JP4984372B2 - 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池 - Google Patents

非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池 Download PDF

Info

Publication number
JP4984372B2
JP4984372B2 JP2004033622A JP2004033622A JP4984372B2 JP 4984372 B2 JP4984372 B2 JP 4984372B2 JP 2004033622 A JP2004033622 A JP 2004033622A JP 2004033622 A JP2004033622 A JP 2004033622A JP 4984372 B2 JP4984372 B2 JP 4984372B2
Authority
JP
Japan
Prior art keywords
separator
filler
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004033622A
Other languages
English (en)
Other versions
JP2005071978A (ja
Inventor
聡 中島
康 宇佐見
一任 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Plastics Inc filed Critical Mitsubishi Chemical Corp
Priority to JP2004033622A priority Critical patent/JP4984372B2/ja
Publication of JP2005071978A publication Critical patent/JP2005071978A/ja
Application granted granted Critical
Publication of JP4984372B2 publication Critical patent/JP4984372B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池に関するものである。
詳しくは、本発明は、高負荷放電時も放電効率が極めて低下しにくく、電池性能に優れた二次電池を実現する非水系電解液二次電池用セパレータと、このセパレータを用いた非水系電解液二次電池に関するものである。
電気製品の軽量化、小型化に伴ない高いエネルギー密度を持ち且つ軽量な非水電解液二次電池であるリチウム二次電池が広い分野で使用されている。リチウム二次電池は、コバルト酸リチウムに代表されるリチウム化合物などの正極活物質を含有する活物質層を集電体上に形成させた正極と、黒鉛などに代表されるリチウムの吸蔵・放出が可能な炭素材料などの負極活物質を含有する活物質層を集電体上に形成させた負極と、LiPF6等のリチウム塩等の電解質を通常非プロトン性の非水系溶媒に溶解した非水電解液と、多孔質膜からなるセパレータとから主として構成される。
リチウム二次電池で使用されるセパレータには、両極間のイオン伝導を妨げないこと、電解液を保持できること、電解液に対して耐性を有すること、などの要件を満たすことが求められ、主としてポリエチレンやポリプロピレン等の熱可塑性樹脂からなる多孔質膜が用いられている。
従来、これらの多孔質膜を製造する方法としては、例えば以下の手法が公知技術として知られている。
(1) 高分子材料に後工程で容易に抽出除去可能な可塑剤を加えて成形を行い、その後可塑剤を適当な溶媒で除去して多孔化する抽出法。
(2) 結晶性高分子材料を成形した後、構造的に弱い非晶部分を選択的に延伸して微細孔を形成する延伸法。
(3) 高分子材料に充填剤を加えて成形を行い、その後の延伸操作により高分子材料と充填剤との界面を剥離させて微細孔を形成する界面剥離法。
熱可塑性樹脂製多孔質膜を得る方法として上述の(1)の抽出法は、大量の廃液を処理する必要があり、環境・経済性の両面において問題がある。また抽出工程で発生する膜の収縮のために均等な膜を得ることが難しく、歩留まりなど生産性においても問題がある。(2)の延伸法は、延伸前の結晶相・非晶相の構造制御により孔径分布を制御するために、長時間の熱処理が必要であり、生産性の面で問題がある。
なお、(1)の改良技術として特開平6−240036号公報には、超高分子量成分を含有し、分子量分布の大きいポリオレフィンの溶液を調製し、これを押出加工してシート状に成形し、急冷して得られたゲル状シートに、特定温度で延伸及び溶媒除去操作を施すことにより、最大孔径/平均貫通孔径の値が1.5以下のシャープな孔径分布を有するポリオレフィン多孔質膜を得ることが開示されている。
しかしながら、この方法は均一な孔の形成とそれを実用上の適当な大きさに拡大するために、温度が異なる2度の延伸操作を施すことが必須であることにより工程数が多く、通常の抽出法に比較して工程が煩雑で生産性の面で問題がある。また、延伸工程が2回あるために、それぞれの工程での延伸ムラの発生などの問題も考えられる。更には、本法は本質的には抽出法であるため、上述したように大量の廃液を処理する必要があり、環境・経済性の面で問題がある。また、抽出工程で発生するフィルムの収縮により均等なフィルムを得ることが難しく、歩留まりなど生産性においても問題がある。
これに対して、(3)の界面剥離法は、廃液の発生などはなく、環境・経済性の両面において優れた方法である。また、高分子材料と充填剤との界面は延伸操作により容易に剥離することができるため、熱処理などの前処理を必要とせずに多孔質膜を得ることができ、生産性の面でも優れた手法である。界面剥離法による多孔質膜として、例えば、特開2002−201298号公報には、熱可塑性樹脂と充填剤とで構成された多孔質膜であって、その厚さをY(μm)、ガーレ値(ガーレー透気度)をTGUR(秒/100cc)、平均孔径をd(μm)とするとき、X=25×TGUR×d÷Yにより定義されるXを5未満とする多孔質膜が開示されている。
特開平6−240036号公報 特開2002−201298号公報
しかしながら、従来の界面剥離法による多孔質膜では、上記特開2002−201298号公報にも記載されているように、多孔化のために配合される充填剤の平均粒径には注意を払っていても、その粒度分布にまで関心を向けた例はなく、結果として大粒径粒子の比率の大きな充填剤を使用することによって、後述するような理由で孔の連通性を低下させ、望ましい性能を持つセパレータを得ることができなかった。例えば、特開2002−201298号公報の実施例1に示すように、電池の負荷特性として、放電速度C/3における放電容量に対して、約4Cの放電容量で、高々40%程度のものしか得られなかった。
従って、本発明は、環境・経済性及び生産性に優れた界面剥離法によって得られた充填剤含有熱可塑性樹脂製多孔質膜で構成されたセパレータを非水系電解液二次電池に適用した場合であっても、負荷特性等の電池性能に優れた非水系電解液二次電池を実現することを目的とする。
本発明の非水系電解液二次電池用セパレータは、熱可塑性樹脂中に、数基準粒径分布より導かれる歪度が0.5以上である充填剤を含有する多孔質膜よりなる非水系電解液二次電池用セパレータであって、前記充填剤が無機充填剤であり、ASTM F316−86より定められる平均孔径dave(μm)と最大孔径dmax(μm)との比dave/dmaxが、0.6以上であり、ガーレー透気度が20〜500秒/100ccであることを特徴とする。
本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する非水系電解液二次電池において、セパレータとして、このような本発明のセパレータを用いたことを特徴とする。
本発明者らは、充填剤の性状と、これを含む熱可塑性樹脂製多孔質膜の膜物性の制御について鋭意検討を行なった結果、これまで、充填剤として工業的に用いられることがなかった特定な粒径分布の充填剤を用いることにより、界面剥離法によって得られる熱可塑性樹脂製多孔質膜は、著しく孔径が均一で、非水系電解液二次電池用セパレータとして極めて優れた電池性能、特に負荷特性の改善を図ることができることを見出して本発明を完成した。
本発明の非水電解液二次電池用セパレータを用いることで、負荷特性に優れた非水系電解液二次電池を得ることができる理由は次のように考えられる。
即ち、界面剥離法においては、基材樹脂と充填剤の界面を延伸操作によって剥離して多孔構造を形成する関係上、充填剤の粒径分布が膜構造に極めて大きな影響を持つ。例えば、同じ平均粒径を持つ充填剤を用いても、粒径分布が広いものは、大粒径の粒子が混ざるため、粒子の総個数は粒径分布の狭いものに比べて減少する。これは、延伸操作における開孔の起点数が減ることを意味しており、孔の連通性の低下によるイオン通過抵抗の増加をもたらすと考えられる。充填剤の粒径分布の制御は、界面剥離法においては、充填剤の形状選択による管理が可能となるため、電池性能にとって非常に微妙な多孔状態の制御を当業者がしやすくなる点で、工業的に非常に有利となる。
本発明では、例えば、充填剤の粒径分布を制御することにより均一孔径のセパレータを実現し、これにより、開孔起点数の不足によるイオン通過抵抗の増大を防止すると共に、イオン通過抵抗の不均一性を改善し、放電速度C/3における放電容量に対して、放電速度6Cにおける放電容量が60%以上であるような、負荷特性に優れた非水系電解液二次電池を実現する。
後述の実施例及び比較例の結果からも明らかなように、本発明によれば、充填剤を含有する熱可塑性樹脂製多孔質膜よりなる、孔径が均一な非水系電解液二次電池用セパレータにより、電池性能、特に負荷特性に優れ、性能の安定した非水系電解液二次電池が提供される。
以下に本発明の実施の形態を詳細に説明する。
[本発明のセパレータの孔径]
本発明の非水系電解液二次電池用セパレータは、熱可塑性樹脂中に充填剤を含有する多孔質膜よりなり、ASTM F316−86より定められる平均孔径dave(μm)と最大孔径dmax(μm)との比dave/dmaxが、0.6以上であるものである。本発明に係る平均孔径及び最大孔径は、ASTM F316−86に規定されるものである。
本発明のセパレータの平均孔径、即ち、セパレータを構成する多孔質膜の平均孔径daveの下限は、通常0.03μm以上、好ましくは0.05μm以上、更に好ましくは0.1μm以上、特に好ましくは0.5μm以上であり、上限は、通常5μm以下、好ましくは3μm以下、更に好ましくは2μm以下である。この平均孔径daveが0.03μm未満では、界面剥離によって形成される孔同士の連結が得られにくくなったり、電池内部の反応の副生成物による目詰まりが起こりやすくなり、その結果として電気抵抗が増加して、得られる二次電池の負荷特性が低下する傾向にある。平均孔径daveが5μmを超えると電池内部の反応の副生成物の移動が起こりやすくなり電極活物質の劣化を促進して、得られる二次電池のサイクル特性などが低下する傾向にある。
本発明のセパレータの平均孔径と最大孔径との比、即ち、本発明のセパレータを構成する多孔質膜の平均孔径dave/最大孔径dmaxの値は、0.6以上である。この比dave/dmaxは、好ましくは0.65以上、更に好ましくは0.7以上である。dave/dmaxが0.6未満では、セパレータの孔径のばらつきが大きくなり、負荷特性等の電池性能の低下の問題がある。
ave/dmaxは、高ければ高いほどセパレータの孔径のばらつきが小さく、特に大きい側へのばらつきが小さいので望ましいが、dave/dmaxの上限としては、0.95程度であれば十分である。
[本発明のセパレータの構成成分及び物性等]
本発明のセパレータを構成する多孔質膜の基材樹脂である熱可塑性樹脂としては、充填剤が均等に分散されうるものであれば特に限定されることはないが、例えば、ポリオレフィン樹脂、フッ素樹脂、ポリスチレン等のスチレン系樹脂、ABS樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリアミド樹脂、アセタール樹脂、ポリカーボネート樹脂などが挙げられる。これらの中でも、耐熱性、耐溶剤性、可撓性のバランスに優れていることから、特に好ましいのはポリオレフィン樹脂である。ポリオレフィン樹脂としては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセン等のモノオレフィン重合体や、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセンと4−メチル−1−ペンテン又は酢酸ビニル等の他のモノマーとの共重合体等を主成分とするものが挙げられ、具体的には、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、結晶性エチレン−プロピレンブロック共重合体、ポリブテン、エチレン−酢酸ビニル共重合体等が挙げられる。本発明においては、上記ポリオレフィン樹脂の中でも高密度ポリエチレン又はポリプロピレンを用いるのが好ましい。上記ポリオレフィン樹脂等の熱可塑性樹脂は1種を単独で用いても2種以上を混合して用いても良い。
このような熱可塑性樹脂の重量平均分子量は、下限が通常5万以上、中でも10万以上、上限が通常50万以下、好ましくは40万以下、更に好ましくは30万以下、中でも20万以下程度であれば良い。この上限を超えると、充填剤添加による流動性の低下に加えて、樹脂の溶融粘度が高くなるため溶融成形が困難となる。また、成形物が得られた場合であっても、充填剤が樹脂中に均等に分散されず、界面剥離による孔形成が不均一となるため好ましくない。この下限を下回ると、機械的強度が低下するため好ましくない。
本発明に係る多孔質膜に含まれる充填剤は、本発明のセパレータの孔径分布を左右する因子として、後述するようにその粒度分布を管理することが重要であるが、本発明においては、上記条件に適合する充填剤であれば良く、充填剤は1種を単独で用いることもでき又は2種以上を混合して用いることもできる。
充填剤の種類としては特に制限はないが、電解液と反応しにくくかつ酸化還元を受けにくいという点で、無機充填剤を用いることが好ましい。中でもリチウム二次電池で用いられるカーボネート系有機電解液を分解しない性質を有するものが好ましい。そのような充填剤としては、難水溶性の硫酸塩、アルミナ等が挙げられるが、硫酸バリウムやアルミナが好適に用いられ、特に硫酸バリウムが好適に用いられる。ここに云う難水溶性とは、25℃の水に対する溶解度が5mg/l以下であることを指す。
一般に充填剤として用いられることの多い炭酸カルシウムなどの炭酸塩や酸化チタン、シリカなどは、後述するようにリチウム二次電池の非水電解液成分の分解を招くため好ましくない。ここで有機電解液成分の分解とは、1M LiPFのEC/EMC=3:7(体積比)の混合非水溶媒溶液よりなる電解液に、電解液1ml当たり充填剤を0.5gの比率で添加して85℃、72時間保持した後の電解液中のリチウムイオンの濃度が0.75mmol/g以下に減少することと定義する。リチウムイオンの量はイオンクロマト法により測定される。なお、72時間の保持中に電解液は外気に接しないように密閉容器に入れる必要がある。これは空気中の水分と反応して電解液成分の分解が進むためである。
下表に電解液(1M LiPF/(EC+EMC)(3:7,容量比))に各種充填剤を上述の条件下で添加して保持した結果を示す。充填剤を添加しなかった電解液のイオン組成と比較して硫酸バリウムやアルミナは殆ど組成の変化が見られず、本発明における充填剤として好適なことが分かる。これに対して炭酸カルシウムや炭酸リチウムなどの炭酸塩、或いはシリカや酸化チタンはリチウムイオンの著しい減少やフッ酸生成によるフッ素イオンの増加が見られ、本発明における充填剤として好ましくないことが分かる。
Figure 0004984372
充填剤の粒径としては、数基準平均粒径の下限が、通常0.01μm以上、好ましくは0.1μm以上、中でも0.2μm以上であり、上限が、通常2μm以下、好ましくは1.5μm以下、中でも1μm以下であることが好ましい。充填剤の数基準平均粒径が2μmを超えると、延伸で形成される孔の径が大きくなりすぎ、延伸破断やフィルム強度の低下を招きやすい。また、数基準平均粒径が0.01μmより小さいと充填剤が凝集し易くなるため、基材樹脂に均等に充填剤を分散させることが難しくなりやすい。
本発明においては、上記条件に適合する無機充填剤であれば、1種を単独で用いることもでき、2種以上を混合して用いることもできる。
本発明に係る多孔質膜中の上記充填剤の配合量は、下限が熱可塑性樹脂100重量部に対して通常40重量部以上、好ましくは50重量部以上、中でも60重量部以上、より好ましくは100重量部以上であり、上限が熱可塑性樹脂100重量部に対して通常300重量部以下、好ましくは200重量部以下、より好ましくは150重量部以下である。多孔質膜中の熱可塑性樹脂100重量部に対する充填剤の配合量が40重量部未満であると連通孔を形成することが難しく、セパレータとしての機能を発現することが困難となる。また、300重量部を超えるとフィルム成形時の粘度が高くなり加工性に劣るばかりでなく、多孔化のための延伸時にフィルム破断を生じるため好ましくない。なお、本発明においては、多孔質膜の作製の際に配合した充填剤は、実質的に成形された多孔質膜中に残るため、上記充填剤の配合量範囲は、多孔質膜中の充填剤含有量範囲となる。
また、充填剤の配合個数は、多孔質膜に形成される孔数を左右するものであり、その配合個数は樹脂容積1cm当たりの充填剤の個数として、下限が、通常1×1011個以上、好ましくは3×1011個以上、更に好ましくは5×1011個以上であり、上限は、通常1×1014個以下、好ましくは7×1013個以下である。この配合個数が上記上限を超えると形成される空孔が多くなりすぎて電池内部の反応の副生成物の移動が起こりやすくなり電極活物質の劣化を促進して、得られる二次電池のサイクル特性などが低下する傾向にある。また、下限を下回ると、形成される孔同士の連結が得られにくくなり、その結果として電気抵抗が増加して、得られる二次電池の負荷特性が低下する傾向にある。
なお、充填剤としては、熱可塑性樹脂への分散性を高めるために表面処理剤により表面処理されているものを用いることもできる。この表面処理としては、熱可塑性樹脂がポリオレフィン樹脂の場合、例えばステアリン酸等の脂肪酸又はその金属塩、或いはポリシロキサンやシランカップリング剤による処理が挙げられる。
本発明に係る多孔質膜の成形時には、前記熱可塑性樹脂との相溶性を有する低分子量化合物を添加しても良い。この低分子量化合物は熱可塑性樹脂の分子間に入り込み、分子間の相互作用を低下させると共に結晶化を阻害し、その結果、シート成形時の樹脂組成物の延伸性を向上させる。また、低分子量化合物は熱可塑性樹脂と充填剤との界面接着力を適度に高めて、延伸による孔の粗大化を防止する作用を奏すると共に、熱可塑性樹脂と充填剤との界面接着力を高めることでフィルムからの充填剤の脱落を防止する作用を奏する。
この低分子量化合物としては分子量200〜3000のものが好適に用いられ、より好ましくは200〜1000のものが用いられる。この低分子量化合物の分子量が3000を超えると低分子量化合物が熱可塑性樹脂の分子間に入りにくくなるため、延伸性の向上効果が不充分となる。また、分子量が200未満では、相溶性は上がるが、低分子量化合物が多孔質膜表面に析出する、いわゆるブルーミングが起こりやすくなり、膜性状の悪化やブロッキングを起こしやすくなり好ましくない。
低分子量化合物としては、熱可塑性樹脂がポリオレフィン樹脂の場合、脂肪族炭化水素又はグリセライドなどが好ましく使われる。特に、ポリオレフィン樹脂がポリエチレンの場合は、流動パラフィンや低融点ワックスが好ましく用いられる。
本発明に係る多孔質膜の成膜材料としての樹脂組成物における、上記低分子量化合物の配合量は、下限が熱可塑性樹脂100重量部に対し通常1重量部以上、好ましくは5重量部以上であり、上限が熱可塑性樹脂100重量部に対し通常20重量部以下、好ましくは15重量部以下である。低分子量化合物の配合量が熱可塑性樹脂100重量部に対して1重量部未満であると、低分子量化合物を配合することによる上記効果が十分に得られず、また20重量部を超えると熱可塑性樹脂の分子間の相互作用を低下させ過ぎて、十分な強度が得られなくなる。また、シート成形時に発煙が生じたり、スクリュー部分での滑りが生じて、安定なシート成形が難しくなる。
本発明に係る多孔質膜の成膜材料としての樹脂組成物には、更に必要に応じて熱安定剤等の他の添加剤を添加することができる。上記添加剤としては、公知のものであれば特に制限されず用いられる。これらの添加剤の配合量は、樹脂組成物の全量に対して、通常0.05〜1重量%である。
本発明に係る多孔質膜の多孔度は、多孔質膜の空孔率の下限として通常30%以上、好ましくは40%以上、更に好ましくは50%以上であり、上限として通常80%以下、好ましくは70%以下、更に好ましくは65%以下、特に好ましくは60%以下である。空孔率が30%未満であるとイオンの透過性が充分でなく、セパレータとしての機能を果たすことができず、好ましくない。また、空孔率が80%を超えると、フィルムの実強度が低くなるため、電池作成時の破断や活物質による突き抜けと短絡が生じ、好ましくない。
なお、多孔質膜の空孔率とは、以下の計算式によって算出される値である。
空孔率Pv(%)=100×(1−w/〔ρ・S・t〕)
S:多孔質膜の面積
t:多孔質膜の厚み
w:多孔質膜の重さ
ρ:多孔質膜の真比重
なお、高分子多孔質膜を構成する成分i(樹脂や充填剤など)のブレンド重量をWi、比重をρiとすると真比重ρは以下の式で求められる。式中、Σは全ての成分の和を表す。
多孔質膜の真比重ρ=ΣWi/Σ(Wi/ρi)
本発明に係る多孔質膜の厚みの上限値は、通常、100μm以下、中でも50μm以下、好ましくは40μm以下であり、下限値は、通常5μm以上、好ましくは10μm以上である。厚みが5μm未満であると、実強度が低いため、電池の作成時の破断や活物質による突き抜けと短絡が生じ、好ましくない。また、厚みが100μmを超えるとセパレータの電気抵抗が高くなるため、電池の容量が低下し、好ましくない。厚みを5〜100μmの範囲とすることにより、良好なイオン透過性を有するセパレータとすることができる。
また、本発明に係る多孔質膜は、ガーレー透気度の下限値が20秒/100cc以上、特に100秒/100cc以上で、上限値が500秒/100cc以下、特に300秒/100cc以下であることが好ましい。ガーレー透気度がこの下限値を下回る場合は、空孔率が高すぎるか厚みが薄すぎることが多く、前述の通りフィルムの実強度が低くなって電池作成時の破断や活物質による突き抜けと短絡が生じて好ましくない。上限値を超える場合は、イオンの透過性が充分でなく、セパレータとしての機能を果たすことができず、好ましくない。なお、ガーレー透気度はJIS P8117に準拠して測定され、1.22kPa圧で100ccの空気が膜を透過する秒数を示す。
[セパレータの製造方法]
次に、本発明のセパレータの製造方法を説明するが、それに先立ち、充填剤を含有する熱可塑性樹脂製多孔質膜よりなるセパレータの一般的な製造方法について説明する。
<一般的なセパレータの製造方法>
充填剤を含有する熱可塑性樹脂製多孔質膜の製造方法としては特に制限はなく、下記の抽出法(1)、延伸法(2)、及び界面剥離法(3)が挙げられるが、特に好ましいのは界面剥離法である。
(1) 抽出法:高分子材料と、充填剤と、後工程で溶媒抽出除去が可能な可塑剤とを混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、これを溶媒で処理して可塑剤を除去することにより、多孔化する。
(2) 延伸法:結晶性高分子材料に充填剤を混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、延伸することにより、構造的に弱い非晶部分を切断することにより微細孔を形成する。
(3) 界面剥離法:高分子材料に充填剤を混合してなる樹脂組成物を溶融し、これを押出成形などの成形法により膜状に成形した後、延伸することにより、高分子材料と充填剤との界面を剥離させて微細孔を形成する。
上記製造方法のうち、抽出法では、成形の際に充填剤を高分子材料側に選択的に含有させることは難しく、可塑剤部分に含有された充填剤が抽出時に可塑剤と共に除去されてしまうため、界面剥離法に比較すると効率的でない。また、延伸法においては、高分子材料に充填剤を含有させると、非晶部分以外に高分子材料と充填剤界面でも延伸による開孔が生じるため、本質的に界面剥離法と異ならなくなる。従って、本発明では界面剥離法を採用することが好ましい。
なお、多孔質膜の製造は、より具体的には、次のような方法で行われる。
まず、充填剤と熱可塑性樹脂、及び必要に応じて添加される低分子量化合物や酸化防止剤等の添加剤の所定量を配合し、溶融混練することにより樹脂組成物を調製する。ここで上記樹脂組成物はヘンシェルミキサー等によって予備混合を行い、しかる後に通常用いられる一軸スクリュー押出機、二軸スクリュー押出機、ミキシングロール又は二軸混練機等を用いて調製しても良く、或いは予備混練を省略して直接上記押出機等で樹脂組成物を調製しても良い。
次いで、上記樹脂組成物をシート成形する。シート成形は通常用いられるTダイによるTダイ法や円形ダイによるインフレーション法により行うことができる。
次いで、成形されたシートの延伸を行う。該延伸には、シートの引き取り方向(MD)に延伸する縦一軸延伸、テンター延伸機等により横方向(TD)に延伸する横一軸延伸、MDへの一軸延伸後引き続きテンター延伸機等によりTDに延伸する逐次二軸延伸法、又は縦方向及び横方向を同時に延伸する同時二軸延伸法がある。上記一軸延伸はロール延伸により行うことができる。上記延伸は、シートを構成する樹脂組成物が所定の延伸倍率に容易に延伸でき、かつ樹脂組成物が融解して孔を閉塞させ連通性を失わせることのない任意の温度で行うことができるが、好ましくは樹脂の融点−70℃〜樹脂の融点−5℃の温度範囲で延伸される。延伸倍率は必要とされる孔径や強度に応じて任意に設定されるが、好ましくは少なくとも一軸方向に1.2倍以上の延伸を行う。
<本発明のセパレータの製造方法>
次に、ASTM F316−86より定められる平均孔径dave(μm)と最大孔径dmax(μm)との比dave/dmaxが、0.6以上の本発明のセパレータを製造する方法について説明する。
本発明のセパレータを構成する多孔質膜の製造方法は、dave/dmaxが0.6以上の多孔質膜が得られる方法であれば良く、その成形材料や製造方法には特に制限はない。本発明のセパレータは、上述した従来の一般的なセパレータの製造方法と同様な方法で製造されるが、本発明においては、製造されるセパレータのdave/dmaxを0.6以上とするために、[1]充填剤の粒度分布管理を厳しく行う、[2]樹脂と充填剤との混合、延伸の条件を制御する、或いはこれらの双方を採用するなどの工夫を行う。
[1] 充填剤の粒度分布管理:充填剤の数基準粒径分布の歪度の制御
本発明において、多孔質膜に配合される充填剤は、その数基準粒径分布において歪度が0.5以上であることが好ましい。粒径分布はレーザー回折・散乱法で評価される。充填剤の粒径分布は樹脂に混練する前の状態の充填剤で測定しても良く、多孔質膜を焼いて採取される灰分を粉砕して測定しても良い。充填剤の粒径分布の歪度は例えば東京工業大学統計工学研究会編「統計工学ハンドブック」194−195頁などに記載される公式を用いて、粒径分布から導き出される。粒径分布の歪度が0以上の時、粒径分布は低粒径側に偏っていることを示しているが、歪度が0近傍では粒径分布の低粒径側への偏りが充分ではないため、dave/dmaxが0.6以上の多孔質膜を得ることは難しく、歪度が0.5以上であることが、得られる多孔質膜の開孔に対する大粒径粒子の寄与を減少させ、dave/dmaxが0.6以上の多孔質膜を得るために好ましい。また、歪度が0より小さくなると、粒径分布が大粒径側に偏り、大粒径粒子の寄与が大きくなるため、dave/dmaxが0.6以上の多孔質膜を得ることが難しい。
従って、本発明に用いられる充填剤は、その数基準粒径分布より導かれる歪度が0.5以上であることが好ましく、更に好ましくは歪度2以上であり、より好ましくは歪度2.5以上である。
このような粒度分布の充填剤を調製するには、篩等の分級装置を用いて、粒径調整を行うことが挙げられる。この粒度調整は、必要に応じて複数回繰り返し行うことができる。
[2] 樹脂と充填剤との混合、延伸条件の制御
充填剤が熱可塑性樹脂中に十分に均一分散するような混合攪拌条件を設定する。例えば、用いる溶融混練条件の温度、時間等を厳密に制御する。
また、延伸操作においては、フィルム全体が均一に延伸されるように温度や延伸速度を適切に設定することが必要である。条件を適切に設定しないと延伸ムラが生じて形成される孔の孔径分布が広くなり、本発明の企図するdave/dmaxが0.6以上の多孔質膜を得ることが難しくなる。
[非水系電解液二次電池]
次に、上述のような本発明の非水系電解液二次電池用セパレータを用いる本発明の非水系電解液二次電池について説明する。本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する。
本発明の非水系電解液二次電池に使用される電解液の非水系溶媒としては、非水系電解液二次電池の溶媒として公知の任意のものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート等のジアルキルカーボネート(ジアルキルカーボネートのアルキル基は、炭素数1〜4のアルキル基が好ましい);テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。これらは1種を単独で用いても良く、2種類以上を併用しても良い。
非水系電解液の溶質であるリチウム塩としては、任意のものを用いることができる。例えば、LiClO、LiPF及びLiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO及びLiBF(CSO等の含フッ素有機リチウム塩などが挙げられる。これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO又はLiN(CSO、特にLiPF又はLiBFが好ましい。なお、リチウム塩についても1種を単独で用いても良く、2種以上を併用しても良い。
これらのリチウム塩の非水系電解液中の濃度の下限値としては、通常0.5mol/l以上、中でも0.75mol/l以上、上限値としては、通常2mol/l以下、中でも1.5mol/l以下である。リチウム塩の濃度がこの上限値を超えると非水系電解液の粘度が高くなり、電気伝導率も低下する。また、下限値を下回ると電気伝導率が低くなるので、上記濃度範囲内で非水系電解液を調製することが好ましい。
なお、本発明に係る非水系電解液には、必要に応じて他の有用な成分、例えば従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性やサイクル特性を改善するための助剤等の各種の添加剤を含有させても良い。
高温保存後の容量維持特性やサイクル特性を改善するための助剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物などが挙げられる。非水系電解液がこれらの助剤を含有する場合、その濃度は、通常0.1〜5重量%である。
正極は、通常、正極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。
正極活物質としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料などのリチウムを吸蔵及び放出可能な材料が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としてはポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
正極活物質層中のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。
正極活物質層は、通常、導電性を高めるため導電剤を含有する。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛の微粒子や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素微粒子等等の炭素質材料を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。正極活物質層中の導電剤の割合は、下限値が通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、上限値が通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電剤の割合が少ないと導電性が不十分になることがあり、逆に多すぎると電池容量が低下することがある。
正極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。
増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
正極の集電体には、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
正極は、前述の正極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。スラリー化のために用いる溶媒としては、通常はバインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。
このようにして形成される正極活物質層の厚さは、通常10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。
負極は、通常、負極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。
負極活物質としては様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金などを用いることができる。これらの負極活物質は、1種を単独で用いても良く、2種類以上を混合して用いても良い。
バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。
負極活物質層中の上述のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので負極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。
負極活物質層は、通常、導電性を高めるため導電剤を含有する。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛の微粒子や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素微粒子等等の炭素質材料を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。負極活物質層中の導電剤の割合は、下限値が通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、上限値が通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電剤の割合が少ないと導電性が不十分になることがあり、逆に多すぎると電池容量が低下することがある。
負極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。
増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
負極の集電体には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。
負極は、前述の負極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。
スラリー化する溶媒としては、通常はバインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。
このようにして形成される負極活物質層の厚さは、通常、10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。
本発明のリチウム二次電池は、上述した正極と、負極と、非水系電解液と、本発明のセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
その電池形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、シート電極及びセパレータを積層したラミネートタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。
以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を越えない限りにおいて、各種の変形を加えて実施することが可能である。
本発明のリチウム二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ等の小型機器、及び、電気自動車、ハイブリッド自動車等の大型機器を挙げることができる。
以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
なお、以下において、セパレータの透気度と孔径は以下の方法で評価した。
透気度:JIS P8117に準じてB型ガーレーデンソーメーター(東洋精
機製作所製)を使用して測定を行った。
孔径:コールター社製ポロメーターを使用してASTM F316−86に準
拠して測定を行った。
〔実施例1〕
<多孔質膜の製造>
市販のポリプロピレン1(ホモタイプ、日本ポリケム社製「FY6C」(MFR:2.4g/10min))25.9重量部とポリプロンピレン2(コポリマー、ダウケミカル社製「INSPiRE」(MFR:0.5g/10min))6.5重量部、硬化ひまし油〔豊国製油社製「HY−CASTOR OIL」分子量938〕2.6重量部、充填剤として市販の硫酸バリウム〔数基準平均粒径0.17μm、歪度2.91〕65重量部を配合して得られた樹脂組成物を、温度250℃で溶融成形して原反シートを得た。この原反シートの厚みは平均50μmであり、充填剤配合個数は表2に示す通りであった。次に、得られた原反シートを80℃でシート長手方向(MD)に4.5倍の延伸を行い、表2に示す膜厚、空孔率、ガーレー透気度、及び孔径の多孔質膜を得た。
<電解液の調製>
乾燥アルゴン雰囲気下、エチレンカーボネートとエチルメチルカーボネートとの混合物(容量比3:7)に、十分に乾燥したLiPFを1.0モル/リットルの割合となるように溶解して電解液とした。
<正極の作製>
正極活物質としてLiCoOを用い、LiCoO85重量部にカーボンブラック6重量部及びポリフッ化ビニリデン(呉羽化学社製商品名「KF−1000」)9重量部を加えて混合し、N−メチル−2−ピロリドンで分散し、スラリー状とした。これを、正極集電体である厚さ20μmのアルミニウム箔の片面に均一に塗布し、乾燥後、プレス機により正極活物質層の密度が1.9g/cmになるようにプレスして正極とした。
<負極の作製>
負極活物質として天然黒鉛粉末を用い、天然黒鉛粉末94重量部にポリフッ化ビニリデン6重量部を混合し、N−メチル−2−ピロリドンで分散させてスラリー状とした。これを負極集電体である厚さ18μmの銅箔の片面に均一に塗布し、乾燥後、プレス機により負極活物質層の密度が1.3g/cmになるようにプレスして負極とした。
<電池の組立>
上記多孔質膜をセパレータとして、上記電解液、正極及び負極と共に用いて2032型コインセルを作製した。即ち、正極導電体を兼ねるステンレス鋼製の缶体に直径12.5mmの円盤状に打ち抜いて電解液を含浸させた正極を収容し、その上に電解液を含浸させた直径18.8mmのセパレータを介して直径12.5mmの円盤状に打ち抜いて電解液を含浸させた負極を載置した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封することによりコイン型電池を作製した。ここで電池部材への電解液の含浸は、各部材を電解液に2分間浸漬することより行った。
<電池の評価>
作製したコイン型電池の初期充放電を行った後、C/3(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)及び4C、6Cの各放電速度で放電容量の測定を行い、C/3の放電容量を基準とした放電容量の割合を求め、結果を表2に示した。
〔実施例2〕
ポリプロピレン1を30.8重量部と、ポリプロンピレン2を1.6重量部と、硬化ひまし油を2.6重量部と、硫酸バリウム〔数基準平均粒径0.17μm、歪度2.91〕を65重量部用い、原反シートの長手方向(MD)の延伸を3.5倍としたこと以外は、実施例1と同様にして表2に示す物性の多孔質膜を得た。
この多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。
〔実施例3〕
実施例1で用いた市販のポリプロピレン1を46.3重量部と、実施例1で用いた硬化ひまし油を3.7重量部と、充填剤として市販の硫酸バリウム〔数基準平均粒径0.18μm、歪度3.57〕を50重量部用いて、樹脂組成物を配合し、この樹脂組成物を温度250℃で溶融成形して厚み平均180μmで、表2に示す充填剤配合個数の原反シートを得た。得られた原反シートを70℃でシート長手方向(MD)に4.5倍の延伸を行い、次いで120℃でシート幅方向(TD)に4.4倍の延伸を行って、表2に示す物性の多孔質膜を得た。
この多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。
〔実施例4〕
実施例1で用いた市販のポリプロピレン1を46.3重量部と、実施例1で用いた硬化ひまし油3.7重量部と、充填剤として市販の硫酸バリウム〔数基準平均粒径0.46μm、歪度1.15〕を50重量部用いて樹脂組成物を配合し、この樹脂組成物を温度250℃で溶融成形して厚み平均170μmで、表2に示す充填剤配合個数の原反シートを得た。得られた原反シートを70℃でシート長手方向(MD)に4.0倍の延伸を行い、次いで120℃でシート幅方向(TD)に3.5倍の延伸を行って、表2に示す物性の多孔質膜を得た。
この多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。
〔比較例1〕
実施例1で用いた市販のポリプロピレン1を46.3重量部と、実施例1で用いた硬化ひまし油を3.7重量部と、充填剤として市販の硫酸バリウム〔数基準平均粒径1.07μm、歪度−0.67〕を50重量部用いて樹脂組成物を配合し、この樹脂組成物を温度250℃で溶融成形して厚み平均180μmで、表2に示す充填剤配合個数の原反シートを得た。得られた原反シートを70℃でシート長手方向(MD)に3.5倍の延伸を行い、次いで120℃でシート幅方向(TD)に3.0倍の延伸を行って表2に示す物性の多孔質膜を得た。
この多孔質膜をセパレータとして用いたこと以外は、実施例1と同様にしてコイン型電池を組み立て、同様に評価を行って、結果を表2に示した。
Figure 0004984372
表2より明らかなように、実施例1〜4で得られた多孔質膜をセパレータとして用いたコイン型電池の放電容量は、4C、6C何れの放電速度においてもC/3の場合の60%以上で良好であった。これに対して、比較例1の多孔質膜をセパレータとして用いたコイン型電池の放電容量は、4C、6C何れの放電速度においてもC/3の場合の50%を下回り、電池性能の低下が認められた。
即ち、市販の硫酸バリウムにも、その物性において、様々なものが提供されており、単に充填剤として硫酸バリウムを用いても、本発明で特定するdave/dmaxを達成し得ないが、この物性を管理することにより、電池性能の改善を図ることができる。
本発明は、非水系電解液二次電池の性能、特に、負荷特性及びその安定性の向上に有用である。

Claims (7)

  1. 熱可塑性樹脂中に、数基準粒径分布より導かれる歪度が0.5以上である充填剤を含有する多孔質膜よりなる非水系電解液二次電池用セパレータであって、前記充填剤が無機充填剤であり、ASTM F316−86より定められる平均孔径dave(μm)と最大孔径dmax(μm)との比dave/dmaxが、0.6以上であり、ガーレー透気度が20〜500秒/100ccであることを特徴とする非水系電解液二次電池用セパレータ。
  2. 請求項1に記載の非水系電解液二次電池用セパレータにおいて、平均孔径daveが0.03〜5μmであることを特徴とする非水系電解液二次電池用セパレータ。
  3. 請求項1又は2に記載の非水系電解液二次電池用セパレータにおいて、空孔率が30〜70%であることを特徴とする非水系電解液二次電池用セパレータ。
  4. 請求項1ないし3のいずれかに記載の非水系電解液二次電池用セパレータにおいて、充填剤の数基準平均粒径が0.01〜2μmであることを特徴とする非水系電解液二次電池用セパレータ。
  5. 請求項1ないし4のいずれかに記載の非水系電解液二次電池用セパレータにおいて、充填剤が、硫酸バリウム及びアルミナからなる群から選ばれるものであることを特徴とする非水系電解液二次電池用セパレータ。
  6. リチウムイオンを吸蔵・放出可能な正極、リチウムイオンを吸蔵・放出可能な負極、電解質を非水溶媒中に含有する電解液、及びセパレータを有する非水系電解液二次電池において、セパレータとして、請求項1ないし5のいずれかに記載のセパレータを用いたことを特徴とする非水系電解液二次電池。
  7. 請求項6に記載の非水系電解液二次電池において、放電速度C/3における放電容量に対して、放電速度6Cにおける放電容量が、60%以上であることを特徴とする非水系電解液二次電池。
JP2004033622A 2003-08-06 2004-02-10 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池 Expired - Lifetime JP4984372B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033622A JP4984372B2 (ja) 2003-08-06 2004-02-10 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003287903 2003-08-06
JP2003287903 2003-08-06
JP2004033622A JP4984372B2 (ja) 2003-08-06 2004-02-10 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2005071978A JP2005071978A (ja) 2005-03-17
JP4984372B2 true JP4984372B2 (ja) 2012-07-25

Family

ID=34425216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033622A Expired - Lifetime JP4984372B2 (ja) 2003-08-06 2004-02-10 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池

Country Status (1)

Country Link
JP (1) JP4984372B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193904B2 (en) 2011-08-31 2015-11-24 Hayashi Pure Chemical Ind., Ltd. Etchant composition and etching method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563008B2 (ja) * 2002-08-14 2010-10-13 三菱化学株式会社 リチウム二次電池用セパレータ及びこれを用いたリチウム二次電池
US8309256B2 (en) 2008-03-31 2012-11-13 Asahi Kasei E-Materials Corporation Microporous film and method for producing the same
KR101075319B1 (ko) 2008-05-21 2011-10-19 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
EP2408043B2 (en) 2009-03-09 2018-02-28 Asahi Kasei Kabushiki Kaisha Laminated separator, polyolefin microporous membrane, and separator for electricity storage device
WO2012005139A1 (ja) * 2010-07-05 2012-01-12 株式会社村田製作所 セラミックセパレータ及び蓄電デバイス
CN103201878B (zh) * 2010-08-19 2015-06-24 丰田自动车株式会社 非水电解液二次电池
CN103299452B (zh) 2011-01-13 2015-10-14 株式会社村田制作所 蓄电设备用分隔物及蓄电设备
DE102012000910A1 (de) * 2012-01-19 2013-07-25 Sihl Gmbh Separator umfassend eine poröse Schicht und Verfahren zu seiner Herstellung
JP6250495B2 (ja) * 2014-07-29 2017-12-20 ヒラノ技研工業株式会社 ポリプロピレン微多孔性膜及びその製造方法
JP5908551B2 (ja) * 2014-09-16 2016-04-26 株式会社東芝 非水電解質電池用セパレータ
WO2019093498A1 (ja) * 2017-11-10 2019-05-16 旭化成株式会社 蓄電デバイス用セパレータ、及び蓄電デバイス
JP7413180B2 (ja) * 2020-07-28 2024-01-15 帝人株式会社 非水系二次電池
JP7341957B2 (ja) * 2020-07-28 2023-09-11 帝人株式会社 非水系二次電池
JP7402766B2 (ja) * 2020-07-28 2023-12-21 帝人株式会社 非水系二次電池
KR20230028435A (ko) * 2020-07-28 2023-02-28 데이진 가부시키가이샤 비수계 이차전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676502B2 (ja) * 1988-09-26 1994-09-28 宇部興産株式会社 微多孔性平膜及びその製造方法
JPH07272762A (ja) * 1994-03-31 1995-10-20 Sony Corp 非水電解液二次電池
JPH08255615A (ja) * 1995-03-20 1996-10-01 Nippondenso Co Ltd 非水電解質電池
JPH11185723A (ja) * 1997-12-18 1999-07-09 Mitsubishi Chemical Corp 電池用セパレーター及びそれを用いた二次電池
US6080507A (en) * 1998-04-13 2000-06-27 Celgard Inc. Trilayer battery separator
JP4573284B2 (ja) * 2000-09-18 2010-11-04 旭化成イーマテリアルズ株式会社 ポリエチレン微多孔膜
JP4800527B2 (ja) * 2001-09-27 2011-10-26 日本バイリーン株式会社 不織布、この不織布を用いた電池、及びこの不織布を用いたキャパシタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193904B2 (en) 2011-08-31 2015-11-24 Hayashi Pure Chemical Ind., Ltd. Etchant composition and etching method

Also Published As

Publication number Publication date
JP2005071978A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
US8597836B2 (en) Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
KR101094115B1 (ko) 비수계 전해질 이차 전지
KR101202863B1 (ko) 배터리용 음극 및 이를 사용한 리튬 이온 배터리
JP4984372B2 (ja) 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池
CN100511817C (zh) 有机电解液和使用该电解液的锂电池
WO2009035222A1 (en) Non-aqueous electrolyte lithium secondary battery
JP5017764B2 (ja) 非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池
JP4929593B2 (ja) 非水系電解液二次電池
JP2010146960A (ja) 非水系電解液二次電池並びに非水系電解液二次電池用正極及び負極
JP5206659B2 (ja) 非水系電解液二次電池
JP4586374B2 (ja) 非水系電解液二次電池
JP2010146962A (ja) 非水系電解液二次電池並びに非水系電解液二次電池用正極及び負極
JP4586359B2 (ja) 非水系電解液二次電池
JP2010146961A (ja) 非水系電解液二次電池及び非水系電解液二次電池用セパレータ
JP4474931B2 (ja) 非水系電解液二次電池
JP4931331B2 (ja) 非水系電解液二次電池
JP4586375B2 (ja) 非水系電解液二次電池
JP4635432B2 (ja) 非水系電解液二次電池
CN117477039B (zh) 二次电池和包括该二次电池的电子设备
JP2023147041A (ja) 非水系二次電池
CN117477039A (zh) 二次电池和包括该二次电池的电子设备
CN117747831A (zh) 用于制备活性材料层的组合物、电极极片及其制备方法、二次电池和电子设备
TW202329506A (zh) 二次電池電極用合劑組成物、電極合劑片之製造方法、電極合劑片、電極及二次電池
JP2009211943A (ja) 電池セパレータ用多孔質フィルム及び該フィルムを備える電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term