WO2012092737A1 - 制冷剂分配装置和具有它的换热器 - Google Patents

制冷剂分配装置和具有它的换热器 Download PDF

Info

Publication number
WO2012092737A1
WO2012092737A1 PCT/CN2011/073847 CN2011073847W WO2012092737A1 WO 2012092737 A1 WO2012092737 A1 WO 2012092737A1 CN 2011073847 W CN2011073847 W CN 2011073847W WO 2012092737 A1 WO2012092737 A1 WO 2012092737A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase refrigerant
distribution
refrigerant
distribution pipe
inlet
Prior art date
Application number
PCT/CN2011/073847
Other languages
English (en)
French (fr)
Inventor
刘华钊
黄宁杰
Original Assignee
三花丹佛斯(杭州)微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三花丹佛斯(杭州)微通道换热器有限公司 filed Critical 三花丹佛斯(杭州)微通道换热器有限公司
Publication of WO2012092737A1 publication Critical patent/WO2012092737A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes

Definitions

  • the present invention relates to a refrigerant distribution device and a heat exchanger having the same. Background technique
  • a refrigerant distribution device is usually provided in the inlet header of the heat exchanger.
  • a refrigerant distribution apparatus in which a small diameter conduit is provided in an inlet passage, wherein an inlet end of a small diameter conduit is inserted into a liquid phase fluid below a refrigerant gas-liquid interface in an inlet passage. Inside, the outlet end is located outside the inlet passage.
  • the inlet end of the small diameter conduit projects into the liquid phase fluid in the inlet passage, and therefore, the refrigerant in the inlet passage is led out through the small outlet conduit at the same outlet end.
  • the specific gravity difference between the gas phase and the liquid phase fluid is large, the fluid extracted by the small diameter conduit is poorly mixed in the collector of the heat exchanger and is prone to delamination, thereby causing the flow from the header to the heat exchange tube.
  • the gas-liquid two-phase fluid is not uniform, and the heat exchange efficiency is lowered.
  • Chinese patent application CN 101076698 A describes a refrigerant distribution device comprising a liquid nozzle 36 and a gas nozzle 34, and the outlet of the gas nozzle 34 faces the outlet of the liquid nozzle 36.
  • the gaseous refrigerant ejected from the gas nozzle 34 and the liquid refrigerant ejected from the liquid nozzle 36 are directly opposed, and the mixing effect is not good because the density of the gaseous refrigerant is much smaller than the density of the liquid refrigerant, and the momentum difference Very large, the gaseous refrigerant can not disperse the liquid refrigerant well, so the mixing effect is not good, and the refrigerant is still easy to generate delamination in the collector of the heat exchanger, which affects the heat exchange efficiency. Summary of the invention
  • the present invention aims to solve at least one of the above technical problems. Accordingly, it is an object of the present invention to provide a refrigerant distribution device that ejects a gas phase refrigerant downward and ejects a liquid phase refrigerant upward, thereby a gas phase refrigerant and a liquid phase refrigerant.
  • the mixing effect is improved, which reduces the occurrence of stratification.
  • Another object of the present invention is to provide a heat exchanger having the above refrigerant distribution device.
  • a refrigerant distribution device includes: a duct having a lumen divided into an upper chamber portion and a lower chamber portion; and a first distribution tube having a gas phase cooling a refrigerant inlet and a gas phase refrigerant outlet and defining a first end inserted into the conduit and a second end extending outside the conduit, wherein the gas phase refrigerant inlet is located in the upper chamber, the gas phase refrigeration a reagent outlet located outside the conduit with the opening facing downward; and a second distribution tube having a liquid phase refrigerant inlet and a liquid phase refrigerant outlet and defining a first end inserted into the conduit and A second end extending outside the conduit, wherein the liquid-phase refrigerant inlet is located within the lower chamber, the liquid-phase refrigerant outlet being located outside of the conduit with the opening facing upward.
  • the gas phase refrigerant and the liquid phase refrigerant are substantially opposite in direction from the conduit, and the gas phase refrigerant is ejected downward and the liquid phase refrigerant is ejected upward, and then, the gas phase refrigerant and the liquid The phase refrigerant is then folded back and collided with a header such as a heat exchanger to be mixed with each other. Therefore, the mixing of the gas phase refrigerant and the liquid phase refrigerant is more uniform, the stratification phenomenon is reduced, and the heat exchange effect of the heat exchanger is improved.
  • the refrigerant distribution device may further have the following additional technical features: the first end and the second end of the first distribution pipe are open, and the gas phase refrigerant inlet and the gas phase refrigerant outlet are respectively The first end and the second end of the first distribution pipe are open, the first end and the second end of the second distribution pipe are open, and the liquid-phase refrigerant inlet and the liquid-phase refrigerant outlet are respectively The first end and the second end of the second distribution tube are formed.
  • a first end of the first dispensing tube is adjacent an inner top of the conduit and a first end of the second dispensing tube is adjacent an inner bottom of the conduit.
  • the first distribution pipe is provided with a plurality of first openings adjacent to the first end thereof, the plurality of first openings are distributed along the axial direction of the first distribution pipe, and the gas-phase refrigerant inlet is a first opening
  • the second distribution tube is provided with a plurality of second openings adjacent to the first end thereof, and the plurality of second openings are distributed along the axial direction of the second distribution tube
  • the refrigerant inlet is composed of the plurality of second openings.
  • the second end of the first distribution pipe and the second end of the second distribution pipe are open, the gas phase refrigerant outlet is constituted by the second end of the first distribution pipe, and the liquid phase refrigerant outlet is constituted by the second distribution pipe The second end of the composition.
  • a plurality of third openings are disposed on an end surface of the second end of the first distribution pipe, and a plurality of fourth openings are disposed on an end surface of the second end of the second distribution pipe, and the gas-phase refrigerant outlet is
  • the third opening is configured and the liquid-phase refrigerant outlet is constituted by the plurality of fourth openings.
  • the first end of the first distribution tube is connected to the first end of the second distribution tube.
  • the first distribution tube and the second distribution tube are composed of a single # ⁇ tube.
  • the second end of the first dispensing tube and the second end of the second dispensing tube are helically coiled about the catheter by a predetermined number of turns, respectively.
  • a heat exchanger including: an inlet header; an outlet header; a heat exchange tube, two ends of the heat exchange tube and the inlet header and the outlet, respectively a collecting pipe connected to communicate the inlet header and an outlet header; fins, the fins being respectively disposed between adjacent heat exchange tubes; and a refrigerant distributing device, wherein the refrigerant distributing device is A refrigerant distribution device according to an embodiment of the present invention, wherein a conduit of the refrigerant distribution device is at least partially inserted into the inlet header, and a second end of the first distribution tube is located at the inlet a collector tube for injecting a gas phase refrigerant in the upper chamber portion into the inlet header and a second end of the second distribution tube in the inlet header to discharge a liquid phase in the lower chamber The refrigerant is injected
