CN111009611B - 有机无机杂化纳米薄膜阻变存储器的制备方法 - Google Patents

有机无机杂化纳米薄膜阻变存储器的制备方法 Download PDF

Info

Publication number
CN111009611B
CN111009611B CN201911106083.1A CN201911106083A CN111009611B CN 111009611 B CN111009611 B CN 111009611B CN 201911106083 A CN201911106083 A CN 201911106083A CN 111009611 B CN111009611 B CN 111009611B
Authority
CN
China
Prior art keywords
titanium
film
organic
solution
random access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911106083.1A
Other languages
English (en)
Other versions
CN111009611A (zh
Inventor
黄仕华
金日升
李兴达
李林华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201911106083.1A priority Critical patent/CN111009611B/zh
Publication of CN111009611A publication Critical patent/CN111009611A/zh
Application granted granted Critical
Publication of CN111009611B publication Critical patent/CN111009611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种有机无机杂化纳米薄膜阻变存储器的制备方法,包括如下步骤:首先利用氯化钛与盐酸、邻菲罗啉、氢氧化钠、丙烯酸反应,制备丙烯酸钛单体;其次,采用甲基丙烯酸甲酯为共聚单体,过硫酸钾/偶氮二异丁腈作为引发剂,吡啶硫酮作为催化剂,制备钛离子与MMA杂化共聚物;最后,利用旋涂法把杂化共聚物涂覆在导电玻璃表面,获得杂化纳米薄膜,随后低温退火,然后在薄膜表面沉积二氧化钛和金属电极。通过本发明获得的阻变存储器,其漏电流小于10pA,其开关电阻比大于106,循环次数高于105次。

