WO2012032856A1 - 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法 - Google Patents

微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法 Download PDF

Info

Publication number
WO2012032856A1
WO2012032856A1 PCT/JP2011/066158 JP2011066158W WO2012032856A1 WO 2012032856 A1 WO2012032856 A1 WO 2012032856A1 JP 2011066158 W JP2011066158 W JP 2011066158W WO 2012032856 A1 WO2012032856 A1 WO 2012032856A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl group
chloride
treatment liquid
carbon atoms
halide
Prior art date
Application number
PCT/JP2011/066158
Other languages
English (en)
French (fr)
Inventor
裕嗣 松永
大戸 秀
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2012532896A priority Critical patent/JP5664653B2/ja
Priority to EP11823335.2A priority patent/EP2615632B1/en
Priority to KR1020137005752A priority patent/KR101850356B1/ko
Priority to US13/820,899 priority patent/US8980812B2/en
Priority to CN201180043424.0A priority patent/CN103098180B/zh
Publication of WO2012032856A1 publication Critical patent/WO2012032856A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00777Preserve existing structures from alteration, e.g. temporary protection during manufacturing
    • B81C1/00825Protect against mechanical threats, e.g. against shocks, or residues
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3281Heterocyclic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a processing solution for suppressing pattern collapse of a fine structure and a method for producing a fine structure using the same.
  • a photolithography technique is used as a method for forming and processing an element having a fine structure used in a wide field such as a semiconductor device or a circuit board.
  • a wide field such as a semiconductor device or a circuit board.
  • the miniaturization, high integration, and high speed of semiconductor devices have advanced remarkably, and the resist pattern used for photolithography has become finer and the aspect ratio has been increasing. I'm following.
  • the miniaturization or the like progresses, the collapse of the resist pattern becomes a big problem.
  • the collapse of the resist pattern is caused by the surface tension of the processing liquid when the processing liquid used in the wet processing (mainly rinse processing for washing away the developing solution) after developing the resist pattern is dried from the resist pattern. It is known that it is generated by the action of stress. Therefore, in order to solve the collapse of the resist pattern, a method of drying by replacing the cleaning liquid with a low surface tension liquid using a nonionic surfactant or an alcohol solvent-soluble compound (for example, Patent Documents 1 and 2). And a method of hydrophobizing the surface of the resist pattern (for example, see Patent Document 3).
  • the present invention has been made under such circumstances, and provides a treatment liquid capable of suppressing pattern collapse of a fine structure made of silicon oxide such as a semiconductor device or a micromachine, and a method of manufacturing a fine structure using the same. It is for the purpose.
  • an imidazolium halide having a C12, C14, C16 alkyl group, a C14, C16 alkyl group has been found that the object can be achieved by a treatment liquid containing at least one of pyridinium halides having an alkyl group and ammonium halides having 16 or 18 carbon atoms.
  • the present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
  • the imidazolium halide is one or more selected from 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimidazolium chloride and 1-hexadecyl-3-methylimidazolium chloride. Treatment liquid for pattern collapse suppression. 4).
  • the pattern collapse inhibition according to item 1, wherein the pyridinium halide is at least one selected from tetradecylpyridinium chloride, hexadecylpyridinium chloride, 1-tetradecyl-4-methylpyridinium chloride and 1-hexadecyl-4-methylpyridinium chloride.
  • Treatment liquid. 5 is at least one selected from tetradecylpyridinium chloride, hexadecylpyridinium chloride, 1-tetradecyl-4-methylpyridinium chloride and 1-hexadecyl-4-methylpyridinium chloride.
  • a method for producing a microstructure comprising silicon oxide comprising using a treatment liquid for suppressing pattern collapse of a microstructure comprising at least one selected from ammonium halides having an alkyl group having 18 carbon atoms and water. 8).
  • a treatment liquid for suppressing pattern collapse of a microstructure comprising at least one selected from ammonium halides having an alkyl group having 18 carbon atoms and water.
  • the present invention it is possible to provide a treatment liquid capable of suppressing pattern collapse of a fine structure made of silicon oxide such as a semiconductor device or a micromachine, and a method of manufacturing a fine structure using the same.
  • the treatment liquid of the present invention (treatment liquid for pattern collapse suppression) is used for pattern collapse suppression of a fine structure made of silicon oxide, and has an imidazolium halide having an alkyl group having 12 carbon atoms, 14 carbon atoms, or 16 carbon atoms, It contains at least one selected from pyridinium halides having a C14 or C16 alkyl group and ammonium halides having a C16 or C18 alkyl group and water.
  • the “fine structure made of silicon oxide” refers to a fine structure in which a portion to be treated with the treatment liquid is made of silicon oxide.
  • the alkyl group having 12 carbon atoms is preferably a dodecyl group, the alkyl group having 14 carbon atoms is a tetradecyl group, the alkyl group having 16 carbon atoms is a hexadecyl group, and the alkyl group having 18 carbon atoms is preferably an okdadecyl group.
  • Such a compound having a linear alkyl group can be adsorbed onto the silicon oxide material at a higher density than a branched alkyl group.
  • the halide is preferably chlorine.
  • Examples of the imidazolium halide having an alkyl group having 12 carbon atoms, 14 carbon atoms and 16 carbon atoms include 1-dodecyl-3-methylimidazolium chloride, 1-dodecyl-3-methylimidazolium bromide, 1-dodecyl-3- Methylimidazolium iodide, 1-methyl-3-dodecylimidazolium chloride, 1-methyl-3-dodecylimidazolium bromide, 1-methyl-3-dodecylimidazolium iodide, 1-dodecyl-2-methyl-3- Benzylimidazolium chloride, 1-dodecyl-2-methyl-3-benzylimidazolium bromide, 1-dodecyl-2-methyl-3-benzylimidazolium iodide, 1-tetradecyl-3-methylimidazolium chloride, 1-tetradecyl
  • Examples of the pyridinium halide having an alkyl group having 14 or 16 carbon atoms include tetradecylpyridinium chloride, tetradecylpyridinium bromide, tetradecylpyridinium iodide, hexadecylpyridinium chloride, hexadecylpyridinium bromide, hexadecylpyridinium iodide, 1 -Tetradecyl-4-methylpyridinium chloride, 1-tetradecyl-4-methylpyridinium bromide, 1-tetradecyl-4-methylpyridinium iodide, 1-hexadecyl-4-methylpyridinium chloride, 1-hexadecyl-4-methylpyridinium bromide, 1-hexadecyl-4-methylpyridinium iodide and the like, and in particular, tetradecylpyridinium
  • ammonium halide having an alkyl group having 16 or 18 carbon atoms examples include hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium iodide, octadecyltrimethylammonium chloride, octadecyltrimethylammonium bromide, octadecyltrimethylammonium iodide.
  • the treatment liquid of the present invention is preferably an aqueous solution.
  • the water used is preferably water from which metal ions, organic impurities, particle particles, and the like have been removed by distillation, ion exchange treatment, filter treatment, various adsorption treatments, and the like, and pure water and ultrapure water are particularly preferred.
  • the treatment liquid of the present invention includes the imidazolium halide having an alkyl group having 12 carbon atoms, 14 carbon atoms, or 16 carbon atoms, pyridinium halide having an alkyl group having 14 carbon atoms or 16 carbon atoms, 16 carbon atoms, or 16 carbon atoms. It contains at least one selected from ammonium halides having 18 alkyl groups and water, and also contains various additives usually used in the treatment liquid as long as the effects of the treatment liquid are not impaired.
  • an imidazolium halide having an alkyl group having 12, 12 or 16 carbon atoms, a pyridinium halide having an alkyl group having 14 or 16 carbon atoms, 16 or 18 carbon atoms is preferably 10 ppm to 10%. If the content of the aforementioned compound is within the above range, the effects of these compounds can be sufficiently obtained, but in consideration of ease of handling, economy and foaming, it is preferable to use at a lower concentration of 5% or less.
  • the content is preferably 10 to 2000 ppm, and more preferably 10 to 1000 ppm.
  • an organic solvent such as alcohol may be added, or the solubility may be supplemented by adding an acid or an alkali.
  • an organic solvent such as alcohol
  • the treatment liquid of the present invention is suitably used for suppressing pattern collapse of fine structures such as semiconductor devices and micromachines.
  • a pattern of the fine structure a pattern using silicon oxide is preferably exemplified.
  • the microstructure is TEOS (tetraethoxyorthosilane oxide film) or SiOC-based low dielectric constant film (Black Diamond 2 (trade name) manufactured by Applied Materials, Aurora 2.7 or Aurora 2.4 (trade name) manufactured by ASM International). ) Or the like, or a part of the fine structure may include the insulating film type.
  • the treatment liquid of the present invention can exhibit an excellent effect of suppressing pattern collapse not only to a conventional fine structure but also to a fine structure having a finer and higher aspect ratio.
  • the aspect ratio is a value calculated by (pattern height / pattern width)
  • the treatment liquid of the present invention is an excellent pattern for patterns having a high aspect ratio of 3 or more, and further 7 or more.
  • the treatment liquid of the present invention has a fine pattern of 1: 1 line and space, even if the pattern size (pattern width) is 300 nm or less, 150 nm or less, 100 nm or less, and even 50 nm or less. It has an excellent effect of suppressing pattern collapse on a fine pattern having a cylindrical or columnar structure in which the interval between patterns is 300 nm or less, 150 nm or less, 100 nm or less, or 50 nm or less.
  • the method for producing a microstructure comprising silicon oxide according to the present invention is characterized in that the above-described treatment liquid of the present invention is used in a cleaning step after wet etching or dry etching. More specifically, in the cleaning step, preferably the fine structure pattern and the treatment liquid of the present invention are brought into contact with each other by dipping, spray discharge, spraying, etc., and then the treatment liquid is replaced with water and then dried.
  • the immersion time is preferably 10 seconds to 30 minutes, more preferably 15 seconds to 20 minutes, still more preferably 20 seconds to 15 minutes
  • the temperature condition is particularly preferably 30 seconds to 10 minutes, and the temperature condition is preferably 10 to 80 ° C., more preferably 15 to 60 ° C., still more preferably 25 to 50 ° C., and particularly preferably 25 to 40 ° C.
  • the surface of the pattern is hydrophobized so that the collapse of the pattern can be suppressed.
  • the treatment liquid of the present invention has a wet etching process or a dry etching process in the manufacturing process of the fine structure, followed by wet treatment (etching or cleaning, rinsing for washing away the cleaning liquid), and then drying. If it has a process, it can apply widely irrespective of the kind of microstructure. For example, (i) in the manufacture of a DRAM type semiconductor device, after wet etching is performed on an insulating film around a conductive film (see, for example, Japanese Patent Laid-Open Nos.
  • a strip After a cleaning process for removing contaminants generated after dry etching or wet etching at the time of processing a gate electrode in the manufacture of a semiconductor device having a transistor having a fin-like shape for example, Japanese Patent Application Laid-Open No.
  • Examples 1 to 11 As shown in FIG. 1A, after silicon nitride 103 (thickness: 100 nm) and silicon oxide 102 (thickness: 1200 nm) are formed on a silicon substrate 104, a photoresist 101 is formed. By exposing and developing 101, a cylindrical (chimney-like) photoresist 105 ( ⁇ 125 nm, distance between circles: 50 nm) shown in FIG. 1B was formed. Next, the cylinder 106 shown in FIG. 1C was etched to the silicon nitride layer 103 by dry etching using the photoresist 105 as a mask. At that time, etching residues 107 were generated inside and outside the cylinder.
  • the photoresist 105 was removed by ashing to obtain a structure having a cylinder 106 made of silicon oxide reaching the layer of silicon nitride 103 shown in FIG.
  • a 0.1 wt% hydrofluoric acid aqueous solution 25 ° C., 30 seconds immersion treatment
  • pure water treatment solutions 1 to 11 in Table 1 (30 ° C., 10 minutes) Liquid immersion treatment
  • pure water in that order, followed by drying to obtain FIG. 1 (e).
  • the obtained structure is a fine structure having a cylindrical (chimney-like) pattern of silicon oxide ( ⁇ 125 nm, height: 1200 nm (aspect ratio: 9.6), distance between cylinder: 50 nm). Yes, more than 70% of the pattern did not collapse.
  • pattern collapse was observed using “FE-SEM S-5500 (model number)” manufactured by Hitachi High-Technologies Corporation, and the collapse suppression rate was calculated as the ratio of the pattern that did not collapse in the total number of patterns. It was determined to be acceptable if the collapse inhibition rate was 50% or more.
  • Table 3 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each example.
  • Example 1 the etching residue 107 of the structure shown in FIG. 1 (d) was removed with a 0.1 wt% hydrofluoric acid aqueous solution (25 ° C., 30 seconds immersion treatment), and then treated with pure water only. Was carried out in the same manner as in Example 1. 50% or more of the pattern of the obtained structure caused the collapse as shown in FIG. 1 (f) (the collapse suppression rate is less than 50%).
  • Table 3 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in Comparative Example 1.
  • Example 1 the etching residue 107 of the structure shown in FIG. 1 (d) was removed with a 0.1 wt% hydrofluoric acid aqueous solution (25 ° C., 30 seconds immersion treatment) and treated with pure water, and then the treatment liquid Example 1 was carried out in the same manner as in Example 1 except that the treatments were carried out using Comparative Solutions 2 to 15 shown in Table 2 instead of 1. Over 50% of the pattern of the obtained structure collapsed as shown in FIG. Table 3 shows the results of the treatment liquid, the treatment method, and the collapse inhibition rate used in each of Comparative Examples 2 to 15.
  • the treatment liquid of the present invention can be suitably used for suppressing pattern collapse in the production of microstructures made of silicon oxide such as semiconductor devices and micromachines (MEMS).
  • MEMS micromachines
  • Photoresist 102 Silicon oxide 103. Silicon nitride 104. Silicon substrate 105. Circular photoresist 106. Cylindrical (silicon oxide) 107. Etching residue

