WO2015018184A1 - 制冷剂分配装置和具有它的换热器 - Google Patents

制冷剂分配装置和具有它的换热器 Download PDF

Info

Publication number
WO2015018184A1
WO2015018184A1 PCT/CN2014/070737 CN2014070737W WO2015018184A1 WO 2015018184 A1 WO2015018184 A1 WO 2015018184A1 CN 2014070737 W CN2014070737 W CN 2014070737W WO 2015018184 A1 WO2015018184 A1 WO 2015018184A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
refrigerant
distribution device
refrigerant distribution
tubes
Prior art date
Application number
PCT/CN2014/070737
Other languages
English (en)
French (fr)
Inventor
周晶
刘华钊
高强
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Priority to US14/910,036 priority Critical patent/US10139140B2/en
Publication of WO2015018184A1 publication Critical patent/WO2015018184A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes

Definitions

  • the present invention relates to a refrigerant distribution device, and in particular to a refrigerant distribution device and a heat exchanger having the same. Background technique
  • the refrigerant at the inlet of the evaporator or heat pump outdoor unit heat exchanger is usually a gas-liquid two-phase mixture, and the gas-phase refrigerant and the liquid-phase refrigerant are likely to form a gas-liquid separation phenomenon due to a large difference in density, resulting in a part.
  • the gas phase refrigerant in the flat tube of the heat exchanger is too much, forming a large superheating zone, and the liquid phase refrigerant in the flat tube of some heat exchangers is too much, which cannot fully transfer heat, which affects the overall exchange of the heat exchanger. Thermal capacity.
  • a dispensing capillary is usually disposed in the header of the heat exchanger, and the refrigerant is distributed from the inner cavity of the dispensing capillary to the collecting pipe through the dispensing hole on the dispensing capillary, but the conventional dispensing is fine.
  • the refrigerant distribution effect of the tube is not satisfactory, and there is an improved demand. Summary of the invention
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent. Accordingly, it is an object of the present invention to provide a refrigerant distribution device which can reduce the vapor-liquid separation phenomenon of a refrigerant, improve the uniformity of refrigerant distribution, and thereby improve the exchange with the refrigerant distribution device. Heat exchange performance of the heat exchanger.
  • Another object of the present invention is to provide a heat exchanger having the above refrigerant distribution device.
  • a refrigerant distribution device comprising: a distribution structure, the distribution structure being composed of a plurality of distribution thin tubes, at least one of the plurality of distribution thin tubes being provided with a distribution hole, and a plurality of At least two of the dispensing straws intersecting each other; and a transition block having an adapter cavity, the transition block being coupled to the dispensing structure for the transition cavity and the The lumen of the dispensing tubule is connected.
  • the refrigerant ejected from the distribution holes on the at least one distribution capillary tube is suddenly contracted from the distribution cross section by the distribution structure composed of the plurality of distribution thin tubes, so that the refrigerant can be made
  • the vapor-liquid mixed full mist flow form is injected into the heat exchange tube to enhance the disturbance after the refrigerant is ejected, and the refrigerant which avoids the vapor-liquid separation phenomenon enters the heat exchange tube, and the refrigerant is realized in the heat exchange tube.
  • the purpose of uniform distribution improves the heat transfer performance of the heat exchanger.
  • the dispensing capillary is a capillary.
  • the dispensing tubule comprises a plurality of straight tubes and a plurality of multi-pass tubes.
  • a plurality of the straight tubes and a plurality of the multi-pass tubes are detachably connected.
  • the multi-pass pipe includes at least one of a tee pipe, a four-way pipe, and a six-way pipe.
  • the dispensing structure is a mesh structure.
  • the distribution structure is a two-dimensional network structure.
  • the two-dimensional network structure includes a plurality of rectangular units.
  • the distribution structure is a three-dimensional network structure.
  • the three-dimensional network structure is composed of two mutually orthogonal rectangular two-dimensional network structures.
  • the transition block further has a connection hole communicating with the transfer cavity and for engaging the distribution capillary.
  • the refrigerant distribution device further includes a stopper provided with a blind hole for engaging the dispensing capillary.
  • a heat exchanger comprising: first and second headers; a heat exchange tube, wherein two ends of the heat exchange tube are respectively connected to the first and second headers; a fin, the fin is disposed between the adjacent heat exchange tubes; and a refrigerant distribution device, the refrigerant distribution device is disposed in at least one of the first and second headers,
  • the refrigerant distribution device is the refrigerant distribution device according to an embodiment of the first aspect of the present invention.
  • the heat exchanger of the embodiment of the invention by providing the refrigerant distribution device, the vapor-liquid separation phenomenon of the refrigerant can be avoided, the uniformity of the refrigerant distribution can be improved, and the heat exchange performance of the heat exchanger can be improved.
  • FIG. 1 to 4 are schematic views of a refrigerant distribution device according to various embodiments of the present invention.
  • Figure 5 is a schematic view of a refrigerant distribution device according to an embodiment of the present invention, wherein the distribution structure has a two-dimensional network structure;
  • Figure 6a - Figure 6c are schematic views of differently shaped dispensing tubules
  • Figure 7 is a side elevational view of a refrigerant dispensing device in accordance with one embodiment of the present invention.
  • Figure 8 is a partial cross-sectional view of the refrigerant distribution device shown in Figure 7;
  • Figure 9 is a side view of a refrigerant distribution device in accordance with another embodiment of the present invention.
  • Figure 10 is a partial cross-sectional view of the refrigerant distribution device shown in Figure 9;
  • Figure 11 is a side elevational view of a refrigerant dispensing device in accordance with still another embodiment of the present invention.
  • Figure 12 is a partial cross-sectional view showing the refrigerant distribution device shown in Figure 11;
  • Figure 13 is a partial cross-sectional view of a refrigerant distribution device in accordance with an embodiment of the present invention. Reference mark:
  • Refrigerant distribution device 100 distribution structure 1, distribution thin tube 10,
  • Transfer block 2 transfer cavity 20, connection hole 21, stop 3, blind hole 30
  • a refrigerant distribution device 100 according to an embodiment of the present invention will be described with reference to Figs. 1 to 13 in which a refrigerant distribution device 100 is disposed in a header of a heat exchanger for distributing refrigerant into a header.
  • a refrigerant distribution device 100 includes: a distribution structure 1 and a transfer block 2.
  • the distribution structure 1 is composed of a plurality of distribution thin tubes 10, at least one of the plurality of distribution thin tubes 10 is provided with a distribution hole 11, and at least one of the plurality of distribution thin tubes 10 and at least one of the plurality of distribution thin tubes 10 One intersects.