Description

有机无机杂化纳米薄膜阻变存储器的制备方法
技术领域
本发明属于非挥发性存储器的技术领域,具体涉及有机无机杂化纳米薄膜阻变存储器的制备方法。
背景技术
无机薄膜阻变存储器具有高阻态与低阻态的电阻比值高、循环周期长、响应速度快等特点,但其成本也高。有机薄膜阻变存储器具有成本低、可弯曲、大面积等优点,但是高低态的电阻比值较低,循环次数少、响应速度慢等缺点。有机—无机杂化薄膜兼具有机薄膜和有机薄膜的综合特点,通过在有机薄膜中引入无机质点,有机—无机杂化纳米薄膜的网络结构得到了有效改善,提高了薄膜的电学和热学稳定性,因此有机无机杂化纳米薄膜阻变存储器的性能可以显著提升。在全有机材料阻变存储器中,一般以聚苯乙烯、乙炔、五苯、PEDOT:PSS、Alq3、苯胺等作为存储介质,金、银等金属作为电极,形成金属/有机薄膜/金属结构的存储器,其开关电阻比、循环次数比相对于无机存储器来说是比较低的。具有金属/有机薄膜/金属结构的阻变存储器的电阻转变机理可以用金属导电细丝理论来解释,电极金属的纳米颗粒在外加电压的作用下向有机层渗入,当电压达到阈值后,这些金属纳米颗粒在有机层中形成导电细丝,器件的高阻态或低阻态也就发生转变。
具有金属/有机薄膜/金属结构的阻变存储器性能较差的主要原因是,由于有机薄膜的电导率比较大,导致器件的漏电流较大,因此开关电阻比值较小;另一方面,在器件的多次开关循环的情况下,漏电流较大导致有机薄膜的分子结构很容易破坏,最终使得器件失效。如果在电导率低的有机薄膜中,利用有机—无机杂化的方式引入过渡金属钛离子,这些金属离子的量子隧穿效应起到导电细丝的功能,而不是利用金属离子的渗入形成的导电通道,从而器件的漏电流小,有机薄膜的分子结构在多次开关循环下还可以得到保持,因此器件的开关电阻比高、循环次数大。
发明内容
本发明的目的是提供一种有机无机杂化的纳米薄膜阻变存储器的制备方法。
为此,本发明采用的技术方案是这样的:有机无机杂化纳米薄膜阻变存储器的制备方法,其特征在于:包括如下步骤:首先利用氯化钛与盐酸、邻菲罗啉、氢氧化钠、丙烯酸反应,制备丙烯酸钛单体;其次,采用甲基丙烯酸甲酯为共聚单体,过硫酸钾/偶氮二异丁腈作为引发剂,吡啶硫酮作为催化剂,制备钛离子与MMA杂化共聚物;最后,利用旋涂法把杂化共聚物涂覆在导电玻璃表面,获得杂化纳米薄膜,随后低温退火,然后在薄膜表面沉积二氧化钛和金属电极。
更具体地,包括如下步骤:
1)清洗、吹干ITO玻璃衬底;
2)制备丙烯酸钛单体:
a.取0.55mL的四氯化钛溶液滴入50.0mL无水乙醇中,摇晃均匀后,获得溶液A;
b.取2.50mmol邻菲罗啉(0.495g)加入至25.0mL无水乙醇,使其溶解,摇晃均匀后获得溶液B;
c.取10.0mL的溶液B,在不断搅拌的条件下缓慢滴入5.0mL的溶液A中,抽滤干燥分离,获得白色粉末;然后将白色粉末溶于去离子水中,滴加NaOH(0.1mol/L)溶液,产生白色絮状沉淀,继续滴加,直至不再产生沉淀为止;将该浑浊液体放入离心机,在4000转/分钟的速度离心5min,然后去除上层清液,加去离子水,搅拌浑浊后继续放入离心机洗涤,直至上层清液的pH等于7,最后抽滤干燥后获得得到Ti(OH)4粉末;
d.在不断搅拌的条件下,缓慢滴加丙烯酸直至Ti(OH)4粉末完全溶解,放入120℃的油浴锅中蒸馏,并用磁子进行搅拌,直至溶液变为粘稠状;冷却后用无水乙醇进行洗涤,通过离心机进行分离,在经过洗涤—离心分离2~3次以后,获得Ti(MA)4单体;
3)钛与MMA杂化共聚物制备:
在上述制备所得的丙烯酸钛中,加入250mL的乙醇,在75℃下的磁力搅拌和水浴条件下充分溶解,再分别滴加30~50mL甲基丙烯酸甲酯、3.0mL过硫酸钾溶液(1.5mol/L)、含有0.68g偶氮二异丁腈和0.24g吡啶硫酮的3.0mL甲醇溶液,在85~90℃下的磁力搅拌和水浴条件下反应2~3h以后,冷却至室温,获得钛与MMA杂化共聚物;
4)有机—无机杂化纳米薄膜制备:
采用旋涂法把钛与MMA杂化共聚物涂覆在经过处理的FTO导电玻璃基片上,通过调节旋涂时间和转速,把薄膜厚度控制在200~300nm范围内,然后在150~220℃温度下进行热处理2.5h,最终获得有机—无机杂化纳米薄膜;
5)阻变存储器制备:
把表面已经生长有机—无机杂化纳米薄膜的导电玻璃放入真空镀膜仪,蒸镀腔的真空度优于1×10-3Pa;首先,在薄膜表面蒸镀厚度为10~15nm的二氧化钛薄膜,随后在原位退火15min,退火温度为200℃;其次,采用掩膜板(孔径为1mm),在室温下,在二氧化钛薄膜表面蒸镀厚度为500nm的银薄膜。