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

 炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライドおよび炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含有する微細構造体のパターン倒壊抑制用処理液である。また、当該処理液を用いる酸化珪素からなる微細構造体の製造方法である。

Description

微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
 本発明は、微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法に関する。
 従来、半導体デバイスや回路基板といった広い分野で用いられる微細構造を有する素子の形成・加工方法として、フォトリソグラフィー技術が用いられている。当該分野においては、要求性能の高度化に伴い、半導体デバイスなどの小型化、高集積化、あるいは高速度化が著しく進み、フォトリソグラフィーに用いられるレジストパターンは微細化、そしてアスペクト比の増加の一途をたどっている。しかし、このように微細化などが進むと、レジストパターンの倒壊が大きな問題となる。
 レジストパターンの倒壊は、レジストパターンを現像した後のウエット処理(主に現像液を洗い流すためのリンス処理)で用いる処理液を該レジストパターンから乾燥させる際に、該処理液の表面張力に起因する応力が作用することで発生することが知られている。そこで、レジストパターンの倒壊を解決するために、非イオン性界面活性剤やアルコール系溶剤可溶性化合物などを用いた低表面張力の液体により洗浄液を置換して乾燥する方法(例えば、特許文献1及び2参照)、レジストパターンの表面を疎水化する方法(例えば、特許文献3参照)などが提案されている。
 ところで、フォトリソグラフィー技術を用いて形成される金属、金属窒化物あるいは金属酸化物、シリコン酸化物、シリコンなどからなる微細構造体(レジストを除く。特に記載がない限り以下同様)においては、構造体を形成している材料自体の強度が、レジストパターン自体の強度もしくはレジストパターンと基材との接合強度より高いことから、レジストパターンに比べ、該構造体パターンの倒壊は発生しにくい。しかし、半導体装置やマイクロマシンの小型化、高集積化、あるいは高速度化がさらに進むに従い、該構造体のパターンは微細化、そしてアスペクト比の増加による該構造体のパターンの倒壊が大きな問題となってきている。
 そこで、それら微細構造体パターンの倒壊を解決するために、界面活性剤を用いて疎水性保護膜を形成する方法(例えば、特許文献4参照)が提案されている。しかし、界面活性剤に関して種類(非イオン性、陰イオン性、陽イオン性等)、製品名、濃度等の具体的な記載はまったくない。
特開2004-184648号公報 特開2005-309260号公報 特開2006-163314号公報 特開2010-114467号公報
 このように、半導体装置やマイクロマシンといった微細構造体(特に、酸化珪素からなる微細構造体)の分野においては、パターンの倒壊を抑制する有効な技術は、知られていないのが実状である。
 本発明は、このような状況下になされたもので、半導体装置やマイクロマシンといった酸化珪素からなる微細構造体のパターン倒壊を抑制しうる処理液及びこれを用いた微細構造体の製造方法を提供することを目的とするものである。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、炭素数12、炭素数14、炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14、炭素数16のアルキル基を有するピリジニウムハライド、炭素数16、炭素数18のアルキル基を有するアンモニウムハライドの中から少なくとも一つを含む処理液により、その目的を達成し得ることを見出した。
 本発明は、かかる知見に基づいて完成したものである。すなわち、本発明の要旨は下記のとおりである。
1.酸化珪素からなる微細構造体のパターン倒壊抑制用処理液であって、炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライドおよび炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含有する微細構造体のパターン倒壊抑制用処理液。
2.炭素数12のアルキル基がドデシル基、炭素数14のアルキル基がテトラデシル基、炭素数16のアルキル基がヘキサデシル基、炭素数18のアルキル基がオクダデシル基である第1項記載のパターン倒壊抑制用処理液。
3.イミダゾリウムハライドが、1-ドデシル-3-メチルイミダゾリウムクロリド、1-テトラデシル-3-メチルイミダゾリウムクロリドおよび1-ヘキサデシル-3-メチルイミダゾリウムクロリドから選択される1種以上である第1項記載のパターン倒壊抑制用処理液。
4.ピリジニウムハライドが、テトラデシルピリジニウムクロリド、ヘキサデシルピリジニウムクロリド、1-テトラデシル-4-メチルピリジニウムクロリドおよび1-ヘキサデシル-4-メチルピリジニウムクロリドから選択される1種以上である第1項記載のパターン倒壊抑制用処理液。
5.アンモニウムハライドが、ヘキサデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムクロリド、ベンジルジメチルヘキサデシルアンモニウムクロリドおよびベンジルジメチルオクダデシルアンモニウムクロリドから選択される1種以上である第1項記載のパターン倒壊抑制用処理液。