  • each of the distribution thin tubes 10 may be provided with a distribution hole 11, or a part of the plurality of distribution thin tubes 10 may be provided with a distribution hole 11 on the distribution thin tube 10, and the remaining distribution thin tubes 10 are not provided.
  • the hole 11 is assigned.
  • At least two of the plurality of dispensing straws 10 intersect each other.
  • the term "dispensing capillary” means that the radial dimension of the dispensing capillary is much smaller than the radial dimension of the header of the heat exchanger.
  • the radial dimension of the dispensing tubule is less than one-fifth of the radial dimension of the header of the heat exchanger.
  • the shape of the dispensing aperture 11 can be any suitable shape, such as a circular aperture, a square aperture, and the size of the dispensing aperture can be set according to a particular application.
  • the distribution hole 11 is a slit, so that the distribution effect of the refrigerant can be further improved.
  • the position of the dispensing orifice 11 on the distribution structure 1 corresponds to the end of the heat exchange tube of the heat exchanger to facilitate refrigerant Well distributed to the heat exchange tubes.
  • the adapter block 2 has an adapter chamber 20, which is connected to the distribution structure 1, and the adapter chamber 20 communicates with the interior of the distribution capillary 10, thereby facilitating the distribution of refrigerant through the adapter block 2 to a plurality of Within the dispensing capillary 10, the adapter block 2 can be used to secure the dispensing structure 1 within the header of the heat exchanger, thereby facilitating the installation of the refrigerant dispensing device.
  • the refrigerant first enters into the transfer chamber 20 of the transfer block 2, and then the refrigerant flows from the transfer chamber 20 into the inner cavity of the distribution capillary 10 and is ejected from the distribution hole 11 as a refrigerant.
  • the refrigerant kinetic energy increases and the flow velocity increases due to a sudden contraction of the refrigerant flow cross section, and the refrigerant discharged from the distribution hole 11 can enter the header in the form of a mist flow.
  • the refrigerant distribution device 100 is constituted by a distribution structure 1 composed of a plurality of distribution thin tubes 10, wherein at least one of the distribution thin tubes 10 is provided with a distribution hole 11, and the refrigerant discharged from the distribution hole 11 is circulated
  • the sudden contraction of the cross section causes the refrigerant to be sprayed in a vapor-like mixed flow, thereby avoiding the vapor-liquid separation phenomenon of the refrigerant entering the heat exchange tube, thereby achieving the purpose of uniformly distributing the refrigerant in the heat exchange tube.
  • the dispensing capillary 10 is a capillary tube.
  • the dispensing capillary 10 may be a thin tube having an inner diameter equal to or less than 1 mm, and the refrigerant ejected from the dispensing capillary 10 is abrupt due to the flow cross section. Shrinkage, the kinetic energy of the refrigerant is increased, the flow rate is increased, and it is sprayed in the form of a mist-like flow in which the vapor-liquid mixture is sufficiently mixed, which is advantageous for further improving the uniformity of the distribution of the refrigerant.
  • the capillary tube By using the capillary tube to form the dispensing capillary 10, as many dispensing tubes 10 as possible can be placed in the lumen of the manifold with limited space to enhance the mixing of the vapor-liquid two-phase refrigerant after the capillary is ejected.
  • the refrigerant distribution device 100 can also function as a throttling, and can partially assume or even assume the function of the throttling device. Therefore, the refrigeration system using the refrigerant distribution device 100 does not need to additionally provide a throttling device.
  • the dispensing straws 10 can be joined by means of plugging, moving joints, welding, gluing, etc. to form the dispensing structure 1.
  • the dispensing capillary 10 includes a plurality of straight tubes 10a and a plurality of multi-pass tubes.
  • the multi-pass tubes refer to tubes having three or more passages.
  • the multi-pass pipe includes at least one of the tee pipe 10b, the cross pipe 10c, and the six-way pipe.
  • the distribution structure 1 can be constructed by connecting a plurality of straight tubes 10a and a plurality of multi-pass tubes.
  • the plurality of straight tubes 10a and the plurality of multi-pass tubes are detachably connected, for example, by plugging, live connection, gluing, or the like.
  • the distribution structure 1 may also be formed by connecting a plurality of straight tubes 10a.
  • the distribution structure 1 can also be formed by connecting a plurality of multi-pass pipes.
  • the distribution structure 1 is a mesh structure, where the mesh structure should be understood in a broad sense, and a distribution structure 1 having a mesh structure according to different examples of the present invention will be described below with reference to Figs. It is to be understood that the mesh structure of the distribution structure 1 described with reference to the following examples is exemplary.
  • the distribution structure 1 is formed into a generally "X"-shaped mesh structure, the distribution structure 1 is composed of a plurality of straight tubes 10a and one of the four-way tubes 10c, and four ports of the four-way tube 10c A straight pipe section is respectively connected, and each straight pipe section is formed by connecting a plurality of straight pipe 10a, and two straight pipe sections of the four straight pipe sections are respectively connected to the transfer block 2 through a straight pipe 10a. That is, the distribution structure 1 includes two refrigerant flow passages that communicate with each other.
  • each of the straight pipes 10a of each straight pipe section is provided with a distribution hole 11, and optionally, a part of the straight pipe 10a of each straight pipe section is provided with a distribution hole 11 on the straight pipe 10a.
  • the distribution structure 1 is formed into a mesh structure having a substantially "ten" shape, and the distribution structure 1 includes a plurality of straight tubes 10a and one of the four-way tubes 10c, and four ports of the four-way tube 10c A straight pipe section is respectively connected, and each straight pipe section is formed by connecting a plurality of straight pipe 10a, and one straight pipe section of the four straight pipe sections is connected to the transfer block 2 through a straight pipe 10a.
  • the distribution structure 1 is formed into a generally "work"-shaped mesh structure, and the distribution structure 1 includes two tees 10b and a plurality of straight tubes 10a, of which two tees 10b They are connected by a plurality of straight pipes 10a, and each of the three-way pipes 10b is connected to the transfer block 2 through a straight pipe 10a.
  • the distribution structure 1 has a two-dimensional network structure including a plurality of rectangular units, in other words, a plurality of rectangular units are connected to constitute a two-dimensional network structure. More specifically, as shown in FIG. 5, each rectangular unit includes a plurality of straight tubes 10a and a plurality of multi-pass tubes, each of the rectangular units having a plurality of distribution holes 11 respectively, and the plurality of rectangular units are arranged in a plurality of rows and two columns.
