WO2012029489A1 - 電気的接続装置 - Google Patents

電気的接続装置 Download PDF

Info

Publication number
WO2012029489A1
WO2012029489A1 PCT/JP2011/067675 JP2011067675W WO2012029489A1 WO 2012029489 A1 WO2012029489 A1 WO 2012029489A1 JP 2011067675 W JP2011067675 W JP 2011067675W WO 2012029489 A1 WO2012029489 A1 WO 2012029489A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
portions
bus bar
electrode member
joint portion
Prior art date
Application number
PCT/JP2011/067675
Other languages
English (en)
French (fr)
Inventor
鈴木丈元
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN2011800318080A priority Critical patent/CN102971847A/zh
Priority to DE112011101862T priority patent/DE112011101862T5/de
Publication of WO2012029489A1 publication Critical patent/WO2012029489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49861Lead-frames fixed on or encapsulated in insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention includes a conductive connection member having a joint portion that is bonded to the electrode member in a state where the electrode member is pressed in a predetermined pressing direction, and an insulating support that supports the connection member.
  • the present invention relates to an electrical connection device provided.
  • the inverter device includes an inverter circuit configured by circuit elements such as switching elements.
  • the electrode member of circuit elements such as a switching element which comprises an inverter circuit, is electrically connected with a power supply, a rotary electric machine, etc. by the electrical connection apparatus provided with the connection member (for example, bus bar etc.).
  • the electrical connection apparatus for performing the electrical connection between such an electrode member and another member may generally be required not only in an inverter apparatus but in an apparatus including an electric circuit and an electronic circuit.
  • connection member external connection terminals 50, 51, 52
  • support rein case 40
  • the connecting member extends from the support toward the electrode member (terminal blocks 60a, 60b, 61a, 61b, 62a, 62b) to be joined, and the lower surface of the connecting member and the upper surface of the electrode member are joined.
  • connection between the connecting member and the electrode member is performed by, for example, laser welding. And it is desirable from the viewpoint of improving the joining reliability that the connection between the connection member and the electrode member is performed in a state where the connection member and the electrode member are in good surface contact. This is because, if laser welding or the like is performed in a portion that is not completely in contact, the bonding strength becomes insufficient, and there is a risk of disconnection due to current concentration or vibration.
  • Patent Document 1 there is no description referring to the contact state between the connection member and the electrode member at the time of joining, and, of course, a means for making the connection member make good surface contact with the electrode member at the time of joining. Is not disclosed in Patent Document 1.
  • JP 2010-103222 A (FIG. 1 etc.)
  • the conductive connection member which has a junction part joined to the electrode member in the state where it pressed in the predetermined pressing direction to the electrode member concerning the present invention, and the insulating support body which supports the connection member,
  • the connecting member includes a flat plate-like joint portion that is in surface contact with the joint surface of the electrode member, and a predetermined extending direction across the joint portion.
  • a transition portion extending on both sides, and a supported portion provided at an end opposite to the joint portion in each of the transition portions on both sides, and the support body is spaced apart from the joint portion and is It exists in the point which is arrange
  • the joint portion since the joint portion is supported by the support body via the bridge portion and the supported portion, a force is applied directly to the joint portion by applying a force in the pressing direction to the support body.
  • the joining portion can be pressed against the joining surface of the electrode member.
  • the joint portion since the joint portion is supported by the support on both sides in the extending direction, a load is applied to the joint portion from both sides in the extending direction.
  • the support body is formed so that the to-be-supported part of the both sides of a junction part may be supported integrally. Accordingly, it is easy to press the support so that a load is applied evenly or substantially equally from both sides in the extending direction with respect to the joint portion, and as a result, the joint portion becomes the joint surface of the electrode member.
  • the support body is formed so as to integrally support the supported portions on both sides of the joint portion. It is easy to press the support so that a load is applied substantially evenly, and as a result, it becomes easy to satisfactorily make a surface contact between the joint portion of the connection member and the joint surface of the electrode member at the time of joining. Yes.
  • the joint portion has a bent portion bent in the thickness direction at least at a part of the peripheral edge portion.
  • the rigidity (deformation resistance) of the joint portion can be increased by utilizing work hardening by physical shape or plastic deformation. Therefore, when the electrode member is pressed, it is possible to suppress the deformation of the joint portion due to the stress generated in the connection member, and to make the surface contact between the joint portion of the connection member and the joint surface of the electrode member more reliably at the time of joining. Can do.
  • the crossing portion has a strip shape, and the thickness direction of the crossing portion is parallel to the pressing direction, and the crossing portion is formed to be smaller than the joining portion in at least one of thickness and width. It is preferable that
  • the rigidity of the transition portion can be reduced with respect to the joint portion, and the stress generated in the connection member can be absorbed by the deformation of the transition portion. Therefore, when the electrode member is pressed, it is possible to suppress the deformation of the joint portion due to the stress generated in the connection member, and to make the surface contact between the joint portion of the connection member and the joint surface of the electrode member more reliably at the time of joining. Can do. Moreover, according to said structure, since the shape of a transition part can be made simple, cost suppression can also be aimed at.
  • the pair of crossover portions arranged on both sides in the extending direction with respect to the joint portion have shapes that are plane-symmetric with respect to a plane that passes through the center of gravity of the joint portion and is orthogonal to the extension direction. It is preferable that
  • the rigidity of the pair of crossing portions can be made equal to each other, the stress generated in the connection member when pressed against the electrode member is evenly absorbed on both sides in the extending direction with respect to the joint portion. Is possible. Therefore, it becomes even easier to press the support so that a load is applied evenly or substantially equally from both sides in the extending direction to the joint.
  • connection member includes a plurality of the joint portions supported by the support body via a pair of the transition portions, and the support body integrates a plurality of pairs of the supported portions for the plurality of joint portions. It is preferable that it is formed so as to support it.
  • a plurality of joints can be pressed against the electrode member at a time by applying a force in the pressing direction to the support. Therefore, the manufacturing process of the apparatus in which the electrical connection device according to the present invention is used can be suppressed by simplifying the joining process of the connection member to the electrode member.
  • the support includes a plurality of beam-like portions extending in the same direction, and the plurality of beam-like portions include a holding beam-like portion for fixing and holding the connection member therein, and the connection member. It is preferable that a non-holding beam-like portion that is not fixedly held inside is included, and the non-holding beam-like portion is formed larger than the holding beam-like portion with respect to the thickness in the pressing direction.
  • the difference between the rigidity of the holding beam-like portion and the rigidity of the non-holding beam-like portion can be reduced, and the support body can be prevented from being greatly deformed locally when pressed against the electrode member. it can. Therefore, it becomes even easier to press the support so that a load is applied evenly or substantially equally from both sides in the extending direction to the joint.
  • the supported portion of the connection member is fixedly held inside the support body, and the supported portion has a length in the pressing direction and both the extending direction and the pressing direction. It is preferable that at least one of the lengths in the orthogonal direction is formed larger than the crossover portion.
  • the connection member when the electrode member is pressed, the load received by the support from the connection member is dispersed in the support, and the connection member can be supported in a wide range of the support. Therefore, it can suppress that a support body deform
  • FIG. 5 is a VV cross-sectional view in FIG. 4. It is a conceptual diagram of the press process of the bus bar with respect to the electrode member which concerns on embodiment of this invention.
  • the bus bar module 1 includes a bus bar 50 having a joint portion 51, and the joint portion 51 is joined to the electrode member 80 in a state of being pressed against the electrode member 80 provided in the switching module 33.
  • the bus bar module 1 according to the present embodiment is characterized by the shape of the bus bar 50 and the configuration of the support body 60 that supports the bus bar 50.
  • the configuration of the bus bar module 1 according to the present embodiment will be described in the order of “the overall configuration of the inverter module” and “the configuration of the bus bar module”.
  • bus bar module 1 and the bus bar 50 correspond to the “electrical connection device” and the “connection member” in the present invention, respectively.
  • “upper” refers to the ⁇ Z direction in FIG. 1
  • “lower” refers to the Z direction in FIG. The Z direction coincides with the pressing direction of the joint portion 51 against the electrode member 80.
  • the inverter module 3 includes a bus bar module 1 and a switching module 33.
  • the bus bar module 1 is disposed on the upper side of the switching module 33 in the vicinity of the switching module 33, forms a current path between the switching module 33 and a power source (not shown), and the switching module 33 and the rotating electrical machine 2 (FIG. 3). Current) to the current path.
  • the rotating electrical machine 2 is an AC motor driven by three-phase AC, and is provided as a driving force source in, for example, an electric vehicle or a hybrid vehicle.
  • the rotating electrical machine 2 has a function as a motor (electric motor) that generates power upon receiving power supply, and a function as a generator (generator) that generates power upon receiving power supply. It is possible to fulfill both of these.
  • the bus bar module 1 includes a bus bar 50 and a support body 60 that supports the bus bar 50.
  • the bus bar module 1 includes five bus bars 50 including a first bus bar 50a, a second bus bar 50b, a third bus bar 50c, a fourth bus bar 50d, and a fifth bus bar 50e. These five bus bars 50 are integrally supported by a support body 60.
  • the bus bar 50 is formed of a conductive material (for example, a metal material such as copper or aluminum).
  • the bus bar 50 has a flat plate-like joint portion 51 in surface contact with the joint surface 80a of the electrode member 80, and a crossing portion extending on both sides along a predetermined extending direction (Y direction in this example) with the joint portion 51 interposed therebetween. 52 and a supported portion 53 provided at an end portion on the opposite side to the joint portion 51 in each of the crossing portions 52 on both sides.
  • the joining portion 51 is joined to the electrode member 80 in a state where the joining portion 51 is pressed in the predetermined pressing direction Z with respect to the electrode member 80 included in the switching module 33.
  • the Y direction is a direction orthogonal to the pressing direction Z.
  • the support body 60 is separated from the joint portion 51 and is disposed at least on both sides in the extending direction Y with respect to the joint portion 51, and is formed so as to integrally support the supported portions 53 on both sides of the joint portion 51. Yes.
  • the support body 60 is formed of an insulating material (for example, various resins such as polyphenylene sulfide resin).
  • the detailed configuration of the bus bar module 1 will be described later in Section 2.
  • the switching module 33 includes a base plate 41, an insulating sheet 43, and an element substrate 42.
  • the base plate 41, the insulating sheet 43, and the element substrate 42 are laminated in a state of being parallel or substantially parallel to each other, and this lamination direction coincides with a direction parallel to the Z direction.
  • the base plate 41 is a plate-like member serving as a base on which the insulating sheet 43 and the element substrate 42 are placed.
  • the base plate 41 is made of a metal material such as copper or aluminum, and heat radiating fins 41b are formed on the lower surface. As shown in FIG. 1, the base plate 41 is disposed such that the upper surface 41a is parallel to a surface orthogonal to the Z direction.
  • the insulating sheet 43 is composed of a sheet-like member having both electrical insulation and thermal conductivity, and is a resin-made sheet member in this example.
  • the insulating sheet 43 is placed on the upper surface 41 a of the base plate 41.
  • the insulating sheet 43 adheres and fixes the upper surface 41a of the base plate 41 and the lower surface of the element substrate 42 by thermocompression bonding.
  • the element substrate 42 is placed on the upper surface of the insulating sheet 43, and the switching element 31 and the diode element 32 are placed on the upper surface of the element substrate 42.
  • the element substrate 42 is formed of a conductive material (for example, a metal material such as copper or aluminum).
  • the element substrate 42 also functions as a heat spreader. As described above, the element substrate 42 is fixed to the base plate 41 through the insulating sheet 43 having both electrical insulation and thermal conductivity, so that the gap between the element substrate 42 and the base plate 41 is achieved. It is possible to efficiently transfer the heat of the switching element 31 to the heat radiation fin 41b while ensuring electrical insulation.
  • the six element substrates 42 are arranged on the upper surface of the insulating sheet 43. Specifically, the six element substrates 42 are arranged so that three are arranged in the X direction and two are arranged in the Y direction.
  • the X direction is a direction orthogonal to both the pressing direction Z and the extending direction Y of the crossing portion 52.
  • one switching element 31 and one diode element 32 are placed on the upper surface of each element substrate 42. That is, in this example, the switching module 33 includes six switching elements 31 and six diode elements 32, and an inverter described later for driving the rotating electrical machine 2 by the switching elements 31 and the diode elements 32.
  • a circuit (see FIG. 3) is configured.
  • the switching element 31 is an IGBT (insulated gate bipolar transistor) in this embodiment. Note that a MOSFET (metal oxide semiconductor field effect transistor) may be applied as the switching element 31.
  • the switching element 31 and the diode element 32 placed on the same element substrate 42 are arranged adjacent to each other so as to be aligned along the Y direction.
  • the switching element 31 includes an emitter electrode on the upper surface and a collector electrode on the lower surface.
  • the diode element 32 includes an anode electrode on the upper surface and a cathode electrode on the lower surface.
  • the switching element 31 is fixed to the element substrate 42 by solder, and the collector electrode on the lower surface is electrically connected to the element substrate 42.
  • the diode element 32 is fixed to the element substrate 42 with solder, and the cathode electrode on the lower surface is electrically connected to the element substrate 42. That is, the element substrate 42 has the same potential as the collector electrode of the switching element 31 and the cathode electrode of the diode element 32.
  • the first electrode member 81 as the first electrode member 80 is disposed in a state where the upper surface (emitter electrode) of the switching element 31 and the upper surface (anode electrode) of the diode element 32 are electrically connected.
  • a second electrode member 82 as the second electrode member 80 is placed on the upper surface of the element substrate 42 on which the switching element 31 and the diode element 32 are arranged.
  • Both the first electrode member 81 and the second electrode member 82 are formed of a conductive material (for example, a metal material such as copper or aluminum).
  • the second electrode member 82 has the lower surface (collector electrode) of the switching element 31 and the lower surface (cathode electrode) of the diode element 32 through the element substrate 42. Conducted with.
  • an electrode member 80 when it is not necessary to particularly distinguish the first electrode member 81 and the second electrode member 82, they are collectively referred to as an electrode member 80.
  • the first electrode member 81 is formed by bending a band-shaped member (plate-shaped member) having a constant width.
  • the first electrode member 81 includes an anti-element side electrode portion having a bonding surface 80a formed on the upper surface, a first element side electrode portion fixed to the upper surface of the switching element 31 by solder, and a solder on the upper surface of the diode element 32.
  • the upper surface (emitter electrode) of the switching element 31 and the upper surface (anode electrode) of the diode element 32 are connected to the bus bar 50 via the first electrode member 81.
  • the shape of the first electrode member 81 can be changed as appropriate.
  • the first element side electrode part and the second element side electrode part extend to a position where the first element member electrode part does not overlap the counter element side electrode part as viewed in the pressing direction Z. It can be set as the structure arrange
  • the first electrode member 81 may be formed of a block member.
  • the second electrode member 82 is a block-like member having a bonding surface 80 a on the upper surface, and the lower surface is fixed to the upper surface of the element substrate 42 with solder.
  • the lower surface (collector electrode) of the switching element 31 and the lower surface (cathode electrode) of the diode element 32 are connected to the bus bar 50 via the second electrode member 82.
  • the shape of the second electrode member 82 can be changed as appropriate, and the second electrode member 82 is formed by bending a belt-like member (plate-like member) having a constant width in the same manner as the first electrode member 81. You can also
  • the switching module 33 has a plurality of electrode members 80 (12 in this example) for connecting the switching element 31 and the diode element 32 and the bus bar 50.
  • the switching module 33 includes an electrode member 80 (a positive electrode member 83 and a negative electrode member 84 shown in FIG. 3) for connecting a power source (not shown) and the bus bar 50.
  • a bonding surface 80 a is formed on the upper surfaces of these electrode members 80.
  • the electrode member 80 is disposed so that the bonding surface 80a is parallel to a surface orthogonal to the Z direction.
  • the electrode member 80 and the bus bar 50 are joined by laser welding.
  • Laser welding is performed by irradiating a laser beam in the Z-axis direction or a slight tilt (for example, 5 degrees) from the Z-axis direction from the upper surface side of the bus bar 50 (joint portion 51).
  • a laser used for such laser welding for example, a welding laser such as a YAG laser, a CO 2 laser, or a semiconductor laser can be used. In this example, a YAG laser is used.
  • the joining portion 51 and the joining surface 80a of the electrode member 80 are in good surface contact during joining (in this example, during laser welding). It is desirable.
  • the joining portion 51 can be easily brought into surface contact with the joining surface 80a of the electrode member 80 at the time of joining.
  • substantially equal is used as a concept including a load difference within an allowable range from the viewpoint of bonding reliability between the bonding portion 51 and the bonding surface 80a.
  • the inverter circuit constituted by the switching element 31 and the diode element 32 described above will be described.
  • the inverter circuit is configured by a bridge circuit, and two switching elements 31 are connected in series between the positive electrode P side of the power source and the negative electrode N side (for example, the ground side) of the power source, Three series circuits are connected in parallel.
  • One series circuit corresponds to each of the three phases (U phase, V phase, W phase) of the stator coil of the rotating electrical machine 2.
  • Reference numeral 92 denotes a smoothing circuit including a smoothing capacitor and an inductor.
  • reference numeral 31a is a U-phase upper switching element
  • reference numeral 31b is a V-phase upper switching element
  • reference numeral 31c is a W-phase upper switching element
  • Reference numeral 31d is a U-phase lower switching element
  • reference numeral 31e is a V-phase lower switching element
  • reference numeral 31f is a W-phase lower switching element.
  • “upper stage side” indicates an arm on the positive electrode P side
  • “lower stage side” indicates an arm on the negative electrode N side.
  • the collectors of the upper switching elements 31a, 31b, 31c of each phase are connected to the positive electrode P side, and the emitters are connected to the collectors of the lower switching elements 31d, 31e, 31f of each phase.
  • the emitters of the lower switching elements 31d, 31e, 31f of each phase are connected to the negative electrode N side.
  • a diode element 32 is connected in parallel between the emitter and collector of each switching element 31.
  • the diode element 32 has an anode connected to the emitter of the switching element 31 and a cathode connected to the collector of the switching element 31.
  • the diode element 32 is used as FWD (Free Wheel Diode).
  • An intermediate point (a connection point between the switching elements 31) of the series circuit of the switching elements (31a, 31d), (31b, 31e), (31c, 31f) of each phase is a rotating electrical machine connection terminal 91u, 91v, It is connected to the coil of each phase of the rotating electrical machine 2 through 91w.
  • the gates of the switching elements 31 are connected to a control unit (not shown) and are individually controlled for switching.
  • the control unit is disposed on the upper side of the bus bar module 1 and close to the bus bar module 1.
  • the control unit supplies a three-phase AC voltage to the rotating electrical machine 2 by controlling each switching element 31 based on the required rotational speed and required torque required for the rotating electrical machine 2 (for example, pulse width modulation control). .
  • the control unit causes the rotating electrical machine 2 to be powered according to the required rotational speed and the required torque.
  • the control unit controls each switching element 31 so as to convert the generated AC voltage into a DC voltage. .
  • the bus bar module 1 includes a bus bar 50 and a support body 60.
  • the bus bar 50 includes five bus bars 50a, a second bus bar 50b, a third bus bar 50c, a fourth bus bar 50d, and a fifth bus bar 50e.
  • the first bus bar 50 a, the second bus bar 50 b, and the third bus bar 50 c function to connect the intermediate point of the series circuit formed by the switching elements 31 of each phase and the coils of each phase of the rotating electrical machine 2. Fulfill. Therefore, as shown in FIGS. 2 and 4, each of the first bus bar 50 a, the second bus bar 50 b, and the third bus bar 50 c is connected to the joint portion 51 joined to the electrode member 80 and the coil of the rotating electrical machine 2. Rotating electrical machine connection terminals 91u, 91v, and 91w.
  • the first bus bar 50a is joined to the second electrode member 82 on the element substrate 42 on which the U-phase lower switching element 31d is arranged in the -Y direction in FIG. And a U-phase rotating electrical machine for connection to the joint portion 51 to be joined to the first electrode member 81 on the element substrate 42 on which the U-phase upper switching element 31a is disposed, and the U-phase coil of the rotating electrical machine 2.
  • Connection terminals 91u are provided in the order described.
  • the first bus bar 50a includes a plurality (specifically, two) of joint portions 51.
  • the second bus bar 50b includes, in the ⁇ Y direction in FIG. 4, a joint 51 that is joined to the second electrode member 82 on the element substrate 42 on which the V-phase lower switching element 31e is disposed, and the V-phase A joint portion 51 to be joined to the first electrode member 81 on the element substrate 42 on which the upper switching element 31b is disposed, and a V-phase rotating electrical machine connection terminal 91v for connecting to the V-phase coil of the rotating electrical machine 2 , In the order of description. As described above, the second bus bar 50b includes a plurality (specifically, two) of joint portions 51.
  • the third bus bar 50c includes, in the ⁇ Y direction in FIG. 4, a joint 51 that is joined to the second electrode member 82 on the element substrate 42 on which the W-phase lower switching element 31f is disposed, and the W-phase A joint portion 51 to be joined to the first electrode member 81 on the element substrate 42 on which the upper switching element 31c is disposed, and a W-phase rotating electrical machine connection terminal 91w for connecting to the W-phase coil of the rotating electrical machine 2 , In the order of description.
  • the third bus bar 50c includes a plurality (specifically, two) of joint portions 51.
  • the fourth bus bar 50d fulfills the function of connecting the collectors of the upper switching elements 31a, 31b, 31c of each phase and the positive electrode P side of the power source.
  • the fourth bus bar 50d has an element substrate 42 on which the bonding portion 51 bonded to the positive electrode member 83 and the U-phase upper switching element 31a are arranged in the ⁇ X direction in FIG.
  • positioned is provided in order of description.
  • the fourth bus bar 50 d includes four joint portions 51.
  • the fifth bus bar 50e functions to connect the emitters of the lower switching elements 31d, 31e, 31f of each phase and the negative electrode N side of the power source.
  • the fifth bus bar 50e has an element substrate 42 on which the joint portion 51 joined to the negative electrode member 84 and the U-phase lower switching element 31d are arranged in the -X direction in FIG.
  • positioned is provided in order of description.
  • the fifth bus bar 50 e includes four joint portions 51.
  • the first bus bar 50a, the second bus bar 50b, and the third bus bar 50c are bus bars for connecting the rotating electrical machine of the switching module 33.
  • the fourth bus bar 50d and the fifth bus bar 50e are bus bars for connecting the power source of the switching module 33.
  • the five bus bars 50 are integrally supported by a support body 60.
  • the support body 60 is integrally provided with an outer frame portion 61 and a beam-like portion 62 as shown in FIGS.
  • the outer frame portion 61 includes a first side frame 61a extending in the X direction, a second side frame 61c extending in the X direction on the Y direction side with respect to the first side frame 61a, and a first side in the Y direction.
  • An intermediate frame 61b extending in the X direction between the frame 61a and the second side frame 61c (center position in this example), a first side frame 61a, an intermediate frame 61b, and a second extending in the Y direction.
  • a connecting frame 61d that connects the end portions of the side frames 61c on the ⁇ X direction side is integrally formed.
  • the upper surface of the 1st side frame 61a, the upper surface of the intermediate frame 61b, and the upper surface of the 2nd side frame 61c form the to-be-pressed surface in the bus-bar module 1, and with the force added to the said to-be-pressed surface in the Z direction
  • the joining portion 51 supported by the support body 60 is pressed against the joining surface 80 a of the electrode member 80.
  • a plurality (six in this example) of beam-like portions 62 are formed integrally with the outer frame portion 61. Specifically, as shown in FIGS. 1 and 4, three beam-like portions 62 are formed so as to connect the first side frame 61a and the intermediate frame 61b in the Y direction. These three beam-like portions 62 are holding beam-like portions 62a for fixing and holding a part of the bus bar 50 inside. Further, three beam-like portions 62 are formed so as to connect the intermediate frame 61b and the second side frame 61c in the Y direction. These three beam-like portions 62 are non-holding beam-like portions 62b that do not hold the bus bar 50 inside.
  • the support body 60 includes a plurality of beam-like portions 62 that extend in the same direction (the Y direction in this example).
  • the plurality of beam-like portions 62 include a holding beam-like portion 62a and a non-holding beam-like portion 62b.
  • the beam-like portion 62 when it is not necessary to distinguish between the holding beam-like portion 62a and the non-holding beam-like portion 62b, these are collectively referred to as the beam-like portion 62.
  • the support body 60 is formed in a frame shape including the outer frame portion 61 and the beam-shaped portion 62 in the present embodiment. And as shown in FIG. 4, the support body 60 forms eight sections, and six sections among them are sections surrounded on all sides in a plan view. Two joint portions 51 are arranged. Further, the remaining two sections provided on the X direction side are sections surrounded on three sides in plan view, and one junction 51 is disposed in each of these sections. That is, in this embodiment, the support body 60 is disposed at least on both sides in the extending direction Y with respect to the joint portion 51. The support body 60 is further disposed on both sides in the X direction with respect to a specific joint portion 51, and is further disposed only on one side in the X direction with respect to another specific joint portion 51.
  • the support body 60 is disposed at least on both sides in the extending direction Y of the crossover portion 52 with respect to any joint portion 51 included in the bus bar module 1.
  • the structure which the support body 60 supports the junction part 51 from the both sides of the extension direction Y is implement
  • the support body 60 integrally supports the supported portions 53 on both sides of the joint portion 51, thereby supporting the joint portion 51 from both sides in the extending direction Y while being separated from the joint portion 51.
  • the bus bar module 1 has a configuration in which it is easy to press the support body 60 so that a load is evenly or substantially evenly applied to the joint portion 51 from both sides in the extending direction Y.
  • the bus bar module 1 has a configuration in which it is easy to satisfactorily bring the joint portion 51 into surface contact with the joint surface 80 a of the electrode member 80.
  • FIG. 6 is an explanatory diagram showing the concept of the pressing process of the bus bar 50 against the electrode member 80, and FIG. 6 (a) schematically shows the state before pressing.
  • FIG. 6B schematically shows a state during pressing, and a joining step (in this example, a laser welding step) is performed in this pressed state.
  • a joining step in this example, a laser welding step
  • the lower surface of the support 60 is positioned in the pressing direction Z by a member (not shown) (for example, a case surrounding the element substrate 42 on the base plate 41).
  • the bus bar 50 is kept pressed against the electrode member 80 even after the joining process is completed.
  • a filler for example, a resin such as an epoxy resin
  • a space for example, a space surrounded by a case
  • the support 60 is accommodated after the joining process is completed, and the support 60 is fixed by the cured filler. It can be set as the structure supported.
  • the supported portion 53 is fixedly held inside the support body 60.
  • FIGS. 2 and 4 for simplification, only a part of the supported portion 53 is provided with a reference numeral, but a portion of the bus bar 50 that is fixed to the support body 60 (in this example, the inside of the support body 60). All of the parts arranged in (1) function as supported parts.
  • the bus bar 50 includes a plurality of joints 51.
  • Each joint portion 51 is supported by the support body 60 via a pair of crossover portions 52.
  • each of the first bus bar 50a, the second bus bar 50b, and the third bus bar 50c includes two joint portions 51, and each of the fourth bus bar 50d and the fifth bus bar 50e has four.
  • Each of the joint portions 51 is provided. Therefore, in the entire bus bar 50, 14 joint portions 51 are provided.
  • the support body 60 is formed so as to integrally support a plurality of pairs (14 pairs in this example) of the supported portions 53 with respect to a plurality (14 in this example) of the joint portions 51.
  • each of the plurality of joint portions 51 can be pressed against the joint surface 80a of the electrode member 80 to be joined. That is, all the joint portions 51 can be pressed against the joint surface 80a to be joined at a time, and the joining process of the bus bar 50 to the electrode member 80 can be simplified.
  • the 14 joint portions 51 included in the bus bar module 1 are formed in the same shape as each other. Further, the 14 pairs of crossover portions 52 provided in the bus bar module 1 are also formed in the same shape with respect to other points, although there are two types, that is, a short extension and a long extension in the Y direction. Therefore, in the following description, the joint portions 51 will be described without distinction unless necessary.
  • the joint portion 51 is a bent portion 51 a that is bent in at least a part of the peripheral edge portion in the thickness direction (in this example, a direction parallel to the pressing direction Z).
  • the joint portion 51 is formed in a rectangular shape in plan view (viewed in the Z direction), and a bent portion 51a is formed on each of the edge portions on both sides in the Y direction.
  • the crossover part 52 is formed in a band shape in which the thickness direction is arranged parallel to the pressing direction Z, and the crossover part 52 is formed to be smaller than the joint part 51 in at least one of the thickness and the width. Yes.
  • the term “parallel” is used as a concept including substantially parallel that is shifted from the parallel and parallel directions by a predetermined angle (for example, an angle within 10 degrees).
  • the crossing portion 52 is formed so that the width in the X direction is smaller than the joint portion 51 and the thickness is equal to the joint portion 51.
  • the crossing portion 52 has a width in the X direction that is about a quarter of that of the joint portion 51.
  • the rigidity (deformation resistance) of the joint portion 51 is higher than that of the transition portion 52. Therefore, as conceptually shown in FIG. 6B, the stress generated in the bus bar 50 can be absorbed by the deformation of the crossover portion 52 when the electrode member 80 is pressed, and the deformation of the joint portion 51 is suppressed.
  • the shape can be kept flat.
  • a pair of crossover portions 52 arranged on both sides in the extending direction Y with respect to the joint portion 51 include a center of gravity 51b of the joint portion 51 (shown exaggerated in FIG. 5). And are symmetrical to each other with respect to a plane (symmetry plane A) perpendicular to the extending direction Y.
  • the rigidity of the pair of crossover portions 52 becomes equal to each other, and the stress generated in the bus bar 50 when pressed against the electrode member 80 can be evenly absorbed on both sides in the extending direction Y with respect to the joint portion 51. It has become.
  • the joint 51 is also symmetrical with respect to the symmetry plane A. Moreover, about the junction part 51 with which the 4th bus bar 50d and the 5th bus bar 50e are provided, a pair of to-be-supported part 53 of the both sides of the extending direction Y is mutually formed in the same height (Z direction length). That is, in the present embodiment, the cross section orthogonal to the X direction of the portion including the joint portion 51, the pair of crossover portions 52, and the pair of supported portions 53 with respect to the joint portion 51 provided in the fourth bus bar 50 d and the fifth bus bar 50 e. As shown in FIG. 5, the shape in the (YZ cross section) is a line-symmetric shape with the line segment formed by the symmetry plane A as the symmetry axis.
  • the support body 60 integrally supports a plurality of pairs (14 pairs in this example) of the supported portions 53 of the plurality (14 pieces in this example) of the joint portions 51. It is formed to do. Then, in order to make all the joint portions 51 have good surface contact with the joint surface 80a of the electrode member 80 to be joined at the time of joining, the support body 60 is locally large when pressed against the electrode member 80. It is desirable not to deform. In the present embodiment, local deformation of the support body 60 at the time of pressing against the electrode member 80 is suppressed by including the following configuration.
  • the thickness in the pressing direction Z of the non-holding beam-like portion 62b is formed larger than the thickness of the holding beam-like portion 62a in the pressing direction Z.
  • the bus bar 50 is formed of a material having higher rigidity than the support body 60, when the thickness in the pressing direction Z is the same, the holding beam-like portion 62a is the non-holding beam-like portion.
  • the rigidity is higher than that of 62b.
  • the rigidity of the holding beam-like portion 62a and the non-holding beam-like portion 62b are increased by making the thickness in the pressing direction Z of the non-holding beam-like portion 62b larger than the thickness of the holding beam-like portion 62a in the pressing direction Z.
  • the thickness of the holding beam-like portion 62a in the pressing direction Z and the thickness of the non-holding beam-like portion 62b in the pressing direction Z are set so that their rigidity is the same or substantially the same.
  • “substantially the same” is used as a concept including a rigidity difference within a range that is allowable from the viewpoint of reliability of bonding between the bonding portion 51 and the bonding surface 80 a of the electrode member 80.
  • the supported portion 53 has a length in the pressing direction Z and at least one of a length in a direction orthogonal to both the extending direction Y and the pressing direction Z (that is, the X direction) larger than the transition portion 52. Is formed.
  • each of the pair of supported portions 53 has a length in the pressing direction Z and an X Both the lengths in the direction are formed larger than the crossover portion 52.
  • a pair of to-be-supported part 53 is mutually formed in the length of the press direction Z equally.
  • the supported portions 53 on the Y direction side of each of the four joint portions 51 are integrated so as to be continuous in the X direction.
  • the common supported portion 53a is formed.
  • the supported portions 53 on the ⁇ Y direction side for each of the four joint portions 51 are formed independently of each other.
  • the supported portion 53 on the ⁇ Y direction side of each of the four joint portions 51 is integrally formed so as to be continuous in the X direction to constitute a common supported portion 53a.
  • a supported portion 53 on the Y direction side of each of the three bonded portions 51 on the ⁇ X direction side of the four bonded portions 51 is integrally formed so as to be continuous in the X direction. 53a is configured.
  • one of the supported portions 53 of the pair of supported portions 53 is longer in the pressing direction Z than the crossing portion 52.
  • the other supported portion 53 is formed so that the length in the pressing direction Z is the same as the crossing portion 52.
  • both of a pair of to-be-supported parts 53 are formed larger than the transition part 52 about the length of a X direction.
  • the configuration in which the extending direction of the transition portion 52 is the Y direction has been described as an example.
  • the extending direction of the transition portion 52 is an arbitrary direction intersecting the pressing direction Z. can do.
  • the extending direction of the crossing part 52 can be set to a direction having an intersection angle with the Z direction of 80 degrees, 85 degrees, 95 degrees, or 100 degrees.
  • the configuration in which the joint portion 51 has the bent portion 51a on each of the edges on both sides in the Y direction has been described as an example.
  • the embodiment of the present invention is not limited to this, and the joint portion 51 is not provided with the bent portion 51a at the Y direction edge or in addition to the bent portion 51a at the Y direction edge. It can also be set as the structure which has the bending process part 51a of the thickness direction in each of the edge part of X direction both sides.
  • the joining portion 51 has a configuration in which the bent portion 51a is provided only on the edge portion on one side in the Y direction, or a configuration in which the bent portion 51a is provided only on the edge portion on one side in the X direction.
  • the configuration in which the joint portion 51 is formed in a rectangular shape in plan view has been described as an example.
  • the shape of the joint portion 51 is in surface contact with the joint surface 80 a of the electrode member 80. Any shape can be adopted as long as it has a flat plate portion.
  • the shape of the joint portion 51 in a plan view can be a circular shape (including an elliptical shape), a polygonal shape other than a rectangular shape, or the like.
  • the width of the transition portion 52 is smaller than the width of the joint portion 51 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the width of the transition portion 52 can be formed to be the same as or larger than the width of the joint portion 51. It is also preferable to form the crossing portion 52 smaller than the joining portion 51 in terms of thickness in addition to width.
  • the configuration in which the thickness of the transition portion 52 is the same as the thickness of the joint portion 51 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the thickness of the transition portion 52 can be made smaller or larger than the thickness of the joint portion 51. In these cases, the magnitude relationship between the width of the transition portion 52 and the width of the joint portion 51 can be arbitrarily set.
  • the configuration in which the transition portion 52 is formed in a band shape has been described as an example.
  • the configuration in which the transition portion 52 is formed in a shape other than the strip shape may be employed.
  • the configuration in which both the width and the thickness of the crossover portion 52 are uniform in the extending direction Y has been described as an example.
  • at least one of the width and the thickness of the crossover portion 52 extends.
  • a configuration that is not uniform in the direction Y and that varies depending on the position in the extending direction Y is also possible.
  • the pair of crossover portions 52 arranged on both sides of the extending direction Y with respect to the bonding portion 51 passes through the center of gravity 51b of the bonding portion 51 and is orthogonal to the extending direction Y ( A configuration in which the surfaces are symmetrical with respect to the symmetry plane A) has been described as an example.
  • the embodiment of the present invention is not limited to this, and the pair of crossover portions 52 disposed on both sides of the extending direction Y with respect to the joint portion 51 are formed in the width, thickness, or shape in plan view. It is also possible to adopt a configuration formed such that they are different from each other.
  • the configuration in which the support body 60 is formed so as to integrally support a plurality of pairs of supported portions 53 for the plurality of joint portions 51 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the support 60 is formed so as to integrally support only a pair of supported portions 53 for one joint portion 51. It is also possible.
  • the configuration in which the non-holding beam-like portion 62b is formed larger than the holding beam-like portion 62a with respect to the thickness in the pressing direction Z has been described as an example.
  • the embodiment of the present invention is not limited to this, and the non-holding beam-like portion 62b and the holding beam-like portion 62a have the same thickness in the pressing direction Z.
  • the non-holding beam-like portion 62b may be formed smaller than the holding beam-like portion 62a.
  • the configuration in which the supported portion 53 of the bus bar 50 is fixedly held inside the support body 60 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the supported portion 53 of the bus bar 50 may be configured to be fixed to the end surface (upper surface, lower surface, or side surface) of the support body 60. is there.
  • the present invention includes a conductive connection member having a joint portion that is bonded to the electrode member in a state where the electrode member is pressed in a predetermined pressing direction, and an insulating support that supports the connection member. It can utilize suitably for the provided electrical connection apparatus.
  • Busbar module (electrical connection device) 50: Bus bar (connection member) 51: Joining part 51a: Bending part 51b: Center of gravity 52: Crossing part 53: Supported part 60: Supporting body 62: Beam-like part 62a: Holding beam-like part 62b: Non-holding beam-like part 80: Electrode member 80a: Joining Plane A: plane of symmetry Z: pressing direction Y: extending direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