  • an angle ⁇ between an axial direction and an up-and-down direction of the heat exchange tube is in a range of 0 degrees ⁇ ⁇ ⁇ 90 degrees, and a second end of the second distribution tube faces the heat exchange tube One end connected to the inlet header.
  • the gas phase refrigerant and the liquid phase refrigerant are uniformly mixed, and the heat exchange efficiency is high.
  • Figure 1 is a schematic view of a refrigerant distribution device according to a first embodiment of the present invention
  • Figure 2 is a schematic illustration of a refrigerant distribution device in accordance with a second embodiment of the present invention.
  • Figure 3 is a schematic view of a refrigerant distribution device according to a third embodiment of the present invention.
  • Figure 4 is a schematic view of a refrigerant distribution device according to a fourth embodiment of the present invention.
  • Figure 5 is a schematic view of a refrigerant distribution device according to a fifth embodiment of the present invention.
  • Figure 6 is a schematic view of a refrigerant distribution device according to a sixth embodiment of the present invention.
  • Figure ⁇ is a schematic view of a heat exchanger according to an embodiment of the present invention.
  • Figure 8 is an axial schematic view of the inlet header of the heat exchanger shown in Figure 7;
  • Figure 9 is another axial schematic view of the inlet header of the heat exchanger shown in Figure 7. detailed description
  • first and “second” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • installation should be understood broadly. For example, it may be internal communication between two components, which may be direct They may be connected indirectly through an intermediate medium.
  • specific meanings of the above terms may be understood on a case-by-case basis.
  • a refrigerant distribution device includes a duct 5, a first distribution pipe 6a, and a second distribution pipe 6b.
  • the lumen of the catheter 5 is divided into an upper cavity portion A and a lower cavity portion B.
  • the upper chamber portion A and the lower chamber portion B are divided by the interface L of the gas phase refrigerant and the liquid phase refrigerant in the duct 5. Therefore, depending on the change in the amount of the gas phase refrigerant and the liquid phase refrigerant in the conduit 5, the interface L also changes, so that the sizes of the upper chamber portion A and the lower chamber portion B also change.
  • the first distribution pipe 6a has a gas phase refrigerant inlet and a gas phase refrigerant outlet and defines a first end 6a1 (upper end in Fig. 1) inserted into the duct 5 and a second end 6a2 extending outside the duct 5 (Fig. 1 The lower end of the middle), wherein the gas-phase refrigerant inlet is located in the upper chamber portion A, and the gas-phase refrigerant outlet is located outside the conduit 5 with the opening facing downward.
  • the second distribution pipe 6b has a liquid phase refrigerant inlet and a liquid phase refrigerant outlet and defines a first end 6b1 (lower end in FIG. 1) inserted into the duct 5 and a second end 6b2 extending outside the duct 5 (Fig. The upper end of 1), wherein the liquid-phase refrigerant inlet is located in the lower chamber portion B, and the liquid-phase refrigerant outlet is located outside the conduit 5 with the opening facing upward.
  • the first distribution pipe 6a sprays the gas-phase refrigerant in the upper chamber portion A in the conduit 5 downwardly out of the conduit 5 with The inner bottom wall of the header collides and is broken up by the four sides and then reversed upward toward the inner top of the header.
  • the second distribution pipe 6b ejects the liquid-phase refrigerant in the lower chamber portion B in the duct 5 upward from the duct 5 to collide with the inner top wall of the header, is broken up on all sides, and is directed downward toward the current collecting.
  • the inner bottom of the tube is flushed, thereby being sufficiently mixed with the gas phase refrigerant flushed to the top of the header, so that the mixing of the gas phase refrigerant and the liquid phase refrigerant is more uniform, the stratification phenomenon is lowered, and the heat exchange of the heat exchanger is improved. effect.
  • the first end 6a l and the second end 6a 2 of the first distribution pipe 6a are open, and the gas-phase refrigerant inlet and the gas-phase refrigerant outlet are respectively separated by a first point.
  • the first end 6a l and the second end 6a2 of the pipe 6a are open.
  • the first end 6b1 and the second end 6b2 of the second distribution pipe 6b are open, so that the liquid-phase refrigerant inlet and the liquid-phase refrigerant outlet are respectively provided by the first end 6b1 and the second end of the second distribution pipe 6b. 6b2 constitutes.
  • the upper chamber portion A and the lower chamber portion B of the duct 5 are divided by the interface L of the gas phase refrigerant and the liquid phase refrigerant in the duct 5, and therefore, no matter how the division interface L changes, for the sake of better
  • the first distribution pipe 6a can cause the gas phase refrigerant discharge conduit 5 and the second distribution pipe 6b to eject the liquid phase refrigerant conduit, as shown in Fig. 1, preferably, the first end of the first distribution pipe 6a 6al is adjacent to the inner top of the catheter 5, and the first end 6bl of the second dispensing tube 6b is adjacent to the inner bottom of the catheter 5.
  • the second end 6a 2 of the first distribution pipe 6a extends through the liquid phase refrigerant from the lower portion of the duct 5, and the second end of the second distribution pipe 6b 6b2 extends from the upper portion of the conduit 5 through the gas phase refrigerant.
  • the present invention is not limited to this and will be described below.
  • an opening of the gas-phase refrigerant outlet (the second end 6a2 of the first distribution pipe 6a in FIG. 1) faces directly below and the liquid-phase refrigerant outlet
  • the opening of the second end 6b2 of the second distribution pipe 6b in Fig. 1 faces directly upward.
  • the gas-phase refrigerant outlet may also be opened obliquely upward, and the liquid-phase refrigerant outlet may be inclined to open downward.
  • the first distribution pipe 6a has a plurality of first openings 6a 3 adjacent to the first end 6a l thereof, and the plurality of first openings 6a 3 Disposed along the axial direction of the first distribution pipe 6a, the gas-phase refrigerant inlet is constituted by a plurality of first openings 6a3.
  • the second distribution pipe 6b has a plurality of second openings 6b 3 adjacent to the first end 6b1 thereof, the plurality of second openings 6b 3 are axially distributed along the second distribution pipe 6b, and the liquid-phase refrigerant inlet is composed of a plurality of The second opening 6b 3 is formed.
  • the second end 6a2 of the first distribution pipe 6a and the second end 6b2 of the second distribution pipe 6b are open, the gas-phase refrigerant outlet is constituted by the second end 6a2 of the first distribution pipe 6a and the liquid-phase refrigerant outlet is The second end 6b2 of the second distribution pipe 6b is constructed.
  • first end 6a1 of the first dispensing tube 6a and the first end 6b1 of the second dispensing tube 6b may be closed or open.
  • the gas-phase refrigerant inlet is constituted by the plurality of first openings 6a 3 and the liquid-phase refrigerant inlet is constituted by the second opening 6b 3
  • the plurality of first openings 6a 3 are
  • the axial distribution of the first distribution pipe 6a may be linearly or spirally distributed, for example, along the axial direction of the first distribution pipe 6a
  • the plurality of second openings 6b 3 may be distributed along the axial direction of the second distribution pipe 6b, for example, It is distributed linearly or spirally along the axial direction of the second distribution pipe 6b.
  • a plurality of third openings may be formed on the end surface of the second end 6a 2 of the first dispensing tube 6a, and the second of the second dispensing tube 6b
  • a plurality of fourth openings may be formed on the end surface of the end 6b2, the plurality of third openings constituting the gas-phase refrigerant outlet, and the plurality of fourth openings constitute the liquid-phase refrigerant outlet.
  • the gas phase refrigerant outlet and the liquid phase refrigerant outlet are respectively formed through a plurality of openings, which can increase the jetting effect of the gas phase refrigerant and the liquid phase refrigerant, further improve the mixing effect, and reduce the delamination.
  • FIG. 3 the first end 6a1 of the first distribution pipe 6a and the first end 6b1 of the second distribution pipe 6b are in the up and down direction.
  • the gas-phase refrigerant inlet is constituted by the open first end 6a1 of the first distribution pipe 6a and adjacent to the inner top wall of the conduit 5, and the liquid-phase refrigerant outlet is opened by the first first end 6b of the second distribution pipe 6b
  • the inner bottom wall of the catheter 5 is constructed and adjacent.
  • the second end 6b2 of the second distribution pipe 6b is bent upward from the bottom of the duct 5
  • the second end 6a 2 of the first distribution pipe 6a is bent downward from the top of the duct 5 and extends downward, and the first point
  • the second end 6a2 of the pipe 6a and the second end 6b2 of the second distribution pipe 6b are respectively located on both sides of the duct 5.
  • the second end 6a2 of the first dispensing tube 6a extends from the upper portion of the conduit 5 and extends downwardly, while the second end 6b2 of the second dispensing tube 6b extends from the lower portion of the conduit 5. Extend backwards.
  • Fig. 4 shows a refrigerant distribution device in accordance with a fourth embodiment of the present invention.
  • the second end 6a2 of the first dispensing tube 6a and the second end 6b2 of the second dispensing tube 6b are located on the same side of the catheter 5, the other being the same as the embodiment shown in Fig. 3, and will not be described in detail herein.
  • a refrigerant distribution device according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the first end 6a1 of the first dispensing tube 6a and the first end 6b1 of the second dispensing tube 6b are connected, for example welded together.
  • the first distribution tube 6a and the second distribution tube 6b are made of a single tube.
  • the first distribution pipe 6a and the second distribution pipe 6b are one pipe, the portion extending upward from the inside of the pipe 5 is the first distribution pipe 6a, and the portion extending downward is the second distribution pipe 6b, it can be said that As the interface L in the conduit 5 changes, the first end 6a1 of the first dispensing tube 6a and the first end 6b1 of the second dispensing tube 6b are varied.
  • the one tube is formed with a plurality of openings in a portion of the duct 5 in the axial direction, and the opening is divided into two parts: the opening above the interface L is the first opening 6a 3 and the opening below the interface L It is a second opening 6b 3 in which the first opening 6a 3 serves as a gas phase refrigerant inlet and the second opening 6b 3 serves as a liquid phase refrigerant opening.
  • the first distribution tube 6a and the second distribution tube 6b are formed by a single tube, and a plurality of openings are formed in the axial direction on the portion of the root tube located inside the catheter 5, which facilitates the first
  • the manufacture of a distribution pipe 6a and a second distribution pipe 6b reduces the cost, and among the plurality of openings, the number of the first openings 6a 3 serving as the gas-phase refrigerant inlet and the second serving as the liquid-phase refrigerant inlet
  • the number of openings 6b 3 varies with the change of the interface L.
  • the number of gas-phase refrigerant inlets and the number of liquid-phase refrigerant inlets can vary with the gas-phase refrigerant amount and the liquid-phase refrigerant amount in the conduit 5. , thereby better distributing the gas phase refrigerant and the liquid phase refrigerant out of the conduit 5, and processing and installing the first distribution pipe 6a and the second distribution pipe 6b, regardless of the gas phase refrigerant inlet and the liquid phase refrigerant inlet At a specific location within the conduit 5, and ensuring that the gas phase refrigerant is dispensed from the first distribution tube 6a, the liquid phase refrigerant is dispensed from the second distribution tube 6b.
  • the second end 6a2 of the first dispensing tube 6a and the second end 6b2 of the second dispensing tube 6b are respectively located on both sides of the catheter 5.
  • the second end 6a2 of the first dispensing tube 6a and the second end 6b2 of the second dispensing tube 6b are located on the same side of the catheter 5.
  • the second end 6a2 of the first dispensing tube 6a and the second end 6b2 of the second dispensing tube 6b can be spirally wound around the catheter 5 by a predetermined number of turns, and the specific number of coils can be customized according to specific needs. And experimentally determined, thereby increasing the degree of stability of the first distribution pipe 6a and the second distribution pipe 6b, and prolonging the time during which the gas-phase refrigerant flows in the first distribution pipe 6a and the liquid-phase refrigerant in the second distribution pipe 6b The flow time inside can increase the injection effect of the refrigerant.
  • the heat exchanger according to the embodiment of the present invention comprises: an inlet header 1, an outlet header 2, a heat exchange tube 3, fins 4, and a refrigerant distribution device.
  • the heat exchange tube 3 is, for example, a flat tube, and both ends of the heat exchange tube 3 are connected to the inlet header 1 and the outlet header 2, respectively, to communicate the inlet header 1 and the outlet header 2.
  • the fins 4 are respectively disposed between adjacent heat exchange tubes 3.
  • the refrigerant distribution device is the refrigerant distribution device described with reference to the above embodiment, wherein the conduit 5 of the refrigerant distribution device is at least partially inserted into the inlet header 1, and the second end 6a2 of the first distribution pipe 6a is located at the inlet
  • the inside of the header 1 is for injecting the gas-phase refrigerant in the upper chamber A downward into the inlet header 1 and the second end 6b2 of the second distributor 6b is located in the inlet header 1 to lower the chamber B
  • the liquid phase refrigerant inside is injected upward into the inlet header 1.
  • the first distribution pipe 6a sprays the gas-phase refrigerant in the upper chamber portion A in the duct 5 downwardly from the duct 5 to collide with the inner bottom wall of the header, After being broken up on all sides, it is reversed upwards toward the inner top of the header.
  • the second distribution pipe 6b ejects the liquid-phase refrigerant in the lower chamber B in the duct 5 upwardly out of the duct 5 to collide with the inner top wall of the header, is broken up by the four sides, and is directed downward toward the current collecting.
  • the inner bottom of the tube is flushed, thereby being sufficiently mixed with the gas phase refrigerant flushed to the top of the header, so that the mixing of the gas phase refrigerant and the liquid phase refrigerant is more uniform, the stratification phenomenon is lowered, and the heat exchange of the heat exchanger is improved. effect.
  • the axial direction (longitudinal direction) of the heat exchange tube 3 coincides with the up and down direction, and the second end 6b 2 of the second distribution tube 6b opposes the heat exchange tube 3
  • One end of the inlet header 1 is connected to further improve the heat exchange effect.
  • the angle ⁇ between the axial direction and the up-and-down direction of the heat exchange tube 3 is in the range of 0 degrees ⁇ ⁇ ⁇ 90 degrees, and the second end 6b2 of the second distribution tube 6 b The end of the heat exchange tube 3 that is connected to the inlet header 1 is opposed.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