  • the shapes and sizes of the two rectangular units on each row are equal, and the sizes of the rectangular units on the adjacent two rows may be the same or different, for example, in the flow direction of the refrigerant (as indicated by the arrow in FIG.
  • the flow rate of the refrigerant is small and the speed is low, so that the plurality of rectangular units at the position are small in size and high in density, the distribution holes 11 are large, and the size of the distribution holes 11 is large.
  • the dispensing capillary 10 includes a plurality of straight tubes 10a, and the plurality of straight tubes 10a are connected into two straight tube segments, that is, each straight tube portion is connected by a plurality of straight tubes 10a, each of which is straight.
  • the pipe segments form a separate refrigerant flow passage, the two straight pipe segments intersecting and spatially spaced apart from one another.
  • the two straight pipe segments form a generally "X" shaped mesh structure.
  • the dispensing structure 1 can also be formed as a three-dimensional network.
  • the three-dimensional network structure may be composed of two mutually orthogonal rectangular two-dimensional network structures, and the two orthogonal two-dimensional network structures are connected by a six-way pipe.
  • the transition block 2 further has a connection hole 21 communicating with the transfer cavity 20 for engaging the dispensing capillary 10, specifically, the connection hole 21 and The transfer chamber 20 is in communication, and the dispensing capillary 10 fits within the connecting hole 21 to allow the lumen of the dispensing capillary 10 to communicate with the transfer chamber 20, thereby facilitating the connection of the dispensing capillary 10 to the transfer block 2.
  • the transition block 2 is formed in a cylindrical shape.
  • the cross-sectional shape of the adapter block is adapted to the cross-sectional shape of the header of the heat exchanger.
  • the transfer block 2 of some examples of the present invention will be described below with reference to Figs. 7 to 12, and the transfer block 2 in the following example is exemplary.
  • the adapter block 2 has a bottom wall and a peripheral wall, the bottom wall and the peripheral wall defining an adapter chamber 20 having an open front end, and the connection hole 21 is formed in the bottom wall Up and in the front-rear direction (the left-right direction in FIG. 8, that is, the flow direction of the refrigerant) is formed into a cylindrical shape through the bottom wall transition block 2, and the transfer cavity 20 may have a circular cross section, and optionally may have a rectangular shape In the cross section, the bottom wall of the transition block 2 is provided with three connecting holes 21 which are spaced apart and communicate with the transfer chamber 20. In the examples of Figs. 7 and 8, one of the three connection holes 21 is located at the center of the transfer chamber 20, and the other two connection holes 21 are radially symmetrical with respect to the center of the transfer chamber 20.
  • the transition block 2 is formed in a cylindrical shape, and the transition block 2 is provided with three transfer cavities 20 and three connection holes 21, each of which is connected. 21 is in communication with a corresponding one of the transfer chambers 20.
  • each of the transfer chambers 20 may have a circular cross section, and one of the three transfer chambers 20 is located on the center of the transfer block 2, and the other two transfer chambers 20 are The center of the transition block 2 is radially symmetrical.
  • the transition block 2 is formed in a cylindrical shape, and the adapter block 2 is provided with an adapter chamber 20 and five connection holes 21, and five connection holes. 21 is in communication with the transfer chamber 20, respectively.
  • the transfer chamber 20 has a circular cross section, one of the five connection holes 21 is located at the center of the transfer chamber 20, and the remaining four connection holes 21 are two connection holes. 21, the center of the transfer chamber 20 is radially symmetrical, and the other two connection holes 21 are radially symmetric with respect to the center of the transfer chamber 20, and the four connection holes 21 are evenly spaced in the circumferential direction.
  • the refrigerant distribution device 100 further includes a stopper 3, and the stopper 3 is provided with a blind hole 30 for fitting the thin tube 10, and the stopper 3 and the rotation
  • the block 2 cooperates to fix the distribution structure 1 and blocks the outlet of the distribution structure 1.
  • the number and distribution of blind holes 30 are specifically set according to the actual arrangement of the dispensing straws 10.
  • the stopper 3 is formed in a cylindrical shape. The stop 3 can be used in cooperation with the transfer block 2 to install the refrigerant distribution device 100 into the header of the heat exchanger.
  • a heat exchanger which can be applied to a refrigeration apparatus such as an air conditioner or a refrigerator, will be described below.
  • a heat exchanger according to an embodiment of the present invention includes: a first header, a second header, a heat exchange tube, fins, and a refrigerant distribution device. Both ends of the heat exchange tube are respectively connected to the first header and the second header, and preferably, the heat exchange tube is a flat tube. The fins are disposed between adjacent heat exchange tubes.
  • the refrigerant distribution device may be the refrigerant distribution device 100 according to the above embodiment of the present invention, and the refrigerant distribution device 100 is disposed in at least one of the first header and the second header, in other words, the refrigerant distribution device 100 It may be provided only in one of the first and second headers, or may be provided in both the first and second headers.
  • the distribution structure 1 of the refrigerant distribution device 100 can flexibly adjust the refrigerant according to the distribution of the first header and/or the second header, the heat exchanger, and the distribution of the two-phase refrigerant through different assembly methods.
  • the flow rate and flow rate achieve the purpose of even distribution of the refrigerant between the heat exchange tubes.
  • the position of the distribution hole 11 on the refrigerant distribution device 100 corresponds to the position of the end of the heat exchange tube, which facilitates the direct entry of the refrigerant in the form of a mist flow into the heat exchange tube, preventing the vapor-liquid two-phase refrigerant from being The vapor-liquid separation phenomenon occurs again after flowing through the distribution hole 11.
  • the heat exchanger according to an embodiment of the present invention may be a parallel flow heat exchanger, more specifically, a microchannel heat exchanger.
  • the refrigerant distribution device 100 can avoid the vapor-liquid separation phenomenon of the refrigerant, improve the uniformity of the refrigerant distribution, and further improve the heat exchange performance of the heat exchanger.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first”, “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; can be mechanically connected; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise explicitly defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature being directly above and above the second feature, or merely indicating that the first feature is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种制冷剂分配装置(100)和具有它的换热器。制冷剂分配装置(100)包括分配结构(1)和转接块(2)。分配结构(1)由多个分配细管(10)构成,多个分配细管(10)中的至少一个设有分配孔(11),多个分配细管(10)中的至少两个分配细管(10)相交。转接块(2)具有转接腔(20),转接块(2)与分配结构(1)相连以便转接腔(20)与分配细管(10)的内腔连通。换热器包括第一集流管、第二集流管、换热管、翅片和制冷剂分配装置(100)。制冷剂分配装置(100)使得制冷剂可以以气液混合充分的雾状流形式喷入到换热管内,实现了制冷剂在换热管内均匀分布的目的,提高了换热器的换热性能。