通过本发明获得的阻变存储器,其漏电流小于10pA,其开关电阻比大于106,循环次数高于105次。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为有机无机杂化纳米薄膜阻变存储器的电流—电压特性图。
具体实施方式
1)主要实验原材料和仪器设备
ITO导电玻璃:方块电阻6~10Ω,尺寸20×20mm2
四氯化钛(TiCl4):99.9%,化学纯
丙烯酸(MA,C3H4O2):99.9%,化学纯
邻菲罗啉(Phen,C12H8N2):99%,分析纯
甲基丙烯酸甲酯(MMA,C5H8O2):99%,分析纯
偶氮二异丁腈(C8H12N4)、吡啶硫酮(C5H5NOS):97%,化学纯
二氧化钛粉末、金属银:99.99%
过硫酸钾、氢氧化钠、无水乙醇、丙酮等常用化学试剂:分析纯
去离子水:电阻率大于18.2MΩ.cm
水浴锅、油浴锅、磁力搅拌器、烘箱、离心机、旋转蒸发仪、马弗炉、旋转涂膜仪、电流—电压测试仪
2)玻璃基片清洗
首先用专用玻璃洗涤剂、丙酮、无水乙醇依次对ITO导电玻璃衬底进行超声清洗,每次清洗后用去离子水冲洗多遍,最后用氮气吹干后待用。
3)丙烯酸钛单体制备
第一,取0.55mL的四氯化钛溶液滴入50.0mL无水乙醇中,摇晃均匀后,获得溶液A。
第二,取2.50mmol邻菲罗啉(0.495g)加入至25.0mL无水乙醇,使其溶解,摇晃均匀后获得溶液B。
第三,取10.0mL的溶液B,在不断搅拌的条件下缓慢滴入5.0mL的溶液A中,抽滤干燥分离,获得白色粉末。然后将白色粉末溶于去离子水中,滴加NaOH(0.1mol/L)溶液,产生白色絮状沉淀,继续滴加,直至不再产生沉淀为止。将该浑浊液体放入离心机,在4000转/分钟的速度离心5min,然后去除上层清液,加去离子水,搅拌浑浊后继续放入离心机洗涤,直至上层清液的pH等于7,最后抽滤干燥后获得得到Ti(OH)4粉末。
第四,在不断搅拌的条件下,缓慢滴加丙烯酸直至Ti(OH)4粉末完全溶解,放入120℃的油浴锅中蒸馏,并用磁子进行搅拌,直至溶液变为粘稠状。冷却后用无水乙醇进行洗涤,通过离心机进行分离,在经过洗涤—离心分离2~3次以后,获得Ti(MA)4单体。
4)钛与MMA杂化共聚物制备
在上述制备所得的丙烯酸钛中,加入250mL的乙醇,在75℃下的磁力搅拌和水浴条件下充分溶解,再分别滴加30~50mL甲基丙烯酸甲酯、3.0mL过硫酸钾溶液(1.5mol/L)、含有0.68g偶氮二异丁腈和0.24g吡啶硫酮的3.0mL甲醇溶液,在85~90℃下的磁力搅拌和水浴条件下反应2~3h以后,冷却至室温,获得钛与MMA杂化共聚物。
5)有机—无机杂化纳米薄膜制备
采用旋涂法把钛与MMA杂化共聚物涂覆在经过处理的FTO导电玻璃基片上,通过调节旋涂时间和转速,把薄膜厚度控制在200~300nm范围内,然后在150~220℃温度下进行热处理2.5h,最终获得有机—无机杂化纳米薄膜。
6)阻变存储器制备
把表面已经生长有机—无机杂化纳米薄膜的导电玻璃放入真空镀膜仪,蒸镀腔的真空度优于1×10-3Pa。首先,在薄膜表面蒸镀厚度为10~15nm的二氧化钛薄膜,随后在原位退火15min,退火温度为200℃。其次,采用掩膜板(孔径为1mm),在室温下,在二氧化钛薄膜表面蒸镀厚度为500nm的银薄膜。
7)测试分析
利用电流—电压(I-V)测试仪分析阻变存储器的电学特性,限制电流为1mA,以防止流过器件的电流过大而烧坏器件。当电压扫描采用0V→10V→0V→(-10V)→0V的方式,器件的I-V特性如图1所示。电压从0V开始扫描(SET)时,电流较小,电阻较大,器件处于高阻值状态(HRS);当扫描电压增大至5.0V时,电流急剧增加,电阻急剧降低,表明此时器件达到低阻值态(LRS)。当电压重新从10V向0V扫描(RESET)时,器件一直保持在低阻值态(LRS)。当电压继续从0V向-10V方向扫描时,器件电流在-8.7V急剧下降,电阻突然增大,器件从低阻态回到高阻态。电压从-10V到0V的扫描过程中,器件始终处于高阻值态。重复0V→10V→0V→(-10V)→0V的扫描电压,器件的阻值表现出周期性的现象,说明该器件具有阻变存储特性。器件的漏电流小于10pA,最大高低阻抗比(高阻态与低阻态的电阻值之比)大于106,循环次数高于105次。

Claims (2)

1.有机无机杂化纳米薄膜阻变存储器的制备方法,其特征在于:包括如下步骤:首先利用氯化钛与盐酸、邻菲罗啉、氢氧化钠、丙烯酸反应,制备丙烯酸钛单体;其次,采用甲基丙烯酸甲酯为共聚单体,过硫酸钾/偶氮二异丁腈作为引发剂,吡啶硫酮作为催化剂,制备钛离子与MMA杂化共聚物;最后,利用旋涂法把杂化共聚物涂覆在导电玻璃表面,获得杂化纳米薄膜,随后低温退火,然后在薄膜表面沉积二氧化钛和金属电极。
2.如权利要求1所述的有机无机杂化纳米薄膜阻变存储器的制备方法,其特征在于:包括如下步骤:
1)清洗、吹干ITO玻璃衬底;
2)制备丙烯酸钛单体:
a.取0.55mL的四氯化钛溶液滴入50.0mL无水乙醇中,摇晃均匀后,获得溶液A;
b.取2.50mmol邻菲罗啉加入至25.0mL无水乙醇,使其溶解,摇晃均匀后获得溶液B;
c.取10.0mL的溶液B,在不断搅拌的条件下缓慢滴入5.0mL的溶液A中,抽滤干燥分离,获得白色粉末;然后将白色粉末溶于去离子水中,滴加浓度为0.1mol/L的NaOH溶液,产生白色絮状沉淀,继续滴加,直至不再产生沉淀为止;将该浑浊液体放入离心机,在4000转/分钟的速度离心5min,然后去除上层清液,加去离子水,搅拌浑浊后继续放入离心机洗涤,直至上层清液的pH等于7,最后抽滤干燥后获得得到Ti(OH)4粉末;
d.在不断搅拌的条件下,缓慢滴加丙烯酸直至Ti(OH)4粉末完全溶解,放入120℃的油浴锅中蒸馏,并用磁子进行搅拌,直至溶液变为粘稠状;冷却后用无水乙醇进行洗涤,通过离心机进行分离,在经过洗涤—离心分离2~3次以后,获得Ti(MA)4单体;
3)钛与MMA杂化共聚物制备:
在上述制备所得的丙烯酸钛中,加入250mL的乙醇,在75℃下的磁力搅拌和水浴条件下充分溶解,再分别滴加30~50mL甲基丙烯酸甲酯、3.0mL浓度为1.5mol/L过硫酸钾溶液、含有0.68g偶氮二异丁腈和0.24g吡啶硫酮的3.0mL甲醇溶液,在85~90℃下的磁力搅拌和水浴条件下反应2~3h以后,冷却至室温,获得钛与MMA杂化共聚物;
4)有机—无机杂化纳米薄膜制备:
采用旋涂法把钛与MMA杂化共聚物涂覆在经过处理的FTO导电玻璃基片上,通过调节旋涂时间和转速,把薄膜厚度控制在200~300nm范围内,然后在150~220℃温度下进行热处理2.5h,最终获得有机—无机杂化纳米薄膜;
5)阻变存储器制备:
把表面已经生长有机—无机杂化纳米薄膜的导电玻璃放入真空镀膜仪,蒸镀腔的真空度优于1×10-3Pa;首先,在薄膜表面蒸镀厚度为10~15nm的二氧化钛薄膜,随后在原位退火15min,退火温度为200℃;其次,采用孔径为1mm的掩膜板,在室温下,在二氧化钛薄膜表面蒸镀厚度为500nm的银薄膜。
CN201911106083.1A 2019-11-13 2019-11-13 有机无机杂化纳米薄膜阻变存储器的制备方法 Active CN111009611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106083.1A CN111009611B (zh) 2019-11-13 2019-11-13 有机无机杂化纳米薄膜阻变存储器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106083.1A CN111009611B (zh) 2019-11-13 2019-11-13 有机无机杂化纳米薄膜阻变存储器的制备方法

Publications (2)

Publication Number Publication Date
CN111009611A CN111009611A (zh) 2020-04-14
CN111009611B true CN111009611B (zh) 2022-07-12

Family

ID=70111977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106083.1A Active CN111009611B (zh) 2019-11-13 2019-11-13 有机无机杂化纳米薄膜阻变存储器的制备方法

Country Status (1)

