerant guiding wall portion such as the protruding wall portion 24 in the axial direction of the refrigerant conduit is substantially linear or straight, and a refrigerant guiding wall portion such as the protruding wall portion 24 is opposed to the cooling
  • the axial inclination angle of the agent catheter 10 is ⁇ .
  • the included angle ⁇ ranges from about greater than 0 degrees and less than 90 degrees, preferably from about 5 degrees to 75 degrees.
  • the spacing dl of the ib may be gradually reduced, and for at least a portion of the refrigerant guiding wall portion or the entire number of refrigerant guiding wall portions, at least the refrigerant guiding wall portion is axially perpendicular to the refrigerant conduit.
  • the inclination angle ⁇ of the central portions 23a and 24a or the refrigerant guide wall portion in the direction with respect to the axial direction of the refrigerant conduit 10 may be gradually increased.
  • At least the middle portion 24a of the refrigerant guiding wall portion in the direction perpendicular to the axial direction of the refrigerant conduit 10 in the axial direction of the refrigerant conduit 10 is substantially straight or a plurality of straight portions
  • the portion is formed, or is substantially curved, curved or curved; or the cross section of the refrigerant guiding wall portion along the axial direction of the refrigerant conduit 10 is composed of a plurality of substantially straight portions or a plurality of substantially straight portions. Composed, or substantially curved, curved or curved.
  • the central portion 24a extends from the first end portion 241 to the second end portion 242 in the axial direction of the refrigerant conduit 10.
  • At least a section of the middle portion 24a of the refrigerant guiding wall portion in a direction perpendicular to the axial direction of the refrigerant conduit 10 in the axial direction of the refrigerant conduit 10 includes at least one substantially straight line At least one of the at least one portion and the at least one substantially curved portion, or the cross section of the refrigerant guiding wall portion in the axial direction of the refrigerant conduit, includes at least one substantially straight portion and at least one portion of a substantially curved shape At least one of the parts.
  • the refrigerant guiding wall portion such as the protruding wall portion 24 extends in the direction from the side of the inner cavity 19 of the refrigerant conduit 10 toward the outside of the inner chamber 19, at least the refrigerant guiding wall portion such as the protruding wall portion 24 is in contact with the refrigerant
  • the angle between the central portion 226 of the duct 10 in the axially perpendicular direction and the axial direction of the refrigerant conduit 10 (including the tangential line of the surface of the central portion 24a toward the opening 11a and the axial direction of the refrigerant conduit 10) It may be gradually increased, or an angle of the refrigerant guiding wall portion such as the protruding wall portion 24 and the axial direction of the refrigerant conduit 10 (including a surface of the refrigerant guiding wall portion of the protruding wall portion 24 facing the opening 11a)
  • the angle between the tangential line and the axial direction of the refrigerant conduit 10 can be gradually increased.
  • the included angle (including the angle between the tangent of the second end portion 242 toward the surface of the opening 11a and the axial direction of the catheter) ⁇ may be greater than 0 degrees and less than 45 degrees, and the refrigerant guiding wall such as the protruding wall portion 24.
  • the angle between the portion of the first end portion 241 (away from the axis 15) and the axial direction of the conduit (including the angle between the tangent to the surface of the first end portion 241 facing the opening and the axial direction of the conduit) may be greater than 45 degrees And less than 90 degrees.
  • the refrigerant guiding wall portion such as the protruding wall portion 24
  • the second end portion 242 of the refrigerant guiding wall portion of the protruding wall portion 24 close to the axis 15 of the refrigerant conduit 10 and the axial direction of the conduit
  • the angle (including the angle between the tangent of the second end portion 242 facing the open surface and the axial direction of the conduit) ⁇ may be greater than 0 degrees and less than 45 degrees, and such as the refrigerant guiding wall portion of the protruding wall portion 24 (away from the axis)
  • the angle between the first end portion 241 of the first end portion 241 and the axial direction of the catheter may be greater than 45 degrees and less than 90 degrees.
  • the refrigerant conduit 10 can be designed to: at a refrigerant conduit that will be connected to the refrigerant line
  • the agent guiding wall may have a part or the whole of the refrigerant guiding wall portion such as the protruding wall portion 24, and the above-mentioned angle ⁇ and the angle ⁇ may be gradually increased.
  • FIGs 6a and 6b show a refrigerant conduit 10 in accordance with a fifth embodiment of the present invention.
  • the structure of the refrigerant conduit 10 of this embodiment may employ features in the structure of any one of the refrigerant conduits 10 in the first to fourth embodiments, except for the portions described below.
  • the first end portion 241 of the refrigerant guide wall portion 26 in the circumferential direction of the refrigerant conduit is separated from the tube wall 17, and the opposite second end portion 242 is connected to the tube wall 17.
  • the protruding wall portion 24 has a substantially rectangular shape.
  • the entire raised wall portion 24 may be in a substantially flat plane, i.e., the entire raised wall portion 24 may be substantially flat.
  • the cross section of the protruding wall portion 24 in the direction from the second end portion 242 to the first end portion 241 includes at least one of at least one substantially straight portion and at least one substantially curved portion.
  • Figures 7a, 7b and 7c show a refrigerant conduit 10 in accordance with a sixth embodiment of the present invention.
  • the structure of the refrigerant conduit 10 of this embodiment is different from that of the refrigerant conduit 10 of the fifth embodiment in that the second end portion 242 and the first end portion 241 of all the protruding wall portions 24 are not located in the refrigerant.
  • Figures 8a, 8b and 8c show a refrigerant conduit 10 in accordance with a seventh embodiment of the present invention.
  • the protruding wall portion 24 has a substantially rectangular shape in plan view or in an unfolded view, and the opposite end portions 241 and 242 of the refrigerant duct 10 of the protruding wall portion 24 in the axial direction are
  • the pipe walls 17 are separated to form axially opposite openings 1 la, and the opposite ends 243 and 244 in the circumferential direction of the refrigerant pipe 10 are connected to the pipe wall 17.
  • the section of the protruding wall portion 24 in the circumferential direction of the refrigerant conduit may have a substantially arch shape.
  • the section of the protruding wall portion 24 in the direction from the first end portion 241 to the second end portion 242 includes at least one of at least one substantially straight portion and at least one substantially curved portion.
  • the cross section of the projection wall portion 24 in the axial direction of the refrigerant tube in the central portion 24a in the direction perpendicular to the axial direction of the refrigerant conduit may have a substantially U-shape or a substantially V-shape.
  • the central portion 24a extends from the first end portion 241 to the second end portion 242 in the axial direction of the refrigerant conduit 10.
  • FIGs 9a, 9b and 9c show a refrigerant conduit 10 in accordance with an eighth embodiment of the present invention.
  • the refrigerant conduit 10 includes a recessed wall portion 23 which has a substantially rectangular shape in plan view or unfolded view, and an axial direction of the refrigerant conduit 10 of the recessed wall portion 23.
  • the upper end portions 231 and 232 are separated from the tube wall 17 to form axially opposite openings 1 ib, and the opposite end portions 233 and 234 in the circumferential direction of the refrigerant conduit 10 are connected to the tube wall 17.
  • the cross section of the recessed wall portion 23 in the circumferential direction of the refrigerant conduit may have a large
  • the section of the recessed wall portion 2.3 in the direction from the first end portion 231 to the second end portion 232 includes at least one of at least one substantially straight portion and at least one substantially curved portion.
  • the cross section of the recessed wall portion 23 in the axial direction of the refrigerant conduit in the middle portion 23a in the direction perpendicular to the axial direction of the refrigerant conduit may have a substantially inverted U shape or a substantially inverted V shape.
  • the middle portion 23a extends from the first end portion 231 to the second end portion 232 in the axial direction of the refrigerant conduit 10.
  • Figures 10a, 10b and 10c show a refrigerant conduit 10 in accordance with a ninth embodiment of the present invention.
  • the refrigerant conduit 10 includes a recessed wall portion 23 which has a substantially rectangular shape in plan view or in a developed view.
  • the opposite end portions 231 and 232 of the refrigerant conduit 10 of the recessed wall portion 23 in the axial direction are connected to the pipe wall 17, and the opposite end portions 233 and 234 in the circumferential direction of the refrigerant pipe 10 are separated from the pipe wall 17, Openings l lb opposed to each other in the circumferential direction of the refrigerant conduit 10 are formed.
  • the section of the recessed wall portion 23 along the axial direction of the refrigerant conduit may have a substantially U-shape or a substantially V-shape.
  • Figures la, l ib and 11c show a refrigerant conduit 10 according to a tenth embodiment of the present invention.
  • the refrigerant conduit 10 includes a projecting wall portion 24 which is substantially quadrangular in plan view or in a developed view.
  • the opposite end portions 241 and 242 of the refrigerant duct 10 of the protruding wall portion 24 in the axial direction are connected to the tube wall 17, and the opposite end portions 243 and 244 in the circumferential direction of the refrigerant conduit 10 are separated from the tube wall 17, Openings la la are formed in the circumferential direction of the refrigerant conduit 10.
  • the section of the protruding wall portion 24 in the axial direction of the refrigerant conduit may have a substantially inverted U shape or a substantially inverted V shape.
  • FIGS 12a and 12b show a refrigerant conduit 10 in accordance with an eleventh embodiment of the present invention.
  • the structure of the refrigerant conduit 10 of this embodiment may be substantially the same as that of the refrigerant conduits 10 of the first to fourth embodiments except for the portions described below.
  • the refrigerant conduit 10 includes: a raised wall portion 24, the protrusion The rising wall portion 24 protrudes toward the outside of the inner cavity 19; and a recessed wall portion 23 that is recessed toward the inner cavity 19. At least the first end portion 241 of the refrigerant conduit 10 of the protruding wall portion 19 and the first end portion 231 of the refrigerant conduit 10 of the recessed wall portion 23 are separated from each other, thereby forming the Opening l lab.
  • first end portion 241 of the protruding wall portion 24 and the first end portion 231 of the recessed wall portion 23 may be spaced apart from each other by a predetermined distance before processing, at least the axial direction of the refrigerant conduit 10 of the protruding wall portion 24.
  • the first end portion 241 and the tube wall 17 are separated from each other, thereby forming the opening l lab, and at least the axial first end portion 231 of the refrigerant conduit 10 of the recessed wall portion 23 is separated from the tube wall 17 Open, thereby forming the opening l lab.
  • At least the first end portions 241 and 231 are separated from the tube wall 17, or the first end portion 241 and the first end portion 231 are separated from each other.
  • the protruding wall portion 24 and the recess may be used.
  • At least a portion of the edge of the wall portion 23 is separated from the tube wall 11, or at least a portion of the edge of the protruding wall portion 24 and the recessed wall portion 23 are separated from each other.
  • the protruding wall portion 24 and the recessed wall portion 23 in the above respective embodiments constitute an example of the refrigerant guiding i s wall portion.
  • the refrigerant flows along the inner cavity of the refrigerant conduit, and the refrigerant guiding wall portion mainly serves to guide the refrigerant, and the refrigerant is sprayed along the refrigerant guiding wall portion into the inner cavity of the collecting pipe, and the refrigerant is
  • the mixing in the collecting tube makes the gas-liquid mixing uniform and does not cause delamination.
  • the opening in the above embodiment, and the refrigerant guiding wall portion for example, the protruding wall
  • the 25-part, recessed wall portion has a symmetrical structure, and alternatively, the opening, and the refrigerant guiding wall portion (for example, the protruding wall portion, the recessed wall portion) may have an asymmetrical structure, for example, when a refrigerant pipe is processed by a circular tube
  • the opening, and the refrigerant guiding wall portion may be symmetrical or asymmetrical with respect to a plane passing through the central axis of the refrigerant conduit.
  • the embodiment of the refrigerant guiding wall portion is a protruding wall portion, concave
  • the refrigerant guiding wall portion is not limited thereto, and the refrigerant passing through the opening may be guided in other suitable manner.
  • a refrigerant guide wall portion such as a separately formed guide pipe or guide may be welded near the opening of the refrigerant pipe or welded inside or outside the refrigerant pipe to guide the refrigerant passing through the opening.
  • the opening may take various suitable shapes, and the refrigerant guiding wall portion may also adopt any suitable shape and structure.
  • the end portion of the refrigerant guiding wall portion is separated from the tube wall, thereby forming the opening.
  • the invention is not limited thereto.
  • the refrigerant guiding wall portion may be separated from the pipe wall at any position, thereby forming the opening; or separating from the pipe wall at any edge of the refrigerant guiding wall portion, thereby forming the Opening.
  • the refrigerant guiding wall portion may have any suitable shape, for example, a semicircle, a triangle, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

制冷剂导管和具有该制冷剂导管的换热器 技术领域 本发明涉及一种制冷剂导管, 和具有该制冷剂导管的换热器。
背景技术
典型的换热器的入口集流管和出口集流管中的至少一个设有制冷剂导 管, 该制冷剂导管在入口集流管中用作分配器, 在出口集流管中用作收集 器。
发明内容
本发明的目的是提供一种制冷剂导管和具有该制冷剂导管的换热器, 该冷剂导管能够提高制冷剂分配的均匀性。
根据本发明的一个方面, 本发明提供了一种制冷剂导管, 该制冷剂导 管, 包括: 管壁, 该管壁内形成内腔; 形成在管壁中的开口; 以及制冷剂 导向壁部分,所述制冷剂导向壁部分的至少一部分边缘与管壁相互分离开, 由此形成所述开口。
根据本发明的一个方面, 该制冷剂导向壁部分的至少一部分设置为相 对于导管的轴向大致倾斜, 用于引导通过所述开口的制冷剂。
根据本发明的一个方面, 至少所述制冷剂导向壁部分的在与所述制冷 剂导管轴向垂直的方向上的中部与所述制冷剂导管轴向的夹角范围是大于
0度并且小于 90度, 优选为大约 5度至大约 75度, 或至少所述制冷剂导 向壁部分的一部分与所述制冷剂导管轴向的夹角范围是大于 0度并且小于 90度, 优选为大约 5度至大约 75度, 或所述制冷剂导向壁部分与所述制 冷剂导管轴向的夹角范围是大于 0度并且小于 90度,优选为大约 5度至大 约 75度。
根据本发明的一个方面, 至少所述制冷剂导向壁部分的在与所述制冷 剂导管轴向垂直的方向上的中部沿所述制冷剂导管轴向的截面由多段大致 直线状的部分构成或大致是曲线状的, 或所述制冷剂导向壁部分的沿所述 制冷剂导管轴向的截面由多段大致直线状的部分构成或大致是曲线状的。
根据本发明的一个方面, 本发明提供一种具有上述制冷剂导管的换热 器。
通过采用本发明的制冷剂导管的一些实施方式, 能够提高制冷剂分配 均匀性。
附图说明
图 1为根据本发明的实施例的换热器的示意图;
图 2a为根据本发明的第一实施例的制冷剂导管的示意剖视图; 图 2b为根据本发明的第一实施例的制冷剂导管的示意图;
图 3a为根据本发明的第二实施例的制冷剂导管的示意剖视图; 图 3b为根据本发明的第二实施例的制冷剂导管的放大示意剖视图; 图 4a为根据本发明的第三实施例的制冷剂导管的示意图;
图 4b和 4c为根据第三实施例的制冷剂导管的局部放大示意图; 图 5a为根据本发明的第四实施例的制冷剂导管的示意剖视图; 图 5b为根据本发明的第四实施例的制冷剂导管的示意图;
图 6a为根据本发明的第五实施例的制冷剂导管的示意主视图; 图 6b为根据本发明的第五实施例的制冷剂导管的示意俯视图; 图 6c为根据本发明的第五实施例的制冷剂导管的示意立体图; 图 7a为根据本发明的第六实施例的制冷剂导管的示意主视图; 图 7b为根据本发明的第六实施例的制冷剂导管的示意俯视图; 图 7c为根据本发明的第六实施例的制冷剂导管的示意立体图; 图 8a为根据本发明的第七实施例的制冷剂导管的示意主视图; 图 8b为根据本发明的第七实施例的制冷剂导管的示意俯视图; 图 8c为根据本发明的第七实施例的制冷剂导管的示意立体图; 图 9a为根据本发明的第八实施例的制冷剂导管的示意主视图; 图 9b为根据本发明的第八实施例的制冷剂导管的示意俯视图; 图 9c为根据本发明的第八实施例的制冷剂导管的示意立体图; 图 10a为根据本发明的第九实施例的制冷剂导管的示意主视图; 图 10b为根据本发明的第九实施例的制冷剂导管的示意俯视图; 图 10c为根据本发明的第九实施例的制冷剂导管的示意立体图; 图 11a为根据本发明的第十实施例的制冷剂导管的示意主视图; 图 l ib为根据本发明的第十实施例的制冷剂导管的示意俯视图; 图 1 1c为根据本发明的第十实施例的制冷剂导管的示意立体图; 图 12a为根据本发明的第十一实施例的制冷剂导管的示意剖视图; 以 及
图 12b为根据本发明的第十一实施例的制冷剂导管的示意图。 具体实施方式 下面结合附图及具体实施方式对本发明做进一步说明。
如图 1所示,根据本发明的实施例的换热器 100包括:第一集流管 102; 第二集流管 101, 所述第二集流管 101与所述第一集流管 102间隔开预定 距离; 诸如扁管的散热管 103, 所述散热管 103的两端分别与所述第一集 流管 102和第二集流管 101相连以便散热管 103内的制冷剂通道分别与所 述第一集流管 102和第二集流管 101相连通; 翅片 104; 以及制冷剂导管 10, 所述第一和第二集流管中的至少一个内设有所述制冷剂导管 10。 该换 热器可以是任何合适的换热器, 例如单排、 多排、 单回路和多回路换热器 等。 此外, 该换热器可以是微通道换热器。 例如, 微通道换热器多回路中 的进口集流管内腔部分以及回路之间的集流管内腔部分也可采用此制冷剂 导管对两相制冷剂进行导向和分配。 实施例 1
图 2a和 2b示出了根据本发明的第一实施例的制冷剂导管 10。如图 2a 和 2b所示, 根据本发明的第一实施例的制冷剂导管 10包括: 管壁 17, 该 管壁 17内形成内腔 19,形成在管壁中的开口 l la,以及制冷剂导向壁部分, 所述制冷剂导向壁部分的至少一部分边缘与管壁 17相互分离开,由此形成 所述开口 l l a。 该制冷剂导向壁部分的至少一部分设置为相对于导管的轴 向大致倾斜, 用于引导通过所述开口 1 1a的制冷剂。 该制冷剂导向壁部分 设置为使得通过开口 11a流动的制冷剂流的方向相对于制冷剂导管 10的轴 向大致倾斜。 例如, 制冷剂导向壁部分的至少一部分与导管的轴向的夹角 大于 0度并且小于 90度, 优选为大约 5度至大约 75度。 例如, 该制冷剂 导向壁部分设置为使得通过开口 Ua流动的制冷剂流与导管的轴向所成的 角度为大于 0度并且小于 90度, 优选为大约 5度至大约 75度。
制冷剂导管 10还包括突起壁部分 24,所述突起壁部分 24朝向内腔 19 外侧突起,并且至少所述突起壁部分 24的制冷剂导管轴向上的一侧的第一 端部 241与管壁 17相互分离开, 由此形成所述开口 l la。该突起壁部分 24 构成制冷剂导向壁部分的一个示例。
至少所述突起壁部分 24 的在与所述制冷剂导管轴向垂直的方向上的 中部 24a或所述突起壁部分 24相对于所述制冷剂导管 10的轴向倾斜, 或 至少所述突起壁部分 2424的一部分相对于所述制冷剂导管 10的轴向倾斜。 所述突起壁部分 24的第二端部 242比与所述第二端部 242相对的第一端部 241更靠近制冷剂导管 10的轴线 15。 所述中部 24a在所述制冷剂导管 10 轴向上从第一端部 241延伸到第二端部 242。
如图 2a和 2b所示, 作为形成开口 11a的一种方法, 在形成制冷剂导 管 10的圆管的管壁中, 在垂直于圆管轴向的切割方向切一定深度的切口, 并使切口轴向方向的一侧的圆管管壁突起。 由此形成幵口 11a和突起壁部 分 24。 切口的方位由两个方向确定: 一个是切口深度方向 (即切口在深度 上的方向), 切口深度方向在圆管的径向上(图 la中的上下方向), 另一个 是切割方向, 切割方向与切口深度方向垂直并且与圆管轴向垂直。 作为选 择,切口深度方向可以与圆管的径向成小于 90度的角度,并且切割方向可 以与圆管轴向成小于 90度的角度。 切口可以是任何合适方位的切口。
如图 2a和 2b所示,在与制冷剂导管 10的内径对应的圆周上切口在圆 周方向上的长度, 即第一端部 241与管壁 17相互分离开的分离部分 12的 圆弧长度为 L, 并且相邻开口间距为 dl。 在与内径对应的圆周上, 第一端 部 241与管壁 17相互分离开的分离部分 12的圆弧长度 L与和所述分离部 分 12对应的所述管壁 17的部分的周长的比值范围可以在 0.05到 0.8之间。 对于制冷剂导管 10用作分配器时, 沿着制冷剂导管 10中的制冷剂流动方 向, 开口 1 1a的间距 dl 可以逐渐减小。 作为选择, 多个开口 1 1a的间距 dl可以相等。
作为一种实施方式, 至少所述突起壁部分 24 的在与所述制冷剂导管 10的轴向垂直的方向上的中部 24a沿所述制冷剂导管轴向的截面大致是直 线状的或直的,至少所述突起壁部分 24在与所述制冷剂导管轴向垂直的方 向上的中部 24a相对于所述制冷剂导管 10的轴向的倾斜角度为 γ。 作为选 择,所述突起壁部分 24的沿所述制冷剂导管轴向的截面大致是直线状的或 直的,所述突起壁部分 24相对于所述制冷剂导管 10的轴向的倾斜角度为 γ。 至少所述突起壁部分 24 的在与所述制冷剂导管轴向垂直的方向上的中部 24a与所述制冷剂导管 10的轴向的夹角 γ的范围为大于 0度并且小于 90度, 优选为大约 5度至 75度,或所述突起壁部分 24与所述制冷剂导管 10的轴 向的夹角 γ的范围为大于 0度并且小于 90度, 优选为大约 5度至 75度。
作为一种实施方式,对于制冷剂导管 10用作分配器时,至少一部分数 量的突起壁部分 24设计为沿着制冷剂导管 10中的制冷剂流动方向, 至少 所述突起壁部分 24 的在与所述制冷剂导管轴向垂直的方向上的中部 24a 或所述突起壁部分 24相对于所述制冷剂导管 10的轴向的倾斜角度 γ可以逐 渐增加。
如此设计的制冷剂导管 10同样可以在出口集流管 101中用作收集器。 参照图 1,无论制冷剂导管 10在入口集流管 102中用作分配器还是在 出口集流管 101中用作收集器, 制冷剂 管 10的端部 31都将与制冷剂管 路连接, 另一端部 33将不与制冷剂管路连接。 因此, 可以将冷剂导管 10 设计为: 在从将与制冷剂管路连接的制冷剂导管 10的端部 31到相对的制 冷剂导管 10的另一个端部 33的方向上, 即从端部 31到另一端部 33, 开 口 Ua的间距 dl 可以逐渐减小, 并且对于至少一部分数量的突起壁部分 24或全部数量的突起壁部分 24, 至少所述突起壁部分 24的在与所述制冷 剂导管轴向垂直的方向上的中部 24a或所述突起壁部分 24相对于所述制冷 剂导管 10的轴向的倾斜角度 γ可以逐渐增加。
可以沿制冷剂导管 10的轴向方向, 设置一排开口 l la, 或设置多排开 口 l la, 例如两排或三排。
制冷剂导管 10可以用圆管形成,也可以用诸如椭圆形、矩形等其它截 面形状的管形成, 此外制冷剂导管 10 也可以用变径管形成。 制冷剂导管 10也可以用本领域公知的任何合适的管制成。
参见图 1,当把上述制冷剂导管 10用于换热器 100的集流管 102中时, 制冷剂沿着制冷剂导管内腔流动, 突起壁部分 24 主要起导向制冷剂的作 用, 制冷剂沿着突起壁部分 24的表面喷射到集流管内腔, 阻力损失较小, 部分制冷剂可以直接射入扁管 103内腔, 剩余制冷剂冲到集流管 101—端 再反向流动,使制冷剂均匀分配到余下的扁管 103中。制冷剂在集流管 101 中混合, 使得气液混合均匀, 不产生分层现象。 实施例 2
图 3a和 3b示出了根据本发明的第二实施例的制冷剂导管 10。 除了下 面描述的部分之外,该实施例的制冷剂导管 10的结构可以与第一实施例中 的制冷剂导管 10的结构大致相同。
如图 3a和 3b所示, 突起壁部分 24从管壁 17弯折的角度大于 90度。 除了第二端部 242与管壁 17连接外,其它突起壁部分 24的边缘与管壁 17 分开, 由此形成开口 l la。
该突起壁部分 24构成制冷剂导向壁部分的一个示例。 实施例 3
图 4a、4b和 4c示出根据本发明的第三实施例的制冷剂导管 10的结构。 如图 4a、 4b和 4c所示, 第三实施例的制冷剂导管 10与第二实施例的制冷 剂导管 10的不同之处是突起壁部分 24的朝向开口 11a的表面设有多个凸 起 25, 多个凸起 25可以使制冷剂喷射出来时被扰动, 使两相制冷剂更加 均匀混合。 如图 4b所示, 凸起 25可以是尖顶的, 或如图 4c所示, 凸起 25可以是圆顶的。
图 5a和 5b示出了根据本发明的第四实施例的制冷剂导管 10的示意 图。除了下面描述的内容之外,第四实施例的制冷剂导管 10与第一实施例 的制冷剂导管 10可以相同。
如图 5a和 5b所示并参照图 2a和 2b, 在第四实施例的制冷剂导管 10 中, 至少所述突起壁部分 24的在与所述制冷剂导管 10轴向垂直的方向上 的中部 24a沿所述制冷剂导管 10的轴向的截面由多段大致直线状的部分或 多段大致直的部分构成, 或所述突起壁部分 24的沿所述制冷剂导管 10的 轴向的截面由多段大致直线状的部分或多段大致直的部分构成。 所述中部 24a在所述制冷剂导管 10的轴向上从第一端部 .241延伸到第二端部 242。 作为选择, 至少所述突起壁部分 24的在与所述制冷剂导管 10的轴向垂直 的方向上的中部 2½沿所述制冷剂导管 10的轴向的截面由类弧形的部分构 成, 或所述突起壁部分 24的沿所述制冷剂导管 10的轴向的截面由类弧形 的部分构成。
从第一端部 241到第二端部 242,至少所述突起壁部分 24在与所述制 冷剂导管 10的轴向垂直的方向上的所述中部 24a与所述制冷剂导管 10的 轴向的角度可以逐渐减小, 或所述突起壁部分 24与所述制冷剂导管 10的 轴向的角度可以逐渐减小。
在所述突起壁部分 24的所述中部 24a, 所述突起壁部分 24的第二端 部 242与所述导管轴向的夹角 β可以大于 0度并且小于 45度, 并且所述突 起壁部分 24的第一端部 241与所述导管轴向的夹角 Θ可以大于 45度并且小 于 90度。 作为选择, 在所述突起壁部分 24, 所述突起壁部分 24的第二端 部 242与所述导管轴向的夹角 β可以大于 0度并且小于 45度, 并且所述突 起壁部分 24的第一端部 241与所述导管轴向的夹角 Θ可以大于 45度并且小 于 90度。
作为选择, 至少所述突起壁部分 24在与所述制冷剂导管 10轴向垂直 的方向上的中部 24a沿所述制冷剂导管 10轴向的截面大致是曲线状的、弯 曲的或弧形的; 或者所述突起壁部分 24的沿所述制冷剂导管 10轴向的截 面大致是曲线状的、 弯曲的或弧形的。 所述中部 24a在所述制冷剂导管 10 轴向上从第一端部 241延伸到第二端部 242。
从所述突起壁部分 24的所述第一端部 241到与所述第一端部相对的第 二端部 242, 至少所述突起壁部分 24的中部 24a的朝向开口 1 1a的表面的 切线与制冷剂导管 10的轴向的角度(将该角度作为 "至少所述突起壁部分 24的中部 24a与制冷剂导管 10的轴向的角度" ) 逐渐减小; 或者从所述 突起壁部分 24 的所述第一端部 241 到与所述第一端部相对的第二端部 242, 所述突起壁部分 24 的朝向开口 1 1a的表面的切线与制冷剂导管 10 的轴向的角度 (将该角度作为 "所述突起壁部分 24与制冷剂导管 10的轴 向的角度" ) 可以逐渐减小。
在所述突起壁部分 24的所述中部 24a,所述突起壁部分的第二端部 242 的朝向开口 1 1a的表面的切线与所述导管 10的轴向的夹角 β (将该角度作 为 "所述突起壁部分的第二端部 242与所述导管 10的轴向的夹角 ")可以 大于 0度并且小于 45度,并且第一端部 241的朝向开口 1 1a的表面的切线 与所述导管 10的轴向的夹角 Θ (将该角度作为 "第一端部 241与所述导管 10的轴向的夹角")可以大于 45度并且小于 90度; 或者在所述突起壁部 分 24, 所述突起壁部分的第二端部 242的朝向开口 1 1a的表面的切线与所 述导管 10轴向的夹角 β可以大于 0度并且小于 45度, 并且第一端部 241 的朝向开口 1 1a的表面的切线与所述导管 10轴向的夹角 Θ可以大于 45度并 且小于 90度。
参照图 1, 可以将冷剂导管 10设计为: 在从将与制冷剂管路连接的制 冷剂导管 10的端部 31到相对的制冷剂导管 10的另一个端部 33的方向上, 即从端部 31到另一端部 33,对于至少一部分数量的突起壁部分 24或全部 数量的突起壁部分 24, 上述夹角 Θ和夹角 β可以逐渐增加。
通过突起壁部分 24设置成弧形或类弧形的,有利于减少制冷剂流经开 口处的阻力。 此外, 如果制冷剂从内腔 19向外流动时, 即制冷剂导管 10 用作分配器时, 制冷剂流经幵口 11a时, 首先与突起壁部分 24的第二端部 242接触, 沿着突起壁部分 24的表面流动, 最后从突起壁部分 24的第一 端部 242流出。 在 0 ° < β <45 ° 时制冷剂流过时产生的阻力损失较小, 而 在 45 ° < θ <90° 时, 制冷剂导向以及分配效果更好。
对于弯曲的诸如突起壁部分 24 的制冷剂导向壁部分的一部分与所述 导管 10 的轴向的夹角由制冷剂导向壁部分的所述一部分朝向开口的表面 的切线或切面与所述导管 10的轴向的夹角限定。
从上述突起壁部分 24的实施例可以看出:
至少诸如突起壁部分 24的制冷剂导向壁部分在与所述制冷剂导管 10 的轴向垂直的方向上的中部 24a沿所述制冷剂导管轴向的截面大致是直线 状的或直的, 中部 24a相对于所述制冷剂导管 10的轴向的倾斜角度为 γ。 作为选择,诸如突起壁部分 24的制冷剂导向壁部分的沿所述制冷剂导管轴 向的截面大致是直线状的或直的,诸如突起壁部分 24的制冷剂导向壁部分 相对于所述制冷剂导管 10的轴向的倾斜角度为 γ。夹角 γ的范围为大约大于 0度并且小于 90度, 优选为大约 5度至 75度。 在从将与制冷剂管路连接 的制冷剂导管 10的端部 31到相对的制冷剂导管 10的另一个端部 33的方 向上, 即从端部 31到另一端部 33, 开口 1 1a和 l ib的间距 dl可以逐渐减 小, 并且对于至少一部分数量的制冷剂导向壁部分或全部数量的制冷剂导 向壁部分, 至少所述制冷剂导向壁部分在与所述制冷剂导管轴向垂直的方 向上的中部 23a和 24a或制冷剂导向壁部分相对于所述制冷剂导管 10的轴 向的倾斜角度 γ可以逐渐增加。
作为选择,至少制冷剂导向壁部分的在与所述制冷剂导管 10轴向垂直 的方向上的中部 24a沿所述制冷剂导管 10的轴向的截面由多段大致直线状 的部分或多段大致直的部分构成,或者大致是曲线状的、弯曲的或弧形的; 或者制冷剂导向壁部分的沿所述制冷剂导管 10 的轴向的截面由多段大致 直线状的部分或多段大致直的部分构成, 或者大致是曲线状的、 弯曲的或 弧形的。所述中部 24a在所述制冷剂导管 10的轴向上从第一端部 241延伸 到第二端部 242。
作为一种实施方式, 至少所述制冷剂导向壁部分的在与所述制冷剂导 管 10的轴向垂直的方向上的中部 24a沿所述制冷剂导管 10的轴向的截面 包括至少一段大致直线状的部分和至少一段大致曲线状的部分中的至少一 种, 或所述制冷剂导向壁部分的沿所述制冷剂导管轴向的截面包括至少一 段大致直线状的部分和至少一段大致曲线状的部分中的至少一种。
诸如突起壁部分 24的制冷剂导向壁部分在从制冷剂导管 10的内腔 19 侧向内腔 19外侧的延伸方向上, 至少诸如突起壁部分 24的制冷剂导向壁 部分在与所述制冷剂导管 10的轴向垂直的方向上的所述中部 2½与所述制 冷剂导管 10的轴向的角度(包括中部 24a的朝向开口 1 1 a的表面的切线与 制冷剂导管 10的轴向的角度) 可以逐渐增大, 或诸如突起壁部分 24的制 冷剂导向壁部分与所述制冷剂导管 10的轴向的角度(包括诸如突起壁部分 24的制冷剂导向壁部分的朝向开口 11a的表面的切线与制冷剂导管 10的 轴向的角度) 可以逐渐增大。 在至少诸如突起壁部分 24的制冷剂导向壁部分的所述中部 24a, 诸如 突起壁部分 24的制冷剂导向壁部分的靠近制冷剂导管 10的轴线 15的第二 端部 242与所述导管轴向的夹角 (包括第二端部 242朝向开口 1 1a的表面 的切线与所述导管轴向的夹角) β可以大于 0度并且小于 45度, 并且诸如 突起壁部分 24的制冷剂导向壁部分的 (远离轴线 15的) 第一端部 241与 所述导管轴向的夹角 (包括第一端部 241朝向开口的表面的切线与所述导 管轴向的夹角) Θ可以大于 45度并且小于 90度。作为选择, 在诸如突起壁 部分 24的制冷剂导向壁部分, 诸如突起壁部分 24的制冷剂导向壁部分的 靠近制冷剂导管 10的轴线 15的第二端部 242与所述导管轴向的夹角 (包 括第二端部 242朝向开口的表面的切线与所述导管轴向的夹角) β可以大于 0度并且小于 45度, 并且诸如突起壁部分 24的制冷剂导向壁部分的 (远 离轴线 15 的) 第一端部 241 与所述导管轴向的夹角 (包括第一端部 241 朝向开口的表面的切线与所述导管轴向的夹角) Θ可以大于 45度并且小于 90度。
可以将冷剂导管 10 设计为: 在从将与制冷剂管路连接的制冷剂导管
10的端部 31到相对的制冷剂导管 10的另一个端部 33的方向上, 即从端 部 31到另一端部 33, 对于至少一部分数量的诸如突起壁部分 24和凹陷壁 部分 23的制冷剂导向壁部分或全部数量的诸如突起壁部分 24的制冷剂导 向壁部分, 上述夹角 Θ和夹角 β可以逐渐增加。 实施例 5
图 6a和 6b示出了根据本发明的第五实施例的制冷剂导管 10。 除了下 面描述的部分之外,该实施例的制冷剂导管 10的结构可以采用第一实施例 至第四实施例中的制冷剂导管 10中的任意一个的结构中的特征。 如图 6a、 6b和 6c所示, 制冷剂导向壁部分 26的制冷剂导管周向上的第一端部 241 与管壁 17相互分离开, 相对的第二端部 242与管壁 17相互连接。 突起壁 部分 24大致为矩形的形状。 该实施例中, 整个突起壁部分 24可以在大致 一个平面上, 即整个突起壁部分 24可以是大致平板状。作为选择, 突起壁 部分 24的在从第二端部 242到第一端部 241的方向上的截面包括至少一段 大致直线状的部分和至少一段大致曲线状的部分中的至少一种。 图 7a、 7b和 7c示出了根据本发明的第六实施例的制冷剂导管 10。 该 实施例的制冷剂导管 10的结构与第五实施例中的制冷剂导管 10的结构的 不同之处是所有的突起壁部分 24的第二端部 242和第一端部 241不是位于 制冷剂导管 10的周向上的同一侧, 而是第二端部 242位于制冷剂导管 10 的周向上的第一侧的突起壁部分 24和第二端部 242位于制冷剂导管 10的 周向上的与所述第一侧相对的第二侧的突起壁部分 24沿制冷剂导管 10的 轴向交替排列。 实施例 7
图 8a、 8b和 8c示出了根据本发明的第七实施例的制冷剂导管 10。 如 图 8a、 8b和 8c所示, 突起壁部分 24在俯视图中或展开图中大致为矩形的 形状, 并且突起壁部分 24的制冷剂导管 10的轴向上的相对的端部 241和 242与管壁 17分开, 形成在轴向上相对的开口 l la, 并且在制冷剂导管 10 的周向上的相对的端部 243和 244与管壁 17连接。 突起壁部分 24的沿所 述制冷剂导管周向的截面可以具有大致拱形形状。突起壁部分 24的在从第 一端部 241到第二端部 242的方向上的截面包括至少一段大致直线状的部 分和至少一段大致曲线状的部分中的至少一种。 作为选择, 突起壁部分 24 的在与所述制冷剂导管轴向垂直的方向上的中部 24a沿所述制冷剂导管轴 向的截面可以具有大致 U形形状或大致 V形形状。所述中部 24a在所述制 冷剂导管 10的轴向上从第一端部 241延伸到第二端部 242。 实施例 8
图 9a、 9b和 9c示出了根据本发明的第八实施例的制冷剂导管 10。 如 图 9a、 9b和 9c所示, 制冷剂导管 10包括凹陷壁部分 23, 凹陷壁部分 23 在俯视图中或展开图中大致为矩形的形状,并且凹陷壁部分 23的制冷剂导 管 10的轴向上的相对的端部 231和 232与管壁 17分开, 形成在轴向上相 对的开口 l ib, 并且在制冷剂导管 10的周向上的相对的端部 233和 234与 管壁 17连接。 凹陷壁部分 23的沿所述制冷剂导管周向的截面可以具有大
Π 致拱形形状。凹陷壁部分 2.3的在从第一端部 231到第二端部 232的方向上 的截面包括至少一段大致直线状的部分和至少一段大致曲线状的部分中的 至少一种。作为选择, 凹陷壁部分 23的在与所述制冷剂导管轴向垂直的方 向上的中部 23a沿所述制冷剂导管轴向的截面可以具有大致倒 U形形状或 大致倒 V形形状。 所述中部 23a在所述制冷剂导管 10的轴向上从第一端 部 231延伸到第二端部 232。 实施例 9
图 10a、 10b和 10c示出了根据本发明的第九实施例的制冷剂导管 10。 如图 10a、 10b和 10c所示, 制冷剂导管 10包括凹陷壁部分 23, 凹陷壁部 分 23在俯视图中或展开图中大致为矩形的形状。 凹陷壁部分 23的制冷剂 导管 10的轴向上的相对的端部 231和 232与管壁 17连接, 并且在制冷剂 导管 10的周向上的相对的端部 233和 234与管壁 17分开, 形成在制冷剂 导管 10的周向上相对的开口 l lb。 凹陷壁部分 23的沿所述制冷剂导管轴 向的截面可以具有大致 U形形状或大致 V形形状。 实施例 10
图 l la、 l ib和 11c示出了根据本发明的第十实施例的制冷剂导管 10。 如图 l la、 l ib和 11c所示, 制冷剂导管 10包括突起壁部分 24, 突起壁部 分 24在俯视图中或展开图中大致为四边形的形状。 突起壁部分 24的制冷 剂导管 10的轴向上的相对的端部 241和 242与管壁 17连接, 并且在制冷 剂导管 10的周向上的相对的端部 243和 244与管壁 17分开, 形成在制冷 剂导管 10的周向上相对的开口 l la。 突起壁部分 24的沿所述制冷剂导管 轴向的截面可以具有大致倒 U形形状或大致倒 V形形状。 实施例 11
图 12a和 12b示出了根据本发明的第十一实施例的制冷剂导管 10。除 了下面描述的部分之外,该实施例的制冷剂导管 10的结构可以与第一实施 例至第四实施例中的制冷剂导管 10的结构大致相同。
如图 12a和 12b所示, 制冷剂导管 10包括: 突起壁部分 24, 所述突 起壁部分 24朝向内腔 19外侧突起; 以及凹陷壁部分 23, 所述凹陷壁部分 23朝向内腔 19凹陷。 至少所述突起壁部分 19的制冷剂导管 10轴向的第 一端部 241与所述凹陷壁部分 23的制冷剂导管 10的轴向的第一端部 231 相互分离开, 由此形成所述开口 l lab。 作为选择, 突起壁部分 24的第一 5 端部 241以及凹陷壁部分 23的第一端部 231可以在加工之前相互距离预定 距离, 至少所述突起壁部分 24的制冷剂导管 10的轴向的第一端部 241与 管壁 17相互分离开, 由此形成所述开口 l lab, 并且至少所述凹陷壁部分 23的制冷剂导管 10的轴向的第一端部 231与管壁 17相互分离开, 由此形 成所述开口 l lab。
10 在上述实施例中,至少第一端部 241和 231与管壁 17分离开,或者第 一端部 241与第一端部 231相互分离开, 作为选择, 也可以是突起壁部分 24和凹陷壁部分 23的至少一部分边缘与管壁 11分离开,或突起壁部分 24 和凹陷壁部分 23的至少一部分边缘相互分离开。
上述各个实施例中的突起壁部分 24和凹陷壁部分 23构成制冷剂导向 i s 壁部分的示例。
在上述实施例中, 制冷剂沿着制冷剂导管内腔流动, 制冷剂导向壁部 分主要起对制冷剂导向的作用, 制冷剂沿着制冷剂导向壁部分喷射到集流 管内腔, 制冷剂在集流管中混合, 使得气液混合均匀, 不产生分层现象。
上述实施例中的各种结构可以通过适当的相互组合而形成新的实施方 0 式。 一个实施例中的特征, 也可以用于其它实施例, 或替换其它实施例中 的特征。 例如, 实施例 3中的凸起可以用于其它几个实施例中。
虽然结合附图对本发明进行了说明, 但是附图中公开的实施例旨在对 本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
例如, 上述实施例中的开口, 以及制冷剂导向壁部分 (例如, 突起壁
25 部分、 凹陷壁部分) 具有对称结构, 作为选择, 开口, 以及制冷剂导向壁 部分 (例如, 突起壁部分、 凹陷壁部分) 可以具有不对称的结构, 例如, 采用圆管加工制冷剂导管时, 相对于通过制冷剂导管中心轴线的平面, 开 口, 以及制冷剂导向壁部分(例如, 突起壁部分、 凹陷壁部分)可以对称, 也可以不对称。
30 此外, 上述实施例中, 制冷剂导向壁部分的实施例为突起壁部分、 凹 陷壁部分, 然而, 制冷剂导向壁部分并不限于此, 而可以采用其它合适的 方式对通过开口的制冷剂进行导向。 例如, 可以将单独制作的导向管、 导 向件等制冷剂导向壁部分焊接在制冷剂导管的开口附近, 或焊接在制冷剂 导管内部或外部, 对通过开口的制冷剂进行导向。 此外, 开口可以采用各 种合适的形状,并且制冷剂导向壁部分也可以采用任何合适的形状和结构。
此外, 上述实施例中, 制冷剂导向壁部分的端部与管壁相互分离幵, 由此形成所述开口。 然而, 本发明不限于此。 作为选择, 制冷剂导向壁部 分可以在任何位置与管壁相互分离开, 由此形成所述开口; 或者在所述制 冷剂导向壁部分的任何边缘与管壁相互分离开, 由此形成所述开口。
此外, 制冷剂导向壁部分可以具有任何合适的形状, 例如, 半圆形, 三角形等。

Claims

权 利 要 求
1、 一种用于换热器的制冷剂导管, 包括:
管壁, 该管壁内形成内腔;
形成在管壁中的开口; 以及
制冷剂导向壁部分, 所述制冷剂导向壁部分的至少一部分边缘与管壁 相互分离开, 由此形成所述开口。
2、根据权利要求 1所述的制冷剂导管,其中制冷剂导向壁部分的至少 一部分设置为相对于导管的轴向大致倾斜, 用于引导通过所述开口的制冷 剂。
3、 根据权利要求 2所述的制冷剂导管, 其中:
至少所述制冷剂导向壁部分的在与所述制冷剂导管轴向垂直的方向上 的中部相对于所述制冷剂导管轴向倾斜, 或至少所述制冷剂导向壁部分的 一部分相对于所述制冷剂导管轴向倾斜, 或所述制冷剂导向壁部分相对于 所述制冷剂导管轴向倾斜。
4、根据权利要求 2或 3所述的制冷剂导管, 其中, 至少所述制冷剂导 向壁部分的在与所述制冷剂导管轴向垂直的方向上的中部沿所述制冷剂导 管轴向的截面大致是直线状的或直的, 或所述制冷剂导向壁部分的沿所述 制冷剂导管轴向的截面大致是直线状的或直的。
5、根据权利要求 4所述的制冷剂导管, 其中, 至少制冷剂导向壁部分 的在与所述制冷剂导管轴向垂直的方向上的中部与所述制冷剂导管轴向的 第一夹角的范围为大于 0度并且小于 90度, 或
所述制冷剂导向壁部分与所述制冷剂导管轴向的第一夹角的范围为大 于 0度并且小于 90度。
6、根据权利要求 3所述的制冷剂导管, 其中, 至少所述制冷剂导向壁 部分的在与所述制冷剂导管轴向垂直的方向上的中部沿所述制冷剂导管轴 向的截面包括至少一段大致直线状的部分和至少一段大致曲线状的部分中 的至少一种, 或 所述制冷剂导向壁部分的沿所述制冷剂导管轴向的截面包括至少一段 大致直线状的部分和至少一段大致曲线状的部分中的至少一种。
7、根据权利要求 6所述的制冷剂导管, 其中, 制冷剂导向壁部分在从 制冷剂导管的内腔侧向内腔外侧的延伸方向上, 至少制冷剂导向壁部分在 与所述制冷剂导管的轴向垂直的方向上的中部与所述制冷剂导管的轴向的 角度逐渐增大, 或制冷剂导向壁部分与所述制冷剂导管的轴向的角度逐渐 增大。
8、 根据权利要求 6或 7所述的制冷剂导管, 其中,
至少在制冷剂导向壁部分的在与所述制冷剂导管的轴向垂直的方向上 的中部或在制冷剂导向壁部分, 制冷剂导向壁部分的靠近制冷剂导管的轴 线的端部与所述制冷剂导管轴向的第二夹角大于 0度并且小于 45度。
9、 根据权利要求 6至 8中的任意一项所述的制冷剂导管, 其中, 至少在制冷剂导向壁部分的在与所述制冷剂导管的轴向垂直的方向上 的中部或在制冷剂导向壁部分, 制冷剂导向壁部分的远离制冷剂导管的轴 线的端部与所述制冷剂导管的轴向的第三夹角大于 45度并且小于 90度。
10、 根据权利要求 1所述的制冷剂导管, 其中, 所述制冷剂导向壁部 分的朝向所述开口的表面设有多个凸起。
1 1、 根据权利要求 5、 8、 9中的任意一项所述的制冷剂导管, 还包括: 将与制冷剂管路连接的制冷剂导管的第一端部, 以及与第一端部相对 的制冷剂导管的第二端部, 其中,
在从制冷剂导管的第一端部到制冷剂导管的第二端部的方向上, 对于 至少一部分数量的制冷剂导向壁部分或全部数量的制冷剂导向壁部分, 所 述第一夹角、 第二夹角、 第三夹角逐渐增加。
12、 根据权利要求 1所述的制冷剂导管, 还包括:
将与制冷剂管路连接的制冷剂导管的第一端部, 以及与第一端部相对 的制冷剂导管的第二端部, 其中,
在从制冷剂导管的第一端部到制冷剂导管的第二端部的方向上, 所述 开口的间距逐渐减小。
13、 根据权利要求 1或 2所述的制冷剂导管, 其中至少所述制冷剂导 向壁部分的制冷剂导管轴向上的端部与管壁相互分离开。
14、 根据权利要求 1所述的制冷剂导管, 其中至少所述制冷剂导向壁 部分的制冷剂导管周向上的端部与管壁相互分离开。
15、 根据权利要求 1所述的制冷剂导管, 其中所述制冷剂导向壁部分 的制冷剂导管周向上的第一端部与管壁相互分离开并且与第一端部相对的 第二端部与管壁相连。
16、根据权利要求 15所述的制冷剂导管,其中第二端部位于制冷剂导 管的周向上的第一侧的制冷剂导向壁部分和第二端部位于制冷剂导管的周 向上的与所述第一侧相对的第二侧的制冷剂导向壁部分沿制冷剂导管的轴 向交替排列。
17、 根据权利要求 1所述的制冷剂导管, 其中所述制冷剂导向壁部分 的制冷剂导管周向上相对的端部与管壁相互分离。
18、 根据权利要求 1所述的制冷剂导管, 所述制冷剂导向壁部分的制 冷剂导管轴向上相对的端部与管壁相互分离。
19、 根据权利要求 1或 2所述的制冷剂导管, 其中所述制冷剂导向壁 部分包括突起壁部分和凹陷壁部分中的至少一种, 所述突起壁部分朝向内 腔外侧突起, 所述凹陷壁部分朝向内腔凹陷。
20、 一种换热器, 包括:
第一集流管;
第二集流管, 所述第二集流管与所述第一集流管间隔开预定距离; 散热管,所述散热管的两端分别与所述第一集流管和第二集流管相连; 和
制冷剂导管, 所述第一和第二集流管中的至少一个内设有所述制冷剂 导管,
其中, 所述制冷剂导管为权利要求 1中所述的制冷剂导管。
PCT/CN2011/076428 2010-09-13 2011-06-27 制冷剂导管和具有该制冷剂导管的换热器 WO2012034438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/822,616 US9417014B2 (en) 2010-09-13 2011-06-27 Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102828973A CN101949663B (zh) 2010-09-13 2010-09-13 制冷剂导管和具有该制冷剂导管的换热器
CN201010282897.3 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012034438A1 true WO2012034438A1 (zh) 2012-03-22

Family

ID=43453244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076428 WO2012034438A1 (zh) 2010-09-13 2011-06-27 制冷剂导管和具有该制冷剂导管的换热器

Country Status (3)

Country Link
US (1) US9417014B2 (zh)
CN (1) CN101949663B (zh)
WO (1) WO2012034438A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217340A1 (de) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Wärmeübertrager
DE102013207180A1 (de) * 2013-04-19 2014-10-23 Behr Gmbh & Co. Kg Wärmeübertrager mit in einem Sammelkanal angeordneten Einsatz
US9528778B2 (en) 2010-09-13 2016-12-27 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe
TWI646288B (zh) * 2014-09-23 2019-01-01 杭州三花研究院有限公司 一種空調系統及其換熱器
CN109855441A (zh) * 2017-11-30 2019-06-07 杭州三花家电热管理系统有限公司 换热组件、用于换热器的导液件及换热系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949663B (zh) 2010-09-13 2011-09-28 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN101922882B (zh) * 2010-09-13 2011-12-28 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
WO2013161038A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及び熱交換方法
US20150211807A1 (en) * 2014-01-29 2015-07-30 Trane International Inc. Heat Exchanger with Fluted Fin
US10197312B2 (en) * 2014-08-26 2019-02-05 Mahle International Gmbh Heat exchanger with reduced length distributor tube
US10072900B2 (en) * 2014-09-16 2018-09-11 Mahle International Gmbh Heat exchanger distributor with intersecting streams
FR3032521B1 (fr) * 2015-02-06 2017-02-17 Air Liquide Echangeur de chaleur comprenant un dispositif de distribution de liquide frigorigene
CN107941054B (zh) * 2017-12-13 2020-04-17 深圳易信科技股份有限公司 气液热交换装置
CN108592663B (zh) * 2018-02-12 2020-02-21 深圳易信科技股份有限公司 一种气液热交换装置
CN111895684B (zh) * 2020-08-03 2021-06-25 南京百灵汽车电气机械有限公司 一种内置调节流量的蒸发器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860595A (en) * 1994-09-01 1999-01-19 Himmelsbach; Johann Motor vehicle heat exhanger
JP2002022313A (ja) * 2000-07-06 2002-01-23 Matsushita Refrig Co Ltd 分流器
CN101482346A (zh) * 2008-01-09 2009-07-15 德尔菲技术公司 分配器管道子组件
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器
CN101782297A (zh) * 2009-01-19 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
CN101839590A (zh) * 2010-02-22 2010-09-22 三花丹佛斯(杭州)微通道换热器有限公司 一种微通道换热器
CN101922882A (zh) * 2010-09-13 2010-12-22 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN101922883A (zh) * 2010-09-13 2010-12-22 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN101949663A (zh) * 2010-09-13 2011-01-19 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488615A (en) * 1942-11-11 1949-11-22 Modine Mfg Co Oil cooler tube
US3229761A (en) * 1963-07-05 1966-01-18 Trane Co Spur tube with alternate oppositely directed orifices
US4335782A (en) * 1974-07-01 1982-06-22 The Garrett Corporation Heat exchanger method
US5329995A (en) * 1992-08-28 1994-07-19 Valeo Engine Cooling Incorporated Heat exchanger assembly I
DE19719251C2 (de) 1997-05-07 2002-09-26 Valeo Klimatech Gmbh & Co Kg Verteil-/Sammel-Kasten eines mindestens zweiflutigen Verdampfers einer Kraftfahrzeugklimaanlage
SE516416C2 (sv) * 2000-05-19 2002-01-15 Alfa Laval Ab Plattpaket, värmeöverföringsplatta, plattvärmeväxlaresamt anv ändning av värmeöverföringsplatta
US6729386B1 (en) * 2001-01-22 2004-05-04 Stanley H. Sather Pulp drier coil with improved header
KR20030080081A (ko) 2001-03-14 2003-10-10 쇼와 덴코 가부시키가이샤 적층형 열 교환기, 차량 에어컨용 적층형 증발기 및 냉동시스템
CA2381214C (en) * 2002-04-10 2007-06-26 Long Manufacturing Ltd. Heat exchanger inlet tube with flow distributing turbulizer
US6863121B2 (en) * 2002-04-16 2005-03-08 Shell Oil Company Flow distributor for an alkylation reactor or heat exchanger
US6814136B2 (en) 2002-08-06 2004-11-09 Visteon Global Technologies, Inc. Perforated tube flow distributor
KR20070054460A (ko) * 2005-11-23 2007-05-29 삼성전자주식회사 열교환기용 배관 및 이를 갖는 냉동시스템
JP4830918B2 (ja) * 2006-08-02 2011-12-07 株式会社デンソー 熱交換器
US8371366B2 (en) * 2006-10-03 2013-02-12 Showa Denko K.K. Heat exchanger
ES2480015T3 (es) 2006-11-13 2014-07-25 Carrier Corporation Intercambiador de calor de flujo paralelo
CN201057510Y (zh) * 2007-03-05 2008-05-07 高力热处理工业股份有限公司 适用于板式热交换器的分布器
CN101691979B (zh) * 2009-09-03 2011-08-03 三花丹佛斯(杭州)微通道换热器有限公司 集流管以及具有该集流管的热交换器
US20110139422A1 (en) 2009-12-15 2011-06-16 Delphi Technologies, Inc. Fluid distribution device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860595A (en) * 1994-09-01 1999-01-19 Himmelsbach; Johann Motor vehicle heat exhanger
JP2002022313A (ja) * 2000-07-06 2002-01-23 Matsushita Refrig Co Ltd 分流器
CN101482346A (zh) * 2008-01-09 2009-07-15 德尔菲技术公司 分配器管道子组件
CN101782297A (zh) * 2009-01-19 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 一种热交换器
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器
CN101839590A (zh) * 2010-02-22 2010-09-22 三花丹佛斯(杭州)微通道换热器有限公司 一种微通道换热器
CN101922882A (zh) * 2010-09-13 2010-12-22 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN101922883A (zh) * 2010-09-13 2010-12-22 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器
CN101949663A (zh) * 2010-09-13 2011-01-19 三花丹佛斯(杭州)微通道换热器有限公司 制冷剂导管和具有该制冷剂导管的换热器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528778B2 (en) 2010-09-13 2016-12-27 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe
DE102012217340A1 (de) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Wärmeübertrager
EP2711658A3 (de) * 2012-09-25 2014-09-10 Behr GmbH & Co. KG Wärmeübertrager
US9709338B2 (en) 2012-09-25 2017-07-18 Mahle International Gmbh Heat exchanger
DE102013207180A1 (de) * 2013-04-19 2014-10-23 Behr Gmbh & Co. Kg Wärmeübertrager mit in einem Sammelkanal angeordneten Einsatz
TWI646288B (zh) * 2014-09-23 2019-01-01 杭州三花研究院有限公司 一種空調系統及其換熱器
CN109855441A (zh) * 2017-11-30 2019-06-07 杭州三花家电热管理系统有限公司 换热组件、用于换热器的导液件及换热系统
CN109855441B (zh) * 2017-11-30 2020-10-30 杭州三花微通道换热器有限公司 换热组件、用于换热器的导液件及换热系统

Also Published As

Publication number Publication date
US9417014B2 (en) 2016-08-16
CN101949663A (zh) 2011-01-19
CN101949663B (zh) 2011-09-28
US20130199764A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2012034438A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
WO2012034437A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
WO2012034436A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
EP2784428B1 (en) Heat exchanger
KR100692193B1 (ko) 유량분배 교란기를 구비한 입구튜브를 포함하는 열교환기
US11454448B2 (en) Enhanced heat transfer surface
BRPI0415965B1 (pt) Canal de corrente para um trocador de calor e trocador de calor com canais de corrente desse tipo
WO2014146544A1 (zh) 集流管以及具有集流管的换热器
WO2015027681A1 (zh) 制冷剂分配部件、集流管组件和换热器
JP2006526130A (ja) 熱交換器用プレート
JPH08291988A (ja) 熱交換器の構造
WO2020063962A1 (zh) 换热器
EP3951301B1 (en) Heat exchanger and refrigeration cycle device
WO2024152951A1 (zh) 气液分离器及空调系统
WO2024152950A1 (zh) 换热器及空调系统
WO2014059893A1 (zh) 一种热交换器
WO2012092737A1 (zh) 制冷剂分配装置和具有它的换热器
JPS59119192A (ja) 伝熱管
WO2015018184A1 (zh) 制冷剂分配装置和具有它的换热器
JP7562284B2 (ja) 分配器及び熱交換器ユニット
US11466939B2 (en) Header assembly for heat exchanger and heat exchanger
CN209877422U (zh) 空调器的分液器
JPH11325784A (ja) 熱交換器
JP2004085142A (ja) 熱交換器用チューブおよび熱交換器
JP3003859B1 (ja) 空気調和機用熱交換コイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13822616

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11824508

Country of ref document: EP

Kind code of ref document: A1