6.イミダゾリウムハライド、ピリジニウムハライドおよびアンモニウムハライドの含有量が10ppm~10%である第1項に記載のパターン倒壊抑制用処理液。
7.ウェットエッチングまたはドライエッチングの後の洗浄工程において、炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライドおよび炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含有する微細構造体のパターン倒壊抑制用処理液を用いることを特徴とする酸化珪素からなる微細構造体の製造方法。
8.酸化珪素からなる微細構造体が、半導体装置又はマイクロマシンである第7項に記載の微細構造体の製造方法。
 本発明によれば、半導体装置やマイクロマシンといった酸化珪素からなる酸化珪素からなる微細構造体のパターン倒壊を抑制しうる処理液及びこれを用いた微細構造体の製造方法を提供することができる。
微細構造体の作製段階毎の断面模式図である。
(パターン倒壊抑制用処理液)
 本発明の処理液(パターン倒壊抑制用処理液)は、酸化珪素からなる微細構造体のパターン倒壊抑制に用いられ、炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライド、炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含むものである。
 ここで、「酸化珪素からなる微細構造体」とは、処理液により処理される部分が酸化珪素からなる微細構造体をいう。
 本発明の処理液に用いられる炭素数12、炭素数14、炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14、炭素数16のアルキル基を有するピリジニウムハライド、炭素数16、炭素数18のアルキル基を有するアンモニウムハライドは、微細構造体のパターンに用いられる酸化珪素に吸着して、該パターンの表面を疎水化しているものと考えられる。この場合の疎水化とは、本発明の処理液にて処理された酸化珪素の表面と水との接触角が70°以上となることを示している。
 炭素数12のアルキル基としてはドデシル基、炭素数14のアルキル基としてはテトラデシル基、炭素数16のアルキル基としてはヘキサデシル基、炭素数18のアルキル基としてはオクダデシル基であることが好ましい。これらのような直鎖状のアルキル基を有する化合物であれば、枝分かれしたアルキル基に比べて、高密度に酸化珪素材料上に吸着させることができる。
 また、実用性を考慮すると、ハライドとしては塩素であることが好ましい。
 炭素数12、炭素数14、炭素数16のアルキル基を有するイミダゾリウムハライドとしては、1‐ドデシル‐3‐メチルイミダゾリウムクロリド、1‐ドデシル‐3‐メチルイミダゾリウムブロミド、1‐ドデシル‐3‐メチルイミダゾリウムヨージド、1‐メチル‐3‐ドデシルイミダゾリウムクロリド、1‐メチル‐3‐ドデシルイミダゾリウムブロミド、1‐メチル‐3‐ドデシルイミダゾリウムヨージド、1‐ドデシル‐2‐メチル‐3‐ベンジルイミダゾリウムクロリド、1‐ドデシル‐2‐メチル‐3‐ベンジルイミダゾリウムブロミド、1‐ドデシル‐2‐メチル‐3‐ベンジルイミダゾリウムヨージド、1‐テトラデシル‐3‐メチルイミダゾリウムクロリド、1‐テトラデシル‐3‐メチルイミダゾリウムブロミド、1-テトラデシル-3-メチルイミダゾリウムヨージド、1‐メチル‐3‐テトラデシルイミダゾリウムクロリド、1-メチル-3-テトラデシルイミダゾリウムブロミド、1-メチル-3-テトラデシルイミダゾリウムヨージド、1-ヘキサデシル-3-メチルイミダゾリウムクロリド、1-ヘキサデシル-3-メチルイミダゾリウムブロミド、1‐ヘキサデシル‐3‐メチルイミダゾリウムヨージド、1‐ヘキサデシル‐4-メチルイミダゾリウムクロリド、1‐ヘキサデシル‐4‐メチルイミダゾリウムブロミド、1‐ヘキサデシル‐4‐メチルイミダゾリウムヨージド、1‐メチル‐3‐ヘキサデシルイミダゾリウムクロリド、1‐メチル‐3‐ヘキサデシルイミダゾリウムブロミド、1-メチル‐3‐ヘキサデシルイミダゾリウムヨージドなどが挙げられ、特に、1‐ドデシル‐3‐メチルイミダゾリウムクロリド、1‐テトラデシル‐3‐メチルイミダゾリウムクロリド、1‐ヘキサデシル‐3‐メチルイミダゾリウムクロリドが好ましい。
 炭素数14、炭素数16のアルキル基を有するピリジニウムハライドとしては、テトラデシルピリジニウムクロリド、テトラデシルピリジニウムブロミド、テトラデシルピリジニウムヨージド、ヘキサデシルピリジニウムクロリド、ヘキサデシルピリジニウムブロミド、ヘキサデシルピリジニウムヨージド、1-テトラデシル-4-メチルピリジニウムクロリド、1-テトラデシル-4‐メチルピリジニウムブロミド、1-テトラデシル-4-メチルピリジニウムヨージド、1-ヘキサデシル-4-メチルピリジニウムクロリド、1-ヘキサデシル-4-メチルピリジニウムブロミド、1-ヘキサデシル-4-メチルピリジニウムヨージド等が挙げられ、特に、テトラデシルピリジニウムクロリド、ヘキサデシルピリジニウムクロリド、1-テトラデシル-4-メチルピリジニウムクロリド、1-ヘキサデシル-4-メチルピリジニウムクロリドが好ましい。
炭素数16、炭素数18のアルキル基を有するアンモニウムハライドとしては、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムヨージド、オクタデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムヨージド、ジメチルエチルヘキサデシルアンモニウムクロリド、ジメチルエチルヘキサデシルアンモニウムブロミド、ジメチルエチルヘキサデシルアンモニウムヨージド、ジメチルエチルオクタデシルアンモニウムクロリド、ジメチルエチルオクタデシルアンモニウムブロミド、ジメチルエチルオクタデシルアンモニウムヨージド、ベンジルジメチルヘキサデシルアンモニウムクロリド、ベンジルジメチルヘキサデシルアンモニウムブロミド、ベンジルジメチルヘキサデシルアンモニウムヨージド、ベンジルジメチルオクダデシルアンモニウムクロリド、ベンジルジメチルオクダデシルアンモニウムブロミド、ベンジルジメチルオクダデシルアンモニウムヨージド、などが挙げられ、特に、ヘキサデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムクロリド、ベンジルジメチルヘキサデシルアンモニウムクロリド、ベンジルジメチルオクダデシルアンモニウムクロリドが好ましい。
 本発明の処理液は、水溶液であることが好ましい。使用される水としては、蒸留、イオン交換処理、フィルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーティクル粒子などが除去されたものが好ましく、特に純水、超純水が好ましい。
 本発明の処理液は、上記した炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライド、炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含み、その他、処理液に通常用いられる各種添加剤を処理液の効果を害しない範囲で含むものである。
 本発明の処理液中の炭素数12、炭素数14、炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14、炭素数16のアルキル基を有するピリジニウムハライド、炭素数16、炭素数18のアルキル基を有するアンモニウムハライドの含有量(複数使用する場合はそれらの合計量)は、10ppm~10%であることが好ましい。前述化合物の含有量が上記範囲内であれば、これらの化合物の効果が十分得られるが、取り扱いやすさや経済性や泡立ちを考慮して、より低濃度の5%以下で用いることが好ましく、より好ましくは10~2000ppmであり、さらに好ましくは10~1000ppmである。また、これらの化合物の水に対する溶解性が十分ではなく相分離するような場合、アルコールなどの有機溶剤を加えてもよいし、酸、アルカリを加えて溶解性を補ってもよい。また相分離せず単に白濁した場合でも、その処理液の効果を害しない範囲で用いても良いし、その処理液が均一となるように撹拌を伴って使用してもよい。また、処理液の白濁を避けるために、上記と同様にアルコールなどの有機溶剤や酸、アルカリを加えてから用いてもよい。
 本発明の処理液は、半導体装置やマイクロマシンといった微細構造体のパターン倒壊を抑制に好適に用いられる。ここで、微細構造体のパターンとしては、酸化珪素を用いてなるものが好ましく挙げられる。
 なお、微細構造体は、TEOS(テトラエトキシオルソシラン酸化膜)やSiOC系低低誘電率膜(AppliedMaterials社製Black Diamond2(商品名)、ASM International社製Aurora2.7やAurora2.4(商品名))などの絶縁膜種の上にパターニングされる場合や、微細構造の一部に絶縁膜種が含まれる場合がある。
 本発明の処理液は、従来の微細構造体はもちろんのこと、より微細化、高アスペクト比となる微細構造体に対して、優れたパターン倒壊抑制の効果を発揮することができる。ここで、アスペクト比は(パターンの高さ/パターン幅)により算出される値であり、3以上、さらには7以上という高アスペクト比を有するパターンに対して、本発明の処理液は優れたパターン倒壊抑制の効果を有する。また、本発明の処理液は、パターンサイズ(パターン幅)が300nm以下、150nm以下、100nm以下、さらには50nm以下であっても1:1のライン・アンド・スペースという微細なパターンや、同様にパターン間の間隔が300nm以下、150nm以下、100nm以下さらには50nm以下である円筒あるいは円柱状構造を持つ微細なパターンに対して、優れたパターン倒壊抑制の効果を有する。
[微細構造体の製造方法]
 本発明の酸化珪素からなる微細構造体の製造方法は、ウェットエッチング又はドライエッチングの後の洗浄工程において、上記した本発明の処理液を用いることを特徴とするものである。より具体的には、該洗浄工程において、好ましくは微細構造体のパターンと本発明の処理液とを浸漬、スプレー吐出、噴霧などにより接触させた後、水で該処理液を置換してから乾燥させる。ここで微細構造体のパターンと本発明の処理液とを浸漬により接触させる場合、浸漬時間は10秒~30分が好ましく、より好ましくは15秒~20分、さらに好ましくは20秒~15分、特に好ましくは30秒~10分であり、温度条件は10~80℃が好ましく、より好ましくは15~60℃、さらに好ましくは25~50℃、特に好ましくは25~40℃である。また、微細構造体のパターンと本発明の処理液との接触の前に、あらかじめ水で洗浄を行ってもよい。このように、微細構造体のパターンと本発明の処理液とを接触させることにより、該パターンの表面上を疎水化することにより、該パターンの倒壊を抑制することが可能となる。
