WO2012018045A1 - 樹脂製モールド、その製造方法およびその使用方法 - Google Patents

樹脂製モールド、その製造方法およびその使用方法 Download PDF

Info

Publication number
WO2012018045A1
WO2012018045A1 PCT/JP2011/067769 JP2011067769W WO2012018045A1 WO 2012018045 A1 WO2012018045 A1 WO 2012018045A1 JP 2011067769 W JP2011067769 W JP 2011067769W WO 2012018045 A1 WO2012018045 A1 WO 2012018045A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
mold
resin mold
substrate
Prior art date
Application number
PCT/JP2011/067769
Other languages
English (en)
French (fr)
Inventor
諭 上原
三澤 毅秀
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to DK11814670.3T priority Critical patent/DK2602081T3/en
Priority to CN201180038599.2A priority patent/CN103079788B/zh
Priority to KR1020137003988A priority patent/KR101848863B1/ko
Priority to SG2013008354A priority patent/SG187700A1/en
Priority to US13/814,310 priority patent/US9511535B2/en
Priority to EP11814670.3A priority patent/EP2602081B1/en
Priority to JP2012527751A priority patent/JP5292622B2/ja
Publication of WO2012018045A1 publication Critical patent/WO2012018045A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • B29C33/405Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/58Applying the releasing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • B29C43/085Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables and material fed in a continuous form, e.g. as a band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a resin mold. More specifically, the present invention relates to a resin mold having good releasability from a resin to be imprinted.
  • the imprint technology is a technique in which a mold having a concavo-convex pattern is pressed against a liquid resin on a substrate and the mold pattern is transferred to the resin.
  • Concavo-convex patterns exist from nanoscales of 10 nm level to about 100 ⁇ m, and are used in various fields such as semiconductor materials, optical materials, storage media, micromachines, biotechnology, and the environment.
  • a mold having a predetermined shape formed on the surface thereof is pressed against a thermoplastic resin melted at a glass transition temperature or higher, and the surface shape of the mold is heat-imprinted on the thermoplastic resin and cooled.
  • Examples include thermal imprint for removing the rear mold, and optical imprint for removing the mold after pressing the same mold against the photocurable resin and curing the photocurable resin by ultraviolet irradiation.
  • a release layer is provided on the concavo-convex surface of the mold to give the resin a release property.
  • a release layer is provided on the concavo-convex surface of the mold to give the resin a release property.
  • it is known to improve the fixability of the release agent to the mold by performing plasma treatment or silane coupling agent treatment on the surface of the mold for example, Patent Document 1). reference).
  • it is known to use a perfluoropolyether having a functional group that chemically reacts with a mold material as a release agent see, for example, Patent Document 2 and Patent Document 3).
  • resin molds have been used from the viewpoint of versatility and cost.
  • a mold release agent is also used for resin molds.
  • the degree of fixing of the release agent is about the same, and there is a problem that the release layer is transferred to the transfer target resin.
  • a technique for improving the fixability of the layer to the resin mold has been desired.
  • an oxide layer made of an inorganic oxide is formed on the surface of the replica mold to prevent the peeling layer from falling off the surface of the replica mold.
  • JP 2010-5841 A Japanese Patent No. 4154595 JP 2004-306030 A
  • a resin mold having a layer The resin layer has a solvent-soluble resin, and a substituent that can bind to the release agent and has a compatibility with the solvent-soluble resin, and has an bleedability to the solvent-soluble resin.
  • the additive is unevenly distributed near the surface of the resin layer, and a group capable of binding to the release agent of the additive is chemically bonded to the release agent to join the resin layer and the release layer. Resin mold.
  • Y is a methoxy group or an ethoxy group
  • X is an epoxy group, a glycidoxy group, a phenyl group which may have a substituent, and an organic group containing one kind selected from the group consisting of an amino group
  • N is 0 or 1.
  • the release agent is at least one selected from the group consisting of a fluorine-based silane coupling agent, a one-end aminated perfluoro (perfluoroether) compound, and a one-end carboxylated perfluoro (perfluoroether) compound.
  • the resin mold as set forth in any one of [1] to [8], wherein [10]
  • the resin mold according to any one of [1] to [9], wherein the substrate is a resin substrate, a glass substrate, a silicon substrate, a sapphire substrate, a carbon substrate, or a GaN substrate.
  • the resin substrate is one resin selected from the group consisting of polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • the resin mold as described in [10].
  • the resin mold as described in any one of [1] to [11], wherein the period of the concavo-convex pattern on the surface is 10 nm to 50 ⁇ m.
  • the resin mold as described in any one of [1] to [12], wherein the shape of the uneven pattern on the surface is a linear shape, a cylindrical shape, a moth-eye shape, or a lens shape.
  • [15] A step of contacting the resin mold according to any one of [1] to [13] on the resin surface; And a step of peeling from the resin mold from the resin.
  • [16] The method for using a resin mold according to [15], wherein the resin is a photocurable resin.
  • [17] The resin mold as described in any one of [1] to [13], which is fixed to a roller.
  • the resin mold of the present invention has good releasability from the resin to be imprinted, and the mold release agent does not fall off by imprinting. Further, the imprinted resin has no transfer defect.
  • the resin mold of the present invention is mainly made of resin, it can be mass-produced at low cost and has flexibility.
  • FIG. 1 shows a resin mold of the present invention having a pseudo four-layer structure.
  • FIG. 2 shows a method for producing the resin mold of the present invention having a pseudo four-layer structure.
  • FIG. 3 shows how to use the resin mold of the present invention.
  • FIG. 4 shows how to use the roller type resin mold.
  • FIG. 1 is a schematic cross-sectional view of a resin mold of the present invention.
  • the present invention A substrate, a resin layer formed on the substrate and having a concavo-convex pattern formed thereon, and a release layer containing a release agent formed at a uniform thickness on the surface of at least the concavo-convex pattern of the resin layer
  • a resin mold having The resin layer has a solvent-soluble resin, and a substituent that can bind to the release agent and has a compatibility with the solvent-soluble resin, and has an bleedability to the solvent-soluble resin.
  • the additive is unevenly distributed near the surface of the resin layer, and a group capable of binding to the release agent of the additive is chemically bonded to the release agent to join the resin layer and the release layer. It relates to a resin mold. 1.
  • Manufacturing method of resin mold (I) applying a solution in which a solvent-soluble resin and an additive are dissolved in a solvent on a substrate to form a resin solution layer; (II) removing the solvent from the resin solution layer and forming a resin layer on the substrate; (III) contacting the mold with the resin layer, and transferring the uneven pattern formed on the surface of the mold to the surface of the resin layer; And (IV) applying a mold release agent on at least the surface of the resin layer having a concavo-convex pattern to form a release layer having a uniform thickness.
  • a substrate 4 is prepared.
  • a resin solution is applied to the substrate 4 to produce a resin solution layer 3 '.
  • the solvent is removed from the resin solution layer 3 ′ to form a resin layer 3 in which the additive 2 is unevenly distributed near the surface on the substrate 4.
  • Step (I) A step of applying a solution in which a solvent-soluble resin and an additive are dissolved in a solvent on a substrate to form a resin solution layer>
  • step (I) first, a resin solution in which a solvent-soluble resin and an additive are uniformly dissolved in a solvent is produced.
  • the solvent is usually an organic solvent, for example, aromatic solvents such as benzene, toluene, xylene, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, methylene chloride, chloroform, carbon tetrachloride, ethylene chloride, tetrachloroethane, Halogen solvents such as chlorobenzene, ether solvents such as tetrahydrofuran, dioxane and ethylene glycol diethyl ether, ester solvents such as methyl acetate, ethyl acetate, ethyl cellosolve and propylene glycol methyl ether acetate, alcohols such as methanol, ethanol and isopropyl alcohol And other solvents such as dimethylformamide, dimethylsulfoxide, and diethylformamide. From the viewpoint of coatability, aromatic solvents and ester solvents are preferred. Particularly preferred solvents are propy
  • an additive having a substituent capable of binding to the release agent and having a substituent compatible with the solvent-soluble resin and having a bleeding property with respect to the solvent-soluble resin.
  • Examples of the additive include a compound represented by the following general formula (1) or a hydrolyzate thereof.
  • Y is a methoxy group or an ethoxy group
  • X is an epoxy group, a glycidoxy group, a phenyl group which may have a substituent, and an organic group containing one kind selected from the group consisting of an amino group
  • N is 0 or 1.
  • the organic group preferably has 1 to 9 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • Y or its hydrolyzed group is considered to be a group capable of binding to the release agent, and X is considered to be a group compatible with the solvent-soluble resin.
  • any resin that is soluble in the solvent and that does not separate from the additive can be used without limitation.
  • thermoplastic resins such as acrylic resins, methacrylic resins, styrene resins, epoxy resins, polyester resins, olefin resins, and polycarbonate resins, and when the additive is represented by the above formula (1)
  • the above-described thermoplastic resin having a structural unit having the same type of substituent as X is preferred.
  • the structural unit having the same kind of substituent as X is preferably contained in the total structural unit of the resin in an amount of 1 to 15% by weight, more preferably 2 to 10% by weight. When the amount is within the above range, the solvent-soluble resin and the additive are not separated, but when the solvent is removed, the two are not completely compatible with each other, and the additive is bleed out to the resin layer surface. It is thought to occur.
  • Each component in the solvent is preferably 87 to 99 parts by weight, more preferably 91 to 98 parts by weight, and preferably 1 to 98 parts by weight of the solvent-soluble resin, assuming that the total of the solvent-soluble resin and the additive is 100 parts by weight. It is preferably added at a ratio of 13 parts by weight, more preferably 2 to 9 parts by weight.
  • the total amount of the solvent-soluble resin and the additive to the solvent is preferably 5 to 50% by weight, more preferably 10 to 40% by weight.
  • the substrate examples include one selected from a resin substrate, a glass substrate, a silicon substrate, a sapphire substrate, a carbon substrate, and a GaN substrate.
  • the resin substrate is preferable for forming a flexible resin mold, and specifically, selected from the group consisting of polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyimide, polysulfone, polyethersulfone, cyclic polyolefin, and polyethylene naphthalate.
  • One type of substrate is used.
  • Step II Step of removing the solvent from the resin solution layer and forming a resin layer on the substrate> Next, the solvent is removed from the resin solution layer, the solvent-soluble resin, and the substituent having a substituent capable of chemically bonding with the release agent and having compatibility with the solvent-soluble resin, and the solvent A resin layer containing an additive having bleeding properties with respect to the soluble resin is formed.
  • the drying temperature is usually a temperature equal to or higher than the boiling point of the solvent and does not affect the properties of the resin or the like.
  • the thickness of the resin layer thus formed is usually 50 nm to 30 ⁇ m, preferably 500 nm to 10 ⁇ m. This is because it is easy to perform imprinting with such a thickness.
  • the compatibility between the additive and the solvent-soluble resin is changed by this drying step. It is considered that the additive does not have good compatibility with the solvent-soluble resin as a whole, except for a substituent having compatibility with the solvent-soluble resin. As a result, when the solvent is removed from the resin solution layer, the additive leaves only the substituents that are compatible with the solvent-soluble resin in the resin layer, and the other components are exposed outside the resin layer to the surface of the resin layer. It is thought that it will be in a bleed state and unevenly distributed in the vicinity of the resin layer surface.
  • the solvent-soluble resin and the additive are partially formed by having the structural unit having the same type of substituent as the substituent X. It is considered that the structure is compatible and the additive and the solvent-soluble resin are not separated. And since the site
  • the same type of substituent refers to a substituent having the same basic skeleton.
  • X is a glycidoxy group
  • the substituent may have an epoxy structure, and X may have a substituent. When it is a phenyl group, it means a substituent having an aromatic ring.