Country Link
CN (1) CN111009611B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832218A (zh) * 2004-12-24 2006-09-13 三星电子株式会社 非易失性有机存储器件的制法及其制备的存储器件
CN102412368A (zh) * 2011-09-29 2012-04-11 福州大学 基于聚合物/金属离子复合体系的阻变存储器及制备方法
CN103219464A (zh) * 2013-04-28 2013-07-24 桂林电子科技大学 一种mma/bmi共聚物有机阻变存储器及其制备方法
CN108847444A (zh) * 2018-08-02 2018-11-20 王金桢 一种聚酰亚胺电存储新材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345403A1 (de) * 2003-09-30 2005-04-28 Infineon Technologies Ag Material und Zellenaufbau für Speicheranwendungen
EP2617725B1 (en) * 2010-09-13 2014-09-03 Ocean's King Lighting Science&Technology Co., Ltd. Silafluorene metalloporphyrin- benzene organic semiconductor material and preparing method and uses thereof
JP2014027185A (ja) * 2012-07-27 2014-02-06 Toshiba Corp 不揮発性記憶装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832218A (zh) * 2004-12-24 2006-09-13 三星电子株式会社 非易失性有机存储器件的制法及其制备的存储器件
CN102412368A (zh) * 2011-09-29 2012-04-11 福州大学 基于聚合物/金属离子复合体系的阻变存储器及制备方法
CN103219464A (zh) * 2013-04-28 2013-07-24 桂林电子科技大学 一种mma/bmi共聚物有机阻变存储器及其制备方法
CN108847444A (zh) * 2018-08-02 2018-11-20 王金桢 一种聚酰亚胺电存储新材料的制备方法

Also Published As

Publication number Publication date
CN111009611A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
Raeis-Hosseini et al. Controlling the resistive switching behavior in starch-based flexible biomemristors
CN1972999B (zh) 包含电掺杂的导电性聚合物和形成胶体的聚合酸的非水性分散体
Chang et al. Resistive switching behavior in gelatin thin films for nonvolatile memory application
JP5435436B2 (ja) 複合導電性ポリマー組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
TW381407B (en) Electroluminescing devices
JP5052760B2 (ja) 導電材料の製造方法
Xiang et al. Efficient flash memory devices based on non-conjugated ferrocene-containing copolymers
CN103035842B (zh) 一种基于石墨烯量子点掺杂的有机阻变存储器及制备方法
Bandyopadhyay et al. Tuning of Organic Reversible Switching via Self‐Assembled Supramolecular Structures
Perumal et al. Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries
Li et al. Robust and Transient Write‐Once‐Read‐Many‐Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent
Guo et al. Stacked two-dimensional MXene composites for an energy-efficient memory and digital comparator
Chang et al. Metal and carbon filaments in biomemory devices through controlling the Al/apple pectin interface
Zhang et al. Donor–acceptor metallopolymers containing ferrocene for brain inspired memristive devices
CN111009611B (zh) 有机无机杂化纳米薄膜阻变存储器的制备方法
Zhou et al. Enhanced ternary memory performances with high-temperature tolerance in AIE@ PBI composites by tuning the azobenzol substituents on tetraphenylethylene
Zhang et al. Rationally Designing High‐Performance Versatile Organic Memristors through Molecule‐Mediated Ion Movements
Abbas et al. A Low Power‐consumption and Transient Nonvolatile Memory Based on Highly Dense All‐Inorganic Perovskite Films
Shen et al. A polyanionic strategy to modify the perovskite grain boundary for a larger switching ratio in flexible woven resistive random-access memories
WO2006049261A1 (ja) メモリー素子及びその製造方法
Patil et al. Spike-time dependent plasticity of tailored ZnO nanorod-based resistive memory for synaptic learning
Chang et al. Solution-processed natural konjac glucomannan material for resistive switching memory
Xu et al. Cs3Bi2Br9 Halide Perovskite Nanostructure/Polymer Composite Films Resistive Memory
Jouybar et al. Electrochemically Engineered Lanthanum Nickelate as a Promising Transparent Hole-Transport Layer for Bulk Heterojunction Polymer Solar Cells: An Experimental and DFT Study
He et al. Biodegradable natural chitosan coating films-based flexible resistive switching memory for transient electronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant