WO2012018111A1 - 真空ポンプ - Google Patents
真空ポンプ Download PDFInfo
- Publication number
- WO2012018111A1 WO2012018111A1 PCT/JP2011/067943 JP2011067943W WO2012018111A1 WO 2012018111 A1 WO2012018111 A1 WO 2012018111A1 JP 2011067943 W JP2011067943 W JP 2011067943W WO 2012018111 A1 WO2012018111 A1 WO 2012018111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- vacuum pump
- magnetic
- rotor
- vacuum
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/048—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/95—Preventing corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/171—Steel alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/507—Magnetic properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
Definitions
- the present invention relates to a vacuum pump having a rotor that rotates at high speed and suitable for use in a magnetic field.
- gas is exhausted by rotating the rotor on which the turbine blades are formed at a high speed with respect to the turbine blades on the fixed side.
- These fixed-side turbine blades and rotor are arranged in a pump casing in which an intake flange is formed (see, for example, Patent Document 1).
- the material of the turbo molecular pump pump casing is austenitic stainless steel (for example, excellent in corrosion resistance and tensile strength in consideration of corrosion resistance when exhausting corrosive gas, safety at the time of rotor breakage, etc.) SUS304) is commonly used.
- austenitic stainless steel is a non-magnetic material, so the magnetic field lines pass through the pump casing, eddy currents are generated in the rotor that rotates at high speed, and the rotor temperature is overheated by Joule heat.
- the vacuum pump is formed of a rotor formed with a rotation-side exhaust function unit, a motor that rotationally drives the rotor with respect to the fixed-side exhaust function unit, and a magnetic material. And a cylindrical pump casing in which the fixed-side exhaust function unit is disposed.
- the rotation-side exhaust function part includes a plurality of rotation-side turbine blade stages disposed in the inner space of the pump casing, and the rotation-side turbine blade stage.
- a cylindrical drag pump rotating part provided on the downstream side and arranged away from the inner space, and the fixed exhaust function part includes a plurality of fixed turbine blade stages and an outer peripheral side of the drag pump rotating part.
- a magnetic bearing device having a thrust magnetic bearing for supporting the rotor in the axial direction and a radial bearing for supporting the rotor in the radial direction;
- a pump base portion provided with a magnetic bearing device, formed of a nonmagnetic material, an axial sensor for detecting the axial position of the rotor, a radial sensor for detecting the radial position of the rotor, and a magnetic material,
- a first magnetic shielding member that is provided at the intake port of the pump casing and reduces the penetration of an external magnetic field into the pump via the intake port, and is formed of a magnetic material and is provided at the pump base portion to the magnetic bearing device.
- the second magnetic shielding member constitutes a vacuum container in which at least an axial sensor is accommodated.
- the second magnetic shielding member extends in the direction of the pump casing so as to cover the outer periphery of the pump base portion formed of a nonmagnetic material. It is preferable to include a third magnetic shielding member made of a magnetic material.
- the second magnetic shielding member and the third magnetic shielding member are integrally formed.
- the magnetic shield member includes a disk part and a support beam that supports the disk part at the center of the air inlet. It is preferable to have.
- the rotor has a plurality of turbine blades as the rotation-side exhaust function part, and the outer diameter D of the disk part is set to the outer diameter Ds of the radial sensor. It is preferable to set the diameter Dri or less of the circle passing through the roots of the plurality of turbine blades formed in the circumferential direction of the rotor.
- the vacuum pump further includes a protective net that is bolted to the air inlet of the pump casing and prevents foreign matter from entering the pump.
- the pump casing is preferably formed with a threaded hole for fixing a bolt.
- the first magnetic shielding member is provided at the inlet of the pump casing to prevent foreign matter from entering the pump. It is preferable to also use a protective net.
- the pump casing is formed of S45C which is carbon steel.
- the surface of the magnetic material is preferably subjected to a corrosion resistance treatment including an NP plating treatment.
- FIG. 1 It is sectional drawing of the pump main body 1 which comprises a turbo-molecular pump.
- FIG. The figure explaining the effect
- FIG. The figure which shows the modification of 2nd Embodiment.
- FIG. 1 is a view showing an embodiment of a vacuum pump according to the present invention, and is a cross-sectional view of a pump body 1 constituting a turbo molecular pump.
- the turbo molecular pump is composed of a pump body 1 shown in FIG. 1 and a control unit (not shown).
- the turbo molecular pump shown in FIG. 1 is a magnetic levitation turbo molecular pump, and the rotor 30 is supported in a non-contact manner by a radial magnetic bearing 37 and a thrust magnetic bearing 38.
- the flying position of the rotor 30 is detected by a radial displacement sensor 27 and an axial displacement sensor 28.
- the rotor 30 magnetically levitated by the magnetic bearings is driven to rotate at high speed by the motor 36.
- 26 and 29 are emergency mechanical bearings, and the rotor 30 is supported by these mechanical bearings 26 and 29 when the magnetic bearing is not operating.
- the turbo molecular pump described in the present embodiment includes a turbo pump unit and a drag pump unit as an exhaust function unit.
- the turbo pump unit includes a plurality of stages of rotating blades 32 formed on the rotor 30 and a plurality of stages of fixed blades 22 alternately arranged in the axial direction with respect to the plurality of stages of rotating blades 32.
- the drag pump unit includes a cylindrical part 31 formed in the rotor 30 and a screw stator 24 arranged with a predetermined gap so as to surround the outer peripheral side of the cylindrical part 31.
- the rotary blade 32 and the cylindrical portion 31 constitute a rotation side exhaust function unit, and the fixed blade 22 and the screw stator 24 constitute a fixed side exhaust function unit.
- the rotor 30 and the fixed wing 22 are disposed inside a cylindrical pump casing 2 made of a magnetic material. Each fixed wing 22 is placed on the base 20 via the spacer ring 23. When the fixing flange 21c of the pump casing 2 is fixed to the base 20 with a bolt, the stacked spacer ring 23 is sandwiched between the base 20 and the pump casing 2, and the fixed blade 22 is positioned.
- the base 20 is provided with an exhaust port 25, and a back pump is connected to the exhaust port 25.
- the rotor 30 is magnetically levitated and driven at high speed by the motor 36, the gas molecules on the intake port 21a side are exhausted to the exhaust port 25 side.
- An inlet flange 21b is formed on the inlet side of the pump casing 2, and gas molecules flow into the pump from the inlet 21a formed in the inlet flange 21b.
- the inlet flange 21b is generally bolted to the device-side flange.
- a plurality of bolt holes for passing bolts are formed in the intake flange 21b. The number of bolt holes and the hole diameter are determined by flange standards.
- a protection net 8 is bolted to the intake flange 21b to prevent foreign matter from entering the pump.
- FIG. 2 is a diagram schematically showing the state of the lines of magnetic force when the pump body 1 is arranged in an external magnetic field, and shows a cross section BB of FIG. 2A shows the case of a conventional turbo molecular pump, and FIG. 2B shows the case of the turbo molecular pump of the present embodiment.
- a solid line denoted by reference numeral 100 indicates a line of magnetic force due to an external magnetic field.
- Reference symbol R indicates the rotation direction of the rotor 30.
- the pump casing 2 is made of a magnetic material having a high magnetic permeability, the magnetic field lines are concentrated on the pump casing 2, and the space inside the pump casing is defined by the pump casing 2. Magnetically shielded. Therefore, the rotor 30 is hardly affected by the external magnetic field, and generation of eddy current is prevented.
- FIG. 3 shows the tensile strength of a typical magnetic material, in which permalloy and mechanical structural steel have a tensile strength equal to or higher than 520 MPa of SUS304.
- FIG. 4 shows the tensile strength of mechanical structural alloy steel (JIS G 4053), and FIG. 5 shows the tensile strength of mechanical structural carbon steel (JIS G 4051).
- the alloy steel for machine structure shown in FIG. 4 all have a tensile strength of 700 MPa or more, which exceeds the tensile strength (520 MPa) of SUS304. That is, it can be used instead of SUS304.
- the carbon steel for mechanical structure shown in FIG. 5 the S45C and S55C having a large carbon content have a tensile strength exceeding SUS304. If the same level as SUS304 is selected, S45C shown in FIG. 5 is appropriate.
- the pump casing 2 is required to have corrosion resistance, when the materials shown in FIGS. 4 and 5 are used, it is necessary to form a corrosion-resistant protective film on the surface of the pump casing.
- the corrosion-resistant protective film there are plating treatment such as nickel plating and electrodeposition coating, but nickel plating treatment is preferable in terms of corrosion resistance.
- FIG. 6 is a view showing a protective net fixing screw hole 200 formed in the inlet flange portion of the pump casing 2.
- a protective net 8 for preventing foreign matter from being sucked in is installed in the air inlet 21a of the pump casing 2, and the protective net 8 is bolted to the air inlet flange 21b.
- a screw hole 200 into which the bolt 201 is screwed is formed in the inlet flange 21b.
- the screw hole 200 is a penetrating screw hole in order to improve the ability of plating to the screw hole 200.
- the protective net fixing bolt 201 As the protective net fixing bolt 201, a bolt having a size as small as possible, for example, a bolt of about M3 is used in order to increase the opening area of the intake port 21a. Therefore, when the screw hole 200 is not penetrated, the plating thickness decreases as it goes deeper into the screw hole 200, and the bottom portion of the screw hole 200 may not be plated. In such a case, even if the bolt 201 is screwed, the corrosive gas may go into the space behind the screw hole 200, which may cause rust in the pump casing 2. However, by using the through hole as shown in FIG. 6, occurrence of such a problem can be prevented. Moreover, the pump casing 2 can be manufactured at a lower cost by using carbon steel instead of the conventional SUS304.
- the pump casing 2 is provided so as to surround the outer periphery of the turbo pump unit.
- the turbo pump unit (22, 32) and the drag pump unit It is good also as a pump casing which surrounds both (24, 31).
- the magnetic shielding effect of the pump casing 2 with respect to the rotor 30 can be further enhanced.
- the shape of the pump casing 2 may be the same as that shown in FIG. 1 and the screw stator 24 may be formed of the same magnetic material as that of the pump casing 2. Thereby, the cylindrical portion 31 of the rotor 30 is magnetically shielded by the screw stator 24. Also in this case, the screw stator 24 is formed of a magnetic material and a corrosion-resistant protective film such as nickel plating is formed.
- FIG. 8 is a diagram showing a second embodiment of the present invention.
- the turbo molecular pump shown in FIG. 8 has the same basic structure as the pump shown in FIG. 1 except that a thrust cover 40, a thrust cover 41, and a magnetic shield member 42 formed of a magnetic material are provided. .
- FIG. 8 shows the configuration of the magnetic bearing in detail, but the structure is the same as that of the pump magnetic bearing shown in FIG.
- the pump casing 2 and the screw stator 24 are made of a magnetic material having a high magnetic permeability, as in the first embodiment.
- the upper electromagnet 38 a that constitutes the magnetic bearing 38 in the thrust direction is provided in the base 20, but the lower electromagnet 38 b is a thrust cover fixed to the bottom of the base 20. 40, 41.
- An axial displacement sensor 28 provided corresponding to the magnetic bearing 38 is also disposed in the thrust covers 40 and 41.
- the thrust covers 40 and 41 made of a magnetic material constitute a magnetic shielding case in which the axial displacement sensor 28 and the lower electromagnet 38b are accommodated.
- FIG. 9 is a view taken in the direction of arrow A in FIG.
- the inlet flange 21b of the pump casing 2 is provided with a magnetic shield member 42 having a shape as shown in FIG.
- the magnetic shield member 42 includes a disc part 42a disposed at the center of the air inlet 21a, a ring part 42b fixed to the air inlet flange 21b, and a connecting part 42c.
- the connecting portion 42c functions as a beam that supports the disc portion 42a in the center of the air inlet 21a, and also has a function as a magnetic path that guides magnetic flux from the disc portion 42a to the ring portion 42b.
- Four openings 421 surrounded by the disc part 42a, the ring part 42b, and the connecting part 42c are substantial pump openings.
- the diameter dimension of the disc part 42a is set to D.
- FIG. 10 is a diagram for explaining the action of the thrust covers 40 and 41 and the magnetic shield member 42 as a magnetic shield.
- FIG. 10 shows a case where an external magnetic field in the axial direction is applied to the pump body 1.
- An arrow line denoted by reference numeral 300 represents a magnetic flux.
- the magnetic flux that has entered the air inlet flange 21b from the upper side of the figure tends to gather on an object having a high magnetic permeability, and therefore tends to gather on the magnetic shield member 42 and the pump casing 2 made of a magnetic material. Therefore, most of the magnetic flux 300 passes through the pump casing 2 to the base 20.
- the opening 420 is formed in the magnetic shield member 42, a part of the magnetic flux enters the pump casing 2 through the opening 420.
- the magnetic shield member 42 plays a role as a magnetic shield, it is better to increase the diameter D of the disk portion 42a and reduce the opening portion 421.
- the exhaust performance as a vacuum pump. In order to suppress this decrease, it is better to make the opening 421 as large as possible. Therefore, in the present embodiment, the diameter D of the disc portion 42a is configured to satisfy the condition “Ds ⁇ D ⁇ Dri” in order to reduce the influence of the external magnetic field on the magnetic bearing. As shown in FIG. 8, Ds is the outer diameter dimension of the radial displacement sensor 27, and Dri is the diameter of a circle passing through the root portion of the uppermost rotor blade 32.
- the condition “D ⁇ Dri” is set from the viewpoint of suppressing a decrease in exhaust performance.
- the gas molecules that have passed through the opening 420 of the magnetic shield member 42 and have flowed into the pump casing 2 are reflected by the upper surface of the rotor 30. Will proceed to the intake side. That is, the gas molecules flowing through the central portion of the intake port 21a have a low probability of being exhausted by the pump. Therefore, even if the disc part 42a that obstructs the inflow of gas molecules is arranged at the central portion of the intake port 21a, the influence on the exhaust performance degradation can be suppressed low.
- the outer diameter D of the disc portion 42a is set to the diameter dimension Dri of the blade root so as not to obstruct the flow of gas molecules that enter the outer peripheral side from the blade root portion of the rotor blade 32 through the air inlet 21a.
- the following is preferable.
- the ring portion 42b for attaching the magnetic shield member 42 to the intake port flange 21b is provided, but the ring portion 42b is omitted and the connecting portion 42c is connected to the intake port flange. You may make it fix to 21b.
- the condition “Ds ⁇ D” is set in order to reduce the influence of the external magnetic field on the magnetic bearing control.
- the magnetic flux that has entered through the opening 420 passes through the rotor 30 made of a nonmagnetic material (for example, aluminum) and reaches the magnetic bearing portion. Therefore, in order to suppress the influence, the outer diameter D of the disc portion 42a is set to be equal to or larger than the outer diameter Ds of the radial displacement sensor 27.
- the magnetic flux 300 that has escaped from the pump casing 2 to the base 20 is more likely to gather into the screw stator 24 that is made of a magnetic material having a high magnetic permeability than the base 20 that is made of an aluminum material that passes through the base 20 as it is.
- the magnetic flux 300 that has passed through the screw stator 24 passes through the thrust cover 40, 41 fixed to the lower part of the base via the base 20 and goes out of the pump. Therefore, the parts related to the thrust magnetic bearing 38 are magnetically shielded by the thrust covers 40 and 41, and are not easily affected by the external magnetic field.
- the thrust covers 40 and 41 function as a magnetic shielding member that shields the influence of the external magnetic field, and have a shielding effect not only for the axial external magnetic field but also for the radial external magnetic field. ing.
- the thrust cover 40 may become a path for the magnetic flux of the electromagnet 38b.
- pure iron or the like having a high magnetic permeability is used for the core of the electromagnet 38b, so that the influence of the thrust cover 40 is considered to be small, but care must be taken when selecting a magnetic material. Therefore, it is preferable to select the thrust cover 40 having a magnetic permeability smaller than that of the core.
- FIG. 11 is a view showing a modification of the turbo molecular pump shown in FIG.
- a disc 40b and a cylinder 40c made of a magnetic material are additionally provided in the thrust cover 40.
- the thrust cover 40 and the disc 40b, and the disc 40b and the cylinder 40c may be fastened with bolts or the like, or the thrust cover 40, the disc 40b, and the cylinder 40c may be integrally formed.
- surface treatment such as Ni-P plating on the disc 40b and the cylinder 40c can be omitted.
- the magnetic flux that has passed through the pump casing 2 is guided to the thrust cover 40 through the screw stator 24.
- the cross-sectional area of the screw stator 24 that is the path of the magnetic flux cannot be increased due to design reasons, the saturation magnetic flux density of the screw stator 24 may be exceeded depending on the strength of the external magnetic field. In such a case, magnetism may leak and eddy currents may be generated in the cylindrical portion 31 of the rotor 30 that is in close proximity.
- the disc 40b and the cylinder 40c made of a magnetic material are provided so as to extend from the thrust cover 40 toward the fixing flange 21c of the pump casing 2.
- the magnetic flux enters the cylindrical portion 40c from the pump casing and passes downward through the disc 40b and the thrust covers 40 and 41.
- the screw stator 24 may be formed of a magnetic material or a nonmagnetic material.
- the magnetic shield member 42 in the second embodiment is an example of a magnetic shield member disposed in the air inlet 21a, and may have a shape as shown in FIG. In FIG. 12, a plurality of circular openings 422 having a smaller area than the opening 421 shown in FIG. 9 are uniformly distributed in the inlet region. The diameter of the circular opening 422 may be further reduced so as to have the function of a conventional protective net.
- the present invention can be similarly applied to a vacuum pump having only a turbo molecular pump unit and a vacuum pump having only a drag pump unit.
- Japanese patent application 2010 No. 177136 (filed on Aug. 6, 2010)
- Japanese Patent Application 2010 No. 2332977 (filed on October 15, 2010)
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様の真空ポンプにおいて、回転側排気機能部は、ポンプケーシングの内側空間に配置された複数の回転側タービン翼段と、回転側タービン翼段の下流側に設けられて内側空間から外れて配置された円筒状のドラッグポンプ回転部とを有し、固定側排気機能部は、複数の固定側タービン翼段と、ドラッグポンプ回転部の外周側を囲むように隙間を介して配置されるとともに磁性材料で形成された円筒状のドラッグポンプ固定部と、を有することが好ましい。
本発明の第3の態様によると、第1または第2の態様の真空ポンプにおいて、ロータの軸方向の支持を行うスラスト磁気軸受およびロータの径方向の支持を行うラジアル軸受を有する磁気軸受装置と、磁気軸受装置が設けられ、非磁性材料で形成されたポンプベース部と、ロータの軸方向位置を検出するアキシャルセンサと、ロータの径方向位置を検出するラジアルセンサと、磁性材料で形成され、ポンプケーシングの吸気口に設けられて吸気口を介した外部磁場のポンプ内への侵入を低減する第1の磁気遮蔽部材と、磁性材料で形成され、ポンプベース部に設けられて磁気軸受装置への外部磁場の影響を低減する第2の磁気遮蔽部材と、を備えることが好ましい。
本発明の第4の態様によると、第3の態様の真空ポンプにおいて、第2の磁気遮蔽部材は、少なくともアキシャルセンサが収容される真空容器を構成していることが好ましい。
本発明の第5の態様によると、第4の態様の真空ポンプにおいて、非磁性材料で形成されたポンプベース部の外周を覆うように第2の磁気遮蔽部材からポンプケーシングの方向に延在する、磁性材料で形成された第3の磁気遮蔽部材を備えることが好ましい。
本発明の第6の態様によると、第5の態様の真空ポンプにおいて、第2の磁気遮蔽部材と第3の磁気遮蔽部材とを一体に形成することが好ましい。
本発明の第7の態様によると、第3乃至第6のいずれかの態様の真空ポンプにおいて、磁気シールド部材は、円板部と、円板部を吸気口の中央に支持する支持梁とを有することが好ましい。
本発明の第8の態様によると、第7の態様の真空ポンプにおいて、ロータは回転側排気機能部として複数のタービン翼を有し、円板部の外径Dを、ラジアルセンサの外径Ds以上、かつ、ロータの周方向に形成された複数のタービン翼の各翼付け根を通る円の直径Dri以下に設定することが好ましい。
本発明の第9の態様によると、第1乃至第8のいずれかの態様の真空ポンプにおいて、ポンプケーシングの吸気口にボルト固定され、ポンプ内への異物侵入を防止する保護ネットをさらに備え、ポンプケーシングには、ボルト固定用の貫通したネジ孔が形成されていることが好ましい。
本発明の第10の態様によると、第3乃至第6のいずれかの態様の真空ポンプにおいて、第1の磁気遮蔽部材は、ポンプケーシングの吸気口に設けられてポンプ内への異物侵入を防止する保護ネットを兼用することが好ましい。
本発明の第11の態様によると、第1乃至第10のいずれかの態様の真空ポンプにおいて、磁性材料として炭素鋼または合金鋼を用いることが好ましい。
本発明の第12の態様によると、第11の態様の真空ポンプにおいて、ポンプケーシングを炭素鋼であるS45Cで形成することが好ましい。
本発明の第13の態様によると、第11または第12の態様の真空ポンプにおいて磁性材料の表面は、N-Pメッキ処理を含む耐食処理が施されていることが好ましい。
-第1の実施の形態-
図1は本発明に係る真空ポンプの一実施の形態を示す図であり、ターボ分子ポンプを構成するポンプ本体1の断面図である。ターボ分子ポンプは、図1に示すポンプ本体1と不図示のコントロールユニットとで構成される。
図8は、本発明の第2の実施の形態を示す図である。図8に示すターボ分子ポンプはポンプとしての基本構造は図1に示したポンプと同一であるが、磁性材料で形成されたスラストカバー40、スラストカバー41および磁気シールド部材42を備えた点が異なる。また、図8では磁気軸受の構成を詳細に示したが、その構造は図1に示すポンプの磁気軸受と同一のものである。
日本国特許出願2010年第177136号(2010年8月6日出願)
日本国特許出願2010年第232977号(2010年10月15日出願)
Claims (13)
- 回転側排気機能部が形成されたロータと、
固定側排気機能部に対して前記ロータを回転駆動するモータと、
磁性材料で形成され、前記ロータおよび前記固定側排気機能部が内部に配置される筒状のポンプケーシングと、を備えた真空ポンプ。 - 請求項1に記載の真空ポンプにおいて、
前記回転側排気機能部は、前記ポンプケーシングの内側空間に配置された複数の回転側タービン翼段と、前記回転側タービン翼段の下流側に設けられて前記内側空間から外れて配置された円筒状のドラッグポンプ回転部とを有し、
前記固定側排気機能部は、複数の固定側タービン翼段と、前記ドラッグポンプ回転部の外周側を囲むように隙間を介して配置されるとともに磁性材料で形成された円筒状のドラッグポンプ固定部と、を有する真空ポンプ。 - 請求項1または2に記載の真空ポンプにおいて、
前記ロータの軸方向の支持を行うスラスト磁気軸受および前記ロータの径方向の支持を行うラジアル軸受を有する磁気軸受装置と、
前記磁気軸受装置が設けられ、非磁性材料で形成されたポンプベース部と、
前記ロータの軸方向位置を検出するアキシャルセンサと、
前記ロータの径方向位置を検出するラジアルセンサと、
磁性材料で形成され、前記ポンプケーシングの吸気口に設けられて前記吸気口を介した外部磁場のポンプ内への侵入を低減する第1の磁気遮蔽部材と、
磁性材料で形成され、前記ポンプベース部に設けられて前記磁気軸受装置への外部磁場の影響を低減する第2の磁気遮蔽部材と、を備えた真空ポンプ。 - 請求項3に記載の真空ポンプにおいて、
前記第2の磁気遮蔽部材は、少なくとも前記アキシャルセンサが収容される真空容器を構成している真空ポンプ。 - 請求項4に記載の真空ポンプにおいて、
前記非磁性材料で形成されたポンプベース部の外周を覆うように前記第2の磁気遮蔽部材から前記ポンプケーシングの方向に延在する、磁性材料で形成された第3の磁気遮蔽部材を備える真空ポンプ。 - 請求項5に記載の真空ポンプにおいて、
前記第2の磁気遮蔽部材と前記第3の磁気遮蔽部材とを一体に形成した真空ポンプ。 - 請求項3乃至6のいずれか一項に記載の真空ポンプにおいて、
前記磁気シールド部材は、円板部と、前記円板部を前記吸気口の中央に支持する支持梁とを有する真空ポンプ。 - 請求項7に記載の真空ポンプにおいて、
前記ロータは前記回転側排気機能部として複数のタービン翼を有し、
前記円板部の外径Dを、前記ラジアルセンサの外径Ds以上、かつ、前記ロータの周方向に形成された複数の前記タービン翼の各翼付け根を通る円の直径Dri以下に設定した真空ポンプ。 - 請求項1乃至8のいずれか一項に記載の真空ポンプにおいて、
前記ポンプケーシングの吸気口にボルト固定され、ポンプ内への異物侵入を防止する保護ネットをさらに備え、
前記ポンプケーシングには、ボルト固定用の貫通したネジ孔が形成されている真空ポンプ。 - 請求項3乃至6のいずれか一項に記載の真空ポンプにおいて、
前記第1の磁気遮蔽部材は、前記ポンプケーシングの吸気口に設けられてポンプ内への異物侵入を防止する保護ネットを兼用する真空ポンプ。 - 請求項1乃至10のいずれか一項に記載の真空ポンプにおいて、
前記磁性材料として炭素鋼または合金鋼を用いた真空ポンプ。 - 請求項11に記載の真空ポンプにおいて、
前記ポンプケーシングを炭素鋼であるS45Cで形成した真空ポンプ。 - 請求項11または12に記載の真空ポンプにおいて、
前記磁性材料の表面は、N-Pメッキ処理を含む耐食処理が施されている真空ポンプ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012527783A JP5494807B2 (ja) | 2010-08-06 | 2011-08-05 | 真空ポンプ |
CN201180038924.5A CN103069173B (zh) | 2010-08-06 | 2011-08-05 | 真空泵 |
US13/813,345 US20130129482A1 (en) | 2010-08-06 | 2011-08-05 | Vacuum pump |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-177136 | 2010-08-06 | ||
JP2010177136 | 2010-08-06 | ||
JP2010-232977 | 2010-10-15 | ||
JP2010232977 | 2010-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012018111A1 true WO2012018111A1 (ja) | 2012-02-09 |
Family
ID=45559606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067943 WO2012018111A1 (ja) | 2010-08-06 | 2011-08-05 | 真空ポンプ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130129482A1 (ja) |
JP (1) | JP5494807B2 (ja) |
CN (1) | CN103069173B (ja) |
WO (1) | WO2012018111A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015048738A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社島津製作所 | ターボ分子ポンプ |
JP2015158201A (ja) * | 2014-02-21 | 2015-09-03 | プファイファー・ヴァキューム・ゲーエムベーハー | 真空ポンプ |
JP2020012467A (ja) * | 2018-07-20 | 2020-01-23 | プファイファー・ヴァキューム・ゲーエムベーハー | 真空ポンプ |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104466606B (zh) * | 2014-11-18 | 2017-11-10 | 宁波日鼎电子科技有限公司 | 一种部份导通的连接器外壳电泳处理方法 |
EP3034881B1 (de) * | 2014-12-18 | 2018-10-31 | Pfeiffer Vacuum GmbH | Vakuumpumpe |
JP6433812B2 (ja) * | 2015-02-25 | 2018-12-05 | エドワーズ株式会社 | アダプタ及び真空ポンプ |
JP6578838B2 (ja) * | 2015-09-15 | 2019-09-25 | 株式会社島津製作所 | 真空ポンプおよび質量分析装置 |
JP6658309B2 (ja) * | 2016-05-31 | 2020-03-04 | 株式会社島津製作所 | 真空ポンプ |
JP6948147B2 (ja) * | 2017-04-18 | 2021-10-13 | エドワーズ株式会社 | 真空ポンプ、真空ポンプに備わる磁気軸受部およびシャフト |
JP6927735B2 (ja) | 2017-04-20 | 2021-09-01 | エドワーズ株式会社 | 真空ポンプ、磁気軸受装置及びロータ |
JPWO2018198288A1 (ja) * | 2017-04-27 | 2020-05-14 | 株式会社島津製作所 | ポンプ監視装置、真空処理装置および真空ポンプ |
JP6992569B2 (ja) * | 2018-02-14 | 2022-01-13 | 株式会社島津製作所 | 真空ポンプおよびバランス調整方法 |
EP3640481B1 (de) * | 2018-10-15 | 2023-05-03 | Pfeiffer Vacuum Gmbh | Vakuumpumpe |
GB2588146A (en) * | 2019-10-09 | 2021-04-21 | Edwards Ltd | Vacuum pump |
EP3926174B1 (de) * | 2021-06-29 | 2023-06-14 | Pfeiffer Vacuum Technology AG | Vakuumpumpe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252288A (ja) * | 1987-04-08 | 1988-10-19 | 日本原子力研究所 | タ−ボ分子ポンプのシ−ルド装置 |
JPH01190991A (ja) * | 1988-01-26 | 1989-08-01 | Osaka Shinku Kiki Seisakusho:Kk | 真空ポンプ |
JPH03119272U (ja) * | 1990-03-20 | 1991-12-09 | ||
JP2003003988A (ja) * | 2001-06-22 | 2003-01-08 | Boc Edwards Technologies Ltd | 真空ポンプ |
JP2003129991A (ja) * | 2001-10-24 | 2003-05-08 | Boc Edwards Technologies Ltd | 分子ポンプ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021092A (ja) * | 2001-07-03 | 2003-01-24 | Boc Edwards Technologies Ltd | 真空ポンプ |
ATE483114T1 (de) * | 2005-08-24 | 2010-10-15 | Mecos Traxler Ag | Magnetlagereinrichtung mit verbesserter gehäusedurchführung bei vakuum |
JP3119272U (ja) * | 2005-12-08 | 2006-02-16 | 株式会社島津製作所 | 分子ポンプ |
KR100944543B1 (ko) * | 2008-07-31 | 2010-03-03 | 주식회사 중원 에스엠이티 | 마그네트 펌프용 커플러 |
-
2011
- 2011-08-05 WO PCT/JP2011/067943 patent/WO2012018111A1/ja active Application Filing
- 2011-08-05 JP JP2012527783A patent/JP5494807B2/ja not_active Expired - Fee Related
- 2011-08-05 CN CN201180038924.5A patent/CN103069173B/zh not_active Expired - Fee Related
- 2011-08-05 US US13/813,345 patent/US20130129482A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252288A (ja) * | 1987-04-08 | 1988-10-19 | 日本原子力研究所 | タ−ボ分子ポンプのシ−ルド装置 |
JPH01190991A (ja) * | 1988-01-26 | 1989-08-01 | Osaka Shinku Kiki Seisakusho:Kk | 真空ポンプ |
JPH03119272U (ja) * | 1990-03-20 | 1991-12-09 | ||
JP2003003988A (ja) * | 2001-06-22 | 2003-01-08 | Boc Edwards Technologies Ltd | 真空ポンプ |
JP2003129991A (ja) * | 2001-10-24 | 2003-05-08 | Boc Edwards Technologies Ltd | 分子ポンプ |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015048738A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社島津製作所 | ターボ分子ポンプ |
US9926792B2 (en) | 2013-08-30 | 2018-03-27 | Shimadzu Corporation | Turbo-molecular pump |
JP2015158201A (ja) * | 2014-02-21 | 2015-09-03 | プファイファー・ヴァキューム・ゲーエムベーハー | 真空ポンプ |
JP2020012467A (ja) * | 2018-07-20 | 2020-01-23 | プファイファー・ヴァキューム・ゲーエムベーハー | 真空ポンプ |
Also Published As
Publication number | Publication date |
---|---|
CN103069173A (zh) | 2013-04-24 |
JP5494807B2 (ja) | 2014-05-21 |
JPWO2012018111A1 (ja) | 2013-10-03 |
CN103069173B (zh) | 2016-05-04 |
US20130129482A1 (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5494807B2 (ja) | 真空ポンプ | |
US10024327B2 (en) | Turbomolecular pump, and method of manufacturing rotor | |
JP6331491B2 (ja) | 真空ポンプ | |
WO2012105116A1 (ja) | 真空ポンプの回転体と、これに対向設置する固定部材、及び、これらを備えた真空ポンプ | |
JP3119272U (ja) | 分子ポンプ | |
US11976663B2 (en) | Vacuum pump, rotor, and rotor body with rupture location control means on the rotor | |
US20060110271A1 (en) | Foil shield for a vacuum pump with a high-speed rotor | |
JP2019039431A (ja) | 調整リング | |
JP2006046074A (ja) | 真空ポンプ | |
US8591204B2 (en) | Turbo-molecular pump | |
JP2015158201A (ja) | 真空ポンプ | |
JP2016048038A (ja) | 遠心式送風機 | |
JP5331525B2 (ja) | 水力発電装置 | |
JP6079083B2 (ja) | ターボ分子ポンプおよびスペーサ | |
JP6391160B2 (ja) | 磁気軸受及び回転機械 | |
JP3144272U (ja) | ターボ分子ポンプ | |
JP5434684B2 (ja) | ターボ分子ポンプ | |
JP5208055B2 (ja) | ロータ構造 | |
KR102669883B1 (ko) | 터보 분자 펌프 | |
EP2055960A2 (en) | Rotary apparatus | |
JP7513256B2 (ja) | スラスト軸受部品 | |
JP7463332B2 (ja) | 真空ポンプ、真空ポンプの軸受保護構造、及び真空ポンプの回転体 | |
JP7424007B2 (ja) | 真空ポンプ | |
JP2008240571A (ja) | ターボ分子ポンプ | |
US10404118B2 (en) | Vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180038924.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814736 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012527783 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813345 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11814736 Country of ref document: EP Kind code of ref document: A1 |