WO2012034267A1 - 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用 - Google Patents

硅芴金属卟啉-苯有机半导体材料及其制备方法和应用 Download PDF

Info

Publication number
WO2012034267A1
WO2012034267A1 PCT/CN2010/076847 CN2010076847W WO2012034267A1 WO 2012034267 A1 WO2012034267 A1 WO 2012034267A1 CN 2010076847 W CN2010076847 W CN 2010076847W WO 2012034267 A1 WO2012034267 A1 WO 2012034267A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzene
organic
porphyrin
semiconductor material
organic semiconductor
Prior art date
Application number
PCT/CN2010/076847
Other languages
English (en)
French (fr)
Inventor
周明杰
黄杰
刘贻锦
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201080068186.4A priority Critical patent/CN103025737B/zh
Priority to EP10857123.3A priority patent/EP2617725B1/en
Priority to US13/821,523 priority patent/US8841443B2/en
Priority to JP2013527442A priority patent/JP5538630B2/ja
Priority to PCT/CN2010/076847 priority patent/WO2012034267A1/zh
Publication of WO2012034267A1 publication Critical patent/WO2012034267A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/08Cadmium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2284Compounds with one or more Sn-N linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/144Side-chains containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Silicon germanium metal porphyrin-benzene organic semiconductor material and preparation method and application thereof
  • the present invention relates to an organic semiconductor material, and more particularly to a silicon germanium metal porphyrin-benzene organic semiconductor material.
  • the invention also relates to a method for preparing a silicon germanium metal porphyrin-benzene organic semiconductor material and an application thereof.
  • a porphyrin molecule is a general term for a class of macrocyclic compounds having a substituent attached to a porphin ring.
  • the porphin is a single-double bond bridged by four pyrrole rings and four methine groups. Domain ⁇ electron conjugate system.
  • Their charge transfer and energy transfer reactions have high quantum efficiency, good electron-buffering and photo-magnetism, good rigidity and good thermal stability and environmental stability. Therefore, porphyrin-based organic semiconductor materials are a promising material, and their applications in the photovoltaic field have been extensively studied. Almost all metals and some non-metallic elements in the periodic table can form complexes with porphyrins.
  • porphyrin is a large common rail system with 18 ⁇ electrons, the electron mobility in the ring is very good. Therefore, most metal porphyrin compounds have a good photoelectric shield.
  • organic semiconductor materials containing silicon germanium-containing metalloporphyrin-benzene have not been reported in the literature and patents, which greatly limits the application range of organic semiconductor materials. Accordingly, the present invention has developed an organic semiconductor material of silicon germanium metal porphyrin-benzene. This type of material adjusts the porphyrin aggregation by introducing a silicon germanium group onto the porphyrin structure and by the coordination of metal ions.
  • the band gap of the compound in order to obtain better stability and good film formation, broaden the absorption range of the visible light, extend its absorption range to the near-infrared region, improve its utilization of sunlight, and improve the current carrying capacity. Sub-mobility has expanded their range of applications in areas such as organic solar cells.
  • the silicon germanium metal porphyrin-benzene organic semiconductor material according to the present invention has the following structure (I):
  • n is an integer between 1 and 100
  • Ri, R 2 , R 3 are the same or different H, CrC 32 alkyl, phenyl, an alkane containing one or more identical or different dC Methyl or alkoxybenzene
  • M is a metal ion, which may be, but not limited to, Zn 2+ , Cu 2+ , Fe 2+ , Co 2 Cd 2 Pt 2+ , Zv 2 Mn 2+ , Ni 2+ , Pb 2+ Metal ions such as Sn 2+ .
  • the preparation method of the silicon germanium metal porphyrin-benzene organic semiconductor material designed by the invention is as follows:
  • Step S1 the oxidizing agent, and the first catalyst are present, the didipyrromethane having the structural formula is
  • the anthracene derivative is dissolved in the first organic solvent at a temperature of 20-100 ° C for 1-24 hours to obtain a structural formula of a silicon porphyrin derivative; wherein Ri, R 2 , R 3 are each an alkyl group of H, Ci-C, a phenyl group, an alkylbenzene or an alkoxybenzene containing one or more dC;
  • the formula is as follows:
  • Step S2 adding the silicon porphyrin derivative and the brominating agent obtained in the step SI to the second organic solvent at 0 to 120 ° C
  • Step S3 dissolving the dibromosilicon porphyrin derivative obtained in step S2 in a third organic solvent, and then adding M
  • Step S4 in the presence of the second catalyst and the fourth organic solvent in an anaerobic environment, the dibromosilicone metalloporphyrin derivative obtained in the step S3 and the formula 1,4-pair II (4, 4) , 5,5-tetramethyl-1,3,2-dioxaborolane) benzene molar ratio 1:2 ⁇ 2: 1 , Suzuki coupling reaction at 50-120 ° C for 12-72 hours, Get structural formula
  • the first catalyst is propionic acid, trifluoroacetic acid;
  • the oxidizing agent is dichlorodiaminophenyl hydrazine;
  • the first organic solvent is one or two of chloroform and dichloromethane;
  • the silicon porphyrin derivative and the brominating agent are used in a molar ratio of 1:2 to 1:5; the brominating agent is N-bromosuccinimide; and the second organic solvent is tetrahydrofuran. At least one of chloroform, dimethylamide or o-dichlorobenzene;
  • the molar ratio of the dibromosilicon porphyrin derivative to the M metal ion is 1:1 to 1:5; and the third organic solvent is at least one of chloroform, tetrahydrofuran, benzene, toluene or dichloromethane.
  • the M metal ion-containing solution the M metal ion is selected from the group consisting of Zn 2+ , Cu 2+ , Fe 2+ , Co 2+ , Cd 2+ , Pt 2+ , Zr 2+ , Mn 2+ , Ni One of 2+ , Pb 2+ or Sn 2+ , the solvent is at least one of methanol, ethanol or water;
  • the second catalyst is an organic palladium or a mixture of an organic palladium and an organophosphorus ligand
  • the organic palladium is Pd 2 (dba) 3 , Pd ( PPh 3 ) 4 , Pd ( OAc ) 2 or Pd ( PPh 3 ) 2 Cl 2 ;
  • the organic tablet ligand is P(o-Tol) 3 , tricyclohexylphosphine
  • the fourth organic solvent is at least one of tetrahydrofuran, dichloromethane, chloroform, dioxane, dimethylamide, ethylene glycol dimethyl ether, dimethyl sulfoxide, benzene, chlorobenzene or toluene;
  • step S4 the preparation of 1,4-p-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)benzene is further included, and the preparation steps are as follows:
  • the structural formula is Add p-dibromobenzene to the fifth organic solvent and cool to -78 °C with liquid nitrogen/isopropanol.
  • the above silicon germanium metal porphyrin-benzene organic semiconductor materials are used in the fields of polymer solar cells, organic electroluminescence, organic field effect transistors, organic optical storage, organic nonlinear devices and organic laser devices.
  • the present invention has the following advantages:
  • the silicon germanium unit contained in the molecule of the organic semiconductor material of the present invention has good thermal stability, high electron affinity and high electron injecting and transporting ability;
  • It also contains a porphyrin unit, a large-ring delocalized ⁇ -electron conjugated system with a planar structure, high quantum efficiency of charge transfer and energy transfer reactions, good electron-buffering and photoelectricity, and good rigidity. Flexibility and better thermal stability and environmental stability.
  • the organic semiconductor material of the present invention has both silicon germanium structural units and porphyrin units, and takes into account their performance advantages, and expands the absorption range of the organic semiconductor material for sunlight, and increases the solar radiation with solar radiation. Matching degree, thereby effectively expanding the application of the organic semiconductor material in polymer solar cells, organic electroluminescent devices, organic field effect transistors, organic optical memory devices or/and organic laser devices;
  • the preparation process of the organic semiconductor material is simple, easy to operate and control.
  • FIG. 2 is a schematic structural view of an organic electroluminescent device in which an organic semiconductor material in the present invention is used as a light-emitting layer.
  • the silicon germanium metal porphyrin-benzene organic semiconductor material according to the present invention has the following structure (I): (1);
  • n is an integer between 1 and 100
  • Ri, R 2 , R 3 are respectively the same or different H, CrC 32 alkyl, phenyl, one or more of the same or different dC Alkylbenzene or alkoxybenzene
  • M is a metal ion, which may be, but not limited to, Zn 2+ , Cu 2+ , Fe 2+ , Co 2 Cd 2 Pt 2+ , Zv 2 Mn 2+ , Ni 2+ , Pb 2 Metal ions such as + and Sn 2+ .
  • the preparation method of the silicon germanium metal porphyrin-benzene organic semiconductor material designed by the invention is as follows:
  • Step S1 the oxidant, and the first catalyst are present, and the structural formula (> is Dipyridyl methane,
  • R, R 2 , R 3 , R4 are each H, an alkyl group of Ci-C, a phenyl group, an alkylbenzene or an alkoxybenzene containing one or more dC;
  • the reaction formula is as follows:
  • Step S2 adding the silicon porphyrin derivative and the brominating agent obtained in the step S1 to the second organic solvent at 0 to 120 ° C
  • the reaction is carried out for 1 to 72 hours to obtain a dibromosilicon porphyrin derivative of the structural formula; the reaction formula is as follows;
  • Step S3 dissolving the dibromosilicon porphyrin derivative obtained in the step S2 in a third organic solvent, and then adding a solution containing the genus M ions, and stirring at 0-30 ° C for 0.5-24 hours to obtain a structural formula.
  • Step S4 in an anaerobic environment, in the presence of the second catalyst and the fourth organic solvent, the dibromosilicon ruthenium metal porphyrin derivative obtained in step S3 and the structural formula are 1,4-p-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) benzene molar ratio 1:2 ⁇ 2:1 at 50-120 °C Performing a Suzuki coupling reaction for 12-72 hours to obtain a structural formula
  • the first catalyst is propionic acid, trifluoroacetic acid;
  • the oxidizing agent is dichlorodiaminophenyl hydrazine;
  • the first organic solvent is one or two of chloroform and dichloromethane;
  • the silicon porphyrin derivative and the brominating agent are used in a molar ratio of 1:2 to 1:5; the brominating agent is N-bromosuccinimide; and the second organic solvent is tetrahydrofuran. At least one of chloroform, dimethylamide or o-dichlorobenzene;
  • the molar ratio of the dibromosilicon porphyrin derivative to the M metal ion is 1:1 to 1:5; and the third organic solvent is at least one of chloroform, tetrahydrofuran, benzene, toluene or dichloromethane.
  • the M metal ion-containing solution the M metal ion is selected from the group consisting of Zn 2+ , Cu 2+ , Fe 2+ , Co 2+ , Cd 2+ , Pt 2+ , Zr 2+ , Mn 2+ , Ni One of 2+ , Pb 2+ or Sn 2+ , the solvent is at least one of methanol, ethanol or water; In the step S4,
  • the second catalyst is an organic palladium or a mixture of an organic palladium and an organophosphorus ligand
  • the organic palladium is Pd 2 (dba) 3 , Pd ( PPh 3 ) 4 , Pd ( OAc ) 2 or Pd ( PPh 3 ) 2 Cl 2 ;
  • the organic tablet ligand is P(o-Tol) 3 , tricyclohexylphosphine
  • the fourth organic solvent is at least one of tetrahydrofuran, dichloromethane, chloroform, dioxane, dimethylamide, ethylene glycol dimethyl ether, dimethyl sulfoxide, benzene, chlorobenzene or toluene;
  • step S4 the preparation of 1,4-p-bis(4,4,5,5-tetramethyl-1,3,2-dioxaoxypentane)benzene is further included, and the preparation steps are as follows: Add p-dibromobenzene to the fifth organic solvent and cool to -78 °C with liquid nitrogen/isopropanol.
  • the oxygen-free environment of the present invention consists of nitrogen or an inert gas.
  • 2-bromo-9-substituted silicon germanium is prepared from 2-bromo silicon germanium, References: Macromolecules 2002, 35, 3474; 2-aldehyde-9 - Substituted silicon germanium is prepared from 2-bromo-9-substituted silicon germanium, References: Macromolecules 2006, 39, 456; Preparation of dipyrromethane, reference: Tetrahedron 1994, 39, 11427.
  • the anhydrous anaerobic device was set up, and the intermediate 2-aldehyde-9,9-dioctylsilane (0.44 g, lmmol) and dipyrromethane (0.15 g : Lmmol), dissolved in 250 ml of dichloromethane, nitrogen gas for 30 min, syringe was added with 1 ml of propionic acid, stirred at 20 ° C for 24 h, then dichlorodiaminophenylhydrazine (DDQ) (0.91 g, 4 mmol) was added and continued at room temperature.
  • DDQ dichlorodiaminophenylhydrazine
  • the mixed liquid droplets were added to 300 ml of methanol for sedimentation; suction filtration, methanol washing, drying; then dissolved in toluene, added to an aqueous solution of sodium diethyldithiocarbamate, and then the mixture was heated to Stirring at 80 V overnight; the organic phase was subjected to column chromatography on alumina, chlorobenzene was rinsed; organic solvent was removed under reduced pressure, methanol was precipitated, suction filtered, and the obtained solid was extracted with an acetone Soxhlet extractor for three days; methanol was precipitated, suction filtration .
  • Example 1 For details of the preparation, see Example 1, except that argon is used as the shielding gas in an oxygen-free environment.
  • the anhydrous oxygen-free device was set up, and the intermediate 2-aldehyde-9-methyl-9-hexadecylsilane (0.45 g, lmmol), 2-aldehyde-9-tributylsilyl ruthenium (weighed) was weighed.
  • the intermediate 5, 15-dibromo-10-(9'-methyl-9'-hexadecyl)silyl-20-(9'-tridodecyl)silazane was weighed out.
  • the porphyrin (0.31 g, 0.2 mmol) was dissolved in 50 ml of dichloromethane, and a solution of ferrous chloride (0.12 g, 1 mmol) in methanol (5 ml) was added and stirred at room temperature for 8 h. / petroleum ether (1/1) was rinsed on a silica gel column, and the solvent was collected and purified to give the product in a yield of 95%.
  • Tetraethylhydrazine hydroxide (Et 4 NOH, the same below) solution heated to 120 ° C for 24 h to obtain a mixture of silicon bismuth iron porphyrin-benzene organic semiconductor material reactant.
  • n 28;
  • n 100
  • the anhydrous oxygen-free device was set up, and the intermediate 2-aldehyde-9-p-icosylbenzene-9-(3',5'-didododecyloxybenzene) silicon germanium (1.02 g, lmmol) was weighed.
  • the solvent was concentrated, filtered, and the filtrate was collected and evaporated to a solvent.
  • the solvent was eluted with methylene chloride on a silica gel column, and the solvent was recrystallized from diethyl ether/methanol to yield about 83%.
  • n 40;
  • the anhydrous anaerobic device was set up, and the intermediate 2-aldehyde-9-(3',4',5'-tridecyloxy)benzene-9-p-hexadecylphenylphosphonium (1.06 g, Lmmol), 2-aldehyde-9-(3'-dodecyl-5'-eicosyloxy)-9-(3'-tridodecyl-4'-tridodecyloxy) Benzosilane (1.74g, lmmol), dipyrromethane (0.30g, 2mmol), dissolved in 250ml of dichloromethane, nitrogen gas for 30min, syringe 2ml of propionic acid, stirred at 100 ° C for 1h, then added dichloro Diaminophenylhydrazine (DDQ) (1.82 g, 8 mmol), stirring at room temperature for 30 min, then quenching with 2 ml of pyridine, concentrating solvent,
  • n 10;
  • the anhydrous oxygen-free device was set up, and the intermediate 2-aldehyde-9-hexadecyl-9-(3'-methyl-4'-tridodecyloxy)phenyl sulfonium (0.99 g, lmmol) was weighed.
  • n is an integer between 1 and 100, Ri, R 2 , R 3 , is 11, an alkyl group of dC 32 , a phenyl group, an alkylbenzene or alkoxybenzene containing one or more dC 32 ; M is a metal ion) silicon germanium metal porphyrin-benzene organic semiconductor material used in the fields of polymer solar cells, organic electroluminescence, organic field effect transistors, organic optical storage, organic nonlinear devices and organic laser devices.
  • the following examples are applications of silicon germanium metal porphyrin-benzene organic semiconductor materials in organic solar cells, organic field effect transistors, and organic electroluminescent devices.
  • An organic solar cell device using the silicon germanium metal porphyrin-benzene organic semiconductor material as the active layer material in the embodiment 1 is an organic solar cell device, and its structure is as shown in FIG. Among them, the substrate in the present embodiment is made of ITO glass, glass is used as a substrate substrate, and ITO is used as a conductive layer.
  • the structure of the organic solar cell device is: glass 11 / ITO layer 12 / PEDOT: PSS layer 13 / active layer 14 / A1 layer 15; wherein, the active layer of the material shield is a mixture, including the electron donor material, PCBM is electronically affected
  • the electron donor material is shielded by the silicon germanium metal porphyrin-benzene organic semiconductor material in the first embodiment, and the electron acceptor material is [6,6]phenyl-C 61 -butyric acid methyl ester.
  • PCBM PCBM
  • ITO is indium tin oxide with a sheet resistance of 10-20 ⁇ / ⁇
  • PEDOT is poly(3,4-ethylenedioxythiophene)
  • PSS is poly(phenylethenesulfonic acid); 18 ⁇ /port ITO.
  • the preparation process of the organic solar cell device is: Depositing an indium tin oxide (ITO) layer 12 having a sheet resistance of 10-20 ⁇ / ⁇ on one surface of the glass substrate 11 to form a conductive layer as an anode having a thickness of about 50-300 nm;
  • ITO indium tin oxide
  • a modified PEDOT:PSS layer 13 is applied on the surface of the ITO, and the thickness is 20-300 nm;
  • PSS is a poly(phenethyl sulfonate) layer
  • an active layer 14 is applied by spin coating to a thickness of 50-300 nm.
  • the material shield is a mixture of the silicon germanium metal porphyrin-benzene organic semiconductor material and the [6,6]phenyl-C 61 -butyric acid methyl ester (PCBM) in Example 1.
  • Metal aluminum is vacuum-deposited on the surface of the active layer to form a metal aluminum layer 15 as a cathode to obtain an organic solar cell device;
  • the organic solar cell device was encapsulated with epoxy resin, and annealed at 110 ° C for 1.5 hours under a sealed condition, and then lowered to room temperature. Since the chemical structure of the material is more regular and ordered after annealing, the carrier transmission speed and efficiency are improved, thereby improving the photoelectric conversion efficiency of the device.
  • the thickness of the ITO, PEDOT:PSS layer, active layer, and A1 layer are 150 nm, 50 nm, 120 nm, and 100 nm, respectively.
  • An organic electroluminescent device having a structure as shown in Fig. 2; in the embodiment, the substrate is made of ITO glass, glass is used as a substrate substrate, and ITO is used as a conductive layer.
  • the structure of the organic electroluminescent device is: glass 21 / ITO layer 22 / light-emitting layer 23 / LiF buffer layer 24 / A1 layer 25; wherein: the light-emitting layer is the silicon germanium metal porphyrin-benzene organic semiconductor in the first embodiment
  • the material is a shield.
  • the preparation process of the organic electroluminescent device is:
  • ITO layer 22 having a sheet resistance of 10-20 ⁇ / ⁇ is deposited on one surface of the glass substrate 21 to form a conductive layer as an anode having a thickness of 50-300 nm; preferably a sheet resistance of 10 ⁇ . / mouth of ITO.
  • the luminescent layer 23 having the thickness of the silicon germanium metal porphyrin-benzene organic semiconductor material in the first embodiment is prepared by a spin coating technique on the surface of the ITO, and has a thickness of about 50-300 nm;
  • Metal aluminum is vacuum-deposited on the light-emitting layer to form a metal aluminum layer 25 as a cathode to obtain the organic electroluminescent device.
  • Example 9 Metal aluminum is vacuum-deposited on the light-emitting layer to form a metal aluminum layer 25 as a cathode to obtain the organic electroluminescent device.
  • An organic field effect transistor having a structure as shown in Fig. 3; the substrate of the present embodiment is doped with a doped silicon wafer (Si) as a substrate.
  • the structure of the organic field effect transistor is: Si 31/450 nm thick SiO 2 insulating layer 32 / octadecyltrichlorosilane ( OTS ) layer 33 / organic semiconductor layer 34 for modifying SiO 2 / source of gold shield An electrode (S) 35 and a drain electrode (D) 36; wherein, the organic semiconductor layer is shielded by the silicon germanium metal porphyrin-benzene organic semiconductor material of the first embodiment; wherein the source electrode (S) and the drain electrode (D)
  • the material shield can also be made of copper.
  • a surface of the doped silicon wafer 31 after cleaning is coated with a 450 nm thick SiO 2 insulating layer 32.
  • a modified octadecyl layer is coated on the SiO 2 insulating layer.
  • a trichlorosilane layer 33 having a thickness of 10 to 200 nm; next, a layer of spin coating on the octadecyltrichlorosilane layer is used as the shield of the silicon germanium metal porphyrin-benzene organic semiconductor material of Example 1.
  • the organic semiconductor layer 34 has a thickness of about 30-300 nm.
  • a source electrode (S) 35 and a drain electrode (D) 36 are provided on the organic semiconductor layer with gold but not limited to a gold shield. There are airport effect transistors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

硅芴金属卟啉 -苯有机半导体材料及其制备方法和应用
技术领域
本发明涉及一种有机半导体材料, 更具体的涉及一种硅芴金属卟啉-苯有机半导体材料。 本发明还涉及硅芴金属卟啉-苯有机半导体材料的制备方法及其应用。
背景技术
利用廉价材料制备低成本、 高效能的太阳能电池一直是光伏领域的研究热点和难点。 目 前用于地面的硅晶电池由于生产工艺复杂、 成本高, 使其应用受到限制。 为了降低电池成本, 拓展应用范围, 长期以来人们一直在寻找新型的太阳能电池材料。 有机半导体材料以其原料 易得、 廉价、 制备工艺筒单、 环境稳定性好、 有良好的光伏效应等优点备受关注。 自 1992年 N. S. Sariciftci等在 SCIENCE( N. S Sariciftci, L. Smilowitz, A. J. Heeger, et al. Science, 1992, 258, 1474 )上报道共轭聚合物与 C6。之间的光诱导电子转移现象后, 人们在聚合物太阳能电池方面 投入了大量研究, 并取得了飞速的发展, 但是仍比无机太阳能电池的转换效率低得多。 限制 性能提高的主要制约因素有: 有机半导体材料的光语响应与太阳辐射光语不匹配, 有机半导 体相对较低的载流子迁移率以及较低的载流子的电极收集效率等。 为了使聚合物太阳能电池 得到实际的应用, 开发新型的材料, 大幅度提高其能量转换效率仍是这一研究领域的首要任 务。
卟啉分子是在卟吩环上连有取代基的一类大环化合物的总称, 卟吩是由四个吡咯环和四 个次甲基桥联起来的单双键交替的平面结构大环离域 π电子共轭体系。 它们电荷转移和能量 转移反应的量子效率较高, 具有良好的电子緩冲性和光电磁性, 良好的刚柔性和较好热稳定 性和环境稳定性。 因此, 卟啉类有机半导体材料是一类很有前途的材料, 其在光伏领域的应 用已得到广泛研究。 元素周期表中几乎所有的金属和一些非金属元素都可以与卟啉作用形成 配合物。 在这些化合物中, 包括了大部分的主族和副族金属元素, 一些镧系金属 (Pr, Eu, Yb 等)也己经合成。 由于卟啉是具有 18个 π电子的大共轨体系, 其环内电子流动性非常好, 因 此, 大多数金属卟啉化合物都有较好的光电性盾。
然而含有硅芴的金属卟啉-苯的有机半导体材料至今仍没有文献和专利报道,这就大大限 制了有机半导体材料的应用范围。 因此, 本发明开发了一种硅芴金属卟啉 -苯的有机半导体材 料。 该类材料通过引入硅芴基团到卟啉架构上, 并通过金属离子的配位作用, 调整了卟啉聚 合物的带隙, 进而获得更好的稳定性和良好的成膜性, 拓宽了可见光语吸收范围, 使其吸收 范围延伸至近红外区, 提高其对太阳光的利用率, 同时提高了载流子迁移率, 扩大了它们在 有机太阳能电池等领域的应用范围。
发明内容
本发明的目的在于提供一种硅芴金属卟啉-苯有机半导体材料, 其可以解决上述问题。 本发明的目的还在于提供一种硅芴金属卟啉 -苯有机半导体材料的制备方法及其应用。 本发明所涉及的硅芴金属卟啉-苯有机半导体材料, 具有以下结构 (I ):
Figure imgf000003_0001
式中: n为 1-100间的整数, Ri , R2 , R3 , 为相同或不相同的 H、 CrC32的烷基、 苯基、 含有一个或多个相同或不相同的 d-C 的烷基苯或烷氧基苯; M为金属离子, 可以但不限于 Zn2+、 Cu2+、 Fe2+、 Co2 Cd2 Pt2+、 Zv2 Mn2+、 Ni2+、 Pb2+、 Sn2+等金属离子。
本发明所设计的硅芴金属卟啉-苯有机半导体材料的制备方法, 步骤如下:
H H
步骤 S l、 氧化剂、 第一催化剂存在条件下, 将结构式为 ^ 的二二吡咯甲烷、
Figure imgf000003_0002
芴衍生物溶于第一有机溶剂, 于 20-100°C温度下, 反应 1-24 小时, 得到结构式为
Figure imgf000003_0003
的硅芴卟啉衍生物; 式中, Ri , R2, R3 , 分别为 H、 Ci-C 的烷基、 苯基、 含有一个或多个 d-C 的烷基苯或烷氧基苯; 反应式如下:
Figure imgf000004_0001
步骤 S2、将步骤 SI中得到的硅芴卟啉衍生物和溴化剂加入到第二有机溶剂中,于 0~120°C
下反应 1~72小时, 得到结构式为
Figure imgf000004_0002
的二溴硅芴卟啉衍生物; 反 应式如下;
Figure imgf000004_0003
步骤 S3、 将步骤 S2中得到的二溴硅芴卟啉衍生物溶于第三有机溶剂中, 接着加入含 M
金属离子的溶液,于 0-30°C下搅拌 0.5-24小时,得到结构式为
Figure imgf000004_0004
的二溴硅芴金属卟啉衍生物; 反应式如下:
Figure imgf000005_0001
步骤 S4、 无氧环境中, 第二催化剂和第四有机溶剂存在条件下, 将步骤 S3 中得到的二 溴硅芴金属卟啉衍生物和结构式为 '的 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂 氧戊硼烷)苯按摩尔比 1 :2~2: 1 , 于 50-120°C中进行 Suzuki耦合反应 12-72小时, 得到结构式
Figure imgf000005_0002
的所述硅芴金属卟啉-苯有机半导体材料, 式中, n为 1-100间的整数; 反应式如下:
Figure imgf000005_0003
上述硅芴金属卟啉-苯有机半导体材料的制备方法中, 优选:
所述步骤 S1中, 二吡咯甲烷、 第一硅芴衍生物、 第二硅芴衍生物的摩尔比为 a:b:c=l : l~100: l~100, 其中 a=b+c, 且 a≥b>0; 所述第一催化剂为丙酸、 三氟乙酸; 所述氧化剂为二氯二氨基苯醌; 所述 第一有机溶剂为三氯甲烷、 二氯甲烷中的一种或两种;
所述步骤 S2中,
所述硅芴卟啉衍生物和溴化剂的用量摩尔比为 1 :2~1 :5; 所述溴化剂为 N-溴代丁二酰亚 胺; 所述第二有机溶剂为四氢呋喃、 氯仿、 二甲基酰胺或邻二氯苯中的至少一种;
所述步骤 S3中,
所述二溴硅芴卟啉衍生物和 M金属离子的摩尔比为 1 : 1~1 :5; 所述第三有机溶剂为三氯 甲烷、 四氢呋喃、 苯、 甲苯或二氯甲烷中的至少一种; 所述含 M金属离子的溶液中, M金属 离子选自 Zn2+、 Cu2+、 Fe2+、 Co2+、 Cd2+、 Pt2+、 Zr2+、 Mn2+、 Ni2+、 Pb2+或 Sn2+中的一种, 溶 剂为甲醇、 乙醇或水中的至少一种;
所述步骤 S4中,
所述第二催化剂为有机钯或有机钯与有机磷配体的混合物;
所述有机钯为 Pd2(dba)3、 Pd(PPh3)4、 Pd(OAc)2或 Pd(PPh3)2Cl2;
所述有机碑配体为 P(o-Tol)3、 三环己基膦;
所述第四有机溶剂为四氢呋喃、 二氯甲烷、 氯仿、 二氧六环、 二甲基酰胺、 乙二醇二甲 醚、 二甲基亚砜、 苯、 氯苯或甲苯中的至少一种;
另, 步骤 S4中, 还包括 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的制备, 其制备 步骤如下: 将结构式为
Figure imgf000006_0001
对二溴苯加入第五有机溶剂中, 用液氮 /异丙醇降温至 -78 °C ,
滴加正丁基锂(n-BuLi, 下同), 然后在 -78°C反应 1-3小时,再加入结构式为
Figure imgf000006_0002
2-异丙氧基 -4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷, 并在 -78°C下反应 0.5-2小时, 然后自然升温 至室温, 反应 6-36小时, 得到所述 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯; 其中, 所 述第五有机溶剂中为四氢呋喃、 乙醚或者二氧六环中的至少一种; 所述对二溴苯与 2-异丙氧 基—4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷的摩尔比 1 :2~5; 反应式如下:
Figure imgf000007_0001
上述硅芴金属卟啉-苯有机半导体材料在聚合物太阳能电池, 有机电致发光, 有机场效应 晶体管, 有机光存储, 有机非线性器件和有机激光器件等领域中的应用。
与现有技术相比, 本发明具有如下优点:
1. 本发明中的有机半导体材料分子中含有的硅芴单元, 具有良好的热稳定性, 以及较高 的电子亲和力和较高的电子注入和传输能力;
2. 同时还含有卟啉单元, 具有平面结构的大环离域 π电子共轭体系, 电荷转移和能量转 移反应的量子效率较高, 具有良好的电子緩冲性和光电磁性, 以及良好的刚柔性和较好热稳 定性和环境稳定性。
3. 本发明的有机半导体材料由于同时包含了硅芴结构单元和卟啉单元, 兼顾了它们的性 能优势, 并扩展了该有机半导体材料对太阳光的吸收范围, 增加了与太阳辐射光语的匹配度, 从而有效扩展了该有机半导体材料在聚合物太阳能电池、 有机电致发光器件、 有机场效应晶 体管、 有机光存储器件或 /和有机激光器件中的应用;
4. 所述有机半导体材料的制备工艺筒单, 易于操作和控制。
附图说明
Figure imgf000007_0002
能电池器件的结构示意 图 2为以本发明中的有机半导体材料作为发光层的有机电致发光器件的结构示意图。 图
Figure imgf000007_0003
晶体管器件的结构 示意图。
具体实施方式
本发明所涉及的硅芴金属卟啉-苯有机半导体材料, 具有以下结构 (I ):
Figure imgf000008_0001
(1);
式中: n为 1-100间的整数, Ri, R2, R3, 分别为相同或不相同的 H、 CrC32的烷基、 苯基、 含有一个或多个相同或不相同的 d-C 的烷基苯或烷氧基苯; M为金属离子, 可以但 不限于 Zn2+、 Cu2+、 Fe2+、 Co2 Cd2 Pt2+、 Zv2 Mn2+、 Ni2+、 Pb2+、 Sn2+等金属离子。
本发明所设计的硅芴金属卟啉-苯有机半导体材料的制备方法, 步骤如下:
步骤 Sl、 氧化剂、 第一催化剂存在条件下, 将结构式 (>为为
Figure imgf000008_0002
的的二二吡咯甲烷、
OHC- OHC- 结构式为 \=/"^^的第一硅芴衍生物以及结构式为 = ^ 的第二硅芴衍生 物溶于第一有机溶剂 , 于 20-100°C温度下, 反应 1-24 小时, 得到结构式为
Figure imgf000008_0003
的硅芴卟啉衍生物; 式中, R , R2, R3, R4分别为 H、 Ci-C 的烷基、 苯基、 含有一个或多个 d-C 的烷基苯或烷氧基苯; 反应式如下:
Figure imgf000008_0004
步骤 S2、将步骤 S1中得到的硅芴卟啉衍生物和溴化剂加入到第二有机溶剂中,于 0~120°C 下反应 1~72小时, 得到结构式为 的二溴硅芴卟啉衍生物; 反应 式如下;
Figure imgf000009_0001
步骤 S3、 将步骤 S2中得到的二溴硅芴卟啉衍生物溶于第三有机溶剂中, 接着加入含 M 属 离 子 的 溶 液 , 于 0-30°C 下 搅 拌 0.5-24 小 时 , 得 到 结 构 式 为
应式如下:
Figure imgf000009_0002
步骤 S4、 无氧环境中, 第二催化剂和第四有机溶剂存在条件下, 将步骤 S3 中得到的二 溴硅芴金属卟啉衍生物和结构式为
Figure imgf000009_0003
1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂 氧戊硼烷)苯按摩尔比 1 :2~2: 1 , 于 50-120°C中进行 Suzuki耦合反应 12-72小时, 得到结构式
Figure imgf000010_0001
Figure imgf000010_0002
上述硅芴金属卟啉-苯有机半导体材料的制备方法中, 优选:
所述步骤 S1中,
二吡咯甲烷、 第一硅芴衍生物、 第二硅芴衍生物的摩尔比为 a:b:c=l : l~100: l~100, 其中 a=b+c, 且 a≥b>0; 所述第一催化剂为丙酸、 三氟乙酸; 所述氧化剂为二氯二氨基苯醌; 所述 第一有机溶剂为三氯甲烷、 二氯甲烷中的一种或两种;
所述步骤 S2中,
所述硅芴卟啉衍生物和溴化剂的用量摩尔比为 1 :2~1 :5; 所述溴化剂为 N-溴代丁二酰亚 胺; 所述第二有机溶剂为四氢呋喃、 氯仿、 二甲基酰胺或邻二氯苯中的至少一种;
所述步骤 S3中,
所述二溴硅芴卟啉衍生物和 M金属离子的摩尔比为 1 : 1~1 :5; 所述第三有机溶剂为三氯 甲烷、 四氢呋喃、 苯、 甲苯或二氯甲烷中的至少一种; 所述含 M金属离子的溶液中, M金属 离子选自 Zn2+、 Cu2+、 Fe2+、 Co2+、 Cd2+、 Pt2+、 Zr2+、 Mn2+、 Ni2+、 Pb2+或 Sn2+中的一种, 溶 剂为甲醇、 乙醇或水中的至少一种; 所述步骤 S4中,
所述第二催化剂为有机钯或有机钯与有机磷配体的混合物;
所述有机钯为 Pd2(dba)3、 Pd(PPh3)4、 Pd(OAc)2或 Pd(PPh3)2Cl2;
所述有机碑配体为 P(o-Tol)3、 三环己基膦;
所述第四有机溶剂为四氢呋喃、 二氯甲烷、 氯仿、 二氧六环、 二甲基酰胺、 乙二醇二甲 醚、 二甲基亚砜、 苯、 氯苯或甲苯中的至少一种;
另, 步骤 S4中, 还包括 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的制备, 其制备 步骤如下:
Figure imgf000011_0001
对二溴苯加入第五有机溶剂中, 用液氮 /异丙醇降温至 -78 °C ,
滴加正丁基锂(n-BuLi ), 然后在 -78°C反应 1-3小时, 再加入结构式为
Figure imgf000011_0002
的 2-异 丙氧基 -4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷, 并在 -78°C下反应 0.5-2小时, 然后自然升温至室 温, 反应 6-36小时, 得到所述 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯; 其中, 所述第 五有机溶剂中为四氢呋喃、 乙醚或者二氧六环中的至少一种; 所述对二溴苯与 2-异丙氧基 —4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷的摩尔比 1 :2~5; 反应式如下:
Figure imgf000011_0003
本发明的无氧环境由氮气或惰性气体构成。
上述硅芴金属卟啉-苯有机半导体材料的制备方法中, 2-溴 -9-取代硅芴由 2-溴硅芴的制 得, 参考文献: Macromolecules 2002, 35, 3474; 2-醛 -9-取代硅芴由 2-溴 -9-取代硅芴的制得, 参考文献: Macromolecules 2006, 39, 456;二吡咯甲烷的制得,参考文献: Tetrahedron 1994, 39, 11427。
下面结合附图, 对本发明的较佳实施例作进一步详细说明。
实施例 1
本实施例公开一种结构如下的硅芴锌卟啉 -苯有机半导体材料
Figure imgf000012_0001
上式中, η=78;
上述有机半导体材料制备步骤如下:
,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
Figure imgf000012_0002
在氮气的保护下,往三口瓶中加入对二溴苯 (4.8g, 0.02mol),加入 100ml的四氢呋喃( THF, 下同)溶剂, 在 -78°C条件下再用注射器慢慢注入正丁基锂 (n-BuLi, 16.8mL, 2.5M, 0.04mol), 继续搅拌反应 2h, 在 -78 °C条件下用注射器注入 2-异丙氧基 -4,4,5,5-四甲基 -1,3,2-二杂氧戊硼 烷 (8.7mL, 0.04mol), 室温下搅拌过夜。 加入饱和氯化钠水溶液 (30ml)终止反应, 用氯仿萃取, 无水硫酸钠千燥, 抽虑后将滤液收集并旋蒸掉溶剂。 最后将粗产物用石油醚 /乙酸乙酯(15/1) 为淋洗液进行硅胶柱层析分离, 得到产物, 产率 94.6%。
GC-MS(EI-m/z): 332(M+)
二、 5,15-二 (9,,9,-二辛基)硅芴卟啉的合成
Figure imgf000012_0003
搭好无水无氧装置, 称取中间体 2-醛 -9,9-二辛基硅芴 (0.44g, lmmol)与二吡咯甲烷 (0.15g: lmmol) ,溶解于 250ml二氯甲烷中,通入氮气 30min,注射器加入丙酸 lml , 20°C下搅拌 24h, 然后加入二氯二氨基苯醌 (DDQ)(0.91g, 4mmol) , 继续在室温下搅拌 30min, 然后加入 lml三 乙胺淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋千溶剂, 用二氯甲烷在硅胶柱上快速淋洗, 旋千溶剂, 用乙醚 /甲醇重结晶到产物, 产率约为 85%。
GC-MS(EI-m/z): 1120(M+)
三、 5,15-二溴 -10,20-二 (9,,9,-二辛基)硅芴卟啉的合成
Figure imgf000013_0001
搭好无水无氧装置, 称取 10,20-二 (9',9'-二辛基)硅芴卟啉 (0.23g, 0.2mmol)溶解于 80ml氯 仿中, 加入 lml吡啶, 将反应物降到 0°C , 加入 N-溴代丁二酰亚胺 (0.07g,0.4mmol) , 搅拌 72h 后, 混合物恢复到室温, 然后继续搅拌 4h, 加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇 进行重结晶得到产物, 产率 81 %。
GC-MS(EI-m/z): 1278(M+)
四、 5,15-二溴 -10,20-二 (9,,9,-二辛基)硅芴锌卟啉的合成
Figure imgf000013_0002
称取中间体 5, 15-二溴 -10,20-二 (9,9-二辛基芴)卟啉 (0.25g, 0.2mmol)溶解于 50ml二氯甲烷 中, 加入含醋酸锌 (Zn ( 0 Ac ) 2 , O. l lg, 0.5mmol)的甲醇溶液 (5ml) , 室温下搅拌 5h, 旋千溶 剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋千溶剂得到产物, 产率 94%。 GC-MS(EI-m/z): 1340(M+)
五、 硅芴锌卟啉 -苯有机半导体材料的合成
Figure imgf000014_0001
在氮气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5,15- 二溴 -10,20-二 (9',9'-二辛基)硅芴锌卟啉(268mg, 0.2mmol)和甲苯溶剂 50ml, 抽真空除氧并充 入氮气, 然后加入 5mg Pd(PPh3)2Cl2与 2ml NaHCO3(50%)溶液, 加热到 100°C反应 56h, 得到 硅芴锌卟啉-苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 300ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解, 加入到二乙基二硫代氨基甲酸钠的水溶液中 ,然后将混合液加热到 80 V搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 减压除去有机溶剂, 甲醇沉降, 抽滤, 所得固体 用丙酮索氏提取器提取三天; 甲醇沉降, 抽滤。 真空泵下抽过夜得到硅芴锌卟啉 -苯有机半导 体材料固体产物, 产率 72%. Molecular weight ( GPC, THF, R. I): Mn = 98000, Mw/Mn =3.24;) 实施例 2
本实施例公开一种结构如下的硅芴铁卟啉 -苯有机半导体材料
Figure imgf000014_0002
上式中, n=56;
上述有机半导体材料制备步骤如下: 一、 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
其制备详见实施例 1 , 只是无氧环境釆用氩气作为保护气。
二、 5-(9,-甲基 -9,-十六烷基)硅芴 -15-(9,-三十二烷基)硅芴卟啉的合成
Figure imgf000015_0001
搭好无水无氧装置, 称取中间体 2-醛 -9-甲基 -9-十六烷基硅芴 (0.45g, lmmol)、 2-醛 -9-三 十二烷基硅芴(0.66g, lmmol)、 二吡咯甲烷 (0.30g, 2mmol) , 溶解于 250ml二氯甲烷中, 通入氩 气 30min,注射器加入三氟乙酸 2ml, 100°C下搅拌 lh,然后加入二氯二氨基苯醌 (DDQ)(1.82g, 8mmol), 继续在室温下搅拌 30min, 然后加入 2ml吡啶淬灭反应, 浓缩溶剂, 过滤, 收集滤 液并旋千溶剂, 用二氯甲烷在硅胶柱上快速淋洗, 旋千溶剂, 用乙醚 /甲醇重结晶到产物, 产 率约为 78%。
GC-MS(EI-m/z): 1359(M+)
三、 5,15-二溴 -10-(9,-甲基 -9,-十六烷基)硅芴 -20-(9,-三十二烷基)硅芴卟啉的合成
Figure imgf000015_0002
搭好无水无氧装置,称取 5-(9'-甲基 -9'-十六烷基)硅芴 -15-(9'-三十二烷基)硅芴卟啉 (0.27g,
0.2mmol)溶解于 80ml氯仿中,加入 1ml吡啶,将反应物降到 0°C ,加入 N-溴代丁二酰亚胺 (0.07g:
0.4mmol),搅拌 0.5h后, 混合物升温至 120 °C , 然后继续搅拌 lh后,加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇进行重结晶得到产物, 产率 79%。 GC-MS(EI-m/z): 1516(M+)
四、 5,15-二溴 -10-(9,-甲基 -9,-十六烷基)硅芴 -20-(9,-三十二烷基)硅芴铁卟啉的合成
Figure imgf000016_0001
氩气条件下, 称取中间体 5, 15-二溴 -10-(9'-甲基 -9'-十六烷基)硅芴 -20-(9'-三十二烷基)硅 芴卟啉 (0.31g, 0.2mmol)溶解于 50ml二氯甲烷中, 加入含氯化亚铁 (0.12g, lmmol)的甲醇溶液 (5ml) , 室温下搅拌 8h, 旋千溶剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋 千溶剂得到产物, 产率 95%。
GC-MS(EI-m/z): 1569(M+)
五、 硅芴铁卟啉 -苯有机半导体材料的合成
Figure imgf000016_0002
在氩气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5, 15- 二溴 -10-(9'-甲基 -9'-十六烷基)硅芴 -20-(9'-三十二烷基)硅芴铁卟啉 (314mg, 0.2mmol)和甲苯溶 剂 120ml,抽真空除氧并充入氩气,然后加入1^(0 0)2 (2.51¾)/三环己基膦(6.51¾)和21^ 20%
(wt) 四乙基绥氢氧化物 (Et4NOH, 下同)溶液, 加热到 120°C反应 24h, 得到硅芴铁卟啉- 苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 200ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解, 加入到二乙基二硫代氨基甲酸钠的水溶液中 ,然后将混合液加热到 80 V搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 减压除去有机溶剂, 甲醇沉降, 抽滤, 所得固体 用丙酮索氏提取三天; 甲醇沉降, 抽滤; 空泵下抽过夜得到硅芴铁卟啉-苯有机半导体材料固 体产物, 产率 74%. Molecular weight ( GPC, THF, R. I): Mn = 87000, Mw/Mn = 3.63;)
实施例 3
本实施例公开一种结构如下的 )硅芴铜卟啉 -苯有机半导体材料
Figure imgf000017_0001
上式中, n=28;
上述有机半导体材料制备步骤如下:
一、 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
其制备详见实施例 1.
二、 10,20-二 (9,-十六烷基 -9,-(3"-十六烷基 -4"-十六烷氧基)苯)硅芴卟啉的合成
Figure imgf000017_0002
搭好无水无氧装置, 称取中间体 2-醛 -9-十六烷基 -9-(3'-十六烷基 -4'-十六烷氧基)苯)硅芴
(1.95g, 2mmol)与二吡咯甲烷 (0.30g, 2mmol), 溶解于 300ml二氯甲烷中, 通入氮气 30min, 注 射器加入三氟乙酸 2ml, 室温下搅拌 3h, 然后加入二氯二氨基苯醌 (DDQ)(1.82g, 8mmol), 继 续在室温下搅拌 30min, 然后加入 2ml三乙胺淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋千 溶剂,用二氯甲烷在硅胶柱上快速淋洗,旋千溶剂,用乙醚 /甲醇重结晶到产物,产率约为 85%。
GC-MS(EI-m/z): 2201(M+)
三、 5,15-二溴 -10,20-二 (9,-十六烷基 -9,-(3"-十六烷基 -4"-十六烷氧基)苯)硅芴卟啉的合成
Figure imgf000018_0001
搭好无水无氧装置, 称取 10,20-二 (9'-十六烷基 -9'-(3"-十六烷基 -4"-十六烷氧基)苯)硅芴 卟啉 (0.44g, 0.2mmol)溶解于 80ml氯仿中, 加入 lml吡啶, 将反应物降到 0°C , 加入 N-溴代 丁二酰亚胺 (0.07g, 0.4mmol), 搅拌 0.5h后, 混合物升温至 30°C , 然后继续搅拌 48h, 加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇进行重结晶得到产物, 产率 76%。
GC-MS(EI-m/z): 2360(M+)
四、 5,15-二溴 -10,20-二 (9,-十六烷基 -9,-(3"-十六烷基 -4"-十六烷氧基)苯)硅芴铜卟啉的合 成
Figure imgf000018_0002
称取中间体 5, 15-二溴 -10,20-二 (9'-十六烷基 -9'-(3"-十六烷基 -4"-十六烷氧基)苯)硅芴卟 啉 (0.47g, 0.2mmol)溶解于 50ml二氯甲烷中 , 加入 CuSO4'5H2O(0.05g, 0.2mmol)溶液 (5ml), 室 温下搅拌 5h, 旋千溶剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋千溶剂得到 产物, 产率 93%。
GC-MS(EI-m/z): 2416(M+)
五、 硅芴铜 -苯有机半导体材料的合成
Figure imgf000019_0001
在氮气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5, 15- 二溴 -10,20-二 (9'-十六烷基 -9'-(3 "-十六烷基 -4"-十六烷氧基)苯)硅芴铜卟啉 (483mg, 0.2mmol) 和甲苯溶剂 100ml ,抽真空除氧并充入氮气,然后加入 10mg Pd(PPh3)2Cl2与 2ml KHCO3(30%) 溶液, 加热到 50°C反应 72h, 得到硅芴铜卟啉-苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 300ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解,加入到二乙基二硫代氨基甲酸钠的水溶液中,然后将混合液加热到 80°C搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 压除去有机溶剂, 甲醇沉降, 抽滤, 所得固体用 丙酮索氏提取三天; 甲醇沉降, 抽滤, 真空泵下抽过夜得到得到硅芴铜卟啉-苯有机半导体材 料固体产物, 产率 82%。 Molecular weight ( GPC, THF, R. I): Mn = 65400, Mw/Mn = 3.18;) 实施例 4
本实施例公开一种结构如下的硅芴镉卟啉 -苯有机半导体材料
Figure imgf000019_0002
上式中, n=100;
上述有机半导体材料制备步骤如下:
一、 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
其制备详见实施例 1.
二、 5-(9,-对二十烷基苯 -9,-(3",5"-双十二烷氧基苯))硅芴 -15-(9,-对十六烷氧基苯 -9,-间癸 烷基苯)硅芴卟啉的合成
Figure imgf000020_0001
搭好无水无氧装置, 称取中间体 2-醛 -9-对二十烷基苯 -9-(3',5'-双十二烷氧基苯)硅芴 (1.02g, lmmol)、 2-醛 -9-对十六烷氧基苯 -9-间癸烷基苯硅芴 (0.74g, lmmol)与二吡咯甲烷 (0.30g, 2mmol) ,溶解于 250ml二氯甲烷中,通入氮气 30min,注射器加入乙酸 lml, 20°C下搅拌 24h, 然后加入二氯二氨基苯醌 (DDQ)(0.91g, 4mmol) , 继续在室温下搅拌 30min, 然后加入 lml三 乙胺淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋千溶剂, 用二氯甲烷在硅胶柱上快速淋洗, 旋千溶剂, 用乙醚 /甲醇重结晶到产物, 产率约为 83%。
GC-MS(EI-m/z): 2205(M+)
三、 5,15-二溴 -10-(9,-对二十烷基苯 -9,-(3",5"-双十二烷氧基苯))硅芴 -20-(9,-对十六烷氧 基苯 _9'-间癸烷基苯)硅芴卟啉的合成
Figure imgf000021_0001
搭好无水无氧装置, 称取 5,15-二溴 -10-(9'-对二十烷基苯 -9'-(3",5"-双十二烷氧基苯))硅 芴—20-(9'-对十六烷氧基苯 -9'-间癸烷基苯)硅芴卟啉 (0.44g, 0.2mmol)溶解于 80ml 二甲基酰胺 ( DMF ) 中, 将反应物降到 0°C , 加入 N-溴代丁二酰亚胺 (0.07g,0.4mmol), 搅拌 72h后, 混 合物恢复到室温, 然后继续搅拌 4h, 加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇进行重 结晶得到产物, 产率 83%。
GC-MS(EI-m/z): 2162(M+)
四、 5,15-二溴 -10-(9,-对二十烷基苯 -9,-(3",5"-双十二烷氧基苯))硅芴 -20-(9,-对十六烷氧 基苯 _9'-间癸烷基苯)硅芴镉卟啉的合成
Figure imgf000021_0002
称取中间体 5,15-二溴 -10-(9'-对二十烷基苯 -9'-(3",5"-双十二烷氧基苯))硅芴 -20-(9'-对十 六烷氧基苯 -9'-间癸烷基苯)硅芴卟啉 (0.43g, 0.2mmol)溶解于 50ml 二氯甲烷中, 加入 Cd(NO3)2'4H2O(0.31g, lmmol)的甲醇溶液 (5ml), 室温下搅拌 5h, 旋千溶剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋千溶剂得到产物, 产率 94%。
GC-MS(EI-m/z): 2271(M+)
五、 硅芴镉卟啉 -苯有机半导体材料的合成
Figure imgf000022_0001
在氮气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5, 15- 二溴 -10-(9'-对二十烷基苯 -9'-(3",5"-双十二烷氧基苯》硅芴 -20-(9'-对十六烷氧基苯 -9'-间癸 烷基苯)硅芴卟啉 (454mg, 0.2mmol)和二氧六环溶剂 60ml, 抽真空除氧并充入氮气, 然后加入 Pd2(dba)3(5mg)/P(o-Tol)3(8mg)与 15%的 Na2C03(3ml)溶液, 加热到 80°C反应 36h, 得到硅芴镉 卟啉-苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 250ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解, 加入到二乙基二硫代氨基甲酸钠的水溶液中 ,然后将混合液加热到 80 V搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 减压除去有机溶剂, 甲醇沉降; 抽滤, 所得固体 用丙酮索氏提取器提取三天; 醇沉降, 抽滤; 真空泵下抽过夜得到硅芴镉卟啉-苯有机半导体 材料固体产物, 产率 75%. Molecular weight ( GPC, THF, R. I): Mn = 219000, Mw/Mn =4.36; 实施例 5
本实施例公开一种结构如下的硅芴钴卟啉 -苯有机半导体材料
Figure imgf000022_0002
上式中, n=40;
上述有机半导体材料制备步骤如下: 一、 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
其制备详见实施例 1.
二、 5-(9,-(3",4",5"-三癸烷氧基)苯 -9,-对十六烷基苯)硅芴 -15-(9,-(3"-十二烷基 -5"-二十 烷氧基)苯 -9,-(3"-三十二烷基 -4,,-三十二烷氧基)苯)硅芴卟啉的合成
Figure imgf000023_0001
搭好无水无氧装置, 称取中间体 2-醛 -9-(3',4',5'-三癸烷氧基)苯 -9-对十六烷基苯硅芴 (1.06g, lmmol)、2-醛 -9-(3' -十二烷基 -5' -二十烷氧基 )-9-(3' -三十二烷基 -4'-三十二烷氧基)苯硅 芴(1.74g, lmmol)、 二吡咯甲烷 (0.30g, 2mmol) , 溶解于 250ml二氯甲烷中, 通入氮气 30min, 注射器加入丙酸 2ml, 100°C下搅拌 lh, 然后加入二氯二氨基苯醌 (DDQ)(1.82g, 8mmol), 继续 在室温下搅拌 30min, 然后加入 2ml吡啶淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋千溶剂, 用二氯甲烷在硅胶柱上快速淋洗, 旋千溶剂, 用乙醚 /甲醇重结晶到产物, 产率约为 74%。
GC-MS(EI-m/z): 3047(M+)
三、 5,15-二溴 -10-(9,-(3,,,4,,,5,,-三癸烷氧基)苯-9,-对十六烷基苯)硅芴-20-(9,-(3,,-十二烷 基 -5,,-二十烷氧基)苯 -9,- 3"-三十二烷基 -4"-三十二烷氧基)苯)硅芴卟啉的合成
Figure imgf000023_0002
搭好无水无氧装置, 称取 5-(9'-(3",4",5"-三癸烷氧基)苯 -9'-对十六烷基苯)硅芴 -15-(9'-(3"—十二烷基 -5"—二十烷氧基)苯 -9'-(3"—三十二烷基 -4"—三十二烷氧基)苯)硅芴卟啉 (0.61g, 0.2mmol)溶解于 40ml四氢呋喃中, 加入 0.5ml三乙胺, 将反应物降到 0°C , 加入 N- 溴代丁二酰亚胺 (0.07g, 0.4mmol), 搅拌 0.5h后, 混合物升温至回流, 然后继续搅拌 lh后, 加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇进行重结晶得到产物, 产率 82%。
GC-MS(EI-m/z): 3204(M+)
四、 5-(9,-(3",4",5"-三癸烷氧基)苯 -9,-对十六烷基苯)硅芴 -15-(9,-(3"-十二烷基 -5"-二十 烷氧基)苯 -9,-(3"-三十二烷基 -4,,-三十二烷氧基)苯)硅芴钴卟啉的合成
Figure imgf000024_0001
称取中间体 5-(9'-(3",4",5"-三癸烷氧基)苯 -9'-对十六烷基苯)硅芴 -15-(9'-(3"-十二烷基 -5"-二十烷氧基)苯 -9'-(3"-三十二烷基 -4"-三十二烷氧基)苯)硅芴卟啉 (0.64g, 0.2mmol)溶解于 50ml二氯甲烷中, 加入 CoCl2'6H2O(0.12g, 0.5mmol)溶液 (5ml), 室温下搅拌 12h, 旋千溶剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋千溶剂得到产物, 产率 96%。
GC-MS(EI-m/z): 3257(M+)
五、 硅芴钴卟啉 -苯有机半导体材料的合成
Figure imgf000024_0002
在氮气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5,15- 二溴—10-(9'-(3",4",5"-三癸烷氧基)苯 -9'-对十六烷基苯)硅芴 -20-(9'-(3"-十二烷基 -5"-二十烷 氧基)苯 -9'-(3"-三十二烷基 -4"-三十二烷氧基)苯)硅芴钴卟啉 (650mg, 0.2mmol)和 DMF 溶剂 80ml,抽真空除氧并充入氮气,然后加入 Pd(OAc)2 (2.5mg)/三环己基膦 (6.5mg)和 2ml 20% (wt) Et4NOH溶液, 加热到 80°C反应 48h, 得到硅芴钴卟啉-苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 250ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解, 加入到二乙基二硫代氨基甲酸钠的水溶液中 ,然后将混合液加热到 80 V搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 减压除去有机溶剂, 甲醇沉降; 抽滤, 所得固体 用丙酮索氏提取三天; 醇沉降, 抽滤; 真空泵下抽过夜得到硅芴钴卟啉-苯有机半导体材料固 体产物, 产率 83%. Molecular weight ( GPC, THF, R. I): Mn = 127100, Mw/Mn =3.96。
实施例 6
本实施例公开一种结构如下的硅芴锡卟啉 -苯有机半导体材料
Figure imgf000025_0001
上式中, n=10;
上述有机半导体材料制备步骤如下:
一、 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的合成
其制备详见实施例 1.
二、 5-(9,-十六烷基 -9,-(3"-甲基 -4"-三十二烷氧基)苯)硅芴 -15-(9,-(3",5"-二癸烷基)苯 _9,-(3"-辛基 -4"-十二烷 苯)硅芴卟啉的合成
Figure imgf000026_0001
搭好无水无氧装置, 称取中间体 2-醛 -9-十六烷基 -9-(3'-甲基 -4'-三十二烷氧基)苯硅芴 (0.99g, lmmol)、 2-醛 -9-(3',5'-二癸烷基)苯 -9-(3'-辛基 -4'-十二烷氧基)苯硅芴(0.94g, lmmol)、 二吡咯甲烷 (0.30g, 2mmol), 溶解于 250ml二氯甲烷中, 通入氮气 30min, 注射器加入三氟乙 酸 2ml, 100°C下搅拌 lh, 然后加入二氯二氨基苯醌 (DDQ)(1.82g, 8mmol), 继续在室温下搅拌 30min, 然后加入 2ml三乙胺淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋千溶剂, 用二氯甲烷 在硅胶柱上快速淋洗, 旋千溶剂, 用乙醚 /甲醇重结晶到产物, 产率约为 74%。
GC-MS(EI-m/z): 2179(M+)
三、 5,15-二溴-10-(9,-十六烷基-9,-(3,,-甲基-4,,-三十二烷氧基)苯)硅芴-20-(9,-(3,,,5,,-二癸 烷基)苯 -9,-(3,,-辛基 -4"-十二烷氧基)苯)硅芴卟啉的合成
Figure imgf000026_0002
搭好无水无氧装置, 称取 5-(9'-十六烷基 -9'-(3"-甲基 -4"-三十二烷氧基)苯)硅芴 -15-(9'-(3",5"-二癸烷基)苯 -9'-(3"-辛基 -4"-十二烷氧基)苯)硅芴卟啉 (0.44g, 0.2mmol)溶解于 80ml邻二氯苯中,加入 1ml吡啶,将反应物降到 0°C ,加入 N-溴代丁二酰亚胺 (0.07g, 0.4mmol), 搅拌 0.5h后, 混合物升温至 120 °C , 然后继续搅拌 lh后,加入 5ml丙酮终止反应, 除去溶剂, 用乙醚 /甲醇进行重结晶得到产物, 产率 85%。 GC-MS(EI-m/z): 2337(M+)
四、 5,15-二溴-10-(9,-十六烷基-9,-(3,,-甲基-4,,-三十二烷|^)苯)硅芴-20-(9,-(3,,,5,,-二癸 烷基)苯 -9,-(3,,-辛基 -4"-十二烷 M^)苯)硅锡卟啉的合成
Figure imgf000027_0001
N2氛围下,称取中间体 5,15-二溴 -10-(9'-十六烷基 -9'-(3"-甲基 -4"-三十二烷氧基)苯)硅芴 -20-(9'-(3",5"-二癸烷基)苯 -9'-(3"-辛基 -4"-十二烷氧基)苯)硅芴卟啉 (0.47g, 0.2mmol)溶解于 50ml二氯甲烷中, 加入含 SnCl2(0.11g, 0.6mmol)的乙醇溶液 (5ml), 室温下搅拌 24h, 旋千溶 剂, 然后用二氯甲烷 /石油醚 (1/1)在硅胶柱上淋洗, 收集并旋千溶剂得到产物, 产率 95%。
GC-MS(EI-m/z): 2451(M+)
五、 10-(9,-十六烷基 -9,-(3"-甲基 -4"-三十二烷氧基)苯)硅芴 -20-(9,-(3",5"-二癸烷基)苯 _9,-(3,,-辛基 -4,,-十二烷 苯)硅芴锡卟啉 机半导体材料的合成 (n=10)
Figure imgf000027_0002
在氮气保护下, 加入 1,4-二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯 (66mg, 0.2mmol)、 5,15- 二溴- 10-(9'-十六烷基 -9'-(3"-甲基 -4"-三十二烷氧基)苯)硅芴 -20-(9'-(3",5"-二癸烷基)苯
—9'-(3"-辛基 -4"-十二烷氧基)苯)硅芴锡卟啉 (490mg, 0.2mmol)和乙二醇二甲醚溶剂 80ml,抽真 空除氧并充入氮气, 然后加入 10mg Pd(PPh3)4和 4ml K2C03(5%)溶液, 加热到 80°C反应 24h, 得到硅芴锡卟啉-苯有机半导体材料反应物混合液。
冷却至室温后将混合液滴加到 250ml甲醇中进行沉降; 抽滤, 甲醇洗涤, 千燥; 然后用 甲苯溶解, 加入到二乙基二硫代氨基甲酸钠的水溶液中 ,然后将混合液加热到 80 V搅拌过夜; 将有机相通过氧化铝的柱层析, 氯苯淋洗; 减压除去有机溶剂, 甲醇沉降; 抽滤, 所得固体 用丙酮索氏提取三天; 甲醇沉降, 抽滤; 真空泵下抽过夜得到硅芴锡卟啉 -苯有机半导体材料 固体产物, 产率 72%. Molecular weight ( GPC, THF, R. I): Mn = 23700, Mw/Mn = 2.86。
本发明还提供了
Figure imgf000028_0001
(式中: n为 1-100间的整数, Ri , R2, R3, 为11、 d-C32的烷基、 苯基、含有一个或多个 d-C32的烷基苯或烷氧基苯; M为金属离子) 的硅芴金属卟啉-苯有机半导体材料在聚合物太阳能电池,有机电致发光,有机场效应晶体管, 有机光存储, 有机非线性器件和有机激光器件等领域中的应用。
以下实施例是硅芴金属卟啉-苯有机半导体材料在有机太阳能电池, 有机场效应晶体管, 有机电致发光器件中的应用。
实施例 7
以实施例 1中的硅芴金属卟啉-苯有机半导体材料为活性层材料的有机太阳能电池器件 一种有机太阳能电池器件, 其结构如图 1所示。 其中, 本实施例中的衬底釆用 ITO玻璃, 玻璃作为衬底基材, ITO作为导电层。
该有机太阳能电池器件的结构为: 玻璃 11/ITO层 12/PEDOT:PSS 层 13/活性层 14/A1层 15; 其中, 活性层的材盾为混合物, 包括电子给体材料, PCBM为电子受体材料; 电子给体 材料以实施例 1中的硅芴金属卟啉-苯有机半导体材料为材盾, 电子受体材料为 [6,6]苯基 -C61- 丁酸甲酯(筒称 PCBM ); ITO是方块电阻为 10-20 Ω/口的氧化铟锡, PEDOT为聚(3,4-亚乙 二氧基噻吩), PSS为聚(苯乙婦磺酸); 优选方块电阻为 18 Ω/口的 ITO。
该有机太阳能电池器件的制备过程为: 在玻璃基片 11的一个表面沉积一层方块电阻为 10-20 Ω/口的氧化铟锡(IT0 )层 12, 形 成作为阳极的导电层, 厚度约为 50-300 nm;
ITO玻璃经过超声波清洗, 并用氧 -Plasma处理后, 在 ITO表面涂上一层起修饰作用的 PEDOT:PSS层 13 , 厚度为 20-300 nm;
在聚( 3,4-亚乙二氧基噻吩): PSS为聚(苯乙婦磺酸)层上釆用旋涂技术涂覆一层活性 层 14, 厚度为 50-300 nm, 该活性层的材盾以实施例 1中的硅芴金属卟啉 -苯有机半导体材料 和 [6,6]苯基 -C61 -丁酸甲酯 (筒称 PCBM ) 的混合物;
在活性层的表面真空蒸镀金属铝, 形成作为阴极的金属铝层 15 , 得到有机太阳能电池器 件;
将有机太阳能电池器件用环氧树脂封装后, 置于 110°C密闭条件下退火 1.5小时, 再降 到室温。 由于器件经过退火后, 材料的化学结构更加规整有序, 提高了载流子的传输速度和 效率, 从而提高了器件的光电转换效率。
优选 ITO、 PEDOT:PSS层、活性层、 A1层的厚度分别为 150 nm、 50 nm、 120 nm、 100 nm。 实施例 8
以实施例 1中的硅芴金属卟啉-苯有机半导体材料为材盾的机电致发光器件
一种有机电致发光器件, 其结构如图 2所示; 本实施例中的衬底釆用 ITO玻璃, 玻璃作 为衬底基材, ITO作为导电层。
该有机电致发光器件的结构为: 玻璃 21 /ITO层 22/发光层 23/LiF緩冲层 24/ A1层 25; 其 中: 发光层以实施例 1中的硅芴金属卟啉-苯有机半导体材料为材盾。
该有机电致发光器件的制备过程为:
在玻璃基片 21的一个表面沉积一层方块电阻为 10-20 Ω/口的氧化铟锡(ITO )层 22, 形 成作为阳极的导电层, 厚度为 50-300 nm; 优选方块电阻为 10 Ω/口的 ITO。
通过旋涂技术在 ITO表面制备一层以实施例 1中的硅芴金属卟啉-苯有机半导体材料为材 盾的发光层 23 , 厚度约为 50-300 nm;
在发光层上真空蒸镀 LiF, 作为緩冲层 14, 厚度约为 0.3-2 nm;
在所述发光层上真空蒸镀金属铝, 形成作为阴极的金属铝层 25 , 得到所述有机电致发光 器件。 实施例 9
以含实施例一中的实施例一中的硅芴金属卟啉-苯有机半导体材料为材质的有机场效应 晶体管
一种有机场效应晶体管, 其结构如图 3 所示; 本实施例中的衬底釆用掺杂硅片 (Si )作 为衬底。
该有机场效应晶体管的结构为: Si 31/450nm厚的 Si02绝缘层 32/用于修饰 Si02的十八 烷基三氯硅烷( OTS )层 33/有机半导体层 34 /以金为材盾的源电极( S ) 35和漏电极(D ) 36; 其中, 有机半导体层以实施例 1中的硅芴金属卟啉-苯有机半导体材料为材盾; 其中, 源 电极(S )和漏电极(D )材盾也可以选用铜材。
该有机场效应晶体管的制备过程为:
首先,在清洗过后的掺杂硅片 31的一个表面上涂覆一层 450nm厚的 Si02绝缘层 32;其 次,在所述 Si02绝缘层上涂覆一层起修饰作用的十八烷基三氯硅烷层 33 ,厚度为 10-200 nm; 接着,在所述十八烷基三氯硅烷层上旋涂一层以实施例 1中的硅芴金属卟啉-苯有机半导体材 料为材盾的有机半导体层 34, 厚度约为 30-300 nm; 最后, 在所述有机半导体层上间隔设置 有以金但不仅限于金为材盾的源电极( S ) 35和漏电极(D ) 36,得到所述有机场效应晶体管。
应当理解的是, 上述针对本发明较佳实施例的表述较为详细, 并不能因此而认为是对本 发明专利保护范围的限制, 本发明的专利保护范围应以所附权利要求为准。

Claims

权利要求书
1、 具有如下通式(I ) 的硅芴金属卟啉-苯有机半导体材料:
Figure imgf000031_0001
式中: n为 1-100间的整数, Ri , R2 , R3 , 分别为 H、 d-C32的烷基、 苯基、 含有一个 或多个 d-C32的烷基苯或烷氧基苯; M为金属离子。
2、 根据权利要求 1 所述的硅芴金属卟啉-苯有机半导体材料, 其特征在于, 所述金属离 子为 Zn2+、 Cu2+、 Fe2+、 Co2+、 Cd2+、 Pt2+、 Zr2+、 Mn2+、 Ni2+、 Pb2+、 Sn2+
3、 一种硅芴金属卟啉 -苯有机半导体材料的制备方法, 其特征在于, 所述制备方法包括 如下步骤:
H H
步骤 Sl、 氧化剂、 第一催化剂存在条件下, 将结构式为 """"~"""""" 的二吡咯甲烷、 结
构式为
Figure imgf000031_0002
溶于第一有机溶剂 , 于 20-100°C温度下, 反应 1-24 小时, 得到结构式为
Figure imgf000031_0003
的硅芴卟啉衍生物; 式中, R , R2 , R3 , R4分别为 H、 C1-C32 的烷基、 苯基、 含有一个或多个 d-C32的烷基苯或烷氧基苯;
步骤 S2、将步骤 S1中得到的硅芴卟啉衍生物和溴化剂加入到第二有机溶剂中,于 0~120°C 下反应 1~72小时, 得到结构式为 的二溴硅芴卟啉衍生物; 步骤 S3、 将步骤 S2中得到的二溴硅芴卟啉衍生物溶于第三有机溶剂中, 接着加入含 M 属 离 子 的 溶 液 , 于 0-30°C 下 搅 拌 0.5-24 小 时 , 得 到 结 构 式 为
Figure imgf000032_0001
的二溴硅芴金属卟啉衍生物;
步骤 S4、 无氧环境中, 第二催化剂和第四有机溶剂存在条件下, 将步骤 S3 中得到的二 B_ V
溴硅芴金属卟啉衍生物和结构式为 ' 、ο' '的 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂 氧戊硼烷)苯按摩尔比 1 :2~2: 1 , 于 50-120°C中进行 Suzuki耦合反应 12-72小时, 得到结构式
Figure imgf000032_0002
的所述硅芴金属卟啉-苯有机半导体材料, 式中, n为 1-100间的整数。
4、 根据权利要求 3所述的制备方法, 其特征在于, 所述步骤 Si t , 所述二吡咯甲烷、 第一硅芴衍生物、 第二硅芴衍生物的摩尔比为 a:b:c=l : l~100: l~100, 其中 a=b+c, JL a>b>0; 所述第一催化剂为丙酸、 三氟乙酸; 所述氧化剂为二氯二氨基苯醌; 所述第一有机溶剂为三 氯甲烷、 二氯甲烷中的一种或两种。
5、 根据权利要求 3所述的制备方法, 其特征在于, 所述步骤 S2中, 所述硅芴卟啉衍生 物和溴化剂的用量摩尔比为 1 :2~1 :5; 所述溴化剂为 N-溴代丁二酰亚胺; 所述第二有机溶剂为 四氢呋喃、 氯仿、 二甲基酰胺或邻二氯苯中的至少一种。
6、 根据权利要求 3所述的制备方法, 其特征在于, 所述步骤 S3中, 所述二溴硅芴卟啉 衍生物和 M离子的摩尔比为 1 : 1~1 :5; 所述第三有机溶剂为三氯甲烷、 四氢呋喃、 苯、 甲苯 或二氯甲烷中的至少一种; 所述含 M金属离子的溶液中, M金属离子选自 Zn2+、 Cu2+、 Fe2+、 Co2+、 Cd2+、 Pt2+、 Zr2+、 Mn2+、 M2+、 Pb2+或 Sn2+中的一种, 溶剂为甲醇、 乙醇或水中的至少 一种。
7、 根据权利要求 3所述的制备方法, 其特征在于, 所述步骤 S4中, 所述第二催化剂为 有机钯或有机钯与有机磷配体的混合物;
所述有机钯为 Pd2(dba)3、 Pd(PPh3)4、 Pd(OAc)2或 Pd(PPh3)2Cl2;
所述有机碑配体为 P(o-Tol)3、 三环己基膦;
所述第四有机溶剂为四氢呋喃、二氯甲烷、 氯仿、二氧六环、二甲基酰胺、 乙二醇二甲醚、 二甲基亚砜、 苯、 氯苯或甲苯中的至少一种。
8、 根据权利要求 3 所述的制备方法, 其特征在于, 所述步骤 S4 中, 还包括 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯的制备, 其制备步骤如下: 将结构式为
Figure imgf000033_0001
中,用液氮 /异丙醇降温至 -78°C , 然
后滴加正丁基锂,并在 -78°C反应 1-3小时,再加入结构式为
Figure imgf000033_0002
2-异丙氧基 -4,4: 四甲基 -1,3,2-二杂氧戊硼烷, 继续在 -78°C下反应 0.5-2小时, 然后自然升温至室温, 反应 6-36 小时, 得到所述 1,4-对二 (4,4,5,5-四甲基 -1,3,2-二杂氧戊硼烷)苯。
9、 根据权利要求 8所述的制备方法, 其特征在于, 所述第五有机溶剂中为四氢呋喃、 乙 醚或者二氧六环中的至少一种; 所述对二溴苯与 2-异丙氧基 -4,4,5,5-四甲基 -1,3,2-二杂氧戊硼 烷的摩尔比 1 :2~5。
10、 一种如权利要求 1所述的硅芴金属卟啉 -苯有机半导体材料在有机太阳能电池,有 机电致发光器件, 有机场效应晶体管, 有机光存储, 有机非线性器件和有机激光器件等领域 中的应用。
PCT/CN2010/076847 2010-09-13 2010-09-13 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用 WO2012034267A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080068186.4A CN103025737B (zh) 2010-09-13 2010-09-13 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用
EP10857123.3A EP2617725B1 (en) 2010-09-13 2010-09-13 Silafluorene metalloporphyrin- benzene organic semiconductor material and preparing method and uses thereof
US13/821,523 US8841443B2 (en) 2010-09-13 2010-09-13 Silafluorene metalloporphyrin-benzene organic semiconductor material and preparing method and uses thereof
JP2013527442A JP5538630B2 (ja) 2010-09-13 2010-09-13 シラフルオレン金属ポルフィリン−ベンゼン有機半導体材料及びその調製方法並びに応用
PCT/CN2010/076847 WO2012034267A1 (zh) 2010-09-13 2010-09-13 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076847 WO2012034267A1 (zh) 2010-09-13 2010-09-13 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012034267A1 true WO2012034267A1 (zh) 2012-03-22

Family

ID=45830918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076847 WO2012034267A1 (zh) 2010-09-13 2010-09-13 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US8841443B2 (zh)
EP (1) EP2617725B1 (zh)
JP (1) JP5538630B2 (zh)
CN (1) CN103025737B (zh)
WO (1) WO2012034267A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018077660A1 (en) * 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
CN111009611B (zh) * 2019-11-13 2022-07-12 浙江师范大学 有机无机杂化纳米薄膜阻变存储器的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152149A1 (en) * 2005-01-11 2006-07-13 General Electric Company Porphyrin compositions
WO2010075512A1 (en) * 2008-12-23 2010-07-01 Michigan Technological University Polymers with bodipy-based backbone for solar cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371199B1 (en) 1992-08-14 1995-12-26 Univ Pennsylvania Substituted porphyrins porphyrin-containing polymers and synthetic methods therefor
JP3150948B2 (ja) 1998-09-21 2001-03-26 科学技術振興事業団 メソ位直結型ポルフィリンポリマーとその製造方法
JP4752269B2 (ja) * 2004-12-28 2011-08-17 ソニー株式会社 ポルフィリン化合物及びその製造方法、有機半導体膜、並びに半導体装置
US20100177264A1 (en) 2005-08-15 2010-07-15 Sumitomo Checmical Company, Limited Light-emitting material containing metal complex and photoelectric device using same
EP2030266B1 (en) * 2006-05-15 2016-03-23 Nitto Denko Corporation Light emitting devices and compositions
CN102686592B (zh) 2010-01-30 2013-11-27 海洋王照明科技股份有限公司 含芴卟啉-蒽共聚物、其制备方法和应用
CN102712652B (zh) 2010-03-23 2014-03-19 海洋王照明科技股份有限公司 含芴卟啉-苯共聚物、其制备方法和应用
CN102770476B (zh) 2010-05-18 2014-02-05 海洋王照明科技股份有限公司 一种含喹喔啉单元卟啉共聚物及其制备方法和应用
JP5443655B2 (ja) 2010-06-07 2014-03-19 海洋王照明科技股▲ふん▼有限公司 チエノチアジアゾール単位を含むポルフィリン共重合体、該共重合体の製造方法及びその応用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060152149A1 (en) * 2005-01-11 2006-07-13 General Electric Company Porphyrin compositions
WO2010075512A1 (en) * 2008-12-23 2010-07-01 Michigan Technological University Polymers with bodipy-based backbone for solar cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 35, 2002, pages 3474
MACROMOLECULES, vol. 39, 2006, pages 456
N. S SARICIFTCI; L. S MILOWITZ; A. J. HEEGER ET AL., SCIENCE, vol. 258, 1992, pages 1474
See also references of EP2617725A4
TETRAHEDRON, vol. 39, 1994, pages 11427

Also Published As

Publication number Publication date
EP2617725A1 (en) 2013-07-24
CN103025737A (zh) 2013-04-03
JP5538630B2 (ja) 2014-07-02
EP2617725B1 (en) 2014-09-03
US8841443B2 (en) 2014-09-23
EP2617725A4 (en) 2014-03-12
JP2013538276A (ja) 2013-10-10
US20130165646A1 (en) 2013-06-27
CN103025737B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN103154057B (zh) 含异靛单元的共轭聚合物及其制备方法和应用
JP5859872B2 (ja) 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
CN104045657B (zh) 五元杂环衍生物桥联的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
WO2011160295A1 (zh) 含芴、蒽和苯并噻二唑单元的聚合物及其制备方法和应用
CN104177378A (zh) 四取代的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
EP2581399B1 (en) Conjugated polymer based on perylene tetracarboxylic acid diimide and benzodithiophene and its preparation method and application
CN103403907A (zh) 有机光电转换元件的制造方法
WO2011116516A1 (zh) 含芴卟啉-苯共聚物、其制备方法和应用
EP2573124B1 (en) Porphyrin copolymer containing quinoxaline unit, preparation method and uses thereof
WO2012034267A1 (zh) 硅芴金属卟啉-苯有机半导体材料及其制备方法和应用
WO2012034264A1 (zh) 含芴有机半导体材料,其制备方法和应用
CN102417584B (zh) 金属卟啉-蒽有机半导体材料及其制备方法和应用
WO2012083515A1 (zh) 一种有机半导体材料及其制备方法和应用
CN102453233B (zh) 含金属卟啉-三苯胺有机半导体材料及其制备方法和应用
CN102295756B (zh) 含咔唑卟啉-噻吩并噻二唑共聚物及其制备方法和应用
CN102417586B (zh) 金属卟啉-苯并噻二唑有机半导体材料及其制备方法和应用
JP2015510948A (ja) チオフェン−ベンゼン−チオフェン単位を含有するポリマー、その製造方法、および太陽電池デバイス
CN102453234B (zh) 金属卟啉-噻吩并噻二唑有机半导体材料及其制备方法和应用
JP2015093944A (ja) 高分子化合物およびそれを用いた有機半導体素子
CN102329417B (zh) 含咔唑卟啉-苯共聚物及其制备方法和应用
CN102453232B (zh) 金属卟啉-吡咯并吡咯有机半导体材料及其制备方法和应用
WO2011153680A1 (zh) 含噻吩并噻二唑单元卟啉共聚物、其制备方法和应用
WO2011147071A1 (zh) 一种醌型硅芴类有机半导体材料及其制备方法和应用
CN102206328A (zh) 含苯并噻二唑单元卟啉共聚物、其制备方法和应用
CN102443141B (zh) 金属卟啉-喹喔啉有机半导体材料及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068186.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010857123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13821523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013527442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE