WO2012020733A1 - 非接地電源の絶縁状態検出方法及びその装置 - Google Patents

非接地電源の絶縁状態検出方法及びその装置 Download PDF

Info

Publication number
WO2012020733A1
WO2012020733A1 PCT/JP2011/068076 JP2011068076W WO2012020733A1 WO 2012020733 A1 WO2012020733 A1 WO 2012020733A1 JP 2011068076 W JP2011068076 W JP 2011068076W WO 2012020733 A1 WO2012020733 A1 WO 2012020733A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
capacitor
fault resistance
insulation state
power source
Prior art date
Application number
PCT/JP2011/068076
Other languages
English (en)
French (fr)
Inventor
佳浩 河村
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to CN201180039190.2A priority Critical patent/CN103069286B/zh
Priority to EP11816397.1A priority patent/EP2605026A4/en
Publication of WO2012020733A1 publication Critical patent/WO2012020733A1/ja
Priority to US13/761,756 priority patent/US8674704B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method and an apparatus for detecting a ground fault and an insulation state with respect to a ground potential portion of a non-ground power source, and in particular, a ground fault with respect to a ground potential portion of a non-ground power source used as an AC motor power source and its wiring
  • the present invention relates to an insulation state detection method and apparatus for an ungrounded power supply that detects an insulation state.
  • a high-voltage (eg, 200 V) DC power source from the vehicle body to provide an ungrounded power source.
  • a ground fault with respect to the ground potential portion of the ungrounded power source includes a DC ground fault occurring in the DC circuit portion including the DC power source and an AC ground fault occurring in the AC circuit portion including the AC motor.
  • the value of the ground fault resistance obtained from the charging voltage of the flying capacitor charged by the charging circuit including the DC power source and the ground fault resistance is used as a criterion for judging the quality of the state. It is done.
  • the flying capacitor is charged only during the ON duty period of the inverter circuit, so even if the time for connecting the flying capacitor to the charging circuit is the same, the charging voltage of the flying capacitor is This is different from the case of a DC ground fault in which the capacitor is continuously charged.
  • proposals have already been made to obtain ground fault resistance in consideration of the ON duty period (for example, Patent Document 1).
  • the ON duty period of the inverter circuit may change due to circumstances such as changes in the output of the AC motor controlled by the controller.
  • the ON duty period changes, even if there is no change in the insulation state, the charging voltage of the flying capacitor charged by the charging circuit during a certain time changes. For this reason, when the value of the ground fault resistance is obtained from the charging voltage in the same manner as before the ON duty period is changed, the value of the ground fault resistance is changed even if the insulation state is not changed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to accurately detect the insulation state of an AC circuit portion based on the value of a ground fault resistance even if the ON duty period of the inverter circuit may change. It is an object of the present invention to provide an insulation state detection method for a non-grounded power supply that can be used, and an insulation state detection device for a non-grounded power supply suitable for use in carrying out this method.
  • an insulation state detection method for a non-grounded power supply provides the power of a DC power supply insulated from a ground potential portion on the positive terminal side and the negative terminal side of the DC power supply.
  • a capacitor in which the insulation state of a non-grounded power source supplied to a three-phase AC motor by DC-AC conversion by a three-phase inverter circuit provided on the main circuit wiring is connected between the main circuit wiring and the ground potential portion for a predetermined time.
  • a method of detecting using a value of a ground fault resistance of the main circuit wiring obtained based on a charging voltage of the main circuit wiring, and connecting the scheduled time between one of the main circuit wiring and a ground potential portion in a discharged state The primary side of the three-phase inverter circuit based on the charged voltage of the capacitor and the charged voltage of the capacitor connected for the predetermined time between the other of the main circuit wiring and the ground potential portion in a discharged state.
  • the insulation state detection device is arranged such that the power of the DC power source insulated from the ground potential portion is supplied to the main circuit on the positive terminal side and the negative terminal side of the DC power source.
  • Measuring means for measuring, third switching means for connecting the capacitor charged by the first switching means to the measuring means and measuring a charging voltage of the capacitor, and the capacitor charged by the second switching means Is connected to the measuring means to measure the charging voltage of the capacitor, the charging voltage of the capacitor measured by the measuring means by the third switching means, and the measurement by the fourth switching means.
  • the insulation state in the DC circuit portion of the non-grounded power source including the primary side of the three-phase inverter circuit is detected, or the secondary of the three-phase inverter circuit Whether to detect the insulation state in the AC circuit portion of the non-grounded power source including the side 1 determination means, and second determination means for determining whether or not the capacitor is continuously charged during the scheduled time when the first determination means determines that an insulation state is detected in the AC circuit portion.
  • the second determination means determines that the capacitor is continuously charged during the scheduled time
  • ground fault resistance value calculating means for determining the value of the ground fault resistance.
  • one of the main circuit wiring and the ground potential portion The secondary side of the three-phase inverter circuit based on the charging voltage of the capacitor connected for a predetermined time between and the charging voltage of the capacitor connected for the predetermined time between the other main circuit wiring and the ground potential portion.
  • the DC circuit part of the non-grounded power supply including the primary side of the three-phase inverter circuit The value of the ground fault resistance is obtained in the same manner as when it is determined to detect the state of charge.
  • the ON duty period of the three-phase inverter circuit is not recognized, or The value of the ground fault resistance due to the AC ground fault can be accurately obtained without performing the process of following the recognized change in the ON duty period. Therefore, it is possible to detect the insulation state of the AC circuit portion of the non-grounded power source based on the value of the ground fault resistance due to the AC ground fault with high accuracy.
  • the non-grounded power source insulation state detection method according to the present invention described in claim 2 is the non-grounded power source insulation state detection method according to claim 1, wherein the capacitor is continuously charged during the predetermined time.
  • the value of the ground fault resistance is obtained by a method of obtaining a correction according to a switching duty ratio at the time of DC-AC conversion of the three-phase inverter circuit.
  • the non-grounded power source insulation state detecting device is the non-grounded power source insulating state detecting device according to claim 5, wherein the capacitor is continuously charged during the scheduled time. If the second determining means determines that the three-phase inverter circuit has not been corrected, the corrected ground fault resistance is used to determine the value of the ground fault resistance by a method of correcting the three-phase inverter circuit according to the switching duty ratio during DC-AC conversion. An indexing means is further provided.
  • the non-grounded power supply insulation state detection method of the present invention described in claim 2 the non-grounded power supply insulation state detection method of the present invention described in claim 1 and the present invention described in claim 6 also.
  • the switching duty ratio at the time of DC-AC conversion of the three-phase inverter circuit is set. The processing load can be reduced by eliminating the need to perform the process of following the change in the ON duty period until the stage before performing the corresponding correction.
  • the non-grounded power source insulation state detection method of the present invention described in claim 3 is the non-grounded power source insulation state detection method of the present invention described in claim 1 or 2, wherein the capacitor is connected during the scheduled time.
  • the value of the ground fault resistance is obtained by a method of obtaining a correction according to the switching frequency at the time of DC-AC conversion of the three-phase inverter circuit.
  • the non-grounded power source insulation state detection device of the present invention described in claim 7 is the non-grounded power source insulation state detection device of the present invention described in claim 5 or 6, wherein the capacitor is connected during the scheduled time.
  • a correction ground fault for determining the value of the ground fault resistance is obtained by a correction method that is corrected according to the switching frequency at the time of DC-AC conversion of the three-phase inverter circuit. It further comprises resistance indexing means.
  • the non-grounded power supply insulation state detecting device is any of the three-phase inverter circuit during DC-AC conversion.
  • the processing load can be reduced by eliminating the need to perform the process of following the change in the ON duty period until the stage before the correction according to the switching frequency is performed.
  • An insulation state detection method for a non-grounded power source is the method for detecting an insulation state of a non-grounded power source according to the first, second, or third aspect, wherein the non-grounded power source is detected during the scheduled time.
  • the ground potential is corrected according to the capacitances of the positive and negative Y capacitors respectively connected between the ground potential portion and the positive terminal and the negative terminal of the DC power supply. It is characterized in that the value of the line resistance is obtained.
  • an insulation state detection device for a non-grounded power supply according to the present invention described in claim 8 is the insulation state detection device for a non-grounded power supply according to claim 5, 6 or 7, wherein When the second determination means determines that the capacitor is not continuously charged, correction is made according to the capacitance of the positive and negative Y capacitors connected between the ground potential portion and the positive terminal and negative terminal of the DC power supply, respectively.
  • the method further comprises a correction ground fault resistance calculating means for determining the value of the ground fault resistance.
  • the non-grounded power source insulating state detecting device includes any of the ground potential portion and the DC power source. Reduces the processing burden by eliminating the need to follow the changes in the ON duty period until the stage before correction according to the capacity of the positive and negative Y capacitors connected between the positive and negative terminals. can do.
  • the non-grounded power source insulation state detection method and non-grounded power source insulation state detection device of the present invention even if the ON duty period of the inverter circuit may change, the AC based on the value of the ground fault resistance with high accuracy. It is possible to detect the insulation state of the circuit portion.
  • FIG. 1 is a circuit diagram of a boost power supply circuit that performs ground fault detection in a ground fault detection unit according to an embodiment of the present invention to which an insulation state detection method for an ungrounded power source according to the present invention is applied.
  • FIG. It is a circuit diagram which shows the ground fault detection unit which showed a part of structure in FIG. The case where the flying capacitor of FIG.1 and FIG.2 is charged with the charging voltage according to the primary side negative side ground fault resistance and the case where it is charged with the charging voltage according to the secondary side ground fault resistance It is a graph which compares and shows the increase image of the charge charge. It is a wave form diagram which shows the alternating current supplied from a three-phase inverter circuit to each phase in the case of driving the three-phase alternating current motor of FIG.
  • FIG. 1 is a circuit diagram which shows the change of the switching state of the three-phase inverter circuit of FIG. 6 is a chart showing an on / off state of each semiconductor switch of the lower arm of the three-phase inverter circuit at each time point in FIGS. 5 (a) to (f). It is a circuit diagram which shows the detour path
  • FIG. 2 is a circuit diagram showing a case where a Y capacitor is added to the boost power supply circuit of FIG. 1.
  • FIG. 1 is a circuit diagram of a step-up power supply circuit that performs ground fault detection in a ground fault detection unit according to an embodiment of the present invention to which an insulation state detection method for an ungrounded power source according to the present invention is applied.
  • 1 includes a DC power source B insulated from a ground potential portion of a vehicle body (not shown), a main circuit wiring 1p on the positive terminal side of the DC power source B, and a negative terminal.
  • the main circuit wiring 1n on the side has a three-phase inverter circuit 3 connected to the primary side, and a three-phase AC motor 5 for vehicle propulsion connected to the secondary side of the three-phase inverter circuit 3.
  • step-up power supply circuit 1 semiconductor switches (for example, IGBT and power MOSFET) corresponding to the respective phases of the upper arm Q 1 and the lower arm Q 2 of the three-phase inverter circuit 3 are designated by control of a vehicle propulsion system controller (not shown).
  • a vehicle propulsion system controller not shown.
  • the DC power of the DC power source B is boosted by DC-AC conversion to become AC power.
  • This AC power is supplied to the U, V, and W phases of the three-phase AC motor 5.
  • reference sign RLp is a primary side ground fault resistance on the primary side
  • RLn is a primary side ground fault resistance on the primary side
  • the main circuit wiring 1p on the positive terminal side and the main circuit on the negative terminal side, respectively.
  • This is a virtual resistance when a ground fault (series ground fault) occurs in the primary circuit wiring portion of the wiring 1n (corresponding to the DC circuit portion of the non-grounded power supply in the claims).
  • FIG. 1 shows a part of a ground fault detection unit 11 (corresponding to an insulation state detection device for a non-grounded power source in the claims) that detects a ground fault and an insulation state of the boost power supply circuit 1.
  • the ground fault detection unit 11 selectively connects the flying capacitor C1 (corresponding to the capacitor in the claims) and the flying capacitor C1 to the positive electrode and the negative electrode of the DC power supply B, respectively.
  • Switches S1 and S2 and switches S3 and S4 that selectively connect the flying capacitor C1 to a microcomputer (hereinafter abbreviated as “microcomputer”) 15 and a ground potential portion.
  • microcomputer hereinafter abbreviated as “microcomputer”
  • the ground fault detection unit 11 has a switch S5 that selectively connects (selectively grounds) one end (the upper pole in FIGS. 1 and 2) of the flying capacitor C1 to the ground potential portion for discharging. is doing.
  • the microcomputer 15 is operated by a low-voltage power supply (not shown) lower than the DC power supply B, and the DC power supply B is insulated from the ground potential of the microcomputer 15.
  • Each of the switches S1 to S5 is composed of, for example, an optical MOSFET, and is insulated from the DC power supply B and can be controlled on and off by the microcomputer 15.
  • connection point between the microcomputer 15 and the switch S3 is grounded via a resistor R3, and resistors R4 and R5 are connected between the switches S4 and S5 and the ground potential portion, respectively.
  • Switches S1 and S3 on one end (upper poles in FIGS. 1 and 2) of the flying capacitor C1 are connected in series, and a current direction switching circuit is connected between the connection point between them and one end of the flying capacitor C1. It is connected.
  • the current direction switching circuit is a parallel circuit, one of which is composed of a series circuit of a diode D0 and a resistor R1 that are forward from the switches S1 and S3 toward one end of the flying capacitor C1, and the other is a circuit of the flying capacitor C1. It consists of a series circuit of a diode D1 and a resistor R6 that are forward from one end toward the switches S1 and S3.
  • the above-described switch S5 is not directly connected to one end of the flying capacitor C1 (the upper pole in FIGS. 1 and 2), but is connected via the diode D1 (connected to the cathode of the diode D1). )
  • the switches S1 and S2 are connected to both ends of some resistors in the series resistor string connected in parallel between the positive and negative electrodes of the DC power supply B, and the voltage of the DC power supply B is divided. The voltage thus obtained may be charged in the flying capacitor C1.
  • microcomputer 15 and the switches S1 to S5 constitute first to fourth switching means in the claims.
  • the switches S1 and S2 are turned on and the switch S3 is controlled over a predetermined time determined by the control of the microcomputer 15. -S5 is turned off.
  • the scheduled time is a time shorter than the time required for the flying capacitor C1 to be fully charged.
  • the switches S1, S2, and S5 are turned off and the switches S3 and S4 are turned on.
  • the flying capacitor C1 is connected in parallel with the series circuit of the resistor R6, the resistor R3, and the resistor R4.
  • a potential corresponding to the difference between both ends of the resistor R3 among the charging voltage of the flying capacitor C1 divided by the resistors R6, R3, and R4 is input to the first A / D conversion port A / D1 of the microcomputer 15. It is measured.
  • the microcomputer 15 measures the charging voltage of the flying capacitor C1 from this measured value and the voltage dividing ratio of the resistors R6, R3, and R4.
  • the switch S5 Under the control of the microcomputer 15, the switch S5 is turned on and the other switches S1 to S4 are turned off for a time sufficient to completely discharge the flying capacitor C1, and one end (positive electrode) of the flying capacitor C1 is turned on. Is grounded through the diode D1, the switch S5, and the resistor R5 to form a discharge circuit. And this flying circuit discharges the flying capacitor C1.
  • the switches S1, S4 are turned on and the switches S2, S3, S5 are turned off over the scheduled time described above.
  • the switches S1, S4 are turned on and the switches S2, S3, S5 are turned off over the scheduled time described above.
  • a charging circuit is formed which reaches the negative electrode of the DC power source B through the negative potential grounding resistor RLn on the primary side and the main circuit wiring 1n on the negative terminal side.
  • the AC ground fault As shown in FIG. 1, from the positive electrode of the DC power supply B, the main circuit wiring 1p on the positive terminal side, the switch S1, the diode R0 (not shown in FIG. 1), the resistor R1, the flying capacitor C1 One end, the other end, switch S4 (resistor R4 not shown in FIG. 1, ground potential portion), secondary side ground fault resistance RL (FIG. 1 illustrates the case where a ground fault occurs in the U phase. ), A charging circuit that reaches the negative electrode of the DC power supply B through the semiconductor switch in the ON state of the lower arm Q2 of the three-phase inverter circuit 3 and the main circuit wiring 1n on the negative terminal side is formed.
  • the flying capacitor C1 is charged with a charge amount corresponding to the primary-side negative ground fault resistance RLn or the secondary-side ground fault resistance RL. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.
  • the capacitor in the claim is charged over the scheduled time by the first switching means in the claim. Corresponds to the state.
  • the control of the microcomputer 15 shown in FIG. 1 turns off the switches S1, S2 and S5 and turns on the switches S3 and S4, and measures the charging voltage of the flying capacitor C1 according to the voltage of the DC power supply B.
  • the same measurement circuit is formed.
  • the charging voltage of the flying capacitor C1 is measured by the microcomputer 15 using this measuring circuit.
  • the microcomputer 15 corresponds to the measuring means in the claims.
  • the state in which the microcomputer 15 turns off the switches S1, S2 and S5 and turns on the switches S3 and S4 and measures the charging voltage of the flying capacitor C1 is determined by the third switching means in the claims. This corresponds to a state in which the charging means measures the charging voltage.
  • the switch S5 Under the control of the microcomputer 15, the switch S5 is turned on and the other switches S1 to S4 are turned off for a time sufficient to completely discharge the flying capacitor C1, and one end (positive electrode) of the flying capacitor C1 is turned on. Is grounded through the diode D1, the switch S5, and the resistor R5 to form a discharge circuit. And this flying circuit discharges the flying capacitor C1.
  • the switches S2 and S3 are turned on and the switches S1, S4 and S5 are turned off over the scheduled time described above.
  • the main circuit wiring 1p on the positive terminal side the ground fault resistance RLp on the positive side, the (ground potential part) resistor R3, the switch S3, the diode D0, the resistor R1,
  • a charging circuit reaching the negative electrode of the DC power supply B is formed through one end and the other end of the flying capacitor C1, the switch S2, and the main circuit wiring 1n on the negative terminal side.
  • FIG. 1 illustrates a case where a ground fault occurs in the U phase
  • switch S3 (diode D0 not shown in FIG. 1)
  • a charging circuit that reaches the negative electrode of the DC power supply B through the resistor R1, one end and the other end of the flying capacitor C1, the switch S2, and the main circuit wiring 1n on the negative terminal side is formed.
  • the flying capacitor C1 is charged with a charge amount corresponding to the primary side ground fault resistance RLp or the secondary side ground fault resistance RL. By this charging, one end of the flying capacitor C1 becomes a positive electrode and the other end becomes a negative electrode.
  • the switches S 1, S 2, S 5 are turned off and the switches S 3, S 4 are turned on to measure the charging voltage of the flying capacitor C 1 according to the voltage of the DC power supply B, or on the primary side
  • the same measurement circuit as that in the measurement of the charging voltage of the flying capacitor C1 corresponding to the negative side ground fault resistance RLn or the secondary side ground fault resistance RL is formed.
  • the charging voltage of the flying capacitor C1 is measured by the microcomputer 15 using this measuring circuit.
  • the state in which the microcomputer 15 turns off the switches S1, S2 and S5 and turns on the switches S3 and S4 and measures the charging voltage of the flying capacitor C1 is claimed by the fourth switching means in the claims. This corresponds to a state in which the charging voltage of the capacitor is measured by the measuring means.
  • the switch S5 is turned on and the other switches S1 to S4 are turned off for a time sufficient to completely discharge the flying capacitor C1.
  • One end (positive electrode) is grounded via the diode D1, the switch S5, and the resistor R5 to form a discharge circuit. And this flying circuit discharges the flying capacitor C1.
  • the charging voltage of the flying capacitor C1 according to the voltage of the DC power source B measured as described above, the charging of the flying capacitor C1 according to the primary-side negative grounding resistance RLn or the secondary-side grounding resistance RL.
  • the microcomputer 15 calculates a predetermined measurement theoretical formula using the voltage and the charging voltage of the flying capacitor C1 according to the primary side ground fault resistance RLp or the secondary side ground fault resistance RL. Is the value of the primary side ground fault resistance RLp, the primary side negative ground fault resistance RLn, or the secondary side ground fault resistance RL, and the ground fault of the DC power source B based on this is obtained.
  • the insulation state can be detected. How to determine the local fault resistances RLp, RLn, and RL by the microcomputer 15 will be described later.
  • the microcomputer 15 of the present embodiment receives data indicating the switching duty ratio of each semiconductor switch of the three-phase inverter circuit 3 of the step-up power supply circuit 1 from the above-described vehicle propulsion system controller (not shown) from the ground fault caused by the AC ground fault. It is periodically received as information used to determine the resistance RL.
  • the flying capacitor C1 when the flying capacitor C1 is charged with a charging voltage corresponding to the primary side ground fault resistance RLp on the primary side and the ground side resistance RLn on the primary side, the flying capacitor C1 has a predetermined time. The battery is continuously charged over the entire length. Therefore, the charge charge increase image of the flying capacitor C1 is an image that continuously increases as in the uppermost stage of FIG.
  • the flying capacitor C1 when the flying capacitor C1 is charged with a charging voltage corresponding to the ground fault resistance RL on the secondary side, the flying capacitor C1 is intermittently charged during the ON duty period of the upper arm Q1 or the lower arm Q2 of the three-phase inverter circuit.
  • the increase image of the charging charge of the flying capacitor C1 is as shown in the second stage synchronized with the ON duty period of the lower arm Q2 and the upper arm Q1 of the three-phase inverter circuit shown in the third stage and the lowermost stage of FIG. The image will increase gradually.
  • the amount of charge charged in the flying capacitor C1 is the charge voltage according to the secondary side ground fault resistance RL. Less when charged.
  • the microcomputer 15 does not calculate the value of the ground fault resistance by a predetermined measurement theoretical formula used in the case of the DC ground fault. Absent.
  • FIG. 6 shows the change in the on / off state of the switch in the form of a chart for each of the switches 4 to 6 of the lower arm Q2.
  • the charging circuit of the flying capacitor C1 including the ground fault resistance RL corresponding to the AC ground fault is originally the U phase. It should be formed only during the period when the 4th switch corresponding to is ON. However, when the switching duty ratio of the upper arm Q1 and the lower arm Q2 of the three-phase inverter circuit 3 exceeds 100/3 (%), for example, another switch in the ON state (see FIG. 7). In the case of 7, the charging circuit for the flying capacitor C1 is formed by bypassing the fifth switch corresponding to the V phase.
  • the flying capacitor C1 is the intermittent charge as described above. Don't be. Then, by the on / off control of the switches S1 to S5 by the microcomputer 15 in FIG. 1, the flying capacitor C1 is continuously charged over the entire length of the scheduled time during which the charging circuit for the flying capacitor C1 including the ground fault resistance RL is formed.
  • the flying capacitor C1 is continuously charged over the entire length of the scheduled time for which the charging circuit of the flying capacitor C1 including the ground fault resistance RL is formed.
  • the Y capacitors Y + and Y ⁇ described above discharge the charged charges when the flying capacitor C1 is charged. For this reason, when the charging circuit of the flying capacitor C1 including the ground fault resistance RL is intermittently formed at the time of occurrence of the AC ground fault, the primary side of the three-phase inverter circuit 3 is also in the period when the charging circuit is not formed. A charging circuit is formed that charges the flying capacitor C1 with the discharge charges of the Y capacitors Y + and Y ⁇ . Therefore, the flying capacitor C1 may eventually be in a continuously charged state during the scheduled time.
  • the ground fault detection unit 11 of the present embodiment when an AC ground fault occurs, a charging circuit that charges the flying capacitor C1 with a charging voltage corresponding to the secondary side ground fault resistance RL is formed for a scheduled time. Depending on whether or not the flying capacitor C1 is in a continuously charged state, the microcomputer 15 selects a method for determining the secondary side ground fault resistance RL.
  • FIG. 9 shows a process for obtaining ground fault resistances RLp, RLn, and RL caused by a DC ground fault or an AC ground fault, which is performed by the microcomputer 15 of the ground fault detection unit 11 according to a program stored in the built-in ROM. Will be described with reference to FIG.
  • the microcomputer 15 measures the charging voltage of the flying capacitor C1 (step S1).
  • the microcomputer 15 measures three types of charging voltages of the flying capacitor C1.
  • the first type of charging voltage is a charging voltage when charging the flying capacitor C1 with a charge amount corresponding to the voltage of the DC power supply B.
  • the second type of charging voltage is a charging voltage when charging is performed with an amount of charge corresponding to the negative ground fault resistance RLn on the primary side or the ground fault resistance RL on the secondary side.
  • the third type is a charging voltage when charging is performed with an amount of charge corresponding to the primary side ground fault resistance RLp or the secondary side ground fault resistance RL. Any of the charging voltages is a charging voltage when the flying capacitor C1 is sufficiently discharged and charged for a predetermined time.
  • step S3 the microcomputer 15 determines whether to detect the occurrence of a DC ground fault or an AC ground fault (step S3).
  • the microcomputer 15 measures the charging voltage corresponding to the primary-side negative ground fault resistance RLn or the secondary-side ground fault resistance RL and the primary-side positive ground fault.
  • the charging voltage corresponding to the resistance RLp or the ground fault resistance RL on the secondary side is matched (including a case where they differ within a predetermined error range) or not.
  • the microcomputer 15 determines that the occurrence of a DC ground fault is detected when both do not match, and determines that the occurrence of an AC ground fault is detected when both match.
  • step S3 If it is determined in step S3 that the occurrence of a DC ground fault is detected, the microcomputer 15 proceeds to step S9 described later. On the other hand, if it is determined in step S3 that the occurrence of an AC ground fault is detected, the microcomputer 15 checks whether the switching duty ratio of each semiconductor switch of the three-phase inverter circuit 3 is equal to or greater than a predetermined threshold value. (Step S5).
  • the predetermined threshold value can be set to 100/3 (%) in which one of the three semiconductor switches of the upper arm Q1 and the lower arm Q2 of the three-phase inverter circuit 3 is always ON.
  • setting the predetermined threshold value to 100/3 (%) means that the amount of charge according to the primary side ground fault resistance RLn or the secondary side ground fault resistance RL, Whether or not the flying capacitor C1 is in a continuously charged state during the scheduled time for charging the flying capacitor C1 with a charge amount corresponding to the positive side ground fault resistance RLp or the secondary side ground fault resistance RL. This means that the determination is made using a predetermined threshold value.
  • the flying capacitor C1 may be substantially continuously charged during the scheduled time. This is the case, for example, when the Y capacitor Y +, Y ⁇ (see FIG. 8) discharges the charge during the scheduled time, and the flying capacitor C1 is continuously charged. Therefore, the value of the lowest switching duty ratio that ensures the continuous charge state in this way may be set as the predetermined threshold value.
  • This predetermined threshold value can be stored in a nonvolatile RAM built in the microcomputer 15.
  • step S5 If the switching duty ratio of each semiconductor switch of the three-phase inverter circuit 3 is equal to or greater than the predetermined threshold value (YES in step S5), the microcomputer 15 proceeds to step S9. On the other hand, if it is not equal to or greater than the predetermined threshold (NO in step S5), the microcomputer 15 executes an AC ground fault intermittent charge process (step S7).
  • the microcomputer 15 performs one of the following three processes.
  • the first process is to use the switching duty ratio of each semiconductor switch of the three-phase inverter circuit 3 and the three charging voltages of the flying capacitor C1 measured in step S1 to reduce the ground fault resistance RL due to the AC ground fault. This is the processing to be sought.
  • Calculate using the conversion formula for example, the formula described in Japanese Patent No. 396990 can be used.
  • T is a scheduled time
  • C is a capacitance of the flying capacitor C1
  • R1 is a resistance value of the resistor R1 of the ground fault detection unit 11.
  • RL is calculated using a conversion formula.
  • the process at the time of alternating current ground fault intermittent charge of step S7 is a process performed when it determines with detecting generation
  • the charging voltage according to RLn or secondary side ground fault resistance RL and the charging voltage according to primary side ground fault resistance RLp or secondary side ground fault resistance RL are both secondary side.
  • the charging voltage corresponds to the ground fault resistance RL.
  • the equation described in Japanese Patent No. 3249977 can be used as the above-described conversion equation for obtaining the ground fault resistance RL due to the AC ground fault.
  • A is a switching duty ratio of each semiconductor switch of the three-phase inverter circuit 3.
  • the charging voltage measured as the charging voltage according to the primary-side ground fault resistance RLp or the charging voltage according to the secondary-side ground fault resistance RL in step S1 is calculated as described above. Substituting as VCp in Equation 2, and the charging voltage measured in step S1 as the charging voltage according to the primary-side negative ground fault resistance RLn or the charging voltage according to the secondary-side ground fault resistance RL, By substituting as VCn in Equation (3), a ground fault resistance RL due to an AC ground fault can be obtained.
  • step S7 The above is the first process that the microcomputer 15 can perform in the AC ground fault intermittent charge process of step S7.
  • the second process is a process for obtaining the ground fault resistance RL due to the AC ground fault using the three kinds of charging voltages of the flying capacitor C1 measured in step S1.
  • the ground fault resistance RL due to the AC ground fault is directly obtained by the equations 2 and 3 considering the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3.
  • the ground fault resistance is once obtained by an equation that does not consider the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3, and the obtained ground fault resistance is obtained by the three-phase inverter circuit 3.
  • the ground fault resistance RL due to the AC ground fault is indirectly obtained.
  • the temporary grounding resistance RL ′ assumes that the flying capacitor C1 is in a continuously charged state during the scheduled time
  • the positive side grounding resistance RLp due to the DC ground fault or the negative side grounding resistance RLp is assumed. It can be obtained by the same conversion formula as the resistance RLn.
  • the formula described in Japanese Patent No. 396990 can be used.
  • RLn -R1- ⁇ T / C * ln [1- (VCn / VB)] ⁇ (Formula 5) It becomes.
  • the voltage VB of the DC power source B can be obtained by the above-described equation 1. Therefore, in the case of the present embodiment, the charging voltage measured as the charging voltage according to the primary-side ground fault resistance RLp or the charging voltage according to the secondary-side ground fault resistance RL in step S1 is calculated as described above. Substituting as VCp in Equation 4, and the charging voltage measured in step S1 as the charging voltage according to the primary-side negative ground fault resistance RLn or the charging voltage according to the secondary-side ground fault resistance RL, By substituting as VCn in equation (5), a positive side ground fault resistance RLp and a negative side ground fault resistance RLn due to a DC ground fault equal to the temporary ground fault resistance RL ′ are obtained.
  • the obtained ground fault resistance RL ′ is corrected by an appropriate correction formula corresponding to the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3, so that the ground fault resistance RL due to a true AC ground fault is obtained. Can be requested.
  • the above is the second process that the microcomputer 15 can perform in the AC ground fault intermittent charge process of step S7.
  • This second process allows the microcomputer 15 to proceed without considering the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3 until the provisional ground fault resistance RL ′ is obtained. Therefore, even if the switching duty ratio A changes, compared to the first process, the scale for performing the process following the change is reduced, and the change in the switching duty ratio A is followed in real time due to the AC ground fault.
  • requires the ground fault resistance RL correctly can be made easy for the microcomputer 15 to implement
  • the third process is a process that does not require the ground fault resistance RL due to the AC ground fault. This process can be employed, for example, when data indicating the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3 cannot be obtained from a vehicle propulsion system controller (not shown).
  • step S7 After executing any of the three processes described above as the AC ground fault intermittent charge process of step S7, the microcomputer 15 proceeds to step S11 described later.
  • step S9 when it is determined in step S3 that the occurrence of a DC ground fault is detected, in step S3, it is determined that the occurrence of an AC ground fault is detected, and in step S5, each of the three-phase inverter circuits 3 is detected. This process is performed when it is determined that the switching duty ratio A of the semiconductor switch is equal to or greater than a predetermined threshold value.
  • step S9 is performed by determining the amount of charge corresponding to the primary side ground fault resistance RLn or the secondary side ground fault resistance RL, the primary side positive ground fault resistance RLp, or the secondary side ground fault resistance RL.
  • a positive ground fault resistance RLp or negative due to a DC ground fault is obtained. This is a process for obtaining the ground fault resistance RLn on the side or the ground fault resistance RL due to the AC ground fault.
  • the positive side ground fault resistance RLp and the negative side ground fault resistance RLn due to the DC ground fault can be obtained using the above-described equations 4 and 5. That is, the charging voltage measured as the charging voltage according to the primary side ground fault resistance RLp or the charging voltage according to the secondary side ground fault resistance RL in step S1 is substituted as VCp in the above equation 4. Further, the charging voltage measured as the charging voltage according to the primary-side negative ground fault resistance RLn or the charging voltage according to the secondary-side ground fault resistance RL in step S1 is substituted as VCn in Equation 5 above. By doing so, the positive side ground fault resistance RLp and the negative side ground fault resistance RLn due to the DC ground fault can be obtained.
  • the flying capacitor C1 is in a continuously charged state during the scheduled time period. Therefore, using the above equations 4 and 5, the ground fault resistance RLp on the positive side and the ground side on the negative side are used.
  • the value obtained as the fault resistance RLn can be set as the value of the ground fault resistance RL due to the AC ground fault.
  • step S9 After executing the process of step S9 described above, the microcomputer 15 proceeds to step S11.
  • step S11 whether or not the boosted power supply circuit 1 is in an insulating state is determined by performing threshold determination from the values of the ground fault resistances RLp, RLn, and RL obtained in step S7 and step S9. After executing the process of step S11, the microcomputer 15 ends the series of processes.
  • step S3 in the flowchart of FIG. 9 is processing corresponding to the first determination means in the claims, and step S5 in FIG. This processing corresponds to the second determination means in the item.
  • the second process among the three processes of step S7 in FIG. 9 is a process corresponding to the corrected ground fault resistance calculating means in the claims, and in FIG. Step S9 is a process corresponding to the ground fault resistance value indexing means in the claims.
  • the ground fault resistance RL due to the AC ground fault is included.
  • the flying capacitor C1 is in a continuously charged state during the formation of the charging circuit, the grounding caused by the AC ground fault is the same as the way of obtaining the positive side ground fault resistance RLp and the negative side ground fault resistance RLn due to the DC ground fault.
  • the resistance RL was obtained.
  • the flying capacitor C1 is continuously charged at least during the formation of the charging circuit including the ground fault resistance RL due to the AC ground fault.
  • the value of the ground fault resistance RL due to the AC ground fault can be obtained accurately without using the data of the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3. Therefore, it is possible to detect the insulation state of the secondary side of the three-phase inverter circuit 3, that is, the AC circuit portion of the boost power supply circuit 1 based on the value of the ground fault resistance RL due to an accurate AC ground fault. .
  • step S5 in the flowchart of FIG. 9 the microcomputer 15 uses the predetermined threshold value regarding the switching duty ratio A of each semiconductor switch of the three-phase inverter circuit 3 to It is determined whether or not the flying capacitor C1 is in a continuously charged state during the formation of the charging circuit including the tangential resistance RL.
  • predetermined threshold values regarding other factors may be used.
  • step S3 when it is determined in step S3 that the occurrence of an AC ground fault is detected, the switching frequency of each semiconductor switch of the three-phase inverter circuit 3 is greater than or equal to a predetermined threshold value related to the switching frequency.
  • the microcomputer 15 may confirm whether or not there is (step S5-1).
  • the switching frequency of each semiconductor switch of the three-phase inverter circuit 3 is high, the interval from the switch-off in the previous cycle to the switch-on in the next cycle is shortened regardless of the switching duty ratio A. . Then, the intermittent charging interval of the flying capacitor C1 during the formation of the charging circuit including the ground fault resistance RL due to the AC ground fault is shortened, and the flying capacitor C1 may be in a state close to continuous charging.
  • step S5-1 if the switching frequency of each semiconductor switch of the three-phase inverter circuit 3 is equal to or higher than a predetermined threshold value related to the switching frequency set to an appropriate value (YES in step S5-1), the microcomputer 15 determines the flying capacitor C1. Assuming that the battery is in the continuous charge state, the process proceeds to step S9. On the contrary, if the switching frequency of each semiconductor switch of the three-phase inverter circuit 3 is less than the predetermined threshold value (NO in step S5-1), the microcomputer 15 assumes that the flying capacitor C1 is in an intermittent charging state. The process proceeds to step S7.
  • the capacities of the positive and negative Y capacitors Y + and Y ⁇ are the predetermined threshold values related to the capacities of the Y capacitors.
  • the microcomputer 15 may confirm whether or not this is the case (step S5-2).
  • the flying capacitor C1 is substantially continuously charged by being charged by the electric charge.
  • step S5-2 if the capacity of the Y capacitors Y + and Y ⁇ is equal to or greater than a predetermined threshold value related to the Y capacitor capacity set to an appropriate value (YES in step S5-2), the microcomputer 15 continues the flying capacitor C1. Assuming that the battery is in the charged state, the process proceeds to step S9. On the other hand, if the capacities of the Y capacitors Y + and Y ⁇ are less than the predetermined threshold value (NO in step S5-2), the microcomputer 15 determines that the flying capacitor C1 is in the intermittent charge state and proceeds to step S7. Will be migrated.
  • step S5 in FIG. 9, step S5-1 in FIG. 10, and step S5-2 in FIG. 11 are all performed, and when the threshold value is exceeded in any step, the flying capacitor C1 is continuously charged. As a state, the processing may be shifted to step S9 in FIG. 9 (or FIG. 11). In that case, if all of step S5 in FIG. 9, step S5-1 in FIG. 10, and step S5-2 in FIG. 11 are less than the corresponding threshold values, it is assumed that the flying capacitor C1 is in an intermittent charge state. Then, the process proceeds to step S7 in FIG. 9 (or FIG. 11).
  • the charging current of the flying capacitor C1 is measured using the current sensor 7, and the charging circuit including the ground fault resistance RL due to the AC ground fault is being formed from the change over time of the measurement result. You may make it determine whether the flying capacitor C1 is a continuous charge state.
  • the microcomputer 15 replaces the process of step S5 in the flowchart of FIG. 9 with the AC ground fault in step S5a from the change over time of the measurement result of the current sensor 7.
  • a process of directly determining whether or not the flying capacitor C1 is in a continuously charged state is performed. If it is in the continuous charge state (YES in step S5a), the microcomputer 15 proceeds to step S9. If it is not in the continuous charge state (NO in step S5a), the microcomputer 15 performs the process in step S7. Will be migrated. Even if comprised in this way, the effect similar to the case of embodiment mentioned above can be acquired.
  • step S3 in the flowcharts of FIGS. 9 to 12 the microcomputer 15 sets the primary-side negative ground fault resistance RLn or the secondary-side ground fault resistance RL measured in step S1. Depending on whether the corresponding charging voltage and the charging voltage corresponding to the primary side ground fault resistance RLp or the secondary side ground fault resistance RL coincide with each other, either a DC ground fault or an AC ground fault is generated. It was determined whether to detect.
  • the charging voltage according to the primary negative ground fault resistance RLn or the secondary ground fault resistance RL measured in step S1 and the primary positive ground fault resistance RLp or the secondary ground fault are measured.
  • the determination may be made by a method other than matching or mismatching of both charging voltages.
  • the present invention converts a DC power source insulated from a ground potential section into a three-phase AC motor by DC-AC conversion by a three-phase inverter circuit provided on the main circuit wiring on the positive terminal side and the negative terminal side of the DC power source. Used to detect the insulation state of the supplied non-grounded power supply using the value of the ground fault resistance of the main circuit wiring obtained based on the charging voltage of the capacitor connected for a predetermined time between the main circuit wiring and the ground potential section It is preferable.
  • Boost power supply circuit (ungrounded power supply) 1n Negative side main circuit wiring 1p Positive side main circuit wiring 3 Three-phase inverter circuit 5 Three-phase AC motor 7 Current sensor 11 Ground fault detection unit (insulation state detection device for ungrounded power supply) 15 microcomputer (first to fourth switching means, measuring means, first determining means, second determining means, corrected ground fault resistance calculating means) A / D1 A / D conversion port B DC power supply C1 Flying capacitor (capacitor) D0 diode D1 diode Q1 upper arm Q2 lower arm R1 resistance R3 resistance R4 resistance R5 resistance R6 resistance R6, R3, R4 resistance RL ground fault resistance RLn ground fault resistance RLp ground fault resistance S1 switch (first to fourth switching means) S2 switch (first to fourth switching means) S3 switch (first to fourth switching means) S4 switch (first to fourth switching means) S5 switch (first to fourth switching means) VB Voltage Y + Positive side Y capacitor Y- Negative side Y capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

昇圧電源回路1の三相インバータ回路3の二次側において交流地絡が発生した場合、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態となる場合は、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnの求め方と同じ求め方で交流地絡による地絡抵抗RLを求める。よって、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態となる場合には、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比が変化する場合であっても、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比のデータを用いずに、交流地絡による地絡抵抗RLの値を精度よく求めることができる。

Description

非接地電源の絶縁状態検出方法及びその装置
 本発明は、非接地電源の接地電位部に対する地絡や絶縁状態を検出する方法及び装置に係り、特に、交流電動機の電源として利用される非接地電源及びその配線の接地電位部に対する地絡や絶縁状態を検出する非接地電源の絶縁状態検出方法及びその装置に関するものである。
 例えば、推進用エネルギーとして電力を利用する車両においては、高圧化(例えば200V)された直流電源を車体から絶縁して非接地電源とするのが通常である。このような非接地電源の接地電位部に対する地絡には、直流電源を含む直流回路部分で起こる直流地絡と、交流電動機を含む交流回路部分で起こる交流地絡とがある。
 地絡や絶縁状態を検出する際には、直流電源と地絡抵抗とを含む充電回路によって充電されるフライングキャパシタの充電電圧から求まる地絡抵抗の値が、状態の良否を判定する基準として用いられる。そして、交流地絡の場合は、インバータ回路のONデューティー期間に限ってフライングキャパシタが充電されるので、充電回路にフライングキャパシタを接続する時間が同じであっても、フライングキャパシタの充電電圧は、フライングキャパシタが連続充電される直流地絡の場合とは異なる。そこで、交流地絡についてはONデューティー期間を考慮に入れて地絡抵抗を求める提案も、既に行われている(例えば、特許文献1)。
特許第3224977号公報
 ところで、インバータ回路のONデューティー期間は、コントローラの制御による交流電動機の出力変化等の事情で変わることがある。ONデューティー期間が変わると、絶縁状態に変化が無くても、一定時間の間に充電回路により充電されるフライングキャパシタの充電電圧が変わる。そのため、ONデューティー期間が変わる前と同じ求め方で充電電圧から地絡抵抗の値を求めると、絶縁状態に変化が無くても地絡抵抗の値が変わってしまう。
 そこで、地絡判断を行う装置側でインバータ回路のONデューティー期間の変化を演算処理により検出し、その結果に応じて地絡抵抗を求め方を変更することが考えられる。しかし、ONデューティー期間の変化のペースに装置の処理能力が追いつかないと、ONデューティー期間の変化にリアルタイムに追従して装置が地絡抵抗の求め方を変更できない可能性がある。
 本発明は前記事情に鑑みなされたもので、本発明の目的は、インバータ回路のONデューティー期間が変わる可能性があっても、精度のよい地絡抵抗の値に基づく交流回路部分の絶縁状態検出を可能にすることができる非接地電源の絶縁状態検出方法と、この方法を実施する際に用いて好適な非接地電源の絶縁状態検出装置とを提供することにある。
 上記目的を達成するため、請求項1に記載した本発明の非接地電源の絶縁状態検出方法は、接地電位部から絶縁した直流電源の電力を、該直流電源の正端子側及び負端子側の主回路配線上に設けた三相インバータ回路により直流-交流変換して三相交流電動機に供給する非接地電源の絶縁状態を、前記主回路配線と接地電位部との間に予定時間接続したコンデンサの充電電圧に基づき求めた前記主回路配線の地絡抵抗の値を用いて検出する方法であって、放電された状態で前記主回路配線の一方と接地電位部との間に前記予定時間接続したコンデンサの充電電圧と、放電された状態で前記主回路配線の他方と接地電位部との間に前記予定時間接続した前記コンデンサの充電電圧とに基づいて、前記三相インバータ回路の一次側を含む前記非接地電源の直流回路部分における絶縁状態の検出を行うか、前記三相インバータ回路の二次側を含む前記非接地電源の交流回路部分における絶縁状態の検出を行うかを判定し、前記交流回路部分における絶縁状態の検出を行うと判定した場合に、前記予定時間中に前記コンデンサが連続充電されたか否かを判定し、前記予定時間中に前記コンデンサが連続充電されたと判定した場合に、前記直流回路部分における充電状態の検出を行うと判定した場合と同じ求め方で、前記地絡抵抗の値を求めるようにした、ことを特徴とする。
 また、上記目的を達成するため、請求項5に記載した本発明の絶縁状態検出装置は、接地電位部から絶縁した直流電源の電力を、該直流電源の正端子側及び負端子側の主回路配線上に設けた三相インバータ回路により直流-交流変換して三相交流電動機に供給する非接地電源の絶縁状態を、前記主回路配線と接地電位部との間に予定時間接続したコンデンサの充電電圧に基づき求めた前記主回路配線の地絡抵抗の値を用いて検出する装置であって、放電された前記コンデンサを前記主回路配線の一方と接地電位部との間に予定時間接続して充電させる第1スイッチング手段と、放電された前記コンデンサを前記主回路配線の他方と接地電位部との間に前記予定時間接続して充電させる第2スイッチング手段と、前記コンデンサの充電電圧を計測する計測手段と、前記第1スイッチング手段により充電された前記コンデンサを前記計測手段に接続して該コンデンサの充電電圧を計測させる第3スイッチング手段と、前記第2スイッチング手段により充電された前記コンデンサを前記計測手段に接続して該コンデンサの充電電圧を計測させる第4スイッチング手段と、前記第3スイッチング手段により前記計測手段に計測させた前記コンデンサの充電電圧と、前記第4スイッチング手段により前記計測手段に計測させた前記コンデンサの充電電圧とに基づいて、前記三相インバータ回路の一次側を含む前記非接地電源の直流回路部分における絶縁状態の検出を行うか、前記三相インバータ回路の二次側を含む前記非接地電源の交流回路部分における絶縁状態の検出を行うかを判定する第1判定手段と、前記交流回路部分における絶縁状態の検出を行うと前記第1判定手段が判定した場合に、前記予定時間中に前記コンデンサが連続充電されたか否かを判定する第2判定手段と、前記予定時間中に前記コンデンサが連続充電されたと前記第2判定手段が判定した場合に、前記直流回路部分における充電状態の検出を行うと前記第1判定手段が判定した場合と同じ求め方で、前記地絡抵抗の値を求める地絡抵抗値割出手段と、を備えることを特徴とする。
 請求項1に記載した本発明の非接地電源の絶縁状態検出方法と、請求項5に記載した本発明の非接地電源の絶縁状態検出装置とによれば、主回路配線の一方と接地電位部との間に予定時間接続したコンデンサの充電電圧と、同じく主回路配線の他方と接地電位部との間に予定時間接続したコンデンサの充電電圧とに基づいて、三相インバータ回路の二次側を含む非接地電源の交流回路部分における絶縁状態の検出を行うと判定した場合、予定時間中にコンデンサが連続充電されていれば、三相インバータ回路の一次側を含む非接地電源の直流回路部分における充電状態の検出を行うと判定した場合と同じ求め方で、地絡抵抗の値を求めることになる。
 したがって、非接地電源の交流回路部分における絶縁状態の検出を行う場合であっても、予定時間中にコンデンサが連続充電されていれば、三相インバータ回路のONデューティー期間を認識することなく、あるいは、認識したONデューティー期間の変化に追従する処理を行うことなく、交流地絡による地絡抵抗の値を精度よく求めることができる。よって、精度のよい交流地絡による地絡抵抗の値に基づく、非接地電源の交流回路部分の絶縁状態検出を、可能にすることができる。
 また、請求項2に記載した本発明の非接地電源の絶縁状態検出方法は、請求項1に記載した本発明の非接地電源の絶縁状態検出方法において、前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチングデューティー比に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする。
 さらに、請求項6に記載した本発明の非接地電源の絶縁状態検出装置は、請求項5に記載した本発明の非接地電源の絶縁状態検出装置において、前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチングデューティー比に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする。
 請求項2に記載した本発明の非接地電源の絶縁状態検出方法によれば、請求項1に記載した本発明の非接地電源の絶縁状態検出方法において、また、請求項6に記載した本発明の非接地電源の絶縁状態検出装置によれば、請求項5に記載した本発明の非接地電源の絶縁状態検出装置において、いずれも、三相インバータ回路の直流-交流変換時のスイッチングデューティー比に応じた補正を行う前の段階まで、ONデューティー期間の変化に追従する処理を行わずに済むようにして、処理の負担を軽減することができる。
 また、請求項3に記載した本発明の非接地電源の絶縁状態検出方法は、請求項1又は2に記載した本発明の非接地電源の絶縁状態検出方法において、前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチング周波数に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする。
 さらに、請求項7に記載した本発明の非接地電源の絶縁状態検出装置は、請求項5又は6に記載した本発明の非接地電源の絶縁状態検出装置において、前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチング周波数に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする。
 請求項3に記載した本発明の非接地電源の絶縁状態検出方法によれば、請求項1又は2に記載した本発明の非接地電源の絶縁状態検出方法において、また、請求項7に記載した本発明の非接地電源の絶縁状態検出装置によれば、請求項5又は6に記載した本発明の非接地電源の絶縁状態検出装置において、いずれも、三相インバータ回路の直流-交流変換時のスイッチング周波数に応じた補正を行う前の段階まで、ONデューティー期間の変化に追従する処理を行わずに済むようにして、処理の負担を軽減することができる。
 また、請求項4に記載した本発明の非接地電源の絶縁状態検出方法は、請求項1、2又は3に記載した本発明の非接地電源の絶縁状態検出方法において、前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記接地電位部と前記直流電源の正端子及び負端子との間にそれぞれ接続した正負のYコンデンサの容量に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする。
 さらに、請求項8に記載した本発明の非接地電源の絶縁状態検出装置は、請求項5、6又は7に記載した本発明の非接地電源の絶縁状態検出装置において、前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記接地電位部と前記直流電源の正端子及び負端子との間にそれぞれ接続した正負のYコンデンサの容量に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする。
 請求項4に記載した本発明の非接地電源の絶縁状態検出方法によれば、請求項1、2又は3に記載した本発明の非接地電源の絶縁状態検出方法において、また、請求項8に記載した本発明の非接地電源の絶縁状態検出装置によれば、請求項5、6又は7に記載した本発明の非接地電源の絶縁状態検出装置において、いずれも、接地電位部と直流電源の正端子及び負端子との間にそれぞれ接続した正負のYコンデンサの容量に応じた補正を行う前の段階まで、ONデューティー期間の変化に追従する処理を行わずに済むようにして、処理の負担を軽減することができる。
 本発明の非接地電源の絶縁状態検出方法及び非接地電源の絶縁状態検出装置によれば、インバータ回路のONデューティー期間が変わる可能性があっても、精度のよい地絡抵抗の値に基づく交流回路部分の絶縁状態検出を可能にすることができる。
本発明に係る非接地電源の絶縁状態検出方法を適用した本発明の一実施形態に係る地絡検出ユニットで地絡検出を行う昇圧電源回路の回路図である。 図1に構成の一部を示した地絡検出ユニットを示す回路図である。 図1及び図2のフライングキャパシタが一次側の正側や負側の地絡抵抗に応じた充電電圧で充電される場合と二次側の地絡抵抗に応じた充電電圧で充電される場合との充電電荷の増加イメージを比較して示すグラフである。 図1の三相交流電動機をデューティー比50%の交流電流で駆動する場合の各相に三相インバータ回路から供給される交流電流を示す波形図である。 (a)~(f)は図1の三相インバータ回路のスイッチング状態の変化を示す回路図である。 図5(a)~(f)の各時点における三相インバータ回路の下アームの各半導体スイッチのオンオフ状態を示すチャートである。 図1の昇圧電源回路において形成される交流地絡による地絡抵抗を含むフライングキャパシタの充電回路の迂回経路を示す回路図である。 図1の昇圧電源回路にYコンデンサを付加した場合を示す回路図である。 図2の制御ユニットのマイクロコンピュータが内蔵するROMに格納されたプログラムにしたがって直流地絡や交流地絡による地絡抵抗を求める際の手順を示すフローチャートである。 図2の制御ユニットのマイクロコンピュータが内蔵するROMに格納されたプログラムにしたがって直流地絡や交流地絡による地絡抵抗を求める際の手順の別例を示すフローチャートである。 図2の制御ユニットのマイクロコンピュータが内蔵するROMに格納されたプログラムにしたがって直流地絡や交流地絡による地絡抵抗を求める際の手順の別例を示すフローチャートである。 図2の制御ユニットのマイクロコンピュータが内蔵するROMに格納されたプログラムにしたがって直流地絡や交流地絡による地絡抵抗を求める際の手順の別例を示すフローチャートである。
 以下、本発明の実施形態を、図面を参照しながら説明する。
 図1は本発明に係る非接地電源の絶縁状態検出方法を適用した本発明の一実施形態に係る地絡検出ユニットで地絡検出を行う昇圧電源回路の回路図である。図1中引用符号1で示す昇圧電源回路は、車両(図示せず)の車体等の接地電位部から絶縁された直流電源Bと、直流電源Bの正端子側の主回路配線1p及び負端子側の主回路配線1nが一次側に接続された三相インバータ回路3と、三相インバータ回路3の二次側に接続された車両推進用等の三相交流電動機5を有している。
 この昇圧電源回路1では、三相インバータ回路3の上アームQ1及び下アームQ2の各相に対応する半導体スイッチ(例えばIGBTやパワーMOSFET等)が、不図示の車両推進系コントローラの制御により指定されたスイッチングデューティー比でオンオフを繰り返すことで、直流電源Bの直流電力が直流-交流変換により昇圧されて交流電力とされる。そして、この交流電力が三相交流電動機5のU,V,Wの各相に供給される。
 なお、図1中引用符号RLpは一次側の正側の地絡抵抗、RLnは一次側の負側の地絡抵抗であり、それぞれ、正端子側の主回路配線1pや負端子側の主回路配線1nのうち一次側の主回路配線部分(請求項中の非接地電源の直流回路部分に相当)に地絡(直列地絡)が発生した場合の仮想抵抗である。また、図1中引用符号RLは二次側の地絡抵抗であり、正端子側の主回路配線1pや負端子側の主回路配線1nのうち二次側の主回路配線部分(請求項中の非接地電源の交流回路部分に相当)に地絡(交流地絡)が発生した場合の仮想抵抗である。
 なお、図1には、昇圧電源回路1の地絡や絶縁状態を検出する地絡検出ユニット11(請求項中の非接地電源の絶縁状態検出装置に相当)の一部が示されている。この地絡検出ユニット11は、図2の回路図に示すように、フライングキャパシタC1(請求項中のコンデンサに相当)と、フライングキャパシタC1を直流電源Bの正極及び負極にそれぞれ選択的に接続するスイッチS1,S2と、フライングキャパシタC1をマイクロコンピュータ(以下、「マイコン」と略記する。)15及び接地電位部に選択的に接続するスイッチS3,S4とを有している。
 また、地絡検出ユニット11は、フライングキャパシタC1の一端(図1、図2中上方の極)を放電のために接地電位部に選択的に接続する(選択的に接地させる)スイッチS5を有している。
 マイコン15は直流電源Bよりも低い低圧系の電源(図示せず)によって動作するもので、直流電源Bはマイコン15の接地電位からも絶縁されている。各スイッチS1~S5は、例えば光MOSFETで構成されており、直流電源Bから絶縁してマイコン15によりオンオフ制御できるようになっている。
 マイコン15とスイッチS3との接続点は、抵抗R3を介して接地されており、スイッチS4,S5と接地電位部との間には、抵抗R4,R5がそれぞれ接続されている。フライングキャパシタC1の一端(図1、図2中上方の極)側のスイッチS1,S3は直列接続されており、両者の接続点とフライングキャパシタC1の一端との間には、電流方向切替回路が接続されている。
 電流方向切替回路は並列回路であり、その一方は、スイッチS1,S3からフライングキャパシタC1の一端に向けて順方向となるダイオードD0と抵抗R1の直列回路で構成され、他方は、フライングキャパシタC1の一端からスイッチS1,S3に向けて順方向となるダイオードD1と抵抗R6の直列回路で構成されている。
 そして、上述したスイッチS5は、フライングキャパシタC1の一端(図1、図2中上方の極)に直接接続されておらず、ダイオードD1を介して接続されている(ダイオードD1のカソードに接続されている)。
 なお、必要に応じて、直流電源Bの正極及び負極間に並列に接続した直列抵抗列のうち一部の抵抗の両端にスイッチS1,S2を接続するようにし、直流電源Bの電圧を分圧した電圧がフライングキャパシタC1に充電されるようにしてもよい。
 そして、本実施形態では、マイコン15とスイッチS1~S5とによって、請求項中の第1乃至第4スイッチング手段が構成されている。
 上述した地絡検出ユニット11では、地絡や絶縁状態を検出する際に、まず、マイコン15の制御により、予め決定しておいた予定時間に亘って、スイッチS1,S2をオンさせると共にスイッチS3~S5をオフさせる。ここで、予定時間とは、フライングキャパシタC1が完全に充電されるのに要する時間よりも短い時間である。
 これにより、直流電源Bの正極から、正端子側の主回路配線1p、スイッチS1、ダイオードD0、抵抗R1、フライングキャパシタC1の一端(図1、図2中上方の極)、他端(図1、図2中下方の極)、スイッチS2、及び、負端子側の主回路配線1nを経て、直流電源Bの負極に至る充電回路を形成する。そして、この充電回路において、フライングキャパシタC1を直流電源Bの電圧に応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。
 続いて、マイコン15の制御により、スイッチS1,S2,S5をオフさせると共にスイッチS3,S4をオンさせる。これにより、フライングキャパシタC1が、抵抗R6、抵抗R3、及び、抵抗R4の直列回路と並列接続される。そして、フライングキャパシタC1の充電電圧を抵抗R6,R3,R4で分圧したうちの抵抗R3の両端電圧の差に相当する電位が、マイコン15の第1A/D変換ポートA/D1に入力されて計測される。この計測値と、抵抗R6,R3,R4の分圧比とから、フライングキャパシタC1の充電電圧をマイコン15で計測させる。
 そして、マイコン15の制御により、フライングキャパシタC1を完全に放電させるのに十分な時間に亘って、スイッチS5をオンさせると共に他のスイッチS1~S4をオフさせて、フライングキャパシタC1の一端(正極)を、ダイオードD1、スイッチS5、及び、抵抗R5を介して接地させて、放電回路を形成する。そして、この放電回路により、フライングキャパシタC1を放電させる。
 次に、マイコン15の制御により、上述した予定時間に亘って、スイッチS1,S4をオンさせると共にスイッチS2,S3,S5をオフさせる。これにより、直流地絡に関して、直流電源Bの正極から、正端子側の主回路配線1p、スイッチS1、ダイオードD0、抵抗R1、フライングキャパシタC1の一端、他端、スイッチS4、抵抗R4、(接地電位部、)一次側の負側の地絡抵抗RLn、及び、負端子側の主回路配線1nを経て、直流電源Bの負極に至る充電回路を形成する。
 また、交流地絡に関して、図1に示すように、直流電源Bの正極から、正端子側の主回路配線1p、スイッチS1、(図1中不図示のダイオードD0、)抵抗R1、フライングキャパシタC1の一端、他端、スイッチS4、(図1中不図示の抵抗R4、接地電位部、)二次側の地絡抵抗RL(図1ではU相に地絡が発生した場合を例示している)、三相インバータ回路3の下アームQ2のON状態の半導体スイッチ、及び、負端子側の主回路配線1nを経て、直流電源Bの負極に至る充電回路を形成する。
 そして、この充電回路において、フライングキャパシタC1を、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。
 このように、マイコン15がスイッチS1,S4をオンさせると共にスイッチS2,S3,S5をオフさせる状態が、請求項中の第1スイッチング手段により請求項中のコンデンサが予定時間に亘って充電される状態に相当する。
 続いて、図1に示すマイコン15の制御により、スイッチS1,S2,S5をオフさせると共にスイッチS3,S4をオンさせて、直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧の計測の際と同じ計測回路を形成する。そして、この計測回路を用いて、フライングキャパシタC1の充電電圧をマイコン15で計測させる。
 したがって、本実施形態では、マイコン15が請求項中の計測手段に相当している。また、マイコン15がスイッチS1,S2,S5をオフさせると共にスイッチS3,S4をオンさせて、フライングキャパシタC1の充電電圧を計測する状態が、請求項中の第3スイッチング手段により請求項中のコンデンサの充電電圧を計測手段に計測させる状態に相当する。
 そして、マイコン15の制御により、フライングキャパシタC1を完全に放電させるのに十分な時間に亘って、スイッチS5をオンさせると共に他のスイッチS1~S4をオフさせて、フライングキャパシタC1の一端(正極)を、ダイオードD1、スイッチS5、及び、抵抗R5を介して接地させて、放電回路を形成する。そして、この放電回路により、フライングキャパシタC1を放電させる。
 次に、マイコン15の制御により、上述した予定時間に亘って、スイッチS2,S3をオンさせると共にスイッチS1,S4,S5をオフさせる。これにより、直流地絡に関して、直流電源Bの正極から、正端子側の主回路配線1p、正側の地絡抵抗RLp、(接地電位部、)抵抗R3、スイッチS3、ダイオードD0、抵抗R1、フライングキャパシタC1の一端、他端、スイッチS2、及び、負端子側の主回路配線1nを経て、直流電源Bの負極に至る充電回路を形成する。
 また、交流地絡に関して、図1に示す直流電源Bの正極から、正端子側の主回路配線1p、三相インバータ回路3の上アームQ1のON状態の半導体スイッチ、二次側の地絡抵抗RL(図1ではU相に地絡が発生した場合を例示している)、(接地電位部、図1中不図示の抵抗R3、)スイッチS3、(図1中不図示のダイオードD0、)抵抗R1、フライングキャパシタC1の一端、他端、スイッチS2、及び、負端子側の主回路配線1nを経て、直流電源Bの負極に至る充電回路を形成する。
 そして、この充電回路において、フライングキャパシタC1を、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた電荷量で充電する。この充電により、フライングキャパシタC1の一端が正極、他端が負極となる。
 このように、マイコン15がスイッチS2,S3をオンさせると共にスイッチS1,S4,S5をオフさせる状態が、請求項中の第2スイッチング手段により請求項中のコンデンサが予定時間に亘って充電される状態に相当する。
 続いて、マイコン15の制御により、スイッチS1,S2,S5をオフさせると共にスイッチS3,S4をオンさせて、直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧の計測の際や、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じたフライングキャパシタC1の充電電圧の計測の際と同じ計測回路を形成する。そして、この計測回路を用いて、フライングキャパシタC1の充電電圧をマイコン15で計測させる。
 このように、マイコン15がスイッチS1,S2,S5をオフさせると共にスイッチS3,S4をオンさせて、フライングキャパシタC1の充電電圧を計測する状態が、請求項中の第4スイッチング手段により請求項中のコンデンサの充電電圧を計測手段に計測させる状態に相当する。
 そして、図1に示すマイコン15の制御により、フライングキャパシタC1を完全に放電させるのに十分な時間に亘って、スイッチS5をオンさせると共に他のスイッチS1~S4をオフさせて、フライングキャパシタC1の一端(正極)を、ダイオードD1、スイッチS5、及び、抵抗R5を介して接地させて、放電回路を形成する。そして、この放電回路により、フライングキャパシタC1を放電させる。
 以上のようにして計測した、直流電源Bの電圧に応じたフライングキャパシタC1の充電電圧、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じたフライングキャパシタC1の充電電圧、及び、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じたフライングキャパシタC1の充電電圧を用いて、所定の計測理論式の計算を行うことで、マイコン15は、一次側の正側の地絡抵抗RLpや一次側の負側の地絡抵抗RLnの値、あるいは、二次側の地絡抵抗RLを求め、これに基づいた直流電源Bの地絡や絶縁状態を検出することができる。マイコン15による各地絡抵抗RLp,RLn,RLの求め方については後述する。
 なお、本実施形態のマイコン15は、上述した不図示の車両推進系コントローラから、昇圧電源回路1の三相インバータ回路3の各半導体スイッチのスイッチングデューティー比を示すデータを、交流地絡による地絡抵抗RLを求めるのに利用する情報として周期的に受け取る。
 ところで、一次側の正側の地絡抵抗RLpや一次側の負側の地絡抵抗RLnに応じた充電電圧でフライングキャパシタC1が充電される場合と、二次側の地絡抵抗RLに応じた充電電圧でフライングキャパシタC1が充電される場合とでは、フライングキャパシタC1の充電電荷の増加のイメージが異なる。これを示すのが図3のグラフである。
 図3に示すように、一次側の正側の地絡抵抗RLpや一次側の負側の地絡抵抗RLnに応じた充電電圧でフライングキャパシタC1が充電される場合は、フライングキャパシタC1は予定時間の全長に亘って連続充電される。したがって、フライングキャパシタC1の充電電荷の増加イメージは、図3の最上段のように連続的に増加するイメージとなる。
 一方、二次側の地絡抵抗RLに応じた充電電圧でフライングキャパシタC1が充電される場合は、フライングキャパシタC1が三相インバータ回路の上アームQ1又は下アームQ2のONデューティー期間において断続充電される。したがって、フライングキャパシタC1の充電電荷の増加イメージは、図3の3段目及び最下段にそれぞれ示す三相インバータ回路の下アームQ2や上アームQ1のONデューティー期間に同期した、2段目のように段階的に増加するイメージとなる。
 この結果、充電回路が形成される時間長が共に予定時間で等しいにも拘わらず、フライングキャパシタC1に充電される電荷量は二次側の地絡抵抗RLに応じた充電電圧でフライングキャパシタC1が充電される場合の方が少なくなる。
 そのため、フライングキャパシタC1が断続的に充電されるような交流地絡が生じる場合に、マイコン15が、直流地絡の場合に用いる所定の計測理論式によって地絡抵抗の値を求める訳には行かない。
 ところで、三相交流電動機5に三相インバータ回路3が供給する三相交流電流を、例えば図4の波形図に示す50%のデューティー比にする場合、図中のA~Fの各時点における三相インバータ回路3の上アームQ1や下アームQ2の各半導体スイッチのオンオフ状態は、図5(a)~(f)の各回路図に示すようになる。なお、番号に括弧が付いているスイッチは、OFF状態であることを示す。そして、スイッチのオンオフ状態の変化を下アームQ2の各スイッチ4~6についてチャートで示すと、図6に示すようになる。
 例えば、図6の上段に示す、三相交流電動機5のU相に対応する4番のスイッチについて見ると、4番のスイッチがOFFとなるF~A~Bの期間では、5番か6番のスイッチが必ずONとなっている。
 このように、三相インバータ回路3の上アームQ1や下アームQ2のスイッチングのデューティー比が100/3(%)を超えると、あるスイッチがOFFである間に他のスイッチがONとなる期間が発生する。
 例えば図1に示すように、三相交流電動機5のU相において交流地絡が発生した場合、交流地絡に対応する地絡抵抗RLを含むフライングキャパシタC1の充電回路は、本来は、U相に対応する4番のスイッチがONである期間にしか形成されないはずである。しかし、三相インバータ回路3の上アームQ1や下アームQ2のスイッチングのデューティー比が100/3(%)を超えると、例えば図7の回路図に示すような、ON状態の他のスイッチ(図7の場合はV相に対応する5番のスイッチ)を迂回して、フライングキャパシタC1の充電回路が形成される。
 したがって、昇圧電源回路1に交流地絡が発生した場合、三相インバータ回路3のスイッチングのデューティー比が100/3(%)を超えていると、フライングキャパシタC1は上述したような断続充電とはならない。そして、図1のマイコン15によるスイッチS1~S5のオンオフ制御で、地絡抵抗RLを含むフライングキャパシタC1の充電回路が形成される予定時間の全長に亘って、フライングキャパシタC1が連続充電される。
 なお、交流地絡の発生時に、地絡抵抗RLを含むフライングキャパシタC1の充電回路が形成される予定時間の全長に亘って、フライングキャパシタC1が連続充電される場合は、この他にも想定される。図8に示すように、図1の昇圧電源回路1における直流電源Bの正負の各極と接地電位部との間に、コモンモードノイズ対策用のYコンデンサY+,Y-を介設した場合が、その一例である。
 上述したYコンデンサY+,Y-は、充電された電荷をフライングキャパシタC1の充電時に放電する。このため、交流地絡の発生時に地絡抵抗RLを含むフライングキャパシタC1の充電回路が断続的に形成される場合、充電回路が形成されない期間にも、三相インバータ回路3の一次側には、YコンデンサY+,Y-の放電電荷をフライングキャパシタC1に充電する充電回路が形成される。よって、フライングキャパシタC1が結果的に、予定時間の期間中に連続充電状態となる可能性がある。
 そこで、本実施形態の地絡検出ユニット11では、交流地絡の発生時に、二次側の地絡抵抗RLに応じた充電電圧でフライングキャパシタC1を充電させる充電回路が形成される予定時間の間、フライングキャパシタC1が連続充電状態にあるか否かによって、マイコン15が二次側の地絡抵抗RLの求め方を選ぶようにしている。
 次に、地絡検出ユニット11のマイコン15が、内蔵するROMに格納されたプログラムにしたがって行う、直流地絡や交流地絡による地絡抵抗RLp,RLn,RLを求める処理について、図9のフローチャートを参照して説明する。
 図9に示すように、まず、マイコン15は、フライングキャパシタC1の充電電圧の計測を行う(ステップS1)。このステップS1の計測では、マイコン15は、フライングキャパシタC1の3種類の充電電圧を計測する。1種類目の充電電圧は、フライングキャパシタC1を直流電源Bの電圧に応じた電荷量で充電させた際の充電電圧である。2種類目の充電電圧は、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた電荷量で充電させた際の充電電圧である。3種類目は、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた電荷量で充電させた際の充電電圧である。いずれの充電電圧も、フライングキャパシタC1を十分放電させた後に予定時間に亘って充電させた場合の充電電圧である。
 次に、マイコン15は、直流地絡と交流地絡のどちらの発生を検出するかを判定する(ステップS3)。このステップS3の判定は、ステップS1でマイコン15が計測した、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた充電電圧と、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた充電電圧とが、一致する(所定の誤差範囲内で相違する場合を含む)か、一致しないかによって行う。そして、マイコン15は、両者が一致しない場合は直流地絡の発生を検出すると判定し、両者が一致する場合は交流地絡の発生を検出すると判定する。
 ステップS3において直流地絡の発生を検出すると判定した場合にマイコン15は、後述するステップS9に処理を移行する。一方、ステップS3において交流地絡の発生を検出すると判定した場合にマイコン15は、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比が、所定のしきい値以上であるか否かを確認する(ステップS5)。
 ここで、スイッチングデューティー比は、不図示の車両推進系コントローラから周期的に受け取っている最新のデータによって示される値を用いる。また、所定のしきい値とは、三相インバータ回路3の上アームQ1や下アームQ2の3つの半導体スイッチのいずれかが常にONとなる100/3(%)に設定することもできる。
 即ち、所定のしきい値を100/3(%)に設定するということは、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた電荷量や、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた電荷量で、フライングキャパシタC1を充電する予定時間の期間中に、フライングキャパシタC1が連続充電状態となっているか否かを、所定のしきい値を用いて判定することを意味している。
 但し、100/3(%)未満のスイッチングデューティー比であっても、予定時間の期間中にフライングキャパシタC1が実質的に連続充電状態となる場合がある。それが、例えば先に説明した、予定時間の期間中にYコンデンサY+,Y-(図8参照)が充電電荷を放電することで、フライングキャパシタC1が連続充電状態となる場合である。したがって、そのようにして連続充電状態が確保される最低のスイッチングデューティー比の値を、所定のしきい値としてもよい。この所定のしきい値は、マイコン15が内蔵する不揮発性のRAMに記憶させておくことができる。
 そして、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比が、所定のしきい値以上である場合は(ステップS5でYES)、マイコン15は、ステップS9に処理を移行する。一方、所定のしきい値以上でない場合は(ステップS5でNO)、マイコン15は、交流地絡断続充電時処理を実行する(ステップS7)。
 ステップS7の交流地絡断続充電時処理において、マイコン15は、以下の3通りの処理のいずれかを行う。1つ目の処理は、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比と、ステップS1で計測したフライングキャパシタC1の3種類の充電電圧とを用いて、交流地絡による地絡抵抗RLを求める処理である。
 この処理では、まず、ステップS1で計測した直流電源Bの電圧に応じた電荷量で充電させた際のフライングキャパシタC1の充電電圧(=V0)から、直流電源Bの電圧(=VB)を、換算式を用いて算出する。この換算式は、例えば、特許第3962990号公報に記載された式を用いることができる。この式を本実施形態に適用した場合、換算式は、
 V0=VB{1-e(-T/C*R1) }・・・(式1)
となる。ここで、Tは予定時間、CはフライングキャパシタC1の静電容量、R1は地絡検出ユニット11の抵抗R1の抵抗値である。
 次に、ステップS1で計測した、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた充電電圧(=VCn)と、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた充電電圧(=VCp)と、直流電源Bの電圧VBと、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比とから、交流地絡による地絡抵抗RLを、換算式を用いて算出する。
 なお、ステップS7の交流地絡断続充電時処理は、ステップS3において交流地絡の発生を検出すると判定した場合に行う処理であるので、ステップS1で計測した、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた充電電圧と、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた充電電圧とは、いずれも、二次側の地絡抵抗RLに応じた充電電圧であることになる。この点を前提にして、交流地絡による地絡抵抗RLを求める上述の換算式は、例えば、特許第3224977号公報に記載された式を用いることができる。
 この式は、一次側の負側の地絡抵抗RLnに応じた充電電圧(=VCn)や一次側の正側の地絡抵抗RLpに応じた充電電圧(=VCp)と、直流電源Bの電圧VBとの関係を示す式をベースとする。この関係式を本実施形態に適用した場合、関係式は、
 VCp=VCn=VB{1-e(-A*T/C*(R1+RL) }
となる。ここで、Aは三相インバータ回路3の各半導体スイッチのスイッチングデューティー比である。
 上式を整理すると、
 RL=-R1-A*T/{C*ln(1-VCp/VB)}・・・(式2)
   =-R1-A*T/{C*ln(1-VCn/VB)}・・・(式3)
となる。
 したがって、本実施形態の場合は、ステップS1で一次側の正側の地絡抵抗RLpに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式2のVCpとして代入し、また、ステップS1で一次側の負側の地絡抵抗RLnに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式3のVCnとして代入することで、交流地絡による地絡抵抗RLを求めることができる。
 以上が、ステップS7の交流地絡断続充電時処理においてマイコン15が行うことができる1つ目の処理である。
 2つ目の処理は、ステップS1で計測したフライングキャパシタC1の3種類の充電電圧を用いて、交流地絡による地絡抵抗RLを求める処理である。上述した1つ目の処理では、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aを考慮した式2,3によって、交流地絡による地絡抵抗RLを直接求めるようにしている。これに対して、2つ目の処理は、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aを考慮しない式によって、地絡抵抗を一旦求め、求めた地絡抵抗を三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aに応じて補正することで、交流地絡による地絡抵抗RLを間接的に求めるようにしている。
 この処理では、まず、交流地絡による地絡抵抗RLに応じた電荷量でフライングキャパシタC1を充電する予定時間の期間中に、フライングキャパシタC1が連続充電状態であった場合を仮定して、その場合の仮の地絡抵抗RL’を求める。そして、求めた仮の地絡抵抗RL’を、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aによって補正することで、交流地絡による真の地絡抵抗RLを求める。
 この場合、仮の地絡抵抗RL’は、予定時間の期間中にフライングキャパシタC1が連続充電状態であったものと仮定するので、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnと同じ換算式で求めることができる。地絡抵抗RLp,RLnの換算式は、例えば、特許第3962990号公報に記載された式を用いることができる。
 この式は、一次側の正側の地絡抵抗RLpと、この地絡抵抗RLpに応じたフライングキャパシタC1の充電電圧(=VCp)と、直流電源Bの電圧VBとの関係を示す式や、一次側の負側の地絡抵抗RLnと、この地絡抵抗RLnに応じたフライングキャパシタC1の充電電圧(=VCn)と、直流電源Bの電圧VBとの関係を示す式である。これらの式を本実施形態に適用した場合、各式は、
 RLp=-R1-{T/C*ln[1-(VCp/VB)]}・・・(式4)
 RLn=-R1-{T/C*ln[1-(VCn/VB)]}・・・(式5)
となる。
 ここで、直流電源Bの電圧VBは、上述した式1によって求めることができる。したがって、本実施形態の場合は、ステップS1で一次側の正側の地絡抵抗RLpに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式4のVCpとして代入し、また、ステップS1で一次側の負側の地絡抵抗RLnに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式5のVCnとして代入することで、仮の地絡抵抗RL’と等しい直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnを求める。そして、求めた仮の地絡抵抗RL’を、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aに応じた適切な補正式によって補正することで、真の交流地絡による地絡抵抗RLを求めることができる。
 以上が、ステップS7の交流地絡断続充電時処理においてマイコン15が行うことができる2つ目の処理である。この2つ目の処理は、仮の地絡抵抗RL’を求めるまでは、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aを考慮せずにマイコン15が処理を進めることができる。そのため、スイッチングデューティー比Aが変化しても、1つ目の処理に比べて、その変化に追従した処理を行う規模を小さくし、スイッチングデューティー比Aの変化にリアルタイムに追従して交流地絡による地絡抵抗RLを正確に求める処理を、マイコン15が実現しやすいようにすることができる。
 3つ目の処理は、交流地絡による地絡抵抗RLを求めない処理である。この処理は、例えば、不図示の車両推進系コントローラから三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aを示すデータを取得できない場合等に、採用することができる。
 以上に説明した3通りの処理のいずれかを、ステップS7の交流地絡断続充電時処理として実行した後、マイコン15は、後述するステップS11に処理を移行する。
 次に、ステップS9の処理について説明する。このステップS9は、ステップS3において、直流地絡の発生を検出すると判定した場合と、ステップS3において、交流地絡の発生を検出すると判定し、且つ、ステップS5において、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aが所定のしきい値以上であると判定した場合とに行う処理である。
 即ち、ステップS9の処理は、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた電荷量や、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた電荷量で、フライングキャパシタC1を充電する予定時間の期間中に、フライングキャパシタC1が連続充電状態となっている場合の、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLn、あるいは、交流地絡による地絡抵抗RLを求める処理である。
 このステップS9では、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnを、上述した式4,5を用いて求めることができる。即ち、ステップS1で一次側の正側の地絡抵抗RLpに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式4のVCpとして代入し、また、ステップS1で一次側の負側の地絡抵抗RLnに応じた充電電圧又は二次側の地絡抵抗RLに応じた充電電圧として計測した充電電圧を、上記の式5のVCnとして代入することで、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnを求めることができる。
 また、交流地絡の発生時にも、予定時間の期間中にフライングキャパシタC1が連続充電状態となっているので、上述の式4,5を用いて正側の地絡抵抗RLpや負側の地絡抵抗RLnとして求めた値を、交流地絡による地絡抵抗RLの値とすることができる。
 以上に説明したステップS9の処理を実行した後、マイコン15は、ステップS11に処理を移行する。
 ステップS11では、ステップS7やステップS9で求めた地絡抵抗RLp,RLn,RLの値から、しきい値判定を行う等して、昇圧電源回路1の絶縁状態の良否を判定する。ステップS11の処理を実行した後、マイコン15は、一連の処理を終了する。
 以上の説明からも明らかなように、本実施形態では、図9のフローチャートにおけるステップS3が、請求項中の第1判定手段に対応する処理となっており、図9中のステップS5が、請求項中の第2判定手段に対応する処理となっている。また、本実施形態では、図9中のステップS7の3通りの処理のうち2つ目の処理が、請求項中の補正地絡抵抗割出手段に対応する処理となっており、図9中のステップS9が、請求項中の地絡抵抗値割出手段に対応する処理となっている。
 このように、本実施形態の地絡検出ユニット11によれば、昇圧電源回路1の三相インバータ回路3の二次側において交流地絡が発生した場合、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態となる場合は、直流地絡による正側の地絡抵抗RLpや負側の地絡抵抗RLnの求め方と同じ求め方で交流地絡による地絡抵抗RLを求めるようにした。
 このため、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aが変化する場合であっても、少なくとも、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態となる場合の地絡抵抗RLは、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aのデータを用いずに、交流地絡による地絡抵抗RLの値を精度よく求めることができる。よって、精度のよい交流地絡による地絡抵抗RLの値に基づく、三相インバータ回路3の二次側、つまり、昇圧電源回路1の交流回路部分の絶縁状態検出を、可能にすることができる。
 なお、上述した実施形態では、図9のフローチャートにおけるステップS5において、マイコン15が、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aに関する所定のしきい値を用いて、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態であるか否かを判定するものとした。
 しかし、三相インバータ回路3の各半導体スイッチのスイッチングデューティー比Aに関する所定のしきい値に代えて、他のファクタに関する所定のしきい値を用いるようにしてもよい。
 例えば、図10のフローチャートに示すように、ステップS3において交流地絡の発生を検出すると判定した場合に、三相インバータ回路3の各半導体スイッチのスイッチング周波数がスイッチング周波数に関する所定のしきい値以上であるか否かを、マイコン15が確認する(ステップS5-1)ようにしてもよい。
 即ち、三相インバータ回路3の各半導体スイッチのスイッチング周波数が高いと、半導体スイッチの前の周期におけるスイッチオフから次の周期におけるスイッチオンまでの間隔が、スイッチングデューティー比Aの大小に拘わらず短くなる。そうすると、交流地絡による地絡抵抗RLを含む充電回路の形成中におけるフライングキャパシタC1の間欠充電間隔が短くなり、フライングキャパシタC1が連続充電に近い状態となる可能性がある。
 反対に、三相インバータ回路3の各半導体スイッチのスイッチング周波数が低いと、半導体スイッチの前の周期におけるスイッチオフから次の周期におけるスイッチオンまでの間隔が、スイッチングデューティー比Aの大小に拘わらず長くなる。そうすると、交流地絡による地絡抵抗RLを含む充電回路の形成中におけるフライングキャパシタC1の間欠充電間隔が長くなり、フライングキャパシタC1が連続充電とはほど遠い状態となる。
 そこで、マイコン15は、三相インバータ回路3の各半導体スイッチのスイッチング周波数が、適切な値に設定したスイッチング周波数に関する所定のしきい値以上であれば(ステップS5-1でYES)、フライングキャパシタC1が連続充電状態にあるものとして、ステップS9に処理を移行することになる。反対に、三相インバータ回路3の各半導体スイッチのスイッチング周波数が所定のしきい値未満であれば(ステップS5-1でNO)、マイコン15は、フライングキャパシタC1が間欠充電状態にあるものとして、ステップS7に処理を移行することになる。
 また、例えば、図11のフローチャートに示すように、ステップS3において交流地絡の発生を検出すると判定した場合に、正負のYコンデンサY+,Y-の容量がYコンデンサの容量に関する所定のしきい値以上であるか否かを、マイコン15が確認する(ステップS5-2)ようにしてもよい。
 即ち、YコンデンサY+,Y-の容量が高いと、交流地絡による地絡抵抗RLを含む充電回路の形成中に、フライングキャパシタC1が本来充電されない期間において、YコンデンサY+,Y-が放電する電荷によって充電されて、フライングキャパシタC1が実質的に連続充電状態となる可能性がある。
 そこで、マイコン15は、YコンデンサY+,Y-の容量が、適切な値に設定したYコンデンサの容量に関する所定のしきい値以上であれば(ステップS5-2でYES)、フライングキャパシタC1が連続充電状態にあるものとして、ステップS9に処理を移行することになる。反対に、YコンデンサY+,Y-の容量が所定のしきい値未満であれば(ステップS5-2でNO)、マイコン15は、フライングキャパシタC1が間欠充電状態にあるものとして、ステップS7に処理を移行することになる。
 また、図9のステップS5、図10のステップS5-1、図11のステップS5-2を全て行い、いずれかのステップで対応するしきい値以上となった場合に、フライングキャパシタC1が連続充電状態であるものとして、図9(乃至図11)のステップS9に処理を移行するように構成してもよい。その場合、図9のステップS5、図10のステップS5-1、図11のステップS5-2の全てで対応するしきい値未満となったならば、フライングキャパシタC1が間欠充電状態であるものとして、図9(乃至図11)のステップS7に処理を移行することになる。
 さらに、例えば図7に示すように、電流センサ7を用いてフライングキャパシタC1の充電電流を計測し、その計測結果の経時変化から、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態であるか否かを判定するようにしてもよい。
 その場合には、図12のフローチャートに示すように、マイコン15は、図9のフローチャートにおけるステップS5の処理に代えて、ステップS5aにおいて、電流センサ7の計測結果の経時変化から、交流地絡による地絡抵抗RLを含む充電回路の形成中にフライングキャパシタC1が連続充電状態であるか否かを、直接判定する処理を行うことになる。そして、連続充電状態である場合は(ステップS5aでYES)、マイコン15は、ステップS9に処理を移行し、連続充電状態でない場合は(ステップS5aでNO)、マイコン15は、ステップS7に処理を移行することになる。このように構成しても、上述した実施形態の場合と同様の効果を得ることができる。
 また、上述した実施形態では、図9乃至図12のフローチャートにおけるステップS3において、マイコン15が、ステップS1で計測した、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた充電電圧と、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた充電電圧とが一致するか否かによって、直流地絡と交流地絡のどちらの発生を検出するかを判定するものとした。
 しかし、ステップS1で計測した、一次側の負側の地絡抵抗RLn又は二次側の地絡抵抗RLに応じた充電電圧と、一次側の正側の地絡抵抗RLp又は二次側の地絡抵抗RLに応じた充電電圧とを用いる限り、両充電電圧の一致又は不一致以外の方法で判定するようにしてもよい。
 本発明は、接地電位部から絶縁した直流電源の電力を、直流電源の正端子側及び負端子側の主回路配線上に設けた三相インバータ回路により直流-交流変換して三相交流電動機に供給する非接地電源の絶縁状態を、主回路配線と接地電位部との間に予定時間接続したコンデンサの充電電圧に基づき求めた主回路配線の地絡抵抗の値を用いて検出する場合に用いて好適である。
 1 昇圧電源回路(非接地電源)
 1n 負側の主回路配線
 1p 正側の主回路配線
 3 三相インバータ回路
 5 三相交流電動機
 7 電流センサ
 11 地絡検出ユニット(非接地電源の絶縁状態検出装置)
 15 マイクロコンピュータ(第1乃至第4スイッチング手段、計測手段、第1判定手段、第2判定手段、補正地絡抵抗割出手段)
 A/D1 A/D変換ポート
 B 直流電源
 C1 フライングキャパシタ(コンデンサ)
 D0 ダイオード
 D1 ダイオード
 Q1 上アーム
 Q2 下アーム
 R1 抵抗
 R3 抵抗
 R4 抵抗
 R5 抵抗
 R6 抵抗
 R6,R3,R4 抵抗
 RL 地絡抵抗
 RLn 地絡抵抗
 RLp 地絡抵抗
 S1 スイッチ(第1乃至第4スイッチング手段)
 S2 スイッチ(第1乃至第4スイッチング手段)
 S3 スイッチ(第1乃至第4スイッチング手段)
 S4 スイッチ(第1乃至第4スイッチング手段)
 S5 スイッチ(第1乃至第4スイッチング手段)
 VB 電圧
 Y+ 正側のYコンデンサ
 Y- 負側のYコンデンサ

Claims (8)

  1.  接地電位部から絶縁した直流電源の電力を、該直流電源の正端子側及び負端子側の主回路配線上に設けた三相インバータ回路により直流-交流変換して三相交流電動機に供給する非接地電源の絶縁状態を、前記主回路配線と接地電位部との間に予定時間接続したコンデンサの充電電圧に基づき求めた前記主回路配線の地絡抵抗の値を用いて検出する方法であって、
     放電された状態で前記主回路配線の一方と接地電位部との間に前記予定時間接続したコンデンサの充電電圧と、放電された状態で前記主回路配線の他方と接地電位部との間に前記予定時間接続した前記コンデンサの充電電圧とに基づいて、前記三相インバータ回路の一次側を含む前記非接地電源の直流回路部分における絶縁状態の検出を行うか、前記三相インバータ回路の二次側を含む前記非接地電源の交流回路部分における絶縁状態の検出を行うかを判定し、
     前記交流回路部分における絶縁状態の検出を行うと判定した場合に、前記予定時間中に前記コンデンサが連続充電されたか否かを判定し、
     前記予定時間中に前記コンデンサが連続充電されたと判定した場合に、前記直流回路部分における充電状態の検出を行うと判定した場合と同じ求め方で、前記地絡抵抗の値を求めるようにした、
     ことを特徴とする非接地電源の絶縁状態検出方法。
  2.  前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチングデューティー比に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする請求項1記載の非接地電源の絶縁状態検出方法。
  3.  前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチング周波数に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする請求項1又は2記載の非接地電源の絶縁状態検出方法。
  4.  前記予定時間中に前記コンデンサが連続充電されなかったと判定した場合に、前記接地電位部と前記直流電源の正端子及び負端子との間にそれぞれ接続した正負のYコンデンサの容量に応じて補正した求め方で、前記地絡抵抗の値を求めるようにしたことを特徴とする請求項1、2又は3記載の非接地電源の絶縁状態検出方法。
  5.  接地電位部から絶縁した直流電源の電力を、該直流電源の正端子側及び負端子側の主回路配線上に設けた三相インバータ回路により直流-交流変換して三相交流電動機に供給する非接地電源の絶縁状態を、前記主回路配線と接地電位部との間に予定時間接続したコンデンサの充電電圧に基づき求めた前記主回路配線の地絡抵抗の値を用いて検出する装置であって、
     放電された前記コンデンサを前記主回路配線の一方と接地電位部との間に予定時間接続して充電させる第1スイッチング手段と、
     放電された前記コンデンサを前記主回路配線の他方と接地電位部との間に前記予定時間接続して充電させる第2スイッチング手段と、
     前記コンデンサの充電電圧を計測する計測手段と、
     前記第1スイッチング手段により充電された前記コンデンサを前記計測手段に接続して該コンデンサの充電電圧を計測させる第3スイッチング手段と、
     前記第2スイッチング手段により充電された前記コンデンサを前記計測手段に接続して該コンデンサの充電電圧を計測させる第4スイッチング手段と、
     前記第3スイッチング手段により前記計測手段に計測させた前記コンデンサの充電電圧と、前記第4スイッチング手段により前記計測手段に計測させた前記コンデンサの充電電圧とに基づいて、前記三相インバータ回路の一次側を含む前記非接地電源の直流回路部分における絶縁状態の検出を行うか、前記三相インバータ回路の二次側を含む前記非接地電源の交流回路部分における絶縁状態の検出を行うかを判定する第1判定手段と、
     前記交流回路部分における絶縁状態の検出を行うと前記第1判定手段が判定した場合に、前記予定時間中に前記コンデンサが連続充電されたか否かを判定する第2判定手段と、
     前記予定時間中に前記コンデンサが連続充電されたと前記第2判定手段が判定した場合に、前記直流回路部分における充電状態の検出を行うと前記第1判定手段が判定した場合と同じ求め方で、前記地絡抵抗の値を求める地絡抵抗値割出手段と、
     を備えることを特徴とする非接地電源の絶縁状態検出装置。
  6.  前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチングデューティー比に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする請求項5記載の非接地電源の絶縁状態検出装置。
  7.  前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記三相インバータ回路の直流-交流変換時のスイッチング周波数に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする請求項5又は6記載の非接地電源の絶縁状態検出装置。
  8.  前記予定時間中に前記コンデンサが連続充電されなかったと前記第2判定手段が判定した場合に、前記接地電位部と前記直流電源の正端子及び負端子との間にそれぞれ接続した正負のYコンデンサの容量に応じて補正した求め方で、前記地絡抵抗の値を求める補正地絡抵抗割出手段をさらに備えることを特徴とする請求項5、6又は7記載の非接地電源の絶縁状態検出装置。
PCT/JP2011/068076 2010-08-09 2011-08-08 非接地電源の絶縁状態検出方法及びその装置 WO2012020733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180039190.2A CN103069286B (zh) 2010-08-09 2011-08-08 不接地电源的绝缘状态的检测方法及其装置
EP11816397.1A EP2605026A4 (en) 2010-08-09 2011-08-08 Method and device for detecting insulating state of ungrounded power supply
US13/761,756 US8674704B2 (en) 2010-08-09 2013-02-07 Method for detecting insulating state of floating power supply, and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010178972 2010-08-09
JP2010-178972 2010-08-09
JP2011097520A JP5727851B2 (ja) 2010-08-09 2011-04-25 非接地電源の絶縁状態検出方法及びその装置
JP2011-097520 2011-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/761,756 Continuation US8674704B2 (en) 2010-08-09 2013-02-07 Method for detecting insulating state of floating power supply, and device therefor

Publications (1)

Publication Number Publication Date
WO2012020733A1 true WO2012020733A1 (ja) 2012-02-16

Family

ID=45567697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068076 WO2012020733A1 (ja) 2010-08-09 2011-08-08 非接地電源の絶縁状態検出方法及びその装置

Country Status (5)

Country Link
US (1) US8674704B2 (ja)
EP (1) EP2605026A4 (ja)
JP (1) JP5727851B2 (ja)
CN (1) CN103069286B (ja)
WO (1) WO2012020733A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042118A1 (ja) * 2012-09-13 2014-03-20 独立行政法人産業技術総合研究所 マルチレベル電力変換回路および装置
CN104094127A (zh) * 2012-02-29 2014-10-08 松下电器产业株式会社 车载用充电装置
JP2016504410A (ja) * 2013-01-10 2016-02-12 グラクソスミスクライン、インテレクチュアル、プロパティー、ナンバー2、リミテッドGlaxosmithkline Intellectual Property No.2 Limited 脂肪酸シンターゼ阻害剤

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736197B2 (ja) * 2011-03-09 2015-06-17 矢崎総業株式会社 絶縁状態検出ユニット
JP5623994B2 (ja) * 2011-07-29 2014-11-12 日立オートモティブシステムズ株式会社 電力変換装置
JP6008273B2 (ja) * 2012-04-25 2016-10-19 パナソニックIpマネジメント株式会社 インバータ装置
CN103323716B (zh) * 2013-06-26 2016-06-15 中车青岛四方车辆研究所有限公司 Dc48v绝缘监测装置
JP5705382B1 (ja) 2013-11-22 2015-04-22 三菱電機株式会社 絶縁検出器及び電気機器
DE102013226595A1 (de) * 2013-12-19 2015-06-25 Bender Gmbh & Co. Kg Vorrichtung zur Isolationsüberwachung
DE102014204870A1 (de) * 2014-03-17 2015-09-17 Continental Automotive Gmbh Vorrichtung und Verfahren zur Überwachung einer elektrischen Isolation bei einem Bordnetz eines Fahrzeugs
US10114058B2 (en) * 2014-09-30 2018-10-30 Ford Global Technologies, Llc System and method for high voltage leakage detection
US9630520B2 (en) * 2015-01-13 2017-04-25 Ford Global Technologies, Llc Circuit and method for battery leakage detection
JP6563347B2 (ja) * 2016-01-28 2019-08-21 株式会社デンソーテン 絶縁異常検知装置及び絶縁異常検知方法
JP6391619B2 (ja) * 2016-03-25 2018-09-19 株式会社デンソーテン 劣化特定装置および劣化特定方法
DE102016207197B3 (de) * 2016-04-27 2017-07-13 Bender Gmbh & Co. Kg Verfahren und Vorrichtungen zur Funktionsprüfung eines Isolationsüberwachungsgerätes
CN106291430A (zh) * 2016-09-08 2017-01-04 国网浙江省电力公司绍兴供电公司 直流系统绝缘监测装置试验系统及试验方法
DE102017002483A1 (de) 2017-03-15 2018-09-20 Man Truck & Bus Ag Technik zur Isolationsüberwachung in Fahrzeugen
CN107064603A (zh) * 2017-05-10 2017-08-18 东莞钜威动力技术有限公司 一种桥臂分压采集方法及装置
JP6989305B2 (ja) * 2017-06-30 2022-01-05 日本電産サンキョー株式会社 回路基板およびモータ制御装置
JP6854750B2 (ja) * 2017-12-25 2021-04-07 矢崎総業株式会社 地絡検出装置
JP7020952B2 (ja) * 2018-02-13 2022-02-16 本田技研工業株式会社 電源システム
JP2019161876A (ja) * 2018-03-14 2019-09-19 オークマ株式会社 電動機の絶縁劣化検出装置
DE102018217116B3 (de) * 2018-10-08 2020-03-12 Volkswagen Aktiengesellschaft Hochvoltsystem und Verfahren zur Überwachung von Isolationsfehlern in einem Hochvoltsystem
JP7039541B2 (ja) * 2019-11-15 2022-03-22 矢崎総業株式会社 地絡検出装置
CN111610411A (zh) * 2020-04-20 2020-09-01 华为技术有限公司 线缆绝缘阻抗检测方法和装置
CN117811398B (zh) * 2024-02-27 2024-05-17 深圳通业科技股份有限公司 一种高频辅助变流器控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224977B2 (ja) 1994-12-12 2001-11-05 本田技研工業株式会社 非接地電源の絶縁検出方法及び装置
JP2005304138A (ja) * 2004-04-08 2005-10-27 Toyota Motor Corp モータ駆動装置
JP3962990B2 (ja) 2002-11-18 2007-08-22 矢崎総業株式会社 非接地電源の絶縁検出装置
JP2011035985A (ja) * 2009-07-30 2011-02-17 Toyota Motor Corp 駆動装置およびその絶縁抵抗低下箇所判定方法並びに車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178617A (en) * 1977-01-07 1979-12-11 Black & Decker Inc. Suppressor-insulator member and circuit arrangement therefor
CN101793938A (zh) * 2010-03-30 2010-08-04 哈尔滨工业大学 逆变器功率管开路故障的在线检测装置及检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3224977B2 (ja) 1994-12-12 2001-11-05 本田技研工業株式会社 非接地電源の絶縁検出方法及び装置
JP3962990B2 (ja) 2002-11-18 2007-08-22 矢崎総業株式会社 非接地電源の絶縁検出装置
JP2005304138A (ja) * 2004-04-08 2005-10-27 Toyota Motor Corp モータ駆動装置
JP2011035985A (ja) * 2009-07-30 2011-02-17 Toyota Motor Corp 駆動装置およびその絶縁抵抗低下箇所判定方法並びに車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2605026A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094127A (zh) * 2012-02-29 2014-10-08 松下电器产业株式会社 车载用充电装置
US20150127201A1 (en) * 2012-02-29 2015-05-07 Panasonic Corporation In-vehicle charger
EP2821802A4 (en) * 2012-02-29 2015-12-09 Panasonic Ip Man Co Ltd CHARGER ON BOARD
US9579978B2 (en) 2012-02-29 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. In-vehicle charger
CN104094127B (zh) * 2012-02-29 2017-04-12 松下知识产权经营株式会社 车载用充电装置
WO2014042118A1 (ja) * 2012-09-13 2014-03-20 独立行政法人産業技術総合研究所 マルチレベル電力変換回路および装置
JPWO2014042118A1 (ja) * 2012-09-13 2016-08-18 国立研究開発法人産業技術総合研究所 マルチレベル電力変換回路および装置
JP2016504410A (ja) * 2013-01-10 2016-02-12 グラクソスミスクライン、インテレクチュアル、プロパティー、ナンバー2、リミテッドGlaxosmithkline Intellectual Property No.2 Limited 脂肪酸シンターゼ阻害剤

Also Published As

Publication number Publication date
CN103069286A (zh) 2013-04-24
JP5727851B2 (ja) 2015-06-03
CN103069286B (zh) 2015-12-02
US8674704B2 (en) 2014-03-18
JP2012058227A (ja) 2012-03-22
EP2605026A1 (en) 2013-06-19
US20130147491A1 (en) 2013-06-13
EP2605026A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5727851B2 (ja) 非接地電源の絶縁状態検出方法及びその装置
US11874339B2 (en) Insulation resistance determination apparatus
JP5687484B2 (ja) 絶縁状態検出ユニットのフライングキャパシタ故障検出装置
JP6633585B2 (ja) 地絡検出装置
JP5406614B2 (ja) 絶縁状態検出装置
JP6637749B2 (ja) 絶縁異常検知装置及び絶縁異常検知方法
US9350179B2 (en) Charging device
JP2011017586A (ja) 絶縁状態検出装置
CN104756393B (zh) 功率转换装置及其故障诊断方法
CN110927457B (zh) 逆变器及绝缘检测电路
JP6464752B2 (ja) 漏電判定装置
JP2012220470A (ja) 絶縁状態検出ユニットの故障検出装置
CN112955758B (zh) 用于具有多点拓扑的逆变器中的绝缘电阻测量的方法以及具有多点拓扑的逆变器
CN111060842B (zh) 漏电判断系统
CN111505409B (zh) 变频器母线电容在线检测方法及装置
US9759761B2 (en) Method and apparatus for monitoring capacitor bushings for a three-phase AC system
CN113167824A (zh) 绝缘电阻检测装置
CN1878685B (zh) 电车控制装置
JP7169935B2 (ja) 漏電判定装置
JP2016161352A (ja) 劣化検出装置および劣化検出方法
JP6089967B2 (ja) インバータ装置
JP6836411B2 (ja) 地絡検出装置、電源システム
JP2003219551A (ja) 漏電検出装置
JP5899807B2 (ja) コンバータ制御装置
WO2022080111A1 (ja) 漏電判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039190.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011816397

Country of ref document: EP