制冷剂分配装置和具有它的换热器 技术领域
本发明涉及一种制冷剂分配装置和具有该制冷剂分配装置的换热器。 背景技术
传统的换热器, 为了提高换热性能, 在换热器的入口集流管内通常设有制冷剂分配装 置。 例如, 中国专利申请 CN101031762A描述了一种制冷剂分配设备, 其中在进口通道内设 有小直径导管,其中小直径导管的进口端插入到进口通道内的制冷剂气-液界面下面的液相 流体内, 出口端位于进口通道外面。
气液两相流体在进口通道内流动时不可避免会产生气液分层, 气相在上方, 液相在上 方。 对于上述传统制冷剂分配设备, 小直径导管的进口端伸入进口通道内的液相流体内, 因此, 进口通道内的制冷剂通过小直径导管同一出口端引出。 但是, 由于气相和液相流体 的比重差异较大, 因此, 小直径导管引出的流体在换热器的集流管内混合效果差且容易产 生分层, 从而导致从集流管进入换热管的气液两相流体不均匀, 换热效率下降。
此外, 中国专利申请 CN 101076698 A描述了一种制冷剂分配装置, 该制冷剂分配装置包 括液体喷嘴 36和气体喷嘴 34 , 且气体喷嘴 34的出口对着液体喷嘴 36的出口。 但是, 从 气体喷嘴 34喷出的气态制冷剂和从液体喷嘴 36喷出的液态制冷剂直接对冲, 混合效果并 不好, 因为气态制冷剂的密度远远小于液态制冷剂的密度, 动量大小差距很大, 气态制冷 剂无法很好地将液态制冷剂打散, 因而混合效果不好, 制冷剂仍然容易在换热器的集流管 内产生分层, 影响了换热效率。 发明内容
本发明旨在至少解决上述技术问题之一。 为此, 本发明的一个目的在于提出一种制冷 剂分配装置, 该制冷剂分配装置将气相制冷剂向下喷出且将液相制冷剂向上喷出, 从而气 相制冷剂与液相制冷剂的混合效果提高, 降低了分层现象的发生。
本发明的另一目的在于提出一种具有上述制冷剂分配装置的换热器。
才艮据本发明一个方面的实施例的制冷剂分配装置包括: 导管, 所述导管的内腔分为上 腔部和下腔部; 和第一分配管, 所述第一分配管具有气相制冷剂进口和气相制冷剂出口且 限定有插入到所述导管内的第一端和延伸到所述导管外面的第二端, 其中所述气相制冷剂 进口位于所述上腔部内, 所述气相制冷剂出口位于所述导管外面且开口朝向下; 和第二分 配管, 所述第二分配管具有液相制冷剂进口和液相制冷剂出口且限定有插入到所述导管内 的第一端和延伸到所述导管外面的第二端, 其中所述液相制冷剂进口位于所述下腔部内, 所述液相制冷剂出口位于所述导管外面且开口朝向上。 根据本发明实施例的制冷剂分配装置, 气相制冷剂和液相制冷剂从导管出来的方向大 体相反且气相制冷剂向下喷出而液相制冷剂向上喷出, 然后, 气相制冷剂和液相制冷剂再 与例如换热器的集流管喷撞后折返, 彼此混合。 因此, 气相制冷剂和液相制冷剂的混合更 加均匀, 降低分层现象, 提高了换热器的换热效果。
另外, 根据本发明上述实施例的制冷剂分配装置还可以具有如下附加的技术特征: 所述第一分配管的第一端和第二端敞开, 所述气相制冷剂进口和气相制冷剂出口分别 由所述第一分配管的第一端和第二端构成, 所述第二分配管的第一端和第二端敞开, 所述 液相制冷剂进口和液相制冷剂出口分别由所述第二分配管的第一端和第二端构成。
所述第一分配管的第一端邻近所述导管的内顶部且所述第二分配管的第一端邻近所述 导管的内底部。
所述第一分配管上设有邻近其第一端的多个第一开口, 所述多个第一开口沿所述第一 分配管的轴向分布, 所述气相制冷剂进口由所述多个第一开口构成, 所述第二分配管上设 有邻近其第一端的多个第二开口, 所述多个第二开口沿所述第二分配管的轴向分布, 所述 液相制冷剂进口由所述多个第二开口构成。
所述第一分配管的第二端和第二分配管的第二端敞开, 所述气相制冷剂出口由第一分 配管的第二端构成且所述液相制冷剂出口由第二分配管的第二端构成。
所述第一分配管的第二端的端面上设有多个第三开口, 且第二分配管的第二端的端面 上设有多个第四开口, 且所述气相制冷剂出口由所述多个第三开口构成且所述液相制冷剂 出口由所述多个第四开口构成。
所述第一分配管的第一端和第二分配管的第一端相连。
所述第一分配管和所述第二分配管由单 # ^管构成。
所述第一分配管的第二端和所述第二分配管的第二端分别绕所述导管螺旋盘绕预定圏 数。
所述气相制冷剂出口的开口朝向正下方且所述液相制冷剂出口的开口朝向正上方。 根据本发明另一方面的实施例提出一种换热器, 包括: 入口集流管; 出口集流管; 换 热管, 所述换热管的两端分别与所述入口集流管和出口集流管相连以连通所述入口集流管 和出口集流管; 翅片, 所述翅片分别设置在相邻的换热管之间; 和制冷剂分配装置, 所述 制冷剂分配装置为 据本发明一个方面的实施例所述的制冷剂分配装置, 其中所述制冷剂 分配装置的导管至少部分插入到所述入口集流管内, 所述第一分配管的第二端位于所述入 口集流管内以便将所述上腔部内的气相制冷剂向下喷射到所述入口集流管内且第二分配管 的第二端位于所述入口集流管内以便将所述下腔部内的液相制冷剂向上喷射到所述入口集 流管内。
具体地, 所述换热管的轴线方向与上下方向之间的夹角 α在 0度 < α <90度的范围内, 且所述第二分配管的第二端对着所述换热管的与所述入口集流管相连的一端。 根据本发明实施例的换热器, 气相制冷剂和液相制冷剂混合均匀, 换热效率高。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解, 其中:
图 1是根据本发明第一实施例的制冷剂分配装置的示意图;
图 2是根据本发明第二实施例的制冷剂分配装置的示意图;
图 3是根据本发明第三实施例的制冷剂分配装置的示意图;
图 4是根据本发明第四实施例的制冷剂分配装置的示意图;
图 5是根据本发明第五实施例的制冷剂分配装置的示意图;
图 6是根据本发明第六实施例的制冷剂分配装置的示意图;
图 Ί是根据本发明一个实施例的换热器的示意图;
图 8是图 7所示的换热器的入口集流管的一个轴向示意图; 和
图 9是图 7所示的换热器的入口集流管的另一个轴向示意图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语"纵向"、 "横向"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底" "内"、 "外"等指示的方位或位置关系为基于 附图所示的方位或位置关系, 仅是为了便于描述本发明和筒化描述, 而不是指示或暗示所 指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发 明的限制。
此外, 术语 "第一,,、 "第二,, 仅用于描述目的, 而不能理解为指示或暗示相对重要性。 在本发明的描述中, 除非另有规定和限定, 需要说明的是, 术语 "安装"、 "相连"、 "连 接" 应做广义理解, 例如, 可以是两个元件内部的连通, 可以是直接相连, 也可以通过中 间媒介间接相连, 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术语的具 体含义。
下面参考附图描述根据本发明实施例的制冷剂分配装置。
如图 1所示, 居本发明第一实施例的制冷剂分配装置包括导管 5、 第一分配管 6a和 第二分配管 6b。 导管 5的内腔分为上腔部 A和下腔部 B。需要理解的是,上腔部 A和下腔部 B是由导管 5 内的气相制冷剂和液相制冷剂的分界面 L划分的。 因此, 根据导管 5 内的气相制冷剂和 液相制冷剂的量的变化, 分界面 L也变化, 从而上腔部 A和下腔部 B的大小也变化。
第一分配管 6a具有气相制冷剂进口和气相制冷剂出口且限定有插入到导管 5内的第一 端 6a l (图 1中的上端)和延伸到导管 5外面的第二端 6a2 (图 1中的下端), 其中所述气 相制冷剂进口位于上腔部 A内, 所述气相制冷剂出口位于导管 5外面且开口朝向下。
第二分配管 6b具有液相制冷剂进口和液相制冷剂出口且限定有插入到导管 5内的第一 端 6bl (图 1中的下端)和延伸到导管 5外面的第二端 6b2 (图 1中的上端), 其中所述液 相制冷剂进口位于下腔部 B内, 所述液相制冷剂出口位于导管 5外面且开口朝向上。
当将根据本发明实施例的制冷剂分配装置放入换热器的集流管内时, 第一分配管 6a将 导管 5内的上腔部 A内的气相制冷剂向下喷出导管 5而与所述集流管的内底壁碰撞, 被四 面打散后反向向上朝向集流管的内顶部冲。 相反, 第二分配管 6b将导管 5内的下腔部 B内 的液相制冷剂向上喷出导管 5 而与集流管的内顶壁碰撞, 被四面打散之后反向向下朝向集 流管的内底部冲, 由此与向集流管内顶部冲的气相制冷剂充分混合, 因此, 气相制冷剂和 液相制冷剂的混合更加均匀, 降低分层现象, 提高了换热器的换热效果。
如图 1所示, 在本发明的一些实施例中, 第一分配管 6a的第一端 6a l和第二端 6a 2敞 开, 所述气相制冷剂进口和气相制冷剂出口分别由第一分配管 6a 的第一端 6a l 和第二端 6a2敞开构成。 同理, 第二分配管 6b的第一端 6bl和第二端 6b2敞开, 从而所述液相制冷 剂进口和液相制冷剂出口分别由第二分配管 6b的第一端 6bl和第二端 6b2构成。
如上所述, 导管 5的上腔部 A和下腔部 B是由导管 5内的气相制冷剂和液相制冷剂的 分界面 L划分的, 因此, 无论分分界面 L如何变化, 为了更好地使第一分配管 6a可以将气 相制冷剂喷出导管 5以及第二分配管 6b可以将液相制冷剂导管喷出,如图 1所示,优选地, 第一分配管 6a的第一端 6al接近导管 5的内顶部, 第二分配管 6b的第一端 6bl接近导管 5的内底部。
如图 1所示, 在本发明第一实施例中, 第一分配管 6a的第二端 6a 2穿过液相制冷剂从 导管 5的下部延伸出,而第二分配管 6b的第二端 6b2穿过气相制冷剂从导管 5的上部延伸 出。 需要说明的是, 本发明并不限于此, 下面将会描述。
如图 1所示, 在本发明的一些实施例中, 所述气相制冷剂出口 (图 1 中的第一分配管 6a的第二端 6a2 )的开口朝向正下方且所述液相制冷剂出口 (图 1中的第二分配管 6b的第 二端 6b2 ) 的开口朝向正上方。 需要理解的是, 所述气相制冷剂出口也可以倾斜地朝上开 口, 而所述液相制冷剂出口可以倾斜地朝向下开口。 换言之, 在图 1所示的示例中, 第一 分配管 6a的第二端 6a2朝向正下方, 第二分配管 6b的第二端 6b2朝向正上方, 可选地, 第一分配管 6a的第二端 6a2可以倾斜地朝向上方, 而第二分配管 6b的第二端 6b2可以倾 斜地朝向下方。 下面参考图 2描述根据本发明第二实施例的制冷剂分配装置。 如图 2所示, 根据本发 明第二实施例的制冷剂分配装置, 第一分配管 6a具有邻近其第一端 6a l 的多个第一开口 6a 3 , 所述多个第一开口 6a 3沿第一分配管 6a的轴向分布, 所述气相制冷剂进口由多个第 一开口 6a 3构成。 第二分配管 6b具有邻近其第一端 6bl的多个第二开口 6b 3 , 所述多个第 二开口 6b 3沿第二分配管 6b轴向分布, 所述液相制冷剂进口由多个第二开口 6b 3构成。
第一分配管 6a的第二端 6a2和第二分配管 6b的第二端 6b2敞开, 所述气相制冷剂出 口由第一分配管 6a的第二端 6a2构成且所述液相制冷剂出口由第二分配管 6b的第二端 6b2 构成。
在图 2所示的实施例中, 第一分配管 6a的第一端 6a l和第二分配管 6b的第一端 6bl 可以封闭, 也可以敞开。
根据本发明第二实施例的制冷剂分配装置, 由于气相制冷剂进口由多个第一开口 6a 3 构成, 而液相制冷剂进口由第二开口 6b 3构成, 多个第一开口 6a 3沿着第一分配管 6a的轴 向分布, 例如可以沿第一分配管 6a的轴向线性或螺旋状分布, 而多个第二开口 6b 3沿着第 二分配管 6b的轴向分布, 例如可以沿着第二分配管 6b的轴向线性或螺旋状分布。 由此, 即使导管 5内的分界面 L变化时,也可以很好地保证气相制冷剂通过第一分配管 6a喷出导 管 5以及液相制冷剂通过第二分配管 6b喷出导管,更好地适应了分界面 L在导管 5内的变 化。
可选地, 在本发明的一些实施例中, 第一分配管 6a的第二端 6a 2的端面上可以形成有 多个第三开口 (未示出), 且第二分配管 6b的第二端 6b2的端面上可以形成有多个第四开 口 (未示出), 所述多个第三开口构成所述气相制冷剂出口, 所述多个第四开口构成所述液 相制冷剂出口。 通过多个开口分别形成气相制冷剂出口和液相制冷剂出口, 可以增加气相 制冷剂和液相制冷剂的喷射效果, 进一步提高混合效果, 减小分层。
下面参考图 3描述才 居本发明第三实施例的制冷剂分配装置, 如图 3所示, 第一分配 管 6a的第一端 6a l和第二分配管 6b的第一端 6bl在上下方向上相对, 并且气相制冷剂进 口由第一分配管 6a的敞开的第一端 6a l构成并邻近导管 5的内顶壁,液相制冷剂出口由第 二分配管 6b的敞开的第一端 6bl构成并邻近导管 5的内底壁。 而且, 第二分配管 6b的第 二端 6b2从导管 5的底部弯折后向上延伸,第一分配管 6a的第二端 6a 2从导管 5的顶部弯 折后向下延伸, 并且第一分配管 6a的第二端 6a2和第二分配管 6b的第二端 6b2分别位于 导管 5的两侧。
在图 3所示的实施例中, 第一分配管 6a的第二端 6a2从导管 5的上部延伸出后向下延 伸, 而第二分配管 6b的第二端 6b2从导管 5的下部延伸出后向上延伸。
图 4示出了才 居本发明第四实施例的制冷剂分配装置。 如图 4所示, 第一分配管 6a的 第二端 6a2和第二分配管 6b的第二端 6b2位于导管 5同一侧,其他与图 3所示的实施例相 同, 这里不再详细描述。 下面参考图 5描述才 居本发明第五实施例的制冷剂分配装置。 如图 5所示, 第一分配 管 6a的第一端 6a l和第二分配管 6b的第一端 6bl相连, 例如焊接在一起。 优选地, 第一 分配管 6a和第二分配管 6b由单根管制成。 换言之, 第一分配管 6a和第二分配管 6b为一 根管, 从导管 5内向上延伸的部分为第一分配管 6a , 而向下延伸的部分为第二分配管 6b , 也可以说, 随着导管 5 内分界面 L的变化, 第一分配管 6a的第一端 6a l和第二分配管 6b 的第一端 6bl是变化的。 所述一根管在导管 5 内的部分上沿轴向形成有多个开口, 所述开 口分为两部分: 位于分界面 L以上的开口为第一开口 6a 3 , 位于分界面 L以下的开口为第 二开口 6b 3 , 其中第一开口 6a 3用作气相制冷剂进口, 第二开口 6b 3用作液相制冷剂开口。 根据本发明的此实施例, 通过用单根管制成第一分配管 6a和第二分配管 6b , 并且在该根 管位于导管 5内的部分上沿轴向形成多个开口, 方便了第一分配管 6a和第二分配管 6b的 制造, 降低了成本, 而且所述多个开口中, 用作气相制冷剂进口的第一开口 6a 3的数量与 用作液相制冷剂进口的第二开口 6b 3的数量随着分界面 L的变化而变化, 换言之, 气相制 冷剂进口的数量和液相制冷剂进口的数量能够随着导管 5 内的气相制冷剂量和液相制冷剂 量的变化而变化, 从而更好地将气相制冷剂和液相制冷剂分配出导管 5 , 并且第一分配管 6a和第二分配管 6b的加工和安装筒单, 无需考虑气相制冷剂进口和液相制冷剂进口在导 管 5内的具体位置, 并且确保了气相制冷剂从第一分配管 6a分配出, 液相制冷剂从第二分 配管 6b分配出。
在图 5所示的实施例中, 第一分配管 6a的第二端 6a2和第二分配管 6b的第二端 6b2 分别位于导管 5的两侧。 可选地, 如图 6所示, 在本发明的第六实施例中, 第一分配管 6a 的第二端 6a2和第二分配管 6b的第二端 6b2位于导管 5的同一侧。
在本发明的优选实施例中,第一分配管 6a的第二端 6a2和第二分配管 6b的第二端 6b2 可以分别绕导管 5螺旋盘绕预定圏数, 盘绕的具体圏数可以根据具体需要和实验确定, 由 此提高了第一分配管 6a和第二分配管 6b的稳固程度, 并且延长了气相制冷剂在第一分配 管 6a内流动的时间以及液相制冷剂在第二分配管 6b内的流动时间, 可以提高制冷剂的喷 射效果。
下面参考图 7-9描述根据本发明实施例的换热器。
如图 7所示, 居本发明实施例的换热器包括: 入口集流管 1 , 出口集流管 2 , 换热管 3 , 翅片 4 , 和制冷剂分配装置。
换热管 3例如为扁管, 换热管 3的两端分别与入口集流管 1和出口集流管 2相连以连 通入口集流管 1和出口集流管 2。 翅片 4分别设置在相邻的换热管 3之间。 制冷剂分配装 置为参考上面实施例的描述的制冷剂分配装置, 其中所述制冷剂分配装置的导管 5至少部 分插入到入口集流管 1内,第一分配管 6a的第二端 6a2位于入口集流管 1内以便将上腔部 A内的气相制冷剂向下喷射到入口集流管 1内且第二分配管 6b的第二端 6b2位于入口集流 管 1内以便将下腔部 B内的液相制冷剂向上喷射到入口集流管 1内。 才艮据本发明实施例的换热器, 第一分配管 6a将导管 5内的上腔部 A内的气相制冷剂向 下喷出导管 5 而与所述集流管的内底壁碰撞, 被四面打散后反向向上朝向集流管的内顶部 冲。 相反, 第二分配管 6b将导管 5内的下腔部 B内的液相制冷剂向上喷出导管 5而与集流 管的内顶壁碰撞, 被四面打散之后反向向下朝向集流管的内底部冲, 由此与向集流管内顶 部冲的气相制冷剂充分混合, 因此, 气相制冷剂和液相制冷剂的混合更加均匀, 降低分层 现象, 提高了换热器的换热效果。
如图 8所示, 在本发明的一些实施例中, 换热管 3的轴线方向 (长度方向) 与上下方 向一致, 第二分配管 6b的第二端 6b 2对着换热管 3的与入口集流管 1相连的一端, 以便进 一步提高换热效果。 可选地, 如图 9所示, 换热管 3的轴线方向与上下方向之间的夹角 α 在 0度 < α < 90度的范围内,且第二分配管 6 b的第二端 6b2对着换热管 3的与入口集流管 1 相连的一端。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者 特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意性表述 不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在 任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发 明的范围由权利要求及其等同物限定。

Claims

权 利 要 求 书
1、 一种制冷剂分配装置, 其特征在于, 包括:
导管, 所述导管的内腔分为上腔部和下腔部; 和
第一分配管, 所述第一分配管具有气相制冷剂进口和气相制冷剂出口且限定有插入到 所述导管内的第一端和延伸到所述导管外面的第二端, 其中所述气相制冷剂进口位于所述 上腔部内, 所述气相制冷剂出口位于所述导管外面且开口朝向下; 和
第二分配管, 所述第二分配管具有液相制冷剂进口和液相制冷剂出口且限定有插入到 所述导管内的第一端和延伸到所述导管外面的第二端, 其中所述液相制冷剂进口位于所述 下腔部内, 所述液相制冷剂出口位于所述导管外面且开口朝向上。
2、 根据权利要求 1所述的制冷剂分配装置, 其特征在于, 所述第一分配管的第一端和 第二端敞开, 所述气相制冷剂进口和气相制冷剂出口分别由所述第一分配管的第一端和第 二端构成, 所述第二分配管的第一端和第二端敞开, 所述液相制冷剂进口和液相制冷剂出 口分别由所述第二分配管的第一端和第二端构成。
3、 根据权利要求 2所述的制冷剂分配装置, 其特征在于, 所述第一分配管的第一端邻 近所述导管的内顶部且所述第二分配管的第一端邻近所述导管的内底部。
4、 根据权利要求 1所述的制冷剂分配装置, 其特征在于, 所述第一分配管上设有邻近 其第一端的多个第一开口, 所述多个第一开口沿所述第一分配管的轴向分布, 所述气相制 冷剂进口由所述多个第一开口构成,所述第二分配管上设有邻近其第一端的多个第二开口, 所述多个第二开口沿所述第二分配管的轴向分布, 所述液相制冷剂进口由所述多个第二开 口构成。
5、 根据权利要求 4所述的制冷剂分配装置, 其特征在于, 所述第一分配管的第二端和 第二分配管的第二端敞开, 所述气相制冷剂出口由第一分配管的第二端构成且所述液相制 冷剂出口由第二分配管的第二端构成。
6、 根据权利要求 4所述的制冷剂分配装置, 其特征在于, 所述第一分配管的第二端的 端面上设有多个第三开口, 且第二分配管的第二端的端面上设有多个第四开口, 且所述气 相制冷剂出口由所述多个第三开口构成且所述液相制冷剂出口由所述多个第四开口构成。
7、 根据权利要求 4所述的制冷剂分配装置, 其特征在于, 所述第一分配管的第一端和 第二分配管的第一端相连。
8、 根据权利要求 7所述的制冷剂分配装置, 其特征在于, 所述第一分配管和所述第二 分配管由单根管构成。
9、 根据权利要求 1-8中任一项所述的制冷剂分配装置, 其特征在于, 所述第一分配管 的第二端和所述第二分配管的第二端分别绕所述导管螺旋盘绕预定圏数。
10、 根据权利要求 1 所述的制冷剂分配装置, 其特征在于, 所述气相制冷剂出口的开 口朝向正下方且所述液相制冷剂出口的开口朝向正上方。
11、 一种换热器, 其特征在于, 包括:
入口集流管;
出口集流管;
换热管, 所述换热管的两端分别与所述入口集流管和出口集流管相连以连通所述入口 集流管和出口集流管;
翅片, 所述翅片分别设置在相邻的换热管之间; 和
制冷剂分配装置, 所述制冷剂分配装置为根据权利要求 1-10中任一项所述的制冷剂分 配装置, 其中所述制冷剂分配装置的导管至少部分插入到所述入口集流管内 , 所述第一分 配管的第二端位于所述入口集流管内以便将所述上腔部内的气相制冷剂向下喷射到所述入 口集流管内且第二分配管的第二端位于所述入口集流管内以便将所述下腔部内的液相制冷 剂向上喷射到所述入口集流管内。
12、 根据权利要求 11所述的换热器, 其特征在于, 所述换热管的轴线方向与上下方向 之间的夹角 α在 0度 < α <90度的范围内, 且所述第二分配管的第二端对着所述换热管的与 所述入口集流管相连的一端。
PCT/CN2011/073847 2011-01-06 2011-05-09 制冷剂分配装置和具有它的换热器 WO2012092737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110006634.4 2011-01-06
CN201110006634A CN102072684B (zh) 2011-01-06 2011-01-06 制冷剂分配装置和具有它的换热器

Publications (1)

Publication Number Publication Date
WO2012092737A1 true WO2012092737A1 (zh) 2012-07-12

Family

ID=44031324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073847 WO2012092737A1 (zh) 2011-01-06 2011-05-09 制冷剂分配装置和具有它的换热器

Country Status (2)

Country Link
CN (1) CN102072684B (zh)
WO (1) WO2012092737A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564204B (zh) * 2010-12-08 2016-04-06 杭州三花微通道换热器有限公司 制冷剂分配装置和具有它的换热器
FR3061281B1 (fr) * 2016-11-30 2019-07-12 Valeo Systemes Thermiques Boite collectrice d'un fluide refrigerant comprenant au moins un dispositif de positionnement angulaire d'un conduit
JP6887075B2 (ja) * 2018-03-19 2021-06-16 パナソニックIpマネジメント株式会社 熱交換器及びそれを用いた冷凍システム
CN110513927B (zh) * 2018-05-22 2021-09-28 浙江盾安热工科技有限公司 分液器
CN109813153A (zh) * 2019-02-18 2019-05-28 江苏科技大学 一种改善制冷剂供液分配的干式管壳式换热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448899A (en) * 1992-10-21 1995-09-12 Nippondenso Co., Ltd. Refrigerant evaporator
CN101031762A (zh) * 2004-10-01 2007-09-05 先进热力传输公司 制冷剂分配设备及方法
CN101076698A (zh) * 2004-10-01 2007-11-21 先进热力传输公司 冷却剂分配装置和方法
CN101548150A (zh) * 2006-10-13 2009-09-30 开利公司 用于改善换热器中的流体分配的方法和装置
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3006784C2 (de) * 1980-02-22 1982-11-18 Maile + Grammer Gmbh, 7407 Rottenburg Rohrverteiler für Heizungsanlagen und Verfahren zu dessen Herstellung
JPH04155194A (ja) * 1990-10-17 1992-05-28 Nippondenso Co Ltd 熱交換器
JPH10115404A (ja) * 1996-10-11 1998-05-06 Mitsubishi Heavy Ind Ltd 中間管寄せ
DE29822781U1 (de) * 1998-12-22 1999-02-18 Comfort-Sinusverteiler GmbH & Co. KG, 48493 Wettringen Einrichtung für eine Heizungsanlage, mit einer hydraulischen Weiche und mit einem Heizkreisverteiler
JP2007205630A (ja) * 2006-02-01 2007-08-16 Calsonic Kansei Corp 熱交換器用ヘッダタンク
CN101487669B (zh) * 2008-01-17 2012-08-22 开利公司 包括多管式分配器的热交换器
ES2613413T3 (es) * 2008-03-06 2017-05-24 Carrier Corporation Distribuidor de refrigeración para un intercambiador de calor
CN101782338A (zh) * 2009-01-21 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 热交换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448899A (en) * 1992-10-21 1995-09-12 Nippondenso Co., Ltd. Refrigerant evaporator
CN101031762A (zh) * 2004-10-01 2007-09-05 先进热力传输公司 制冷剂分配设备及方法
CN101076698A (zh) * 2004-10-01 2007-11-21 先进热力传输公司 冷却剂分配装置和方法
CN101548150A (zh) * 2006-10-13 2009-09-30 开利公司 用于改善换热器中的流体分配的方法和装置
CN101691981A (zh) * 2009-07-23 2010-04-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器

Also Published As

Publication number Publication date
CN102072684B (zh) 2012-10-17
CN102072684A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012034436A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
CN101788243B (zh) 用于热交换器的制冷剂分配器和热交换器
WO2012092737A1 (zh) 制冷剂分配装置和具有它的换热器
CN101548150B (zh) 用于改善换热器中的流体分配的方法和装置
JP6114995B2 (ja) 冷媒分配装置及び該冷媒分配装置を備えた熱交換器
CA2583609C (en) Apparatus and method for delivering water into a water heater
CN102859313B (zh) 换热器的贮水箱
US20070289559A1 (en) Heat exchanger, water heater and water tube
WO2014032488A1 (zh) 一种微通道热交换器
CN203810795U (zh) 换热器和换热装置
WO2015027681A1 (zh) 制冷剂分配部件、集流管组件和换热器
US20070227468A1 (en) Apparatus and method for introducing and drawing water in a water heater
WO2012034437A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
WO2012034438A1 (zh) 制冷剂导管和具有该制冷剂导管的换热器
CN102374799A (zh) 壳管式换热器
CN106123409A (zh) 制冷剂分配装置和平行流换热器
US8347826B2 (en) Heat exchanger, water heater and water tube
CN103604257A (zh) 一种分液器
WO2015018184A1 (zh) 制冷剂分配装置和具有它的换热器
CN209689424U (zh) 换热器扁管及具有其的换热器
CN103673403B (zh) 一种微通道热交换器
JP2008292059A (ja) 熱交換器および温水装置
CN102297547B (zh) 换热器
CN210119147U (zh) 换热器和具有其的制冷设备
WO2023241341A1 (zh) 分液器及换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855098

Country of ref document: EP

Kind code of ref document: A1