Description

制冷剂分配装置和具有它的换热器
技术领域
本发明涉及一种用于制冷剂分配装置, 具体地涉及一种制冷剂分配装置和具有该制冷 剂分配装置的换热器。 背景技术
在制冷领域中, 蒸发器或热泵室外机换热器的进口处的制冷剂通常为气液两相混合物, 气相制冷剂和液相制冷剂因密度差异大而易形成气液分离现象, 导致一部分换热器的扁管 中的气相制冷剂过多, 形成较大的过热区, 而一部分换热器的扁管中液相制冷剂过多, 不 能充分换热, 影响了换热器的整体换热能力。 为此, 现有技术中通常在换热器的集流管内 设置分配细管, 制冷剂从分配细管的内腔中通过分配细管上的分配孔分配到集流管内, 但 是, 传统分配细管的制冷剂分配效果不理想, 存在改进的需求。 发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。 为此, 本发明的 一个目的在于提出一种制冷剂分配装置, 该制冷剂分配装置可以降低制冷剂的汽液分离现 象, 提高制冷剂分配的均匀性, 从而提高具有该制冷剂分配装置的换热器的换热性能。
本发明的另一目的在于提出一种具有上述制冷剂分配装置的换热器。
根据本发明第一方面实施例的制冷剂分配装置, 包括: 分配结构, 所述分配结构由多 个分配细管构成, 多个所述分配细管中的至少一个设有分配孔, 多个所述分配细管中的至 少两个分配细管彼此相交; 和转接块, 所述转接块具有转接腔, 所述转接块与所述分配结 构相连以便所述转接腔与所述分配细管的内腔连通。
根据本发明实施例的制冷剂分配装置, 通过由多个分配细管构成的分配结构, 从至少 一个分配细管上的分配孔喷出的制冷剂由于流通截面的突然收縮, 使得制冷剂可以以汽液 混合充分的雾状流形式喷入到换热管内, 加强了制冷剂喷出后的扰动, 而避免出现汽液分 离现象的制冷剂进入到换热管内, 实现了制冷剂在换热管内均匀分布的目的, 提高了换热 器的换热性能。
优选地, 所述分配细管为毛细管。
在本发明的一些实施例中, 所述分配细管包括多个直管和多个多通管。
可选地, 多个所述直管和多个所述多通管可拆卸地连接。
具体地, 所述多通管包括三通管、 四通管和六通管中的至少一种。
在本发明的一些实施例中, 所述分配结构为网状结构。
在本发明的一个示例中, 所述分配结构为二维网状结构。
具体地, 所述二维网状结构包括多个矩形单元。 在本发明的另一个示例中, 所述分配结构为三维网状结构。
具体地, 所述三维网状结构由两个相互正交的矩形二维网状结构构成。
具体地, 所述转接块还具有与所述转接腔连通且用于配合所述分配细管的连接孔。 根据本发明的一些实施例, 制冷剂分配装置还包括挡块, 所述挡块设有用于配合所述 分配细管的盲孔。
根据本发明第二方面实施例的换热器, 包括: 第一和第二集流管; 换热管, 所述换热 管的两端分别与所述第一和第二集流管相连; 翅片, 所述翅片设在相邻的所述换热管之间; 和制冷剂分配装置, 所述制冷剂分配装置设在所述第一和第二集流管中的至少一个内, 所 述制冷剂分配装置为根据本发明第一方面实施例的所述制冷剂分配装置。
根据本发明实施例的换热器, 通过设有制冷剂分配装置, 从而可避免制冷剂出现汽液 分离现象, 提高制冷剂分配的均匀性, 进而提高换热器的换热性能。 附图说明
图 1-图 4为本发明不同实施例的制冷剂分配装置的示意图;
图 5为根据本发明一个实施例的制冷剂分配装置的示意图, 其中分配结构呈二维网状 结构;
图 6a_图 6c为不同形状的分配细管的示意图;
图 7为根据本发明一个实施例的制冷剂分配装置的侧视图;
图 8为图 7所示的制冷剂分配装置的局部剖面图;
图 9为根据本发明另一个实施例的制冷剂分配装置的侧视图;
图 10为图 9所示的制冷剂分配装置的局部剖面图;
图 11为根据本发明再一个实施例的制冷剂分配装置的侧视图;
图 12为图 11所示的制冷剂分配装置的局部剖面图;
图 13为根据本发明实施例的制冷剂分配装置的局部剖面图。 附图标记:
制冷剂分配装置 100、 分配结构 1、 分配细管 10、
直管 10a、 三通管 10b、 四通管 10c、 分配孔 11、
转接块 2、 转接腔 20、 连接孔 21、 挡块 3、 盲孔 30 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 旨在用于解释本发明, 而不能理解为对本发明的限制。
下面参考图 1-图 13描述根据本发明实施例的制冷剂分配装置 100,制冷剂分配装置 100 设在换热器的集流管内, 用于将制冷剂分配到集流管内。 如图 1-图 13所示,根据本发明实施例的制冷剂分配装置 100包括: 分配结构 1和转接 块 2。分配结构 1由多个分配细管 10构成, 多个分配细管 10中的至少一个设有分配孔 11, 且多个分配细管 10中的至少一个与多个分配细管 10中的至少另一个相交。 也就是说, 每 个分配细管 10上都可以设有分配孔 11,也可以是多个分配细管 10中的一部分分配细管 10 上设有分配孔 11, 其余分配细管 10上未设分配孔 11。 多个分配细管 10中至少有两个分配 细管 10彼此相交。 这里, 需要理解的是, 术语 "分配细管"是指分配细管的径向尺寸远远 小于换热器的集流管的径向尺寸。 例如, 示例性且不限制地, 分配细管的径向尺寸小于换 热器的集流管的径向尺寸的五分之一。
分配孔 11的形状可以为任何合适的形状, 例如圆孔, 方孔, 分配孔的尺寸可以根据具 体应用设定。 优选地, 分配孔 11为狭缝, 从而可以进一步提高制冷剂的分配效果。
在本发明的一些优选示例中, 当安装到换热器的集流管内时, 分配孔 11在分配结构 1 上的位置与换热器的换热管的端部相对应, 以便于制冷剂更好地分配到换热管中。
转接块 2具有转接腔 20, 转接块 2与分配结构 1相连, 转接腔 20与分配细管 10的内 腔连通, 由此, 便于将制冷剂通过转接块 2分配到多个分配细管 10内, 而且, 转接块 2可 以用于将分配结构 1固定在换热器的集流管内, 由此便于制冷剂分配装置的安装。
具体而言, 制冷剂首先进入到转接块 2的转接腔 20内, 然后制冷剂从转接腔 20流入 到分配细管 10的内腔内, 并从分配孔 11喷出, 当制冷剂从分配孔 11喷出时, 由于制冷剂 流通截面突然收縮, 制冷剂的动能升高, 流速增大, 从分配孔 11喷出的制冷剂可以以雾状 流的形式进入到集流管内。
根据本发明实施例的制冷剂分配装置 100,通过由多个分配细管 10构成的分配结构 1, 其中至少一个分配细管 10设有分配孔 11, 从分配孔 11喷出的制冷剂由于流通截面的突然 收縮, 使得制冷剂以汽液混合充分的雾状流形式喷出, 从而避免出现汽液分离现象的制冷 剂进入到换热管内, 实现了制冷剂在换热管内均匀分布的目的, 提高了换热器的换热性能。
在本发明的一些优选实施例中, 分配细管 10为毛细管, 换言之, 分配细管 10可以为 内径等于或小于 1毫米的细管, 从分配细管 10喷出的制冷剂由于流通截面的突然收縮, 制 冷剂的动能升高, 流速增大, 以汽液混合充分的雾状流的形式喷出, 有利于进一步提高制 冷剂分配的均匀性。 通过采用毛细管制成分配细管 10, 可在空间有限的集流管内腔内布置 尽量多的分配细管 10,加强喷出毛细管后的汽液两相制冷剂的混合。同时通过使用毛细管, 制冷剂分配装置 100还可起到节流作用, 可部分承担甚至于全部承担节流装置的功能, 因 此, 使用了制冷剂分配装置 100的制冷系统无需另外设置节流装置。
分配细管 10可以通过插接、 活动连接、 焊接、 胶接等方式连接以形成分配结构 1。 例如, 如图 2-图 5所示, 分配细管 10包括多个直管 10a和多个多通管, 这里, 需要理 解的是, 多通管是指通路为三个或更多个的管, 例如多通管包括三通管 10b、 四通管 10c 和六通管中的至少一种。 换言之, 分配结构 1可由多个直管 10a和多个多通管相连构成。 优选地, 多个直管 10a和多个多通管可拆卸地相连, 例如可通过插接、 活口连接、 胶粘等 方式连接在一起。 当然本发明不限于此, 分配结构 1还可以是多个直管 10a相连而成的, 分配结构 1还可以是多个多通管相连而成。
根据本发明的一些优选实施例, 分配结构 1 为网状结构, 这里, 网状结构应作广义理 解, 下面参考图 1-图 5描述根据本发明不同示例的具有网状结构的分配结构 1, 需要理解 的是, 参考下面示例描述的分配结构 1的网状结构是示例性的。
在图 2所示的示例中, 分配结构 1形成为大体 "X"形状的网状结构, 分配结构 1由多 个直管 10a和一个四通管 10c构成, 四通管 10c的四个管口分别连接一个直管段, 每个直 管段由多个直管 10a相连而形成, 且四个直管段中的两个直管段分别通过一个直管 10a与 转接块 2相连。 也就是说, 分配结构 1包括两个彼此连通的制冷剂流动通道。 优选地, 每 个直管段的多个直管 10a均设有分配孔 11, 可选地, 每个直管段的多个直管 10a的一部分 直管 10a上设有分配孔 11。
在图 3所示的示例中, 分配结构 1形成为大体 "十"字形状的网状结构, 分配结构 1 包括多个直管 10a和一个四通管 10c, 四通管 10c的四个管口分别连接一个直管段, 每个 直管段由多个直管 10a相连而形成, 且四个直管段中的一个直管段通过一个直管 10a与转 接块 2相连。
在图 4所示的示例中, 分配结构 1形成为大体 "工"字形状的网状结构, 分配结构 1 包括两个三通管 10b和多个直管 10a, 其中两个三通管 10b之间通过多个直管 10a相连, 且每个三通管 10b通过直管 10a与转接块 2相连。
在图 5所示的示例中, 分配结构 1具有二维网状结构, 该二维网状结构包括多个矩形 单元, 换言之, 多个矩形单元相连以构成二维网状结构。 更具体地, 如图 5所示, 每个矩 形单元包括多个直管 10a和多个多通管, 每个矩形单元分别具有多个分配孔 11, 多个矩形 单元排列成多排两列, 每排上的两个矩形单元的形状和大小相等, 相邻两排上的矩形单元 的大小可相同也可不同, 例如, 在制冷剂的流动方向上(如图 5中的箭头所示), 在远离制 冷剂入口的一端的位置, 制冷剂的流量较少, 速度较低, 因此在该位置的多个矩形单元的 尺寸小且密度高, 分配孔 11较多, 分配孔 11的尺寸较大, 以增加制冷剂的流量, 以平衡 制冷剂在各换热管中的分配。
在图 1所示的示例中, 分配细管 10包括多个直管 10a, 多个直管 10a连接成两个直管 段, 即每个直管段由多个直管 10a相连而构成, 每个直管段构成一个独立的制冷剂流动通 道, 两个直管段交叉且在空间上彼此间隔开设置, 在图 1所示的平面图内, 两个直管段构 成大体 "X"形状的网状结构。
在本发明的一些实施例中, 分配结构 1还可形成为三维网状结构。 具体地, 三维网状 结构可以由两个相互正交的矩形二维网状结构构成, 正交的两个矩形二维网状结构通过六 通管相连。
在本发明的具体实施例中, 如图 7-图 12所示, 转接块 2还具有与转接腔 20连通且用 于配合分配细管 10的连接孔 21, 具体地, 连接孔 21与转接腔 20连通, 且分配细管 10配 合在连接孔 21内以使得分配细管 10的内腔与转接腔 20连通, 从而便于分配细管 10与转 接块 2相连。 如图 5、 图 7-图 9所示, 在本发明的一些示例中, 转接块 2形成为圆柱形状, 优选地, 转接块的横截面形状与换热器的集流管的横截面形状适配。
下面参考图 7-图 12描述本发明的一些示例的转接块 2, 下述示例中的转接块 2是示例 性的。
在本发明的一些示例中, 如图 7和图 8所示, 转接块 2具有底壁和外周壁, 底壁和外 周壁限定出前端敞开的转接腔 20, 连接孔 21形成在底壁上且沿前后方向 (图 8中的左右 方向, 即制冷剂的流动方向)贯穿底壁转接块 2形成为圆柱形状, 转接腔 20可以具有圆形 横截面, 可选地, 可以具有矩形横截面, 转接块 2的底壁上设有三个间隔开的且与转接腔 20连通的连接孔 21。在图 7和图 8的示例中, 三个连接孔 21中的一个连接孔 21位于转接 腔 20的圆心上, 另外两个连接孔 21关于转接腔 20的圆心径向对称。
在本发明的另一些示例中, 如图 9和图 10所示, 转接块 2形成为圆柱形状, 转接块 2 上设有三个转接腔 20和三个连接孔 21, 每个连接孔 21与相应的一个转接腔 20连通。 在 图 9和图 10的示例中, 每个转接腔 20可以具有圆形横截面, 且三个转接腔 20中的一个位 于转接块 2的圆心上, 另外两个转接腔 20关于转接块 2的圆心径向对称。
在本发明的再一个示例中, 如图 11和图 12所示, 转接块 2形成为圆柱形状, 转接块 2 上设有一个转接腔 20和五个连接孔 21, 五个连接孔 21分别与该转接腔 20连通。 在图 11 和图 12的示例中, 转接腔 20具有圆形横截面, 五个连接孔 21中的一个位于转接腔 20的 圆心位置, 其余的四个连接孔 21中, 两个连接孔 21关于转接腔 20的圆心径向对称, 另外 两个连接孔 21关于转接腔 20的圆心径向对称, 且该四个连接孔 21沿周向均匀间隔分布。
在本发明的一个实施例中, 如图 5和图 13所示, 制冷剂分配装置 100还包括挡块 3, 挡块 3设有用于配合分配细管 10的盲孔 30, 挡块 3与转接块 2配合以固定分配结构 1, 并 封堵分配结构 1的出口。盲孔 30的个数和分配情况根据分配细管 10的实际布置具体设定。 优选地, 挡块 3形成为圆柱状。 挡块 3可以用于与转接块 2协作以将制冷剂分配装置 100 安装到换热器的集流管内。
下面描述根据本发明实施例的换热器, 该换热器可应用在空调、 冰箱等制冷设备上。 根据本发明实施例的换热器, 包括: 第一集流管、 第二集流管、 换热管、 翅片和制冷 剂分配装置。 换热管的两端分别与第一集流管和第二集流管相连, 优选地, 换热管为扁管。 翅片设在相邻的换热管之间。 制冷剂分配装置可以为根据本发明上述实施例的制冷剂分配 装置 100, 制冷剂分配装置 100设在第一集流管和第二集流管中的至少一个内, 换言之, 制冷剂分配装置 100可以仅设在第一和第二集流管中的一个内, 也可以同时设在第一和第 二集流管内。
制冷剂分配装置 100的分配结构 1可根据第一集流管和 /或第二集流管、换热器的结构 及两相制冷剂的分布情况, 通过不同的组装方式, 灵活的调整制冷剂的流量和流速, 达到 制冷剂在各个换热管间均匀分配的目的。
优选地, 制冷剂分配装置 100上的分配孔 11的位置与换热管的端部位置相对应, 有利 于雾状流形式的制冷剂直接进入到换热管内,防止汽液两相制冷剂在流经分配孔 11后再次 出现汽液分离现象。 根据本发明实施例的换热器可以为平行流换热器, 更具体地, 为微通道换热器。
根据本发明实施例的换热器,通过制冷剂分配装置 100,可以避免制冷剂出现汽液分离 现象, 提高制冷剂分配的均匀性, 进而提高换热器的换热性能。
在本发明的描述中, 需要理解的是, 术语 "中心"、 "长度"、 "宽度"、 "厚度"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底" "内"、 "外"等指示的方 位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因 此不能理解为对本发明的限制。
此外, 术语 "第一"、 "第二"仅用于描述目的, 而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示 或者隐含地包括一个或者更多个该特征。在本发明的描述中, "多个"的含义是两个或两个 以上, 除非另有明确具体的限定。
在本发明中, 除非另有明确的规定和限定, 术语 "安装"、 "相连"、 "连接"、 "固定" 等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可 以是机械连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两个元件内部的 连通。 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本发明中的具 体含义。
在本发明中, 除非另有明确的规定和限定, 第一特征在第二特征之 "上" 或之 "下" 可以包括第一和第二特征直接接触, 也可以包括第一和第二特征不是直接接触而是通 过它们之间的另外的特征接触。 而且, 第一特征在第二特征 "之上"、 "上方"和 "上 面" 包括第一特征在第二特征正上方和斜上方, 或仅仅表示第一特征水平高度高于第 二特征。 第一特征在第二特征 "之下" 、 "下方" 和 "下面" 包括第一特征在第二特 征正下方和斜下方, 或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者 特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意性表述 不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在 任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱离本发明的原理和宗旨的情况 下在本发明的范围内可以对上述实施例进行变化、 修改、 替换和变型。

Claims

权利要求书
1、 一种制冷剂分配装置, 其特征在于, 包括:
分配结构, 所述分配结构由多个分配细管构成, 多个所述分配细管中的至少一个设有 分配孔, 多个所述分配细管中的至少两个分配细管彼此相交; 和
转接块, 所述转接块具有转接腔, 所述转接块与所述分配结构相连以便所述转接腔与 所述分配细管的内腔连通。
2、 根据权利要求 1所述的制冷剂分配装置, 其特征在于, 所述分配细管为毛细管。
3、 根据权利要求 1或 2所述的制冷剂分配装置, 其特征在于, 所述分配细管包括多个 直管和多个多通管。
4、 根据权利要求 3所述的制冷剂分配装置, 其特征在于, 多个所述直管和多个所述多 通管可拆卸地连接。
5、 根据权利要求 3所述的制冷剂分配装置, 其特征在于, 所述多通管包括三通管、 四 通管和六通管中的至少一种。
6、 根据权利要求 1-5中任一项所述的制冷剂分配装置, 其特征在于, 所述分配结构为 网状结构。
7、 根据权利要求 6所述的制冷剂分配装置 , 其特征在于, 所述分配结构为二维网状结 构。
8、 根据权利要求 7所述的制冷剂分配装置, 其特征在于, 所述二维网状结构包括多个 矩形单元。
9、 根据权利要求 6所述的制冷剂分配装置, 其特征在于, 所述分配结构为三维网状结 构。
10、 根据权利要求 9所述的制冷剂分配装置, 其特征在于, 所述三维网状结构由两个 相互正交的矩形二维网状结构构成。
11、 根据权利要求 1-10中任一项所述的制冷剂分配装置, 其特征在于, 所述转接块还 具有与所述转接腔连通且用于配合所述分配细管的连接孔。
12、 根据权利要求 1-11中任一项所述的制冷剂分配装置, 其特征在于, 还包括挡块, 所述挡块设有用于配合所述分配细管的盲孔。
13、 一种换热器, 其特征在于, 包括:
第一和第二集流管;
换热管, 所述换热管的两端分别与所述第一和第二集流管相连;
翅片, 所述翅片设在相邻的所述换热管之间; 和
制冷剂分配装置, 所述制冷剂分配装置设在所述第一和第二集流管中的至少一个内, 所述制冷剂分配装置为根据权利要求 1-12中任一项所述制冷剂分配装置。
PCT/CN2014/070737 2013-08-06 2014-01-16 制冷剂分配装置和具有它的换热器 WO2015018184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/910,036 US10139140B2 (en) 2013-08-06 2014-01-16 Refrigerant distribution device and heat exchanger having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310340612.0 2013-08-06
CN201310340612.0A CN103389005B (zh) 2013-08-06 2013-08-06 制冷剂分配装置和具有它的换热器

Publications (1)

Publication Number Publication Date
WO2015018184A1 true WO2015018184A1 (zh) 2015-02-12

Family

ID=49533354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070737 WO2015018184A1 (zh) 2013-08-06 2014-01-16 制冷剂分配装置和具有它的换热器

Country Status (3)

Country Link
US (1) US10139140B2 (zh)
CN (1) CN103389005B (zh)
WO (1) WO2015018184A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856862A (zh) * 2021-02-02 2021-05-28 哈尔滨商业大学 一种新型空调设备制冷用蒸发器制冷剂分配成膜机构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389005B (zh) 2013-08-06 2015-08-05 杭州三花微通道换热器有限公司 制冷剂分配装置和具有它的换热器
CN104034095B (zh) * 2014-06-23 2016-08-24 佛山市顺德区君胜电器实业有限公司 气液分离式蒸发器
CN105066501B (zh) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 多联机室外机和具有其的多联机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467450A (zh) * 2002-07-09 2004-01-14 三星电子株式会社 热交换器
EP1479992A2 (en) * 2003-05-20 2004-11-24 Calsonic Kansei Corporation Heat exchanger
CN101050899A (zh) * 2007-05-10 2007-10-10 上海交通大学 压缩制冷降膜式蒸发器的制冷剂分配器
CN101694361A (zh) * 2009-10-23 2010-04-14 广东美的电器股份有限公司 用于制冷系统的干式蒸发器的均液机构
CN103389005A (zh) * 2013-08-06 2013-11-13 杭州三花微通道换热器有限公司 制冷剂分配装置和具有它的换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038191A (en) * 1975-10-14 1977-07-26 Davis Harold R Manifold for ultra filtration machine
CN101660870B (zh) * 2009-09-16 2012-07-18 三花丹佛斯(杭州)微通道换热器有限公司 具有改进制冷剂分配性能的换热器
KR20110104667A (ko) * 2010-03-17 2011-09-23 엘지전자 주식회사 냉매 분배장치, 그 냉매 분배장치를 구비하는 증발기 및 냉동장치
CN102297547B (zh) * 2011-06-27 2013-04-10 三花控股集团有限公司 换热器
US9784505B2 (en) * 2012-05-15 2017-10-10 Lockheed Martin Corporation System, apparatus, and method for micro-capillary heat exchanger
CN102767922B (zh) * 2012-08-10 2015-06-03 天津三电汽车空调有限公司 用于微通道换热器的分配管及微通道换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1467450A (zh) * 2002-07-09 2004-01-14 三星电子株式会社 热交换器
EP1479992A2 (en) * 2003-05-20 2004-11-24 Calsonic Kansei Corporation Heat exchanger
CN101050899A (zh) * 2007-05-10 2007-10-10 上海交通大学 压缩制冷降膜式蒸发器的制冷剂分配器
CN101694361A (zh) * 2009-10-23 2010-04-14 广东美的电器股份有限公司 用于制冷系统的干式蒸发器的均液机构
CN103389005A (zh) * 2013-08-06 2013-11-13 杭州三花微通道换热器有限公司 制冷剂分配装置和具有它的换热器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856862A (zh) * 2021-02-02 2021-05-28 哈尔滨商业大学 一种新型空调设备制冷用蒸发器制冷剂分配成膜机构
CN112856862B (zh) * 2021-02-02 2022-04-29 哈尔滨商业大学 一种空调设备制冷用蒸发器制冷剂分配成膜机构

Also Published As

Publication number Publication date
US10139140B2 (en) 2018-11-27
CN103389005A (zh) 2013-11-13
CN103389005B (zh) 2015-08-05
US20160195315A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
WO2015180661A1 (zh) 换热器
US8171987B2 (en) Minichannel heat exchanger header insert for distribution
CN201876184U (zh) 集流管及具有该集流管的换热器
EP2784428B1 (en) Heat exchanger
CN101782298B (zh) 一种热交换器
CN101782297B (zh) 一种热交换器
US10168083B2 (en) Refrigeration system and heat exchanger thereof
WO2015027681A1 (zh) 制冷剂分配部件、集流管组件和换热器
WO2014032488A1 (zh) 一种微通道热交换器
CN102384692A (zh) 集流管及具有该集流管的换热器
CN203810795U (zh) 换热器和换热装置
JP2013137193A5 (zh)
WO2011160501A1 (zh) 换热器
WO2012034436A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
CN103913019A (zh) 一种用于制冷系统的高性能微通道换热器
WO2015018184A1 (zh) 制冷剂分配装置和具有它的换热器
CN101639304A (zh) 一种换热器及包括该换热器的热交换装置
WO2016121123A1 (ja) 冷凍サイクル装置
JP3761833B2 (ja) 熱交換器
JPH04295599A (ja) 熱交換器
CN103644688B (zh) 对流式制冷剂分配装置和具有它的换热器
CN112128858A (zh) 换热器及空调器
CN105299966B (zh) 微通道换热器及空调
CN104344607B (zh) 一种换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835169

Country of ref document: EP

Kind code of ref document: A1