WO2012023199A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2012023199A1
WO2012023199A1 PCT/JP2010/064032 JP2010064032W WO2012023199A1 WO 2012023199 A1 WO2012023199 A1 WO 2012023199A1 JP 2010064032 W JP2010064032 W JP 2010064032W WO 2012023199 A1 WO2012023199 A1 WO 2012023199A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
sheet
negative electrode
secondary battery
positive electrode
Prior art date
Application number
PCT/JP2010/064032
Other languages
English (en)
French (fr)
Inventor
上木 智善
島村 治成
福本 友祐
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/817,162 priority Critical patent/US9583769B2/en
Priority to PCT/JP2010/064032 priority patent/WO2012023199A1/ja
Priority to CN201080068629.XA priority patent/CN103201878B/zh
Priority to JP2012529446A priority patent/JP5574196B2/ja
Publication of WO2012023199A1 publication Critical patent/WO2012023199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery in which a porous layer is formed between a separator sheet and at least one of a positive electrode sheet and a negative electrode sheet.
  • lithium ion batteries, nickel metal hydride batteries and other non-aqueous electrolyte secondary batteries have become increasingly important as on-vehicle power supplies or personal computers and portable terminals.
  • a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.
  • a polyolefin-based porous film is used as a separator interposed between a positive electrode and a negative electrode.
  • the polyolefin-based porous film is made of a synthetic resin, it is easily deformed when the temperature inside the battery becomes high, and the risk of occurrence of an internal short circuit (short circuit) is improved. Therefore, as one of means for more reliably preventing the occurrence of defects such as short-circuiting, for example, it is considered to form a heat-resistant porous layer made of an inorganic filler on the surface of any one of the positive electrode, the negative electrode, and the separator. (For example, Patent Document 1). According to this configuration, even when the separator is deformed, the heat-resistant porous layer can prevent the contact between the positive electrode and the negative electrode, and the occurrence of a short circuit can be suppressed.
  • Patent Document 1 discloses a lithium secondary battery in which a second separator layer (porous layer) having a filler having a heat resistant temperature of 150 ° C. or higher is formed on the surface of the first separator layer.
  • the filler constituting the heat-resistant porous layer is preferably plate-like particles, and typical examples thereof include plate-like alumina and plate-like boehmite.
  • the porous layer is crushed by the pressure of expansion and contraction of the electrode accompanying charging and discharging, and the porosity of the porous layer is reduced. If the porosity of the porous layer decreases, the electrolyte and ions cannot pass through the porous layer, and the performance (load characteristics and high-rate durability) of the lithium secondary battery constructed using this becomes insufficient. It is not preferable.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a non-aqueous electrolyte secondary battery in which performance deterioration due to a decrease in porosity of a porous layer is suppressed.
  • the non-aqueous electrolyte secondary battery provided by the present invention is a lithium secondary battery including an electrode body in which a positive electrode sheet and a negative electrode sheet are overlapped via a separator sheet.
  • a porous layer having filler particles and a binder is formed between at least one of the positive electrode sheet and the negative electrode sheet and the separator sheet.
  • the median value in the circularity distribution of the filler particles contained in the porous layer is 0.85 to 0.97.
  • the circularity of the filler particles can be obtained, for example, by calculating the perimeter length and area from a projected image (particle image) of the filler particles and by the following equation (1).
  • Circularity a L0 / L1 (1)
  • L0 in the above formula (1) is the perimeter of an ideal circle (perfect circle) having the same area as the area calculated from the actually measured projection image (particle image) of the target particle
  • the circularity distribution typically, the number distribution
  • Such circularity distribution can be easily measured by, for example, a commercially available particle image analyzer, for example, a flow type particle image analyzer.
  • the median value in the circularity distribution of filler particles obtained by the particle image analyzer approximately 0.85 to 0.97 is appropriate.
  • the filler particles become more spherical, so that the filler particles can be filled more easily and it is difficult to increase the porosity of the porous layer.
  • the porous layer may be compressed under the pressure of expansion and contraction of the electrode accompanying charge / discharge, and cycle deterioration may occur.
  • the porosity of the porous layer can be increased, but the amount of filler contained per volume of the porous layer is reduced, so that the contact between the positive electrode and the negative electrode Preventive action may not be obtained. Moreover, since the strength of the porous layer tends to be insufficient, the porous layer may be crushed due to the pressure of expansion and contraction of the electrode accompanying charge / discharge, and cycle deterioration may occur.
  • the median value in the circularity distribution of the filler particles contained in the porous layer is generally 0.85 to 0.97, preferably 0.85 to 0.96, and more preferably 0.85 to 0.96. 0.93, particularly preferably 0.85 to 0.9.
  • the porosity for example, 50 to 70%, preferably 56 to 70
  • the porosity suitable for the porous layer is maintained while appropriately maintaining the amount of filler contained per volume of the porous layer. %, Particularly preferably 60 to 70%), and a porous layer having high electrolyte permeability and mechanical strength can be obtained.
  • a porous layer it is possible to construct a non-aqueous electrolyte secondary battery having high safety and good battery characteristics (load characteristics and high-rate durability).
  • the circularity value corresponding to a cumulative 10% from the side with the smaller circularity (Hereinafter referred to as the lower value) is 0.7 to 0.9.
  • irregular and angular particles are included in a certain ratio, and the angular particles suppress slippage between filler particles, and filler filling ability is appropriately reduced. Therefore, it is possible to stably obtain an optimal porous layer that achieves both high mechanical strength and good electrolyte solution permeability as described above at a high level.
  • the filler particles are alumina or alumina hydrate.
  • Alumina or alumina hydrate is preferable in that the circularity distribution can be easily adjusted by processing such as grinding.
  • alumina or alumina hydrate has a relatively high Mohs hardness, it is preferable in that the mechanical strength and durability of the porous layer can be improved.
  • the porous layer is formed on the surface of the separator sheet.
  • the manufacturing cost is reduced, and a porous layer can be formed between the separator sheet and the electrode sheet without adversely affecting the battery performance.
  • the porous layer is preferably formed on a surface of the separator sheet facing the negative electrode sheet.
  • the electrode body is a wound electrode body in which the positive electrode sheet and the negative electrode sheet are wound through the separator sheet.
  • the electrode body is a wound electrode body, it is particularly useful to apply the present invention because performance deterioration due to a decrease in the porosity of the porous layer is particularly likely to occur.
  • any of the non-aqueous electrolyte secondary batteries disclosed herein has performance suitable as a battery mounted on a vehicle (for example, high output can be obtained), and is particularly excellent in durability against high-rate charge / discharge. It can be. Therefore, according to this invention, the vehicle provided with one of the non-aqueous electrolyte secondary batteries disclosed here is provided.
  • a vehicle for example, an automobile
  • the non-aqueous electrolyte secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • FIG. 1 is a side view schematically showing a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a diagram schematically showing an electrode body of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 4 is an enlarged cross-sectional view showing a main part of the nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a film resistance measurement method according to one test example.
  • FIG. 6 is a side view schematically showing a vehicle including a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • non-aqueous electrolyte lithium secondary battery in which a wound electrode body (rolled electrode body) and a non-aqueous electrolyte are housed in a cylindrical container
  • the present invention will be described in detail by taking (lithium ion battery) as an example.
  • FIG. 1 to 3 show a schematic configuration of a lithium ion battery according to an embodiment of the present invention.
  • an electrode body (winding electrode body) 80 in which a long positive electrode sheet 10 and a long negative electrode sheet 20 are wound through a long separator 40 is illustrated. It has the structure accommodated in the container 50 of the shape (cylindrical type) which can accommodate this winding electrode body 80 with the non-aqueous electrolyte solution which does not.
  • the container 50 includes a bottomed cylindrical container main body 52 having an open upper end and a lid 54 that closes the opening.
  • a metal material such as aluminum, steel, or Ni-plated SUS is preferably used (Ni-plated SUS in the present embodiment).
  • a positive electrode terminal 70 that is electrically connected to the positive electrode 10 of the wound electrode body 80 is provided on the upper surface (that is, the lid body 54) of the container 50.
  • a negative electrode terminal 72 (in this embodiment also serves as the container main body 52) that is electrically connected to the negative electrode 20 of the wound electrode body 80 is provided.
  • a wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).
  • the wound electrode body 80 according to the present embodiment is the same as the wound electrode body of a normal lithium ion battery except for the configuration of the separator 40 described later, and as shown in FIG. It has a long (strip-shaped) sheet structure at the stage before assembly.
  • the positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a long sheet-like foil-shaped positive electrode current collector 12. However, the positive electrode active material layer 14 is not attached to one side edge (the lower side edge portion in the figure) along the edge in the width direction of the positive electrode sheet 10, and the positive electrode current collector 12 has a constant width. An exposed positive electrode active material layer non-forming portion is formed.
  • the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector 22.
  • the negative electrode active material layer 24 is not attached to one side edge (the upper side edge portion in the figure) along the edge in the width direction of the negative electrode sheet 20, and the negative electrode current collector 22 is exposed with a certain width.
  • a negative electrode active material layer non-formed portion is formed.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 40 as shown in FIG. At this time, the positive electrode sheet 10 and the negative electrode sheet 20 are formed such that the positive electrode active material layer non-formed portion of the positive electrode sheet 10 and the negative electrode active material layer non-formed portion of the negative electrode sheet 20 protrude from both sides in the width direction of the separator sheet 40. Are overlapped slightly in the width direction.
  • the wound electrode body 80 can be manufactured by winding the laminated body thus superposed.
  • a wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator sheet 40) is densely arranged in the central portion of the wound electrode body 80 in the winding axis direction. Laminated portions) are formed. In addition, the electrode active material layer non-formed portions of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends in the winding axis direction of the wound electrode body 80.
  • a positive electrode lead terminal 74 and a negative electrode lead terminal 76 are respectively provided on the protruding portion 84 (that is, a portion where the positive electrode active material layer 14 is not formed) 84 and the protruding portion 86 (that is, a portion where the negative electrode active material layer 24 is not formed) 86. Attached and electrically connected to the above-described positive electrode terminal 70 and negative electrode terminal 72 (here, the container body 52 also serves).
  • the constituent elements of the wound electrode body 80 may be the same as those of the conventional wound electrode body of the lithium ion battery except for the separator sheet 40, and are not particularly limited.
  • the positive electrode sheet 10 can be formed by applying a positive electrode active material layer 14 mainly composed of a positive electrode active material for a lithium ion battery on a long positive electrode current collector 12.
  • a positive electrode active material layer 14 mainly composed of a positive electrode active material for a lithium ion battery on a long positive electrode current collector 12.
  • an aluminum foil or other metal foil suitable for the positive electrode is preferably used.
  • the positive electrode active material one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation.
  • lithium and a transition metal element such as lithium nickel oxide (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and lithium manganese oxide (LiNiO 2 ) are used.
  • a positive electrode active material mainly containing an oxide containing a constituent metal element (lithium transition metal oxide) can be given.
  • the negative electrode sheet 20 can be formed by applying a negative electrode active material layer 24 mainly composed of a negative electrode active material for a lithium ion battery on a long negative electrode current collector 22.
  • a negative electrode active material layer 24 mainly composed of a negative electrode active material for a lithium ion battery on a long negative electrode current collector 22.
  • a copper foil or other metal foil suitable for the negative electrode is preferably used.
  • the negative electrode active material one or more of materials conventionally used in lithium ion batteries can be used without any particular limitation.
  • Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides.
  • the separator sheet 40 has a large number of pores inside the separator, and the non-aqueous electrolyte and lithium ions can pass through the inside of the separator sheet by the connection of the pores. ing. Further, when the battery abnormally generates heat due to overcharging or the like, the separator sheet 40 closes the pores (shuts down) and blocks electrical contact between the positive and negative electrodes.
  • porous resin constituting the separator sheet examples include porous polyolefin resins.
  • Preferable examples include a single layer structure of porous polyethylene (PE) and a three layer structure of polypropylene (PP) / polyethylene (PE) / polypropylene (PP).
  • a porous layer 42 is formed between the separator sheet 40 and at least one of the positive electrode sheet 10 and the negative electrode sheet 20.
  • the porous layer 42 is formed on the surface of the separator sheet 40 that faces the negative electrode sheet 20.
  • FIG. 4 is a schematic cross-sectional view showing an enlarged part of a cross section along the winding axis of the wound electrode body 80, and includes a separator sheet 40 and a porous layer formed on the surface of the separator sheet 40. 42 and the negative electrode sheet 20 facing the porous layer 42 are shown.
  • the porous layer 42 is composed of filler particles 44 and a binder (not shown), and the filler particles and the filler particles and the separator sheet are bonded by the binder.
  • the porous layer has a large number of pores 48 at sites not bonded by a binder, and the electrolyte solution and ions can pass through the porous layer by the connection of the pores 48.
  • the porous layer 42 has a heat resistance that does not melt in a temperature range higher than the melting point of the separator sheet 40 (for example, 150 ° C. or higher), and is porous even when the separator sheet is deformed when the battery generates heat.
  • the layer 42 can avoid electrical contact between the positive electrode and the negative electrode.
  • the porosity of the porous layer 42 is usually preferably 50% or more (for example, 50 to 70%) at which the electrolyte and ion permeability are good, for example, 52% or more (for example, 52 to 70%).
  • the range is appropriate, more preferably 56% or more (for example, 56 to 70%), particularly preferably 60% or more (for example, 60 to 70%).
  • the electrolyte solution and ion permeability of the porous layer are sufficient, and battery characteristics (load characteristics, cycle characteristics) can be improved.
  • the film thickness can be appropriately selected depending on the application, but in order to ensure the effect of preventing contact between the positive electrode and the negative electrode, it is generally 1 ⁇ m to 20 ⁇ m, preferably 2 to The thickness is 10 ⁇ m, more preferably 3 to 6 ⁇ m, and particularly preferably 3 to 5 ⁇ m.
  • the filler particles constituting the porous layer are preferably those having heat resistance (for example, 150 ° C. or more) and electrochemically stable within the battery use range.
  • examples of such an inorganic filler include filler particles made of an inorganic metal compound.
  • Preferable examples include alumina (Al 2 O 3 ), alumina hydrate (eg boehmite (Al 2 O 3 .H 2 O), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ), etc.
  • Inorganic metal compounds are exemplified, and one or more of these inorganic metal compound materials can be used, among which alumina or alumina hydrate is easy to adjust the circularity distribution by processing such as grinding.
  • the particle diameter of the filler particles for example, the D50 diameter based on the laser diffraction scattering method is not particularly limited, but for example, when alumina is used, it is preferably in the range of about 0.2 ⁇ m to 1.2 ⁇ m. When using boehmite, it is preferably within a range of about 0.4 ⁇ m to 1.8 ⁇ m, and the specific surface area of the filler particles based on the BET method. For example, when alumina is used, generally it is preferably in the range of 1.3 m 2 / g ⁇ 18m 2 / g.
  • examples of alumina hydrates that can provide similar effects include pseudo-boehmite, ⁇ -alumina (about 900 ° C.), ⁇ -alumina (about 800 ° C.), ⁇ -alumina (about 800 ° C.), ⁇ -alumina (about 500 C), ⁇ alumina (about 500 ° C.), ⁇ alumina (about 500 ° C.), pseudo- ⁇ alumina (about 500 ° C.), ⁇ alumina (about 250 ° C.), and the like.
  • the numerical value in the said parenthesis has shown the suitable calcination temperature when synthesize
  • the molar ratio of H 2 O / Al 2 O 3 of these alumina hydrates is 2: 1 for pseudoboehmite, and other alumina hydrates.
  • Objects can be in the range of 0-1.
  • the filler particles may have various shapes ranging from a plate shape to a spherical shape.
  • the median value in the circularity distribution of the filler particles is 0.85 to 0.97. It is. When the median value of the circularity distribution is larger than 0.97, the filler particles become more spherical, so that the filler particles can be filled more easily and it is difficult to increase the porosity of the porous layer.
  • the porous layer is compressed (rolled) under the pressure of expansion and contraction of the electrode accompanying charge / discharge, and cycle deterioration may occur.
  • the porosity of the porous layer can be increased, but the amount of filler contained per volume of the porous layer is reduced, so that the contact between the positive electrode and the negative electrode Preventive action may not be obtained. Moreover, since the strength of the porous layer tends to be insufficient, the porous layer may be crushed due to the pressure of expansion and contraction of the electrode accompanying charge / discharge, and cycle deterioration may occur.
  • the median value in the circularity distribution of the filler particles contained in the porous layer is generally about 0.85 to 0.97 (eg, 0.9 to 0.97), preferably 0.85 to 0.96. (For example, 0.91 to 0.96), more preferably 0.85 to 0.93, and particularly preferably 0.85 to 0.9.
  • the porosity for example, 50 to 70%, preferably 56 to 70
  • the porous layer is maintained while appropriately maintaining the amount of filler contained per volume of the porous layer. %, Particularly preferably 60 to 70%), and a porous layer having high electrolyte permeability and mechanical strength can be obtained.
  • a porous layer it is possible to construct a non-aqueous electrolyte lithium secondary battery having high safety and good battery characteristics (load characteristics and high-rate durability).
  • the circularity value (hereinafter referred to as the lower value) corresponding to a cumulative 10% from the low circularity side is 0.7 to 0.9.
  • the lower value of the circularity distribution is greater than 0.9, the majority of the particles are nearly spherical, so that the particles are more highly filled and the porosity of the porous layer is significantly reduced.
  • the lower value of the circularity distribution is set to 0.7 to 0.9, irregular and angular particles are included in a certain ratio (about 10% of the total number). The slippage of the filler is suppressed, and the filler filling property is appropriately reduced. Therefore, it is possible to stably obtain an optimal porous layer that achieves both high mechanical strength and good electrolyte solution permeability as described above at a high level.
  • the lower value of the circularity distribution is generally about 0.7 to 0.9, preferably 0.73 to 0.88, more preferably 0.75 to 0.85, and particularly preferably. It is 0.78 to 0.82. Within this range, it is possible to obtain an optimal porous layer that achieves both high mechanical strength and good ion permeability while appropriately maintaining the amount of filler contained per volume of the porous layer.
  • the binder used for the porous layer is for bonding between the filler particles, and the material itself constituting the binder is not particularly limited, and various materials can be widely used.
  • Preferable examples include acrylic resins.
  • acrylic resin monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, methacrylate, methyl methacrylate, ethylhexyl acrylate, butyl acrylate, etc. were polymerized in one kind.
  • a homopolymer is preferably used.
  • the acrylic resin may be a copolymer obtained by polymerizing two or more of the above monomers.
  • polyvinylidene fluoride polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • polyacrylonitrile polymethyl methacrylate
  • the ratio of the filler particles in the entire porous layer is preferably about 90% by mass or more (typically 95% to 99% by mass), preferably about 96% to 99% by mass. It is preferable that it is mass%. Further, the ratio of the binder in the porous layer is preferably about 5% by mass or less, more preferably about 4.9% by mass (for example, about 0.5% to 3% by mass). Moreover, when it contains porous layer formation components (for example, thickener etc.) other than a filler particle and a binder, it is preferable that the total content rate of these arbitrary components shall be about 3 mass% or less, and about 2 mass% or less ( For example, it is preferably about 0.5% by mass to 1% by mass).
  • This porous layer forming method is: (A) preparing a metal compound powder as filler particles (a commercially available metal compound powder may be purchased or synthesized by itself); (B) crushing or spheroidizing the metal compound powder so that the median value in the circularity distribution of the prepared metal compound powder is 0.85 to 0.97; and (C) After the pulverization treatment or spheronization treatment, a coating material for forming a porous layer in which the metal compound powder and a binder are dispersed in a solvent is prepared, and this is at least one of a positive electrode sheet, a negative electrode sheet, and a separator sheet Forming a porous layer by applying to one surface and drying; Is included.
  • a metal compound powder used for the porous layer is prepared.
  • This metal compound powder is synthesized from a predetermined raw material compound powder.
  • a powder of a raw material compound (that is, a starting material) containing a part of a metal element constituting the metal compound powder is prepared, It can be synthesized by firing.
  • a raw material compound (ie, starting material) powder containing a part of the metal element constituting the metal compound powder is dissolved or dispersed in an appropriate solvent and held in a thermostatic bath, and the resulting reaction product is filtered. It can be synthesized by washing, drying. Or you may purchase and use the metal compound powder (commercially available product) marketed.
  • a powder of a raw material compound for example, aluminum hydroxide
  • a metal element (Al) constituting the alumina powder is prepared, and the raw material compound powder is richer in the atmosphere or in the atmosphere than oxygen. It is good to bake in an oxygen gas atmosphere.
  • a desired alumina powder can be obtained by pulverizing the obtained fired product until it has an appropriate size (particle size).
  • the firing temperature in the firing treatment may be a temperature range in which the reaction of the raw material compound into alumina proceeds, and is usually fired at 1000 ° C. or higher (eg 1000 to 1200 ° C., eg 1150 ° C. ⁇ 50 ° C.). Is preferred.
  • the firing time may be a time until the reaction of the raw material compound into alumina sufficiently proceeds, and usually 90 hours or longer (for example, 90 to 120 hours, for example, approximately 96 hours) is sufficient. .
  • 90 hours or longer for example, 90 to 120 hours, for example, approximately 96 hours.
  • Boehmite powder can be synthesized by a hydrothermal method.
  • a powder of a raw material compound (for example, alumina trihydrate) containing a metal element (Al) constituting the boehmite powder is prepared, and the raw material compound powder, calcium hydroxide and water are put in a pressure vessel, and a thermostatic bath It is good to hold at.
  • the desired boehmite powder is obtained by filtering, washing, and drying the obtained reaction product.
  • the holding temperature in the thermostatic bath may be in the temperature range where a reaction product is generated, and it is usually preferable to hold at 180 ° C. or higher (eg 180 to 220 ° C., eg 200 ° C. ⁇ 10 ° C.).
  • the holding time may be a time until the reaction product is sufficiently formed, and usually 60 hours or longer (for example, 60 to 100 hours, for example, approximately 72 hours) is sufficient. Since boehmite particles grow greatly by the addition of calcium hydroxide, it becomes easy to adjust the circularity distribution of the boehmite powder by pulverization or spheroidization, which will be described later.
  • the metal compound powder is pulverized or crushed so that the median value in the circularity distribution of the obtained metal compound powder is 0.85 to 0.97.
  • a spheroidizing process is performed.
  • the metal compound powder is pulverized so that the median value of the circularity distribution is 0.85 to 0.97. Processing should be done.
  • the pulverizing apparatus used for the pulverization process is not particularly limited as long as it can appropriately adjust the median value of the circularity distribution in the range of 0.85 to 0.97.
  • a pulverizer such as a jet mill, a ball mill, or a vibrating ball mill can be preferably used.
  • the use of a jet mill is preferable in that the circularity distribution can be adjusted more appropriately.
  • the circularity distribution of the metal compound powder can be adjusted by changing pulverization conditions such as wind pressure (pulverization gas pressure) and pulverization time. That is, by appropriately selecting grinding conditions such as wind pressure (grinding gas pressure) and grinding time, a metal compound powder satisfying a median value of circularity distribution of 0.85 to 0.97 can be formed.
  • the wind pressure (pulverized gas pressure) of the jet mill is preferably about 0.2 to 0.4 MPa.
  • the degree of circularity distribution also depends on the time for which the pulverization process is performed.
  • the grinding time is preferably about 5 to 20 minutes.
  • the metal compound powder is spherical with respect to the metal compound powder so that the median value of the circularity distribution is 0.85 to 0.97. It is advisable to perform processing.
  • the processing apparatus used for the spheroidizing process is not particularly limited as long as the median value of the circularity distribution can be appropriately adjusted in the range of 0.85 to 0.97.
  • a particle processing apparatus such as Kryptron Orb (manufactured by Earth Technica Co., Ltd.) and Faculty (manufactured by Hosokawa Micron Co., Ltd.) can be preferably used.
  • the use of kryptron orb is preferable in that it can be spheroidized without changing the particle size of the filler particles.
  • the circularity distribution of the metal compound powder can be adjusted by changing processing conditions such as the number of rotations and the number of processing times. That is, a metal compound powder satisfying a median value of circularity distribution of 0.85 to 0.97 can be formed by appropriately selecting processing conditions such as the number of rotations and the number of processing times.
  • the rotational speed of the kryptron orb is preferably about 6000 to 10000 rpm.
  • the degree of circularity distribution also depends on the number of times of spheroidization processing. The number of treatments is preferably about 2 to 5 times.
  • a metal compound powder satisfying a median value of circularity distribution of 0.85 to 0.97 can be easily formed. It should be noted that which condition is changed in adjusting the circularity distribution of the metal compound powder may be appropriately determined according to the processing apparatus to be used.
  • the spheroidizing treatment can also be performed using a jet mill. The jet mill can take the corners of the particles by controlling the air volume and increase the circularity.
  • the metal compound powder A coating material for forming a porous layer in which a binder and a binder are dispersed in a solvent is prepared. And the porous layer is formed by apply
  • Examples of the solvent used in the coating material for forming the porous layer include organic solvents such as N-methylpyrrolidone (NMP), pyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, ixahexanone, toluene, dimethylformamide, dimethylacetamide, and the like. A combination of more than one species can be mentioned. Alternatively, water or a mixed solvent mainly composed of water may be used. As a solvent other than water constituting such a mixed solvent, one or more organic solvents (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water can be appropriately selected and used.
  • the content of the solvent in the coating material for forming a porous layer is not particularly limited, but is preferably about 30 to 60% by mass of the whole coating material.
  • the said coating material for porous layer formation can contain the 1 type, or 2 or more types of material which can be used as needed other than a metal compound powder (filler particle) and a binder.
  • a material is a polymer that functions as a thickening agent for a coating material for forming a porous layer.
  • the polymer that functions as a thickener for example, carboxymethyl cellulose (CMC) is preferably used.
  • the operation of applying such a porous layer-forming coating material to the separator sheet surface can be performed in the same manner as in the case of producing a porous layer provided in a conventional general lithium secondary battery.
  • a suitable coating device gravure coater, slit coater, die coater, comma coater, dip coat, etc.
  • the separator is coated with a predetermined amount of the porous layer forming paint to a uniform thickness.
  • a suitable coating device gravure coater, slit coater, die coater, comma coater, dip coat, etc.
  • the coating material is dried by a suitable drying means (typically at a temperature lower than the melting point of the separator sheet, for example, 110 ° C. or less, for example, 30 to 80 ° C.) to thereby remove the solvent in the coating material for forming the porous layer. Remove.
  • a suitable drying means typically at a temperature lower than the melting point of the separator sheet, for example, 110 ° C. or less, for example, 30 to 80 ° C.
  • the obtained porous layer is formed using a metal compound powder (filler particle) satisfying a median value of circularity distribution of 0.85 to 0.97. Therefore, an optimal porous layer that achieves both high mechanical strength and good ion permeability can be obtained while appropriately maintaining the amount of filler per volume of the porous layer.
  • a lithium secondary battery that satisfies at least one (preferably all) of high-rate cycle durability, good charge / discharge characteristics, and excellent safety is constructed. Can do.
  • a lithium secondary battery can be constructed by adopting the same materials and processes as in the prior art except that the porous layer disclosed herein is used.
  • the positive electrode sheet 10 and the negative electrode sheet 20 are wound through the two separator sheets 40 as shown in FIG.
  • the electrode body 80 may be manufactured. Then, as shown in FIG. 2, the wound electrode body 80 may be accommodated in the container main body 52, and an appropriate nonaqueous electrolytic solution may be disposed (injected) into the container main body 52.
  • non-aqueous electrolyte accommodated in the container main body 52 together with the wound electrode body 80 the same non-aqueous electrolyte as used in conventional lithium ion batteries can be used without any particular limitation.
  • a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent.
  • ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example.
  • the supporting salt for example, LiPF 6, LiBF 4, LiAsF 6, LiCF 3 SO 3, can be preferably used a lithium salt of LiClO 4 and the like.
  • a nonaqueous electrolytic solution in which LiPF 6 as a supporting salt is contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, EMC, and DMC at a volume ratio of 3: 4: 3 can be preferably used.
  • the non-aqueous electrolyte is housed in the container main body 52 together with the wound electrode body 80, and the opening of the container main body 52 is sealed with the lid body 54, thereby constructing (assembling) the lithium ion battery 100 according to the present embodiment. Is completed.
  • positioning (injection) process of electrolyte solution can be performed similarly to the method currently performed by manufacture of the conventional lithium ion battery. Thereafter, the battery is conditioned (initial charge / discharge). You may perform processes, such as degassing and a quality inspection, as needed.
  • test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the following test examples.
  • boehmite powder was produced as filler particles.
  • 100 g of alumina trihydrate as a starting material and 150 g of water were put into a pressure vessel, 17 mg of calcium hydroxide was added, and then kept in a thermostat bath at 200 ° C. for 72 hours.
  • Boehmite was synthesized by filtration, washing and drying.
  • the obtained boehmite composite was put into a jet mill (manufactured by Hosokawa Micron Corporation: Model 100AFG) and pulverized at a wind pressure of 0.3 MPa for 15 minutes to prepare boehmite powder.
  • the median value of the circularity distribution of the obtained boehmite powder was 0.85, and the lower value was 0.7.
  • the median value and the lower value of the circularity distribution were calculated using a flow type particle image analyzer (manufactured by Sysmex Corporation: model FPIA-3000: the number of imaged particles was about 2000).
  • Example 2 a commercially available titania powder (manufactured by Kanto Chemical Co., Inc.) was put into a jet mill and pulverized under the conditions shown in Table 1 to produce a titania powder.
  • the median value of circularity distribution of the obtained titania powder was 0.89, and the lower value was 0.73.
  • the median value of the circularity distribution of the titania powder before pulverization was about 0.985.
  • alumina powder was produced as filler particles.
  • aluminum hydroxide as a starting material was baked at 1050 ° C. for 96 hours in an air atmosphere to synthesize ⁇ -alumina.
  • the obtained alumina composite was put into a jet mill and pulverized under the conditions shown in Table 1 to produce alumina powder.
  • the median values of the circularity distribution of the obtained alumina powder were 0.91, 0.93, 0.95, and 0.96, and the lower values were 0.82, 0.85, 0.88 and 0.89.
  • Example 7 commercially available magnesium hydroxide powder (manufactured by Kanto Chemical Co., Inc.) was put into a jet mill and pulverized under the conditions shown in Table 1 to produce magnesium hydroxide powder.
  • the median value of circularity distribution of the obtained magnesium hydroxide powder was 0.965, and the lower value was 0.9.
  • the median value of the circularity distribution of the magnesium hydroxide powder before pulverization was about 0.84.
  • Example 8 a commercially available magnesium carbonate powder (manufactured by Kanto Chemical Co., Inc.) was put into a jet mill and pulverized under the conditions shown in Table 1 to produce a magnesium carbonate powder.
  • the median value of the circularity distribution of the obtained magnesium carbonate powder was 0.97, and the lower value was 0.9 (1).
  • the median value of the circularity distribution of the magnesium carbonate powder before pulverization was about 0.98.
  • a titania powder was produced in the same manner as in Example 2, except that pulverization by a jet mill was changed to the conditions shown in Table 1.
  • the median value of circularity distribution of the obtained titania powder was 0.8, and the lower value was 0.68.
  • alumina powder was produced in the same manner as in Examples 3 to 6, except that the grinding by the jet mill was changed to the conditions shown in Table 1.
  • the median value of the circularity distribution of the obtained alumina powder was 0.82, and the lower value was 0.66.
  • Comparative Example 3 a commercially available titania powder (manufactured by Kanto Chemical Co., Inc.) was put into a kryptron orb (manufactured by Earth Technica Co., Ltd .: model CSH0), and the titania powder was prepared by processing three times at a rotational speed of 8000 rpm. The median value of circularity distribution of the obtained titania powder was 0.98, and the lower value was 0.92.
  • Comparative Example 4 a commercially available alumina powder (manufactured by Kanto Chemical Co., Inc.) was put into a kryptron orb and processed under the conditions shown in Table 1 to produce an alumina powder.
  • the median value of circularity distribution of the obtained alumina powder was 0.983, and the lower value was 0.92.
  • a porous layer-forming coating material was prepared by mixing in NMP, and this was applied to one side of a long separator sheet 40 and dried to form a porous layer 42.
  • the coating amount of the coating material for forming a porous layer was adjusted to be about 0.7 mg / cm 2 (based on solid content).
  • the atmospheric temperature in the hot air drying furnace was set to 80 ° C., and the wind speed was set to 16.2 m / s.
  • separator sheets two types are used: a single layer structure of polyethylene (PE) and a three layer structure of polypropylene-polyethylene-polypropylene (PP / PE / PE). did. All the separator sheets had a thickness of 20 ⁇ m and a porosity of 47%.
  • PE polyethylene
  • PP / PE / PE polypropylene-polyethylene-polypropylene
  • the porosity of various porous layers obtained above was calculated.
  • the porosity (%) of the porous layer was calculated by (1 ⁇ W / ⁇ V) ⁇ 100.
  • W is the mass of the porous layer, and was measured with an electronic balance.
  • V is the apparent volume of the porous layer, and was calculated from the outer dimensions (thickness x area) of the porous layer by SEM observation.
  • is the true density (theoretical density) of the material constituting the porous layer. The results are shown in Table 1.
  • the porous layers of Examples 1 to 8 in which the median value of the circularity distribution was 0.85 to 0.97 had a porosity of 51 to 70%, which is suitable as a porous layer. there were.
  • the median value of the circularity distribution was 0.85 to 0.91, a porous layer in which both electrolyte permeability and mechanical strength of 60 to 70% were realized at a high level could be obtained. From this result, it is desirable that the median value of the circularity distribution is 0.85 to 0.91 from the viewpoint of improving electrolyte permeability and mechanical strength of the porous layer.
  • a cell for measurement was constructed using the prepared separator sheets with a porous layer, and the membrane resistance (Rs) was evaluated.
  • the porous layer 42 and the separator sheet 40 were impregnated with a nonaqueous electrolytic solution and sandwiched between two copper plates 62 having an area of 35 mm 2 and a thickness of 1 mm.
  • a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) at a volume ratio of 3: 4: 3 was mixed with about 1 mol / L LiPF 6 as a supporting salt.
  • the one contained at a concentration of 1 liter was used.
  • Such cells 60 were prepared so that there were 1, 2, 3 separator sheets, respectively.
  • Each cell was placed in a constant temperature bath at 25 ° C., and the resistance value (Rs) of the cell was measured by an AC impedance method while applying a torque pressure of 50 cN ⁇ m from the upper and lower sides of the two copper plates 62.
  • the AC impedance measurement conditions were an AC applied voltage of 5 mV and a frequency range of 10000 Hz to 1 Hz.
  • the obtained resistance value of each cell was plotted against the number of separators, and the membrane resistance per separator was determined by linear approximation. The results are shown in Table 1.
  • the cells of Examples 1 to 8 having a median value of circularity distribution of 0.85 to 0.97 have much higher membrane resistance than the cells of Comparative Examples 3 and 4. Declined.
  • the median value of the circularity distribution was set to 0.91 or less, an extremely low film resistance of 1.5 ⁇ ⁇ cm 2 or less was realized.
  • the cells of Examples 1 to 7 in which the lower value of the circularity distribution was 0.7 to 0.9 further reduced the film resistance as compared with the cell of Example 8.
  • a lithium secondary battery was constructed using the obtained separator sheets with various porous layers, and the battery characteristics were evaluated.
  • the lithium secondary battery was produced as follows.
  • the positive electrode active material layer 14 is provided on both surfaces of the positive electrode current collector 12 by applying the positive electrode active material layer paste on both surfaces of the long sheet-like aluminum foil (positive electrode current collector 12) and drying it.
  • the obtained positive electrode sheet 10 was produced.
  • the coating amount of the positive electrode active material layer paste was adjusted so as to be about 17.2 mg / cm 2 (solid content basis) for both surfaces.
  • Graphite powder as a negative electrode active material, styrene butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a thickener have a mass ratio of these materials of 98.6: 0.7: 0.7.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the paste for negative electrode active material layers was prepared by dispersing in water. This negative electrode active material layer paste is applied to both sides of a long sheet-like copper foil (negative electrode current collector 22), and a negative electrode sheet 20 having a negative electrode active material layer 24 provided on both sides of the negative electrode current collector 22 is produced. did.
  • the coating amount of the negative electrode active material layer forming paste was adjusted so that the both surfaces were combined to be about 11.1 mg / cm 2 (based on solid content).
  • a wound electrode body 80 was produced by winding the positive electrode sheet 10 and the negative electrode sheet 20 through two separator sheets 40 with a porous layer. At that time, when the separator sheet was PE, the porous layer and the positive electrode sheet were arranged to face each other. Moreover, when the separator sheet was PP / PE / PP, the porous layer and the negative electrode sheet were arranged to face each other.
  • the wound electrode body 80 thus obtained was housed in a battery container 50 (18650 type cylindrical shape) together with a non-aqueous electrolyte, and the opening of the battery container 50 was sealed airtight.
  • a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3 contains about 1 mol / liter of LiPF 6 as a supporting salt.
  • the non-aqueous electrolyte solution contained at a concentration of was used. In this way, the lithium secondary battery 100 was assembled.
  • ⁇ High-rate durability test> A charge / discharge pattern in which CC discharge for 10 seconds at 20C was repeated was applied to each of the obtained lithium secondary batteries, and a charge / discharge cycle test was performed. Specifically, in a room temperature (about 25 ° C.) environment, a charge / discharge cycle in which CC discharge is performed for 10 seconds at 20 C, CC is charged for 40 seconds at 5 C after a pause of 5 seconds, is repeated 10,000 times continuously. It was. And the resistance increase rate was computed from IV resistance (initial resistance of a lithium secondary battery) before the said charging / discharging cycle test and IV resistance after a charging / discharging cycle test.
  • the IV resistance before and after the charge / discharge cycle was calculated from the voltage drop after 10 seconds of discharge when pulse discharge was performed at 25 ° C. and 30 C, respectively.
  • the rate of increase in resistance (%) was determined by [(IV resistance after charge / discharge cycle test ⁇ IV resistance before charge / discharge cycle test) / IV resistance before charge / discharge cycle test] ⁇ 100. The results are shown in Table 1.
  • the porous layer 42 is formed on the surface of the separator sheet 40 facing the negative electrode sheet 20 is shown, but the present invention is not limited to this, and the separator sheet 40 faces the positive electrode sheet.
  • the shape (outer shape and size) of the lithium secondary battery to be constructed is not particularly limited.
  • the outer package may be a thin sheet type constituted by a laminate film or the like, and the battery outer case may be a cylindrical or cuboid battery, or may be a small button shape.
  • any of the lithium secondary batteries 100 disclosed herein has a performance suitable for a battery mounted on a vehicle (for example, high output can be obtained), and is particularly excellent in durability against high-rate charge / discharge. It can be. Therefore, according to the present invention, as shown in FIG. 6, a vehicle 1 including any of the lithium secondary batteries 100 disclosed herein is provided.
  • a vehicle 1 for example, an automobile
  • the lithium secondary battery 100 as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • the technology can be used in a charge / discharge cycle including a high rate discharge of 50 A or more (for example, 50 A to 250 A), and further 100 A or more (for example, 100 A to 200 A).
  • a high-performance nonaqueous electrolyte secondary battery excellent in high-rate durability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

 本発明によって得られる非水電解液二次電池は、正極シートと負極シート20とがセパレータシート40を介して重ね合わされてなる電極体を備えた非水電解液二次電池であって、正極シート及び負極シート20の少なくとも一方とセパレータシート40との間には、フィラー粒子44とバインダとを有する多孔層42が形成されており、多孔層42に含有されるフィラー粒子44の円形度分布におけるメジアン値が0.85~0.97である。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関し、詳しくは、セパレータシートと正極シート及び負極シートの少なくとも一方との間に多孔層が形成された非水電解液二次電池に関する。
 近年、リチウムイオン電池、ニッケル水素電池その他の非水電解液二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。この種のリチウム二次電池の一つの典型的な構成では、正極と負極の間に介在させるセパレータとして、ポリオレフィン系の多孔質フィルムが使用されている。
 しかし、ポリオレフィン系の多孔質フィルムは、合成樹脂製ゆえに電池内が高温になると変形し易くなり、内部短絡(ショート)の発生等のリスクが向上する。従って、短絡発生等の不具合発生をより確実に防止する手段の一つとして、例えば、正極、負極もしくはセパレータのうちのいずれかの表面に無機フィラーからなる耐熱性多孔層を形成することが検討されている(例えば特許文献1)。この構成によれば、セパレータに変形が生じた場合でも、耐熱性多孔層によって正極と負極の接触を防止することができ、短絡発生を抑制することができる。
日本国特許出願公開2008-305783号公報
 特許文献1には、第1セパレータ層の表面に耐熱温度が150℃以上のフィラーを有する第2セパレータ層(多孔層)を形成したリチウム二次電池が開示されている。同公報によると、耐熱性多孔層を構成するフィラーは板状粒子が好ましいとされ、その代表的なものとして、板状アルミナや板状ベーマイトが例示されている。しかしながら、そのような板状粒子を用いて耐熱性多孔層を形成すると、充放電に伴う電極の膨張収縮の圧力により多孔層が潰れ、多孔層の空孔率が低下する。多孔層の空孔率が低下すると、多孔層内を電解液及びイオンが通過できず、これを用いて構築されたリチウム二次電池の性能(負荷特性やハイレート耐久性)が不十分になるため好ましくない。
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、多孔層の空孔率低下による性能劣化が抑制された非水電解液二次電池を提供することである。
 本発明により提供される非水電解液二次電池は、正極シートと負極シートとがセパレータシートを介して重ね合わされてなる電極体を備えたリチウム二次電池である。上記正極シート及び上記負極シートの少なくとも一方と上記セパレータシートとの間には、フィラー粒子とバインダとを有する多孔層が形成されている。上記多孔層に含有されるフィラー粒子の円形度分布におけるメジアン値が0.85~0.97である。
 上記フィラー粒子の円形度は、例えば、フィラー粒子の投影像(粒子画像)から周囲長と面積を算出し、次の式(1)により求めることができる。
  円形度a=L0/L1    (1)
 ここで、上記式(1)中のL0は実際に測定した対象の粒子の投影像(粒子画像)から算出された面積と同一の面積を有する理想円(真円)の周囲長であり、L1は当該測定対象の粒子の粒子投影像(粒子画像)から測定した実際の周囲長である。
 即ち、測定対象とする粉体の円形度分布(典型的には個数分布)は、当該粉体を構成する個々のフィラー粒子について上記式(1)により算出される円形度を測定することにより求められる。かかる円形度分布は、例えば、市販される粒子画像分析装置、例えばフロー式の粒子像分析装置によって容易に測定され得る。
 上記粒子像分析装置によって得られるフィラー粒子の円形度分布におけるメジアン値としては、概ね0.85~0.97が適当である。円形度分布のメジアン値が0.97よりも大きいと、フィラー粒子がより球状に近いものとなるため、フィラー粒子の充填性が高まり、多孔層の高空孔率化が困難になる。また、フィラー粒子が高充填されるとともに流動し易くなるため、充放電に伴う電極の膨張収縮の圧力を受けて多孔層が圧縮され、サイクル劣化が生じる場合がある。一方、円形度分布のメジアン値が0.85よりも小さいと、多孔層の空孔率を高めることはできるが、多孔層の体積当たりに含まれるフィラー量が減少するため、正極と負極の接触防止作用が得られないことがある。また、多孔層の強度が不足がちになるため、充放電に伴う電極の膨張収縮の圧力を受けて多孔層が潰れ、サイクル劣化が生じる場合がある。
 従って、多孔層に含有されるフィラー粒子の円形度分布におけるメジアン値は概ね0.85~0.97が適当であり、好ましくは0.85~0.96であり、より好ましくは0.85~0.93であり、特に好ましくは0.85~0.9である。このような円形度分布の範囲内であると、多孔層の体積当たりに含まれるフィラー量を適切に維持しつつ、多孔層として好適な空孔率(例えば50~70%、好ましくは56~70%、特に好ましくは60~70%)を有する電解液透過性及び機械的強度の高い多孔層を得ることができる。このような多孔層を用いれば、安全性が高く、かつ電池特性(負荷特性やハイレート耐久性)が良好な非水電解液二次電池を構築することができる。
 ここに開示される好ましい非水電解液二次電池の一態様では、上記多孔層に含有されるフィラー粒子の円形度分布において、円形度が小さい側からの累積10%に相当する円形度の値(以下、ロワー値という。)が0.7~0.9である。このような円形度分布にすると、不定形で角張った粒子を一定の割合で含むため、該角張った粒子によってフィラー粒子間のすべりが抑えられ、フィラーの充填性が適度に低下する。そのため、前記したような高い機械的強度と良好な電解液浸透性の双方を高いレベルで両立させた最適な多孔層を安定して得ることができる。
 ここに開示される好ましい非水電解液二次電池の一態様では、上記フィラー粒子は、アルミナまたはアルミナ水和物である。アルミナまたはアルミナ水和物は、粉砕等の加工によって円形度分布の調整が容易である点で好ましい。また、アルミナまたはアルミナ水和物はモース硬度が比較的高いため、多孔層の機械的強度及び耐久性を向上し得る点で好ましい。
 ここに開示される好ましい非水電解液二次電池の一態様では、上記多孔層は、上記セパレータシートの表面に形成されている。この場合、製造コストが安価になるとともに、電池性能に悪影響を与えることなくセパレータシートと電極シートとの間に多孔層を形成することができる。上記多孔層は、例えば、上記セパレータシートの負極シートに対向する面に形成されていることが好ましい。
 ここに開示される好ましい非水電解液二次電池の一態様では、上記電極体は、上記正極シートと上記負極シートとが上記セパレータシートを介して捲回されてなる捲回電極体である。上記電極体が捲回電極体である場合、多孔層の空孔率低下による性能劣化が特に発生しやすいことから、本発明を適用することが特に有用である。
 ここに開示されるいずれかの非水電解液二次電池は、車両に搭載される電池として適した性能(例えば高出力が得られること)を備え、特にハイレート充放電に対する耐久性に優れたものであり得る。したがって本発明によると、ここに開示されるいずれかの非水電解液二次電池を備えた車両が提供される。特に、該非水電解液二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
図1は本発明の一実施形態に係る非水電解液二次電池を模式的に示す側面図である。 図2は図1のII-II線断面図である。 図3は本発明の一実施形態に係る非水電解液二次電池の電極体を模式的に示す図である。 図4は本発明の一実施形態に係る非水電解液二次電池の要部を示す拡大断面図である。 図5は一試験例に係る膜抵抗の測定方法を説明するための図である。 図6は本発明の一実施形態に係る非水電解液二次電池を備えた車両を模式的に示す側面図である。
 以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極および負極を備えた電極体の構成および製法、セパレータや電解質の構成および製法、非水電解液二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
 特に限定することを意図したものではないが、以下では捲回された電極体(捲回電極体)と非水電解液とを円筒型の容器に収容した形態の非水電解液リチウム二次電池(リチウムイオン電池)を例として本発明を詳細に説明する。
 本発明の一実施形態に係るリチウムイオン電池の概略構成を図1~3に示す。このリチウムイオン電池100は、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(円筒型)の容器50に収容された構成を有する。
 容器50は、上端が開放された有底円筒状の容器本体52と、その開口部を塞ぐ蓋体54とを備える。容器50を構成する材質としては、アルミニウム、スチール、NiめっきSUS等の金属材料が好ましく用いられる(本実施形態ではNiめっきSUS)。あるいは、PPS、ポリイミド樹脂等の樹脂材料を成形してなる容器50であってもよい。容器50の上面(すなわち蓋体54)には、捲回電極体80の正極10と電気的に接続する正極端子70が設けられている。容器50の下面には、捲回電極体80の負極20と電気的に接続する負極端子72(この実施形態では容器本体52が兼ねる。)が設けられている。容器50の内部には、捲回電極体80が図示しない非水電解液とともに収容される。
 本実施形態に係る捲回電極体80は、後述するセパレータ40の構成を除いては通常のリチウムイオン電池の捲回電極体と同様であり、図3に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。
 正極シート10は、長尺シート状の箔状の正極集電体12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では下側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部が形成されている。
 負極シート20も正極シート10と同様に、長尺シート状の箔状の負極集電体22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では上側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部が形成されている。
 捲回電極体80を作製するに際しては、図3に示すように、正極シート10と負極シート20とがセパレータシート40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータシート40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回することによって捲回電極体80が作製され得る。
 捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータシート40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10および負極シート20の電極活物質層非形成部分がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)84および負極側はみ出し部分(すなわち負極活物質層24の非形成部分)86には、正極リード端子74および負極リード端子76がそれぞれ付設されており、上述の正極端子70および負極端子72(ここでは容器本体52が兼ねる。)とそれぞれ電気的に接続される。
 かかる捲回電極体80を構成する構成要素は、セパレータシート40を除いて、従来のリチウムイオン電池の捲回電極体と同様でよく、特に制限はない。例えば、正極シート10は、長尺状の正極集電体12の上にリチウムイオン電池用正極活物質を主成分とする正極活物質層14が付与されて形成され得る。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。正極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。ここに開示される技術の好ましい適用対象として、リチウムニッケル酸化物(LiMn)、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiNiO)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。
 負極シート20は、長尺状の負極集電体22の上にリチウムイオン電池用負極活物質を主成分とする負極活物質層24が付与されて形成され得る。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等が挙げられる。
 本実施形態に係るセパレータシート40は、該セパレータの内部に多数の細孔を有しており、その細孔の繋がりによってセパレータシートの内部を非水電解液及びリチウムイオンが通過し得るようになっている。また、セパレータシート40は、過充電等により電池が異常発熱した場合に、細孔が塞がって(シャットダウンして)正負極間の電気的接触を遮断するようになっている。
 該セパレータシートを構成する多孔質樹脂としては、例えば多孔質ポリオレフィン系樹脂が挙げられる。好適例として、多孔質ポリエチレン(PE)の単層構造やポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)の3層構造のものが挙げられる。
 また、セパレータシート40と正極シート10及び負極シート20の少なくとも一方との間には、多孔層42が形成されている。この実施形態では、多孔層42は、セパレータシート40の表面であって負極シート20に対向する面に形成されている。
 さらに、図4を加えて、本実施形態に係る多孔層42について詳細に説明する。図4は、捲回電極体80の捲回軸に沿う断面の一部を拡大して示す模式的断面図であって、セパレータシート40と、該セパレータシート40の表面に形成されている多孔層42と、該多孔層42に対向する負極シート20とを示したものである。
 本実施形態に係る多孔層42は、図4に示すように、フィラー粒子44と図示しないバインダとから構成され、バインダによりフィラー粒子間やフィラー粒子とセパレータシートとの間が結合されている。多孔層は、バインダで結合されていない部位に多数の細孔48を有しており、その細孔48の繋がりによって多孔層内を電解液及びイオンが通過し得るようになっている。また、多孔層42は、セパレータシート40の融点よりも高い温度域(例えば150℃以上)において融解しない程度の耐熱性を有しており、電池発熱時にセパレータシートに変形が生じた場合でも、多孔層42によって正極と負極の電気的接触を回避し得るようになっている。
 上記多孔層42の空孔率は、通常は電解液及びイオン浸透性が良好である50%以上(例えば50~70%)にすることが好ましく、例えば52%以上(例えば52~70%)の範囲が適当であり、より好ましくは56%以上(例えば56~70%)であり、特に好ましくは60%以上(例え60~70%)である。このような多孔層の空孔率の範囲内であると、多孔層の電解液及びイオン浸透性が十分であり、電池特性(負荷特性、サイクル特性)を向上させることができる。
 また、その膜厚は、用途に応じて適宜膜厚を選択することができるが、正極と負極の接触防止作用を確実に得るためには、概ね1μm~20μmが適当であり、好ましくは2~10μmであり、より好ましくは3~6μmであり、特に好ましくは3~5μmである。
 該多孔層を構成するフィラー粒子としては、耐熱性(例えば150℃以上)があり、かつ電池の使用範囲内で電気化学的に安定であるものが好ましい。そのような無機フィラーとしては、無機金属化合物からなるフィラー粒子が挙げられる。好適例として、アルミナ(Al)、アルミナ水和物(例えばベーマイト(Al・HO)、水酸化マグネシウム(Mg(OH))、炭酸マグネシウム(MgCO)、等の無機金属化合物が例示される。これらの無機金属化合物材料の一種又は二種以上を用いることができる。中でもアルミナまたはアルミナ水和物は、粉砕等の加工によって円形度分布の調整が容易である点で好ましい。該フィラー粒子の粒径、例えばレーザ回折散乱法に基づくD50径は特に制限されないが、例えばアルミナを用いる場合、概ね0.2μm~1.2μmの範囲内であることが好ましい。また、ベーマイトを用いる場合、概ね0.4μm~1.8μmの範囲内であることが好ましい。また、該フィラー粒子のBET法に基づく比表面積は、例えばアルミナを用いる場合、概ね1.3m/g~18m/gの範囲内であることが好ましい。また、ベーマイトを用いる場合、概ね2.8m/g~27m/gの範囲内であることが好ましい。
 また、ベーマイト以外にも同様の効果が得られるアルミナ水和物として、擬ベーマイト、θアルミナ(約900℃)、δアルミナ(約800℃)、κアルミナ(約800℃)、γアルミナ(約500℃)、χアルミナ(約500℃)、ηアルミナ(約500℃)、擬γアルミナ(約500℃)、ρアルミナ(約250℃)、等が例示される。なお、上記括弧内の数値は上記アルミナ水和物を合成するときの好適な焼成温度を示している。なお、典型的には、これらアルミナ水和物(非水和物であり得る。)のHO/Alのモル比は、擬ベーマイトが2:1であり、その他のアルミナ水和物が0~1の範囲内であり得る。
 該フィラー粒子の形状としては、板状に近いものから球状に近いものまで種々の形状をとり得るが、本実施形態においては、フィラー粒子の円形度分布におけるメジアン値が0.85~0.97である。円形度分布のメジアン値が0.97よりも大きいと、フィラー粒子がより球状に近いものとなるため、フィラー粒子の充填性が高まり、多孔層の高空孔率化が困難になる。また、フィラー粒子が高充填されるとともに流動し易くなるため、充放電に伴う電極の膨張収縮の圧力を受けて多孔層が圧縮(圧延)され、サイクル劣化が生じる場合がある。一方、円形度分布のメジアン値が0.85よりも小さいと、多孔層の空孔率を高めることはできるが、多孔層の体積当たりに含まれるフィラー量が減少するため、正極と負極の接触防止作用が得られないことがある。また、多孔層の強度が不足がちになるため、充放電に伴う電極の膨張収縮の圧力を受けて多孔層が潰れ、サイクル劣化が生じる場合がある。
 従って、多孔層に含有されるフィラー粒子の円形度分布におけるメジアン値は概ね0.85~0.97(例えば0.9~0.97)が適当であり、好ましくは0.85~0.96(例えば0.91~0.96)であり、より好ましくは0.85~0.93であり、特に好ましくは0.85~0.9である。このような円形度分布の範囲内であると、多孔層の体積当たりに含まれるフィラー量を適切に維持しつつ、多孔層として好適な空孔率(例えば50~70%、好ましくは56~70%、特に好ましくは60~70%)を有する電解液透過性及び機械的強度の高い多孔層を得ることができる。このような多孔層を用いれば、安全性が高く、かつ電池特性(負荷特性やハイレート耐久性)が良好な非水電解液リチウム二次電池を構築することができる。
 さらに、多孔層に含有されるフィラー粒子の円形度分布において、円形度が小さい側からの累積10%に相当する円形度の値(以下、ロワー値という。)が0.7~0.9であることが好ましい。円形度分布のロワー値が0.9よりも大きいと、大多数の粒子が球状に近いものとなるため、さらに高充填され、多孔層の空孔率が著しく低下する。これに対し、円形度分布のロワー値を0.7~0.9にすると、不定形で角張った粒子を一定の割合(全個数の10%程度)で含むため、該角張った粒子によって粒子間のすべりが抑えられ、フィラーの充填性が適度に低下する。そのため、前記したような高い機械的強度と良好な電解液浸透性の双方を高いレベルで両立させた最適な多孔層を安定して得ることができる。
 さらに、円形度分布のロワー値が0.7よりも小さくなると、多孔層の空孔率が一層高まるが、多孔層の体積当たりに含まれるフィラー量が減少するため、正極と負極の接触防止作用が得られない場合がある。従って、円形度分布のロワー値は概ね0.7~0.9が適当であり、好ましくは0.73~0.88であり、より好ましくは0.75~0.85であり、特に好ましくは0.78~0.82である。この範囲内であると、多孔層の体積当たりに含まれるフィラー量を適切に維持しつつ、高い機械的強度と良好なイオン透過性とを両立させた最適な多孔層を得ることができる。
 該多孔層に用いられるバインダは、上記フィラー粒子間を結合するためのものであり、該バインダを構成する材料自体は特に限定されず種々のものを幅広く使用することができる。好適例として、アクリル系樹脂が挙げられる。アクリル系樹脂としては、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、2‐ヒドロキシエチルアクリレート、2‐ヒドロキシエチルメタクリレート、メタアクリレート、メチルメタアクリレート、エチルヘキシルアクリレート、ブチルアクリレート等のモノマーを1種類で重合した単独重合体が好ましく用いられる。また、アクリル系樹脂は、2種以上の上記モノマーを重合した共重合体であってもよい。さらに、上記単独重合体及び共重合体の2種類以上を混合したものであってもよい。上述したアクリル系樹脂のほかに、ポリフッ化ビニリデン、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル、ポリメタクリル酸メチル、等を用いることもできる。
 なお、特に限定するものではないが、多孔層全体に占めるフィラー粒子の割合は凡そ90質量%以上(典型的には95質量%~99質量%)であることが好ましく、凡そ96質量%~99質量%であることが好ましい。また、多孔層中のバインダの割合は凡そ5質量%以下とすることが好ましく、凡そ4.9質量%以下(例えば凡そ0.5質量%~3質量%)とすることが好ましい。また、フィラー粒子及びバインダ以外の多孔層形成成分(例えば増粘材等)を含有する場合は、それら任意成分の合計含有割合を凡そ3質量%以下とすることが好ましく、凡そ2質量%以下(例えば凡そ0.5質量%~1質量%)とすることが好ましい。
 続いて、上述した多孔層の形成方法について説明する。この多孔層形成方法は、
(A)フィラー粒子としての金属化合物粉末を用意する(市販の金属化合物粉末を購入してもよく、自ら合成してもよい。)こと;
(B)前記用意した金属化合物粉末の円形度分布におけるメジアン値が0.85~0.97となるように前記金属化合物粉末に対して粉砕処理もしくは球状化処理を行うこと;および、
(C)前記粉砕処理もしくは球状化処理の後、前記金属化合物粉末とバインダとを溶媒中に分散した多孔層形成用塗料を調製し、これを正極シート、負極シート及びセパレータシートのうちの少なくともいずれか一つの表面に塗布し、乾燥することにより多孔層を形成すること;
を包含する。
 上記(A)における金属化合物粉末を用意する工程では、多孔層に使用される金属化合物粉末を用意する。この金属化合物粉末は、所定の原料化合物粉末から合成されてなり、例えば、当該金属化合物粉末を構成する金属元素の一部を含む原料化合物(即ち出発原料)の粉末を用意し、該原料化合物を焼成することにより合成され得る。あるいは、当該金属化合物粉末を構成する金属元素の一部を含む原料化合物(即ち出発原料)の粉末を適当な溶媒に溶解または分散して恒温槽内で保持し、得られた反応生成物をろ過、洗浄、乾燥することにより合成され得る。あるいは、市販されている金属化合物粉末(既成品)を購入して使用してもよい。
 例えば、アルミナ粉末を合成する場合、当該アルミナ粉末を構成する金属元素(Al)を含む原料化合物(例えば水酸化アルミニウム)の粉末を用意し、この原料化合物粉末を大気中もしくは大気よりも酸素がリッチな酸素ガス雰囲気中にて焼成するとよい。得られた焼成物を適当な大きさ(粒径)となるまで粉砕することにより、所望のアルミナ粉末が得られる。上記焼成処理における焼成温度としては、上記原料化合物がアルミナになる反応が進行する温度域であればよく、通常は1000℃以上(例えば1000~1200℃、例えば1150℃±50℃)で焼成することが好適である。また、焼成時間は、上記原料化合物がアルミナになる反応が十分に進行するまでの時間とすればよく、通常は90時間以上(例えば90~120時間、例えば凡そ96時間)とすれば十分である。このような条件で焼成することにより、アルミナ粒子が大きく成長するため、後述する粉砕処理もしくは球状化処理によってアルミナ粉末の円形度分布を調整しやすくなる。
 また、ベーマイト粉末は、水熱法により合成することができる。例えば、当該ベーマイト粉末を構成する金属元素(Al)を含む原料化合物(例えばアルミナ三水和物)の粉末を用意し、この原料化合物粉末と水酸化カルシウムと水とを圧力容器に入れ、恒温槽にて保持するとよい。得られた反応生成物をろ過、洗浄、乾燥することにより、所望のベーマイト粉末が得られる。上記恒温槽における保持温度としては、反応生成物が生成する温度域であればよく、通常は180℃以上(例えば180~220℃、例えば200℃±10℃)で保持することが好適である。また、保持時間は、反応生成物が十分に生成するまでの時間とすればよく、通常は60時間以上(例えば60~100時間、例えば凡そ72時間)とすれば十分である。水酸化カルシウムの添加によりベーマイト粒子が大きく成長するため、後述する粉砕処理もしくは球状化処理によってベーマイト粉末の円形度分布を調整しやすくなる。
 上記(B)における粉砕処理もしくは球状化処理する工程では、上記得られた金属化合物粉末の円形度分布におけるメジアン値が0.85~0.97となるように金属化合物粉末に対して粉砕処理もしくは球状化処理を行う。
 上記得られた金属化合物粉末の円形度分布のメジアン値が0.97よりも大きい場合には、円形度分布のメジアン値が0.85~0.97となるように金属化合物粉末に対して粉砕処理を行うとよい。
 かかる粉砕処理に用いられる粉砕装置としては、円形度分布のメジアン値を0.85~0.97の範囲に適正に調整できるものであれば特に制限されない。例えば、ジェットミル、ボールミル、振動ボールミル等の粉砕装置を好ましく用いることができる。中でもジェットミルを用いることが円形度分布をより適正に調整できる点で好ましい。
 上記ジェットミルを用いて粉砕処理を行う場合、金属化合物粉末の円形度分布は、例えば、風圧(粉砕ガス圧)や粉砕時間などの粉砕条件を変えることによって調整することができる。すなわち、風圧(粉砕ガス圧)や粉砕時間などの粉砕条件を適切に選択することによって、円形度分布のメジアン値が0.85~0.97を満たす金属化合物粉末を形成することができる。例えば、ジェットミルの風圧(粉砕ガス圧)は概ね0.2~0.4MPaとすることが好ましい。また円形度分布の度合いは、粉砕処理をした時間にも依存する。粉砕時間は概ね5~20分とすることが好ましい。このような所定範囲の風圧及び粉砕時間による衝撃力で粉砕することにより、円形度分布のメジアン値が0.85~0.97を満たす金属化合物粉末を容易に形成することができる。なお、金属化合物粉末の円形度分布を調整するにあたりどの条件を変えるかは、使用する粉砕装置に応じて適宜決定するとよい。
 上記得られた金属化合物粉末の円形度分布のメジアン値が0.85よりも小さい場合には、円形度分布のメジアン値が0.85~0.97となるように金属化合物粉末に対して球状化処理を行うとよい。球状化処理に用いられる処理装置としては、円形度分布のメジアン値を0.85~0.97の範囲に適正に調整できるものであれば特に制限されない。例えば、クリプトロンオーブ(株式会社アーステクニカ製)、ファカルティ(ホソカワミクロン株式会社製)等の粒子処理装置を好ましく用いることができる。中でもクリプトロンオーブを用いることがフィラー粒子の粒径を変えずに球状化処理できる点で好ましい。
 上記クリプトロンオーブを用いて球状化処理を行う場合、金属化合物粉末の円形度分布は、回転数や処理回数などの処理条件を変えることによって調整することができる。すなわち、回転数や処理回数などの処理条件を適切に選択することによって、円形度分布のメジアン値が0.85~0.97を満たす金属化合物粉末を形成することができる。例えば、クリプトロンオーブの回転数は概ね6000~10000rpmとすることが好ましい。また円形度分布の度合いは、球状化処理をした処理回数にも依存する。処理回数は概ね2~5回とすることが好ましい。このような条件で球状化処理することにより、円形度分布のメジアン値が0.85~0.97を満たす金属化合物粉末を容易に形成することができる。なお、金属化合物粉末の円形度分布を調整するにあたりどの条件を変えるかは、使用する処理装置に応じて適宜決定するとよい。上記球状化処理はジェットミルを用いて行うこともできる。ジェットミルは、風量を制御することにより粒子の角をとり、円形度を上げることもできる。
 上記(C)における多孔層を形成する工程では、上記粉砕処理もしくは球状化処理によって金属化合物粉末の円形度分布のメジアン値を0.85~0.97の範囲に調整した後、該金属化合物粉末とバインダとを溶媒中に分散した多孔層形成用塗料を調製する。そして、該多孔層形成用塗料をセパレータシートの表面に塗布し、乾燥することにより多孔層を形成する。
 上記多孔層形成用塗料に用いられる溶媒としては、N‐メチルピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機系溶媒またはこれらの2種以上の組み合わせが挙げられる。あるいは、水または水を主体とする混合溶媒であってもよい。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。多孔層形成用塗料における溶媒の含有率は特に限定されないが、塗料全体の30~60質量%程度が好ましい。
 なお、上記多孔層形成用塗料は、金属化合物粉末(フィラー粒子)とバインダのほかに、必要に応じて使用され得る一種または二種以上の材料を含有することができる。そのような材料の例として、多孔層形成用塗料の増粘剤として機能するポリマーが挙げられる。増粘剤として機能するポリマーとしては、例えばカルボキシルメチルセルロース(CMC)が好ましく用いられる。
 このような多孔層形成用塗料をセパレータシート表面に塗布する操作は、従来の一般的なリチウム二次電池が備える多孔層を作製する場合と同様にして行うことができる。例えば、適当な塗布装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター、ディップコート等)を使用して、上記セパレータに所定量の上記多孔層形成用塗料を均一な厚さにコーティングすることにより製造され得る。
 その後、適当な乾燥手段で塗布物を乾燥(典型的にはセパレータシートの融点よりも低い温度、例えば110℃以下、例えば30~80℃で乾燥)することによって、多孔層形成用塗料中の溶媒を除去する。多孔層形成用塗料から溶媒を除去することによって、金属化合物粉末とバインダを含む多孔層が形成され得る。このようにして、セパレータシートの表面に多孔層を形成することができる。
 上記得られた多孔層は、円形度分布のメジアン値が0.85~0.97を満たす金属化合物粉末(フィラー粒子)を用いて形成されている。そのため、多孔層の体積当たりのフィラー量を適切に維持しつつ、高い機械的強度と良好なイオン透過性とを両立させた最適な多孔層が得られる。このような多孔層を用いれば、ハイレートサイクル耐久性が高い、充放電特性が良好である、安全性に優れる、のうちの少なくとも一つ(好ましくは全部)を満たすリチウム二次電池を構築することができる。
 なお、ここで開示される多孔層を用いること以外は、従来と同様の材料とプロセスを採用してリチウム二次電池を構築することができる。
 例えば、上記のようにしてセパレータシート40の表面に多孔層42を形成したら、図3に示すように、正極シート10と負極シート20とを2枚のセパレータシート40を介して捲回し、捲回電極体80を作製するとよい。そして、図2に示すように、捲回電極体80を容器本体52に収容し、その容器本体52内に適当な非水電解液を配置(注液)するとよい。
 容器本体52内に上記捲回電極体80と共に収容される非水電解液としては、従来のリチウムイオン電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiClO等のリチウム塩を好ましく用いることができる。例えば、ECとEMCとDMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を好ましく用いることができる。
 上記非水電解液を捲回電極体80とともに容器本体52に収容し、容器本体52の開口部を蓋体54で封止することにより、本実施形態に係るリチウムイオン電池100の構築(組み立て)が完成する。なお、容器本体52の封止プロセスや電解液の配置(注液)プロセスは、従来のリチウムイオン電池の製造で行われている手法と同様にして行うことができる。その後、該電池のコンディショニング(初期充放電)を行う。必要に応じてガス抜きや品質検査等の工程を行ってもよい。
 以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。
<フィラー粒子の作製>
 実施例1では、フィラー粒子としてベーマイト粉末を作製した。まず、出発原料であるアルミナ三水和物100gと水150gとを圧力容器に投入し、水酸化カルシウム17mgを添加した後、200℃の恒温槽で72時間保持し、得られた反応生成物をろ過、洗浄、乾燥してベーマイトを合成した。次いで、得られたベーマイト合成物をジェットミル(ホソカワミクロン株式会社製:型式100AFG)に投入し、風圧0.3MPaで15分間、粉砕することによりベーマイト粉末を作製した。得られたベーマイト粉末の円形度分布のメジアン値は0.85であり、ロワー値は0.7であった。なお、円形度分布のメジアン値およびロワー値はフロー式粒子像分析装置(シスメックス株式会社製:型式FPIA-3000:撮像粒子数約2000個とした。)を用いて算出した。
 実施例2では、市販のチタニア粉末(関東化学株式会社製)をジェットミルに投入し、表1に示す条件で粉砕することによりチタニア粉末を作製した。得られたチタニア粉末の円形度分布のメジアン値は0.89であり、ロワー値は0.73であった。なお、粉砕前のチタニア粉末の円形度分布のメジアン値は凡そ0.985であった。
 実施例3~6では、フィラー粒子としてアルミナ粉末を作製した。まず、出発原料である水酸化アルミニウムを大気雰囲気中にて1050℃で96時間焼成してαアルミナを合成した。次いで、得られたアルミナ合成物をジェットミルに投入し、表1に示す条件で粉砕することによりアルミナ粉末を作製した。実施例3~6の順に、得られたアルミナ粉末の円形度分布のメジアン値は0.91、0.93、0.95、0.96であり、ロワー値は0.82、0.85、0.88、0.89であった。
 実施例7では、市販の水酸化マグネシウム粉末(関東化学株式会社製)をジェットミルに投入し、表1に示す条件で粉砕することにより水酸化マグネシウム粉末を作製した。得られた水酸化マグネシウム粉末の円形度分布のメジアン値は0.965であり、ロワー値は0.9であった。なお、粉砕前の水酸化マグネシウム粉末の円形度分布のメジアン値は凡そ0.84であった。
 実施例8では、市販の炭酸マグネシウム粉末(関東化学株式会社製)をジェットミルに投入し、表1に示す条件で粉砕することにより炭酸マグネシウム粉末を作製した。得られた炭酸マグネシウム粉末の円形度分布のメジアン値は0.97であり、ロワー値は0.9で1あった。なお、粉砕前の炭酸マグネシウム粉末の円形度分布のメジアン値は凡そ0.98であった。
 比較例1では、実施例2と同様にして、ただしジェットミルによる粉砕を表1に示す条件に変更してチタニア粉末を作製した。得られたチタニア粉末の円形度分布のメジアン値は0.8であり、ロワー値は0.68であった。
 比較例2では、実施例3~6と同様にして、ただしジェットミルによる粉砕を表1に示す条件に変更してアルミナ粉末を作製した。得られたアルミナ粉末の円形度分布のメジアン値は0.82であり、ロワー値は0.66であった。
 比較例3では、市販のチタニア粉末(関東化学株式会社製)をクリプトロンオーブ(株式会社アーステクニカ製:型式CSH0)に投入し、回転数8000rpmで3回処理することによりチタニア粉末を作製した。得られたチタニア粉末の円形度分布のメジアン値は0.98であり、ロワー値は0.92であった。
 比較例4では、市販のアルミナ粉末(関東化学株式会社製)をクリプトロンオーブに投入し、表1に示す条件で処理することによりアルミナ粉末を作製した。得られたアルミナ粉末の円形度分布のメジアン値は0.983であり、ロワー値は0.92であった。
Figure JPOXMLDOC01-appb-T000001
<多孔層の形成>
 上記得られた各種の金属化合物粉末(フィラー粒子)とアクリル系バインダとを、金属化合物粉末とバインダとの質量比が97.4:2.6となりかつ固形分率が40質量%となるようにNMP中で混合して多孔層形成用塗料を調製し、これを長尺状のセパレータシート40の片面に塗布し、乾燥することにより多孔層42を形成した。多孔層形成用塗料の塗布量は約0.7mg/cm(固形分基準)となるように調節した。乾燥条件としては熱風乾燥炉内の雰囲気温度を80℃とし、風速を16.2m/sとした。なお、本例では、表1に示すように、セパレータシートとして、ポリエチレン(PE)の単層構造と、ポリプロプレンーポリエチレンーポリプロプレン(PP/PE/PE)の3層構造の2種類を使用した。いずれのセパレータシートも厚み20μm、空孔率47%とした。
 上記得られた各種の多孔層の空孔率を算出した。多孔層の空孔率(%)は、(1-W/ρV)×100により算出した。ここで、Wは多孔層の質量であり、電子天秤により測定した。Vは多孔層の見掛けの体積であり、SEM観察による多孔層の外寸(厚み×面積)により算出した。ρは多孔層を構成する材料の真密度(理論密度)である。結果を表1に示す。
 表1の結果から明らかなように、円形度分布のメジアン値を0.85~0.97とした実施例1~8の多孔層は空孔率が51~70%となり、多孔層として好適であった。特に円形度分布のメジアン値を0.85~0.91とすることによって60~70%という電解液透過性及び機械的強度の双方を高度なレベルで実現した多孔層とすることができた。この結果から、多孔層の電解液透過性及び機械的強度向上の観点からは、円形度分布のメジアン値は0.85~0.91とすることが望ましい。
<膜抵抗の測定>
 上記作製した各種の多孔層付きセパレータシートを用いて測定用セルを構築し、その膜抵抗(Rs)を評価した。具体的には、図5に模式的に示すように、多孔層42およびセパレータシート40に非水電解液を含浸させ、これを面積35mm、厚み1mmの2枚の銅板62に挟み込んだ。非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。このようなセル60を、セパレータシートが1枚、2枚、3枚となるようにそれぞれ作製した。そして、各セルを25℃の恒温槽に入れ、2枚の銅板62の上下から50cN・mのトルク圧を加えつつ、交流インピーダンス法により、セルの抵抗値(Rs)を測定した。交流インピーダンスの測定条件については、交流印加電圧5mV、周波数範囲10000Hz~1Hzとした。得られた各セルの抵抗値をセパレータの枚数に対してプロットし、直線近似してセパレータ1枚当たりの膜抵抗を求めた。結果を表1に示す。
 表1の結果から明らかなように、円形度分布のメジアン値が0.85~0.97である実施例1~8のセルは、比較例3、4のセルに比べて膜抵抗が大幅に低下した。特に円形度分布のメジアン値を0.91以下にすることによって、1.5Ω・cm以下という極めて低い膜抵抗を実現できた。また、円形度分布のロワー値を0.7~0.9とした実施例1~7のセルは、実施例8のセルに比べて膜抵抗がさらに低減した。
<電池特性評価>
 上記得られた各種の多孔層付きセパレータシートを用いてリチウム二次電池を構築し、その電池特性を評価した。リチウム二次電池は、以下のようにして作製した。
<正極シート>
 正極活物質としてのLi1.15Ni0.33Mn0.33Co0.33粉末と導電材としてのアセチレンブラック(AB)とバインダとしてのポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が88:10:2となるようにN-メチルピロリドン(NMP)中で混合して、正極活物質層用ペーストを調製した。この正極活物質層用ペーストを長尺シート状のアルミニウム箔(正極集電体12)の両面に帯状に塗布して乾燥することにより、正極集電体12の両面に正極活物質層14が設けられた正極シート10を作製した。正極活物質層用ペーストの塗布量は、両面合わせて約17.2mg/cm(固形分基準)となるように調節した。
<負極シート>
 負極活物質としての黒鉛粉末とバインダとしてのスチレンブタジエンゴム(SBR)と増粘剤としてのカルボキシルメチルセルロース(CMC)とを、これらの材料の質量比が98.6:0.7:0.7となるように水に分散させて負極活物質層用ペーストを調製した。この負極活物質層用ペーストを長尺シート状の銅箔(負極集電体22)の両面に塗布し、負極集電体22の両面に負極活物質層24が設けられた負極シート20を作製した。負極活物質層形成用ペーストの塗布量は、両面合わせて約11.1mg/cm(固形分基準)となるように調節した。
<リチウム二次電池>
 正極シート10及び負極シート20を2枚の多孔層付きセパレータシート40を介して捲回することによって捲回電極体80を作製した。その際、セパレータシートがPEのものは多孔層と正極シートとが対向するように配置した。また、セパレータシートがPP/PE/PPのものは多孔層と負極シートとが対向するように配置した。このようにして得られた捲回電極体80を非水電解液とともに電池容器50(18650型円筒型)に収容し、電池容器50の開口部を気密に封口した。非水電解液としてはエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を使用した。このようにしてリチウム二次電池100を組み立てた。
<ハイレート耐久性試験>
 上記得られたリチウム二次電池のそれぞれに対し、20Cで10秒間のCC放電を繰り返す充放電パターンを付与し、充放電サイクル試験を行った。具体的には、室温(約25℃)環境下において、20Cで10秒間のCC放電を行い、5秒間の休止後、5Cで40秒間のCC充電を行う充放電サイクルを10000回連続して繰り返した。そして、上記充放電サイクル試験前におけるIV抵抗(リチウム二次電池の初期の抵抗)と、充放電サイクル試験後におけるIV抵抗とから抵抗増加率を算出した。ここで、充放電サイクルの前後におけるIV抵抗は、それぞれ、25℃、30Cでパルス放電を行ったときの放電10秒後の電圧降下から算出した。なお、抵抗増加率(%)は、[(充放電サイクル試験後のIV抵抗-充放電サイクル試験前のIV抵抗)/充放電サイクル試験前のIV抵抗]×100により求めた。結果を表1に示す。
<異物内部短絡試験>
 また、上記手順と同様の方法でリチウム二次電池を構築し、異物内部短絡試験を実施した。異物内部短絡試験は、高さ0.2mm×幅0.1mmで各辺1mmのL字形のニッケル小片を用いてJISC8714に準じて行い、発煙に至ったNG品の有無を調べた。結果を表1に示す。表1では発煙が認められなかった電池を○、発煙が認められた電池を×で表わしている。
 表1に示されるように、円形度分布のメジアン値を0.85未満もしくは0.97を上回る値とした比較例1~4の電池は、ハイレート充放電サイクル試験後における抵抗増加率が顕著に増加した。また比較例1、2の電池は、異物内部短絡試験において発煙が認められた。これに対し、円形度分布のメジアン値を0.85~0.97とした実施例1~8の電池は、サイクル試験後における抵抗増加率が13%以下と良好であった。また、異物内部短絡試験においても発煙が認められず、安全性に優れた電池であることが確認できた。即ち、円形度分布のメジアン値を0.85~0.97とすることによって、ハイレート充放電サイクル耐久性及び安全性の双方を高度なレベルで満足する電池とすることができた。この結果から、ハイレート充放電サイクル耐久性及び安全性の観点からは、円形度分布のメジアン値は0.85~0.97にすることが望ましい。また、ここで供試した電池の場合、円形度分布のロワー値を0.7~0.9とすることによって抵抗増加率が12%以下とさらに改善され(実施例1~7)、特に円形度分布のメジアン値を0.85~0.93とすることによって8%以下という極めて低い抵抗増加率を達成できた(実施例1~4)。
 以上の結果から、本試験によると、円形度分布のメジアン値を0.85~0.97とすることによって、ハイレート充放電サイクル後の抵抗増加率が小さく、かつ安全性に優れたリチウム二次電池を実現することができた。そのため、本構成によると、ハイレート充放電サイクル耐久性及び安全性に優れた高性能なリチウム二次電池を提供することができる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 例えば、上述した実施形態および試験例では、多孔層42がセパレータシート40の負極シート20に対向する面に形成されている場合を示したがこれに限定されず、セパレータシートの正極シートに対向する面(あるいはセパレータシートの両面)に形成してもよい。また、セパレータシートの表面に限らず、正極シートもしくは負極シートの表面に形成してもよい。
 また、ここで開示される好ましい円形度分布のメジアン値を満たすフィラー粒子を有する多孔層が採用される限りにおいて、構築されるリチウム二次電池の形状(外形やサイズ)には特に制限はない。外装がラミネートフィルム等で構成される薄型シートタイプであってもよく、電池外装ケースが円筒形状や直方体形状の電池でもよく、或いは小型のボタン形状であってもよい。
 なお、ここに開示されるいずれかのリチウム二次電池100は、車両に搭載される電池として適した性能(例えば高出力が得られること)を備え、特にハイレート充放電に対する耐久性に優れたものであり得る。したがって本発明によると、図6に示すように、ここに開示されるいずれかのリチウム二次電池100を備えた車両1が提供される。特に、該リチウム二次電池100を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両1(例えば自動車)が提供される。
 また、ここに開示される技術の好ましい適用対象として、50A以上(例えば50A~250A)、さらには100A以上(例えば100A~200A)のハイレート放電を含む充放電サイクルで使用され得ることが想定されるリチウム二次電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C~50C)さらには20C以上(例えば20C~40C)のハイレート充放電を含む充放電サイクルで使用されることが想定されるリチウム二次電池;等が例示される。
 本発明の構成によれば、ハイレート耐久性に優れた高性能な非水電解液二次電池を提供することができる。

Claims (6)

  1.  正極シートと負極シートとがセパレータシートを介して重ね合わされてなる電極体を備えた非水電解液二次電池であって、
     前記正極シート及び前記負極シートの少なくとも一方と前記セパレータシートとの間には、フィラー粒子とバインダとを有する多孔層が形成されており、
     前記多孔層に含有されるフィラー粒子の円形度分布におけるメジアン値が0.85~0.97である、非水電解液二次電池。
  2.  前記フィラー粒子の円形度分布において、円形度が小さい側からの累積10%に相当する円形度の値が0.7~0.9である、請求項1に記載の非水電解液二次電池。
  3.  前記フィラー粒子は、アルミナまたはアルミナ水和物である、請求項1または2に記載の非水電解液二次電池。
  4.  前記多孔層は、少なくとも前記セパレータシートの表面に形成されている、請求項1から3の何れか一つに記載の非水電解液二次電池。
  5.  前記多孔層は、前記セパレータシートの負極シートに対向する面に形成されている、請求項4に記載の非水電解液二次電池。
  6.  前記電極体は、前記正極シートと前記負極シートとが前記セパレータシートを介して捲回されてなる捲回電極体である、請求項1から5の何れか一つに記載の非水電解液二次電池。
PCT/JP2010/064032 2010-08-19 2010-08-19 非水電解液二次電池 WO2012023199A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/817,162 US9583769B2 (en) 2010-08-19 2010-08-19 Non-aqueous electrolyte secondary battery including a porous layer having filler particles and method of making thereof
PCT/JP2010/064032 WO2012023199A1 (ja) 2010-08-19 2010-08-19 非水電解液二次電池
CN201080068629.XA CN103201878B (zh) 2010-08-19 2010-08-19 非水电解液二次电池
JP2012529446A JP5574196B2 (ja) 2010-08-19 2010-08-19 非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064032 WO2012023199A1 (ja) 2010-08-19 2010-08-19 非水電解液二次電池

Publications (1)

Publication Number Publication Date
WO2012023199A1 true WO2012023199A1 (ja) 2012-02-23

Family

ID=45604873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064032 WO2012023199A1 (ja) 2010-08-19 2010-08-19 非水電解液二次電池

Country Status (4)

Country Link
US (1) US9583769B2 (ja)
JP (1) JP5574196B2 (ja)
CN (1) CN103201878B (ja)
WO (1) WO2012023199A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218913A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 非水電解質二次電池
WO2015008673A1 (ja) * 2013-07-18 2015-01-22 三菱製紙株式会社 電池用セパレータ
JP2016138288A (ja) * 2014-01-07 2016-08-04 三菱樹脂株式会社 積層多孔フィルムの被覆層形成用分散液及び積層多孔フィルムの製造方法
JP2017098217A (ja) * 2016-06-28 2017-06-01 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層および非水電解液二次電池用積層セパレータ
US9818999B2 (en) 2012-06-29 2017-11-14 Mitsubishi Chemical Corporation Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN107834009A (zh) * 2012-06-12 2018-03-23 三菱制纸株式会社 锂离子电池用隔板
US9935303B2 (en) 2014-12-10 2018-04-03 Mitsubishi Chemical Corporation Alumina slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614202B2 (ja) * 2017-06-01 2019-12-04 日亜化学工業株式会社 非水系電解質二次電池用正極活物質及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237622A (ja) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd 有機系電池
JP2002265657A (ja) * 2001-03-15 2002-09-18 Nitto Denko Corp ポリオレフィン多孔質シートおよびその製造方法
JP2008210541A (ja) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd 電池用セパレータおよび非水電解質電池
JP2008226566A (ja) * 2007-03-12 2008-09-25 Hitachi Maxell Ltd 多孔性絶縁層形成用組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2009070797A (ja) * 2007-08-22 2009-04-02 Sanyo Electric Co Ltd 非水電解質電池
JP2010015917A (ja) * 2008-07-07 2010-01-21 Hitachi Maxell Ltd 電池用セパレータおよび非水電解液電池
WO2010029994A1 (ja) * 2008-09-12 2010-03-18 日本バイリーン株式会社 リチウムイオン二次電池用セパレータ、その製造方法、及びリチウムイオン二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984372B2 (ja) * 2003-08-06 2012-07-25 三菱化学株式会社 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
US20090053609A1 (en) * 2007-08-22 2009-02-26 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP5062526B2 (ja) * 2007-09-27 2012-10-31 三洋電機株式会社 非水電解質電池用セパレータ及び非水電解質電池
CN101567434A (zh) * 2009-06-04 2009-10-28 复旦大学 一种锂离子隔膜及其应用
JP5370289B2 (ja) 2010-06-30 2013-12-18 日本ゼオン株式会社 非水系電池用セパレーター及びそれを用いた非水系電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237622A (ja) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd 有機系電池
JP2002265657A (ja) * 2001-03-15 2002-09-18 Nitto Denko Corp ポリオレフィン多孔質シートおよびその製造方法
JP2008210541A (ja) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd 電池用セパレータおよび非水電解質電池
JP2008226566A (ja) * 2007-03-12 2008-09-25 Hitachi Maxell Ltd 多孔性絶縁層形成用組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2009070797A (ja) * 2007-08-22 2009-04-02 Sanyo Electric Co Ltd 非水電解質電池
JP2010015917A (ja) * 2008-07-07 2010-01-21 Hitachi Maxell Ltd 電池用セパレータおよび非水電解液電池
WO2010029994A1 (ja) * 2008-09-12 2010-03-18 日本バイリーン株式会社 リチウムイオン二次電池用セパレータ、その製造方法、及びリチウムイオン二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218913A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 非水電解質二次電池
CN107834009A (zh) * 2012-06-12 2018-03-23 三菱制纸株式会社 锂离子电池用隔板
JP2018073842A (ja) * 2012-06-12 2018-05-10 三菱製紙株式会社 リチウムイオン電池用セパレータ
US9818999B2 (en) 2012-06-29 2017-11-14 Mitsubishi Chemical Corporation Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2015008673A1 (ja) * 2013-07-18 2015-01-22 三菱製紙株式会社 電池用セパレータ
CN105359299A (zh) * 2013-07-18 2016-02-24 三菱制纸株式会社 电池用隔板
JP2016138288A (ja) * 2014-01-07 2016-08-04 三菱樹脂株式会社 積層多孔フィルムの被覆層形成用分散液及び積層多孔フィルムの製造方法
US9935303B2 (en) 2014-12-10 2018-04-03 Mitsubishi Chemical Corporation Alumina slurry
JP2017098217A (ja) * 2016-06-28 2017-06-01 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層および非水電解液二次電池用積層セパレータ

Also Published As

Publication number Publication date
JPWO2012023199A1 (ja) 2013-10-28
US20130143091A1 (en) 2013-06-06
CN103201878B (zh) 2015-06-24
JP5574196B2 (ja) 2014-08-20
CN103201878A (zh) 2013-07-10
US9583769B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
JP5812364B2 (ja) 非水電解液型二次電池
US8932767B2 (en) Nonaqueous electrolyte lithium secondary battery
JP5574196B2 (ja) 非水電解液二次電池
JP6217974B2 (ja) 非水電解質二次電池
JP5720965B2 (ja) 非水電解液二次電池
US9172083B2 (en) Lithium ion secondary battery
WO2013080379A1 (ja) リチウム二次電池とその製造方法
WO2013005329A1 (ja) 二次電池
WO2012169331A1 (ja) チタン酸リチウム一次粒子、チタン酸リチウム凝集体及びこれらを用いたリチウムイオン二次電池、リチウムイオンキャパシタ
WO2011086690A1 (ja) 正極活物質の評価方法
JP4168402B2 (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP5812336B2 (ja) 二次電池
EP3151311A1 (en) Lithium ion secondary battery
EP3113255A1 (en) Lithium ion secondary battery
JP2024032863A (ja) 負極及び前記負極を含む二次電池
JP5800196B2 (ja) 非水電解質二次電池およびその製造方法
JP2014120214A (ja) 非水電解液二次電池
JP2014011071A (ja) 非水電解質二次電池
JP5692605B2 (ja) 非水電解液二次電池
KR101905061B1 (ko) 리튬 이온 이차 전지
JP4296591B2 (ja) 非水電解質二次電池
JP2015099787A (ja) 非水電解液二次電池
JP2016072110A (ja) 非水電解液二次電池および組電池
WO2023145630A1 (ja) 非水電解質二次電池
JPWO2013080379A1 (ja) リチウム二次電池とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012529446

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13817162

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856156

Country of ref document: EP

Kind code of ref document: A1