 接合時に接続部材を電極部材に対して良好に面接触させることが容易な電気的接続装置を実現する。接続部材50は、電極部材80の接合面80aに面接触する平板状の接合部51と、当該接合部51を挟んで所定の延在方向Yに沿って両側に延びる渡り部52と、当該両側の渡り部52のそれぞれにおける接合部51とは反対側の端部に設けられた被支持部と、を備え、支持体60は、接合部51から離間して接合部51に対して少なくとも延在方向Yの両側に配置され、接合部51の両側の被支持部を一体的に支持するように形成されている。

Description

電気的接続装置
 本発明は、電極部材に対して所定の押圧方向に押圧された状態で当該電極部材に接合される接合部を有する導電性の接続部材と、接続部材を支持する絶縁性の支持体と、を備えた電気的接続装置に関する。
 近年、省エネルギや環境負荷軽減の観点から、回転電機を駆動力源として備えたハイブリッド車両や電動車両が注目を集めている。このようなハイブリッド車両や電動車両においては、インバータ装置により回転電機を流れる電流が制御される。インバータ装置は、スイッチング素子等の回路素子により構成されたインバータ回路を備える。そして、インバータ回路を構成するスイッチング素子等の回路素子の電極部材は、接続部材(例えばバスバー等)を備えた電気的接続装置により、電源や回転電機等と電気的に接続される。なお、このような電極部材と他部材との間の電気的接続を行うための電気的接続装置は、インバータ装置に限らず電気回路や電子回路を備える装置において一般的に必要となり得る。
 上記のような電気的接続装置に関する従来技術として、例えば下記の特許文献1に記載された技術がある。以下、この背景技術の説明では、特許文献1の符号を引用する。特許文献1に記載の構成では、当該文献の図1等に示されているように、接続部材(外部接続用端子50,51,52)が、支持体(樹脂ケース40)に支持されている。そして、接続部材は、支持体から接合の対象となる電極部材(端子台60a,60b,61a,61b,62a,62b)に向かって延出し、接続部材の下面と電極部材の上面とが接合される。
 ところで、接続部材と電極部材との接合は、例えばレーザ溶接等で行われる。そして、このような接続部材と電極部材との接合は、接続部材と電極部材とが良好に面接触した状態で行われることが、接合の信頼性を高めるという観点から望ましい。なぜなら、完全に接触していない部分でレーザ溶接等を行うと、接合強度が不十分になり、電流の集中や振動等によって断線するおそれがあるからである。しかしながら、特許文献1には、接合時における接続部材と電極部材との間の接触状態に言及した記載はなく、当然ながら、接合時に接続部材を電極部材に対して良好に面接触させるための手段について、特許文献1には何ら示されていない。
特開2010-103222号公報(図1等)
 そこで、接合時に接続部材を電極部材に対して良好に面接触させることが容易な電気的接続装置の実現が望まれる。
 本発明に係る、電極部材に対して所定の押圧方向に押圧された状態で当該電極部材に接合される接合部を有する導電性の接続部材と、前記接続部材を支持する絶縁性の支持体と、を備えた電気的接続装置の特徴構成は、前記接続部材は、前記電極部材の接合面に面接触する平板状の前記接合部と、当該接合部を挟んで所定の延在方向に沿って両側に延びる渡り部と、当該両側の渡り部のそれぞれにおける前記接合部とは反対側の端部に設けられた被支持部と、を備え、前記支持体は、前記接合部から離間して前記接合部に対して少なくとも前記延在方向の両側に配置され、前記接合部の両側の前記被支持部を一体的に支持するように形成されている点にある。
 この特徴構成によれば、接合部が渡り部及び被支持部を介して支持体に支持されているため、支持体に押圧方向の力を加えることで、接合部に対して直接力を加えることなく、接合部を電極部材の接合面に対して押圧することができる。この際、接合部は延在方向の両側で支持体に支持されているため、接合部には延在方向の両側から荷重がかけられる。そして、支持体は接合部の両側の被支持部を一体的に支持するように形成されている。従って、接合部に対して延在方向の両側から均等或いは略均等に荷重がかかるように支持体を押圧することが容易な構成となっており、その結果、接合部を電極部材の接合面に対して良好に面接触させることが容易な構成となっている。
 補足説明すると、接合部に対して延在方向の両側から荷重をかけることが可能な構成であっても、例えば、支持体が接合部の両側を個別に支持する構成や、接合部の一方側が支持体により支持され他方側が接合部を支持しない別部材により押圧される構成のような、接合部に対する荷重の付与が延在方向の両側で個別に行われるような構成では、複雑な構成なしに、接合部に対して延在方向の両側から均等或いは略均等に荷重をかけることは難しい。
 これに対し、上記の特徴構成によれば、支持体が接合部の両側の被支持部を一体的に支持するように形成されているため、接合部に対して延在方向の両側から均等或いは略均等に荷重がかかるように支持体を押圧することが容易であり、その結果、接合時に接続部材が備える接合部を電極部材の接合面に対して良好に面接触させることが容易となっている。
 ここで、前記接合部は、周縁部の少なくとも一部に、厚さ方向に屈曲された屈曲加工部を有すると好適である。
 この構成によれば、屈曲加工部を形成することで、物理的な形状や塑性変形による加工硬化を利用して、接合部の剛性(耐変形性)を高めることができる。よって、電極部材に対する押圧時に、接続部材に発生する応力によって接合部が変形することを抑制することができ、接合時に接続部材の接合部と電極部材の接合面とをより確実に面接触させることができる。
 また、前記渡り部が帯状とされていると共に、当該渡り部の厚さ方向が前記押圧方向に平行状とされ、厚さ及び幅の少なくとも一方について、前記渡り部は前記接合部よりも小さく形成されていると好適である。
 この構成によれば、渡り部の剛性を接合部に対して低くすることができ、接続部材に発生する応力を、渡り部の変形により吸収することが可能となる。よって、電極部材に対する押圧時に、接続部材に発生する応力によって接合部が変形することを抑制することができ、接合時に接続部材の接合部と電極部材の接合面とをより確実に面接触させることができる。また、上記の構成によれば、渡り部の形状を簡素なものとすることができるため、コストの抑制を図ることもできる。
 また、前記接合部に対して前記延在方向の両側に配置された一対の前記渡り部が、前記接合部の重心を通るとともに前記延在方向に直交する面に対して互いに面対称な形状とされていると好適である。
 この構成によれば、一対の渡り部の剛性を互いに等しくすることができるため、電極部材に対する押圧時に接続部材に発生する応力を、接合部に対して延在方向の両側で均等に吸収することが可能となる。よって、接合部に対して延在方向の両側から均等或いは略均等に荷重がかかるように支持体を押圧することがさらに容易となる。
 また、前記接続部材は、一対の前記渡り部を介して前記支持体に支持された前記接合部を複数備え、前記支持体は、複数の前記接合部についての複数対の前記被支持部を一体的に支持するように形成されていると好適である。
 この構成によれば、支持体に押圧方向の力を加えることで、複数の接合部を電極部材に対して一度に押圧することができる。よって、電極部材に対する接続部材の接合工程を簡素なものとして、本発明に係る電気的接続装置が用いられる装置の製造コストの抑制を図ることができる。
 また、前記支持体は、互いに同じ方向に延在する複数の梁状部を備え、前記複数の梁状部には、前記接続部材を内部に固定保持する保持梁状部と、前記接続部材を内部に固定保持しない非保持梁状部とが含まれ、前記押圧方向の厚さについて、前記非保持梁状部は前記保持梁状部よりも大きく形成されていると好適である。
 この構成によれば、保持梁状部の剛性と非保持梁状部の剛性との差を小さくすることができ、電極部材に対する押圧時に支持体が局所的に大きく変形することを抑制することができる。よって、接合部に対して延在方向の両側から均等或いは略均等に荷重がかかるように支持体を押圧することがさらに容易となる。
 また、前記接続部材の前記被支持部は、前記支持体の内部に固定保持されており、前記被支持部は、前記押圧方向の長さ、及び、前記延在方向及び前記押圧方向の双方に直交する方向の長さの少なくとも一方が、前記渡り部よりも大きく形成されていると好適である。
 この構成によれば、電極部材に対する押圧時に、支持体が接続部材から受ける荷重を支持体内で分散させ、支持体の広い範囲で接続部材を支持する構成とすることが可能となる。よって、電極部材に対する押圧時に支持体が局所的に大きく変形することを抑制することができ、接合部に対して延在方向の両側から均等或いは略均等に荷重がかかるように支持体を押圧することがさらに容易となる。
本発明の実施形態に係るインバータモジュールの分解斜視図である。 本発明の実施形態に係るバスバーモジュールの透視斜視図である。 本発明の実施形態に係るインバータ回路の構成を示す模式図である。 本発明の実施形態に係るバスバーモジュールの平面図である。 図4におけるV-V断面図である。 本発明の実施形態に係る電極部材に対するバスバーの押圧工程の概念図である。
 本発明に係る電気的接続装置の実施形態について、図面を参照して説明する。ここでは、本発明に係る電気的接続装置を、回転電機2を制御するためのインバータモジュール3を構成するバスバーモジュール1に適用した場合を例として説明する。図1に示すように、バスバーモジュール1は接合部51を有するバスバー50を備え、接合部51は、スイッチングモジュール33が備える電極部材80に対して押圧された状態で当該電極部材80に接合される。このような構成において、本実施形態に係るバスバーモジュール1は、バスバー50の形状、及びバスバー50を支持する支持体60の構成に特徴を有している。以下、本実施形態に係るバスバーモジュール1の構成について、「インバータモジュールの全体構成」、「バスバーモジュールの構成」の順に説明する。
 本実施形態では、バスバーモジュール1及びバスバー50が、それぞれ、本発明における「電気的接続装置」及び「接続部材」に相当する。以下の説明では、特に断らない限り、「上」は図1における-Z方向を指し、「下」は図1におけるZ方向を指すものとする。なお、Z方向は、電極部材80に対する接合部51の押圧方向と一致する。
1.インバータモジュールの全体構成
 インバータモジュール3の全体構成について、図1~図3を参照して説明する。図1に示すように、インバータモジュール3は、バスバーモジュール1とスイッチングモジュール33とを備えている。バスバーモジュール1は、スイッチングモジュール33の上側にスイッチングモジュール33に近接して配置され、スイッチングモジュール33と図示しない電源との間の電流の経路を形成するとともに、スイッチングモジュール33と回転電機2(図3参照)との間の電流の経路を形成する。本例では、回転電機2は、三相交流で駆動される交流電動機とされており、例えば、電動車両やハイブリッド車両に駆動力源として備えられる。また、本実施形態では、回転電機2は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能との双方を果たすことが可能とされている。
 図1及び図2に示すように、バスバーモジュール1は、バスバー50と、バスバー50を支持する支持体60と、を備えている。本実施形態では、バスバーモジュール1は、第一バスバー50a、第二バスバー50b、第三バスバー50c、第四バスバー50d、及び第五バスバー50eの5つのバスバー50を備えている。これら5つのバスバー50は、支持体60により一体的に支持されている。バスバー50は、導電性の材料(例えば、銅やアルミニウム等の金属材料)で形成される。
 バスバー50は、電極部材80の接合面80aに面接触する平板状の接合部51と、当該接合部51を挟んで所定の延在方向(本例ではY方向)に沿って両側に延びる渡り部52と、当該両側の渡り部52のそれぞれにおける接合部51とは反対側の端部に設けられた被支持部53と、を備える。接合部51は、スイッチングモジュール33が備える電極部材80に対して所定の押圧方向Zに押圧された状態で、当該電極部材80に接合される。図1に示すように、Y方向は、押圧方向Zに対して直交する方向とされている。
 支持体60は、接合部51から離間して接合部51に対して少なくとも延在方向Yの両側に配置され、接合部51の両側の被支持部53を一体的に支持するように形成されている。支持体60は、絶縁性の材料(例えば、ポリフェニレンサルファイド樹脂等の各種樹脂)で形成される。なお、バスバーモジュール1の詳細な構成については、後に第2節で説明する。
 図1に示すように、スイッチングモジュール33は、ベースプレート41と、絶縁シート43と、素子基板42と、を備えている。ベースプレート41、絶縁シート43、及び素子基板42は、互いに平行或いは略平行な状態で積層されており、この積層方向はZ方向に平行な方向と一致する。
 ベースプレート41は、絶縁シート43及び素子基板42を載置するためのベースとなる板状の部材である。ベースプレート41は、銅やアルミニウム等の金属材料で形成され、下面には放熱フィン41bが形成されている。図1に示すように、ベースプレート41は、上面41aがZ方向に直交する面と平行となるように配置される。
 絶縁シート43は、電気的絶縁性及び熱伝導性の双方を備えるシート状部材で構成され、本例では樹脂製のシート部材とされている。絶縁シート43は、ベースプレート41の上面41aに載置される。本例では、絶縁シート43は、熱圧着によりベースプレート41の上面41aと素子基板42の下面とを接着固定している。
 素子基板42は、絶縁シート43の上面に載置され、スイッチング素子31及びダイオード素子32が素子基板42の上面に載置される。素子基板42は、導電性の材料(例えば、銅やアルミニウム等の金属材料)で形成される。また、素子基板42はヒートスプレッダとしても機能する。上記のように、素子基板42が、電気的絶縁性及び熱伝導性の双方を備える絶縁シート43を介してベースプレート41に固定される構成とすることで、素子基板42とベースプレート41との間の電気的絶縁性を確保しつつ、スイッチング素子31の熱を放熱フィン41bに効率良く伝達させることが可能となっている。
 本実施形態では、図1に示すように、絶縁シート43の上面には、6つの素子基板42が配置されている。具体的には、6つの素子基板42は、X方向に3つ並ぶとともに、Y方向に2つ並ぶように配置されている。ここで、図1に示すように、X方向は、押圧方向Z及び渡り部52の延在方向Yの双方に対して直交する方向である。
 そして、本実施形態では、各素子基板42の上面には、スイッチング素子31及びダイオード素子32がそれぞれ一つずつ載置されている。すなわち、本例では、スイッチングモジュール33は、6つのスイッチング素子31と6つのダイオード素子32とを備えており、これらのスイッチング素子31及びダイオード素子32により、回転電機2を駆動するための後述するインバータ回路(図3参照)が構成されている。スイッチング素子31は、本実施形態ではIGBT(insulated gate bipolar transistor)とされている。
 なお、スイッチング素子31として、MOSFET(metal oxide semiconductor field effect transistor)を適用することも可能である。また、本例では、図1に示すように、同一の素子基板42に載置されたスイッチング素子31とダイオード素子32とは、Y方向に沿って並ぶように互いに隣接して配置されている。
 スイッチング素子31は、上面にエミッタ電極を備え、下面にコレクタ電極を備えている。また、ダイオード素子32は、上面にアノード電極を備え、下面にカソード電極を備えている。スイッチング素子31は、半田により素子基板42に固定され、下面のコレクタ電極が素子基板42と導通する。ダイオード素子32は、半田により素子基板42に固定され、下面のカソード電極が素子基板42と導通する。すなわち、素子基板42は、スイッチング素子31のコレクタ電極とダイオード素子32のカソード電極と同電位となる。
 そして、スイッチング素子31の上面(エミッタ電極)とダイオード素子32の上面(アノード電極)とを電気的に接続する状態で、第一の電極部材80である第一電極部材81が配置されている。また、スイッチング素子31及びダイオード素子32が配置された素子基板42の上面に、第二の電極部材80である第二電極部材82が載置されている。第一電極部材81及び第二電極部材82の双方は、導電性の材料(例えば、銅やアルミニウム等の金属材料)で形成される。なお、素子基板42は導電性の材料で形成されているため、第二電極部材82は、素子基板42を介して、スイッチング素子31の下面(コレクタ電極)及びダイオード素子32の下面(カソード電極)と導通する。以下では、第一電極部材81と第二電極部材82とを特に区別する必要がない場合には、これらを総称して電極部材80という。
 本例では、図1に示すように、第一電極部材81は、一定幅の帯状部材(板状部材)を屈曲成形してなる。第一電極部材81は、接合面80aが上面に形成された反素子側電極部と、スイッチング素子31の上面に半田により固定される第一素子側電極部と、ダイオード素子32の上面に半田により固定される第二素子側電極部と、反素子側電極部と第一素子側電極部とを連結する第一連結部と、反素子側電極部と第二素子側電極部とを連結する第二連結部と、を備えている。そして、スイッチング素子31の上面(エミッタ電極)及びダイオード素子32の上面(アノード電極)は、この第一電極部材81を介してバスバー50に接続される。なお、第一電極部材81の形状は適宜変更可能であり、例えば、第一素子側電極部や第二素子側電極部が、押圧方向Z視で反素子側電極部とは重ならない位置に延在方向Yにずらして配置された構成とすることができる。また、第一電極部材81がブロック状部材で形成された構成とすることもできる。
 また、本例では、図1に示すように、第二電極部材82は、接合面80aを上面に有するブロック状部材とされ、下面が素子基板42の上面に半田により固定される。そして、スイッチング素子31の下面(コレクタ電極)及びダイオード素子32の下面(カソード電極)は、この第二電極部材82を介してバスバー50に接続される。なお、第二電極部材82の形状は適宜変更可能であり、第二電極部材82が、第一電極部材81と同様に一定幅の帯状部材(板状部材)を屈曲して形成された構成とすることもできる。
 このように、スイッチングモジュール33は、スイッチング素子31及びダイオード素子32とバスバー50とを接続するための電極部材80を複数(本例では12個)有している。また、図1では省略しているが、スイッチングモジュール33は、図示しない電源とバスバー50とを接続するための電極部材80(図3に示す正極側電極部材83及び負極側電極部材84)を備えている。そして、これらの電極部材80の上面に、接合面80aが形成されている。本例では、接合面80aがZ方向に直交する面と平行となるように、電極部材80が配置されている。
 本実施形態では、電極部材80とバスバー50とは、レーザ溶接により接合される。レーザ溶接は、バスバー50(接合部51)の上面側からZ軸方向或いはZ軸方向から僅かに(例えば5度)傾けた方向にレーザ光を照射することにより行う。このようなレーザ溶接に用いるレーザとしては、例えばYAGレーザ、COレーザ、半導体レーザ等の溶接用のレーザを利用することができる。本例では、YAGレーザが用いられる。
 バスバー50と電極部材80との接合の信頼性を高めるためには、接合時(本例ではレーザ溶接時)に、接合部51と電極部材80の接合面80aとが良好に面接触していることが望ましい。本実施形態では、第2節で詳細に述べるように、接合部51に対して延在方向Yの両側から均等或いは略均等に荷重がかかるように支持体60を押圧することが容易な構成となっており、接合時に接合部51を電極部材80の接合面80aに対して良好に面接触させることが容易な構成となっている。ここで、「略均等」とは、接合部51と接合面80aとの間の接合の信頼性の観点から許容できる範囲の荷重の差異を含む概念として用いている。
 次に、上述したスイッチング素子31及びダイオード素子32が構成するインバータ回路について説明する。図3に示すように、インバータ回路は、ブリッジ回路により構成されており、電源の正極P側と電源の負極N側(例えばグランド側)との間に2つのスイッチング素子31が直列に接続され、この直列回路が3回線並列に接続されている。そして、回転電機2のステータコイルの三相(U相、V相、W相)のそれぞれに1つの直列回路が対応している。なお、符号92は、平滑用のコンデンサ及びインダクタを備えた平滑回路である。
 図1及び図3において、符号31aはU相用上段側スイッチング素子であり、符号31bはV相用上段側スイッチング素子であり、符号31cはW相用上段側スイッチング素子である。また、符号31dはU相用下段側スイッチング素子であり、符号31eはV相用下段側スイッチング素子であり、符号31fはW相用下段側スイッチング素子である。ここで、「上段側」は正極P側のアームであることを指し、「下段側」は負極N側のアームであることを指す。
 各相の上段側スイッチング素子31a,31b,31cのコレクタは正極P側に接続され、エミッタは各相の下段側スイッチング素子31d,31e,31fのコレクタに接続されている。また、各相の下段側スイッチング素子31d,31e,31fのエミッタは負極N側に接続されている。各スイッチング素子31のエミッタ-コレクタ間には、ダイオード素子32が並列接続されている。ダイオード素子32は、アノードがスイッチング素子31のエミッタに接続され、カソードがスイッチング素子31のコレクタに接続されている。ダイオード素子32はFWD(Free Wheel Diode)として用いられている。
 対となる各相のスイッチング素子(31a,31d)、(31b,31e)、(31c,31f)による直列回路の中間点(スイッチング素子31同士の接続点)が、回転電機接続端子91u,91v,91wを介して回転電機2の各相のコイルに接続されている。そして、各スイッチング素子31のゲートは図示しない制御ユニットに接続されており、それぞれ個別にスイッチング制御される。なお、制御ユニットは、本例では、バスバーモジュール1の上側にバスバーモジュール1に近接して配置される。
 制御ユニットは、各スイッチング素子31を回転電機2に要求される要求回転速度や要求トルクに基づいて制御(例えばパルス幅変調制御等)することで、回転電機2に三相の交流電圧を供給する。これにより、制御ユニットは、回転電機2を要求回転速度及び要求トルクに応じて力行させる。一方、回転電機2が発電機として機能し、回転電機2側から電力の供給を受ける場合には、制御ユニットは、発電された交流電圧を直流電圧に変換するように各スイッチング素子31を制御する。
2.バスバーモジュールの構成
 次に、本発明の要部であるバスバーモジュール1の構成について詳細に説明する。バスバーモジュール1は、バスバー50と支持体60とを備えている。そして、本実施形態では、バスバー50として、第一バスバー50a、第二バスバー50b、第三バスバー50c、第四バスバー50d、及び第五バスバー50eの5つを備えている。
 第一バスバー50a、第二バスバー50b、及び第三バスバー50cは、図3に示すように、各相のスイッチング素子31による直列回路の中間点と回転電機2の各相のコイルとを接続する機能を果たす。そのため、図2及び図4に示すように、第一バスバー50a、第二バスバー50b、及び第三バスバー50cのそれぞれは、電極部材80に接合される接合部51と、回転電機2のコイルと接続するための回転電機接続端子91u,91v,91wとを備えている。
 具体的には、第一バスバー50aは、図4における-Y方向に向かって、U相用下段側スイッチング素子31dが配置された素子基板42上の第二電極部材82に接合される接合部51と、U相用上段側スイッチング素子31aが配置された素子基板42上の第一電極部材81と接合される接合部51と、回転電機2のU相コイルと接続するためのU相用回転電機接続端子91uとを、記載の順に備える。このように、第一バスバー50aは、複数(具体的には2個)の接合部51を備える。
 第二バスバー50bは、図4における-Y方向に向かって、V相用下段側スイッチング素子31eが配置された素子基板42上の第二電極部材82に接合される接合部51と、V相用上段側スイッチング素子31bが配置された素子基板42上の第一電極部材81と接合される接合部51と、回転電機2のV相コイルと接続するためのV相用回転電機接続端子91vとを、記載の順に備える。このように、第二バスバー50bは、複数(具体的には2個)の接合部51を備える。
 第三バスバー50cは、図4における-Y方向に向かって、W相用下段側スイッチング素子31fが配置された素子基板42上の第二電極部材82に接合される接合部51と、W相用上段側スイッチング素子31cが配置された素子基板42上の第一電極部材81と接合される接合部51と、回転電機2のW相コイルと接続するためのW相用回転電機接続端子91wとを、記載の順に備える。このように、第三バスバー50cは、複数(具体的には2個)の接合部51を備える。
 第四バスバー50dは、図3に示すように、各相の上段側スイッチング素子31a,31b,31cのコレクタと電源の正極P側とを接続する機能を果たす。具体的には、第四バスバー50dは、図4における-X方向に向かって、正極側電極部材83に接合される接合部51と、U相用上段側スイッチング素子31aが配置された素子基板42上の第二電極部材82に接合される接合部51と、V相用上段側スイッチング素子31bが配置された素子基板42上の第二電極部材82に接合される接合部51と、W相用上段側スイッチング素子31cが配置された素子基板42上の第二電極部材82に接合される接合部51とを、記載の順に備える。このように、第四バスバー50dは、4個の接合部51を備える。
 第五バスバー50eは、図3に示すように、各相の下段側スイッチング素子31d,31e,31fのエミッタと電源の負極N側とを接続する機能を果たす。具体的には、第五バスバー50eは、図4における-X方向に向かって、負極側電極部材84に接合される接合部51と、U相用下段側スイッチング素子31dが配置された素子基板42上の第一電極部材81に接合される接合部51と、V相用下段側スイッチング素子31eが配置された素子基板42上の第一電極部材81に接合される接合部51と、W相用下段側スイッチング素子31fが配置された素子基板42上の第一電極部材81に接合される接合部51とを、記載の順に備える。このように、第五バスバー50eは、4個の接合部51を備える。
 上述したように、本実施形態では、第一バスバー50a、第二バスバー50b、及び第三バスバー50cは、スイッチングモジュール33の回転電機接続用のバスバーとされている。また、第四バスバー50d及び第五バスバー50eは、スイッチングモジュール33の電源接続用のバスバーとされている。そして、図1及び図4に示すように、5つのバスバー50は、支持体60により一体的に支持されている。
 支持体60は、本実施形態では、図1及び図4に示すように、外枠部61と梁状部62とを一体的に備える。外枠部61は、X方向に延在する第一側枠61aと、第一側枠61aに対してY方向側でX方向に延在する第二側枠61cと、Y方向における第一側枠61aと第二側枠61cとの間(本例では中心位置)でX方向に延在する中間枠61bと、Y方向に延在し、第一側枠61a、中間枠61b、及び第二側枠61cのそれぞれの-X方向側の端部を連結する連結枠61dとが一体的に形成されてなる。そして、第一側枠61aの上面、中間枠61bの上面、及び第二側枠61cの上面が、バスバーモジュール1における被押圧面を形成し、当該被押圧面にZ方向に加えられた力により、支持体60に支持された接合部51が電極部材80の接合面80aに対して押圧される。
 本実施形態では、複数(本例では6個)の梁状部62が、外枠部61と一体的に形成されている。具体的には、図1及び図4に示すように、第一側枠61aと中間枠61bとをY方向に接続するように3つの梁状部62が形成されている。これら3つの梁状部62は、内部にバスバー50の一部を固定保持する保持梁状部62aとされている。また、中間枠61bと第二側枠61cとをY方向に接続するように3つの梁状部62が形成されている。これら3つの梁状部62は、内部にバスバー50を固定保持しない非保持梁状部62bとされている。このように、本実施形態では、支持体60は、互いに同じ方向(本例ではY方向)に延在する複数の梁状部62を備える。そして、複数の梁状部62には、保持梁状部62aと非保持梁状部62bとが含まれる。以下では、保持梁状部62aと非保持梁状部62bとを特に区別する必要がない場合には、これらを総称して梁状部62という。
 以上のように、支持体60は、本実施形態では、外枠部61及び梁状部62を備えた枠状に形成されている。そして、図4に示すように、支持体60は、8個の区画を形成しており、その内の6個の区画は、平面視で四方を囲まれた区画であり、これらの区画のそれぞれには2つの接合部51が配置されている。また、X方向側に設けられた残りの2個の区画は、平面視で三方を囲まれた区画であり、これらの区画のそれぞれには1つの接合部51が配置されている。すなわち、本実施形態では、支持体60は、接合部51に対して少なくとも延在方向Yの両側に配置される。そして、支持体60は、ある特定の接合部51に対してはさらにX方向の両側に配置され、別の特定の接合部51に対してはさらにX方向の片側のみに配置される。
 このように、バスバーモジュール1が備える何れの接合部51に対しても、支持体60は少なくとも渡り部52の延在方向Yの両側に配置される。これにより、支持体60が、接合部51を延在方向Yの両側から支持する構成を実現している。具体的には、支持体60は、接合部51の両側の被支持部53を一体的に支持することで、接合部51から離間した状態で接合部51を延在方向Yの両側から支持する。これにより、バスバーモジュール1は、接合部51に対して延在方向Yの両側から均等或いは略均等に荷重がかかるように支持体60を押圧することが容易な構成となっている。その結果、バスバーモジュール1は、図6に示すように、接合部51を電極部材80の接合面80aに対して良好に面接触させることが容易な構成となっている。
 なお、図6は、電極部材80に対するバスバー50の押圧工程の概念を示す説明図であり、図6(a)は押圧前の状態を模式的に表している。また、図6(b)は押圧中の状態を模式的に表しており、この押圧状態で接合工程(本例ではレーザ溶接工程)が実行される。詳細な説明は省略するが、図6(b)の状態では、支持体60の下面は図示しない部材(例えば、ベースプレート41上の素子基板42の周囲を囲むケース等)により押圧方向Zに位置決めされる。また、本実施形態では、接合工程の終了後もバスバー50は電極部材80に対して押圧された状態に維持される。例えば、接合工程の終了後に支持体60を収容する空間(例えばケースに囲まれた空間)内に充填剤(例えばエポキシ樹脂等の樹脂)が充填され、硬化後の充填剤により支持体60が固定支持される構成とすることができる。
 なお、本実施形態では、被支持部53は支持体60の内部に固定保持されている。図2及び図4においては簡素化のため一部の被支持部53にのみ符号を付しているが、バスバー50における支持体60に固定されている部分(本例では、支持体60の内部に配置されている部分)全てが、被支持部として機能する。
 上記のように、本実施形態では、バスバー50は複数の接合部51を備えている。そして、各接合部51は、一対の渡り部52を介して支持体60に支持されている。具体的には、上記のように、第一バスバー50a、第二バスバー50b、及び第三バスバー50cのそれぞれが2個の接合部51を備え、第四バスバー50d及び第五バスバー50eのそれぞれが4個の接合部51を備える。よって、バスバー50全体では、14個の接合部51が備えられている。そして、支持体60は、複数(本例では14個)の接合部51についての複数対(本例では14対)の被支持部53を一体的に支持するように形成されている。これにより、支持体60に押圧方向Zの力を加えることで、複数の接合部51のそれぞれを接合対象の電極部材80の接合面80aに対して押圧することができる。すなわち、全ての接合部51を一度に接合対象の接合面80aに対して押圧することができ、電極部材80に対するバスバー50の接合工程を簡素なものとすることが可能となっている。
 ところで、接合時に接合部51を電極部材80の接合面80aに対して良好に面接触させるためには、電極部材80に対する押圧時に、応力による接合部51の変形が抑制されることが望ましい。本実施形態では、以下のような構成を備えることで、電極部材80に対する押圧時の接合部51の変形を抑制している。なお、図2及び図4に示すように、本実施形態では、バスバーモジュール1が備える14個の接合部51は、互いに同じ形状に形成されている。また、バスバーモジュール1が備える14対の渡り部52も、Y方向の延在長さが短いものと長いものの2種類あるものの、それ以外の点については互いに同じ形状に形成されている。よって、以下では、必要な場合を除き、各接合部51を区別することなく説明する。
 図2、図4、図5に示すように、接合部51は、周縁部の少なくとも一部に、厚さ方向(本例では、押圧方向Zと平行な方向)に屈曲された屈曲加工部51aを有する。本実施形態では、接合部51は、平面視(Z方向視)で矩形状に形成されており、Y方向両側の縁部のそれぞれに屈曲加工部51aが形成されている。さらに、渡り部52は、厚さ方向が押圧方向Zに平行状に配置された帯状に形成されており、厚さ及び幅の少なくとも一方について、渡り部52は接合部51よりも小さく形成されている。ここで、「平行状」とは、平行及び平行な方向から所定の角度(例えば10度以内の角度)ずれた略平行を含む概念として用いている。なお、本実施形態では、渡り部52は、X方向の幅が接合部51よりも小さく形成されているとともに、厚さが接合部51と等しく形成されている。具体的には、渡り部52は、X方向の幅が接合部51の4分の1程度とされている。
 このような構成を備えることで、接合部51の剛性(耐変形性)は渡り部52に対して高くなる。そのため、図6(b)に概念的に示すように、電極部材80に対する押圧時に、バスバー50に発生する応力を渡り部52の変形により吸収することができ、接合部51の変形を抑制してその形状を平板状に保つことが可能となっている。
 さらに、図4及び図5に示すように、接合部51に対して延在方向Yの両側に配置された一対の渡り部52が、接合部51の重心51b(図5では誇張して図示)を通るとともに延在方向Yに直交する面(対称面A)に対して互いに面対称な形状とされている。これにより、一対の渡り部52の剛性が互いに等しくなり、電極部材80に対する押圧時にバスバー50に発生する応力を、接合部51に対して延在方向Yの両側で均等に吸収することが可能となっている。すなわち、接合部51に対して延在方向Yの両側から均等或いは略均等に荷重がかかるように支持体60を押圧することが可能となっている。この点からも、接合時に接合部51を電極部材80の接合面80aに対して良好に面接触させることが可能となっている。
 なお、本実施形態では、図4及び図5に示すように、接合部51も対称面Aに対して互いに面対称な形状とされている。また、第四バスバー50d及び第五バスバー50eが備える接合部51については、延在方向Yの両側の一対の被支持部53が互いに同じ高さ(Z方向長さ)に形成されている。すなわち、本実施形態では、第四バスバー50d及び第五バスバー50eが備える接合部51について、接合部51、一対の渡り部52、及び一対の被支持部53からなる部分のX方向に直交する断面(YZ断面)における形状が、図5に示すように、対称面Aが形成する線分を対称軸として線対称な形状とされている。
 また、本実施形態では、上記のように、支持体60は、複数(本例では14個)の接合部51についての複数対(本例では14対)の被支持部53を一体的に支持するように形成されている。そして、複数の接合部51の全てについて、接合時に接合対象の電極部材80の接合面80aに対して良好に面接触させるためには、電極部材80に対する押圧時に、支持体60が局所的に大きく変形しないことが望ましい。本実施形態では、以下のような構成を備えることで、電極部材80に対する押圧時の支持体60の局所的な変形を抑制している。
 図1及び図2に示すように、非保持梁状部62bの押圧方向Zの厚さが、保持梁状部62aの押圧方向Zの厚さよりも大きく形成されている。なお、本例ではバスバー50は支持体60に比べて剛性の高い材料で形成されているため、押圧方向Zの厚さが同じである場合には、保持梁状部62aは非保持梁状部62bに比べて剛性が高くなる。本例では、非保持梁状部62bの押圧方向Zの厚さを保持梁状部62aの押圧方向Zの厚さよりも大きくすることで、保持梁状部62aの剛性と非保持梁状部62bの剛性との差が小さくされている。この際、保持梁状部62aの押圧方向Zの厚さと、非保持梁状部62bの押圧方向Zの厚さとは、これらの剛性が互いに同一或いは略同一になるように設定すると好適である。ここで、「略同一」とは、接合部51と電極部材80の接合面80aとの間の接合の信頼性の観点から許容できる範囲の剛性の差異を含む概念として用いている。さらに、被支持部53は、押圧方向Zの長さ、及び、延在方向Y及び押圧方向Zの双方に直交する方向(すなわちX方向)の長さの少なくとも一方が、渡り部52よりも大きく形成されている。これにより、電極部材80に対する押圧時に、支持体60がバスバー50から受ける荷重を支持体60内で分散させ、支持体60の広い範囲でバスバー50を支持することが可能となっている。
 このような構成を備えることで、電極部材80に対する押圧時に支持体60が局所的に大きく変形することが抑制され、複数の接合部51の全てについて延在方向Yの両側から均等或いは略均等に荷重がかかるように支持体60を押圧することが容易となっている。
 なお、図2、図4、図5に示すように、本実施形態では、第四バスバー50d及び第五バスバー50eについては、一対の被支持部53のそれぞれは、押圧方向Zの長さ及びX方向の長さの双方について、渡り部52よりも大きく形成されている。なお、一対の被支持部53は、図5に示すように、押圧方向Zの長さが互いに等しく形成されている。
 さらに、本実施形態では、図2及び図4に示すように、第四バスバー50dでは、4つの接合部51のそれぞれについてのY方向側の被支持部53は、X方向に連続するように一体的に形成されて共通被支持部53aを構成している。一方、4つの接合部51のそれぞれについての-Y方向側の被支持部53は、互いに独立に形成されている。
 第五バスバー50eでは、4つの接合部51のそれぞれについての-Y方向側の被支持部53が、X方向に連続するように一体的に形成されて共通被支持部53aを構成しているとともに、4つの接合部51の内の-X方向側の3つの接合部51のそれぞれについてのY方向側の被支持部53が、X方向に連続するように一体的に形成されて共通被支持部53aを構成している。このような構成を備えることで、第五バスバー50eについては、ループ形状の電流経路が形成され、インダクタンスの低減による電力損失の低減が可能となっている。
 一方、第一バスバー50a、第二バスバー50b、及び第三バスバー50cについては、一対の被支持部53の内の一方の被支持部53が、押圧方向Zの長さが渡り部52よりも大きく形成されており、他方の被支持部53は、押圧方向Zの長さが渡り部52と同一に形成されている。また、一対の被支持部53の双方が、X方向の長さについて渡り部52よりも大きく形成されている。
3.その他の実施形態
 最後に、本発明に係るその他の実施形態を説明する。なお、以下の各々の実施形態で開示される特徴は、その実施形態でのみ利用できるものではなく、矛盾が生じない限り、別の実施形態にも適用可能である。
(1)上記の実施形態では、渡り部52の延在方向がY方向である構成を例として説明したが、渡り部52の延在方向は、押圧方向Zに対して交差する任意の方向とすることができる。例えば、渡り部52の延在方向を、Z方向との交差角が80度、85度、95度、或いは100度の方向とすることができる。
(2)上記の実施形態では、接合部51が、Y方向両側の縁部のそれぞれに屈曲加工部51aを有する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、接合部51が、Y方向縁部の屈曲加工部51aに加え、或いは、Y方向縁部の屈曲加工部51aを備えずに、X方向両側の縁部のそれぞれに厚さ方向の屈曲加工部51aを有する構成とすることもできる。また、接合部51が、Y方向のいずれか一方側の縁部のみに屈曲加工部51aを有する構成や、X方向のいずれか一方側の縁部のみに屈曲加工部51aを有する構成とすることもでき、接合部51が屈曲加工部51aを有さない構成とすることも可能である。さらに、接合部51が、屈曲加工部51aを有する場合と有さない場合とのいずれの場合でも、接合部51にリブ構造が形成された構成とすることも可能である。
(3)上記の実施形態では、接合部51が平面視で矩形状に形成されている構成を例として説明したが、接合部51の形状としては、電極部材80の接合面80aに面接触する平板部を有するものであれば、あらゆる形状を採用することができる。例えば、接合部51の平面視での形状を、円形(楕円形を含む)状や矩形以外の多角形状等とすることができる。
(4)上記の実施形態では、渡り部52の幅が、接合部51の幅よりも小さく形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、渡り部52の幅を、接合部51の幅と同じ若しくはそれより大きく形成することも可能である。また、渡り部52を、幅に加えて厚さについても、接合部51よりも小さく形成しても好適である。
(5)上記の実施形態では、渡り部52の厚さが、接合部51の厚さと同一に形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、渡り部52の厚さを、接合部51の厚さより小さくしたり大きくしたりすることもできる。これらの場合において、渡り部52の幅と接合部51の幅との大小関係は任意に設定できる。
(6)上記の実施形態では、渡り部52が帯状に形成されている構成を例として説明したが、渡り部52が帯状以外の形状(例えば、棒状)に形成された構成とすることもできる。また、上記の実施形態では、渡り部52の幅及び厚さの双方が延在方向Yに一様である構成を例として説明したが、渡り部52の幅及び厚さの少なくとも一方が延在方向Yに一様でなく、延在方向Yの位置に応じて異なる構成とすることも可能である。
(7)上記の実施形態では、接合部51に対して延在方向Yの両側に配置された一対の渡り部52が、接合部51の重心51bを通るとともに延在方向Yに直交する面(対称面A)に対して互いに面対称な形状とされている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、接合部51に対して延在方向Yの両側に配置された一対の渡り部52が、幅や厚さ或いは平面視での形状等が互いに異なるように形成された構成とすることも可能である。
(8)上記の実施形態では、支持体60が、複数の接合部51についての複数対の被支持部53を一体的に支持するように形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、支持体60が、1つの接合部51についての1対の被支持部53のみを一体的に支持するように形成されている構成とすることも可能である。
(9)上記の実施形態では、押圧方向Zの厚さについて、非保持梁状部62bが保持梁状部62aよりも大きく形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、非保持梁状部62bと保持梁状部62aとで押圧方向Zの厚さが互いに等しく形成された構成や、押圧方向Zの厚さについて、非保持梁状部62bが保持梁状部62aよりも小さく形成された構成とすることも可能である。
(10)上記の実施形態では、被支持部53のZ方向(押圧方向)の長さ及びX方向の長さの少なくとも一方が、渡り部52よりも大きく形成されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、被支持部53のZ方向(押圧方向)の長さ及びX方向の長さの双方を、渡り部52と等しく形成したり、渡り部52よりも小さく形成したりすることも可能である。
(11)上記の実施形態では、バスバー50の被支持部53が、支持体60の内部に固定保持されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、バスバー50の被支持部53が、支持体60の端面(上面や下面、或いは側面)に固定された構成とすることも可能である。
(12)上記の実施形態では、本発明を、回転電機2を制御するためのインバータモジュール3を構成するバスバーモジュール1に適用した場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、電極部材に対して押圧された状態で当該電極部材に接合される接合部を有するあらゆる電気的接続装置に本発明を適用することができる。
(13)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載された構成及びこれと均等な構成を備えている限り、特許請求の範囲に記載されていない構成の一部を適宜改変した構成も、当然に本発明の技術的範囲に属する。
 本発明は、電極部材に対して所定の押圧方向に押圧された状態で当該電極部材に接合される接合部を有する導電性の接続部材と、接続部材を支持する絶縁性の支持体と、を備えた電気的接続装置に好適に利用することができる。
1:バスバーモジュール(電気的接続装置)
50:バスバー(接続部材)
51:接合部
51a:屈曲加工部
51b:重心
52:渡り部
53:被支持部
60:支持体
62:梁状部
62a:保持梁状部
62b:非保持梁状部
80:電極部材
80a:接合面
A:対称面
Z:押圧方向
Y:延在方向

Claims (7)

  1.  電極部材に対して所定の押圧方向に押圧された状態で当該電極部材に接合される接合部を有する導電性の接続部材と、前記接続部材を支持する絶縁性の支持体と、を備えた電気的接続装置であって、
     前記接続部材は、前記電極部材の接合面に面接触する平板状の前記接合部と、当該接合部を挟んで所定の延在方向に沿って両側に延びる渡り部と、当該両側の渡り部のそれぞれにおける前記接合部とは反対側の端部に設けられた被支持部と、を備え、
     前記支持体は、前記接合部から離間して前記接合部に対して少なくとも前記延在方向の両側に配置され、前記接合部の両側の前記被支持部を一体的に支持するように形成されている電気的接続装置。
  2.  前記接合部は、周縁部の少なくとも一部に、厚さ方向に屈曲された屈曲加工部を有する請求項1に記載の電気的接続装置。
  3.  前記渡り部が帯状とされていると共に、当該渡り部の厚さ方向が前記押圧方向に平行状とされ、
     厚さ及び幅の少なくとも一方について、前記渡り部は前記接合部よりも小さく形成されている請求項1又は2に記載の電気的接続装置。
  4.  前記接合部に対して前記延在方向の両側に配置された一対の前記渡り部が、前記接合部の重心を通るとともに前記延在方向に直交する面に対して互いに面対称な形状とされている請求項1から3のいずれか一項に記載の電気的接続装置。
  5.  前記接続部材は、一対の前記渡り部を介して前記支持体に支持された前記接合部を複数備え、
     前記支持体は、複数の前記接合部についての複数対の前記被支持部を一体的に支持するように形成されている請求項1から4のいずれか一項に記載の電気的接続装置。
  6.  前記支持体は、互いに同じ方向に延在する複数の梁状部を備え、
     前記複数の梁状部には、前記接続部材を内部に固定保持する保持梁状部と、前記接続部材を内部に固定保持しない非保持梁状部とが含まれ、
     前記押圧方向の厚さについて、前記非保持梁状部は前記保持梁状部よりも大きく形成されている請求項1から5のいずれか一項に記載の電気的接続装置。
  7.  前記接続部材の前記被支持部は、前記支持体の内部に固定保持されており、
     前記被支持部は、前記押圧方向の長さ、及び、前記延在方向及び前記押圧方向の双方に直交する方向の長さの少なくとも一方が、前記渡り部よりも大きく形成されている請求項1から6のいずれか一項に記載の電気的接続装置。
PCT/JP2011/067675 2010-09-02 2011-08-02 電気的接続装置 WO2012029489A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800318080A CN102971847A (zh) 2010-09-02 2011-08-02 电连接装置
DE112011101862T DE112011101862T5 (de) 2010-09-02 2011-08-02 Elektrische Verbindungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-196633 2010-09-02
JP2010196633A JP2012054449A (ja) 2010-09-02 2010-09-02 電気的接続装置

Publications (1)

Publication Number Publication Date
WO2012029489A1 true WO2012029489A1 (ja) 2012-03-08

Family

ID=45771054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067675 WO2012029489A1 (ja) 2010-09-02 2011-08-02 電気的接続装置

Country Status (5)

Country Link
US (1) US8500491B2 (ja)
JP (1) JP2012054449A (ja)
CN (1) CN102971847A (ja)
DE (1) DE112011101862T5 (ja)
WO (1) WO2012029489A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047671A1 (ja) * 2011-09-28 2013-04-04 アイシン・エィ・ダブリュ株式会社 接続部材及び電気的接続装置
JP2014011338A (ja) * 2012-06-29 2014-01-20 Denso Corp 半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377574B2 (ja) 2011-05-31 2013-12-25 日産自動車株式会社 電力変換装置
JP5377575B2 (ja) * 2011-05-31 2013-12-25 日産自動車株式会社 電力変換装置
JP5437312B2 (ja) 2011-05-31 2014-03-12 日産自動車株式会社 電力変換装置
US9369055B2 (en) * 2011-10-07 2016-06-14 Nissan Motor Co., Ltd. Power converter
EP2765699B1 (en) * 2011-10-07 2017-03-29 Nissan Motor Co., Ltd Power converter
JP6171586B2 (ja) * 2013-06-04 2017-08-02 富士電機株式会社 半導体装置
JP2015006116A (ja) * 2013-06-24 2015-01-08 株式会社デンソー 車両用回転電機
JP2015006118A (ja) * 2013-06-24 2015-01-08 株式会社デンソー 車両用回転電機
DE102014104716B3 (de) * 2014-04-03 2015-02-26 Danfoss Silicon Power Gmbh Leistungshalbleitermodul
JP6346008B2 (ja) * 2014-07-03 2018-06-20 株式会社東芝 電力変換装置
JP6166701B2 (ja) * 2014-08-22 2017-07-19 株式会社東芝 半導体装置
JP2016092970A (ja) * 2014-11-05 2016-05-23 三菱電機株式会社 電力変換モジュール
JP6488940B2 (ja) 2015-08-07 2019-03-27 富士電機株式会社 半導体装置
DE112018002452B4 (de) 2017-05-12 2023-03-02 Mitsubishi Electric Corporation Halbleitermodul und Leistungswandler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307017A (ja) * 1999-02-17 2000-11-02 Hitachi Ltd 半導体装置およびその製造方法
JP2009070999A (ja) * 2007-09-12 2009-04-02 Denso Corp 電子回路部品実装構造
JP2010103222A (ja) * 2008-10-22 2010-05-06 Fuji Electric Systems Co Ltd 半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066006A (en) * 1998-11-06 2000-05-23 Lucent Technologies, Inc. Injection molded insulator
JP4385896B2 (ja) * 2003-12-24 2009-12-16 住友電装株式会社 自動車用の電気接続箱
US7632110B2 (en) * 2004-11-29 2009-12-15 Autonetworks Technologies, Ltd. Electric junction box
JP4720756B2 (ja) * 2007-02-22 2011-07-13 トヨタ自動車株式会社 半導体電力変換装置およびその製造方法
JP4582161B2 (ja) * 2008-03-04 2010-11-17 株式会社豊田自動織機 電力変換装置
US7591660B1 (en) * 2008-04-03 2009-09-22 Gm Global Technology Operations, Inc. Bi-directional lug connection and method
JP5319979B2 (ja) * 2008-07-28 2013-10-16 株式会社ケーヒン バスバーを有する端子
JP5418811B2 (ja) * 2009-01-30 2014-02-19 アイシン・エィ・ダブリュ株式会社 電流検出装置
JP5717472B2 (ja) * 2011-03-07 2015-05-13 富士通コンポーネント株式会社 コネクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307017A (ja) * 1999-02-17 2000-11-02 Hitachi Ltd 半導体装置およびその製造方法
JP2009070999A (ja) * 2007-09-12 2009-04-02 Denso Corp 電子回路部品実装構造
JP2010103222A (ja) * 2008-10-22 2010-05-06 Fuji Electric Systems Co Ltd 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047671A1 (ja) * 2011-09-28 2013-04-04 アイシン・エィ・ダブリュ株式会社 接続部材及び電気的接続装置
JP2014011338A (ja) * 2012-06-29 2014-01-20 Denso Corp 半導体装置

Also Published As

Publication number Publication date
US8500491B2 (en) 2013-08-06
US20120058681A1 (en) 2012-03-08
JP2012054449A (ja) 2012-03-15
DE112011101862T5 (de) 2013-05-29
CN102971847A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2012029489A1 (ja) 電気的接続装置
WO2012073306A1 (ja) パワーモジュール
EP2682985A1 (en) Semiconductor module and semiconductor module manufacturing method
CN111480231B (zh) 电力转换装置
JP5263334B2 (ja) バスバーモジュール
JP2009213269A (ja) 電力変換装置
JP6950326B2 (ja) 電力変換装置
JP5126617B2 (ja) 半導体装置及び接続部材
JP5092892B2 (ja) 半導体装置
JP5672270B2 (ja) 半導体モジュールの接続構造
JP7103279B2 (ja) 半導体装置
WO2020012936A1 (ja) スイッチング素子ユニット及びスイッチング素子モジュール
WO2021100747A1 (ja) 電力用半導体装置およびその製造方法、ならびに電力変換装置
JP5092804B2 (ja) 電力変換装置
JP2018110143A (ja) 半導体装置、電力変換装置、リードフレーム、および半導体装置の製造方法
WO2020039986A1 (ja) 電力用半導体装置およびその製造方法、ならびに電力変換装置
JP6447914B2 (ja) パワーモジュールの直流側配線基板及びその製造方法
JP2014192512A (ja) 半導体素子基板の配置構造、半導体装置
US20240055781A1 (en) Power electronic devices with busbars and method for their fabrication
JP7363682B2 (ja) 半導体装置
JP7331497B2 (ja) 電力変換装置
WO2023022001A1 (ja) パワーモジュールおよび電力変換装置
JP7124769B2 (ja) 半導体モジュール
JP2019170060A (ja) 電力型回路装置及び電力型回路装置の製造方法
JP2012109303A (ja) 電気回路装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031808.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111018622

Country of ref document: DE

Ref document number: 112011101862

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821507

Country of ref document: EP

Kind code of ref document: A1