 本発明の処理液は、微細構造体の製造工程において、ウェットエッチング又はドライエッチングの工程を有し、その後にウエット処理(エッチングまたは洗浄、それらの洗浄液を洗い流すためのリンス)してから、乾燥する工程を有していれば、微細構造体の種類を問わずに、広く適用することができる。例えば、(i)DRAM型の半導体装置の製造における、導電膜周辺の絶縁膜などをウェットエッチングした後(例えば特開2000-196038号公報及び特開2004-288710号公報参照)、(ii)短冊状のフィンを有するトランジスタを備えた半導体装置の製造における、ゲート電極の加工時のドライエッチングもしくはウェットエッチングの後に生成した汚染物を除去するための洗浄工程の後(例えば特開2007-335892号公報参照)、(iii)マイクロマシン(微小電気機械装置)のキャビティ形成において、導電性膜の貫通孔を解して絶縁膜からなる犠牲層を除去してキャビティを形成する際の、エッチング時に生成した汚染物を除去するための洗浄工程の後(例えば特開2009-122031号公報参照)などといった、半導体装置やマイクロマシンの製造工程におけるエッチング工程の後に、本発明の処理液は好適に用いることができる。
 次に、本発明を実施例により、さらに詳しく説明するが、本発明は、これらの例によってなんら限定されるものではない。
《処理液の調製》
 表1に示される配合組成(質量%)に従い、微細構造体のパターン倒壊抑制用処理液を調合した。
Figure JPOXMLDOC01-appb-T000001
*1:各化合物が有するアルキル基の炭素数
実施例1~11
 図1(a)に示すように、シリコン基板104上に窒化珪素103(厚さ:100nm)及び酸化珪素102(厚さ:1200nm)を成膜した後、フォトレジスト101を形成し、該フォトレジスト101を露光、現像することにより、図1(b)に示す筒状(煙突状)フォトレジスト105(φ125nm、円と円との距離:50nm)を形成した。次に、該フォトレジスト105をマスクとしてドライエッチングにより酸化珪素102に図1(c)に示す円筒106を、窒化珪素103の層までエッチングして形成した。その際、円筒の内側と外側にエッチング残渣107が生成された。次いで、フォトレジスト105をアッシングにより除去し、図1(d)に示す窒化珪素103の層に達した酸化珪素でできた円筒106を持つ構造体を得た。得られた構造体のエッチング残渣107を0.1重量%フッ酸水溶液により除去(25℃、30秒の浸漬処理)した後、純水、表1の処理液1~11(30℃、10分の浸漬処理)及び純水の順で接液処理し、乾燥を行い、図1(e)を得た。
 得られた構造体は、酸化珪素の筒状(煙突状)のパターン(φ125nm、高さ:1200nm(アスペクト比:9.6)、円筒と円筒との間の距離:50nm)を有する微細構造であり、70%以上の該パターンは倒壊することがなかった。
 ここで、パターンの倒壊は、「FE-SEM S-5500(型番)」:日立ハイテクノロジーズ社製を用いて観察し、倒壊抑制率は、パターン全本数中の倒壊しなかったパターンの割合を算出して求めた数値であり、該倒壊抑制率が50%以上であれば合格と判断した。各例において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
比較例1
 実施例1において、図1(d)に示される構造体のエッチング残渣107を0.1重量%フッ酸水溶液により除去(25℃、30秒の浸漬処理)した後、純水のみで処理した以外は、実施例1と同様に実施した。得られた構造体のパターンの50%以上は、図1(f)に示されるような倒壊をおこしていた(倒壊抑制率は50%未満となる。)。比較例1において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
比較例2~15
 実施例1において、図1(d)に示される構造体のエッチング残渣107を0.1重量%フッ酸水溶液により除去(25℃、30秒の浸漬処理)し純水で処理した後、処理液1の代わりに表2に示す比較液2~15で処理する以外は、実施例1と同様に実施した。得られた構造体のパターンの50%以上は、図1(f)に示されるような倒壊をおこしていた。各比較例2~15において使用した処理液、処理方法及び倒壊抑制率の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
*1:「フロラードFC-93(商品名、3M社製)、比重1.1(25℃)、pH7(0.1%水溶液)、引火点(開放式)38℃」;0.01%水溶液
*2:「サーフロンS-111(商品名、AGCセイミケミカル(株)製)、比重1.0(20℃)、引火点(タグ密閉式)18℃」;0.01%水溶液
*3:「サーフィノール420(商品名、日信化学工業株式会社製)、エチレンオキサイド含有量20%」;0.01%水溶液
*4:「サーフィノール104(商品名、日信化学工業株式会社製)」;0.01%水
*5:「エパン420(商品名、第一工業製薬株式会社製)、疎水基(ポリオキシプロピレン)平均分子量1200、ポリオキシエチレン含有率20%」;0.01%水溶液
*6~*11;0.01%水溶液
Figure JPOXMLDOC01-appb-T000003
*1,倒壊抑制率=(倒壊しなかった円筒数/全円筒数)×100[%]
 本発明の処理液は、半導体装置やマイクロマシン(MEMS)といった酸化珪素からなる微細構造体の製造におけるパターン倒壊の抑制に好適に用いることができる。
 101.フォトレジスト
 102.酸化珪素
 103.窒化珪素
 104.シリコン基板
 105.円状フォトレジスト
 106.円筒(酸化珪素)
 107.エッチング残渣