  • the composition of the resin layer is such that the total of the solvent-soluble resin and the additive is 100% by weight, the solvent-soluble resin is preferably 87 to 99% by weight, more preferably 91 to 98% by weight, and the additive is preferably 1 to 13%. It is contained in a proportion of wt%, more preferably 2 to 9 wt%. When the ratio of the solvent-soluble resin and the additive is within the above range, the resin layer and the release layer are bonded with sufficient adhesion, and the additive is not detached from the resin layer.
  • Step III A step of bringing the mold into contact with the resin layer and transferring the uneven pattern formed on the surface of the mold onto the surface of the resin layer> On the surface of the resin layer, the surface shape (uneven pattern) of a mold such as quartz, metal, silicon, etc., used for normal imprinting is transferred (imprinted).
  • a mold such as quartz, metal, silicon, etc.
  • the surface shape (uneven pattern) of the mold is not particularly limited, but preferably has a period of 10 nm to 50 ⁇ m, a depth of 10 nm to 100 ⁇ m, and a transfer surface of 1.0 to 1.0 ⁇ 10 6 mm 2 , and a period of 20 nm to 20 ⁇ m. More preferably, the depth is 50 nm to 1 ⁇ m and the transfer surface is 1.0 to 0.25 ⁇ 10 6 mm 2 . This is because a sufficient uneven pattern can be formed on the resin layer. Examples of the shape include moth eye, line, cylinder, monolith, cone, polygonal pyramid, and microlens.
  • Thermal imprinting can be carried out using the operations used for thermal imprinting of ordinary thermoplastic resins.
  • a mold is placed on a resin heated to a temperature equal to or higher than the glass transition temperature (Tg).
  • Tg glass transition temperature
  • an operation of holding the resin at a pressing pressure of 5 to 50 MPa for 10 to 600 seconds and then cooling the resin to a temperature not higher than the glass transition temperature (Tg) and pulling the mold and the resin layer apart can be given.
  • An uneven pattern is formed on the surface of the resin layer by thermal imprinting.
  • the release agent is preferably composed of at least one selected from the group consisting of a fluorine-based silane coupling agent, a perfluoro compound having an amino group or a carboxyl group, and a perfluoroether compound having an amino group or a carboxyl group, and more Preferably, it is selected from the group consisting of a fluorine-based silane coupling agent, a single-terminal aminated perfluoro (perfluoroether) compound and a single-terminal carboxylated perfluoro (perfluoroether) compound alone or a mixture of simple substance and complex. It consists of at least one kind.
  • the adhesion to the resin layer is good and the releasability from the resin to be imprinted is good.
  • the surface of the release agent coating film is further rinsed with a fluorine-based solvent such as perfluorohexane.
  • a fluorine-based solvent such as perfluorohexane.
  • a release layer of preferably 0.5 to 20 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 5 nm is formed.
  • the release layer is bonded to the resin layer by chemically bonding a group capable of binding to the release agent of the additive unevenly distributed in the vicinity of the resin layer surface and the release agent.
  • the chemical bond is considered to be condensation.
  • the substituent Y or a hydrolyzed group thereof is chemically bonded to a substituent (including a hydrolyzed group) of the release agent. It is thought that. The chemical bond is considered to be condensation.
  • the release layer is formed with a uniform thickness on the resin layer, at least on the surface having the uneven pattern of the resin layer.
  • the uniform thickness means a substantially uniform thickness, preferably a uniform thickness with a standard deviation of 0.1 to 10. Therefore, the surface of the release layer maintains the unevenness of the resin layer surface shape.
  • the contact angle of the release layer on the surface of the release layer with respect to pure water is preferably 100 ° or more, more preferably 100 to 130 °, and still more preferably 100 to 120 °.
  • the resin mold of the present invention is manufactured by the above manufacturing method.
  • the present invention is a resin mold having a multilayer structure.
  • the resin mold of the present invention comprises a substrate 4, a resin layer 3 formed on the substrate and having a concavo-convex pattern on the surface, an additive 2 unevenly distributed in the vicinity of the resin layer surface,
  • This is a resin mold having a pseudo four-layer structure having a release layer 1 formed with a uniform thickness on at least a surface having a concavo-convex pattern of the resin layer 3.
  • the resin layer of the resin mold of the present invention is a resin layer formed by steps (I) to (III) in the above production method. Therefore, the solvent-soluble resin and additives constituting the resin layer, the dimensions of the resin layer, and the structure of the resin layer are as described above.
  • the height of “a” shown in FIG. 1, that is, the portion without unevenness, is 1 to 15 times the height of “b” shown in FIG. With such a ratio, imprint processing can be performed without any problem.
  • the release layer of the resin mold of the present invention is a release layer formed by step (IV) in the above production method. Therefore, the release agent constituting the release layer and the dimensions of the release layer are as described above.
  • the resin layer and the release layer are considered to be bonded by a chemical bond between the additive and the release agent, and the mechanism thereof is as described above.
  • the resin mold has a desired shape on the surface.
  • the desired shape is usually a pattern that is uneven and repeats at a constant period. That is, a concavo-convex pattern, preferably a concavo-convex pattern having a period of 10 nm to 50 ⁇ m, a depth of 10 nm to 100 ⁇ m, and a transfer surface of 1.0 to 1.0 ⁇ 10 6 mm 2 .
  • irregular shape examples include moth eye, line, cylinder, monolith, cone, polygonal pyramid, and microlens.
  • the resin mold of the present invention is, A resin layer having an uneven pattern structure on the surface; A resin mold having a release layer containing a release agent formed with a uniform thickness on a surface having at least an uneven pattern structure of the resin layer,
  • the resin layer is a compound represented by the following general formula (1) or an additive which is a hydrolyzate thereof, Y 3-n (CH 3 ) n SiX (1) (In Formula (1), Y is a methoxy group or an ethoxy group, X is an epoxy group, a glycidoxy group, a phenyl group which may have a substituent, and an organic group containing one kind selected from the group consisting of an amino group) , N is 0 or 1.) A solvent-soluble resin having the same type of substituent as X in the formula (1), The resin mold is characterized in that the resin layer and the release layer are joined by chemically bonding the substituent Y of the additive or a hydrolyzed group thereof with a release agent.
  • a roller type resin mold may be mentioned.
  • the roller type resin mold is a resin mold in which a mold having the same configuration as the resin mold is wound around a roller or the like with the uneven surface facing outward as shown in FIG.
  • a preferable configuration of the roller type resin mold is preferably a flexible configuration having a thickness of 30 to 300 ⁇ m.
  • the resin mold of the present invention is suitably used for imprinting a thermoplastic resin, a thermosetting resin or a photocurable resin. More preferably, it is suitably used for imprinting a photocurable resin.
  • One mode of usage will be described with reference to FIG.
  • the resin mold of the present invention is brought into contact with the surface of the resin 5.
  • the resin mold of the present invention is peeled off to obtain a resin 5 having a shape on the surface.
  • the resin 5 to be imprinted is usually a thermoplastic resin, a thermosetting resin, or a photocurable resin, and is usually on the substrate 6.
  • the substrate 6 can be used without limitation as long as it is a substrate used for normal imprinting, and examples thereof include resin, glass, silicon, sapphire, gallium nitride, carbon, and silicon carbide.
  • thermoplastic resin or a thermosetting resin an operation that is used for thermal imprinting of a normal thermoplastic resin or thermosetting resin can be performed.
  • a glass transition temperature ( Tg) A mold is brought into contact with a resin heated to a temperature equal to or higher than that at a press pressure of 0.5 to 50 MPa and pressed by holding for 10 to 600 seconds.
  • thermoplastic resin and the thermosetting resin general thermoplastic resins and thermosetting resins can be used without limitation.
  • the operation used for normal photoimprinting of a photocurable resin can be performed.
  • a press pressure of 0.1 to 5 MPa is used for the resin.
  • the energy ray (ultraviolet ray, visible ray, infrared ray, electron beam) is irradiated while pressing by holding and holding for 1 to 600 seconds.
  • a press pressure is not required as compared with thermal imprinting
  • various aspects of the resin mold of the present invention can be suitably used.
  • a flexible mode such as a resin mold using a film or the like for the substrate can be suitably used for photoimprinting of a photocurable resin.
  • photocurable resin a general photocurable resin can be used without limitation.
  • Step of peeling resin and resin mold When a thermoplastic resin or a thermosetting resin is used, the resin is cooled to a temperature not higher than the glass transition temperature (Tg), and the mold and the resin layer are separated from each other.
  • Tg glass transition temperature
  • the resin mold of the present invention can be used as a roller type resin mold that is wound around a roller or the like.
  • roller-type resin mold is preferably used for imprinting of a photocurable resin, and as shown in FIG. 4, the step of contacting the resin mold with the resin surface is a resin wound around a roller. A mold is pressed against the resin surface and irradiated with ultraviolet rays.
  • the resin mold of the present invention is used for imprinting a thermoplastic resin, a thermosetting resin, or a photocurable resin.
  • Each product obtained from imprinted resin can be used for electronic materials such as semiconductor materials, optical elements, prisms, microlenses, storage media, holography, micromachines, biotechnology, environment, semiconductors, LEDs, hard disks, etc. .
  • the period of the surface pattern shape is 20 nm to 500 nm, it is suitably used for semiconductor materials, media, optical elements, etc., and when the period of the pattern shape of the surface is 200 nm to 20 ⁇ m, It is suitably used for lenses and the like.
  • the resin mold of the present invention is a roller type resin mold, continuous molding is possible, and it is preferably used for optical functional films such as microlenses and antireflection films.
  • Weight average molecular weight (Mw) in terms of standard polystyrene was determined using gel permeation chromatography (GPC). Measuring condition apparatus: HLC-8120GPC (manufactured by Tosoh Corporation) Column: The following five columns were used.
  • TSK-GEL HXL-H (guard column, manufactured by Tosoh Corporation) TSK-GEL G7000HXL (manufactured by Tosoh Corporation) TSK-GEL GMHXL (manufactured by Tosoh Corporation) TSK-GEL GMHXL (manufactured by Tosoh Corporation) TSK-GEL G2500HXL (manufactured by Tosoh Corporation) Diluted with tetrahydrofuran so that the sample concentration is 1.0 mg / cm 3
  • Mobile phase solvent Tetrahydrofuran Flow rate: 1.0 cm 3 / min Column temperature: 40 ° C.
  • ⁇ Thickness of release layer> Using a thin film measuring apparatus (model: manufactured by F20 Filmetrics), five arbitrary points in the surface were measured, and the average was taken as the thickness of the release layer. The thickness uniformity was confirmed by the standard deviation of the above five points.
  • the rate of change was determined by (Peeling layer contact angle before imprinting ⁇ Peeling layer contact angle after imprinting) ⁇ Peeling layer contact angle before imprinting ⁇ 100 (%).
  • ⁇ Surface shape (pattern)> The period and line width were evaluated by SEM (S-4800 manufactured by Hitachi High-Tech), and the depth (height) was evaluated by AFM (L-trace manufactured by SII Nanotechnology).
  • ⁇ Amount of change is less than 10 nm, ⁇ Amount of change is 10 nm or more AFM (depth):
  • the pattern formed on the imprinted resin is measured by AFM, and the AFM measurement result of the pattern formed on the resin mold surface is The presence or absence of changes based on the criteria was judged and evaluated according to the following criteria.
  • ⁇ Change amount is less than 10 nm, ⁇ Change amount is 10 nm or more
  • methyl methacrylate trade name: Light Ester M manufactured by Kyoeisha Chemical Co., Ltd.
  • glycidyl methacrylate trade name: Light Ester G, manufactured by Kyoeisha Chemical Co., Ltd.
  • the additive resin mold obtained in the production of the release layer (ii-b) is immersed in a perfluoropolyether release agent solution (trade name: OPTOOL HD-1100, manufactured by Daikin Industries) for 1 minute. And then left to stand in a humid heat environment of 70 ° C. and 90% RH for 1 hour. After that, rinse with a fluorine-based solvent (trade name of Tool HD-TH, manufactured by Daikin Industries, Ltd.) and let stand for 24 hours in an environment of 23 ° C. and 65% RH, and measure the contact angle with pure water (manufactured by Kyowa Interface Science Co., Ltd.). KYOWA CONTACT-ANGLE METER CA-D type) was 110 °. Further, the shape portion had no defect or shape change (line width 150 nm, period 300 nm, depth 150 nm).
  • the contact angle with respect to pure water was measured in the atmosphere with a minute water droplet of about 1 ⁇ l placed on the sample surface.
  • the contact angle was also measured by the same method as in step (ii-c), and it was confirmed that there was no change. Further, the presence / absence of a shape change of the transferred resin was confirmed by SEM and AFM (line width 148 nm, period 298 nm, depth 148 nm).
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 2 A resin mold was produced in the same manner as in Example 1 except that the amount of 3-glycidoxypropyltrimethoxysilane added in Example 1 (ii-a) was changed to 10 parts by weight. Optical nanoimprinting was performed in the same manner as in Example 1 using the mold.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 3 A resin mold was produced in the same manner as in Example 1 except that the amount of 3-glycidoxypropyltrimethoxysilane added in Example 1 (ii-a) was 1 part by weight. Optical nanoimprinting was performed in the same manner as in Example 1 using the mold.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 4 In Example 1 (i), a resin mold was produced in the same manner as in Example 1 except that 90 parts by weight of methyl methacrylate and 10 parts by weight of glycidyl methacrylate were used, and the resin mold thus obtained was used. Photo-nanoimprinting was performed in the same manner as in Example 1.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 5 In Example 1 (i), a resin mold was produced in the same manner as in Example 1 except that 99 parts by weight of methyl methacrylate and 1 part by weight of glycidyl methacrylate were used, and the resin mold thus obtained was used. Photo-nanoimprinting was performed in the same manner as in Example 1.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 6 In Example 1 (i), a resin mold was produced in the same manner as in Example 1 except that 95 parts by weight of styrene (trade name: styrene monomer, manufactured by Idemitsu Kosan Co., Ltd.) was used instead of methyl methacrylate. Then, optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • styrene trade name: styrene monomer, manufactured by Idemitsu Kosan Co., Ltd.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 7 Example 1 (i) was the same as Example 1 except that 95 parts by weight of isobornyl methacrylate (trade name: Light Ester IB-X, manufactured by Kyoeisha Chemical Co., Ltd.) was used in place of methyl methacrylate. A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • isobornyl methacrylate trade name: Light Ester IB-X, manufactured by Kyoeisha Chemical Co., Ltd.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 8 In Example 1 (ii-a), 3-glycidoxypropylmethyldimethoxysilane (trade name: Z-6044, manufactured by Toray Dow) was used instead of 3-glycidoxypropyltrimethoxysilane.
  • a resin mold was produced in the same manner as in Example 1, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 2 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 9 In Example 1 (i), 5 parts by weight of benzyl methacrylate (trade name: Light Ester BZ, manufactured by Kyoeisha Chemical Co., Ltd.) instead of glycidyl methacrylate, and in Example 1 (ii) -a, 3-glycol A resin mold was produced in the same manner as in Example 1 except that 5 parts by weight of phenyltrimethoxysilane (trade name: KBM-103, manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of cidoxypropyltrimethoxysilane. Optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • benzyl methacrylate trade name: Light Ester BZ, manufactured by Kyoeisha Chemical Co., Ltd.
  • phenyltrimethoxysilane trade name: KBM-103, manufactured by Shin-Etsu Silicone Co., Ltd.
  • Table 2 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 10 In Example 1 (i), 5 parts by weight of dimethylaminoethyl methacrylate (trade name: Light Ester DM, manufactured by Kyoeisha Chemical Co., Ltd.) instead of glycidyl methacrylate, and in Example 1 (ii) -a, 3- Resin-made as in Example 1, except that 5 parts by weight of 3-aminopropyltrimethoxysilane (trade name: KBM-903, manufactured by Shin-Etsu Silicone Co., Ltd.) was used instead of glycidoxypropyltrimethoxysilane. A mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • dimethylaminoethyl methacrylate trade name: Light Ester DM, manufactured by Kyoeisha Chemical Co., Ltd.
  • 3-aminopropyltrimethoxysilane trade name: KBM-903, manufactured by Shin-Etsu Silicone Co., Ltd.
  • Table 2 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 11 In Example (ii-c), a resin mold was produced in the same manner as in Example 1 except that perfluorohexanoic acid was used in place of the perfluoropolyether release agent solution. Using the resin mold, optical nanoimprinting was performed in the same manner as in Example 1.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 12 A resin mold is produced in the same manner as in Example 1 except that 1H, 1H-tridecafluoroheptylamine is used in place of the perfluoropolyether-based mold release agent in (ii-c) of Example 1. Then, optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 1 shows the obtained resin mold for nanoimprint and the result of nanoimprint.
  • Example 1 (ii-b) is the same as Example 1 except that the master mold was changed to a linear master mold (shape II) with a transfer surface of 576 mm 2 ⁇ 25 nm L / S ⁇ period 50 nm ⁇ depth 150 nm. A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 14 In Example 1 (ii-b), except for changing the master mold to a master mold transfer surface 576mm 2 ⁇ 75nmL / S ⁇ cycle 150nm ⁇ depth 150nm linear shape (shape III), similarly as in Example 1 A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 15 In Example (ii-b), except that the master mold was changed to a master mold (shape IV) having a linear shape of transfer surface 576 mm 2 ⁇ 10,000 nm L / S ⁇ period 20,000 nm ⁇ depth 300 nm A resin mold was produced in the same manner as in Example 1, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • a master mold shape IV having a linear shape of transfer surface 576 mm 2 ⁇ 10,000 nm L / S ⁇ period 20,000 nm ⁇ depth 300 nm
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 16 is the same as Example 1 except that the master mold was changed to a transfer surface of 576 mm 2 , a hole diameter of 200 nm, a period of 400 nm, a depth of 200 nm, and a cylindrical master mold (shape V). A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 17 Resin mold as in Example 1, except that the master mold in Example (ii-b) is changed to a master mold (shape VI) having a transfer surface of 576 mm 2 , period of 300 nm, depth of 300 nm, and moth-eye shape And nano-imprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 18 In Example (ii-a), the resin layer thickness is 6.4 ⁇ m, and in (ii-b), the master mold has a transfer surface of 576 mm 2 , a hole diameter of 10,000 nm, a period of 20,000 nm, a depth of 4,000 nm, Except for changing to a microlens-shaped master mold (shape VII), a resin mold was produced in the same manner as in Example 1, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold. It was.
  • Table 3 shows the obtained resin mold for nanoimprint and the nanoimprint results.
  • Example 19 In Example (ii-a), except that the polyethylene terephthalate film substrate was changed to a soda glass substrate (1.1 mm thickness, manufactured by Asahi Glass Co., Ltd.), a resin mold was produced in the same manner as in Example 1, Optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 20 Example 1 (ii-a) except that the polyethylene terephthalate film substrate was changed to a silicon wafer substrate (thickness 0.5 mm, manufactured by Covalent Materials Co., Ltd., used great; polished wafer). Similarly, a resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 21 Resin mold as in Example 1, except that the polyethylene terephthalate film substrate in Example (ii-a) was changed to a sapphire substrate (0.5 mm thickness, manufactured by Orbe Pioneer Corp., semiconductor grade). And nano-imprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 22 In Example (ii-a), except that the polyethylene terephthalate film substrate was changed to a polysulfone substrate (thickness: 0.12 mm, trade name: Sumilite (trademark) FS-1200, manufactured by Sumitomo Bakelite Co., Ltd.) A resin mold was produced in the same manner as in Example 1, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 23 Resin mold as in Example 1, except that the polyethylene terephthalate film substrate in Example (ii-a) was changed to a polycarbonate substrate (0.12 mm thickness, trade name: Lexan, manufactured by Asahi Glass Co., Ltd.). And nano-imprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 24 Example 1 (ii-a) In the same manner as in Example 1 except that the polyethylene terephthalate film substrate was changed to a polyethylene naphthalate substrate (0.12 mm thick, trade name: Teonex, manufactured by Teijin Chemicals Ltd.). A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 25 Resin as in Example 1 except that the polyethylene terephthalate film substrate in Example (ii-a) was changed to a polyimide substrate (thickness: 0.3 mm, trade name: Aurum Film, manufactured by Mitsui Chemicals, Inc.). An optical mold was manufactured and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 26 Example 1 (ii-a) In the same manner as in Example 1 except that the polyethylene terephthalate film substrate was changed to a polymethyl methacrylate substrate (0.12 mm thickness, trade name: acrylene, manufactured by Mitsubishi Rayon Co., Ltd.). A resin mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 27 In Example 1 (ii-a), a polyethylene terephthalate film substrate whose surface was coated with diamond-like carbon (0.12 mm thickness (coating layer 1 ⁇ m)), trade name: Genius Coat DLC, Nippon Eye A resin mold was produced in the same manner as in Example 1 except that the product was changed to T.F., Ltd., and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 28 Resin made in the same manner as in Example 1 except that the polyethylene terephthalate film substrate was changed to glassy carbon (1 mm thickness, trade name: SA-1, manufactured by Tokai Carbon Co., Ltd.) in (ii-a) of Example 1. A mold was manufactured, and optical nanoimprinting was performed in the same manner as in Example 1 using the obtained resin mold.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 29 A resin mold was used in the same manner as in Example 1 except that the polyethylene terephthalate film substrate in Example (ii-a) was changed to a silicon carbide wafer (0.43 mm thickness, use grade 6NH-Type, manufactured by TankBlue). Using the resin mold thus produced, optical nanoimprinting was performed in the same manner as in Example 1.
  • Table 4 shows the obtained resin mold for nanoimprinting and the results of nanoimprinting.
  • Example 1 In Example 1 (ii-a), when the amount of 3-glycidoxypropyltrimethoxysilane added was changed to 20 parts by weight, the master mold was used during thermal nanoimprinting onto the resin layer of (ii-b). 3-glycidoxypropyltrimethoxysilane was transferred, and a resin mold could not be obtained.
  • Example (ii-a) the amount of 3-glycidoxypropyltrimethoxysilane to be added was changed to 0.5 parts by weight, and the rinsing step was performed during the stripping treatment of (ii-c). However, the release layer dropped off. This is probably because the necessary adhesion between the resin layer and the release layer was not ensured.
  • Example 3 In Example 1 (i), methyl methacrylate was changed to 80 parts by weight and glycidyl methacrylate was changed to 20 parts by weight. As a result, the additive did not bleed out on the surface of the resin layer formed in (ii-a). In the rinsing step (ii-c), the release agent was detached from the resin surface, and the release layer could not be formed. This is probably because the compatibility between the resin and the additive has increased.
  • Example 4 In Example 1 (i), when methyl methacrylate was changed to 99.5 parts by weight and glycidyl methacrylate 0.5 parts by weight, the release layer was removed in the rinsing step during the release process of (ii-c). I dropped out. This is probably because the necessary adhesion between the resin layer and the release layer was not ensured.
  • Example 5 In Example 1 (i), when 5 parts by weight of benzyl methacrylate (trade name: Light Ester BZ, manufactured by Kyoeisha Chemical Co., Ltd.) was used instead of glycidyl methacrylate, the peeling treatment of (ii-c) was performed. In addition, the release layer dropped off during the rinsing process. This is probably because the necessary adhesion between the resin layer and the release layer was not ensured.
  • benzyl methacrylate trade name: Light Ester BZ, manufactured by Kyoeisha Chemical Co., Ltd.
  • Example 2 In Example 1 (iv), the resin mold obtained in (ii-c) was wound around a roll and pressed against a lexan film (transfer area: width 21 cm, length 200 cm) at 1.0 MPa, and PAK-02 was uniformly distributed. The line was moved in a state where it could be applied (feeding speed 1 m / min, equipment was made by hand). Thereafter, ultraviolet irradiation (70 mW / cm 2 ) was performed for 1 second while moving the line, and continuous imprinting was performed for 5 minutes while the resin was cured to obtain a 5 m molded film. Thereafter, the resin mold was removed from the roll, and it was confirmed that the mold had no transfer defects. The contact angle was also measured by the same method as in step (iv), and it was confirmed that there was no change. Furthermore, the presence or absence of a shape change was confirmed with SEM and AFM about resin after transfer. The results are shown in Table 5.
  • PET Polyethylene terephthalate
  • Glass Soda glass
  • Si wafer Silicon wafer
  • PSF Polysulfone
  • PC Polycarbonate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • DLC Polyethylene terephthalate surface-coated with diamond-like carbon
  • GC Glassy carbon
  • SiC silicon carbide wafer
  • HD-1100 Perfluoropolyether release agent solution
  • the resin mold of the present invention is used for imprinting a thermoplastic resin, a thermosetting resin, or a photocurable resin.
  • Each product obtained from imprinted resin can be used for electronic materials such as semiconductor materials, optical elements, prisms, microlenses, storage media, holography, micromachines, biotechnology, environment, semiconductors, LEDs, hard disks, etc. .

Abstract

転写欠陥がなく、インプリントする樹脂との剥離性に優れ、またインプリントにより離型剤の脱落の生じない樹脂製モールドを提供することを課題とする。本発明の樹脂製モールドは、凹凸パターンが表面に形成された樹脂層と、該樹脂層の少なくとも凹凸パターンの表面上に均一な厚さで形成された離型剤を含有する剥離層とを有する樹脂製モールドであって、前記樹脂層は、溶媒可溶性樹脂、および、前記離型剤と結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、かつ溶媒可溶性樹脂に対するブリード性を有する添加剤とを含み、前記添加剤は前記樹脂層表面近傍に偏在し、前記添加剤の離型剤と結合可能な基が、前記離型剤と縮合して前記樹脂層と剥離層を接合していることを特徴とする。

Description

樹脂製モールド、その製造方法およびその使用方法
 本発明は、樹脂製モールドに関する。さらに詳しくは、インプリントする樹脂との剥離性が良好な樹脂製モールドに関する。
 インプリント技術とは、凹凸のパターンを形成したモールドを、基板上の液状樹脂等へ押しつけ、モールドのパターンを樹脂に転写するものである。凹凸のパターンとしては、10nmレベルのナノスケールのものから、100μm程度のものまで存在し、半導体材料、光学材料、記憶メディア,マイクロマシン,バイオ,環境等、様々な分野へ用いられている。
 インプリントの種類としては、ガラス転移温度以上で溶融した熱可塑性樹脂に表面に所定の形状が形成されているモールドを圧接して、該モールドの表面形状を熱可塑性樹脂に熱インプリントし、冷却後モールドを取り外す熱インプリントと、光硬化性樹脂に同様のモールドを押しつけ、紫外線照射により光硬化製樹脂を硬化させた後、モールドを取り外す光インプリントなどが挙げられる。
 インプリントの際、モールドに樹脂が付着することを防止するために、モールドの凹凸面上に剥離層を設け、樹脂に対する剥離性を持たせることが行われている。しかし、剥離層のモールドへの定着が弱いと、インプリントにより剥離層が脱落するという問題があった。そこで、上記課題を解決するために、たとえば、モールドの表面をプラズマ処理またはシランカップリング剤処理することにより、モールドに対する離型剤の定着性を向上させることが知られている(たとえば特許文献1参照)。また、離型剤として、モールドの材料と化学的に反応する官能基を有するパーフルオロポリエーテルを用いることが知られている(たとえば特許文献2および特許文献3参照)。これらは、いずれも金属、シリコン、およびガラス等の硬質のモールドの剥離処理に関するものであった。
 近年、汎用性および費用の点から、樹脂製のモールドを用いることが行われている。樹脂製のモールドについても離型剤を使用することが行われている。しかしながら、樹脂製モールドと転写対象の樹脂とはいずれも樹脂であるため、離型剤の定着の程度が同程度であり、剥離層が転写対象の樹脂へ転着してしまう問題があり、剥離層の樹脂製モールドへの定着性を向上させる技術が望まれていた。
 上記問題を解決するために、たとえばレプリカモールドの表面に無機酸化物からなる酸化物層を形成してレプリカモールドの表面から剥離層が脱落するのを防止している。この酸化物層を介して剥離層を形成することにより酸化物層から剥離層が脱落するのを防止することはできるが、この酸化物膜の樹脂フィルムに対する密着性は必ずしも良好とはいえない。
 従って、剥離層と酸化物膜とは一体化していても、剥離層と酸化物膜とが一体となって転写された樹脂フィルムの表面に移行することがあるとの問題がある。
特開2010-5841号公報 特許第4154595号公報 特開2004-306030号公報
 本発明は、転写欠陥がなく、インプリントする樹脂との剥離性に優れ、またインプリントにより離型剤の脱落の生じない樹脂製モールドを提供することを課題とする。また、安価に量産可能な樹脂製モールドを提供することを課題とする。さらには、ローラー等に固定して使用することが可能な柔軟性のある樹脂製モールドを提供することを課題とする。
[1]基板と、基板上に形成され、凹凸パターンが表面に形成された樹脂層と、該樹脂層の少なくとも凹凸パターンの表面上に均一な厚さで形成された離型剤を含有する剥離層とを有する樹脂製モールドであって、
 前記樹脂層は、溶媒可溶性樹脂、および、前記離型剤と結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、溶媒可溶性樹脂に対するブリード性を有する添加剤とを含み、
 前記添加剤は前記樹脂層表面近傍に偏在し、前記添加剤の離型剤と結合可能な基が、前記離型剤と化学結合して前記樹脂層と剥離層を接合していることを特徴とする樹脂製モールド。
[2]前記剥離層表面の純水接触角が100°以上であることを特徴とする[1]に記載の樹脂製モールド。
[3]前記添加剤が、下記一般式(1)で表わされる化合物またはその加水分解物であることを特徴とする[1]または[2]に記載の樹脂製モールド。
  Y3-n(CHSiX         (1)
(式(1)中、Yはメトキシ基またはエトキシ基、Xはエポキシ基、グリシドキシ基、置換基を有していてもよいフェニル基およびアミノ基からなる群から選ばれる1種を含有する有機基、nは0または1である。)
[4]前記樹脂層中の前記添加剤の含有量が1~13重量%であることを特徴とする[1]~[3]のいずれか1に記載の樹脂製モールド。
[5]前記溶媒可溶性樹脂が、前記式(1)におけるXと同種の置換基を有する構成単位を有することを特徴とする[3]または[4]に記載の樹脂製モールド。
[6]前記溶媒可溶性樹脂において、前記式(1)におけるXと同種の置換基を有する構成単位の割合が1~15重量%であることを特徴とする[5]に記載の樹脂製モールド。
[7]前記添加剤の前記溶媒可溶性樹脂と相溶性を有する置換基が、前記式(1)における置換基Xであることを特徴とする[3]~[6]のいずれか1に記載の樹脂製モールド。
[8]前記添加剤の前記離型剤と結合可能な置換基が、前記式(1)における置換基Yまたはその加水分解された基であることを特徴とする[3]~[7]のいずれか1に記載の樹脂製モールド。
[9]前記離型剤が、フッ素系シランカップリング剤、片末端アミン化パーフルオロ(パーフルオロエーテル)化合物および片末端カルボキシル化パーフルオロ(パーフルオロエーテル)化合物からなる群から選ばれる少なくとも1種であることを特徴とする[1]~[8]のいずれか1に記載の樹脂製モールド。
[10]前記基板が、樹脂基板、ガラス基板、シリコン基板、サファイア基板、炭素基板またはGaN基板である[1]~[9]のいずれか1に記載の樹脂製モールド。
[11]前記樹脂基板が、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種の樹脂であることを特徴とする[10]に記載の樹脂製モールド。
[12]表面の凹凸パターンの周期が、10nm~50μmであることを特徴とする[1]~[11]のいずれか1に記載の樹脂製モールド。
[13]表面の凹凸パターンの形状が、線状、円柱状、モスアイ形状またはレンズ形状であることを特徴とする[1]~[12]のいずれか1に記載の樹脂製モールド。
[14](I)基板上に溶媒可溶性樹脂および添加剤を溶媒に溶解した溶液を塗布し、樹脂溶液層を形成する工程と、
(II)前記樹脂溶液層から溶媒を除去し、基板上に樹脂層を形成する工程と、
(III)モールドを前記樹脂層に当接して、該モールドの表面に形成された凹凸パターンを前記樹脂層の表面に転写する工程と、
(IV)前記樹脂層の少なくとも凹凸パターンを有する面上に離型剤を塗布し、均一な厚さの剥離層を形成する工程とを含むことを特徴とする樹脂製モールドの製造方法。
[15]樹脂表面に[1]~[13]のいずれか1に記載の樹脂製モールドを当接する工程と、
前記樹脂から前記樹脂製モールドから剥離する工程とを含むことを特徴とする樹脂製モールドの使用方法。
[16]前記樹脂が、光硬化性樹脂であることを特徴とする[15]に記載の樹脂製モールドの使用方法。
[17]ローラーに固定されていることを特徴とする[1]~[13]のいずれか1に記載の樹脂製モールド。
 本発明の樹脂製モールドは、インプリントする樹脂との剥離性が良好であり、インプリントにより離型剤の脱落もない。また、インプリントされた樹脂は、転写欠陥がない。
 さらに本発明の樹脂製モールドは、樹脂を主体とするため、安価で量産可能であり、また柔軟性がある。
図1は、擬似4層構造の本発明の樹脂製モールドを示す。 図2は、擬似4層構造の本発明の樹脂製モールドの製造方法を示す。 図3は、本発明の樹脂製モールドの使用方法を示す。 図4は、ローラー式樹脂製モールドの使用方法を示す。
 以下、本発明について具体的に説明する。
 本発明の樹脂製モールドの模式断面図である図1を用いて説明する。
 本発明は、
 基板と、基板上に形成され、凹凸パターンが表面に形成された樹脂層と、該樹脂層の少なくとも凹凸パターンの表面上に均一な厚さで形成された離型剤を含有する剥離層とを有する樹脂製モールドであって、
 前記樹脂層は、溶媒可溶性樹脂、および、前記離型剤と結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、溶媒可溶性樹脂に対するブリード性を有する添加剤とを含み、
 前記添加剤は前記樹脂層表面近傍に偏在し、前記添加剤の離型剤と結合可能な基が、前記離型剤と化学結合して前記樹脂層と剥離層を接合していることを特徴とする樹脂製モールドに関する。
1.樹脂製モールドの製造方法
 該樹脂製モールドは、
(I)基板上に溶媒可溶性樹脂および添加剤を溶媒に溶解した溶液を塗布し、樹脂溶液層を形成する工程と、
(II)前記樹脂溶液層から溶媒を除去し、基板上に樹脂層を形成する工程と、
(III)モールドを前記樹脂層に当接して、該モールドの表面に形成された凹凸パターンを前記樹脂層の表面に転写する工程と、
(IV)前記樹脂層の少なくとも凹凸パターンを有する面上に離型剤を塗布し、均一な厚さの剥離層を形成する工程とを含むことを特徴とする樹脂製モールドの製造方法により製造される。
 擬似4層構造の樹脂製モールドの製造方法を、図2を参照しながら説明する。
 図2(a)に示すように、基板4を準備する。
 次に図2(b)に示すように、基板4に樹脂溶液を塗布し、樹脂溶液層3´を製造する。
 次に図2(c)に示すように、樹脂溶液層3´から溶媒を除去し、基板4上に表面近傍に添加剤2が偏在した樹脂層3を形成する。
 次に図2(d)に示すように、前記樹脂層3にモールドを当接することにより、該モールドの表面に形成された凹凸パターンを樹脂層の表面に転写する。
 次に図2(e)に示すように、前記樹脂層3の少なくとも凹凸パターンを有する面上に均一な厚さの剥離層1を形成する。
<工程(I):基板上に溶媒可溶性樹脂および添加剤を溶媒に溶解した溶液を塗布し、樹脂溶液層を形成する工程>
 工程(I)においては、まず溶媒可溶性樹脂および添加剤が溶媒に均一に溶解した樹脂溶液を製造する。
 溶媒としては、通常有機溶剤であって、たとえばベンゼン、トルエン、キシレン等の芳香族系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、塩化メチレン、クロロホルム、四塩化炭素、塩化エチレン、テトラクロロエタン、クロロベンゼン等のハロゲン系溶媒、テトラヒドロフラン、ジオキサン、エチレングリコールジエチルエーテル等のエーテル系溶媒、酢酸メチル、酢酸エチル、エチルセロソルブ、プロピレングリコールメチルエーテルアセテート等のエステル系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、その他ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド等が挙げられ、塗工性の観点からは芳香族系溶媒、エステル系溶媒が好ましい。また、特に好ましい溶媒はプロピレングリコールメチルエーテルアセテート、トルエンである。
 添加剤としては、前記離型剤と結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、溶媒可溶性樹脂に対するブリード性を有する添加剤を用いることができる。
 添加剤としては、たとえば、下記一般式(1)で表わされる化合物またはその加水分解物が挙げられる。
  Y3-n(CHSiX        (1)
(式(1)中、Yはメトキシ基またはエトキシ基、Xはエポキシ基、グリシドキシ基、置換基を有していてもよいフェニル基およびアミノ基からなる群から選ばれる1種を含有する有機基、nは0または1である。)
 有機基は、好ましくは炭素数1~9、より好ましくは炭素数2~6、さらに好ましくは炭素数3~6である。
 ここで、Yまたはその加水分解された基は前記離型剤と結合可能である基であると考えられ、また、Xは、前記溶媒可溶性樹脂と相溶性を有する基であると考えられる。
 溶媒可溶性樹脂としては、前記溶媒に可溶である樹脂であり、かつ前記添加剤と分離することのない樹脂であれば、制限なく用いることができる。たとえばアクリル系樹脂、メタクリル系樹脂、スチレン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、オレフィン系樹脂およびポリカーボネート系樹脂等の熱可塑性樹脂が挙げられ、添加剤が上記式(1)で表わされる場合は、添加剤との相溶性の観点からXと同種の置換基を有する構成単位を有する上記記載の熱可塑性樹脂が好ましい。Xと同種の置換基を有する構成単位は、樹脂の全構成単位中好ましくは1~15重量%、より好ましくは2~10重量%含まれる。前記範囲であると、溶媒可溶性樹脂と添加剤とが分離することがない一方で、溶媒を除去した際に両者が完全に相溶することもなく、添加剤の樹脂層表面へのブリードアウトが生じると考えられる。
 前記溶媒に溶媒可溶性樹脂および添加剤を加えると、両者は均一に溶解する。溶媒への各成分は、溶媒可溶性樹脂および添加剤の合計を100重量部とすると、溶媒可溶性樹脂を好ましくは87~99重量部、より好ましくは91~98重量部、添加剤を好ましくは1~13重量部、より好ましくは2~9重量部の割合で添加すると好ましい。溶媒に対する溶媒可溶性樹脂および添加剤の合計の添加量は、5~50重量%が好ましく、10~40重量%がより好ましい。
 次に基板上に、前記溶媒可溶性樹脂および添加剤を溶媒に溶解した溶液を塗布し、樹脂溶液層を形成する。
 基板としては、樹脂基板、ガラス基板、シリコン基板、サファイア基板、炭素基板およびGaN基板の中から選択される1種が挙げられる。樹脂基板は柔軟性を有する樹脂製モールドの形成に好ましく、具体的には、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種からなる基板が挙げられる。
 基板への溶液の塗布方法としては、スピンコート、スプレーコート、バーコート、リップコート、スリットコート等が挙げられる。
<(工程II):前記樹脂溶液層から溶媒を除去し、基板上に樹脂層を形成する工程>
 次に、樹脂溶液層から溶媒を除去し、溶媒可溶性樹脂、および、前記離型剤と化学結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、かつ溶媒可溶性樹脂に対するブリード性を有する添加剤とを含む樹脂層を形成する。
 溶媒の除去方法としては、樹脂溶液層をホットプレート等を用いて乾燥させる方法が挙げられる。乾燥温度は、通常溶媒の沸点以上の温度であり、樹脂等の性質に影響を与えない温度である。
 このようにして形成された樹脂層の厚さは、通常50nm~30μm、好ましくは、500nm~10μmである。このような厚さであるとインプリント加工が行い易いからである。
 この乾燥工程により、添加剤と溶媒可溶性樹脂の相溶性が変化するものと考えられる。添加剤は、溶媒可溶性樹脂と相溶性を有する置換基を除き、添加剤全体としては溶媒可溶性樹脂と相溶性が良好でないと考えられる。その結果、樹脂溶液層から溶媒が除かれると、添加剤は、溶媒可溶性樹脂と相溶性を有する置換基のみを樹脂層中に残し、その他の構成部分を樹脂層外に出して樹脂層表面にブリードした状態になり、樹脂層表面近傍に偏在することとなると考えられる。
 よって、添加剤が上記式(1)で表わされる化合物である場合、溶媒可溶性樹脂が置換基Xと同種類の置換基を有する構成単位を有することにより、溶媒可溶性樹脂と添加剤が部分的に相溶性を有し、添加剤と溶媒可溶性樹脂が分離した構造とならないと考えられる。そして添加剤のX以外の部位が溶媒可溶性樹脂と相溶性を有さないため、添加剤は樹脂層の表面近傍に偏在し、ブリードアウトするものと考えられる。ここで同種類の置換基とは、基本骨格が同一である置換基をいい、たとえば、Xがグリシドキシ基である場合は、エポキシ構造を有する置換基、Xが置換基を有していてもよいフェニル基である場合は、芳香環を有する置換基であることをいう。
 樹脂層の構成は、溶媒可溶性樹脂と添加剤の合計を100重量%とすると、溶媒可溶性樹脂を好ましくは87~99重量%、より好ましくは91~98重量%、添加剤を好ましくは1~13重量%、より好ましくは2~9重量%の割合で含有する。溶媒可溶性樹脂と添加剤の割合が上記範囲にあると、樹脂層と剥離層が十分な密着力で接合されるとともに、樹脂層から添加剤が脱離することもない。
<(工程III):モールドを前記樹脂層に当接して、該モールドの表面に形成された凹凸パターンを前記樹脂層の表面に転写する工程>
 上記樹脂層の表面に、通常のインプリントに用いられている石英、金属、シリコン等のモールドの表面形状(凹凸パターン)を転写(インプリント)する。
 モールドの表面形状(凹凸パターン)に特に制限はないが、周期10nm~50μm、深さ10nm~100μm、転写面1.0~1.0×10mmのものが好ましく、周期20nm~20μm、深さ50nm~1μm、転写面1.0~0.25×10mmのものがより好ましい。樹脂層に充分な凹凸パターンを形成することができるからである。形状としては、モスアイ、線、円柱、モノリス、円錐、多角錐、マイクロレンズが挙げられる。
 転写(インプリント)は、上記樹脂層が熱可塑性樹脂であるため、熱インプリントを行う。
 熱インプリントは、通常の熱可塑性樹脂の熱インプリントに用いられている操作を行うことができるが、好ましい操作としては、ガラス転移温度(Tg)以上の温度に加熱した樹脂に、モールドを0.5~50MPaのプレス圧で、10~600秒間保持してプレスした後、樹脂をガラス転移温度(Tg)以下の温度に冷却し、モールドと樹脂層を引き離す操作を挙げることができる。熱インプリントにより、樹脂層の表面に凹凸パターンが形成される。
<(工程IV):前記樹脂層の少なくとも凹凸パターンを有する面上に離型剤を塗布し、均一な厚さの剥離層を形成する工程>
 前記樹脂層の少なくとも形状を有する表面上に、前記離型剤をディップコート、スピンコート、蒸着、スプレー等の通常の塗布操作にて塗布し、剥離層を形成する。なお、離型剤は、離型剤が溶解する有機溶媒で希釈されたものを用いてもよい。
 離型剤としては、好ましくはフッ素系シランカップリング剤、アミノ基又はカルボキシル基を有するパーフルオロ化合物およびアミノ基又はカルボキシル基を有するパーフルオロエーテル化合物からなる群から選ばれる少なくとも1種からなり、より好ましくは、フッ素系シランカップリング剤、片末端アミン化パーフルオロ(パーフルオロエーテル)化合物ならびに片末端カルボキシル化パーフルオロ(パーフルオロエーテル)化合物の単体または単体および複合体の混合物からなる群から選ばれる少なくとも1種からなる。
 離型剤として上記のものを用いると、上記樹脂層への密着が良好であるとともに、インプリントを行う樹脂との剥離性が良好である。
 上記塗布操作の後、離型剤塗膜表面を、さらにフッ素系溶剤、例えばパーフルオロヘキサン等を用いてリンス処理することが好ましい。上記リンス処理は、剥離層の厚さの均一性を得るために好ましいが、前記離型剤の塗布操作により剥離層の厚さの均一性が維持できる場合は、行わなくてもよい。
 本工程により、好ましくは、0.5~20nm、より好ましくは0.5~10nm、最も好ましくは、0.5~5nmの剥離層を形成する。
 剥離層は、樹脂層表面近傍に偏在する添加剤の離型剤と結合可能な基と離型剤とが化学的に結合することにより、前記樹脂層と接合しているものと考えられる。化学的な結合としては、縮合であると考えられる。
 前記添加剤が、前記一般式(1)で表わされる場合、置換基Yまたはその加水分解された基が、離型剤の置換基(加水分解を生じた基も含む)と化学的に結合しているものと考えられる。化学的な結合としては、縮合であると考えられる。
 上記剥離層は、樹脂層上、少なくとも樹脂層の凹凸パターンを有する表面上に均一な厚さで形成されている。均一な厚さとは、実質的に均一な厚さをいい、好ましくは標準偏差0.1~10の均一な厚さをいう。したがって、剥離層の表面は、樹脂層表面形状の凹凸を維持している。
 剥離層の剥離層表面の純水に対する接触角は、好ましくは100°以上、より好ましくは100~130°、さらに好ましくは100~120°である。
 接触角が上記範囲にあると、液体に対する濡れやすさが低いため、液状のインプリント用樹脂を剥離層表面に塗布した際に剥離層表面の樹脂の流動を抑制することができるとともに、インプリントされた樹脂が剥離層表面から剥離しやすくなるものと考えられる。
2.樹脂製モールド
 本発明の樹脂製モールドは、上記製造方法より製造される。
 本願発明は、多層構造の樹脂製モールドである。
 本発明の樹脂製モールドは、図1に示すように基板4と、前記基板上に形成され、表面に凹凸パターンを有する樹脂層3と、前記樹脂層表面近傍に偏在する添加剤2と、前記樹脂層3の少なくとも凹凸パターンを有する面上に均一な厚さで形成された剥離層1とを有する擬似4層構造の樹脂製モールドである。
 本発明の樹脂製モールドの樹脂層は、上記製造方法における工程(I)~(III)により形成された樹脂層である。したがって、樹脂層を構成する溶媒可溶性樹脂および添加剤、樹脂層の寸法ならびに樹脂層における構造は上記に述べた内容である。樹脂層は、図1に表わされるaすなわち凹凸のない部分の高さが、図1に表わされるbすなわち凹凸の高さの1~15倍であることが好ましい。このような比率であるとインプリント加工が問題なく行える。
 本発明の樹脂製モールドの剥離層は、上記製造方法における工程(IV)により形成された剥離層である。したがって、剥離層を構成する離型剤、剥離層の寸法は上記に述べた内容である。
 前記樹脂層と前記剥離層とは、前記添加剤と離型剤との化学結合により接合していると考えられ、その機構については、上記に述べた内容である。
 上記樹脂製モールドは、表面に所望の形状を有する。
 所望の形状とは、通常、凹凸であり、一定の周期で繰り返すパターンである。すなわち凹凸パターンであり、好ましくは、周期10nm~50μm、深さ10nm~100μm、転写面1.0~1.0×10mmの凹凸パターンである。
 凹凸の具体的な形状としては、モスアイ、線、円柱、モノリス、円錐、多角錐、マイクロレンズが挙げられる。
 本発明の樹脂製モールドは、言い換えれば、
 表面に凹凸パターン構造を有する樹脂層と、
 前記樹脂層の少なくとも凹凸パターン構造を有する面に均一な厚さで形成された離型剤を含有する剥離層とを有する樹脂製モールドであって、
 前記樹脂層は下記一般式(1)で表わされる化合物またはその加水分解物である添加剤と、
  Y3-n(CHSiX         (1)
(式(1)中、Yはメトキシ基またはエトキシ基、Xはエポキシ基、グリシドキシ基、置換基を有していてもよいフェニル基およびアミノ基からなる群から選ばれる1種を含有する有機基、nは0または1である。)
前記式(1)におけるXと同種の置換基を有する溶媒可溶性樹脂とを含み、
前記添加剤の置換基Yまたはその加水分解された基が離型剤と化学結合することにより前記樹脂層と剥離層とが接合されていることを特徴とする樹脂製モールドである。
 本発明の樹脂製モールドの一態様としてローラー式樹脂製モールドが挙げられる。
 ローラー式樹脂製モールドは、図4に示すように上記樹脂製モールドと同様の構成のモールドを、凹凸面を外側に向けてローラー等に巻きつけた形態である樹脂製モールドである。
 ローラー式樹脂製モールドの好ましい構成としては、その厚さが30~300μmであるフレキシブルな構成であることが好ましい。
 3.樹脂製モールドの使用方法
 (1)通常の使用方法
 本発明の樹脂製モールドは、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂のインプリントに好適に用いられる。より好ましくは、光硬化性樹脂のインプリントに好適に用いられる。使用方法の一態様を図3を用いて説明する。
 次に図3(a)に示すように、樹脂5表面に本発明の樹脂製モールドを当接する。
 次に図3(b)に示すように、本発明の樹脂製モールドを剥離し、表面に形状の付された樹脂5を得る。
 <樹脂表面に樹脂製モールドを当接する工程>
 インプリント対象の樹脂5は、通常熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂のいずれかの樹脂であり、通常、基板6上にある。
 基板6としては、通常のインプリントに用いられる基板であれば、制限なく用いることができ、たとえば樹脂、ガラス、シリコン、サファイア、窒化ガリウム、カーボン、炭化ケイ素等を挙げることができる。
 熱可塑性樹脂または熱硬化性樹脂を用いた場合は、通常の熱可塑性樹脂または熱硬化性樹脂の熱インプリントに用いられている操作を行うことができるが、好ましい操作としては、ガラス転移温度(Tg)以上の温度に加熱した樹脂に、モールドを0.5~50MPaのプレス圧で当接し、10~600秒間保持することによりプレスする。
 熱可塑性樹脂および熱硬化性樹脂としては、一般の熱可塑性樹脂および熱硬化性樹脂を制限なく用いることができる。
 光硬化性樹脂を用いた場合は、通常の光硬化性樹脂の光インプリントに用いられている操作を行うことができるが、好ましい操作としては、樹脂にモールドを0.1~5MPaのプレス圧で当接し、1~600秒間保持することによりプレスしながら、エネルギー線(紫外線、可視光線、赤外線、電子線)照射を行う。
 光硬化性樹脂の光インプリントにおいては、上述のように熱インプリントよりもプレス圧を要しないため、本発明の樹脂製モールドの様々な態様を好適に用いることができる。たとえば、基板にフィルム等を用いた樹脂製モールド等のフレキシブルな態様は、光硬化性樹脂の光インプリントに好適に用いることができる。
 光硬化性樹脂としては、一般の光硬化性樹脂を制限なく用いることができる。
 <樹脂と樹脂製モールドを剥離する工程>
 熱可塑性樹脂または熱硬化性樹脂を用いた場合は、樹脂をガラス転移温度(Tg)以下の温度に冷却し、モールドと樹脂層とを引き離す。
 光硬化性樹脂を用いた場合は、モールドと樹脂層を引き離す。
 (2)ローラー式樹脂製モールドとしての使用方法
 本発明の樹脂製モールドは、ローラー等に巻きつけて使用するローラー式樹脂製モールドとしても用いることができる。
 ローラー式樹脂製モールドとしての使用は、光硬化性樹脂のインプリントに好適に用いられ、図4に示すように、上記樹脂表面に樹脂製モールドを当接する工程が、ローラーに巻きつけられた樹脂製モールドを樹脂表面に押圧し、紫外線照射を行うことにより構成される。
 4.用途
 本発明の樹脂製モールドは、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂のインプリントに用いられる。
 インプリントされた樹脂から得られた各製品は、半導体材料、光学素子、プリズム、マイクロレンズ、記憶メディア,ホログラフィー、マイクロマシン,バイオ,環境、半導体、LED、ハードディスクなどの電子材料等に用いることができる。
 好ましくは、表面のパターン形状の周期が20nm~500nmである場合は、半導体材料、メディア、光学素子等に好適に用いられ、表面のパターン形状の周期が200nm~20μmである場合は、プリズム、マイクロレンズ等に好適に用いられる。
 本発明の樹脂製モールドがローラー式樹脂製モールドである場合は、連続成型が可能であり、好ましくはマイクロレンズ、反射防止フィルム等の光学機能フィルムに利用される。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 本願明細書および実施例において、以下の測定方法で各値を測定した。
 <重量平均分子量Mw>
 ゲルパーミエーションクロマトグラフィ(GPC)を用いて、標準ポリスチレン換算による重量平均分子量(Mw)を求めた。
測定条件
装置:HLC-8120GPC(東ソー(株)製)
カラム:以下の五連カラムを用いた。
    TSK-GEL HXL-H(ガードカラム、東ソー(株)製)
    TSK-GEL G7000HXL(東ソー(株)製)
    TSK-GEL GMHXL(東ソー(株)製)
    TSK-GEL GMHXL(東ソー(株)製)
    TSK-GEL G2500HXL(東ソー(株)製)
サンプル濃度:1.0mg/cm3となるようにテトラヒドロフランで希釈
移動相溶媒:テトラヒドロフラン
流速:1.0cm3/分
カラム温度:40℃
 <樹脂層の厚さ>
 樹脂層の底面と、凹凸パターンを有する表面の中で最も高い面との間の距離を樹脂層の厚さとした。
 <剥離層の厚さ>
 薄膜測定装置(形式:F20 Filmetrics社製)を用い、面内任意の箇所5点を測定し、その平均を剥離層の厚さとした。尚、厚さの均一性は、上記5点の標準偏差により確認した。
 <剥離層表面の純水に対する接触角>
 試料表面に約1μlの微少水滴を静置し、協和界面科学社製 KYOWA CONTACT-ANGLE METER CA-D型を用いて、大気中にて測定した。測定条件は、JISR3257に準拠した。
 変化率は、(インプリント前剥離層接触角―インプリント後剥離層接触角)÷インプリント前剥離層接触角×100(%)により求めた。
 <表面形状(パターン)>
 周期及び線幅はSEM(日立ハイテック社製 S―4800)、深さ(高さ)はAFM(SIIナノテクノロジー社製 L-trace)にて評価した。
 <インプリント結果>
 マクロ評価:光学顕微鏡(ELIPSE LV100 ニコン社製)にてインプリントされた樹脂に形成された転写面を×20倍にて観察し、モールドへの樹脂転着の有無を確認した。
○ 樹脂転着無し、 ×樹脂転着有り 
 SEM(周期):インプリントされた樹脂に形成されたパターンをSEMで測定し、樹脂製モールド表面に形成されていたパターンのSEM測定結果を基準とした変化の有無を以下の基準で判断し、評価した。
○ 変化量が10nm未満、 ×変化量が10nm以上
 AFM(深さ):インプリントされた樹脂に形成されたパターンをAFMで測定し、樹脂製モールド表面に形成されていたパターンのAFM測定結果を基準とした変化の有無を以下の基準で判断し、評価した。
○ 変化量が10nm未満、 ×変化量が10nm以上
 [実施例1]
 (i)樹脂製モールド用樹脂(PMMA系)の作製
攪拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、メチルメタクリレート95重量部(商品名ライトエステルM 共栄社化学製)、グリシジルメタクリレート5重量部(商品名ライトエステルG 共栄社化学製)、トルエン100重量部を加えた。その後、フラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃にし、開始剤ジメチル2,2’アゾビス(2-メチルプロビオネート) (商品名V-601和光純薬製)を0.5重量部加え8時間、80℃で保持した。その後、窒素ガスを止め、トルエン100重量部を加え、温度を下げることで反応を終了させ樹脂製モールド用樹脂を得た。得られた樹脂についての分子量を表1に示した。
 (ii)樹脂製モールド゛の製造
 (ii-a) 樹脂溶液層および樹脂層の製造
(1)で製造した樹脂製モールド用樹脂を、トルエンを用いて10倍に希釈し、3-グリシドキシプロピルトリメトキシシラン(商品名KBM-403 信越シリコーン社製)を樹脂100重量部に対して5重量部加えた。次に、この樹脂溶液をポリエチレンテレフタレートフィルム(PET)(商品名ルミラー 東レ社製 厚さ 0.125mm)基板上にスピンコート(2000rpm 20秒)し、ホットプレートを用いて130℃で15分乾燥させ、膜厚1.2μmの樹脂層を作製した。
 (ii-b) 樹脂層表面の凹凸パターンの形成
上記フィルム基板及び樹脂層の積層物を140℃に加熱し、樹脂層表面上にマスターモールド(剥離処理済み石英モールド、転写面576mm・150nmL/S(線状形状)・周期300nm・深さ150nm)(形状I)を押しつけ140℃で熱転写した。熱転写時のプレス圧は20MPa、保持時間は5分間であった。その後、積層物を80℃以下に冷却し、マスターモールドを外し、樹脂製モールド(転写面576mm・150nmL/S・周期300nm・深さ150nm)を得た。なお、周期及び線幅はSEM(日立ハイテック社製 S―4800)、深さ(高さ)はAFM(SIIナノテクノロジー社製 L-trace)にて評価した。
 (ii-c) 剥離層の製造
(ii-b)で得た添加剤樹脂製モールドをパーフロロポリエーテル系の離型剤液(商品名オプツールHD-1100 ダイキン工業社製)に1分間浸積した後、引き上げ70℃,90%RHの湿熱環境に1時間静置した。その後、フッ素系溶剤(商品名オブツールHD-TH ダイキン工業社製)でリンスし、23℃,65%RHの環境で24時間静置し、純水に対する接触角を測定(協和界面科学社製 KYOWA CONTACT-ANGLE METER CA-D型)したところ110°であった。また、形状部には、欠陥や形状変化が無かった(線幅150nm 周期300nm 深さ150nm)。
 なお、純水に対する接触角は、試料表面に約1μlの微少水滴を静置し、大気中にて測定した。
 (iii)樹脂製モールドを使用しての光ナノインプリント
 (ii-c)で得た樹脂製モールドの上に光硬化樹脂(商品名PAK-02 東洋合成社製)を0.2ml滴下し、その上にポリカーボネートフィルム(商品名レキサン 旭硝子社製)をかぶせ、光ナノインプリント装置(エンジニアリング・システム社製)を用い1.0MPaで押しつけたと同時に紫外線照射(10mW/cm)を2秒間行った。その後、樹脂製モールドを外し、モールドには転写欠陥の無いことを確認した。また、接触角についても工程(ii-c)と同様の方法で測定し、その変化が無いことを確認した。さらに、転写済み樹脂について、SEM及びAFMにて形状変化の有無を確認した(線幅148nm 周期298nm 深さ148nm)。
 また、本樹脂製モールドを使用し、20ショットの連続光ナノインプリントを行ったところ、問題なくインプリントすることが出来た。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例2]
 実施例1の(ii-a)において、添加する3-グリシドキシプロピルトリメトキシシランの量を10重量部とした以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例3]
 実施例1の(ii-a)において、添加する3-グリシドキシプロピルトリメトキシシランの量を1重量部とした以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例4]
 実施例1の(i)において、メチルメタクリレートを90重量部、グリシジルメタクリレート10重量部とした以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例5]
 実施例1の(i)において、メチルメタクリレートを99重量部、グリシジルメタクリレート1重量部とした以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例6]
 実施例1の(i)において、メチルメタクリレートの代わりにスチレン(商品名:スチレンモノマー、出光興産(株)製)を95重量部用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例7]
 実施例1の(i)において、メチルメタクリレートの代わりにイソボルニルメタクリレート(商品名:ライトエステルIB-X、共栄社化学(株)製)を95重量部用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例8]
 実施例1の(ii-a)において、3-グリシドキシプロピルトリメトキシシランの代わりに3-グリシドキシプロピルメチルジメトキシシラン(商品名:Z-6044、東レ・ダウ(株)製)を用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表2に示す。
 [実施例9]
 実施例1の(i)において、グリシジルメタクリレートの代わりにベンジルメタクリレート(商品名:ライトエステルBZ、共栄社化学(株)製)を5重量部、実施例1の(ii)-aにおいて、3-グリシドキシプロピルトリメトキシシランの代わりにフェニルトリメトキシシラン(商品名:KBM-103、信越シリコーン(株)製)5重量部を用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表2に示す。
 [実施例10]
 実施例1の(i)において、グリシジルメタクリレートの代わりにジメチルアミノエチルメタクリレート(商品名:ライトエステルDM 共栄社化学(株)製)を5重量部、実施例1の(ii)-aにおいて、3-グリシドキシプロピルトリメトキシシランの代わりに3-アミノプロピルトリメトキシシラン(商品名:KBM-903、信越シリコーン(株)製)を5重量部を用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表2に示す。
 [実施例11]
 実施例1の(ii-c)において、パーフロロポリエーテル系の離型剤液の代わりにパーフルオロへヘキサン酸を用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例12]
 実施例1の(ii-c)において、パーフロロポリエーテル系の離型剤液の代わりに1H,1H-トリデカフルオロヘプチルアミンを用いた以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表1に示す。
 [実施例13]
 実施例1の(ii-b)において、マスターモールドを転写面576mm・25nmL/S・周期50nm・深さ150nm 線状形状のマスターモールド(形状II)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例14]
 実施例1の(ii-b)において、マスターモールドを転写面576mm・75nmL/S・周期150nm・深さ150nm 線状形状のマスターモールド(形状III)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例15]
 実施例1の(ii-b)において、マスターモールドを転写面576mm・10,000nmL/S・周期20,000nm・深さ300nm線状形状のマスターモールド(形状IV)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例16]
 実施例1の(ii-b)において、マスターモールドを転写面576mm・ホール径200nm・周期400nm・深さ200nm・円柱形状のマスターモールド(形状V)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例17]
 実施例1の(ii-b)において、マスターモールドを転写面576mm・周期300nm・深さ300nm・モスアイ形状のマスターモールド(形状VI)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例18]
 実施例1の(ii-a)において樹脂層厚を6.4μm、(ii-b)において、マスターモールドを転写面576mm・ホール径10,000nm・周期20,000nm・深さ4,000nm・マイクロレンズ形状のマスターモールド(形状VII)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表3に示す。
 [実施例19]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をソーダガラス基板(1.1mm厚、旭硝子(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例20]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をシリコンウエハ基板(0.5mm厚、コバレントマテリアル(株)製、使用グレート;ポリッシュト・ウェーハ)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例21]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をサファイア基板(0.5mm厚、オルベパイオニア(株)製、半導体グレード)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例22]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をポリサルフォン基板(0.12mm厚、商品名:スミライト(商標)FS-1200、住友ベークライト(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例23]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をポリカーボネート基板(0.12mm厚、商品名:レキサン、旭硝子(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例24]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をポリエチレンナフタレート基板(0.12mm厚、商品名:テオネックス、帝人化成(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例25]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をポリイミド基板(0.3mm厚、商品名:オーラムフィルム、三井化学(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例26]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をポリメチルメタクリレート基板(0.12mm厚、商品名:アクリプレン、三菱レイヨン(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例27]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をダイヤモンドライクカーボンで表面がコーティングされたポリエチレンテレフタレートフィルム基板(0.12mm厚(コーティング層1μm)、商品名:ジーニアスコートDLC、日本アイ・ティ・エフ(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例28]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板をグラッシーカーボン(1mm厚、商品名:SA-1、東海カーボン(株)製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [実施例29]
 実施例1の(ii-a)において、ポリエチレンテレフタレートフィルム基板を炭化ケイ素ウエハ(0.43mm厚 使用グレード6NH-Type、TankeBlue社製)に変更した以外は、実施例1と同様に樹脂製モールドを製造し、得られた樹脂製モールドを使用して実施例1と同様にして光ナノインプリントを行った。
 得られたナノインプリント用樹脂製モールドおよびナノインプリント結果を表4に示す。
 [比較例1]
 実施例1の(ii-a)において、添加する3-グリシドキシプロピルトリメトキシシランの量を20重量部に変更したところ、(ii-b)の樹脂層への熱ナノインプリントの際、マスターモールドへ3-グリシドキシプロピルトリメトキシシランが転着し、樹脂製モールドを得ることができなかった。
 結果を表1に示す。
 [比較例2]
 実施例1の(ii-a)において、添加する3-グリシドキシプロピルトリメトキシシランの量を0.5重量部に変更したところ、(ii-c)の剥離処理の際に、リンス工程に於いて剥離層が脱落した。樹脂層と剥離層の必用な密着力が確保されなかったためと考えられる。
 結果を表1に示す。
 [比較例3]
 実施例1の(i)において、メチルメタクリレートを80重量部、グリシジルメタクリレート20重量部に変更したところ、(ii-a)で形成された樹脂層表面に添加剤がブリードアウトしていなかった。そして(ii-c)の剥離処理の際のリンス工程において、離型剤の樹脂表面からの脱落が起こり、剥離層を形成することができなかった。樹脂と添加剤の相溶性が高まったためと考えられる。
 結果を表1に示す。
 [比較例4]
 実施例1の(i)において、メチルメタクリレートを99.5重量部、グリシジルメタクリレート0.5重量部に変更したところ、(ii-c)の剥離処理の際に、リンス工程に於いて剥離層が脱落した。樹脂層と剥離層の必用な密着力が確保されなかったためと考えられる。
 結果を表1に示す。
 [比較例5]
 実施例1の(i)において、グリシジルメタクリレートの代わりにベンジルメタクリレート(商品名:ライトエステルBZ、共栄社化学(株)製)を5重量部を用いたところ、(ii-c)の剥離処理の際に、リンス工程に於いて剥離層が脱落した。樹脂層と剥離層の必用な密着力が確保されなかったためと考えられる。
 結果を表2に示す。
 [参考例1]
 実施例1の(i)と同じ方法で製造した重合物を予めガラス基板上にスピンコートし、樹脂積層物を130℃に加熱し転写シートを作成した。この転写シートに実施例1で作製した樹脂製モールド(転写面576mm・150nmL/S・周期300nm・深さ150nm)を押しつけ80℃で熱転写した。熱転写時のプレス圧は20MPa、保持時間は5分間であった。その後、積層物を、樹脂層を構成する樹脂のTg以下に冷却し、樹脂製モールドを外し、転写欠陥の無いことを確認した。結果を表5に示す。
 また、本樹脂製モールド゛を使用し、20ショットの連続熱ナノインプリントを行ったところ、問題なくインプリントすることが出来た。
 結果を表5に示す。
 [参考例2]
 実施例1の(iv)において、(ii-c)で得た樹脂製モールドをロールに巻き付け、1.0MPaでレキサンフィルム(転写領域:幅21cm、長さ200cm)に押しつけ、PAK-02が均一に塗布できる状態でラインを動かした(送り速度1m/min、装置は手製)。その後、ラインを動かしながら紫外線照射(70mW/cm)を1秒間行い、樹脂を硬化させながら5分間連続のロールインプリントを行い、5mの成型フィルムを得た。その後、樹脂製モールドをロールから外し、モールドには転写欠陥の無いことを確認した。また、接触角についても工程(iv)と同様の方法で測定し、その変化が無いことを確認した。さらに、転写済みに樹脂について、SEM及びAFMにて形状変化の有無を確認した。結果を表5に示す。
 表中の略号は、以下の通りである。
PET:ポリエチレンテレフタレート、
ガラス:ソーダガラス、
Siウエハ:シリコンウエハ、
PSF:ポリサルフォン、
PC:ポリカーボネート、
PEN:ポリエチレンナフタレート、
PMMA:ポリメチルメタクリレート、
DLC:ダイヤモンドライクカーボンで表面コーティングされたポリエチレンテレフタレート、
GC:グラッシーカーボン、
SiC:炭化ケイ素ウエハ、
HD-1100:パーフロロポリエーテル系の離型剤液
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の樹脂製モールドは、熱可塑性樹脂、熱硬化性樹脂または光硬化性樹脂のインプリントに用いられる。
 インプリントされた樹脂から得られた各製品は、半導体材料、光学素子、プリズム、マイクロレンズ、記憶メディア,ホログラフィー、マイクロマシン,バイオ,環境、半導体、LED、ハードディスクなどの電子材料等に用いることができる。
1:剥離層
2:樹脂層表面近傍に偏在する添加剤
3:樹脂層
3´:樹脂溶液層
4:基板
5:樹脂
6:基板
7:ローラー式樹脂製モールド
8:光源

Claims (17)

  1.  基板と、基板上に形成され、凹凸パターンが表面に形成された樹脂層と、該樹脂層の少なくとも凹凸パターンの表面上に均一な厚さで形成された離型剤を含有する剥離層とを有する樹脂製モールドであって、
     前記樹脂層は、溶媒可溶性樹脂、および、前記離型剤と結合可能な置換基を有すると共に前記溶媒可溶性樹脂と相溶性を有する置換基とを有し、溶媒可溶性樹脂に対するブリード性を有する添加剤とを含み、
     前記添加剤は前記樹脂層表面近傍に偏在し、前記添加剤の離型剤と結合可能な基が、前記離型剤と化学結合して前記樹脂層と剥離層を接合していることを特徴とする樹脂製モールド。
  2. 前記剥離層表面の純水接触角が100°以上であることを特徴とする請求項1に記載の樹脂製モールド。
  3. 前記添加剤が、下記一般式(1)で表わされる化合物またはその加水分解物であることを特徴とする請求項1または2に記載の樹脂製モールド。
      Y3-n(CHSiX         (1)
    (式(1)中、Yはメトキシ基またはエトキシ基、Xはエポキシ基、グリシドキシ基、置換基を有していてもよいフェニル基およびアミノ基からなる群から選ばれる1種を含有する有機基、nは0または1である。)
  4. 前記樹脂層中の前記添加剤の含有量が1~13重量%であることを特徴とする請求項1~3のいずれか1項に記載の樹脂製モールド。
  5. 前記溶媒可溶性樹脂が、前記式(1)におけるXと同種の置換基を有する構成単位を有することを特徴とする請求項3または4に記載の樹脂製モールド。
  6. 前記溶媒可溶性樹脂において、前記式(1)におけるXと同種の置換基を有する構成単位の割合が1~15重量%であることを特徴とする請求項5に記載の樹脂製モールド。
  7. 前記添加剤の前記溶媒可溶性樹脂と相溶性を有する置換基が、前記式(1)における置換基Xであることを特徴とする請求項3~6のいずれか1項に記載の樹脂製モールド。
  8. 前記添加剤の前記離型剤と結合可能な置換基が、前記式(1)における置換基Yまたはその加水分解された基であることを特徴とする請求項3~7のいずれか1項に記載の樹脂製モールド。
  9. 前記離型剤が、フッ素系シランカップリング剤、片末端アミン化パーフルオロ(パーフルオロエーテル)化合物および片末端カルボキシル化パーフルオロ(パーフルオロエーテル)化合物からなる群から選ばれる少なくとも1種であることを特徴とする請求項1~8のいずれか1項に記載の樹脂製モールド。
  10. 前記基板が、樹脂基板、ガラス基板、シリコン基板、サファイア基板、炭素基板またはGaN基板である請求項1~9のいずれか1項に記載の樹脂製モールド。
  11. 前記樹脂基板が、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリイミド、ポリサルフォン、ポリエーテルサルフォン、環状ポリオレフィンおよびポリエチレンナフタレートからなる群から選ばれる1種の樹脂であることを特徴とする請求項10に記載の樹脂製モールド。
  12. 表面の凹凸パターンの周期が、10nm~50μmであることを特徴とする請求項1~11のいずれか1項に記載の樹脂製モールド。
  13. 表面の凹凸パターンの形状が、線状、円柱状、モスアイ形状またはレンズ形状であることを特徴とする請求項1~12のいずれか1項に記載の樹脂製モールド。
  14. (I)基板上に溶媒可溶性樹脂および添加剤を溶媒に溶解した溶液を塗布し、樹脂溶液層を形成する工程と、
    (II)前記樹脂溶液層から溶媒を除去し、基板上に樹脂層を形成する工程と、
    (III)モールドを前記樹脂層に当接して、該モールドの表面に形成された凹凸パターンを前記樹脂層の表面に転写する工程と、
    (IV)前記樹脂層の少なくとも凹凸パターンを有する面上に離型剤を塗布し、均一な厚さの剥離層を形成する工程とを含むことを特徴とする樹脂製モールドの製造方法。
  15. 樹脂表面に請求項1~13のいずれか1項に記載の樹脂製モールドを当接する工程と、
    前記樹脂から前記樹脂製モールドから剥離する工程とを含むことを特徴とする樹脂製モールドの使用方法。
  16. 前記樹脂が、光硬化性樹脂であることを特徴とする請求項15に記載の樹脂製モールドの使用方法。
  17. ローラーに固定されていることを特徴とする請求項1~13のいずれか1項に記載の樹脂製モールド。
PCT/JP2011/067769 2010-08-06 2011-08-03 樹脂製モールド、その製造方法およびその使用方法 WO2012018045A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK11814670.3T DK2602081T3 (en) 2010-08-06 2011-08-03 RESIN FORM, MANUFACTURING PROCEDURE THEREOF, AND APPLICATION THEREOF
CN201180038599.2A CN103079788B (zh) 2010-08-06 2011-08-03 树脂制模具、其制造方法及其使用方法
KR1020137003988A KR101848863B1 (ko) 2010-08-06 2011-08-03 수지제 몰드, 그 제조 방법 및 그 사용 방법
SG2013008354A SG187700A1 (en) 2010-08-06 2011-08-03 Resin mold, production method thereof, and use thereof
US13/814,310 US9511535B2 (en) 2010-08-06 2011-08-03 Resin mold, production method thereof, and use thereof
EP11814670.3A EP2602081B1 (en) 2010-08-06 2011-08-03 Resin mold, production method thereof, and use thereof
JP2012527751A JP5292622B2 (ja) 2010-08-06 2011-08-03 樹脂製モールド、その製造方法およびその使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177601 2010-08-06
JP2010-177601 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012018045A1 true WO2012018045A1 (ja) 2012-02-09

Family

ID=45559541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067769 WO2012018045A1 (ja) 2010-08-06 2011-08-03 樹脂製モールド、その製造方法およびその使用方法

Country Status (8)

Country Link
US (1) US9511535B2 (ja)
EP (1) EP2602081B1 (ja)
JP (1) JP5292622B2 (ja)
KR (1) KR101848863B1 (ja)
CN (1) CN103079788B (ja)
DK (1) DK2602081T3 (ja)
SG (1) SG187700A1 (ja)
WO (1) WO2012018045A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080857A1 (ja) 2012-11-22 2014-05-30 綜研化学株式会社 インプリント用モールドの製造方法、インプリント用モールド、インプリント用モールド製造キット
WO2014080858A1 (ja) 2012-11-22 2014-05-30 綜研化学株式会社 インプリント用モールドの製造方法
WO2014115728A1 (ja) 2013-01-24 2014-07-31 綜研化学株式会社 光透過型インプリント用モールド、大面積モールドの製造方法
WO2015076147A1 (ja) 2013-11-22 2015-05-28 綜研化学株式会社 ステップアンドリピート方式のインプリント技術を用いた構造体の製造方法
JP2015189207A (ja) * 2014-03-28 2015-11-02 大日本印刷株式会社 線状微細凹凸構造体、及びその製造方法
JP2015212046A (ja) * 2014-05-02 2015-11-26 大日本印刷株式会社 親水性部材、及びその製造方法
CN105974732A (zh) * 2016-07-26 2016-09-28 京东方科技集团股份有限公司 压印掩膜版及纳米压印方法
WO2016167370A1 (ja) * 2015-04-17 2016-10-20 大日本印刷株式会社 離型シートおよび樹脂皮革
JP2016198914A (ja) * 2015-04-08 2016-12-01 ダイキン工業株式会社 成形体
WO2017073370A1 (ja) * 2015-10-26 2017-05-04 大日本印刷株式会社 フィルムモールド及びインプリント方法
KR20180132825A (ko) * 2016-04-06 2018-12-12 코닌클리케 필립스 엔.브이. 임프린트 리소그래피 스탬프, 이의 제조 방법 및 사용 방법
CN109176826A (zh) * 2018-09-27 2019-01-11 安徽省安美利特环保材料科技有限公司 一种具有凹凸表面的真空石及制备工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314896A1 (en) * 2013-03-15 2014-10-23 3Form, Inc. Printed mold and textured panels formed using the same
TW201607735A (zh) * 2014-06-11 2016-03-01 綜研化學股份有限公司 壓印用轉寫滾筒體
TWI662591B (zh) * 2014-07-08 2019-06-11 日商綜研化學股份有限公司 使用分步重複用壓印用模具的分步重複壓印方法、及分步重複用壓印用模具之製造方法
JP6529843B2 (ja) 2015-07-14 2019-06-12 芝浦メカトロニクス株式会社 インプリント用のテンプレート製造装置及びテンプレート製造方法
WO2020112740A1 (en) * 2018-11-29 2020-06-04 Sharklet Technologies, Inc. Soluble templates and methods of manufacture thereof
CN111244229B (zh) * 2020-02-11 2021-07-06 信利半导体有限公司 一种可挠曲的透明薄膜太阳能电池制作方法
US20220066070A1 (en) * 2020-04-27 2022-03-03 Glint Photonics, Inc. Method for producing optical article with anti-reflective surface, and optical article with anti-reflective surface
JP2022140088A (ja) * 2021-03-12 2022-09-26 キオクシア株式会社 テンプレートおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059822A (ja) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd 光硬化性樹脂、光硬化性樹脂組成物、微細凹凸パターン形成方法、転写箔、光学物品及びスタンパー
JP2004306030A (ja) 2003-04-08 2004-11-04 Komag Inc スタンパ用リリース・コーティング
JP2008178984A (ja) * 2007-01-23 2008-08-07 Hitachi Ltd ナノインプリント用スタンパ、ナノインプリント用スタンパの製造方法、およびナノインプリント用スタンパの表面処理剤
JP4154595B2 (ja) 2003-05-28 2008-09-24 ダイキン工業株式会社 インプリント加工用金型およびその製造方法
JP2010005841A (ja) 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd モールドの製造方法
JP2010184485A (ja) * 2009-02-13 2010-08-26 Seiko Epson Corp インプリント用型、インプリント用型の製造方法及び再生方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641606B2 (ja) * 2000-10-02 2011-03-02 三菱樹脂株式会社 ポリエステルフィルム
JP2007500266A (ja) 2003-07-25 2007-01-11 ダウ・コーニング・コーポレイション シリコーンラバー組成物
CN1244632C (zh) 2003-11-20 2006-03-08 福建宏玮鞋塑有限公司 热塑性弹性体发泡材料及其制备方法
US8899547B2 (en) * 2004-11-18 2014-12-02 Qspex Technologies, Inc. Molds and method of using the same for optical lenses
US7604836B2 (en) * 2006-12-13 2009-10-20 Hitachi Global Storage Technologies Netherlands B.V. Release layer and resist material for master tool and stamper tool
US9573319B2 (en) * 2007-02-06 2017-02-21 Canon Kabushiki Kaisha Imprinting method and process for producing a member in which a mold contacts a pattern forming layer
KR101362729B1 (ko) * 2007-05-08 2014-02-12 삼성디스플레이 주식회사 광학 시트, 이의 제조 방법 및 이를 갖는 표시 장치
EP2463073B1 (en) 2009-08-07 2018-04-04 Soken Chemical & Engineering Co., Ltd. Resin mold for imprinting and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059822A (ja) * 2002-07-31 2004-02-26 Dainippon Printing Co Ltd 光硬化性樹脂、光硬化性樹脂組成物、微細凹凸パターン形成方法、転写箔、光学物品及びスタンパー
JP2004306030A (ja) 2003-04-08 2004-11-04 Komag Inc スタンパ用リリース・コーティング
JP4154595B2 (ja) 2003-05-28 2008-09-24 ダイキン工業株式会社 インプリント加工用金型およびその製造方法
JP2008178984A (ja) * 2007-01-23 2008-08-07 Hitachi Ltd ナノインプリント用スタンパ、ナノインプリント用スタンパの製造方法、およびナノインプリント用スタンパの表面処理剤
JP2010005841A (ja) 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd モールドの製造方法
JP2010184485A (ja) * 2009-02-13 2010-08-26 Seiko Epson Corp インプリント用型、インプリント用型の製造方法及び再生方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602081A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080858A1 (ja) 2012-11-22 2014-05-30 綜研化学株式会社 インプリント用モールドの製造方法
WO2014080857A1 (ja) 2012-11-22 2014-05-30 綜研化学株式会社 インプリント用モールドの製造方法、インプリント用モールド、インプリント用モールド製造キット
WO2014115728A1 (ja) 2013-01-24 2014-07-31 綜研化学株式会社 光透過型インプリント用モールド、大面積モールドの製造方法
WO2015076147A1 (ja) 2013-11-22 2015-05-28 綜研化学株式会社 ステップアンドリピート方式のインプリント技術を用いた構造体の製造方法
JP2015189207A (ja) * 2014-03-28 2015-11-02 大日本印刷株式会社 線状微細凹凸構造体、及びその製造方法
JP2015212046A (ja) * 2014-05-02 2015-11-26 大日本印刷株式会社 親水性部材、及びその製造方法
KR20170096037A (ko) 2015-04-08 2017-08-23 다이킨 고교 가부시키가이샤 성형체
KR102004630B1 (ko) 2015-04-08 2019-07-26 다이킨 고교 가부시키가이샤 성형체
JP2016198914A (ja) * 2015-04-08 2016-12-01 ダイキン工業株式会社 成形体
WO2016167370A1 (ja) * 2015-04-17 2016-10-20 大日本印刷株式会社 離型シートおよび樹脂皮革
JP6079947B1 (ja) * 2015-04-17 2017-02-15 大日本印刷株式会社 離型シートおよび樹脂皮革
TWI624576B (zh) * 2015-04-17 2018-05-21 大日本印刷股份有限公司 離型片及樹脂皮革
WO2017073370A1 (ja) * 2015-10-26 2017-05-04 大日本印刷株式会社 フィルムモールド及びインプリント方法
JP2017084900A (ja) * 2015-10-26 2017-05-18 大日本印刷株式会社 フィルムモールド及びインプリント方法
KR20180132825A (ko) * 2016-04-06 2018-12-12 코닌클리케 필립스 엔.브이. 임프린트 리소그래피 스탬프, 이의 제조 방법 및 사용 방법
JP2019514213A (ja) * 2016-04-06 2019-05-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. インプリントリソグラフィースタンプの作製方法及び使用方法
JP2019195076A (ja) * 2016-04-06 2019-11-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. インプリントリソグラフィースタンプの作製方法及び使用方法
KR102331438B1 (ko) 2016-04-06 2021-11-26 코닌클리케 필립스 엔.브이. 임프린트 리소그래피 스탬프, 이의 제조 방법 및 사용 방법
CN105974732A (zh) * 2016-07-26 2016-09-28 京东方科技集团股份有限公司 压印掩膜版及纳米压印方法
CN109176826A (zh) * 2018-09-27 2019-01-11 安徽省安美利特环保材料科技有限公司 一种具有凹凸表面的真空石及制备工艺

Also Published As

Publication number Publication date
US9511535B2 (en) 2016-12-06
SG187700A1 (en) 2013-03-28
EP2602081B1 (en) 2015-05-27
CN103079788A (zh) 2013-05-01
KR101848863B1 (ko) 2018-04-13
EP2602081A1 (en) 2013-06-12
US20130134622A1 (en) 2013-05-30
EP2602081A4 (en) 2014-09-17
KR20130094800A (ko) 2013-08-26
CN103079788B (zh) 2015-06-10
JP5292622B2 (ja) 2013-09-18
JPWO2012018045A1 (ja) 2013-10-03
DK2602081T3 (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP5292622B2 (ja) 樹脂製モールド、その製造方法およびその使用方法
US9354512B2 (en) Resin mold for imprinting and method for producing the same
US8202468B2 (en) Nanoimprint resist, nanoimprint mold and nanoimprint lithography
US20030071016A1 (en) Patterned structure reproduction using nonsticking mold
WO2012018048A1 (ja) ナノインプリント用樹脂製モールドおよびその製造方法
CN102159372A (zh) 晶片透镜的制造方法
CN101970198A (zh) 晶片透镜的制造方法
JP5332220B2 (ja) 微細樹脂構造体並びにその製造方法
CN101923283B (zh) 纳米压印抗蚀剂及采用该纳米压印抗蚀剂的纳米压印方法
TWI391418B (zh) 奈米壓印抗蝕劑及採用該奈米壓印抗蝕劑的奈米壓印方法
Kuwabara et al. Degradation behavior of release layers for nanoimprint lithography formed on atomically flat Si (111) terraces
Hirai et al. Reproduction of anti-reflection structures by nano casting method
Taniguchi et al. Ultraviolet nanoimprint lithography

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038599.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13814310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011814670

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137003988

Country of ref document: KR

Kind code of ref document: A