Claims (8)

  1.  酸化珪素からなる微細構造体のパターン倒壊抑制用処理液であって、炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライドおよび炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含有する微細構造体のパターン倒壊抑制用処理液。
  2.  炭素数12のアルキル基がドデシル基、炭素数14のアルキル基がテトラデシル基、炭素数16のアルキル基がヘキサデシル基、炭素数18のアルキル基がオクダデシル基である請求項1記載のパターン倒壊抑制用処理液。
  3.  イミダゾリウムハライドが、1-ドデシル-3-メチルイミダゾリウムクロリド、1-テトラデシル-3-メチルイミダゾリウムクロリドおよび1-ヘキサデシル-3-メチルイミダゾリウムクロリドから選択される1種以上である請求項1記載のパターン倒壊抑制
    用処理液。
  4.  ピリジニウムハライドが、テトラデシルピリジニウムクロリド、ヘキサデシルピリジニウムクロリド、1-テトラデシル-4-メチルピリジニウムクロリドおよび1-ヘキサデシル-4-メチルピリジニウムクロリドから選択される1種以上である請求項1記載のパターン倒壊抑制用処理液。
  5.  アンモニウムハライドが、ヘキサデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムクロリド、ベンジルジメチルヘキサデシルアンモニウムクロリドおよびベンジルジメチルオクダデシルアンモニウムクロリドから選択される1種以上である請求項1記載のパターン倒壊抑制用処理液。
  6.  イミダゾリウムハライド、ピリジニウムハライドおよびアンモニウムハライドの含有量が10ppm~10%である請求項1に記載のパターン倒壊抑制用処理液。
  7.  ウェットエッチングまたはドライエッチングの後の洗浄工程において、炭素数12、炭素数14または炭素数16のアルキル基を有するイミダゾリウムハライド、炭素数14または炭素数16のアルキル基を有するピリジニウムハライドおよび炭素数16または炭素数18のアルキル基を有するアンモニウムハライドから選択される少なくとも一種と水を含有する微細構造体のパターン倒壊抑制用処理液を用いることを特徴とする酸化珪素からなる微細構造体の製造方法。
  8.  酸化珪素からなる微細構造体が、半導体装置又はマイクロマシンである請求項7に記載の微細構造体の製造方法。
PCT/JP2011/066158 2010-09-08 2011-07-14 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法 WO2012032856A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012532896A JP5664653B2 (ja) 2010-09-08 2011-07-14 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
EP11823335.2A EP2615632B1 (en) 2010-09-08 2011-07-14 Microstructure manufacturing method using treatment liquid for inhibiting pattern collapse in microstructures
KR1020137005752A KR101850356B1 (ko) 2010-09-08 2011-07-14 미세 구조체의 패턴 붕괴 억제용 처리액 및 이를 이용한 미세 구조체의 제조 방법
US13/820,899 US8980812B2 (en) 2010-09-08 2011-07-14 Treatment liquid for inhibiting pattern collapse in microstructures, and microstructure manufacturing method using said treatment liquid
CN201180043424.0A CN103098180B (zh) 2010-09-08 2011-07-14 用于抑制微细结构体的图案倒塌的处理液和使用该处理液的微细结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010200783 2010-09-08
JP2010-200783 2010-09-08

Publications (1)

Publication Number Publication Date
WO2012032856A1 true WO2012032856A1 (ja) 2012-03-15

Family

ID=45810460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066158 WO2012032856A1 (ja) 2010-09-08 2011-07-14 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法

Country Status (7)

Country Link
US (1) US8980812B2 (ja)
EP (1) EP2615632B1 (ja)
JP (1) JP5664653B2 (ja)
KR (1) KR101850356B1 (ja)
CN (1) CN103098180B (ja)
TW (1) TWI597586B (ja)
WO (1) WO2012032856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117656A1 (ja) * 2015-01-23 2016-07-28 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176388B2 (en) * 2013-11-05 2015-11-03 Taiwan Semiconductor Manufacturing Company Limited Multi-line width pattern created using photolithography
WO2017010321A1 (ja) * 2015-07-13 2017-01-19 富士フイルム株式会社 パターン構造の処理方法、電子デバイスの製造方法およびパターン構造の倒壊抑制用処理液
KR102079042B1 (ko) * 2016-07-04 2020-02-20 오씨아이 주식회사 실리콘 기판 식각 용액
JP6875811B2 (ja) * 2016-09-16 2021-05-26 株式会社Screenホールディングス パターン倒壊回復方法、基板処理方法および基板処理装置
KR102546609B1 (ko) * 2018-07-13 2023-06-23 오씨아이 주식회사 실리콘 기판 식각 용액

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196038A (ja) 1998-12-28 2000-07-14 Fujitsu Ltd 半導体装置及びその製造方法
JP2004184648A (ja) 2002-12-03 2004-07-02 Clariant (Japan) Kk リソグラフィー用リンス液およびそれを用いたレジストパターン形成方法
JP2004288710A (ja) 2003-03-19 2004-10-14 Elpida Memory Inc 半導体集積回路装置およびその製造方法
JP2005309260A (ja) 2004-04-23 2005-11-04 Tokyo Ohka Kogyo Co Ltd リソグラフィー用リンス液
JP2006163314A (ja) 2004-12-10 2006-06-22 Mitsubishi Electric Corp レジスト用現像液
JP2007335892A (ja) 2007-08-17 2007-12-27 Toshiba Corp 半導体装置
JP2008537343A (ja) * 2005-04-15 2008-09-11 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド マイクロエレクトロニクスデバイスからイオン注入フォトレジスト層をクリーニングするための配合物
JP2008285508A (ja) * 2007-05-15 2008-11-27 Mitsubishi Gas Chem Co Inc 洗浄用組成物
JP2009122031A (ja) 2007-11-16 2009-06-04 Seiko Epson Corp 微小電気機械装置、半導体装置、微小電気機械装置の製造方法、および半導体装置の製造方法
JP2009229572A (ja) * 2008-03-19 2009-10-08 Tokyo Ohka Kogyo Co Ltd リソグラフィー用洗浄剤及びレジストパターン形成方法
JP2010114467A (ja) 2008-06-16 2010-05-20 Toshiba Corp 半導体基板の表面処理剤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175282A (en) * 1967-08-08 1969-12-23 Ferranti Ltd Improvements relating to the Manufacture of Multiple-Layer Printed Circuit Boards.
US4129457A (en) * 1977-05-23 1978-12-12 International Business Machines Corporation Post-polishing cleaning of semiconductor surfaces
GB8530457D0 (en) * 1985-12-11 1986-01-22 Ciba Geigy Ag Processing halogens
US6375548B1 (en) * 1999-12-30 2002-04-23 Micron Technology, Inc. Chemical-mechanical polishing methods
US7166152B2 (en) * 2002-08-23 2007-01-23 Daiwa Fine Chemicals Co., Ltd. Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
EP1553454A2 (en) * 2003-12-22 2005-07-13 Matsushita Electric Industrial Co., Ltd. Pattern formation method
KR100634401B1 (ko) * 2004-08-03 2006-10-16 삼성전자주식회사 반도체 제조공정의 기판 처리 방법
WO2009111719A2 (en) * 2008-03-07 2009-09-11 Advanced Technology Materials, Inc. Non-selective oxide etch wet clean composition and method of use
JP5813280B2 (ja) * 2008-03-19 2015-11-17 富士フイルム株式会社 半導体デバイス用洗浄液、および洗浄方法
DE112010003895T5 (de) * 2009-10-02 2012-08-02 Mitsubishi Gas Chemical Co., Inc. Verarbeitungsflüssigkeit zur Unterdrückung eines Musterzusammenbruchs einer feinen Metallstruktur und Verfahren zur Herstellung einer feinen Metallstruktur, bei dem diese eingesetzt wird
CN103098179B (zh) * 2010-09-08 2016-12-07 三菱瓦斯化学株式会社 用于抑制微细结构体的图案倒塌的处理液和使用该处理液的微细结构体的制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196038A (ja) 1998-12-28 2000-07-14 Fujitsu Ltd 半導体装置及びその製造方法
JP2004184648A (ja) 2002-12-03 2004-07-02 Clariant (Japan) Kk リソグラフィー用リンス液およびそれを用いたレジストパターン形成方法
JP2004288710A (ja) 2003-03-19 2004-10-14 Elpida Memory Inc 半導体集積回路装置およびその製造方法
JP2005309260A (ja) 2004-04-23 2005-11-04 Tokyo Ohka Kogyo Co Ltd リソグラフィー用リンス液
JP2006163314A (ja) 2004-12-10 2006-06-22 Mitsubishi Electric Corp レジスト用現像液
JP2008537343A (ja) * 2005-04-15 2008-09-11 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド マイクロエレクトロニクスデバイスからイオン注入フォトレジスト層をクリーニングするための配合物
JP2008285508A (ja) * 2007-05-15 2008-11-27 Mitsubishi Gas Chem Co Inc 洗浄用組成物
JP2007335892A (ja) 2007-08-17 2007-12-27 Toshiba Corp 半導体装置
JP2009122031A (ja) 2007-11-16 2009-06-04 Seiko Epson Corp 微小電気機械装置、半導体装置、微小電気機械装置の製造方法、および半導体装置の製造方法
JP2009229572A (ja) * 2008-03-19 2009-10-08 Tokyo Ohka Kogyo Co Ltd リソグラフィー用洗浄剤及びレジストパターン形成方法
JP2010114467A (ja) 2008-06-16 2010-05-20 Toshiba Corp 半導体基板の表面処理剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615632A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117656A1 (ja) * 2015-01-23 2016-07-28 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液
JPWO2016117656A1 (ja) * 2015-01-23 2017-10-12 富士フイルム株式会社 パターン処理方法、半導体基板製品の製造方法およびパターン構造の前処理液

Also Published As

Publication number Publication date
US8980812B2 (en) 2015-03-17
JP5664653B2 (ja) 2015-02-04
TW201224680A (en) 2012-06-16
EP2615632A4 (en) 2015-03-04
TWI597586B (zh) 2017-09-01
EP2615632B1 (en) 2019-05-08
CN103098180A (zh) 2013-05-08
KR20130114089A (ko) 2013-10-16
JPWO2012032856A1 (ja) 2014-01-20
US20130165365A1 (en) 2013-06-27
CN103098180B (zh) 2016-03-30
EP2615632A1 (en) 2013-07-17
KR101850356B1 (ko) 2018-04-20

Similar Documents

Publication Publication Date Title
JP5664653B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
WO2011016337A1 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
WO2011049091A1 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP5741590B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
JP5741589B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
JP5720572B2 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP6405610B2 (ja) 高アスペクト比を有する微細構造体のパターン倒壊抑制用処理液およびこれを用いた微細構造体の製造方法
JP5720575B2 (ja) 金属微細構造体のパターン倒壊抑制用処理液及びこれを用いた金属微細構造体の製造方法
JP6119285B2 (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法
JP2015035458A (ja) 微細構造体のパターン倒壊抑制用処理液及びこれを用いた微細構造体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043424.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13820899

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137005752

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011823335

Country of ref document: EP